(54) 发明名称
用于优化数字相机中图像质量的系统和方法

(57) 摘要
公开了用于优化数字相机中图像质量的系统和方法。数字相机包括配置为基于由数字相机所采集的原始图像来生成优化的图像的图像优化引擎。图像优化引擎实现一个或多个机器学习引擎以选择后续可用来渲染原始图像的渲染算法和渲染算法参数。
1. 一种用于渲染图像的计算机实现的方法，包括：
   经由包括在数字相机中的光学传感器来采集原始图像；
   基于与所述原始图像相关联的像素值集生成针对所述原始图像的图像统计集；
   使第一机器学习引擎选择渲染算法和与所选择的渲染算法相对应的渲染算法引数集；
   以及
   通过利用所述渲染算法和所述渲染算法引数集处理所述原始图像来渲染所述图像。
2. 根据权利要求1所述的计算机实现的方法，其中所述第一机器学习引擎通过以下各项被训练：
   接收目标图像；
   通过将所述图像与所述目标图像比较来计算偏差值；
   确定所述偏差值超过阈值；以及
   基于在与所述图像和所述目标图像相关联的像素值之间的差异来调节所述第一机器
   学习引擎内的权值集。
3. 根据权利要求2所述的计算机实现的方法，其中所述第一机器学习引擎包括人工神经
   网络并且其中调节与所述第一机器学习引擎相关联的所述权值集包括将反向传播学习
   算法应用到所述权值集。
4. 根据权利要求1所述的计算机实现的方法，其中所述图像统计集包括表示与所述原
   始图像相关联的白平衡、对比度、饱和度和/或曝光度的原始图像统计。
5. 根据权利要求4所述的计算机实现的方法，其中所述图像统计集进一步包括由第二
   机器学习引擎基于所述原始图像统计所生成的导出的图像统计，并且其中所述导出的图
   像统计指示外部环境的性质。
6. 根据权利要求5所述的计算机实现的方法，其中所述第一和第二机器学习引擎通过
   以下各项被训练：
   接收目标图像；
   通过将所述图像与所述目标图像比较来计算偏差值；
   确定所述偏差值超过阈值；
   基于在与所述图像和所述目标图像相关联的像素值之间的差异来调节所述第一机器
   学习引擎内的权值集；以及
   基于在与所述图像和所述目标图像相关联的像素值之间的差异来调节所述第二机器
   学习引擎内的权值集。
7. 根据权利要求6所述的计算机实现的方法，其中所述第一机器学习引擎包括人工神
   经网络并且调节与所述第一机器学习引擎相关联的所述权值集包括将反向传播学习算法
   应用到所述权值集，以及其中所述第二机器学习引擎包括人工神经网络并且调节与所述第
   二机器学习引擎相关联的所述权值集包括将反向传播学习算法应用到所述权值集。
8. 一种配置为渲染图像的计算设备，包括：
   处理单元，其配置为：
   经由包括在数字相机中的光学传感器来采集原始图像；
   基于与所述原始图像相关联的像素值集生成针对所述原始图像的图像统计集；
   使第一机器学习引擎选择渲染算法和与所选择的渲染算法相对应的渲染算法引数集；
以及
通过利用所述渲染算法和所述渲染算法引数集处理所述原始图像来渲染所述图像。

9. 根据权利要求 8 所述的计算设备，进一步包括：
存储器，其耦连到所述处理单元并且存储程序指令，所述程序指令当由所述处理单元
执行时使所述处理单元：
采集所述原始图像，
生成所述图像统计集，
使所述第一机器学习引擎选择所述渲染算法和所述渲染算法引数集，以及
渲染所述图像。

10. 根据权利要求 8 所述的计算设备，其中所述第一机器学习引擎通过以下各项被训
练：
接收目标图像；
通过将所述图像与所述目标图像比较来计算偏差值；
确定所述偏差值超过阈值；以及
基于在与所述图像和所述目标图像相关联的像素值之间的差异来调节所述第一机器
学习引擎内的权值集，其中所述第一机器学习引擎包括人工神经网络并且其中调节与所述
第一机器学习引擎相关联的所述权值集包括将反向传播学习算法应用到所述权值集。
用于优化数字相机中图像质量的系统和方法

技术领域
本发明涉及数字摄影，并且更具体地，涉及用于优化数字相机中图像质量的系统和方法。

背景技术
数字摄影的普及在过去十年已经突飞猛进，这主要是由于在诸如手机的移动设备中包含了数字相机。由于数字相机技术改进，导致数字图像分辨率的增加，越来越多的人们已达到完全依靠基于手机的数字相机用于所有摄影需求。用户需要快速拍摄具有专业质量的照片的能力，并且因此，大部分现代数字相机现在包括实现众多图像处理算法并可用来改进数字图像质量的图像信号处理器（ISP）。
典型地，相机从传感器获得图像被称为“图像采集”，并且将图像处理算法应用到原始图像以产生经优化的图像的过程被称为“图像渲染”。提供这种处理的算法被称为“渲染算法”并且包括但不限于噪声降低、自动白平衡调节、色调校正、锐化、颜色增强等。典型地，每个渲染算法的精确操作由具体引数（argument）所控制。例如，颜色饱和度算法可以由引数所控制，该引数是高于或低于某一基准的饱和度的百分比。这些算法可以完全实现，例如，完全实现，数字信号处理器上的固件、如图形处理单元（GPU）的可编程引擎上的特殊代码，或软件或以上的一种一种组合中。
每个这种算法典型地由算法设计师基于设计师关于计算摄影的经验来手动地设计和实现。因此，许多设计师已在与图像质量相关的狭小领域中变成专家。例如，给定的设计师可在针对“噪声降低”或针对控制“白平衡”的设计算法方面被视为专家。考虑到产生高质量图像所需的巨大数量的算法以及在处理来自数字传感器的原始图像中的各种问题，许多数字相机供应商雇用一大批算法设计师，其中每个设计师拥有设计和调整算法以校正或增强一个高度具体问题的丰富经验。在许多情况下，这些算法要求来自数字相机的用户的输入以确保正确运行。例如，给定的算法可要求描述用户希望拍摄的场景类型诸如“海滩”或“森林”的信息。算法随后根据该用户所提供的信息调节某些参数。
数字摄影的当前状态的一个问题在于：数字相机供应商典型地投入大量时间和金钱设计要包括在ISP中的算法，并且尽管如此，许多数字相机仍然要求显著的用户交互以产生质量过得去的图像。该安排并不理想，因为尽管在ISP开发中投入了该大规模的时间和金钱，但是大部分数字相机供应商仍达不到利用用户期望的“傻瓜相机（point and shoot）”功能而产生高质量图像。
因此，本领域需要的是用于实现数字相机中的图像处理算法的更有效技术。
在技术开发的另一条路径中，已开发出丰富的机器学习技术，其使机器学习引擎（MLE）能被训练为实现任意复杂数学的功能和算法。使用诸如监督式学习、诸如人工神经网络（ANN）的MLE，或支持向量机（SVM），或众多其他MLE中的一个的技术，可被训练为将新的但尚看不见的数据分类。MLE还可被训练为实现从新的但看不见的输入到输出的变换，该输出与如由训练数据所表示的期望的理想输出紧密地匹配。
发明内容

[0008] 本发明的一个实施例阐述用于渲染图像的方法，包括经由包括在数字相机中的光学传感器采集原始图像。基于与原始图像相关联的像素值集来生成针对原始图像的图像统计集。使第一机器学习引擎选择渲染算法以及与所选择的渲染算法相对应的渲染算法引数集；以及通过利用渲染算法和渲染算法引数集处理原始图像来渲染经优化的图像。

[0009] 本文所描述的技术的优势在于；图像优化引擎内的机器学习引擎可被训练为生成图像而不要求设计师团队来创作以及调整大规模的算法合集。进一步地，数字相机的用户可以利用较少的手动相机控制取得更优秀的经优化的图像，从而改进用户体验。

附图说明

[0010] 因此，可以详细地理解本发明的上述特征，并且可以参考实施例得到对如上面所简要概括的本发明更具体的描述，其中一些实施例在附图中示出。然而，应当注意的是，附图仅示出了本发明的典型实施例，因此不应认为是对其范围的限制，本发明可以具有其他等效的实施例。

[0011] 图 1 是示出了配置为实现本发明的一个或多个方面的计算机系统的框图；
[0012] 图 2 是根据本发明的一个实施例的、用于图 1 的计算机系统的并行处理子系统的框图；
[0013] 图 3 是根据本发明的一个实施例的、示出了数字相机的框图；
[0014] 图 4A 是根据本发明的一个实施例的、示出了配置为处理数字图像的图像优化引擎的示意图；
[0015] 图 4B 是根据本发明的一个实施例的、示出了训练图 4A 中示出的图像优化引擎的示意图；
[0016] 图 5A 是根据本发明的一个实施例的、示出了图 3 中示出的图像优化引擎的另一个实施例的示意图；
[0017] 图 5B 是根据本发明的一个实施例的、示出了训练图 5A 中示出的图像优化引擎的示意图；
[0018] 图 6 是根据本发明的一个实施例的、用于使用图 4A 和 4B 的图像优化引擎处理数字图像的方法步骤的流程图；
[0019] 图 7 是根据本发明的一个实施例的、用于使用图 5A 和 5B 的图像优化引擎处理数字图像的方法步骤的流程图；
[0020] 图 8 是根据本发明的一个实施例的、用于训练图 4A 和 4B 的图像优化引擎的方法步骤的流程图；以及
[0021] 图 9 是根据本发明的一个实施例的、用于训练图 5A 和 5B 的图像优化引擎的方法步骤的流程图。

具体实施方式

[0022] 在下面的描述中，阐述大量的具体细节以提供对本发明更透彻的理解。然而，本领域的技术人员应该清楚，本发明可以在没有一个或多个这些具体细节的情况下得以实
施。在其他实测中，未描述公知特征以避免对本发明造成混淆。

【0023】系统概述

【0024】图1示出了配置为实现本发明的一个或多个方面的计算机系统100的框图。计算机系统100包含中央处理单元（CPU）102和包括设备驱动程序103的系统存储器104。CPU102和系统存储器104经由包括存储器桥105的互连路径通信。存储器桥105可以是例如北桥芯片，经由总线或其他通信路径106（例如超传输（HyperTransport）链路）连接到输入/输出（I/O）桥107。I/O桥107，其可以是例如南桥芯片，从一个或多个用户输入设备108（例如键盘、鼠标）接收用户输入并且经由路径106和存储器桥105将该输入转发到CPU102。并行处理子系统112经由总线或其他通信路径113（例如外围部件互连（PCI）express、加速图形端口（AGP）或超传输链路）连接到存储器桥105；在一个实施例中，并行处理子系统112是将像素传递到显示设备110（例如常规的基于阴极射线管（CRT）或液晶显示器（LCD）的监视器）的图形子系统。系统盘114也连接到I/O桥107。交换器116提供I/O桥107与诸如网络适配器118以及各种插卡120和121的其他部件之间的连接。其他部件（未明确示出），包括通用串行总线（USB）或其他端口连接、压缩光盘（CD）驱动器、数字视频光盘（DVD）驱动器、胶片录制设备及类似部件，也可以连接到I/O桥107。将图1中的各种部件互连的通信路径可以使用任何适合的协议实现，诸如PCI、PCI-Express（PCIe）、AGP、超传输或者任何其他总线或点到点通信协议，并且如本领域已知的，不同设备间的连接可使用不同协议。

【0025】在一个实施例中，并行处理子系统112包含经优化用于图形和视频处理的电路，包括例如视频输出电路，并且构成图形处理单元（GPU）。在另一个实施例中，并行处理子系统112包含经优化用于通用处理的电路，同时保留底层（underlying）的计算架构，本文将更详细地进行描述。在又一个实施例中，可以将并行处理子系统112与一个或多个其他系统元件集成起来，该其他系统元件诸如存储器桥105、CPU102以及I/O桥107，以形成片上系统（SoC）。

【0026】应该理解，本文所示系统是示例性的，并且变化和修改都是可能的。连接拓扑，包括桥的数目和安排、CPU102的数目以及并行处理子系统112的数目，可根据需要修改。例如，在一些实施例中，系统存储器104直接连接到CPU102而不是通过桥，并且其他设备经由存储器桥105和CPU102与系统存储器104通信。在其他替代性拓扑中，并行处理子系统112连接到I/O桥107或直接连接到CPU102，而不是连接到存储器桥105。而在其他实施例中，I/O桥107和存储器桥105可能被集成到单个芯片上。大型实施例可以包括两个或两个以上的CPU102以及两个或两个以上的并行处理系统112。本文所示的特定部件是可选的；例如，任何数目的插卡或外围设备都可能得到支持。在一些实施例中，交换器116被去掉，网络适配器118和插卡120、121直接连接到I/O桥107。

【0027】图2示出了根据本发明的一个实施例的并行处理子系统112。如所示的，并行处理子系统112包括一个或多个并行处理单元（PPU）202，每个并行处理单元202都耦连到本地并行处理（PP）存储器204。通常，每个并行处理子系统包括n个PPU，其中n≥1。（本文中，类似对象的多个实例需要时以标识对象的参考数字和标识实例的括号中的数字来表示。）PPU202和并行处理存储器204可使用一个或多个集成电路设备来实现，诸如可编程处理器、专用集成电路（ASIC）或存储器设备，或者以任何其他技术可行的方式来实现。
再参考图 1，在一些实施例中，并行处理子系统 112 中的一些或所有 PPU202 是具有渲染管线的图形处理器，其可以配置为实施与下述相关的一种或多种任务，例如存储器 105 和总线 113 从 CPU102 和/或系统存储器 104 所供应的数据生成像素数据，与本地并行处理存储器 204（可被用作图形处理器，例如常规帧缓冲区（buffer））交互以存储和更新像素数据，传递像素数据到显示设备 110 等等。在一些实施例中，并行处理子系统 112 可包括一个或多个作为图形处理器而操作的 PPU202 以及一个或多个用于通用计算的其他 PPU202。这些 PPU 可以是同一种的或不同的，并且每个 PPU 可具有其自身的专用并行处理存储器设备或不具有专用并行处理存储器设备。一个或多个 PPU202 可输出数据到显示设备 110，或者每个 PPU202 可输出数据到一个或多个显示设备 110。

在操作中，CPU102 是计算机系统 100 的主处理器，控制和协调其他系统部件的操作。具体地，CPU102 发出控制 PPU202 的操作的命令。在一些实施例中，CPU102 写入用于每 PPU202 的命令流到入栈缓冲区（pushbuffer）中。该入栈缓冲区可位于系统存储器 104、并行处理存储器 204、或 CPU102 和 PPU202 都可访问的其他存储位置中。PPU202 从入栈缓冲区读取命令流，然后相对于 CPU102 的操作异步地执行命令。

现在返回参考图 2，每个 PPU202 包括经由连接到存储器 105（或者，在一个替代性实施例中，直接连接到 CPU102）的通信路径 113 与计算机系统 100 的其余部分通信的 I/O 单元 205。PPU202 与计算机系统 100 的其余部分的连接也可以变化。在一些实施例中，并行处理子系统 112 可实现为可插入到计算机系统 100 的扩展槽中的插卡。在其他实施例中，PPU202 可以和诸如存储器桥 105 或 I/O 桥 107 的总线桥集成在单个芯片上。而在其他实施例中，PPU202 的一些或所有元件可以和 CPU102 集成在一个芯片上。在一些实施例中，通信路径 113 是 PCIe 链路，如本领域所知的，其中专用通道被分配到每个 PPU202。也可以使用其他通信路径，I/O 单元 205 生成用于在通信路径 113 上传送的包（或其他信号），并还从通信路径 113 接收所有传入的包（或其他信号），将传入的包引导到 PPU202 的适当部件。例如，可将与处理任务相关的命令引导到主机接口 206，而将与存储器操作相关的命令（例如，对并行处理存储器 204 的读取或写入）引导到存储器交叉开关单元 210。主机接口 206 读取每个入栈缓冲区，并且将由入栈缓冲区所指定的工作输出到前端 212。

有利地，每个 PPU202 都实现高度并行处理架构。如第一示出的，PPU202（0）包括处理集群阵列 230，该阵列 230 包括 C 个通用处理集群（GPC）208，其中 C ≥ 1。每个 GPC208 能够并发执行大量的（例如，几百或几千）线程，其中每个线程是处理的实例（instance）。在各种应用中，可分配不同的 GPC208 用于处理不同类型的任务或用于处理类型不同的数据。例如，在图形应用中，可以分配第一 GPC208 以执行曲面细分（tessellation）操作以及产生用于补丁的基元拓扑。可以分配第二 GPC208 以执行曲面细分着色（shading）以评估用于基元拓扑的补丁参数以及确定顶点位置和每个顶点的其他属性。GPC208 的分配可以取决于因每种类型的程序或计算所产生的工作量而变化。

GPC208 经由工作分发单元 200 接收所要执行的处理任务，工作分发单元 200 从前端单元 212 接收定义处理任务的命令。处理任务包括所要处理的数据的索引，例如表面（补丁）数据、基元数据、顶点数据、和/或像素数据，以及定义数据将被如何处理（例如，根据程序将被执行）的状态参数和命令。工作分发单元 200 可配置为获取与任务相对应的索引，或
者工作分布单元 200 可从前端 212 接收索引。前端 212 确保在由入栈缓冲区所指定的处理发起前，将 GPC208 配置为有效状态。

【0034】当 PPU202 用于图形处理时，例如，将用于每个补丁的处理工作量分成近似相等大小的任务以使曲面细分处理分布到多个 GPC208。工作分布单元 200 可配置为以能够将任务提供到多个 GPC208 用于处理的频率来产生任务。相比之下，在常规系统中，处理典型地由单个处理引擎实施，而其他处理引擎保持空闲，在开始它们的处理任务之前等待单个处理引擎完成其任务。在本发明的一些实施例中，部分 GPC208 配置为实施不同类型的处理。例如，第一部分可配置为实施顶点着色和拓扑生成，第二部分可配置为实施曲面细分和几何着色，以及第三部分可配置为实施屏幕空间中的像素着色以产生经渲染的图像。由 GPC208 所产生的中间数据可被存储在缓冲区中以允许中间数据在 GPC208 之间被传送用于进一步处理。

【0035】存储器接口 214 包括 D 个分区单元 215，每个分区单元 215 直接耦连到并行处理存储器 204 的一部分，其中 0 ≤ D ≤ 1。如所示的，分区单元 215 的数目一般等于 DRAM220 的数目。在其他实施例中，分区单元 215 的数目也可以不等于存储器设备的数目。本领域的技术人员应该理解动态随机存取存储器 (DRAM) 220 可以用其他合适的存储设备来替代并且可以是常规的设计的。因此省略了详细描述。诸如帧缓冲区或纹理映射的渲染目标可以跨越 DRAM220 加以存储，这允许分区单元 215 并行写入每个存储目标的各部分以有效地使用并行处理存储器 204 的可用带宽。

【0036】任何一个 GPC208 都可以处理要被写入并行处理存储器 204 内的任何 DRAM220 的数据。交叉开关单元 210 配置为路由每个 GPC208 的输出到任何分区单元 215 的输入或到另一个 GPC208 用于进一步处理。GPC208 通过交叉开关单元 210 与存储器接口 214 通信，对各种外部存储器设备进行读取或写入。在一个实施例中，交叉开关单元 210 具有到存储器接口 214 的连接和 I/O 单元 205 通信，以及到本地并行处理存储器 204 的连接，从而使得在不同 GPC208 内的处理内核能够与系统存储器 104 或对于 PPU202 而言非本地的其他存储器通信。在图 2 所示的实施例中，交叉开关单元 210 直接与 I/O 单元 205 连接。交叉开关单元 210 可使用虚拟信道来分开 GPC208 与分区单元 215 之间的业务流。

【0037】另外，GPC208 可被编程以执行与种类繁多的应用相关的处理任务，包括但不限于，线性和非线性数据变换、视频和 / 或音频数据过滤、建模操作（例如，应用物理定律以确定对象的位置、速率和其他属性）、图像渲染操作（例如，曲面细分着色器、顶点着色器、几何着色器和 / 或像素着色器程序）等等。PPU202 可将数据从系统存储器 104 和 / 或本地并行处理存储器 204 转移到内部（片上）存储器中，处理该数据，并且将结果数据写回到系统存储器 104 和 / 或本地并行处理存储器 204，其中这样的数据可以由其他系统部件访问，所述其他系统部件包括 CPU102 或另一个并行处理子系统 112。

【0038】PPU202 可配备有任何容量 (amount) 的本地并行处理存储器 204，包括没有本地存储器，并且还可以以任何组合方式使用本地存储器和系统存储器。例如，在统一存储器架构 (UMA) 实施例中，PPU202 可以是图形处理器。在这样的实施例中，将不提供或几乎不提供专用的图形 (并行处理) 存储器，并且 PPU202 会以排他或几乎排他的方式使用系统存储器。在 UMA 实施例中，PPU202 可集成到桥式芯片中或处理器芯片中，或作为具有高速链路（例如，PCIe）的分立芯片提供，所述高速链路路径经由桥式芯片或其他通信手段将 PPU202 连接到系统。
存储器。
[0039] 如上所示，可并行处理子系统 112 中可以包括任何数目的 PPU202，例如，可在单个插卡上提供多个 PPU202，或可将多个插卡连接到通信路径 113，或可将一个或多个 PPU202集成到桥式芯片中。在多 PPU 系统中的 PPU202 可以彼此相同或不同。例如，不同的 PPU202 可能具有不同数目的处理内核，不同容量的本地并行处理存储器等等。在存在多个 PPU202 的情况下，可并行操作那些 PPU 从而以高于单个 PPU202 所可能达到的吞吐量来处理数据。包含一个或多个 PPU202 的系统可以以各种配置和形式因素来实现，包含台式电脑、笔记本电脑或手持式个人计算机、服务器、工作站、游戏控制台、嵌入式系统等等。

[0040] 优化数字图像

[0041] 图 3 是根据本发明的一个实施例的，示出了数字相机 302 的框图 300。数字相机 302 可包括在诸如手机或平板计算机的移动设备内，或者可包括专用于数字摄影的设备。通过操作数字相机 302，用户可以采集数字图像。如所示，数字相机 302 包括 CPU304、PPU306、光学传感器 308、存储器 312 以及输入 / 输出 (I/O) 设备 310。CPU304 可以与图 1 中示出的 CPU102 大致相似，而 PPU306 可以与图 2 中示出的 PPU202 大致相似。

[0042] 光学传感器 308 配置为接收光波并配置为输出表示这些光波的颜色和强度的电信号等等。光学传感器 308 可是例如滤色器阵列 (CFA) 或电荷耦合器件 (CCD) 等等。I/O 设备 310 可包括诸如键盘、触摸板、麦克风、快门释放按钮等等的输入设备，以及诸如屏幕、扬声器、一个或多个发光二极管 (LED) 等等的输出设备。此外，I/O 设备 310 可包括能够实施输入和输出操作二者的设备，诸如触摸屏、以太网端口、通用串行总线 (USB)、串行端口等。CPU304、PPU306、光学传感器 308 以及 I/O 设备 310 换或连到在一起并且换或连到存储器 312。

[0043] 存储器 312 可是能够存储数据的任何类型的单元，包括随机存取存储器 (RAM)、只读存储器 (ROM)、一个或多个硬盘 / 软件寄存器、缓冲区等等。如所示，存储器 312 包括原始图像 320、图像优化引擎 322 以及经优化的图像 324。当数字相机 302 的用户希望采集数字图像时，用户操纵 I/O 设备 310 以使光学传感器 308 接收光波（即，用户可以按快门释放按钮来“照相”）。光学传感器 308 随后使所采集的光波的表示被写入存储器 312 作为原始图像 320 中的一个或多个。CPU304 和 / 或 PPU306 可以参与处理由光学传感器 308 所生成的信号以产生原始数据 320。

[0044] 图像优化引擎 (IE) 322 可随后处理原始图像 320 以渲染经优化的图像 324。IE322 可是以如所示的是驻留在存储器 312 中的软件程序，并且可由 CPU304 和 / 或 PPU306 执行以处理原始图像 320。可替代地，IE322 可以是嵌入在数字相机 302 内并且换或连到 CPU304/PPU306、光学传感器 308、存储器 312 以及 I/O 设备 310 的硬件单元。如下文结合图 4A-10 所更详细描述的，IE322 可以实现处理原始图像 320 以产生经优化的图像 324 的各种不同技术。

[0045] 图 4A 是示出了图 3 中示出的 IE322 的一个实施例的示意图 400。如所示，示意图 400 包括也在图 3 中示出的原始图像 320、IE322 以及经优化的图像 324。如上述所，IE322 配置为处理原始图像 320 生成经优化的图像 324。

[0046] 对于给定的原始图像 320，IE322 首先生成原始图像统计 402。原始图像统计 402 可包括不同值，其中每个值与可针对给定的图像计算的不同统计相对应。原始图像统计 402 可包括种类繁多的不同统计，包括表示与图像相关联的颜色分布、亮度分布、对比度、饱和
度、曝光度和/或其他统计的量。

[0047] 10E322 配置为使用机器学习引擎 (MLE) 404 来处理原始图像 302 和原始图像统计 402。MLE404 实现一般可用来基于一个或多个输入值计算一个或多个输出值的一个或多个机器学习算法。MLE404 可包含决策树、人工神经网络 (ANN)、贝叶斯网络、不同机器学习算法的组合等等，并且可使用一个或多个监督式学习技术被训练，如文末更详细论述的。10E322 实现 MLE404 以基于原始图像统计 402 以及可选地基于原始图像 302 来生成渲染控制参数 406 集。

[0048] 渲染控制参数 406 的一个子集包括渲染算法选择器 406A，其中的每一个与不同渲染算法 408 相对应，剩余的渲染控制参数 406 包括要被提供到渲染算法 408 的渲染算法参数 406B。10E322 选择与渲染算法选择器 406A 相对应的算法 408，并且随后利用所指定位的参数 406B 将所选择的算法应用到原始图像以渲染经优化的图像。10E322 可针对原始图像 320 中的每一个重复该过程以渲染经优化的图像 324。在一个实施例中，10E322 使用与给定的原始图像 320 相关联的原始图像统计 402 以及使用与先前的和/或随后的图像相关联的原始图形统计来处理该给定的原始图像 320。

[0049] 如上所述，MLE404 配置为实现一个或多个机器学习算法并且通过实现一个或多个监督式学习技术被训练，如文末结合图 4B 所更详细描述的。

[0050] 图 4B 是根据本发明的一个实施例的示出了用于训练 MLE404 的技术的示意图 450。针对每个原始图像 320，提供了用来训练 MLE404 的“理想的”经标示的经优化的图像 424。如所示，针对每个原始图像 320，原始图像统计 402 被生成并且其可选地与原始图像联合被提供到 MLE404。利用可以是随机的、或以符合机器学习工艺的状态的方式所更加仔细地选择的值的合集来初始化 MLE404。MLE404 生成随后用来选择渲染算法 408 的渲染算法选择器 406，并且还生成提供给这些算法的渲染算法参数 406B。算法 408 渲染随后与“理想的”经优化的图像 424 相比较的经优化的图像 324。该“理想的”经优化的图像 424 被期望渲染自原始图像 320。训练引擎 405 随后计算经优化的图像 324 与经标示的经优化的图像 424 的偏差，并且基于该偏差计算用于 MLE404 的经改进的参数。MLE404 可随后生成经改进的渲染控制参数 406。

[0051] 迭代上文概述的过程直到由训练引擎 405 所计算的偏差小于某一期望的容差 (tolerance) 为止；这时来源于渲染控制参数 406 的经优化的图像 324 接近“理想的”经标示的经优化的图像 424。例如，可以应用该过程来训练 MLE404 以选择色调映射曲线，该色调映射曲线将导致渲染经优化的图像 324 最接近训练集 424 中的“理想的”经标示的经优化的图像，使得当不在训练集中的给定的原始图像 320 被提供到 MLE404 时，MLE404 将产生渲染控制参数 406。该渲染控制参数 406 将生成与“理想的”经优化的图像相似的经优化的图像。

[0052] 在一个实施例中，手动地、或通过收集由可替代渲染控制参数 406 所产生的图像的人为生成的评级 (rating) 来生成经标示的经优化的图像 424。在另一个实施例中，MLE404 可通过从数字相机 302 的用户接收输入而持续地被训练，该输入表示使用给定的渲染控制参数 406 集所生成的经优化的图像 324 的感知质量。通过针对用于不同原始图像的不同渲染控制参数来重复该过程，训练引擎 405 可以调节与 MLE404 相关联的权值以更有效地选择渲染算法选择器 406A 和渲染算法参数 406B。以这种方式，MLE404 可被训练为预测
用户的偏好。
[0053] 在一个实施例中，MLE404 在数字相机 302 中被原地训练。在另一个实施例中，MLE404 在计算机系统 100 或并行处理子系统 112 上被脱机训练，并且该经训练的 MLE404 实现在数字相机 302 中。在又一个实施例中，MLE404 在位于远程的计算系统即基于云的计算系统上持续地被训练。通过实现上文所描述的技术，可以显著改进由数字相机 302 所渲染的输出图像的质量。图 5A 概述了用于改进图像质量的另一个技术。

[0054] 图 5A 是根据本发明的一个实施例的、示出了图 3 所示的 IOE322 的另一个实施例的示意图 500。如所示，IOE322 配置为基于原始图像 322 渲染经优化的图像 324。IOE322 配置为由结合图 4A-4B 所描述的同样方式针对给定的原始图像 320 生成原始图像从而生成 502。因此，原始图像可以与图 4A-4B 所示的原始图像 320 大致相似。IOE322 配置为使用 MLE504 处理和渲染图像 502 以及可选地处理原始图像 320 以生成由图 512 的图像。示出了图像 512 表示可基于原始图像 502 来推断的图像，并且可表示原始图像的质量，诸如场景类型（例如“海滩”、“森林”等）、聚焦深度等等。一般而言，原图的图像 512 表示外部环境的性质。

[0055] MLE504 可与图 4A-4B 所示的 MLE404 大致相似，并且因此，可使用若干不同的机器学习算法来实现并且可被训练为通过应用各种不同的监督式学习技术来生成导出的图像 512。图 5B 是根据本发明的一个实施例的、示出了训练 MLE504 的方法的示意图 550。针对每个原始图像 320 提供用来训练 MLE504 的“理想的”经标示的经优化的图像 524。如所示，对于每个原始图像 320，原始图像 320 被生成并且且其可选地与原始图像联合提供到 MLE504，该 MLE504 以基本在图 4A 中 MLE404 被初始化的相似方式被初始化。MLE504 基于原始图像 320 以及可选地原始图像 320 和导出的图像 512 来计算随后被提供到 MLE514 的导出的图像 512。计算转而对算法 508 进行选择以及提供其输入引数的渲染控制参数 506。算法依然计算与经标示的“理想的”经优化的图像 524 相比较的经优化的图像 324，并且其输出被提供到 MLE504，并且过程被迭代直到经优化的图像如所期望般接近“理想的”经优化的图像 524。

[0056] 一旦导出的图像 512 已由 MLE504 所生成，则这些统计以及原始图像 320 和原始图像 320 由 MLE514 加以处理以生成渲染控制参数 506。与图 4 中所示的渲染控制参数 406 相似，渲染算法选择器 506，其中的每一个是与渲染算法 508 相对应的值，并且渲染算法选择器 506B 中的每一个作为被提供给所选择的渲染算法 508。以与结合图 4A 所描述的同样的方式，IOE322 对算法 508 进行选择并且提供它们的引数，并且随后将算法应用到原始图像以渲染经优化的图像。IOE322 可针对原始图像 320 中的每一个来重复该过程以生成经优化的图像 324。

[0057] MLE514 可与图 4A-4B 中所示的训练 MLE404 大致相似，并且因此，MLE504 可使用若干不同的机器学习算法来实现并且可以通过应用各种不同的监督式学习技术来被训练为生成渲染控制参数 506。例如，可使用具有相对应的“理想的”经标示的经优化的图像 524 的“示范性的”原始图像 320 集来训练 MLE514。针对每个原始图像 320，原始图像 320 以及导出的图像 512 被生成并被作为输入提供到 MLE514，其生成对算法 508 进行选择并且提供它们的输入的渲染控制参数 506，随后生成经优化的图像 324。经优化的图像 324 依然通过训练引擎 505 与理想的经标示的经优化的图像 524“相比较”。训练引擎 505 计算经优化的图
像 324 与经标示的经优化的图像 524 的偏差，并且基于该偏差计算用于 MLE504 和 514 的经改进的参数。MLE514 可随后生成经改进的渲染控制参数 506。该过程依然迭代直到由训练引擎 505 所计算的偏差小于某一期望的容差为止，这时来源于渲染控制参数 506 的经优化的图像 324 接近 “理想的” 经标示的经优化的图像 524。

在另一个实施例中，MLE504 可以在具有已经经训练的 MLE504 的系统中被训练。在另一个实施例中，MLE504 可以在具有已经经训练的 MLE514 的系统中被训练。在另一个实施例中，MLE504 和 MLE514 可以同时一起被训练。与 MLE404 一致，MLE504 和 MLE514 可在数字相机 302 中被原地训练、在计算机系统 100 或并行处理器系统 112 上被脱机训练并随后在数字相机 302 上实现、或在位于远程的计算系统及基于云的计算系统上持续地被训练。通过实现上文所描述的技术，可以显著改进由数字相机 302 所渲染的输出图像的质量。

在一个实施例中，手地点，通过收集由可替代渲染控制参数 506 所产生的图像的人为生成的评级来生成经标示的经优化的图像 524。在另一个实施例中，MLE504 和 / 或 MLE514 可通过从数字相机 302 的用户接收输入而持续地被训练，该输入表示使用给定的渲染控制参数 506 集所生成的经优化的图像 324 的感知质量。通过针对用于不同图像的不渲染控制参数来重复该过程，训练引擎 505 可以调节与 MLE504 和 / 或 514 相关联的权重以更好地选择渲染算法选择器 506a 和渲染算法引数 506b。以这种方式，MLE514 可被训练为预测用户的偏好。

通过实现上文所描述的技术，可以显著改进由数字相机 302 所渲染的经优化的图像的质量。

本领域的技术人员将认识到的是，可以应用种类繁多的机器学习算法和相关联的训练技术以实现 MLE404、504 和 514 中的每一个。进一步地，可以任何技术上可行的方式将上文结合图 3-5 所描述的 IOE322 的不同实施例加以组合。下文结合图 7-10 更详细地对这些不同实施例中的每一个进行描述。

图 6 是根据本发明的一个实施例的、用于使用图 4A-4B 中示出的 IOE322 来处理数字图像的方法步骤的流程图。尽管结合图 1-4B 的系统描述了方法步骤，但是本领域的技术人员将理解的是，配置为以任何次序实施方法步骤的任何系统均在本发明的范围内。

如所示，方法 600 开始于步骤 602，其中 IOE322 接收原始图像。原始图像可由例如图 3 中示出的数字相机 302 内的光学传感器 308 采集。在步骤 604，IOE322 针对原始图像生成原始图像统计。由 IOE322 所生成的原始图像统计可包括不同的值，其中每个值与可针对原始图像所计算的不同统计相对应。原始图像统计可包括种类繁多的不同统计，包括表示与图像相关联的颜色分布、亮度分布、对比度、饱和度、曝光度和 / 或其他统计的量。

在步骤 606，IOE322 使用 MLE404 基于原始图像统计并且可选地也基于原始图像来生成渲染控制参数。渲染控制参数选择要被应用到原始图像的算法以及要被给定到这些算法的引数。如上文结合图 4A 所描述的，MLE404 可以通过应用任何技术上可行的监督式学习算法而被训练，如结合图 4B 所描述的。

在步骤 608，IOE322 通过利用所选择的算法和它们的引数处理原始图像来渲染经优化的图像。方法 600 然后结束。通过实现方法 600，IOE322 可以生成经优化的图像，所述经优化的图像与原始图像相比具有经改进的质量。图 7 概述了用于生成经优化的图像的另一个方法。
[0066] 图7是根据本发明的一个实施例的，用于使用图5A-5B中示出的10E322来处理数字图像的方法步骤的流程图。尽管结合图1-3及5A的系统描述了方法步骤，但是本领域的技术人员将理解的是，配置为以任何次序实施方法步骤的任何系统均在本发明的范围内。

[0067] 如所示，方法700开始于步骤702，其中10E322接收原始图像。在步骤704，10E322针对原始图像生成原始图像统计。步骤702和704可以分别与图6中示出的方法600的步骤602和604大致相似。

[0068] 在步骤706，10E322基于原始图像统计并且可选地还基于原始图像来生成针对原始图像的导出的图像统计。导出的图像统计表示可基于原始图像统计而推断的统计，并且可表示原始图像的质量，诸如场景类型（例如“海滩”、“森林”等）、亮度颜色、聚焦深度等等。一般而言，导出的图像统计表示外部环境的性质。如上文结合图5A所描述的，10E322实现MLE504以生成导出的图像统计。还如上所描述的，MLE504可通过将任何技术上可行的监督式学习算法应用到MLE504而被训练以调节MLE504内的权值。这样做时，可将“示范性的”原始图像与它们的相对应的“理想的”经标示的经优化的图像结合使用来训练包括MLE504的系统。

[0069] 在步骤708，10E322使用MLE514基于导出的统计以及可选地还基于原始图像统计以及可选地完全或部分原始图像来生成渲染控制参数。渲染控制参数选择要被应用到原始图像的算法以及要被给定到这些算法的参数。与MLE504一样，MLE514可通过应用任何技术上可行的监督式学习算法而被训练，如结合图5B所描述的。

[0070] 在步骤710，10E322将具有所指定的引数的所选择的算法应用到原始图像以渲染经优化的图像。方法700然后结束。通过实现方法700，10E322可生成经优化的图像，所述经优化的图像与原始图像相比具有经改进的质量。图8和9概述了用于训练MLE404、504和514的方法的两个实例。

[0071] 图8是根据本发明的一个实施例的，用于训练图4A-4B中示出的10E322的方法步骤的流程图。尽管结合图1-4B的系统描述了方法步骤，但是本领域的技术人员将理解的是，配置为以任何次序实施方法步骤的任何系统均在本发明的范围内。

[0072] 如所示，方法800开始于步骤802，其中10E322内的训练引擎405初始化MLE404。训练引擎405可利用可以是随机的、或以符合机器学习工艺的状态的方式所更加仔细地选择的值的合集来初始化MLE404。

[0073] 在步骤804，10E322接收原始图像。原始图像可通过例如如图3中示出的数字相机302内的光学传感器308来采集。在步骤806，10E322针对原始图像生成原始图像统计。原始图像统计包括不同的值，其中每个值与可针对原始图像所计算的不同统计相对应。原始图像统计包括种类繁多的不同统计，包括表示与图像相关联的颜色分布、亮度分布、对比度、饱和度、曝光度和/或其他统计的量。

[0074] 在步骤808，10E322内的MLE404基于原始图像统计并且可选地也基于原始图像来生成渲染控制参数。渲染控制参数选择要被应用到原始图像的算法以及要被给定到这些算法的引数。在步骤810，10E322通过利用渲染算法选择和渲染控制参数内的渲染算法引数处理原始图像来渲染经优化的图像。

[0075] 在步骤812，训练引擎405计算在经优化的图像和经标示的经优化的图像之间的偏差。可以手动地、即通过收集由渲染控制参数所生气的图像的人为生成的评级来生成经
标示的经优化的图像。在步骤814，训练引擎405确定在步骤812所计算的偏差是否超过阈值。
如果是，则训练引擎405基于在优化的图像和经标示的经优化的图像之间的差异来调整MLE404内的权值，并且方法800随后返回到步骤804并且如上所述地继续进行。经调节的值随后可由MLE404用来计算经改进的渲染控制参数。如果在步骤814训练引擎405确定偏差落在阈值之下，那么方法800结束。

[0076] 图9是根据本发明的一个实施例的、用于训练图5A-5B中示出的10E322的方法步骤的流程图。尽管结合图1-3及5A-5B的系统描述了方法步骤，但是本领域的技术人员将理解的是，配置为以任何次序实施方法步骤的任何系统均在本发明的范围内。

[0077] 如所示，方法900开始于步骤902，其中10E322内的训练引擎505初始化MLE504和514。训练引擎505可利用可以是随机的，或以符合机器学习工艺的状态的方式所更加仔细地选择的值的集合来初始化MLE504和514。

[0078] 在步骤904，10E322接收原始图像。原始图像可通过例如图3中示出的数字相机302内的光学传感器308来采集。在步骤906，10E322针对原始图像生成原始图像统计。原始图像统计可包括不同的值，其中每个值与可针对原始图像所计算的不同统计相对应。原始图像统计可包括种类繁多的不同统计，包括表示与图像相关联的颜色分布、亮度分布、对比度、饱和度、光照度和/或其他统计的量。在步骤908，10E322内的MLE514基于原始图像统计生成导出的图像统计。导出的图像统计表示可基于原始图像统计而推断的统计，并且可表示原始图像的质量，诸如场景类型（例如“海滩”、“森林”等）、聚焦深度等等。一般而言，导出的图像统计表示外部环境的性质。

[0079] 在步骤910，10E322内的MLE514基于原始图像统计以及导出的图像统计以及可选地也基于原始图像来生成渲染控制参数。渲染控制参数选择要被应用到原始图像的算法以及要被给定到这些算法的引数。在步骤912，10E322通过利用渲染算法选择和渲染控制参数内的渲染算法引数处理原始图像来渲染经优化的图像。

[0080] 在步骤914，训练引擎505计算在经优化的图像和经标示的经优化的图像之间的偏差。可以手动地、即通过收集由渲染控制参数所产生的图像的人为生成的评级来生成经标示的经优化的图像。在步骤916，训练引擎505确定在步骤914所计算的偏差是否超过阈值。如果是，则训练引擎505基于在优化的图像和经标示的经优化的图像之间的差异来调整MLE504和514内的权值。该调节可以同时发生，训练引擎504可以在牵涉不同原始图像的不同调节周期期间调节MLE504和514内的权值。此调节的值随后可由MLE504和514用来计算经改进的渲染控制参数。方法900随后返回到步骤904并且如上所述地继续进行。如果在步骤916训练引擎505确定偏差落在阈值之下，那么方法900结束。

[0081] 本领域的技术人员将认识到的是，上文结合图3-9所描述的技术可以以任何技术上可行的方式进行结合。例如，MLE404、504和514可以全部合并入10E322并且实现为配置为从原始图像生成经优化的图像的图像处理管线的一部分。进一步，本发明所描述的MLE可能在数字相机302被发布到市场之前被初始训练，并且还可以基于用户输入而经受持续的训练。

[0082] 总之，数字相机包括配置为基于由数字相机所采集的原始图像来生成经优化的图像的图像优化引擎。图像优化引擎实现一个或多个机器学习引擎以选择渲染算法并且对它们提供引数以渲染来自原始图像的经优化的图像。图像优化引擎配置为通过利用所选择的
算法和相对应的引数处理原始图像来生成经优化的图像。

[0083] 有利地，图像优化引擎内的机器学习引擎可被训练为生成图像而不要求图像处理算法设计团队来产生调整这种算法的算法集合。进一步地，数字相机的用户不再被要求向数字相机提供关于外部环境的质量的大量的手动输入，从而改善了用户体验。

[0084] 本发明的一个实施例可被实施为与计算机系统一起使用的程序产品。该程序产品的程序定义实施例的各功能（包括本文中描述的方法）并且可以被包含在各种计算机可读存储介质上。示例性计算机可读存储介质包括但不限于：（i）不可写的存储介质（例如，计算机内的只读存储器设备，诸如可由CD-ROM驱动器读取的CD-ROM盘、闪存、ROM芯片或任何类型的固态非易失性半导体存储器），在其上存储永久性信息；和（ii）可写的存储介质（例如，磁盘驱动器或硬盘驱动器内的软盘或者任何类型的固态随机存取半导体存储器），在其上存储可更改的信息。

[0085] 以上已参照特定实施例对本发明进行了描述。然而，本领域的技术人员将理解的是，可对此做出各种修改和变化而不脱离如随附权利要求书中所阐述的本发明的较宽精神和范围。因此，前面的描述以及附图应被视为是示例性而非限制性的意义。
图 2
图 3
图 4B
图 6

1. 开始
2. 接收原始图像
3. 基于原始图像生成原始图像统计
4. 基于原始图像统计/原始图像生成渲染控制参数
5. 通过利用渲染算法选择和渲染控制参数内的渲染算法引擎来渲染优化的图像
6. 结束
图 7

700 开始
702 接收原始图像
704 基于原始图像生成原始图像统计
706 基于原始图像统计/原始图像生成导出的图像统计
708 基于原始图像统计/原始图像和导出的图像统计生成渲染控制参数
710 通过利用渲染算法选择和渲染控制参数内的渲染算法参数处理原始图像来渲染经优化的图像

结束
开始

初始化机器学习引擎

接收原始图像

基于原始图像生成原始图像统计

基于原始图像统计/原始图像生成渲染控制参数

通过利用渲染算法选择和渲染控制参数内的
渲染算法引擎处理原始图像来渲染经优化的图像

计算经优化的图像和经标示的经优化的图像之间的偏差

偏差超过阈值？

是

基于在经优化的图像和经标示的经优化的
图像之间的差异来调节机器学习引擎的权值

否

结束

图 8
开始

初始化机器学习引擎

接收原始图像

基于原始图像生成原始图像统计

基于原始图像统计/原始图像生成导出的图像统计

基于原始图像统计/原始图像和导出的图像统计生成渲染控制参数

通过利用渲染算法选择和渲染控制参数内的
渲染算法参数处理原始图像和渲染优化的图像

计算在经优化的图像和经标示的经优化的图像之间的偏差

偏差超过阈值？

是

基于在经优化的图像和经标示的经优化的
图像之间的差异来调节机器学习引擎的权重

否

结束

图 9