OO OO

8650 A2

Yo

001

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 March 2001 (15.03.2001)

PCT

00O O 0

(10) International Publication Number

WO 01/18650 A2

GO6F 9/46

(51) International Patent Classification’:
(21) International Application Number: PCT/US00/24290

(22) International Filing Date:

(74) Agents: KULAS, Charles, J. et al.; Townsend and
Townsend and Crew LLP, Two Embarcadero Center, 8th
floor, San Francisco, CA 94111-3834 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
5 September 2000 (05.09.2000) AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
. . . DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
(25) Filing Language: English HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
(26) Publication L . Enelish LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
) Publication Language: nELS NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
(30) Priority Data: TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
60/152,312 3 September 1999 (03.09.1999) US
(84) Designated States (regional): ARIPO patent (GH, GM,
(71) Applicant (for all designated States except US): GEN- KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
ERAL INSTRUMENT CORPORATION [US/US]; 101 patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
Tournament Drive, Horsham, PA 19044 (US). patent (AT, BE, CH, CY, DE, DK, ES, F, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
(72) Inventors; and CL CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(75) Inventors/Applicants (for US only): BRANSILAYV, Me-
andzija [US/US]; 716 Avocado Place, Del Mar, CA 92014 Published:
(US). MEDVINSKY, Alexander [US/US]; 8873 Hampe — Without international search report and to be republished
Court, San Diego, CA 92129 (US). upon receipt of that report.
[Continued on next page]
(54) Title: RESOURCE ACCESS CONTROL SYSTEM
Format E
Check Send Output Screen ancy '“‘e"?e‘
Incoming | Outgoing | and Send Sayer CIO.CK Ban!fmg
E-mail E-mail to the Aptg':a' Aﬁ%’:a' Aptg'r‘:a'
Security | Security | Printer . . "y
Thread | Thread | Security Security | Security | Security
R Thread Thread Thread
A1 A-2 Thread
A3 B-1 B-2 B-3
E-mail Application JVM
Security Thread A Security Thread B
Operating System
Security Thread 0

(57) Abstract: A resource access control system that restricts access rights of individual software objects executing in a processing
device. A software object is designated as belonging to one or more protection domains. Each protection domain defines permissions
=~ to resources accessible by a software object. Resource allocations for a software object can change over time, even while the object
is executing. Another advantage that the present approach provides is that the consumer can download a software object with some
of the object’s functionality disabled via resource controls. Later, the same consumer can pay for additional functionality within
the same software object. This is achieved by changing the resource control on the software object so that the software object can
now access an expanded list of resources. Software objects are associated with a security group ID that associates the object with a

particular protection domain.

WO 01/18650 A2 |00 0O 0 A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 01/18650 PCT/US00/24290

RESOURCE ACCESS CONTROL SYSTEM

This application derives priority from U.S. provisional patent
application number 60/152,312, titled “Resource Access Control System,” filed

September 3, 1999, which is incorporated herein in its entirety.

BACKGROUND OF THE INVENTION
The present invention relates in general to digital processing

systems, and in particular to allocation of resources in a digital system.

Digital processing devices, such as computer systems, allow a user
of the device to execute various software programs, objects, etc., in order to
provide functionality. For example, a user may run a web browser, word processor
and E-mail program on a computer system. Each of these software applications
can be manufactured by a different software developer and be obtained, installed
and operated independently. The user can run or remove software from the
computer as desired. This approach allows a non-changing piece of hardware, i.e.,
the computer system, to perform many different tasks by executing software
objects. Thus, the functionality of the computer system can be changed, or

updated, as desired.

A problem arises in such an approach when the software
applications, or objects, have to compete for resources. Limited resources in a
computer system include random access memory (RAM), disk storage and
network access or communication mechanisms for communicating with other
devices. Traditionally, it has been the job of an operating system in a computer to
handle allocation of resources. The main goal of an operating system is to provide

each software object with as much allocation of resources as it needs on a

10

15

20

25

30

WO 01/18650 PCT/US00/24290

timeshare basis. This approach makes it difficult for any manufacturer of software

objects to control allocation among the objects executing in the processing device.

It becomes increasingly important to be able to regulate access to
resources in a digital processing device as the overall size and amount of resources
decreases. This is especially true in consumer-oriented embedded processing such

as 1n a television receiving device or so-called “set-top box.”

Thus, it is desirable to provide a resource access control system
(RACS) for use in a processing device, such as a computer, set-top box or other
device, that allows a very high degree of control over resource access and
allocation. By allowing greater control over resource allocation, manufacturers of
software objects can devise different revenue models for selling software
functionality to an end user. For example, a software object can be provided at a
low cost where it is restricted from certain resources (e.g., a modem connection,
access to a television tuner, hard disk storage, efc.). The same software object can
be provided at a higher cost with a higher resource access level so that it provides

greater functionality to the end user.

A resource access control system that provides detailed control over
each software object’s resource allocation can also be used to achieve a high level
of security. Certain classes of objects can be restricted to using limited resources,
thus ensuring that high priority, or high security, objects that use more or different

resources are able to execute adequately and privately.

SUMMARY OF THE INVENTION
The present invention provides a resource access control system that
restricts access rights of individual software objects executing in a processing
device. According to the present invention, the allocation of resources for a

software object can be changed during execution of the software object.

10

15

20

25

30

WO 01/18650 PCT/US00/24290

Accordingly, in one embodiment the present invention provides a
method of controlling resource access in a digital processing device, the method
including: allocating a first set of resources to a software object in the digital
processing device; and changing the allocation of resources to the software object

during execution of the software object.

In another embodiment, the present invention provides a method of
controlling resource access in a digital processing device, the method including:
1dentifying a first set of resources in the digital processing device; associating a
domain with the first set of resources; and allocating the first set of resources to a

software object by associating the software object with the domain.

In another embodiment, the present invention provides a method of
controlling resource access in a digital processing device, the method including:
allocating a first set of resources to a software object in the digital processing
device; and changing the allocation of resources to the software object to modify

the functionality of the software object.

In another embodiment, a system for controlling resource access in a
digital processing device includes: means for allocating a first set of resources to a
software object in the digital processing device; and means for changing the
allocation of resources to the software object during execution of the software

object.

A better understanding of the nature and advantages of the present
invention may be gained with reference to the following detailed description and

the accompanying drawings.

10

15

20

25

30

WO 01/18650 PCT/US00/24290
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an example of some of the various security threads that

might be present in a running system;

Figure 2 depicts an authorization stack for a security thread; and

Figure 3 1s an illustration of authorization stacks of the present

invention.

DETAILED DESCRIPTION OF THE SPECIFIC EMBODIMENTS
The present invention provides a resource access control system that

restricts access rights of individual software objects executing in a processing
device. A cable or satellite set-top box, or any other computer host, will in general
include different types of software objects, i.e. system programs, interpreters,
applications, applets, scripts, etc. Software objects require access to resources to
fulfill their function, i.e., they need a physical/software resource such as a modem
to communicate, a tuner to tune into a TV channel, a file to save data, etc.
Therefore, a given software object may require some type of access to a given type
of resource object. It should be noted that the set of resource objects includes the
set of software objects. In other words, a given software object may require access

to another software object.

Different software objects may have different resource needs, may
originate from different code sources or may run on behalf of different set-top
users. In all of these cases it is necessary to restrict the access rights of the
software object; e.g., not all software objects may be entrusted with the use of a
modem or the read/write of a password file. Each software object should have
access rights for a subset of resource objects if it is authorized to access those
resources. The RACS is responsible for enforcing the limitations on resource

access that are placed on each software object.

10

15

20

25

30

WO 01/18650 PCT/US00/24290

A fundamental concept and important building block of the RACS is
the protection domain. A domain can be scoped by the set of resource objects that
are currently directly accessible by a software object, and operations that are
permitted on those resources. A software object is an entity to which permissions

(and as a result, accountability) are granted.

Java security architecture employs a similar concept to that of the
protection domains used to restrict downloaded objects to access only the
resources for which they had been authorized. This is an example of a static
protection domain, where the resources for which a particular object is authorized

do not change over time.

The RACS can also include dynamic protection domains. The
inclusion of a dynamic protection domain means that the resources for which an
object is authorized do change over time, even while the object is running. In
particular, dynamic protection domains are used as tools for conditional access.
The consumer may download a software object with some of its functionality
disabled via a resource control. Later, the same consumer may pay for additional
functionality within the same software object. This is achieved by changing the
resource control on the software object so that the software object can access (i.e.,

1s now authorized for) an expanded list of resources.

Although the RACS is most easily implemented inside an object-
oriented environment such as Java, the RACS architecture and its implementation
described in this document applies to any software environment. For example, a
software environment may consist of native applications written in C or C++,
interpreted Java applications running inside a Java virtual machine (JVM), and

HTML scripts and Java applets running inside a browser.

10

15

20

25

30

WO 01/18650 PCT/US00/24290

In one embodiment, a protection domain is associated with a group
of objects. Each object will contain a security group identification (ID) that
associates the object with a particular protection domain. All objects with the
same security group ID will be authorized for an identical set of resources. It is

possible for a protection domain to contain exactly one object.

It is further possible for a system to include software objects that are
authorized for all of the resources on that host. That does not mean that these
objects will not require resource checks by the RACS. For consistency, each such
object will be assigned to the same protection domain, which is authorized for all
of the resources. The identity of each such object will still undergo authentication,

the same as for any other object.

If this were not the case, and some objects were not associated with
any authorization information, a perpetrator could easily bypass the RACS by
taking an object that is limited to a particular protection domain and simply

stripping out its authorization information.

In order to determine the authorization of a particular running
instance of an object, it is not enough to look at this object’s protection domain.
This is because a running object may invoke another object from a different
protection domain. This calling sequence of objects has to be tracked in order to

calculate the effective permissions of a running instance of an object.

In another embodiment, the use of a security thread is envisioned.
The security thread is an execution thread that keeps track of the current
authorization state in addition to the current execution state (e.g., register values,
local variables, etc.). Each security thread executes independently, just like other

threads.

10

15

20

25

30

WO 01/18650 PCT/US00/24290

The authorization state of a security thread is a list of resources and
allowable operations on those resources for which the thread is currently
authorized. In general, an authorization state is a function of the protection
domains of all of the objects that are in the current calling stack of the security
thread. The way in which the authorization state is calculated will be described,

infra.

As is the case with other threads, a security thread may spawn
another security thread. The new thread will inherit the authorization state of the
thread that spawned it. However, once the new thread starts executing its
authorization state will be modified based on the objects that it invokes,
independently from the authorization state of the original thread. When RACS is
enabled, every single thread running in the host will be a security thread and will

have an associated authorization state.

In a specific embodiment shown in Figure 1, an example is depicted
of some of the various security threads that might be present in a running system.
In this example, initially there is only the operating system running, associated

with its own Security Thread 0.

Thread 0 later spawns an email application (Security Thread A) and
a JVM (Security Thread B). Security Threads A and B will start out with a copy
of the authorization state of the Security Thread 0. After Security Threads A and
B are spawned, there are 3 independent Security Threads running (0, A and B),

each having its own authorization state.

Later, the E-mail application spawns three additional threads. Check
Incoming Mail (Security Thread A-1), Send Outgoing Mail (Security Thread A-2)
and Format Output and Send to the Printer (Security Thread A-2). Threads A-1,
A-2 and A-3 each start out with a copy of the authorization state of Thread A.

10

15

20

25

30

WO 01/18650 PCT/US00/24290

There are now 6 independent Security Threads running (0, A, A-1, A-2, A-3 and
B).

Finally, the JVM starts up three Java applications, each with its own
Security Thread: Screen Saver (Security Thread B-1), Fancy Clock (Security
Thread B-2) and Internet Banking (Security Thread B-3). (Here, we are using a
generalized definition of a Java Application, which is a high level Java object that
is started up directly by the JVM. Unlike the standard definition of an application
-- an object that contains the function “main()” -- there can be multiple such
applications controlled by the same instance of a JVM. A Java Applet is one
example of such an application. The same instance of a JVM is capable of running
multiple applets simultaneously.) Threads B-1, B-2 and B-3 start out with a copy
of the authorization state of Thread B. There are now nine independent Security

Threads running (0, A, A-1, A-2, A-3, B, B-1, B-2 and B-3).

When one object makes a call to another object that is in a different
protection domain, the action is to intersect the current authorization state with the
protection domain of the called object. This means that the called object cannot

access a resource unless it 1s accessible by every object in the current call stack.

It is legitimate to have objects belonging to a protection domain that
has rights to every single resource as mentioned earlier. When a call is made to
such an object, the current authorization state remains the same. In fact, an object
may be placed into this protection domain not because it should have rights to all

the resources, but because it should inherit the current authorization state.

Simply intersecting protection domains may be insufficient in some
cases. For example, various software objects may be authorized or not authorized
to send output to a printer. However, they are only authorized to make certain API
calls on a printer driver and should not be allowed to write directly to the printer

port.

10

15

20

25

30

WO 01/18650 PCT/US00/24290

Thus, the protection domain of the printer driver object will be the
only protection domain to include the rights to access the printer port. Under the
intersection rule defined in the above section, when the printer driver is called its
protection domain will be intersected with the current authorization state and it
will lose the ability to access the printer port. Consequently, a new way of

combining protection domains is needed here.

The RACS uses the privileged section, similar to the Java privileged
section, to solve this problem. When a “Begin Privileged” construct is
encountered inside the executing object, the current authorization state is modified
again -- it is set to the union of the current authorization state and the protection
domain of the executing object. When “End Privileged” is encountered, the

authorization state reverts back to what it was previously.

Various implementations of the security threads are contemplated.
In one embodiment, each security thread has an associated authorization stack,
analogous to the calling stack, but maintained independently. Each entry on the
authorization stack is the authorization state. At any point in time, the current
authorization state of a security thread is the authorization state that is found on the

top of its authorization stack.

In keeping with the invention, whenever a call is made to a different
software object a new authorization state is pushed onto the top of the
authorization stack. As specified earlier, the new authorization state is the
intersection of the old authorization state with the protection domain of the called
object. Once the execution of this new software object ends and control is
transferred to the previous object, the current authorization state is popped off the

stack.

10

15

20

25

30

WO 01/18650 PCT/US00/24290

Similarly, when a “Begin Privileged” construct is encountered, a new
authorization state is pushed onto the top of the authorization stack. This time, the
new authorization state is the union of the old authorization state with the
protection domain of the current object. Once the privileged section ends (with an

“End Privileged” construct), that authorization state is popped off the stack.

Referring now to Figure 2, an example of an authorization stack for
Security Thread 1 is shown. Security Thread 1 is started by some other state and
acquires an initial authorization state Sy. The authorization state S, is a copy of the

authorization state of the spawning thread.

Subsequently, object A is called and a new authorization state is
pushed onto the stack. It is the intersection of the previous authorization state and
the protection domain of object A (PO,). Similarly, object B is called and the new
authorization state is the intersection of the previous state and the protection

domain of B (POg).

Finally, within object B a “Begin Privileged” construct is
encountered causing a new authorization state to be established. The new

authorization state is the union of the previous authorization state and POg.

In further keeping with the invention, each entry in the authorization
stack is an authorization state that should include at least the following
information: an object ID of the currently executing object; a security group ID
(identifying a protection domain); a time stamp of when this authorization state
was created (i.e., pushed onto the stack); and a list of allowable resource

operations (e.g., open, close, read and write).

Authorization for a particular resource is checked at runtime. The
most important place to perform a resource check is inside an “open” function for

a particular object, representing a resource. The open call should include a

10

10

15

20

25

30

WO 01/18650 PCT/US00/24290

“mode” that would restrict a returned resource handle to a particular set of
operations. Thus, a check inside the “open” function would verify that the security
thread is both allowed to access this resource and allowed to perform the specified

operations.

Operations performed on the opened resource may also be verified
by the RACS in order to further enhance the security. It is conceivable that a
handle to a resource was obtained via illicit means (outside of the normal “open”
call), which can be detected with a resource check during a subsequent operation
on that handle. Since resource operations may be performed frequently, care must
be taken in the implementation of these subsequent resource checks. It may be
sufficient that the subsequent resource checks do the actual checking only once

every few calls in order to improve performance.

If an illegal resource access is detected inside a resource check API,
an appropriate action must be taken. In one embodiment, this resource check API
is performed by a tamperproof security processor that will be responsible for
taking appropriate action on an unauthorized access. The action taken may include
any of the following or a combination thereof: returning an error code, denying the
requested operation on that resource; writing out an unauthorized access message
to a log; reporting the unauthorized access to a trusted authority; killing the
offending security thread; and/or starting shutting down various services inside
that host. To allow for the most flexibility, each protection domain may include
flags that determine the action or actions taken when unauthorized access is

detected.

Each resource check may involve communication with a security
processor, which may introduce too much overhead. As mentioned in the previous
section, performing the actual checking only once every few operations may

reduce this overhead.

11

10

15

20

25

30

WO 01/18650 PCT/US00/24290

In an alternative embodiment, each resource access will not be
checked immediately and will not be checked by the security thread that acquired
the resource. Instead, each resource access will be shadow imaged, ideally in
secure memory available to the security processor and will be reviewed by an
independent thread running inside that security processor. If this thread detects an
unauthorized access, it will then take some action that may be any of the following
or a combination thereof: writing out an unauthorized access message to a log;
reporting the unauthorized access to a trusted authority; killing the offending
security thread; and/or starting shutting down various services inside that host.
Each protection domain may include flags that determine the action or actions

taken when unauthorized access is detected, as previously stated.

It may be desirable to dynamically change the resource permissions
for various protection domains. For example, resource permissions may be
modified based on the functionality that is purchased by the owner of the set-top
box or some other platform. When a software object is called, the latest resource
permissions associated with its protection domain will be used in calculating the
authorization state of a security thread, thus making the RACS more dynamic than

the standard Java security model.

Sometimes the permissions of an object that is currently executing
are also modified. An object such.as a JVM, for example, may be executing
continuously for a prolonged period of time, and one may want the changes to take
effect before it is restarted. Additional mechanisms need to be defined to handle

this case.

Each entry in the authorization stack contains the security group ID,
which references a particular protection domain. When resource permissions for
one of the protection domains in the authorization stack are modified it is possible

to update the stack by modifying each entry, starting with the one that corresponds

12

10

15

20

25

30

WO 01/18650 PCT/US00/24290

to a modified protection domain and continuing up until the top of the stack is

reached.

Unfortunately, this would not be enough to solve the problem. When
a Security Thread A spawns a Security Thread A-1, the initial authorization state
of A-1 is set to the authorization state of A at the time that A-1 is created. Let us
say that at time T one of the protection domains in A’s authorization stack is
modified. We can adjust A’s authorization stack, but the initial authorization state

of A-1 may now be out-of-date.

There is no way to provide a link from A’s authorization stack to the
initial authorization state of A-1. That is because after A-1 is started, thread A can
continue executing independently, and by time T A’s authorization stack may be

completely different, or perhaps A has terminated by then.

The present invention provides a solution to this problem. Let us say
that Security Thread A creates A-1. Then, A-1’s authorization stack is initialized
to an exact copy of A’s Authorization Stack. Subsequently, when a protection
domain that happened to be in A’s authorization stack at the time (of A-1’s
creation) is modified, it will also be found in A-1’s authorization stack. This

allows for all of A-1’s authorization states in the stack to be updated properly.

Turning to Figure 3, one can see how Security Thread A creates A-1.
Initially, thread A is running object A, which means that entries affected by A’s
protection domain were found in both A’s and A-1’s authorization stack. Later (in
step 5), thread A stops executing object A, and the corresponding entries in A’s
authorization stack are removed. However, since thread A-1 was created from the
code inside object A, the corresponding entries remain in A-1’s authorization
stack. Later, object A’s protection domain is modified. This no longer affects
thread A’s authorization stack, since it is not running object A. However, it does

affect A-1’s authorization stack which is updated accordingly.

13

10

15

20

25

30

WO 01/18650 PCT/US00/24290

In one embodiment, there is a separate execution thread called
authorization stack refresh (ASR) thread, which will dynamically update the
contents of authorization stacks when protection domains change. This does not
guarantee immediate updates to authorization stacks, but will insure that they are
updated within some reasonable amount of time. Whether or not this thread is
started is optional, depending on whether or not the resource permissions need to

be updated while a particular object is running.

In order to securely implement the RACS, the identity of each object
must be authenticated both during the object download and during the object
launch (start of execution). Object authentication can be implemented

independently from the RACS and is outside of the scope of this discussion.

The resource permissions for a protection domain may change
dynamically and must also be delivered securely. Resource permissions for each
object may be signed with a private key of the authorization authority and should
include a version number to avoid version rollback attacks. Alternatively, the
authorization authority may deliver resource permissions via a secure message
protocol, such as TLS or IPSEC. The details of the delivery of resource

permissions are outside of the scope of this discussion.

Security of the RACS is further enhanced when all resource and
authentication checks are encapsulated inside a tamperproof security processor.

The design of the security processor is also outside of the scope of this discussion.

In conclusion, the present invention provides methods for controlling
resource access in a digital processing device. While the above is a complete
description of the preferred embodiment of the present invention, it is possible to
use various alternatives, modifications and equivalents. Therefore, the scope of

the present invention should be determined not with reference to the above

14

WO 01/18650 PCT/US00/24290

description but should, instead, be determined with reference to the appended

claims, along with their full scope of equivalents.

15

[N R " B

(o Y L I S

WO 01/18650 PCT/US00/24290
WHAT IS CLAIMED IS:

1. A method of controlling resource access in a digital
processing device, the method comprising:

allocating a first set of resources to a software object in the digital
processing device; and

changing the allocation of resources to the software object during

execution of the software object.

2. A method of controlling resource access in a digital
processing device, the method comprising:

identifying a first set of resources in the digital probessing device;

associating a domain with the first set of resources; and

allocating the first set of resources to a software object by associating

the software object with the domain.

3. The method of claim 2 wherein a software object can be

associated with one or more protection domains.

4. The method of claim 2 wherein the domain is a protection
domain.

5. The method of claim 4, wherein the protection domain is
static.

6. The method of claim 4, wherein the protection domain is
dynamic.

7. The method of claim 4, wherein the software object is

associated with a security group identification that associates the software object

with the protection domain.

8. The method of claim 4, wherein each of at least one software

object is associated with a single security group identification; and each different

16

— O VS N)

[« NV S N R S

WO 01/18650 PCT/US00/24290

security group identification associates the software object or objects associated

therewith with a different protection domain.

9. The method of claim 8§, further including:

running a security thread having an authorization state; and

calling software objects via the security thread, wherein the
authorization state is modified based upon the software objects called via the

security thread.

10. The method of claim 9, wherein when a first software object
makes a call to a second software object, the authorization state is intersected with

the protection domain of the second software object.

11. The method of claim 8, wherein all of the software objects
that are associated with the same security group identification are authorized for an

identical set of resources.

12. The method of claim 9, further including:
associating an authorization stack with a security thread, wherein the
current authorization state of the security thread is the authorization state that is on

the top of the authorization stack.

13. A method of controlling resource access in a digital
processing device, the method comprising:

allocating a first set of resources to a software object in the digital
processing device; and

changing the allocation of resources to the software object to modify

the functionality of the software object.

14. The method of claim 13, wherein the allocation of resources

to the software object is changed while the software object is executing,.

15. The method of claim 13, further comprising:

17

AN B~ W N

WO 01/18650 PCT/US00/24290
accepting payment from an end user in exchange for changing the

allocation of resources.

16. A system for controlling resource access in a digital
processing device, the system comprising:

means for allocating a first set of resources to a software object in the
digital processing device; and

means for changing the allocation of resources to the software object

during execution of the software object.

18

WO 01/18650

PCT/US00/24290
Format
Check Send Output Screen Fancy Interpet
. ; Saver Clock Banking
Incoming | Outgoing | and Send Applica Aoplica- | Applica
E-mail | E-mail | tothe ptf;: - ptﬁm pt?on -
Security | Security Printer . . .
- Security | Security | Security
Thread Thread | Security
Thread Thread Thread
A1 A-2 Thread
B-1 B-2 B-3
A-3
E-mail Application JVM
Security Thread A Security Thread B
Operating System
Security Thread 0
FIGURE 1

1/3

WO 01/18650 PCT/US00/24290

Authorization Stack for
Security Thread 1

A

4. "Begin Privileged" encountered—> (S, N PO, n POy) U PO,

3. Object B is called > S,n PO, POg4

2. Object A is called > S,n PO,

1. Security Thread 1 started———> Initial Authorization State S

FIGURE 2

2/3

WO 01/18650
Authorization
Stack
for Security
Thread A
2. Object A
is called S0 a POA
1. Security Thread A —», Imt_'al i
started Authorization
State S0

)

5. Execution of A is
terminated

Authorization
Stack
for Security
Thread A

Initial
Authorization
State S0

6. Protection Domain PO, is modified.

PCT/US00/24290

Authorization
Stack
for Security
Thread A-1
4. Obj
Dblect 8 » S,n PO, PO,
3. Security Thread A-1
started (copy A's ———> S,NPO,
auth. stack)
Initial
Authorization
State S,

7. Entries S, n PO, and S, N PO, n POy in A-1's authorization stack are updated.

FIGURE 3

3/3

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

