097647 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

5 December 2002 (05.12.2002) PCT WO 02/097647 Al
(51) International Patent Classification’: GO6F 15/00 SIDDIQUI, Sarim; 36481 Diego Dr., Fremont, CA 94536
(US). WONG, Sunny; 1721 D Marina Court, San Mateo,
(21) International Application Number: PCT/US02/16375 CA 94403 (US). BYUN, Hyun-Sik; 1491 Hess Rd., #307,
Redwood City, CA 94061 (US).
(22) International Filing Date: 24 May 2002 (24.05.2002) (74) Agent: DAYBELL, Donald; Lyon & Lyon LLP, Suite
4700, 633 W. Fifth Street, Los Angeles, CA 90071 (US).
(25) Filing Language: English
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
(26) Publication Language: English AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
(30) Priority Data: GM, HR, I—gU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
09/872,589 31 May 2001 (31.05.2001)  US LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(71) Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, MS 50p7, Redwood
Shores, CA 94065 (US).

(72) Inventors: SUBRAMANIAN, Sowmya; 548 Hawthorne
Ave., Palo Alto, CA 94301 (US). SUNKARA, Ramu; 940
Hayman Place, Los Altos, CA 94024 (US). KAPUR, Ku-
nal; 745 Elm St. #5, San Carlos, CA 94070 (US). LAI,
Anthony; 21860 Eaton Place, Cupertino, CA 95014 (US).

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,

YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54) Titlee METHOD AND SYSTEM FOR PAGE PREFABRICATION

6262 — [ |
[ WERGEFIOR ]
6265 —

]

PREFABRCATOR :

SERVCE i

v

]
- PREFPCES

(57) Abstract: A system and method for prefabricating information pages (636a, 636b) is disclosed, in which the necessary steps
to retrieve and package information requested by a user (602) are preemptively performed by the computer system. When the user
~~ (602) later makes an explicit request for information, the desired information can be immediately displayed to the user without the
delays associated with contemporaneous retrieval and packaging of the information. The prefabrication system of the invention can
be configured to automatically tune its processing to the changing conditions that exist in the computer system, which can be used to
maximize use of available system resources. The present invention can be scalably deployed to perform coordinated prefabrication
services (626a, 626b) on multiple, distributed computing nodes(606a, 606b). In an embodiment, the invention is completely non-
intrusive, in which no changes to existing application are required to implement prefabrication of pages (636a, 636b).



w0 02/097647 A1 NI A0I0E 00O 000 O R

Published: For two-letter codes and other abbreviations, refer to the "Guid-
with international search report ance Notes on Codes and Abbreviations" appearing at the begin-
before the expiration of the time limit for amending the  ning of each regular issue of the PCT Gazette.

claims and to be republished in the event of receipt of

amendments



10

15

20

WO 02/097647 PCT/US02/16375

SPECIFICATION

METHOD AND SYSTEM FOR PAGE PREFABRICATION

BACKGROUND AND SUMMARY

[0001] The present invention relates to the field of computer systems. More particularly,
the invention relates to a method and system for prefabricating information in a computer
system.

[0002] Many computer applications obtain and display information to users. For
example, a web browser is a specially configured application for retrieving and
displaying web pages. When the user of a web browsg:r indicates a desire to view a
particular page of information, the browser or its supporting hardware/software
components on the user station performs actions to create and send an information
request to the location of the information. The information request is sent across the
network to the location of the information, is serviced at the remote location to
create/send the requested information, which is then returned to the local user station for
viewing. In a multi-tier architecture, the information request may be directed to a middle
tier web server, which in turn handles the requesting, retrieval, and packaging of
information from one or more back-end data servers. Such information retrieval and
display actions are relevant to many networked computer applications, such as
distributed database applications.

[0003] To illustrate, consider a typical user’s home page that is established on a web
portal site. A portion of the home page may be configured to display the latest prices for
stocks owned by the user and a summary of the value of the user’s stock portfolio. Other

portions of the home page can be configured to display other types of information, such

1



10

15

20

WO 02/097647 PCT/US02/16375

as news, weather, etc. When the user’s browser requests the home page, a page request
is sent to a web server having the responsibility for retrieving relevant items of
information on the home page from one or more back-end data servers (e.g., stock price
information from a database server), processing the data if necessary (e.g., to calculate
stock portfolio values for the user), and packaging the page information into a designated
page format for display.

[0004] In conventional computer systems, there is always an inherent delay associated
with this process of “fabricating” a page of information. Each information request could
involve multiple network roundtrips that consume a given quantity of time. Substantial
delays may also occur because of large information items that must be retrieved or
downloaded across the network. The information request may involve database
processing at a back-end data server, causing more delays. In addition, once all the
information is collected, it may have to be rendered or packaged into a specific format,
causing yet more delays. These delays could significantly affect the performance or
usability of a computer application. In modern business environments, such delays could
contribute to unacceptable productivity losses for computer users.

[0005] Therefore, it is an object of the invention to provide a method and system for
increasing response speeds and reducing response times to user requests for information.
[0006] The present invention provides a method and system for prefabricating
information, in which the necessary steps to retrieve and package information requested
by a user are preemptively performed by the computer system. When the user later
makes an explicit request for information, the desired information can be immediately
displayed to the user without the delays associated with contemporaneous retrieval and

packaging of the information.



10

15

20

WO 02/097647 PCT/US02/16375

[0007] In one embodiment, the invention comprises a prefabricator that generates
prefabrication requests. The prefabrication requests are processed to create and store
prefabricated information. An interceptor receives information requests from users, and
provides the prefabricated information in response to the information requests. The
prefabrication components of the invention can be non-intrusively used with any existing
computer application and without requiring installation of any additional hardware

components.

-[0008] The prefabrication system of the invention can be configured to automatically

tune its processing to the changing conditions that exist in the computer system. This
permits the prefabrication process to take full advantage of any excess resources
available in the system during periods of low resource usage, by automatically increasing
the prefabrication workload. During periods of high resource usage, the prefabrication
workload is automatically lowered to minimize any harmful effects upon other run-time
work being performed by the system.

[0009] The present invention can be scalably deployed to perform coordinated
prefabrication services on multiple, distributed computing nodes. According to an
embodiment of the invention in a multi-node environment, any number of prefabricator
instances can be configured to perform prefabrication functions on separate network
nodes. Each prefabricator instance handles its allocated portion of the prefabricated
information, and stores the prefabricated information in a network accessible storage
device. When a user makes an information request, any of the nodes within the
prefabrication framework can determine if the requested information has been
prefabricated, and retrieve the préfabricated information for the user. By intelligently

distributing the workload across multiple nodes, the system resources in all prefabricator



10

WO 02/097647 PCT/US02/16375

nodes can be optimally harnessed and dynamically tuned. Regardless of the quantity of
prefabrication workload that is assigned to a given node, all nodes equally participate in
the benefits of prefabricated information, since all prefabricated information, even
information prefabricated by other nodes, are universally accessible from netwdrked

storage devices.

[0010] An embodiment of the invention provides a method to manage session security
for prefabrication services. The interceptor in this embodiment is configured to verify
the validity of session ID values for users. If the user makes an information request that
can be satisfied with prefabricated information, then the interceptor provides the
prefabricated information with the valid session ID for the user attached to the

information.

[0011] Further details of aspects, objects, and advantages of the invention are described

below in the detailed description, drawings, and claims.



10

15

20

WO 02/097647 PCT/US02/16375

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The accompanying drawings are included to provide a further understanding of
the invention and, together with the Detailed Description, serve to explain the principles
of the invention.

[0013] Fig. 1 depicts prefabrication components according to an embodiment of the
invention.

[0014] Fig. 2 shows a flowchart of a prefabrication method according to an embodiment
of the invention.

[0015] Fig. 3 illustrates a prefabrication system according to an embodiment of the
invention.

[0016] Fig. 4 shows a prefabrication service module according to an embodiment of the
invention.

[0017] Fig. 5 illustrates an alternate prefabrication system according to an. embodiment
of the invention.

[0018] Fig. 6 shows an n-node prefabrication system according to an embodiment of the
invention.

[0019] Fig. 7 shows prefabrication components for an n-node prefabrication system
according to an embodiment of the invention.

[0020] Fig. 8 shows a PRB schema according to an embodiment of the invention.

[0021] Fig. 9 shows prefabrication policy schemas according to an embodiment of the
invention.

[0022] Fig. 10 identifies example indexes to user page tables.

[0023] Fig. 11 shows a process flow for a start loader according to an embodiment of the

invention.



WO 02/097647 PCT/US02/16375

[0024] Fig. 12 depicts a flowchart of a process for constructing PRBs according to an

embodiment of the invention.

[0025] Figs. 13 and 14 are diagrams of system architectures with which the present

invention may be implemented.



10

15

20

WO 02/097647 PCT/US02/16375

DETAILED DESCRIPTION

[0026] The present invention takes the form of a method and system for prefabricating
information, in which the necessary steps to retrieve and package information requested
by a user are preemptively performed by the computer system — before the user ‘makes an
explicit information request. Instead, an embodiment of the invention predictively
identifies and prefabricates information that may be displayed to the user in the future.
When the user later makes a request for information, the desired information can be
immediately displayed to the user without the delays associated with contemporaneous
retrieval and packaging of the information. For the purposes of illustration, and not by
way of limitation, the present explanation is made with respect to “pages” of information
that are displayed to a user. It is noted, however, that other granularities of information
may be prefabricated within the scope of the invention.

[0027] According to an embodiment, a set of prefabrication system components is
deployed to prefabricate pages for a computer application. Referring to Fig. 1, shown is
a computer application 104 that generally produces or processes information for display
to users. Computer application 104 could be any application that displays information to
users, such as, for example, a database a;plication. Information pages from the
computer application 104 are displayed to users via a user interface 102, which may be,
for example, a conventional web browser. User interface 102 responds to user
commands to generate page requests for information pages requested by the user.

[0028] An interceptor 108 is logically interposed between the user interface 102 and the
computer application 104. When a page request is sent from user interface 102 to
computer application 104, the interceptor 108 intercepts the page request to determine if

a valid, prefabricated page exists that is responsive to the request. This determination is

7



10

15

20

WO 02/097647 PCT/US02/16375

made by identifying whether the requested page had already been prefabricated and
cached/stored in a storage device 112. Storage device 112 could be any device usable to
store an accessible copy of the prefabricated page, such as a memory cache, a local disk
drive, or a network file system (“NFS”) device.

[0029] If the requested page has already been prefabricated, then the page request is
immediately fulfilled by retrieving the prefabricated page from the storage device 112 for
display at the user interface 102. If the requested page has not already been
prefabricated, then the page request is sent to the computer application 104 to be fulfilled
by dynamically fabricating the requested page.

[0030] A prefabricator 110 identifies information pages to prefabricatq. Configuration
settings and/or heuristics may be employed to predictively determine which information
pages should be prefabricated. For each of these identified pages, a page request is sent
from the prefabricator service module 110 to the interceptor 108. The interéeptor 108
sends these page requests to the computer application 104. Each of these page requests
from the prefabricator 110 is processed by the computer application 104 to fabricate a
requested information page. The process at the computer application 104 to respond to a
page request could be the same, regardless of whether the page request originates from
the prefabricator service module 110 or the user interface 102. However, information
pages generated in response to prefabricated page requests from the prefabricator 110 are
cached by the interceptor 108, e.g., at a storage device 112. In contrast, information
pages dynamically fabricated in response to a current page request from the user
interface 102 are immediately sent to the user interface 102 for display. These
contemporaneously fabricated pages may also be cached by the interceptor 108 for later

access.



10

15

20

WO 02/097647 PCT/US02/16375

[0031] The prefabrication components of the invention may be installed at any physical
or logical location in the computer system. Physically, the interceptor and prefabricator
components may be located, for example, at the physical locations of the user interface,
the computer application, or at other network locations such as a middle-tier wéb server
computer. Logically, the interceptor and prefabricator components can be installed
anywhere in the computer system, and/or integrated into other system components. In an
embodiment, the interceptor 108 is integrated into a middle-tier web server or is iogically
located before it to intercept all communications between a user interface/browser and
any applications accessed by the user running on a back-end data server.

[0032] It is noted that the format of page requests made to the computer application 104
could remain the same, regardless of whether prefabrication is being performed in the
system. The interceptor component is configured to distinguish between ordinary page
requests from the user interface and page requests from the prefabricator component, and
to route the fabricated page from the computer application accordingly. Thus,

introducing prefabrication components into a computer system need not result in

- modifications to a computer application. Instead, the present invention may be

employed to non-intrusively prefabricate pages for any computer application, without
requiring any or significant modifications to the computer application, merely by
interposing the interceptor component in the communications path (e.g., at a web server)
between the computer application and its corresponding user interfaces.

[0033] Fig. 2 depicts a flowchart of a method for performing page prefabrication
according to an embodiment of the invention. Step 202 of the method is directed to
configuring one or more prefabrication policies for the system. A prefabrication policy

is a set of configuration parameters that governs the manner in which prefabrication is



10

15

20

WO 02/097647 PCT/US02/16375

performed. According to an embodiment of the invention, a prefabrication policy
identifies some or all of the following: (1) the computer application that the policy
applies to; (2) the users that the policy applies to; (3) the information pages to be
prefabricated; (4) prefabrication scheduling and refresh interval(s); (5) responsibilities to
prefabricate; and (6) prefabrication priorities.
[0034] To illustrate, the following sets forth aﬁ example of a set of prefabrication policy
parameters for a computer application:

1. Policy Name: Guest User Policy

2. Application Name: Foo

3. Applies to: All users of Foo application with Guest responsibility

4. Time and Periodicity for Prefabrication: 2:00 A.M. — refresh daily

5. Depth of Prefabrication: all start pages and menu pages for identified users
This is an application level policy that defines the prefabrication policies for users having
“Guest” responsibility for the “Foo” computer application. In particular, this set of
policies (entitled “Guest User Policy”) states that the “start page” and menu pages for
every such user of the Foo application will be prefabricated and stored e\}ery day at 2:00
AM. According to an embodiment of the invention, a start page is an initial page
displayed to a user. The start page could be the application’s initially displayed page, an
organization’s home page, a user home page, or any other page designated as an entry
page to be displayed to a user. The start page often contains hyperlinks or user selectable
controls to view other displayable information pages. A “menu page” can be a tabbed,
menu page that is hyperlinked from the start page.
[0035] Referring back to Fig. 2, the method thereafter prefabricates pages according to

the defined prefabrication policy(s) (204). The exact steps to prefabricate a page depend

10



10

15

20

WO 02/097647 PCT/US02/16375

in large part upon the specific contents of a page and the location of information in the
page. In one embodiment, the same steps used to dynamically fabricate a page in
response to a current user page request are also used to prefabricate a page in response to
a prefabrication request. For an application that accesses data in a database,
prefabrication may involve the steps of querying a database, processing data that is
retrieved from the database, and packaging/rendering the resulting information in a
specific format to be displayed to a user. The goal of the prefabrication process is to
prefabricate a page as closely as possible to the page that the user would later “normally”
retrieve without prefabrication. The prefabricated page would then be cached/stored for
later access.

[0036] In operation, the prefabrication-enabled computer system filters page requests to
intercept any page request that corresponds to a prefabricated page (208). If a pre-
existing, valid prefabricated page responsive to the page request exists, then it is sent to
the user for display (210). If the requested page does not exist or if the prefabricated
page responsive to the page request is not valid, then the page request is sent to the
computer application for contemporaneous fabrication (212). It is noted that
prefabricated pages may be marked as being invalid under certain circumstances, e. g.,. if
it becomes stale. The term “stale” refers to a prefabricated page in which the entire
prefabricated page, or items of information located on the prefabricated page, is no
longer considered to be valid. In one embodiment, staleness is based upon whether the
creation/update time for a prefabricated page is within a threshold time period. A
parameter can be established to determine the periodicity at which prefabricated pages
should be created or updated to avoid staleness. Other approaches can also be used to

establish staleness. For example, an alternate approach is based upon whether some or

11



10

15

20

WO 02/097647 PCT/US02/16375

all of the information on the prefabricated page has been changed in a way that is
relevant. Messaging can be used to determine whether some or all of the information on
a prefabricated page has changed. The back-end database can send a message to the
manager or location of the prefabricated page to indicate staleness. Alternatively, the
cache server/prefabricator components can itself send a message to the back-end server

to determine whether a prefabricated page is stale.

IMlustrative Embodiments

[0037] Fig. 3 depicts an architecture 300 for page prefabrication according to an
embodiment of the invention, in which an interceptor service module 304 is integrated
with a web server 306. By way of example, web server 306 may be implemented as an

Apache web server (available from www.apache.org) having server-side Java servlet

functionality using the Apache Jserv module. The interceptor service module 304 can be
implemented as a c-based extension that is compiled into the Apache web server code
base. User page requests originate from a browser 302. Prefabricator page requests are
éenerated by a prefabricator service module 310. The prefabricator service module may
be located at eithér the saﬁe hardware location as the web server 306, or at any other
machine location in the computer system. By way of example, the prefabricator service
module may be implemented as a Java program co-located with the web server 306.
[0038] Page requests are sent to tﬁe interceptor service module 304 as Uniform Resource
Locator (URL) requests. For user page requests, the interceptor service module 304
determines if the HTTP response for the requested URL has already been prefabricated

and stored. The prefabricated HTTP responses are stored in a storage device 308.

12



10

15

20

WO 02/097647 PCT/US02/16375

[0039] If a valid, prefabricated HTTP response to the user requested URL is not
available, then the URL request is dynamically processed by a Java servlet 316 to
produce the desired HTTP response. The Java servlet 316 may access a database 312 to
retrieve or process information associated with the URL. The HTTP response produced
by the Java servlet 316 is routed to the browser 302 by the interceptor service module
304.

[0040] The prefabricator service module 310 accesses a set of prefabrication policies 314
to identify URLSs that should be prefabricated. Prefabrication policies 314 can be stored
at the database 312. Each URL identified to be prefabricated is sent as a prefabrication
page request to the interceptor service module 304. The prefabricator URL requests are
processed by one or more Java servlets 316 to produce the desired HTTP responses. The
interceptor service module 304 distinguishes between HTTP responses from user page
requests and HTTP responses from prefabricator page requests. The HTTP responses to
prefabricator page requests produced by the Java serviet(s) 316 are stored in the storage
device 308, before they are sent back to the prefabricator service module 310.

[0041] Fig. 4 shows components of an embodiment of the prefabricator service module
310. The start loader 404 performs the initial bootstrapping for the prefabricator service
module 310. The start loader 404 accesses the defined prefabrication policies 402 for the
system to determine an initial set of pages to prefabricate. Each identified page that is a
candidate for prefabrication is represented as a formatted page request, referred to herein
as a page request block (PRB). As described in more detail below, the initial set of
identified pages may further identify links to other candidate pages that should be

prefabricated.

13



10

15

20

WO 02/097647 PCT/US02/16375

[0042] One or more PRBs are sent from the start loader 404 to the benefit analyzer 406,
with each PRB corresponding to a separate page to prefabricate. The benefit analyzer
406 prioritizes the list of PRBs based upon prioritization parameters established in the
prefabrication policies 402. Examples of prioritization parameters include avaiiable
system resources, page fabrication times, user access patterns, and the page depth of a
PRB page. The benefit analyzer also determines a preferred batch size to process the
PRBs. Once the benefit analyzer has prioritized and generated a batched set of PRBs to
process, the set of PRBs is sent to the page request feeder 408.

[0043] The page request feeder 408 receives PRBs from the Benefit Analyzer 406 and
issues HTTP requests based upon the received PRBs. The HTTP requests for the PRBs
are sent to the interceptor service module for processing by the web server. The HTTP
responses are sent from the interceptor service module/web server to the page request
feeder 408. Each PRB, along with its associated HTTP response, is sent to the URL

collector 412.

[0044] The page request feeder 408 is configured to concurrently handle multiple HTTP
requests, by assigning PRBs to one or more processing entities (e.g., threads) that
execute in parallel. The number of PRBs that is concurrently processed depends upon
the level of available resources in the system. The greater the level of available system
resources, the greater the number of PRBs that may be concurrently processed in the
system. The prefabrication policies 402 may include parameters governing the level of
system resources at which prefabrication procedures may execute or limit the quantity of

system resources that may be consumed by the prefabrication policy.

[0045] The resource manager 410 monitors system resource usage, such as CPU and

memory usage, both at the prefabricator location as well as the web server location(s),
14



10

15

20

WO 02/097647 PCT/US02/16375

and indicates the level of system resources available to the prefabricator service module.
The resource manager 410 provides system resource information used by the page
request feeder 408 to throttle the rate in which HTTP requests are sent to the
interceptor/web servers. The resource manager 410 can also be configured to provide
information used by the page request feeder 408 to identify which web server or load

balancer at which HTTP requests should be directed.

[0046] In this manner, the prefabrication system automatically adapts or “tunes” its
processing to the changing conditions that exist in the system. This permits the
prefabrication process to take full advantage of excess resources available in the system
during periods of low resource usage, by automatically increasing the prefabrication
workload. During periods of high resource usage, the prefabrication workload can be
automatically lowered to minimize resource drains from other run-time work being

performed by the system.

[0047] Each processed PRB and its associated HTTP response from the interceptor/web
server are sent from the page request feeder 408 to the URL collector 412. The URL
collector 412 crawls through the HTTP responses to identify new URLs that should be
prefabricated. The new URLs form additional PRBs that are sent to the benefit analyzer
406 for prioritization and further processing. The prefabrication policies 402 define
parameters used by the URL collector 412 to identify additional URLs that should be
prefabricated. In one embodiment, the pages dynamically fabricated in response to an
immediate user request can also be sent to the URL collector 412 to be crawled for pages

that should be prefabricated.

15



10

15

20

WO 02/097647 PCT/US02/16375

[0048] To illustrate the operations of prefabricator service module 310, consider again
the example prefabrication policy, described above, having the following policy
parameters:

1. Policy Name: Guest User Policy

2. Application Name: Foo

3. Applies to: All users of Foo application with Guest responsibility

4. Time and Periodicity for Prefabrication: 2:00 A.M. — refresh daily

5. Depth of Prefabrication: all start pages and menu pages for identified users
As previously noted, this is an application level policy that defines the prefabrication
policies for users having “Guest” responsibility for the “Foo” computer application,
where the “start page” and “menu page” for every such user of the Foo application will
be prefabricated and stored every day at 2:00 A.M.
[0049] When this prefabrication policy is executed, the start loader 404 in the
prefabricator service module 310 performs the action of identifying the URLs of the start
pages for all relevant users (i.e., “Guest” users) of the Foo computer application. In
some circumstances, the start loader 404 may also identify some or all of the URLSs for
the menu pages for the relevant users. PRBs corresponding to the identified URLs are

sent to the benefit analyzer 406.

[0050] The benefit analyzer 406 prioritizes the PRBs and sends a series of PRB batches
to the page request feeder 408. Various prioritization procedures may be employed. In
this example, an applicable prioritization procedure is to give higher priority to start page
URLSs and lower priority to other URLs having higher depths in the page hierarchy, i.e.,
menu page URLs. Thus, the initial batch of PRBs identified by the benefit analyzer 406

should be directed to higher priority URLs.
16



10

15

20

WO 02/097647 PCT/US02/16375

[0051] The page request feeder receives system resource information from the resource
. manager 410. Based upon this system resource information, the page request feeder 408
determines the number of PRBs that may be concurrently processed at any moment in
time. The PRBs are assigned to the processing entities that work for the page request
feeder 408. HTTP requests are sent by the processing entities to the interceptor/web
server. HTTP responses to the HTTP requests are returned from the interceptor/web

server, and are attached or logically associated with the original PRBs.

[0052] The PRBs and the associated HTTP responses are sent to the URL collector 412.
The URL collector 412 attempts to identify additional URLs that should be
prefabricated. In this example, the prefabrication policies indicate that both start pages
as well as menu pages should be prefabricated. Thus, the URL collector 412 crawls
through the HTTP response for each start page to attempt to identify URLs for additional
menu pages. The URLs for the identified menu pages are packaged as new PRBs that

are sent to the benefit analyzer 406.

[0053] The benefit analyzer 406 reprioritizes the set of pending PRBs based upon the
new PRBs received from the URL collector 412, and sends another batch of PRBs to the
page request feeder 408. The above process continues until all the PRBs have been

processed or until the processing time period for the policy expires.

[0054] A scheduler (not shown) coordinates the activities of the components within the
prefabricator service module 310. In one embodiment, the scheduler is a thread that
monitors the prefabrication policies, and determines which policies become active and

which policies are scheduled to end.

17



10

15

20

WO 02/097647 PCT/US02/16375

[0055] Fig. 5 depicts an alternate embodiment of the invention, in which the interceptor
service module 502 is integrated with a cache server 504. The cache server 504 is
interposed between users and the web server 506. In this approach, the cache server 504
manages the storage and retrieval of prefabricated pages. This is in contrast to the
apf)roach of Fig. 3, in which the prefabricator system components are responsible for

storing and retrieving cached prefabricated pages.

Multi-Node Prefabrication System

[0056] The present invention can be scalably deployed to perform coordinated
prefabrication services on multiple, distributed computing nodes. By way of example, if
embodiments of the invention are employed in a system configuration having multiple
middle-tier machines, then the prefabricator service can be started on some or all of the
middle-tier machines to share the prefabrication workload. Each prefabricator instance
produces its allocated portion of the prefabricated pages, and stores the prefabricated
pages in a network accessible storage device. When a user requests an information page,
any of the web servers operating within the prefabrication system can determine if the
requested page has been prefabricated. If so, then the web server retrieves the
prefabricated page from the particular network accessible device upon which the

prefabricated page was stored.

[0057] Fig. 6 depicts one embodiment of the invention for an “n-node” architecture, in
which multiple middle-tier machines exist in the distributed computer system. Shown in
Fig. 6 is a first middle-tier node 606a and a second middle-tier node 606b. Each node

606a and 606b can access the same computer applications, e.g., database application 610,

18



10

15

20

WO 02/097647 PCT/US02/16375

to generate a requested information page. Each middle-tier node 606a and 606b includes
prefabricator components, such as an interceptor 616a and prefabricator 626a on node
606a, and an interceptor 616b and p'refabricator 626b on node 606b. Node 606a stores
prefabricated pages in a storage device 636a, while node 606b stores prefabricated pages
into a storage device 636b. In an embodiment, storage devices 636a and 636b are both

NFS-compatible storage devices accessible from other network nodes.

[0058] When a user page request is sent from browser 602, the page request is routed to
one of the middle-tier nodes 606a or 606b by router/load balancer 604. The node
presently handling the page request determines if a valid, prefabricated version of the
requested page exists somewhere in the system. If s0, then the node retrieves the
prefabricated page. If the page was not locally prefabricated, and the prefabricated page
is stored in a network accessible file system like a remotely produced prefabricated page,
then the node retrieves the page from the network accessible file system. Ifthe locally
produced prefabricated pages are stored in a local cache or storage device, then a local
request for that page would result in retrieval from the local cache or storage device. If
the page was prefabricated at another network node, then the prefabricated page is
retrieved from the network accessible storage device, and sent to the browser 602 for

display.

[0059] To describe how prefabricator workload is distributed among multiple nodes,
shown in Fig. 7 are prefabricator components for an n-node prefabricator system
according to an embodiment of the invention. The n-node prefabricator system includes
a load distributor 702 that is responsible for distributing the page prefabrication
workload. The load distributor 702 divides a given prefabricator workload among

multiple prefabricator nodes. Each prefabricator node includes a prefabricator service
19



10

15

20

WO 02/097647 PCT/US02/16375

instance 704. While only a single prefabricator service instance 704 is shown in Fig. 7, it
is noted that multiple such prefabricator service instances may exist in the distributed
system. In one embodiment, the load distributor 702 is located at the same machine as
one of the prefabricator service instances 704. In an alternate embodiment, the load

distributor 702 is located on a separate machine.

[0060] The load distributor 702 accesses all prefabrication policies to determine the
current pfefabrication workload for the distributed system. Based upon the
prefabrication policies, the load distributor 702 identifies the pages to prefabricate. For

each identified page, a page request PRB is created.

[0061] The load distributor 702 divides the set of PRBs across the fabricator nodes in the
system. In an embodiment, workload distribution is based upon the resource usage and
availability levels of each prefabricator node. Prefabricator nodes having higher resource
availability levels are assigned more work while prefabricator nodes having lower
resource availability levels are assigned less work. Examples of resource usage
parameters that may factor into the workload distribution decision are CPU, memory,

and current prefabrication request levels at each prefabricator node. For this reason, the
resource manager 706 at each prefabricator service instance 704 preferably

communicates resource usage information to the load distributor 702.

[0062] A first approach to assigning work to prefabricator nodes involves looking at
resource utilization levels in a global way, where the entirety of the workload is
distributed across all the participating nodes to balance resource usage across the entire
system. The total resource “headroom” for each node is identified to make the workload

allocation. A second approach to assigning work involves looking at each prefabrication

20



10

15

20

WO 02/097647 PCT/US02/16375

node on an individual basis, and assigning work to a node only within the exact resource

utilization constraints that have been imposed for that node.

[0063] The load distributor 702 maintains a PRB data structure that lists all PRBs to
prefabricate as well as the identity of the specific prefabricator node assigned to each
PRB. The PRB data structure can be stored as a table in a database 708. The start loader
710 at each prefabricafor service instance 704 scans the PRB data structure to identify
the PRBs assigned to that instance. The assigned PRBs for the prefabricator service
instance 704 are sent to the benefit analyzer 712 for that instance 704 for prioritization
and further processing. The processing of the PRBs thereafter is substantially identical
to the processing of PRBs as described with reference to Fig. 4, with the exception that
the HTTP response is stored in a network accessible network storage device. In addition,
the completed PRBs are identified as such in the PRB data structure. In an embodiment,

the PRB data structure is the same as the user page table, described in more detail below.

[0064] The load distributor 702 can be configured to distribute the prefabrication
workload at a number of occasions. For example, the load distributor 702 may
redistribute the workload at prefabrication system startup time, at predefined intervals, or
when a “redistribute workload” command is explicitly issued. Each prefabricator
instance can be configured to periodically log a set of statistics or status messages in a
database. These statistics can be used to identify load imbalances across the system that
can be corrected by redistributing the workload. In addition, the periodic reports can be
used to identify error conditions at the distributed nodes. For fault tolerance purposes,
load redistribution may also occur based upon identifying an error or problem at one of

the prefabrication nodes.

21



10

15

20

WO 02/097647 PCT/US02/16375

[0065] The present invention can therefore be effectively scaled over any number of
prefabricator nodes, merely by distributing the prefabrication workload over the
prefabrication nodes in the system. The excess resources in all prefabricator middle-tier .
nodes can be harnessed by appropriate distribution or redistribution of additional
workloads to those nodes having excess resource availability levels. On the other hand,
those nodes having lower available resources are assigned smaller portions of the
prefabrication workload. Regardless of the quantity of prefabn’caﬁon workload that is
assigned to a given node, all nodes equally participate in the benefits of prefabricated
pages, since all prefabricated pages, even pages prefabricated by othet nodes, are

universally accessible from networked storage devices.

PRB - Page Request Block

[0066] According to an embodiment, information pages that are candidates for
prefabrication are internally represented as formatted page requests or PRBs. Fig. 8
shows a PRB structure according to one embodiment of the invention. Attribute 802
identifies the specific uniform resource identifier (URI), e.g., URL + cookie information,
associated with a PRB. Attribute 804 identifies the user identifier of the user associated
with the PRB request. Attribute 806 sets forth the application identifier associated with
the PRB. Attribute 808 sets forth the responsibility identifier for the PRB. Attribute 810
defines the page depth for the PRB request. If the start page or home page is considered
depth “0”, the next additional navigational level frofn that start/home page is considered
depth “1”, the next immediate navigational level from level “1” is considered depth level
€27, etc. The depth attribute 810 identifies the depth level of the URI associated with the

PRB. The weight attribute 812 identifies the prioritization weight associated with the

22



10

15

20

WO 02/097647 PCT/US02/16375

PRB, which is computed and used by the benefit analyzer component to sort the list of
pending PRBs. Attribute 818 identifies an average page generation time. The average
generation time is set by the Page Request Feeder component once a PRB has been
fabricated.

[0067] An inherent hierarchy exists between many PRBs within the system. A PRB (A)
‘that is created by identifying URIs in the page represented by another PRB (B) is
referred to as a child of PRB (B). Any PRB can have zero or more child PRBs. The
child PRBs are considered to be at a depth of one more than the depth of the parent PRB.
Attribute 814 identifies the entry page for this application of the present PRB. Attribute
816 identifies the child PRBs for the present PRB. Attribute 820 identifies the number of
child PRBs to the present PRB.

[0068] In an embodiment, PRBs being processed by the system are stored in-memory in
a UserPageTable, which is described in more detail below. This table preferably persists
in a database. A history table is maintained in one embodiment to track all PRBs
processed by the system for a given application. Statistics, such as the frequency or rate
of change for a PRB, are maintained in the history table. These statistics can be used to
modify or update weighting algorithms for PRBs. PRBs that are very old and which are

not recently or frequently accessed can be expunged from the history table.

Prefabrication Policy

[0069] This section describes the structure of prefabrication policies according to an
embodiment of the invention. According to an embodiment, the prefabrication policy
contains configuration information used to bootstrap and tune the prefabricator. The

prefabrication policies are preferably striped by application and are stored as persistent

23



10

15

20

WO 02/097647 PCT/US02/16375

information in a database. The prefabrication policy identifies some or all of the

following: (1) the computer application that the policy applies to; (2) the users that the

policy applies to; (3) the information pages to be prefabricated; (4) prefabrication

scheduling and refresh interval(s); (5) responsibilities that the policy applies to; and (6)

prefabrication priorities. A hierarchy of different categories of policies can be used in

the invention, such as the following categories:

System Resource Policies: This type of policy applies at a system-wide level, and
establishes system resource conditions under which the prefabrication process is
permitted to operate. Examples of this policy type would include policies that

specify a CPU consumption limit, available memory, or disk space limitations.

Application Level Policies: This set of policies applies at an application-wide level,

and establishés prefabrication parameters for specific computer applications in the

system. For a given application, this set of policies can be used to establish, for

example, the time of day at which the prefabrication process is performed, the

periodicity with which pages are prefabricated (to prevent staleness), and the identity,
' |

type, and/or quantity of pages that should be prefabricated. One or more application

level policies may be established for a given application.

Responsibility and User level Policies: These sets of policies applies to specific
responsibilities and users within an application. In an embodiment, these policies are
a subset of the application level policies, and will override any setting at the
application level. Each application rﬂay correspond to multiple responsibility and

user leve] policies.

Transient policies: These are run-time policies that the prefabricator service auto-

24



10

15

20

WO 02/097647 PCT/US02/16375

tunes as it runs. In one embodiment, this type of policy is calculated at run-time and
is based upon the availability of resources and current state of the system. An
example includes a policy that tunes the number of PRBs concurrently processed by
the request feeder. The parameters of the system resource policies can be used to
implement transient policies. In an embodiment, these policies are not persisted in

the database.

[0070] At the java-layer or middle-tier, policies can be represented as object instances of

a Policy class. Some of the properties in the Policy object are persistent while others are

transient. The following is a list of properties for the Policy class that may be employed

in one embodiment of the invention:

applicationID: the unique ID associated with an application. (persistent)

isEnabled: determines if prefabricator is enabled or disabled for the application

corresponding to the applicationID. (persistent)

startTime: the time at which the prefabricator service should be started for this
policy. In one embodiment, this property cannot be modified at the responsibility or

user level. (persistent)

endTime: the time (if any) at which the prefabricator service should be stopped for
the policy. In one embodiment, this property can be modified at the responsibility or

user level. (persistent)

interval: the periodicity with which the prefabricator service should regenerate pages.
This property represents a “staleness” threshold for prefabricated pages. In one
embodiment, this property can be modified at the responsibility or user level.

(persistent)
25



10

15

20

WO 02/097647 PCT/US02/16375

depth: this represents the desired depth for which pages are prefabricated. By way of
example, this property represents whether only home/start pages, all pages, or a
defined depth x of pages of the application should be prefabricated. In one
embodiment, this property can be modified at the responsibility or user level.

(persistent)

currentDepth: this property represents the actual depth the prefabricator service auto-
tunes to prefabricate based on availability of system resources and other heuristics.
For example, if the “depth” parameter for the policy indicates that 4 levels of pages
should be prefabricated, but system resource levels only allow 1 level of pages to be

prefabricated, then the “currentDepth” parameter is set to “1”.

currentBatchSize: this represents is the number of concurrent requests that the page
request feeder sends to the web server based on availability of system resources and

other heuristics.

cpuConsumptionLimit: this property identifies an upper limit on the maximum
percentage of the CPU the system should utilize. In one embodiment, this is a system

wide parameter. (persistent)

memoryConsumptionLimit: this property identifies a lower limit on the amount free
memory that should exist in the system. In one embodiment, this is a system wide

parameter. (persistent)

diskSpace: this property indicates the amount of disk space that is available to store
the prefabricated pages. In one embodiment, this is a system-wide parameter.

(persistent) -

26



10

15

20

WO 02/097647 PCT/US02/16375

o isAllResp: this property determines whether policy should run for all responsibilities

of the application. (persistent)

o isAllUser: this property determines whether policy should run for all users.

(persistent)

[0071] Fig. 9 shows a schema for persisting policies according to an embodiment of the
invention. For every application, there is one row in a prefabrication application policy
table 902 that persists application-level policies. Based on whether any responsibility or
user-level policies are configured, there are zero or more corresponding rows in a
prefabrication user policy table 904. Table accessor methods are implemented in a
procedural query language, e.g., PL/ SQL, and invoked from the Java layer, e.g., using

JDBC.

[0072] As a security measure, policy information is preferably maintained or modified
only by appropriately authorized administrators. When an administrator changes a
policy, it is preferably immediately updated and propagated, e.g., to the relevant database

tables at which the policies are stored.

[0073] In an emBodiment of the invention, for every application the prefabricator
services is processing, a Policy object is instantiated on the prefabricator service side. A
policy thread/process is configured to periodically refreshes the persistent properties of
the Policy objects. In an embodiment, each prefabricator service is dedicated to only one
application, i.e., if there are three applications to be prefabricated, then three instances of
the prefabricator service are started. In this approach, a prefabricator service instance
corresponds to only Policy object instances for this application and the policy

thread/process will refresh only the policies for this application. In an alternate

27



5

10

15

20

WO 02/097647 PCT/US02/16375

embodiment, a prefabricator service is configured to support multiple applications. In
this alternate approach, multiple policy objects belonging to multiple applications are

associated with a prefabricator service instance.

[0074] Different components in the prefabricator service access the policy object. For
&example, the start loader component accesses the policy object to identify the users and
responsibilities configured for a given application, and to generate the initial workload.
The benefit analyzer accesses the policy object to identify system configurations and
refresh intervals. The benefit analyzer also updates the currentDepth property in the

. policy object. The page request feeder sets up the currentBaichSize property based upon
the numbér of concurrent requests that can be handled. The URL collector reads the

currentDepth property information to decide whether to crawl a prefabricated page.

User Page Table

[0075] An in-memory data structure, referred to herein as the User Page Table, keeps
track of all the PRBs that the prefabricator service is processing in an embodiment of the
invention. The contents of the User Page Table represent the entire set of PRBs that have
been identified for prefabrication. The User Page Table includes both PRBs that have
been prefabricated as well as those not yet prefabricated, and includes data indicating

which PRBs have been prefabricated.

[0076] In an embodiment, the User Page Table is frequently accessed, queried, and
updated by the Benefit Analyzer component. Indexes can be built that allow querying of
the user page table using some of the PRB attributes. The index tables are constructed as
Hashtables, with the key being the PRB property and the value being a Vector of PRBs

that have the same key-property value. The User Page Table can itself be implemented as
28 |



10

15

20

WO 02/097647 PCT/US02/16375

a Vector of PRBs. Fig. 10 provides a list of index tables built for fast access of the user

page table elements according to one embodiment of the invention.

[0077] In an embodiment, the Benefit Analyzer is the only component in the
prefabricator service module that directly invokes changes to User Page Table. The
Benefit Analyzer can be configured to ensure that no duplicate PRBs (i.e, two PRBs with

the same URI) are added to the table.

Start Loader

[0078] This section describes a start loader according one embodiment of the invention.
The start loader generates the initial set of PRBs to be processed by the prefabricator
service. A default implementation of the stért loader provides a mechanism to éenerate
all possible URIs for user start/home/entry pages, based on the applications,
responsibilities and users configured in the Prefabricator Policy. In an embodiment,
applications can override this default implementation to provide application specific
logic for determining the entry page URIs for users. Every URI generated by the start
loader is represented as a PRB and passed on to the Benefit Analyzer component. It is
noted that other mechanisms, in addition to the start loader, may also be employed to
generate the initial workload for the prefabricator service. For example, the set of PRBs
created in a prior prefabrication session, including PRBs previously generated from the
URL collector, can be used as the initial workload for a present prefabrication session.

This alternate approach is useful for pages that tend to remain static over time.

[0079] Referring to Fig. 11, shown is a start loader process flow according to one
embodiment of the invention. The Start Loader is instantiated as a thread and the

constructor takes in an application ID as an input. The application ID is used to retrieve
29



10

15

20

WO 02/097647 PCT/US02/16375

the appropriate prefabricator policy. From the prefabrication policy, a determination is
made of the appropriate set of responsibilities and userIDs for which the workload needs
to be generated. The Start Loader thread regenerates the initial workload periodically,
e.g., twice a day or every time the prefabricator is started. This ensures that any new
users registered in the system and other such changes are captured by the initial

workload.

[0080] Fig. 12 shows a flowchart processing logic for generating PRBs for the
appropriate entry-level pages resides in the implementor of the URL ParameterInterface,
according to an embodiment of the invention. At 1202, the implementor loads the

prefabricator policy object associated with the application ID.

[0081] Using the Policy object, the method identifies the special responsibilities and user
ID configured for the policy (1204). If no special responsibilities are configured, then it
is assumed that all responsibilities within the application need to be prefabricated. Else,
only the configured set of responsibilities are used. In addition, the process ensures that
all configured userIDs are generated in the initial workload. Unlike responsibilities, this
set of users may not be the only users for which pfefabrication is turned on. A
determination is made regarding a valid set of userIDs that match the configured set of
responsibilities. In addition, a determination is made regarding the responsibility
identifiers for the userIDs configured. User ID and responsibility tables can be
maintained and queried to perform these determinations. The prefabricator logs into the
system as a trusted user, and then switches identity to a specific user when it is

prefabricating a page for that user.

30



10

15

20

WO 02/097647 PCT/US02/16375

[0082] The method determines the entry page URI for every applicable user ID (1206).
Using application specific logic and data, the component that generates the initial
workload generates URL values for all users it is prefabricating for (1208). These URL
representations are appended to the previously obtained URI. The method thereaﬂer
constructs a PRB for each generated URI (1210). The constructed PRBs are sent to the

benefit analyzer for further processing and prefabrication.

Benefit Analyzer

[0083] This section describes an embodiment of the benefit analyzer. At any given point
of time and state of the prefabricator system, the benefit analyzer determines the next set
of pages to prefabricate. In one approach, the benefit analyzer is executed as a single

thread.

[0084] The benefit analyzer maintains an in-queue of pending PRBs. The in-queue
contains all the PRBs to be processed once at any point in time. The in-queue is
populated by PRBs from either the start loader or the URL collector. As noted above,
the start loader produces the initial bootstrapping workload. The URLCollector produces
new PRBs for the benefit analyzer by crawling previously processed PRB outputs. The
benefit analyzer also uses the User Page Table to identify the workload of PRBs to
process. The benefit analyzer maintains an out-queue of PRBs to send to the page request

feeder.

[0085] The benefit analyzer uses a weighting algorithm to prioritize the queue of
pending PRBs and to associate a weight with every PRB in the system. In one

embodiment, the weight (w) is related to the following:

31



10

15

20

WO 02/097647 PCT/US02/16375

w oc 1/depth (where home page is at depth 0, menu-pages are at depth 1, submenus

at depth 2, etc.)

o time to process PRB (in one approach, a slower PRB is better candidate for

prefabrication than an already fast PRB)

o« parameter-relevance (e.g., userID’s configured in policy may have higher

weight than others)

oc user-hit ratio (highly accessed PRBs are more important than others)

The weight (w) of a PRB can be defined as:
w =k * 1/depth + p * tyrocessrrp + g + r*hit-count

where, k, p, g, and r are selected constant-values. For the hit-count, a feedback
mechanism is implemented from the web-server to the prefabrication service. If this
mechanism does not exist, then constant “r” can be set to 0. In a preferred embodiment,
the depth factor is the most important factor. Hence, constant “k” is set to a higher value
than “p” and “q.” The exact weighting formula and weighting constants is a design
choice based upon the exact application and set of performance requirements to which
the invention is directed. The in-queue of the benefit analyzer is prioritized based on
PRB weights. The benefit analyzer thereafter passes the next, prioritized PRB to be

processed to the page request feeder, on demand.

[0086] In one embodiment, the applicable policies may also be prioritized by the benefit
analyzer. The requirements of first policy could be given higher priority than the
requirements of a second policy. For example, if a first policy has a higher pribrity than
a second policy, then the set of PRBs produced in response to the first policy is given

greater weight than the set of PRBs produced in response to the second policy.

32



10

15

20

WO 02/097647 PCT/US02/16375

[0087] In one embodiment, the Benefit Analyzer is configured to generate, track, or
maintain the following statistics: (1) Number of PRB generated; (2) Average refresh rate;
(3) Total number of PRBs in the system - user page table size; (4) Optimal batch size; (5)
Current depth; (6) start time of policies; (7) end time of policies; (8) duration of run;
and, (9) hit ratio = (number of prefabricated URIs accessed)/(total number of URISs user

requested).

Page Request Feeder

[0088] This section describes an embodiment of the page request feeder. The page
request feeder initiates page generation from the PRBs. Based on the current system
snapshot, the page request feeder sets the number of concurrent requests to send to the
web-server, receives the responses back, and passes the page response to the URL
Collector. The Page Request Feeder receives PRBs to be processed as input from the
BenefitAnalyzer. The page request feeder also uses the optimal batch size value and

maximum CPU consumption limit value from the Policy object.

[0089] The Page Request Feeder includes a “monitor” processing component (e.g.,
monitor thread) and a changing number of “worker” components (e.g., worker threads).
The monitor thread is responsible for dynamically changing the number of concurrent
requests to send to the web server based on the current system snapshot. The monitor
thread uses the following steps to dynamically adjust the number of requests: (1) The
monitor thread checks if the current CPU utilization in the system is less than the
maximum CPU value configured in the policy object; (2) the number of outstanding page
requests is checked to determine if it is less than the optimal value listed in the

prefabrication policy; and, (3) if both of the above conditions are met, then one or more

33



10

15

20

WO 02/097647 PCT/US02/16375

PRBs are retrieved from the benefit analyzer and passed to a free worker thread, or to a

new, created worker thread if none is presently available.

[0090] Each worker thread is responsible for performing the following steps:
(1) taking a PRB from the request feeder’s in-queue; (2) sending a HTTP Request to
process the URI in the PRB; (3) appending the HTTP Response to the PRB; and (4)

passing the PRB to the URL collector.

[0091] In one embodiment of the invention, the page request feeder’s concurrency level,
or number of outstanding requests, is controlled by the benefit analyzer. However, this
approach may cause a delay in the prefabricator system adapting to changes in the
middle-tier or database workload. Thus, in an alternate embodiment, the benefit analyzer
determines the optimal concurrency, but the request feeder calculates the adaptive or
current concurrency it should support. This provides better reaction time to bursty traffic

on the webserver, or sudden changes in the system load.

URL Collector

[0092] This section describes an embodiment of the URL collector. The URL Collector
obtains PRBs as inputs from an in-queue from the Page Request Feeder. Each PRB
includes an HTTP response stream that was produced and sent by the web server in
response to the HTTP request of the PRB. The URL Collector crawls through the HTTP
response stream to gather néw URIs to prefabricate. In an embodiment, the URL
collector functions as a web crawler, and crawls through a response stream based upon
the current prefabrication policy. The prefabrication policy determines which pages
should be crawled by the URL collector. For example, the currentDepth parameter in the

Policy object can be used to establish whether a particular page should be crawled.
34



10

15

20

WO 02/097647 PCT/US02/16375

[0093] In an embodiment, the URL collector executes as a single thread. For every
relevant PRB in the URL collector’s in-queue, it parses the response stream string buffer,
looking for all the <href> references. For each relevant <href>, the URL collector

constructs a PRB and sends it to the Benefit Analyzer. The Benefit Analyzer ensures no

duplicate URIs are added to the PRB list.

[0094] The URL collector is configured to only crawl pages that have not al;eady been
crgwled, or that has changed since the last time it was crawled. To accomplish this, the
URL Collector checks whether the response stream buffer size is the same as last time it
was crawled. A checksum or hashID routine can be executed to additionally determine if
a page has sufficiently changed as to require being crawled. Any response streams
forming an error page, e.g., which have compilation or other JSP exceptions, are not

crawled.

Resource Manager

[0095] This section describes an embodiment of the resource manager usable in the
invention. The resource manager monitors system resource usage, such as CPU and
memory usage, on the machine where the prefabricator service is executing. The
resource manager is also the component responsible for monitoring the load of the
middle-tier system, by monitoring the number of concurrent requests of the Apache
servers that the prefabricator service is interested in. This monitoring can be performed

by sending URL requests to the mod-status Apache modules.

[0096] Based on the current system usage and predefined system resource limits, the
resource manager provides information to other prefabricator components, such as the

page request feeder, regarding whether the preset system resource limits have been

35



10

15

20

WO 02/097647 PCT/US02/16375

exceeded, and how many page prefabrication requests that the prefabricator service can

send to the Apache servers.

[0097] The Resource Manager uses the following system resource limits and information
from the System Policy object, which in one embodiment, is stored in the database: (1) a
list of all Apache servers and their port numbers in the middle-tier system; (2) whether a
load balancer should be used, and if so, the host name and port number of the load
balancer; (3) memory usage limit; (4) CPU usage limit; and, (5) maximum number of
concurrent requests that the middle-tier system should be able to handle without

significant impact on system response time.

[0098] The Resource Manager accesses the configuration information to determine
which web server or load balancer the page prefabricator requests should be sent to. In
an embodiment, if a load balancer is being used (e.g., for an n-node architecture), all
page prefabrication requests should be sent to the load balancer. If no load balancer is
available, page prefabrication requests are sent to the local web server, i.e., the web
server residing on the same machine as the prefabricator service. If there are more than
one web server running on such machine, an equal number of page prefabrication

requests are sent to each web server.

[0099] The resource manager also determines the number of concurrent page
prefabrication HTTP requests that the Page Request Feeder can send. In an embodiment,
the following configured values are used in the calculation of the number of concurrent

request that a prefabricator service instance should be sent to the web server:

e Rmax is the maximum number of concurrent requests that the middle-tier

system can handle without a significant degradation of response time

36



10

15

20

WO 02/097647 PCT/US02/16375

e W is the relative weight of the machine where the prefabricator service .

instance is rurining in.
o Wiotal is the total relative weight of all configured machines.

[0100] If a load balancer is to be used, then the Resource Manager regularly monitors the
number of concurrent requests on all the web servers configured (Rel ). Inan
embodiment, the number of requests (R) that this prefabricator service instance can send

to the load balancer is:

R = (Rmax— Rcl) * (W Wtotal )

[0101] If a load balancer is not used, and page prefabrication requests are to be sent to
- the local web server, then the Resource Manager regularly monitors the number of
concurrent requests on the local web server(s) (Rc2). In an embodiment, the number of

requests (R) that this prefabricator service instance can send to the load balancer is:

R = (Rmax * (W / Wtotal ) ) - Rc2

[0102] The resource manager also monitors the CPU and Memory usage on the local
system. In an embodiment, a separate thread is spawned for CPU and memory usage
measurements. The measurements are taken at predefined intervals, and the resource
manager uses the measured usage number and the preset resource limits to determine
whether the limits have been exceeded. The resource manager produces the following
outputs: (1) current CPU usage on the local machine; (2) whether the CPU usage limit

been exceeded; (3) current memory usage on the local machine; (4) whether the memory

37



10

15

20

WO 02/097647 PCT/US02/16375

usage limit been exceeded; (5) the host name and port number of the web servers where
page prefabrication HTTP requests should be sent to; and, (6) the number of concurrent
page prefabrication HTTP requests that this page prefabricator service instance can send

to the web server(s) or load balancer.
Resource Optimization

[0103] The goal of the prefabricator service is to optimally use the available system
resources to prefabricate and regenerate pages. In one approach, the prefabrication and
refresh rate should be as fast as, or faster than, the refresh interval configured for a given
policy. The refresh interval configured by the administrator indicates the staleness of

pages that are acceptable for the specific application.

[0104] By way of example, the following describes a resource optimization method for a
system having one or more middle-tier machines that access a back-end server (e.g., a
database server). The following factors are used in this embodiment to optimize

resource utilization for the prefabrication process:

— maximum percentage of system [middle-tier + prefab service] CPU that can be

utilized (CPUnidtier)
~ maximum percentage of back-end server CPU that can be utilized (CPU gatabase)
— average response time or PRB processing time (Taverage)

As the above three parameters vary, the way in which the number of concurrent PRBs

are processed also varies, as shown in the table below:

Tavelage CPU niddle-tier CPU gatabase Reason # of
concurrent
requests

Slow high Low Jserv load is Reduce

38



10

15

WO 02/097647 PCT/US02/16375
too high
Slow low/normal High DB is Reduce or
bottleneck nothing
Fast high Low Jserv load is 1f CPU niddle-
hlgh tier = Cp Umax
reduce
Fast low/normal High DB is If
bottleneck CPU gatabase™
Umax
reduce

[0105] Based on the above table, the number of concurrent requests can be increased

from the prefabrication service to the web-server until the CPU utilization reaches the

maximum level. Once this level is reached, the concurrency that provides a CPU

utilization level less than the maximum response-time is chosen as the optimal

concurrency. This optimal concurrency is re-calibrated periodically so as to tune to the

changing system behavior.

[0106] An alternative approach uses a parameter setting that sets the maximum number

of concurrent requests that can be handled by the web-server. This parameter setting can

be provided, for example, by an authorized administrator. In this approach, the goal of

the prefabricator system is not to use all the available resources, but instead to use the

optimal amount of available resources to obtain the best refresh time per page. This

approach uses the maximum number of concurrent requests that can be issued. The

exact parameter setting for the maximum or optimal concurrency in the system is

fundamental to this approach. The incoming traffic to the Jserv process should be

carefully tuned to avoid oiferloading the user system with too many concurrent requests.

An advantage of this approach is that it avoids making platform dependent system calls,

distributed CPU measurements, and it can be used to specify the exact amount of CPU

resource the prefabricator should use.

39




10

15

20

WO 02/097647 PCT/US02/16375

Security and Session Management

[0107] This section describes security management methods for prefabrication according
to an embodiment of the invention. For the purposes of illustration, and not by way of
limitation, the present explanation refers to a user connection as a “session” and to the
identifier for the user connection as a “session ID”. An identified user session may be
formed, for example, when a user establishes an authorized connection to a database
server to execute a database application. The session ID is used to validate a user session
and to identify user preferences. In one approach to implementing sessions, a valid
session ID is issued when a user successfully logs into an application. The session ID is
checked for validity before the user is permitted to access pages within the application.

The session ID remains valid until the user logs out.

[0108] As the user moves from page to page within the session, the session ID is passed
along with the viewed pages by the server. The session ID is set as a cookie value when
cookies are enabled, or as an URL parameter when cookies are disabled. In the present
invention, since some pages accessed by a user are prefabricated while other are
contemporaneously fabricated, there may be breaks in continuity between the pages
handled by the server that are sent to the user, and thus the session IDs may not be fully
passed from page to page. The present invention provides additional techniques to verify
the validity of a session ID associated with a user session, even when prefabricated pages

are returned to the user.

[0109] In one embodiment of the invention, the prefabricator is configured to avoid

prefabricating the log-in page for a user. Thus, the user must pfoceed with normal log-in

40



10

15

20

WO 02/097647 PCT/US02/16375

procedures to establish a valid user session. Upon successfully logging in, a session ID

is assigned to the user session.

[0110] The first time the user requests a page from the interceptor, the validity of the
session ID is verified through normal verification procedures, €.g., by passing the page
request to the back-end database server. From that point on, the interceptor maintains a
record of the validity of the session ID. If the user request a page that is not
prefabricated, then the server dynamically services the page request and places the
session ID on the page response. However, if the user requests a page that has been
prefabricated, the interceptor returns the prefabricated page to the user - with the valid
session ID includes as part of the page. Thus, the interceptor will itself make sure that
the session ID is passed along in the page returned to the user, even if a prefabricated
page is returned to the user. Because the valid session ID is always returned to the user
in the response page, user sessions will not change during transitions when users move

between prefabricated and non-prefabricated pages.

[0111] In an n-node environment, it is possible that within a single session, a user will
send page requests to multiple server nodes. According to one embodiment, the
interceptor module that first verifies the validity of a session ID will propagate that
session ID to every other node in the system. A record of that session ID will be
maintained at every node as being valid. When the user issues a page request, the router
or load balancer will route that page request to one of the distributed nodes. Since the
local interceptor at that node will presumably already recognize the validity of the
session ID for the user, that local interceptor can immediately service the page request
without further verifications. If the requested page has already been prefabricated, the

page response with the attached session ID, can be immediately returned to the user.
41



10

15

20

WO 02/097647 PCT/US02/16375

[0112] In an embodiment of the invention, a cookie is employed to store information
about the user’s preferences, application the user is logged into and the responsibility the
user has. The cookie may also contain other state information, such as the selected menu

page. When cookies are disabled, this information is set as an URL parameter.

[0113] When a user logs in with a valid user name and password, a session identifier is
generated for tracking the user session. This session identifier is contained in all
subsequent requests of the user, until the time the user logs out voluntarily or the session
times out. The session identifiers are captured at login time and stored in a shared-
memory table (so all Apache processes have access to it). Subsequent requests that are
serviced from Cache are sent back only after confirming that the session identifier is
present in Shared memory. If the session identifier is not present in the shared-memory,
session validation and default processing to the Jserv is performed. This ensures that an

invalid session identifier cannot be used to access the system.

[0114] The following steps are performed to set-up a user session according to an

embodiment of the invention:
a) The system authenticates the user using guest username and password;
b) A user session is created using the userID passed in by the prefabricator service;

c) The user’s identity is switched to the userID passed as input. This sets the session as

belonging to the relevant user; and,
d) Determine the session ID for this session.

[0115] The created sessionlD is used by the Start Loader to construct the URI for the

user. Since session creation and validation may be expensive, the session ID is shared by

42



10

15

20

WO 02/097647 PCT/US02/16375

prefabricator requests belonging to multiple users. Therefore, when a prefabricator
generated HTTP request is issued, the typical validation of sessionID process is
bypassed. Instead, the cookie parameters are used to obtain the user’s preference settings
and to set up the user context correctly. This sets up both at the middle-tier and the

connection-level context of the user.

[0116] If cookies are turned on, then the generated URI contains all URL parameters and
cookie parameters according to an embodiment. In order to support smooth transition
between prefabricated and non-prefabricated pages, the interceptor uses the actual user’s
sessionID in the URI and not the prefabricator generated sessionID. This ensures that,
regardless of which page that is being accessed, the user is always in the context of the

currently logged in session.

Interceptor

[0117] This section describes an embodiment of the interceptor. The interceptor stores
prefabricated versions of dynamically generated JSP (JavaServer Pages) in its cache, and
attempts to service real-user requests using these static cached versions of JSPs. The
Interceptor over-rides the default behavior of the Apache WebServer’s mod_jserv
module, by first attempting to service the user requests using pre-fabricated cached page
responses. The user request is mapped to a prefabricated page filename and if an exact
match is found in the cache, the prefabricated response is served back to the user. If no
match is found, the default dynamic page generation process occurs and the page is sent

back to the user.

[0118] The interceptor handles a page request differently depending upon whether the

page request originates from the prefabricator or from the user. In an embodiment, a
43



10

15

20

WO 02/097647

PCT/US02/16375

parameter is defined in the page request object that identifies the originator of the page.

request.

[0119] If a user sends a page request, then the interceptor performs the following steps to

process the page request according to one embodiment:

1. Map the page request to unique identifier that can be used to look up prefabricated

page, e.g., in the file system.

2. Check if the requested page exists in the cache. If the prefabricated page exists and
was generated within the maximum permissible cache staleness and return the pre-

fabricated page to the user.
3. If the requested page is not present in cache, perform default dynamic generation.

4. If the requested page is present in cache, but violates a maximum staleness
requirement, dynamically generate the page and also refresh the Cached file with the

dynamically generated page.

5. Return page response to user.

[0120] If the prefabricator sends the page request, then the interceptor performs the

following steps to process the page request:
1. Dynamically generate the page.

2. Map the page request to unique identifier that can be used to look up prefabricated
page.

3. Store the response in the cache under the static filename generated in step 2.

44



10

15

20

WO 02/097647 PCT/US02/16375

4. Return page response to prefabricator.

SYSTEM ARCHITECTURE OVERVIEW

[0121] Referring to Fig. 13, in an embodiment, a computer system 1320 includes a host

~ computer 1322 connected to a plurality of individual user stations 1324. In an -

embodiment, the user stations 1324 each comprise suitable data terminals, for example,
but not limited to, e.g., personal computers, portable laptop computers, or personal data
assistants (“PDAs”), which can store and independently run one or more applications,
i.e., programs. For purposes of illustration, some of the user stations 1324 are connected
to the host computer 1322 via a local area network (“LAN") 1326. Other user stations.
1324 are remotely connected to the host computer 1322 via a public telephone switched
network (“PSTN”) 1328 and/or a wireless network 1330.

[0122] In an embodiment, the host computer 1322 operates in conjunction with a data
storage system 1331, wherein the data storage system 1331 contains a database 1332 that
is readily accessible by the host computer 1322. Note that a multiple tier architecture can
be employed to connect user stations 1324 tb a database 1332, utilizing for example, a
middle application tier (not shown). In alternative embodiments, the database 1332 may
be resident on the host computer, stored, e.g., in the host computer’s ROM, PROM,
EPROM, or any other memory chip, and/or its hard disk. In yet alternative
embodiments, the database 1332 may be read by the host computer 1322 from one or
more floppy disks, flexible disks, magnetic tapes, any other mégnetic medium, CD-
ROMs, any other optical medium, punchcards, papertape, or any other physical medium

with patterns of holes, or any other medium from which a computer can read. In an

45



10

15

20

WO 02/097647 PCT/US02/16375

alternative embodiment, the host computer 1322 can access two or more databases 1332,
stored in a variety of mediums, as previously discussed.

[0123] Referring to Fig. 14, in an embodiment, each user station 1324 and the host
computer 1322, each referred to generally as a processing unit, embodiesAa general
architecture 1405. A processing unit includes a bus 1406 or other communication
mechanism for communicating instructions, messages and data, collectively,
information, and one or more processors 1407 coupled with the bus 1406 for processing
information. A processing unit also includes a main memory 1408, such as a random
access memory (RAM) or other dynamic storage device, coupled to the bus 1406 for
storing dynamic data and instructions to be executed by the processor(s) 1407. The main
memory 1408 also may be used for storing temporary data, i.e., variables, or other
intermediate information during execution of instructions by the processor(s) 1407. A
processing unit may further include a read only memory (ROM) 1409 or other static
storage device coupled to the bus 1406 for storing static data and ins&uctions for the
processor(s) 1407. A storage device 1410, such as a magnetic disk or optical disk, may
also be provided énd coupled to the bus 1406 for storing data and instructions for the
processor(s) 1407.

[0124] A processing unit may be coupled via the bus 1406 to a display device 1411, such
as, but not limited to, a cathode ray tube (CRT), for displaying information to a user. An
input device 1412, including alphanumeric and other columns, is coupled to the bus 1406
for communicating information and command selections to the processor(s) 1407.
Another type of user input device may include a cursor control 1413, such as, but not

limited to, a mouse, a trackball, a fingerpad, or cursor direction columns, for

46



10

15

20

WO 02/097647 PCT/US02/16375

communicating direction information and command selections to the processor(s) 1407
and for controlling cursor movement on the display 1411.

[0125] According to one embodiment of the invention, the individual processing units
perform specific operations by their respective processor(s) 1407 executing one or more
sequences of one or more instructions contained in the main memory 1408. Such
instructions may be read into the main memory 1408 from another computer-usable
mediuﬁl, such as the ROM 14009 or the storage device 1410. Execution of the sequences
of instructions contained in the main memory 1408 causes the processor(s) 1407 to
perform the processes described hefein. In alternative embodiments, hard-wired circuitry
may be used in place of or in combination with software instructions to implement the
invention. Thus, embodiments of the invention are not limited to any specific
combination of hardware circuitry and/or software.

[0126] The term “computer-usable medium,” as used herein, refers to any medium that
provides information or is usable by the processor(s) 1407. Such a medium may take
many forms, including, but not limited to, non-volatile, volatile and transmission media.
Non-volatile media, i.e., media that can retain information in the absence of power,
includes the ROM 1409. Volatile niedia, i.e., media that can not retain information in
the absence of power, includes the main memory 1408. Transmission media includes
coaxial cables, copper wire and fiber optics, including the wires that comprise the bus
1406. Transmission media can also take the form of carrier waves; i.e., electromagnetic
waves that can be modulated, as in frequency, amplitude or phase, to transmit
information signals. Additionally, transmission media can take the form of acoustic or
light waves, such as those generated during radio wave and infrared data

communications.

47



10

15

20

WO 02/097647 PCT/US02/16375

[0127] Common forms of computer-usable media include, for example: a floppy disk,
flexible disk, hard disk, magnetic tape, any other magnetic medium, CD-ROM, any other
optical medium, punchcards, papertape, any other physical medium with patterns of
holes, RAM, ROM, PROM (i.e., programmable read only memory), EPROM (i.e.,
erasable programmable read only memory), including FLASH-EPROM, any other
memory chip or cartridge, carrier waves, or any other medium from which a processor
1407 can retrieve information. Various forms of computer-usable media may be
involved in providing one or more sequences of one or more instructions to-the
processor(s) 1407 for execution. The instructions received by the main memory 1408
may optionally be stored on the storage device 1410, either before or after their
execution by the processor(s) 1407.

[0128] Each processing unit may also include a communication interface 1414 coupled
to the bus 1406. The communication interface 1414 provides two-way communication
between the respective user stations 1424 and the host computer 1422. The
communication interface 1414 of a respective processing unit transmits and receives
electrical, electromagnetic or optical signals that include data streams representing
various types of information, including instructions, messages and data. A
communication link 1415 links a respective user station 1424 and a host computer 1422.
The; communication link 1415 may be a LAN 1326, in which case the communication
interface 1414 may be a LAN card. Alternatively, the communication link 1415 may be
a PSTN 1328, in which case the communication interface 1414 may be an integrated
services digital network (ISDN) card or a modem. Also, as a further alternative, the
communication link 1415 may be a wireless network 1330. A processing unit may

transmit and receive messages, data, and instructions, including program, i.e.,

48



10

WO 02/097647 PCT/US02/16375

application, code, through its respective communication link 1415 and communication
interface 1414. Received program code may be executed by the respective processor(s)
1407 as it is received, and/or stored in the storage device 1410, or other associated non-
volatile media, for later execution. In this manner, a processing unit may receive
messages, data and/or program code in the form of a carrier wave.

[0129] In the foregoing specification, the invention has been described with reference to
specific embodiments thereof. It will, however, be evident that various modifications
and changes may be made thereto without departing from the broader spirit and scope of
the invention. For example, the reader is to understand that the specific ordering and -
combination of process actions shown in the process flow diagrams described herein is
merely illustrative, and the invention can be performed using different or additional
process actions, or a different combination or ordering of process actions. The
specification and drawings are, accordingly, to be regarded in an illustrative rather than

restrictive sense.

49



10

15

20

WO 02/097647 PCT/US02/16375

CLAIMS
1. A method for prefabricating an information page, comprising:

prefabricating a first page in accordance with a definable prefabrication policy to
produce a first prefabricated page;

receiving an information request;

determining if the information request corresponds to the first page;

providing the first prefabricated page if the information request corresponds to
the first page;

dynamically fabricating a second page if the information request corresponds to
the second page.
2. The method of claim 1 further comprising:

determining if the first prefabricated page is stale;

dynamically fabricating the first page if the first prefabricated page is stale.
3. The method of claim 2 in which a time factor is considered in determining
whether the first prefabricated page is stale.
4, The method of claim 1 further comprising:

crawling the first prefabricated page;

determining if additional pages should be prefabricated; and

prefabricating the additional pages.

5. The method of claim 4 in which the first page is a start page.

6. The method of claim 1 in which prefabricating the first page comprises:
querying a database for information;

processing the information; and

50



10

15

20

WO 02/097647 PCT/US02/16375

packaging the processed information into the first prefabricated page.
7. The method of claim 1 in which a system resource level is considered before
scheduling the action of prefabricating the first page.
8. The method of claim 7 in which the system resource level is a resource measure
selected from the group consisting of: CPU usage level, memory usage level, and
number of pending prefabrication requests.
9. The method of claim 1 in which the definable prefabrication policy applies to a
specific user or class of users.
10.  The method of claim 1 in which the definable prefabrication policy identifies
pages to prefabricate.
11.  The method of claim 10 in which the definable prefabrication policy comprises a
responsibility parameter.
12. The method of claim 10 in which the definable prefabrication policy comprises
an application identifier.
13.  The method of claim 10 in which the definable prefabrication policy comprises a
scheduling parameter.
14.  The method of claim 10 in which the definable prefabrication policy comprises a

refresh rate parameter.

15.  The method of claim 1 in which auto-tuning of the prefabricating step is
performed to minimize interference with other system workload.
16.  The method of claim 1 in which the definable prefabrication policy is organized

as a hierarchy of policies.

51



10

15

20

WO 02/097647 PCT/US02/16375

17.  The method of claim 16 in which the definable prefabrication policy comprises a
system policy.
18.  The method of claim 16 in which the definable préfabn'cation policy comprises
an application policy.
19.  The method of claim 16 in which the definable prefabrication policy comprises a
user policy.
20.  The method of claim 16 in which the definable prefabrication policy comprises a
transient policy.
21.  The method of claim 1 in which the first page comprises a browser page.
22.  The method of claim 1 in which the first prefabricated page is cached.
23. A system for prefabricating information, comprising:

a prefabricator to manage prefabricating a first page to produce a first
prefabricated page;

an interceptor to intercept an information request, the interceptor logically -
interposed between a user interface and a computer application, the interceptor providing
the first prefabricated page if the information request corresponds to the first page and
dynamically fabricating a second page if the information request corresponds to the
second page.
24.  The system of claim 23 in which the prefabricator comprises a module to identify
pages to prefabricate.
25.  The system of claim 23 in which the prefabricator comprises a module to
prioritize a list of pages to prefabricate.
26.  The system of claim 25 in which the module prioritizes the list of pages based

upon a system resource parameter.

. 52



10

15

20

WO 02/097647 PCT/US02/16375

27.  The system of claim 25 in which the module prioritizes the list of pages based
upon a page prefabrication time parameter.

28.  The system of claim 25 in which the module prioritizes the list of pages based
upon a user access pattern parameter.

29.  The system of claim 25 in which the module prioritizes the list of pages based
upon a page dépth parameter.

30.  The system of claim 23 in which the first page corresponds to a page request,
wherein the page request is processed as a second information request to the interceptor.
31.  The system of claim 30 in which the prefabricator comprises a module to
determine a number of page requests to concurrently process into prefabricated pages.
32.  The system of claim 31 in which the number of concurrent page requests increase
when available system resources increase.

33.  The system of claim 23 in which the prefabricator comprises a module to crawl
the first prefabricated page for additional pages to prefabricate.

34.  The system of claim 23 in which the prefabricator accesses a prefabrication
policy to manage prefabricating the first page.

35.  The system of claim 23 in which the user interface comprises a browser.

36.  The system of claim 23 in which the computer application comprises a database
application.

37.  The system of claim 23 in which the interceptor is integrated into a web server.
38.  The system of claim 23 in which the interceptor is integrated with a cache server.
39.  The system of claim 23 in which the prefabricator comprises a module to monitor

system resources.

53



10

WO 02/097647 PCT/US02/16375

40.  The system of claim 23 in which the prefabricator and the interceptor are
logically associated with a first network node, wherein the system further comprises:

a second prefabricator and a second interceptor logically associated with a second
network node.
41.  The system of claim 40 in which the routing component routes information
requests among the first and second network nodes.
42.  The system of claim 40 in which a load distributor distributes a prefabrication
workload among the first and second network nodes.
43,  The system of claim 42 in which the prefabrication workload is distributed based
upon system resource levels at the first and second network nodes.
44,  The system of claim 43 in which a node having relatively lower resource levels is

assigned a greater share of the prefabrication workload.

54



10

15

20

WO 02/097647 PCT/US02/16375

45.  The system of claim 43 in which each of the first and second network nodes are
assigned work from the prefabrication workload based upon its individual resource levels
without regard to resource levels on other nodes.
46.  The system of claim 43 in which the first and second network nodes are assigned
work from the prefabricated workload in a coordinated manner.
47.  The system of claim 40 in which prefabricated pages are stored in a network
accessible storage device.
48.  The system of claim 23 which is non-intrusively implemented with an existing
computer application such that code changes are not performed against the existing
computer application.
49. A method for prefabricating information pages, comprising:

prefabricating a first page on a first node to produce a first prefabricated page;

storing the first prefabricated page;

prefabricating a second page on a second node to produce a second prefabricated
page;

storing the second prefabricated page;

receiving an information request;

providing the first prefabricated page if the information request corresponds to
the first page; and

providing the second prefabricated page if the information request corresponds to

the second page.

50.  The method of claim 49 further comprising:

routing the information request to either the first or second node.

55



10

15

20

WO 02/097647 PCT/US02/16375

51.  The method of claim 49 in which the first node accesses the second prefabricated
page to satisfy the information request.
52.  The method of claim 49 in which the first and second prefabricated pages are
stored on a network accessible storage device.
53.  The method of claim 52 in which network accessible storage device comprises a
NFS-compliant device.
54.  The method of claim 49 in which a prefabrication workload is distributed among
the ﬁrsf and second nodes.
55.  The method of claim 54 in which a node having relatively lower resource levels
is assigned a greater share of the prefabrication workload.
56.  The method of claim 54 in which each of the first and second nodes are assigned
work from the prefabrication workload based upon its individual resource levels without
regard to resource levels on other nodes.
57.  The method of claim 54 in which the first and second nodes are assigned work
from the prefabricated workload in a coordinated manner.
58. A method for prefabricating an information page, comprising:

prefabricating a first page to produce a first prefabricated page;

receiving an information request from a user having a session identifier;

determining if the information request corresponds to the first page;

providing the first prefabricated page with the session identifier if the information
request corresponds to the first page;

dynamically fabricating a second page if the information request corresponds to
the second page.

59.  The method of claim 58 further comprising:

56



10

15

20

WO 02/097647 PCT/US02/16375

verifying validity of the session identifier.
60.  The method of claim 59 further comprising:

distributing a message verifying the Validity of the session identifier to one or
more network nodes.
61.  The method of claim 58 in which the session identifier is provided with the first
prefabricated page as a URL parameter.
62.  The method of claim 58 in which the session identifier is provided with the first
prefabricated page as a cookie value.
63. A prefabrication policy having one or more parameters that define how a page
should be prefabricated.
64.  The prefabrication policy of claim 63 that is configured to apply to a specific user
or class of users. ’
65. The prefabrication policy of claim 63 that is configured to identify pages to
prefabricate. |
66.  The prefabrication policy of claim 63 that is configured to identify an application

for which the page should be prefabricated.

67.  The prefabrication policy of claim 63 comprising a scheduling parameter.

68.  The prefabrication policy of claim 63 comprising a refresh rate parameter.

69.  The prefabrication policy of claim 63 organized as a hierarchy of policy
categories. .

70. A computer program product that includes a medium usable by a processor, the

medium having stored thereon a sequence of instructions which, when executed by said

57



10

15

20

WO 02/097647 PCT/US02/16375

processor, causes said processor to execute a process for prefabricating an information
page, the process comprising:

prefabricating a first page in accordance with a definable prefabrication policy to
produce a first prefabricated page;

receiving an information request;

determining if the information request corresponds to the first page;

providing the first prefabricated page if the information request corresponds to
the first page;

dynamically fabricating a second page if the information request corresponds to
the second page.
71. A computer program product that includes a medium usable by a processor, the
medium having stored thereon a sequence of instructions which, when executed By said
processor, causes said processor to execute a process for prefabricating an information
page, the process comprising;:

prefabricating a first page on a first ﬁode to produce a first prefabricated page;

storing the first prefabricated page;

prefabricating a second page on a second node to produce a second prefabricated

page;

storing the second prefabricated page;

receiving an information request;

providing the first prefabricated page if the information request corresponds to
the first page; and

providing the second prefabricated page if the information request corresponds to
the second page.

58



WO 02/097647

(— 108

PCT/US02/16375

(‘ 104

102
(/\ NTERCEPTOR S
USERITERFACE | PAGE REGPONSE  PAGERESPONSE
PREFABPAGEREQLEST |
A

g g

= 2

=

PREFABRICATOR

LHO

(}

PREFABRICATED
- PAGE STORAGE

112

FIG. 1




WO 02/097647 PCT/US02/16375

2/13

START

202 —~  CONFIGURE PREFABRICATION POLICY

204 ——{ PREFABRICATE PAGES ACCORDING TO POLICIES

‘ FIG. 2

206 — INTERCEPT REQUEST FOR A PAGE

DOES REQUEST
CORRESPOND TOVALID
PREFABRICATED PAGE?

NO

208

210 — SUPPLY PREFABRICATED PAGE FABRICATE REQUESTED PAGE 212

END



WO 02/097647

PCT/US02/16375

3/13

BROWSER

L 302

304 306
l 316
{
X _ 312
E A -
P MiSS 3
R L. S <)
REQUEST . ¢ ’é PREFAB | E
E REQUEST | R DATABASE
j *E' v PREFAD
! METADATA
R L
314
PREFABRICATOR
SERVICE
<\310
FILE SYSTEM
L308

300

FIG. 3



PCT/US02/16375

WO 02/097647

4/13

vy Old

40LdI0IN

3

coy q

Zy . : , SI¥10d
\/4 h SHTLINVAY HLA0 Q4T NOLLVOMEYTd
HOL9ATI TN T 2
2 2
SISNOSTY 2
dLIH+SENd L m =
SULLIANG NOLLVZTILN 041053 2 |2
- ‘ ] 2
TONO4S3 dLIA : w
VOIHISTON ST HIZAVNY 11N 5
JE e ‘ L &
5
80¥ L 90- =
g
YIOVNVI

JOUN0S3Y

Q:\L

YIM0T LWVIS I\w

v




WO 02/097647 PCT/US02/16375

5/13

502 504
—W ( 506
| ;‘ f JSERV
T . A
E P 0
MiSS P
REQUEST ||} §<__.. Al
<« e § g g " DATABAE
fT’ PREFAB
: £ METADATA
0 .
PREFABRICATOR
FILE SYSTEM

FIG. 5



PCT/US02/16375

WO 02/097647

019

9 DI

| VHZHOS NOLLYOMEY R

Iovaviva Ul

\ME _/

cl9

mmmm\w
/

SERA 300N
L
(\.\

A
w e
] WLV
r
e
o]

~—e9z9

T300N
e
A
Qmm@. M e
] | s NOLLYONIGVATMd |
r
~—q929
L9 N HOLENAIN
JHVY
(di91g) ¥3LnoY
09 iL ¥ISMOue

ﬁ 2909



PCT/US02/16375

7/13

FHNY -

[ Y0018 1STNOT 30Vd ‘Bid
[}

"KONTHUNONOD HL30 ALIEISNOASTe

SIOUNOSTU HALSAS

INAL-A138 AV SY3HLO.
SYALINVIY THOS SLIS NIRTY,
SHILINVAVA NOLLYUNAIANDD:

A4 8Y4Rd

SqUd IR0,

(ONVIIA NO 330334 90/
1S3 0L SqULAN N, \/

RUALIALHOUY 00N -u

HIZATVNY 1133Nd

Y01d30H3N

ENOSTIAL | v RIOM OLNISSY,
(is3n034 4Kl AYMAVIOL Pid AN 139,

QEL

&

W 8

2.

ST TV 1SiSti3d,
STONVLSN BV 0d
SSOHOV STN ANAMLSIC
STHN AUVENZ0,

§310r0d TV 139,

" H0LNEMISIO V01

JONVLSNI StHL 404 57N 139,

HIQYOT JUVIS

YHEH 1530

|

|

| = i

| ° B

| = m

] Y M B

| YFZATNY =

| 114353901 SN 0334

| | S39vd INILSTHALNL 1300, smd

_ ST HONOYHL TMVYDs

“ H010ITI0I N

]

J

| E

| &

|

|

_ \

“ . YOLININI

| &' 0L 153034 GN3S Y TMHOM,
1

f

|

f

L JONVISN! J01AU3S HOLVOREVTd

GY43d Y04 TV IVAY

i

e

IRV 30N0S

SISO INTRINONOD ¥+
(HERNSNOD AUOWEN 2 N1dDs

WEMIESHN0SH

w)

WO 02/097647




PCT/US02/16375

WO 02/097647

8/13

g DId
028
SVH STHL Gid NIUTIHD 30 ¥3ENN IN INNOD33Y “ 918
L NOILVENT9 30Yd JOVEINY ONOT | IWLLNOLLVMINIOONY |
39Vd SIHL NOY4 GTEHLYD ST FHL TV | (@) HOL3A RUGNEATIHD |\
Y357 HL ¥4 NOILYOIddV SIHL OL 30V AYING JHL 40 Tid aud RGN0 [~ 9i8
@i SIHL HIW GILVID0SSV LHOM 9NOT 1HOAM /\ pLg
I-H1d30 LV $1 30Vd NI9OT 013 39vd 219
JOH 3HL WO ATLOTIC GFHOV 38 NVO LYHL 39Vd
V1 1141 H1d30 ‘JOVAINOH SHISN FHL S1 11 1 0 HLA / .
1 S139Yd ¥ ‘GIHOVIY S1 TN SIHL FHO438 GILYOIAYN 38 oLg
0L S39Vd 40 HITNNN THL ‘39¥d INOH JHL WOY ONILYYLS IN HLd3a
0L SONOT3A LS3NO SIHL SN 3HL 30 QIS N QdSy
0L S9NOTI 1IN0 SHL Qlddv IN Qldd¥ 908
0L SONOTIA 153N034 SIHL S 3HL 30 GRSH N anasn 908
SINISIUA ST FHL LVHLIEN ONLS N / 09
NOLLJMOS30 | 3dALYLYO 3UNANLY H
209



PCT/US02/16375

WO 02/097647

9/13

6 IIid

06—

ADANOIZHO <qll ddv>
(30NIND3S) AT AR <G AOTIOd ¥3S>
AZY 30NN <3dAL dSTHUISN 01 dSTRESN ‘0l ddv>

{nd) ()
YIGNAN | MIENON | (e)ouvHouvn | M3FEWNN YIANON | YFEANN |
“SNWNTOD QYVONYLS | HLd3Q | TVAYIINI | 3dAL 4STUYISN | 01 dSTU¥ISN | QIFAoMOd ¥3sn| @i ddv
: $3I01704 ¥3SN Sv434d I
AN 3NDINN <0l dd>
(3ON3ND3S) ATN AYVIIN <l Nd>
o | Oid)
(1) ZavHouYA | (1) VHOMYA | (1) ZVHOUYA | MIGWNN | ¥3GNNN | YITWON | Y3GNAN | Y3annN
“SNAITI0D QUVONVLS | V14 YIS TIV | OVT4 dST TV | OV14 T18WNT | HLdI0 | TWAYIINI | JWILONT | JNIL LWVIS | QiddY | QINd

\

SN0d ddv Gv434d 415

z06 —




WO 02/097647

PCT/US02/16375

INDEX TABLE DESCRIPTION
WEIGHT INDEX INDEXES PRBS ACCORDING TO THEIR WEIGHTS
DEPTH INDEX INDEXES PRBS ACCORDING TO THEIR DEPTHS

URI SUBSTRING INDEX

INDEXES PRES ACCORDING TO THEIR URI SUBSTRINGS. NOW, THE URI
SUBSTRING IS DEFINED AS THE .JSP NAME OF THE PRB (E.G. JTFAVALD.JSP).

ID INDEX INDEXES PRES ACCORDING TO THEIR APPID, RESPID, USERID COMBINATION.
URIINDEX INDEXES PRBS ACCORDING TO THEIR URI, SINCE THIS ATTRIBUTE (S ALWAYS
4 UNIQUE, THE DATA STRUCTURE OF THIS INDEX IS A SMPLE HASHTABLE OF
PRBS, INSTEAD OF A HASHTABLE OF VECTORS,
START LOADER THREAD: RUN() URL PARAMETERIMPL |
"INSTANTIATE LR NEXT PRE() [*GET RESPONSIBILTESAND | MPLENENTS
PARAMETERINTERFACE IMPLEMENTOR *| USERS CONFIGURED IN POLICY | URL PARAMETERINTERFACE
*INVOKE NEXT() ON IMPLEMENTOR FOR GVEN APPLICATION
UNTLL NO MORE PRBS EXST * DETERMINE ENTRY PAGE FOR
*PUSH EVERY PRB TO BENEFITANALYZER EVERY VALID (PP D, RESP I0)
— * GENERATE S50 SESSION D
5 FOR EVERY USER D
£ * CONSTRUCT URLs (PRBS)
=)
\
BENEFTT ANALYZER

g—- APPLlClﬁIrIEOélFSFECIFIC _}
URL PARAMETER ACE IMPLEMENTOR
R, —

FIG. 11



WO 02/097647 PCT/US02/16375

11/13

Gy

\
1202 — LOAD POLICY OBJECT

\ .
1204 ——]|  DETERMINE RESPONSIBLITIES AND USER IDS

'

1206 — DETERMINE ENTRY-PAGE URLS

¢

1208 —~ OBTAIN URL REPRESENTATIONS

C 1210 CONSTRUCT PRB

END

FIG. 12



PCT/US02/16375

WO 02/097647

12/13

e~ NOILVLS ‘ ,
. ¥3asn .
ST OIA w0
8IS
< -
viva
NOILY1S -
pzel” 7 ¥3sn
Qm<\)AMwww
—_— NOILVLS NISd
g3sn H3LNdWOD
gz¢1 LSOH
m 0cs!
NM
NOILV1S cetl
refl™1 wasn

0581



PCT/US02/16375

WO 02/097647

13/13

AN

NOILVIOINNWINOD

_/

\»

Gyl

G071

FOVAHIALNY

,\ NOILVOINNNWWOD

~ bt

d0SS300dd

901~

sSNng /_
391A3d AHOWIW
3OVHOLS WOH NIVIA
0l#1 60b1 90kl

vI COIAd

~—" /0%
)l e
) o b
uL/ AIESIO




INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/16375

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GOGF 15/00
USCL 707/530

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 707/530, 525,10

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C.  DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y US 6,182,095 Z(LEYMASTER et al) 30 Januaray 2001 (30.01.2001), the whole document. 1-71
Y US 6,038,574 A(PITKOW et al) 14 March 2000 (14.03.2000), the whole document. 1-71
AP US 6,298,356 B‘(JAWAHAR et al) 02 October 2001 (02.10.2001), the whole document. 1-71

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

“A”  document defining the general state of the art which is not considered to be
of particular relevance

“E” earlier application or patent published on or after the international filing date

“L™  document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified) ’

“O™  document referring to an oral disclosure, use, exhibition or other means

“P”  document published prior to the international filing date but later than the
priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“Xn document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

i

“&” document member of the same patent family

Date of the actual completion of the international search

31 August 2002 (31.08.2002)

Date of mailing of the international search report

30 SEP 2002 ,

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Authorized officer OJ\/\O‘U{
Joseph H Feild Qﬂ%"’\

Telephone No. (703)305-3665

Form PCT/ISA/210 (second sheet) (July 1998)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

