A OO0

0 00/73880 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

O A A

(10) International Publication Number

7 December 2000 (07.12.2000) PCT WO 00/73880 Al
(51) International Patent Classification’: GO6F 1/00 [FR/GB]; 7 Rutland House, Granby Hill, Hotwells, Bristol
BS8 4LT (GB). PEARSON, Siani, Lynne [GB/GB]; 35
(21) International Application Number: PCT/GB00/02004 Sandyleaze, Westbury-on-Trym, Bristol BS9 3PZ (GB).
CHAN, David [GB/US]; 16112 Mays Avenue, Monte
X . Sereno, CA 95030 (US).
(22) International Filing Date: 25 May 2000 (25.05.2000)
- . (74) Agent: LAWRENCE, Richard, Anthony; Hewlett-
(25) Filing Language: English Packard Limited, Intellectual Property Section, Filton
Road, Stoke Gifford, Bristol BS34 8QZ (GB).
(26) Publication Language: English

(30) Priority Data:

99304165.6 28 May 1999 (28.05.1999) EP

(71) Applicant (for all designated States except US):
HEWLETT-PACKARD COMPANY [US/US]; 3000
Hanover Street, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PROUDLER,
Graeme, John [GB/GB]; 5 Touchstone Avenue, Stoke
Gifford, Bristol BS34 8XQ (GB). BALACHEFF, Boris

(81) Designated States (national): JP, US.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published:
With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: DATA EVENT LOGGING IN COMPUTING PLATFORM

(57) Abstract: There is disclosed a computer entity having a trusted component which compiles an event log for events occurring
on a computer platform. The event log contains event data of types which are pre-specified by a user by inputting details through
a dialogue display generated by the trusted component. Items which can be monitored include data files, applications drivers and
the like. The trusted component operates through a monitoring agent which may be launched onto the computer platform. The
monitoring agent may be periodically interrogated to make sure that it is operating correctly and responding to interrogations by the

trusted component.

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

DATA EVENT LOGGING IN COMPUTING PLATFORM

Field of the Invention

The present invention relates to security monitoring of computer
platforms, and particularly, although not exclusively, to monitoring of events

and operations occurring on data files, applications, drivers and like entities on
a computer platform.

Background to the Invention

Conventional prior art mass market computing platforms include the
well-known personal computer (PC) and competing products such as the
Apple Macintosh™, and a proliferation of known palm-top and laptop personal
computers. Generally, markets for such machines fall into two categories,
these being domestic or consumer, and corporate. A general requirement for
a computing platform for domestic or consumer use is a relatively high
processing power, Internet access features, and multi-media features for
handling computer games. For this type of computing platform, the Microsoft
Windows® '95 and '98 operating system products and Intel processors
dominate the market.

On the other hand, for business use, there are a plethora of available
proprietary computer platform solutions available aimed at organizations
ranging from small businesses to multi-national organizations. In many of
these applications, a server platform provides centralized data storage, and
application functionality for a plurality of client stations. For business use,
other key criteria are reliability, networking features, and security features.
For such platforms, the Microsoft Windows NT 4.0™ operating system is
common, as well as the Unix™ operating system.

With the increase in commercial activity transacted over the Internet,
known as “e-commerce”, there has been much interest in the prior art on
enabling data transactions between computing platforms, over the Internet.

However, because of the potential for fraud and manipulation of electronic

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

2

data, in such proposals, fully automated transactions with distant unknown
parties on a wide-spread scale as required for a fully transparent and efficient
market place have so far been held back. The fundamental issue is one of
trust between interacting computer platforms for the making of such
transactions.

There have been several prior art schemes which are aimed at
increasing the security and trustworthiness of computer platforms.
Predominantly, these rely upon adding in security features at the application
level, that is to say the security features are not inherently imbedded in the
kernel of operating systems, and are not built in to the fundamental hardware
components of the computing platform. Portable computer devices have
already appeared on the market which include a smart card, which contains
data specific to a user, which is input into a smart card reader on the
computer. Presently, such smart cards are at the level of being add-on extras
to conventional personal computers, and in some cases are integrated into a
casing of a known computer. Although these prior art schemes go some way
to improving the security of computer platforms, the levels of security and
trustworthiness gained by prior art schemes may be considered insufficient to
enable widespread application of automated transactions between computer
platforms. Before businesses expose significant value transactions to
electronic commerce on a widespread scale, they may require greater
confidence in the trustworthiness of the underlying technology.

In the applicant’'s co-pending International Patent Applications “Trusted
Computing Platform’ PCT/GB 00/00528, filed on 15 February 2000, and
‘Smartcard User interface for Trusted Computing Platform' PCT/GB 00/00752,
filed on 3 March 2000, the entire contents of which are incorporated herein by
reference, there is disclosed a concept of a ‘trusted computing platform’
comprising a computing platform which has a ‘trusted component’ in the form
of a built-in hardware and software component. Two computing entities each
provisioned with such a trusted component, may interact with each other with
a high degree of ‘trust’. That is to say, where the first and second computing
entities interact with each other the security of the interaction is enhanced

compared to the case where no trusted component is present, because:

WO 00/73880 3 PCT/GB00/02004

« A user of a computing entity has higher confidence in the integrity and
security of his/her own computer entity and in the integrity and
security of the computer entity belonging to the other computing
entity.

 Each entity is confident that the other entity is in fact the entity which it
purports to be.

e Where one or both of the entities represent a party to a transaction,
e.g. a data transfer transaction, because of the in-built trusted
component, third party entities interacting with the entity have a high
degree of confidence that the entity does in fact represent such a
party.

o The trusted component increases the inherent security of the entity
itself, through verification and monitoring processes implemented by
the trusted component.

« The computer entity is more likely to behave in the way it is expected
to behave.

Prior art computing platforms have several problems which need to be
overcome in order to realize the potential of the applicants’ above disclosed
trusted component concept. In particular,

 The operating status of a computer system or platform and the status
of the data within the platform or system is dynamic and difficult to
predict. It is difficult to determine whether a computer platform is
operating correctly because the state of the computer platform and
data on the platform is constantly changing and the computer platform
itself may be dynamically changing.

e From a security point of view, commercial computer platforms, in
particular client platforms, are often deployed in environments which
are vulnerable to unauthorized modification. The main areas of
vulnerability include modification by software loaded by a user, or by
software loaded via a network connection. Particularly, but not
exclusively, conventional computer platforms may be vulnerable to

attack by virus programs, with varying degrees of hostility.

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

4

o Computer platforms may be upgraded or their capabilities extended or
restricted by physical modification, i.e. addition or deletion of
components such as hard disk drives, peripheral drivers and the like.

It is known to provide certain security features in computer systems,
embedded in operating software. These security features are primarily aimed
at providing division of information within a community of users of the system.

In the known Microsoft Windows NT™ 4.0 operating system, there also
exists a monitoring facility called “system log event viewer” in which a log of
events occurring within the platform is recorded into an event log data file
which can be inspected by a system administrator using the windows NT
operating system software. This facility goes someway to enabling a system
administrator to security monitor pre-selected events. The event logging
function in the Windows NT™ 4.0 operating system is an example of system
monitoring.

However, in terms of overall security of a computer platform, a purely
software based system is vulnerable to attack, for example by viruses. The
Microsoft Windows NT™ 4.0 software includes a virus guard software, which
is preset to look for known viruses. However, virus strains are developing
continuously, and the virus guard software will not guard against unknown
viruses.

Further, prior art monitoring systems for computer entities focus on
network monitoring functions, where an administrator uses network
management software to monitor performance of a piurality of network
computers. Also, trust in the system does not reside at the level of individual

trust of each hardware unit of computer platform in a system.

Summary of the invention

Specific implementations of the present invention provide a computer
platform having a trusted component which is physically and logically distinct
from a computer platform. The trusted component has the properties of
unforgability, and autonomy from the computer platform with which it is

associated. The trusted component monitors the computer platform and

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

5

thereby may provide a computer platform which is monitored on an individual
basis at a level beneath a network monitoring or system monitoring level.
Where a plurality of computer platforms are networked or included in the
system, each computer platform may be provided with a separate
corresponding respective trusted component.

Specific implementations of the present invention may provide a secure
method of monitoring events occurring on a computer platform, in a manner
which is incorruptible by alien agents present on the computer platform, or by
users of the computer platform, in a manner such that if any corruption of the
event log takes place, this is immediately apparent.

According to a first aspect of the present invention there is provided a
computer entity comprising a computer platform comprising a data processor
and at least one memory device; and a trusted component, said trusted
component comprising a data processor and at least one memory device;
wherein said data processor and said memory of said trusted component are
physically and logically distinct from said data processor and memory of said
computer platform; and means for monitoring a plurality of events occurring on
said computer platform.

Preferably said monitoring means comprises a software agent
operating on said computer platform, for monitoring =t ieast one event
occurring on said computer platform, and reporting said event to said trusted
component. Said software agent may comprise a set of program code
normally resident in said memory device of said trusted component, said code
being transferred into said computer platform for performing monitoring
functions on said computer platform.

Preferably said trusted component comprises an event logging
component for receiving data describing a plurality of events occurring on said
computer platform, and compiling said event data into a secure event data.
Preferably said event logging component comprises means for applying a
chaining function to said event data to produce said secure event data.

Selections of events and entities to be monitored may be selected by a

user by operating a display interface for generating an interactive display

10

15

20

25

30

WO 00/73880 6 PCT/GB00/02004

comprising: means for selecting an entity of said computer platform to be
monitored; and means for selecting at least one event to be monitored.

The monitoring means may further comprise prediction means for
predicting a future value of at least one selected parameter.

Preferably the computer entity further comprises a confirmation key
means connected to said trusted component, and independent of said
computer platform, for confirming to said trusted component an authorisation
signal of a user.

Entities to be monitored may include a data file; an application; or a
driver component.

According to a second aspect of the present invention there is provided
a computer entity comprising a computer platform having a first data
processor and a first memory device; and a trusted monitoring component
comprising a second data processor and a second memory device, wherein
said trusted monitoring component stores an agent program resident in said
second memory area, wherein said agent program is copied to said first
memory area for performing functions on behalf of said trusted component,
under control of said first data processor.

According to a third aspect of the present invention there is provided a
computer entity comprising a computer platform comprising a first data
processor and a first memory device; a trusted monitoring component
comprising a second data processor and a second memory device; a first
computer program resident in said first memory area and operating said first
data processor, said first computer program reporting back events concerning
operation of said computer platform to said trusted monitoring component;
and a second computer program resident in said second memory area of said
trusted component, said second program operating to monitor an integrity of
said first program.

Said computer program may monitor an integrity of said first computer
program by sending to said first computer program a plurality of interrogation
messages, and monitoring a reply to said interrogation messages made by

said first computer program. Preferably said interrogation message is sent in

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

7

a first format, and returned in a second format, wherein said second format is
a secure format.

According to a fourth aspect of the present invention there is provided a
method of monitoring a computer platform comprising a first data processor
and a first memory means, said method comprising the steps of reading event
data describing events occurring on at least one logical or physical entity
comprising said computer platform; securing said event data in a second data
processing means having an associated second memory area, said second
data processing means and said second memory area being physically and
logically distinct from said first data processing means and said first memory
area, such that said secured event data cannot be altered without such
alteration being apparent.

A said event to be monitored may be selected from the set of events:
copying of a data file; saving a data file; renaming a data file; opening a data
file; overwriting a data file; modifying a data file; printing a data file; activating
a driver device; reconfiguring a driver device; writing to a hard disk drive;
reading a hard disk drive; opening an application; closing an application. A
said entity to be monitored may be selected from the set: at least one data file
stored on said computer platform; a driver device of said computer platform;
an application program resident on said computer platform.

The entity may be continuously monitored over a pre-selected time
period, or the entity may be monitored until such time as a pre-selected event
occurs on the entity. The entity may be monitored for a selected event until a
pre-determined time period has elapsed.

The invention includes a method of monitoring a computer platform
comprising a first data processing means and a first memory means, said
method comprising the steps of generating an interactive display for selecting
at least one entity comprising said computer platform; generating a display of
events which can be monitored; generating a display of entities of said
computer platform; selecting at least one said entity; selecting at least one
said event; and monitoring a said entity for a said event.

The invention includes a method of monitoring a computer platform

comprising a first data processing means and first memory means, said

10

15

20

25

30

WO 00/73880 8 PCT/GB00/02004

method comprising the steps of storing a monitoring program in a second
memory area, said second memory area being physically and logically distinct
from said first memory area; transferring said monitoring program from said
second memory area to said first memory area; monitoring at least one entity
of said computer platform from within said computer platform; and reporting
an event data from said monitoring program to said second data processor.

The invention includes a method of monitoring a computer platform
comprising a first data processing and a first memory means, said method
comprising the steps of monitoring at least one entity comprising said
computer platform from within said computer platform; generating an event
data describing a plurality of events occurring on said computer platform;
reporting said event data to a second data processing means having an
associated second memory means; and processing said event data into a
secure format.

Brief Description of the Drawings

For a better understanding of the invention and to show how the same
may be carried into effect, there will now be described by way of example
only, specific embodiments, methods and processes according to the present
invention with reference to the accompanying drawings in which:

Figure 1 is a diagram which illustrates a computer system suitable for
operating in accordance with the preferred embodiment of the present
invention;

Figure 2 is a diagram which illustrates a hardware architecture of a
computer platform suitable for operating in accordance with the preferred
embodiment of the present invention;

Figure 3 is a diagram which illustrates a hardware architecture of a
trusted device suitable for operating in accordance with the preferred
embodiment of the present invention;

Figure 4 is a diagram which illustrates a hardware architecture of a smart
card processing engine suitable for operating in accordance with the preferred
embodiment of the present invention;

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

9

Fig. 5 illustrates schematically a logical architecture of the computer
entity, divided into a monitored user space, resident on the computer platform
and a trusted space resident on the trusted component;

Fig. 6 illustrates schematically components of a monitoring agent which
monitors events occurring on the computer platform and reports back to the
trusted component;

Fig. 7 illustrates schematically logical components of the trusted
component itself;

Fig. 8 illustrates schematically process steps carried out for establishing
a secure communication between the user and the trusted component by way
of a display on a monitor device,

Fig. 9 illustrates schematically process steps for selecting security
monitoring functions using a display monitor;

Fig. 10 illustrates schematically a first dialogue box display generated by
the trusted component;

Fig. 11 illustrates schematically a second dialogue box display used for
entering data by a user,

Fig. 12 illustrates schematically operations carried out by the monitoring
agent and the trusted component for monitoring logical and/or physical entities
such as files, applications or drivers on the computer platform;

Fig. 13 illustrates schematically process steps operated by the agent and
trusted component for continuous monitoring of specified events on the
computer platform;

Fig. 14 illustrates schematically process steps carried out by and
interaction between the monitoring agent and the trusted component for
implementing the agent on the computer platform, and monitoring the
existence and integrity of the agent on the computer platform;

Figure 15 is a flow diagram which illustrates the steps involved in
acquiring an integrity metric of the computing apparatus; and

Figure 16 is a flow diagram which illustrates the steps involved in
establishing communications between a trusted computing platform and a

remote platform including the trusted platform verifying its integrity;

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

10

Figure 17 is a flow diagram which illustrates the process of mutually
authenticating a smart card and a host platform; and

Figure 18 is a diagram which illustrates a functional architecture of a
computer platform including a trusted device adapted to act as a trusted
display processor and a smart card suitable for operating in accordance with

the preferred embodiment of the present invention.

Detailed Description of the Best Mode for Carrying Out the Invention

There will now be described by way of example a best mode
contemplated by the inventors for carrying out the invention, together with
alternative embodiments. in the following description numerous specific
details are set forth in order to provide a thorough understanding of the
present invention. It will be apparent however, to one skilled in the art, that
the present invention may be practiced without limitation to these specific
details. In other instances, well known methods and structures have not been
described in detail so as not to unnecessarily obscure the present invention.

Specific implementations of the present invention comprise a computer
platform having a processing means and a memory means, and a monitoring
component which is physically associated with the computer platform, and
known herein after as a “trusted component” (or "trusted device") which
monitors operation of the computer platform by collecting metrics data from
the computer platform, and which is capable of verifying to other entities
interacting with the computer platform, the correct functioning of the computer
platform. Such a system is described in the applicant's copending
International Patent Application entitled ‘Trusted Computing Platform’, No.
PCT/GB 00/00528, filed on 15 February 2000, the entire contents of which are
incorporated herein by reference. A token device which may be personal to a
human user of computer platform interacts with a trusted component
associated with the computer platform to verify to the human user the
trustworthiness of the computer platform. Appropriate token devices and
systems are described in the applicant's copending International Patent
Application No. PCT/GB 00/00752, entitled ‘Smartcard User Interface for

10

15

20

25

30

WO 00/73880 1 PCT/GB00/02004

Trusted Computing Platform', filed on 3 March 2000, the entire contents of
which are incorporated herein by reference.

A user of a computing entity established a level of trust with the
computer entity by use of such a trusted token device. The trusted token
device is a personal and portable device having a data processing capability
and in which the user has a high level of confidence. The trusted token '
device may perform the functions of:

« verifying a correct operation of a computing platform in a manner which is
readily apparent to the user, for example by audio or visual display;

 challenging a monitoring component to provide evidence of a correct
operation of a computer platform with which the monitoring component is
associated; and

« establishing a level of interaction of the token device with a computing
platform, depending on whether a monitoring component has provided
satisfactory evidence of a correct operation of the computing entity, and
withholding specific interactions with the computer entity if such evidence
of correct operation is not received by the token device.

The token device may be requested to take an action, for example by an
application resident on the computing platform, or by remote épplication, or
alternatively the token device may initiate an action itself.

In this specification, the term "trusted" when used in relation to a
physical or logical component, is used to mean that the physical or logical
component always behaves in an expected manner. The behavior of that
component is predictable and known. Trusted components have a high
degree of resistance to unauthorized modification.

In this specification, the term 'computer entity' is used to describe a
computer platform and a monitoring component.

In this specification, the term "computer platform" is used to refer to at
least one data processor and at least one data storage means, usually but not
essentially with associated communications facilities e.g. a plurality of drivers,
associated applications and data files, and which may be capable of
interacting with external entities e.g. a user or another computer platform, for

example by means of connection to the internet, connection to an external

10

15

20

25

30

WO 00/73880 12 PCT/GB00/02004

network, or by having an input port capable of receiving data stored on a data
storage medium, e.g. a CD ROM, floppy disk, ribbon tape or the like. The
term "computer platform" encompasses the main data processing and storage
facility of a computer entity.

The term ‘pixmap’, as used herein, is used broadly to encompass data
defining either monochrome or colour (or greyscale) images. Whereas the
term ‘bitmap’ may be associated with a monochrome image only, for example
where a single bit is set to one or zero depending on whether a pixel is ‘on’ or
‘off, ‘pixmap’ is a more general term, which encompasses both monochrome
and colour images, where colour images may require up to 24 bits or more to
define the hue, saturation and intensity of a single pixel.

By use of a trusted component in each computing entity, there is
enabled a level of trust between different computing platforms. It is possible
to query such a platform about its state, and to compare it to a trusted state,
either remotely, or through a monitor on the computer entity. The information
gathered by such a query is provided by the computing entity's trusted
component which monitors the various parameters of the platform.
Information provided by the trusted component can be authenticated by
cryptographic authentication, and can be trusted.

The presence of the trusted component makes it possible for a piece of
third party software, either remote or local to the computing entity to
communicate with the computing entity in order to obtain proof of its
authenticity and identity and to retrieve measured integrity metrics of that
computing entity. The third party software can then compare the metrics
obtained from the trusted component against expected metrics in order to
determine whether a state of the queried computing entity is appropriate for
the interactions which the third party software item seeks to make with the
computing entity, for example commercial transaction processes.

This type of integrity verification between computing entities works well
in the context of third party software communicating with a computing entity's
trusted component, but does not provide a means for a human user to gain a

level of trustworthy interaction with his or her computing entity, or any other

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

13

computing entity which that person may interact with by means of a user
interface.

in a preferred implementation described herein, a trusted token device is
used by a user to interrogate a computing entity's trusted component and to
report to the user on the state of the computing entity, as verified by the
trusted component.

A "trusted platform" used in preferred embodiments of the invention will
now be described. This is achieved by the incorporation into a computing
platform of a physical trusted device whose function is to bind the identity of
the platform to reliably measured data that provides an integrity metric of the
platform. The identity and the integrity metric are compared with expected
values provided by a trusted party (TP) that is prepared to vouch for the
trustworthiness of the platform. If there is a match, the implication is that at
least part of the platform is operating correctly, depending on the scope of the
integrity metric.

A user verifies the correct operation of the platform before exchanging
other data with the platform. A user does this by requesting the trusted device
to provide its identity and an integrity metric. (Optionally the trusted device
will refuse to provide evidence of identity if it itself was unable to verify correct
operation of the platform.) The user receives the procf of identity and the
identity metric, and compares them against values which it believes to be true.
Those proper values are provided by the TP or another entity that is trusted by
the user. If data reported by the trusted device is the same as that provided
by the TP, the user trusts the platform. This is because the user trusts the
entity. The entity trusts the platform because it has previously validated the
identity and determined the proper integrity metric of the platform.

Once a user has established trusted operation of the platform, he
exchanges other data with the platform. For a local user, the exchange might
be by interacting with some software application running on the platform. For
a remote user, the exchange might involve a secure transaction. In either
case, the data exchanged is ‘signed’ by the trusted device. The user can then
have greater confidence that data is being exchanged with a platform whose

behaviour can be trusted.

10

15

20

25

30

WO 00/73880 14 PCT/GB00/02004

The trusted device uses cryptographic processes but does not
necessarily provide an external interface to those cryptographic processes.
Also, a most desirable implementation would be to make the trusted device
tamperproof, to protect secrets by making them inaccessible to other platform
functions and provide an environment that is substantially immune to
unauthorised modification. Since tamper-proofing is impossible, the best
approximation is a trusted device that is tamper-resistant, or tamper-detecting.
The trusted device, therefore, preferably consists of one physical component
that is tamper-resistant.

Techniques relevant to tamper-resistance are well known to those
skilled in the art of security. These techniques include methods for resisting
tampering (such as appropriate encapsulation of the trusted device), methods
for detecting tampering (such as detection of out of specification voltages, X-
rays, or loss of physical integrity in the trusted device casing), and methods
for eliminating data when tampering is detected. Further discussion of
appropriate techniques can be found at
http://www.cl.cam.ac.uk/~mgk25/tamper.html. It will be appreciated that,
although tamper-proofing is a most desirable feature of the present invention,
it does not enter into the normal operation of the invention and, as such, is
beyond the scope of the present invention and will not be described in any
detail herein.

The trusted device is preferably a physical one because it must be
difficult to forge. It is most preferably tamper-resistant because it must be
hard to counterfeit. It typically has an engine capable of using cryptographic
processes because it is required to prove identity, both locally and at a
distance, and it contains at least one method of measuring some integrity
metric of the platform with which it is associated.

Figure 1 illustrates a host computer system according to the preferred
embodiment, in which the host computer is a Personal Computer, or PC,
which operates under the Windows NT™ operating system. According to
Figure 1, the computer platform (also here termed host computer) 100 is
connected to a visual display unit (VDU) 105, a keyboard 110, a mouse 115
and a smartcard reader 120, and a local area network (LAN) 125, which in

10

15

20

25

30

WO 00/73880 15 PCT/GB00/02004

turn is connected to the Internet 130. Herein, the smartcard reader is an
independent unit, although it may be an integral part of the keyboard. In
addition, the host computer has a trusted input device, in this case a trusted
switch 135, which is integrated into the keyboard. The VDU, keyboard,
mouse, and trusted switch can be thought of as the human/computer interface
(HCI) of the host computer. More specifically, the trusted switch and the
display, when operating under trusted control, as will be described, can be
thought of as a ‘trusted user interface’. Figure 1 also illustrates a smartcard
122 for use in the present embodiment as will be described.

Figure 2 shows a hardware architecture of the host computer of Figure

According to Figure 2, the host computer 100 comprises a central
processing unit (CPU) 200, or main processor, connected to main memory,
which comprises RAM 205 and ROM 210, and to a BIOS memory 219 (which
may be a reserved area of main memory) all of which are mounted on a
motherboard 215 of the host computer 100. The CPU in this case is a
Pentium™ processor. The CPU is connected via a PCI (Peripheral
Component Interconnect) bridge 220 to a PCI bus 225, to which are attached
the other main components of the host computer 100. The bus 225
comprises appropriate control, address and data portions, which will not be
described in detail herein. For a detailed description of Pentium processors
and PCI architectures, which is beyond the scope of the present description,
the reader is referred to the book, “The Indispensable PC Hardware
Handbook”, 3rd Edition, by Hans-Peter Messmer, published by Addison-
Wesley, ISBN 0-201-40399-4. Of course, the present embodiment is in no
way limited to implementation using Pentium processors, Windows ™
operating systems or PCl| buses.

The other main components of the host computer 100 attached to the
PCl bus 225 include: a SCSI (small computer system interface) adaptor
connected via a SCSI bus 235 to a hard disk drive 240 and a CD-ROM drive
245; a LAN (local area network) adaptor 250 for connecting the host computer
100 to a LAN 125, via which the host computer 100 can communicate with

other host computers (not shown), such as file servers, print servers or email

10

15

20

25

30

WO 00/73880 16 PCT/GB00/02004

servers, and the Internet 130; an 10 (input/output) device 225, for attaching
the keyboard 110, mouse 115 and smartcard reader 120; and a trusted device
260. The trusted device handles all standard display functions plus a number
of further tasks, which will be described in detail below. ‘Standard display
functions’ are those functions that one would normaily expect to find in any
standard host computer 100, for example a PC operating under the Windows
NT™ operating system, for displaying an image associated with the operating
system or application software. The significance of providing the function of a
'trusted display processor' in the trusted device 260 will be described further
below. It should be noted that the keyboard 110 has a connection to the 10
device 255, as well as a direct connection to the trusted device 260.

All the main components, in particular the trusted display processor
260, are preferably also integrated onto the motherboard 215 of the host
computer 100, although, sometimes, LAN adapters 250 and SCSI adapters
230 can be of the plugin type.

The computer entity can be considered to have a logical, as well as a
physical, architecture. The logical architecture has a same basic division
between the computer platform, and the trusted component, as is present with
the physical architecture described in Figs. 1 and 2 herein. That is to say, the
trusted component is logically distinct from the computer platform to which it is
physically related. The computer entity comprises a user space being a
logical space which is physically resident on the computer platform (the first
processor and first data storage means) and a trusted component space
being a logical space which is physically resident on the trusted component. In
the user space are one or a plurality of drivers, one or a plurality of
applications programs, a file storage area; smart card reader, smart card
interface; and a software agent which can perform operations in the user
space and report back to trusted component. The trusted component space is
a logical area based upon and physically resident in the trusted component,
supported by the second data processor and second memory area of the
trusted component. Monitor 105 receives images directly from the trusted
component space. External to the computer entity are external

communications networks e.g. the Internet, and various local area networks,

10

15

20

25

30

WO 00/73880 17 PCT/GB00/02004

wide area networks which are connected to the user space via the drivers
(which may include one or more modem ports). An external user smart card
inputs into smart card reader in the user space.

Typically, in a personal computer the BIOS program is located in a
special reserved memory area, the upper 64K of the first megabyte do the
system memory (addresses F@@@h to FFFFh), and the main processor is
arranged to look at this memory location first, in accordance with an industry
wide standard.

The significant difference between the platform and a conventional
platform is that, after reset, the main processor is initially controlled by the
trusted device, which then hands control over to the platform-specific BIOS
program, which in turn initialises all input/output devices as normal. After the
BIOS program has executed, control is handed over as normal by the BIOS
program to an operating system program, such as Windows NT (TM), which is
typically loaded into main memory from a hard disk drive (not shown).

Clearly, this change from the normal procedure requires a modification
to the implementation of the industry standard, whereby the main processor
200 is directed to address the trusted device 260 to receive its first
instructions. This change may be made simply by hard-coding a different
address into the main processor 200. Alternatively, the trusted device 260
may be assigned the standard BIOS program address, in which case there is
no need to modify the main processor configuration.

It is highly desirable for the BIOS boot block to be contained within the
trusted device 260. This prevents subversion of the obtaining of the integrity
metric (which could otherwise occur if rogue software processes are present)
and prevents rogue software processes creating a situation in which the BIOS
(even if correct) fails to build the proper environment for the operating system.

Although, in the preferred embodiment to be described, the trusted
device 260 is a single, discrete component, it is envisaged that the functions
of the trusted device 260 may alternatively be split into multiple devices on the
motherboard, or even integrated into one or more of the existing standard
devices of the platform. For example, it is feasible to integrate one or more of
the functions of the trusted device into the main processor itself, provided that

10

15

20

25

30

WO 00/73880 18 PCT/GB00/02004

the functions and their communications cannot be subverted. This, however,
would probably require separate leads on the processor for sole use by the
trusted functions. Additionally or alternatively, although in the present
embodiment the trusted device is a hardware device that is adapted for
integration into the motherboard 215, it is anticipated that a trusted device
may be implemented as a ‘removable’ device, such as a dongle, which could
be attached to a platform when required. Whether the trusted device is
integrated or removable is a matter of design choice. However, where the
trusted device is separable, a mechanism for providing a logical binding
between the trusted device and the platform should be present.

After system reset, the trusted device 260 performs a secure boot
process to ensure that the operating system of the platform 100 (including the
system clock and the display on the monitor) is running properly and in a
secure manner. During the secure boot process, the trusted device 260
acquires an integrity metric of the computing platorm 100. The trusted
device 260 can also perform secure data transfer and, for example,
authentication between it and a smart card via encryption/decryption and
signature/verification. The trusted device 260 can also securely enforce
various security control policies, such as locking of the user interface.

According to Figure 3, the trusted device 260 comprises:

a microcontroller 300, programmed to control the overall operation of
the trusted device 260 and to interact with the other elements of the trusted
device 260 and other devices on the motherboard 215;

non-volatile memory 305, for example flash memory, containing
respective control program instructions (i.e. firmware) for controlling the
operation of the microcontroller 300 (alternatively, the trusted device 260
could be embodied in an ASIC, which would typically provide greater
performance and cost efficiency in mass production, but would generally be
more expensive to develop and less flexible) - functions contained in such
control program instructions include a measurement function for acquiring an
integrity metric for the platform 100 and an authentication function for
authenticating smart card 122;

10

15

20

25

30

WO 00/73880 19 PCT/GB00/02004

an interface 310 for connecting the trusted device 260 to the PCl bus
for receiving image data (i.e. graphics primitives) from the CPU 200 and also
authentication data such as trusted image data from the smartcard 122, as will
be described;

frame buffer memory 315, which comprises sufficient VRAM (video
RAM) in which to store at least one full image frame (a typical frame buffer
memory 315 is 1-2 Mbytes in size, for screen resolutions of 1280x768
supporting up to 16.7 million colours);

a video DAC (digital to analogue converter) 320 for converting pixmap
data into analogue signals for driving the (analogue) VDU 105, which
connects to the video DAC 320 via a video interface 325;

an interface 330 for receiving signals directly from the trusted switch
135;

volatile memory 335, for example DRAM (dynamic RAM) or more
expensive SRAM (static RAM), for storing state information, particularly
received cryptographic keys, and for providing a work area for the
microcontroller 300;

a cryptographic processor 340, comprising hardware cryptographic
accelerators and/or software, arranged to provide the trusted device 260 with
a cryptographic identity and to provide authenticity, integrity and
confidentiality, guard against replay attacks, make digital signatures, and use
digital certificates, as will be described in more detail below; and

non-volatile memory 345, for example flash memory, for storing an
identifier Ipp of the trusted device 260 (for example a simple text string name),
a private key Spp of the trusted device 260, a certificate Certpe signed and
provided by a trusted third party certification agency, such as VeriSign Inc.,
which binds the trusted device 260 with a signature public-private key pair and
a confidentiality public-private key pair and includes the corresponding public
keys of the trusted device 260.

A certificate typically contains such information, but not the public key
of the CA. That public key is typically made available using a ‘Public Key
Infrastructure’ (PKI). Operation of a PKI is well known to those skilled in the

art of security.

10

15

20

25

30

WO 00/73880 20 PCT/GB00/02004

The certificate Certpp is used to supply the public key of the trusted
device 260 to third parties in such a way that third parties are confident of the
source of the public key and that the public key is a part of a valid public-
private key pair. As such, it is unnecessary for a third party to have prior
knowledge of, or to need to acquire, the public key of the trusted device 260.

The trusted device 260 lends its identity and trusted processes to the
host computer and the trusted display processor has those properties by
virtue of its tamper-resistance, resistance to forgery, and resistance to
counterfeiting. Only selected entities with appropriate authentication
mechanisms are able to influence the processes running inside the trusted
device 260. Neither an ordinary user of the host computer, nor any ordinary
user or any ordinary entity connected via a network to the host computer may
access or interfere with the processes running inside the trusted device 260.
The trusted device 260 has the property of being “inviolate”.

The trusted device 260 is equipped with at least one method of reliably
measuring or acquiring the integrity metric of the computing platform 100 with
which it is associated. In the present embodiment, the integrity metric is
acquired by the measurement function by generating a digest of the BIOS
instructions in the BIOS memory. Such an acquired integrity metric, if verified
as described above, gives a potential user of the platform 100 a high level of
confidence that the platform 100 has not been subverted at a hardware, or
BIOS program, level. Other known processes, for example virus checkers,
will typically be in place to check that the operating system and application
program code has not been subverted.

The measurement function has access to: non-volatile memory 345 for
storing a hash program 354 and the private key Spp of the trusted device 260,
and volatile memory 335 for storing acquired integrity metric in the form of a
digest 361.

In one preferred implementation, as well as the digest, the integrity
metric includes a Boolean value, which is stored in volatile memory 335 by the
measurement function, for reasons that will become apparent.

A preferred process for acquiring an integrity metric will now be
described with reference to Figure 15.

10

15

20

25

30

WO 00/73880 21 PCT/GB00/02004

In step 2400, at switch-on, the measurement function monitors the
activity of the main processor 200 to determine whether the trusted device
260 is the first memory accessed. Under conventional operation, a main
processor would first be directed to the BIOS memory first in order to execute
the BIOS program. However, in accordance with the present embodiment, the
main processor 200 is directed to the trusted device 260, which acts as a
memory. In step 2405, if the trusted device 260 is the first memory accessed,
in step 2410, the measurement function writes to volatile memory 335 a
Boolean value which indicates that the trusted device 260 was the first
memory accessed. Otherwise, in step 2415, the measurement function writes
a Boolean value which indicates that the trusted device 260 was not the first
memory accessed.

In the event the trusted device 260 is not the first accessed, there is of
course a chance that the trusted device 260 will not be accessed at all. This
would be the case, for example, if the main processor 200 were manipulated
to run the BIOS program first. Under these circumstances, the platform would
operate, but would be unable to verify its integrity on demand, since the
integrity metric would not be available. Further, if the trusted device 260 were
accessed after the BIOS program had been accessed, the Boolean value
would clearly indicate lack of integrity of the platform.

In step 2420, when (or if) accessed as a memory by the main
processor 200, the main processor 200 reads the stored native hash
instructions 354 from the measurement function in step 2425. The hash
instructions 354 are passed for processing by the main processor 200 over
the data bus 225. In step 2430, main processor 200 executes the hash
instructions 354 and uses them, in step 2435, to compute a digest of the BIOS
memory 219, by reading the contents of the BIOS memory 219 and
processing those contents according to the hash program. In step 2440, the
main processor 200 writes the computed digest 361 to the appropriate non-
volatile memory location 335 in the trusted device 260. The measurement
function, in step 2445, then calls the BIOS program in the BIOS memory 219,

and execution continues in a conventional manner.

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

22

Clearly, there are a number of different ways in which the integrity
metric may be calculated, depending upon the scope of the trust required.
The measurement of the BIOS program’s integrity provides a fundamental
check on the integrity of a platform’s underlying processing environment. The
integrity metric should be of such a form that it will enable reasoning about the
validity of the boot process - the value of the integrity metric can be used to
verify whether the platform booted using the correct BIOS. Optionally,
individual functional blocks within the BIOS could have their own digest
values, with an ensemble BIOS digest being a digest of these individual
digests. This enables a policy to state which parts of BIOS operation are
critical for an intended purpose, and which are irrelevant (in which case the
individual digests must be stored in such a manner that validity of operation
under the policy can be established).

Other integrity checks could involve establishing that various other
devices, components or apparatus attached to the platform are present and in
correct working order. In one example, the BIOS programs associated with a
SCSI controller could be verified to ensure communications with peripheral
equipment could be trusted. In another example, the integrity of other
devices, for example memory devices or co-processors, on the platform could
be verified by enacting fixed challenge/response interactions to ensure
consistent results. Where the trusted device 260 is a separable component,
some such form of interaction is desirable to provide an appropriate logical
binding between the trusted device 260 and the platform. Also, aithough in
the present embodiment the trusted device 260 utilises the data bus as its
main means of communication with other parts of the platform, it would be
feasible, although not so convenient, to provide alternative communications
paths, such as hard-wired paths or optical paths. Further, although in the
present embodiment the trusted device 260 instructs the main processor 200
to calculate the integrity metric in other embodiments, the trusted device itself
is arranged to measure one or more integrity metrics.

Preferably, the BIOS boot process includes mechanisms to verify the
integrity of the boot process itself. Such mechanisms are already known from,

for example, Intel's draft “Wired for Management baseline specification v 2.0 -

10

15

20

25

30

WO 00/73880 23 PCT/GB00/02004

BOOT Integrity Service”, and involve calculating digests of software or
firmware before loading that software or firmware. Such a computed digest is
compared with a value stored in a certificate provided by a trusted entity,
whose public key is known to the BIOS. The software/firmware is then loaded
only if the computed value matches the expected value from the certificate,
and the certificate has been proven valid by use of the trusted entity's public
key. Otherwise, an appropriate exception handling routine is invoked.

Optionally, after receiving the computed BIOS digest, the trusted device
260 may inspect the proper value of the BIOS digest in the certificate and not
pass control to the BIOS if the computed digest does not match the proper
value. Additionally, or alternatively, the trusted device 260 may inspect the
Boolean value and not pass control back to the BIOS if the trusted device 260
was not the first memory accessed. In either of these cases, an appropriate
exception handling routine may be invoked.

Figure 16 illustrates the flow of actions by a TP, the trusted device 260
incorporated into a platform, and a user (of a remote platform) who wants to
verify the integrity of the trusted platform. It will be appreciated that
substantially the same steps as are depicted in Figure 16 are involved when
the user is a local user. In either case, the user would typically rely on some
form of software application to enact the verification. It would be possible to
run the software application on the remote platform or the trusted platform.
However, there is a chance that, even on the remote platform, the software
application could be subverted in some way. Therefore, it is preferred that, for
a high level of integrity, the software application would reside on a smart card
of the user, who would insert the smart card into an appropriate reader for the
purposes of verification. The present preferred embodiments employ such an
arrangement.

At the first instance, a TP, which vouches for trusted platforms, will
inspect the type of the platform to decide whether to vouch for it or not. This
will be a matter of policy. If all is well, in step 2500, the TP measures the
value of integrity metric of the platform. Then, the TP generates a certificate,
in step 2505, for the platform. The certificate is generated by the TP by

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

24

appending the trusted device's public key, and optionally its ID label, to the
measured integrity metric, and signing the string with the TP’s private key.

The trusted device 260 can subsequently prove its identity by using its
private key to process some input data received from the user and produce
output data, such that the input/output pair is statistically impossible to
produce without knowledge of the private key. Hence, knowledge of the
private key forms the basis of identity in this case. Clearly, it would be
feasible to use symmetric encryption to form the basis of identity. However,
the disadvantage of using symmetric encryption is that the user would need to
share his secret with the trusted device. Further, as a resuit of the need to
share the secret with the user, while symmetric encryption would in principle
be sufficient to prove identity to the user, it would insufficient to prove identity
to a third party, who could not be entirely sure the verification originated from
the trusted device or the user.

In step 2510, the trusted device 260 is initialised by writing the
certificate Certpp into the appropriate non-volatile memory locations of the
trusted device 260. This is done, preferably, by secure communication with
the trusted device 24 after it is installed in the motherboard 215. The method
of writing the certificate to the trusted device 260 is analogous to the method
used to initialise smart cards by writing private keys thereto. The secure
communications is supported by a ‘master key’, known only to the TP, that is
written to the trusted device (or smart card) during manufacture, and used to
enable the writing of data to the trusted device 260; writing of data to the
trusted device 260 without knowledge of the master key is not possible.

At some later point during operation of the platform, for example when
it is switched on or reset, in step 2515, the trusted device 260 acquires and
stores the integrity metric 361 of the platform.

When a user wishes to communicate with the platform, in step 2520, he
creates a nonce, such as a random number, and, in step 2525, challenges the
trusted device 260 (the operating system of the platform, or an appropriate
software application, is arranged to recognise the challenge and pass it to the
trusted device 260, typically via a BIOS-type call, in an appropriate fashion).
The nonce is used to protect the user from deception caused by replay of old

10

15

20

25

30

WO 00/73880 25 PCT/GB00/02004

but genuine signatures (called a ‘replay attack’) by untrustworthy platforms.
The process of providing a nonce and verifying the response is an example of
the well-known ‘challenge/response’ process.

In step 2530, the trusted device 260 receives the challenge and creates
an appropriate response. This may be a digest of the measured integrity
metric and the nonce, and optionally its ID label. Then, in step 2535, the
trusted device 260 signs the digest, using its private key, and retumns the
signed digest, accompanied by the certificate Certpp, to the user.

In step 2540, the user receives the challenge response and verifies the
certificate using the well known public key of the TP. The user then, in step
2550, extracts the trusted device’s 260 public key from the certificate and
uses it to decrypt the signed digest from the challenge response. Then, in
step 2560, the user verifies the nonce inside the challenge response. Next, in
step 2570, the user compares the computed integrity metric, which it extracts
from the challenge response, with the proper platform integrity metric, which it
extracts from the certificate. If any of the foregoing verification steps fails, in
steps 2545, 2555, 2565 or 2575, the whole process ends in step 2580 with no
further communications taking place.

Assuming all is well, in steps 2585 and 2590, the user and the trusted
platform use other protocols to set up secure communications for other data,
where the data from the platform is preferably signed by the trusted device
260.

Further refinements of this verification process are possible. It is
desirable that the challenger becomes aware, through the challenge, both of
the value of the platform integrity metric and also of the method by which it
was obtained. Both these pieces of information are desirable to allow the
challenger to make a proper decision about the integrity of the platform. The
challenger also has many different options available - it may accept that the
integrity metric is recognised as valid in the trusted device 260, or may
alternatively only accept that the platform has the relevant level of integrity if
the value of the integrity metric is equal to a value held by the challenger (or
may hold there to be different levels of trust in these two cases).

10

15

20

25

30

WO 00/73880 26 PCT/GB00/02004

The techniques of signing, using certificates, and challenge/response,
and using them to prove identity, are well known to those skilled in the art of
security and therefore need not be described in any more detail herein.

The user's smart card 122 is a token device, separate from the
computing entity, which interacts with the computing entity via the smart card
reader port 120. A user may have several different smart cards issued by
several different vendors or service providers, and may gain access to the
internet or a plurality of network computers from any one of a plurality of
computing entities as described herein, which are provided with a trusted
component and smart card reader. A user's trust in the individual computing
entity to which s/he is using is derived from the interaction between the user's
trusted smart card token and the trusted component of the computing entity.
The user relies on their trusted smart card token to verify the trustworthiness
of the trusted component.

The processing engine of a smartcard suitable for use in accordance
with the preferred embodiment is illustrated in Figure 4. The processing
engine comprises a processor 400 for enacting standard encryption and
decryption functions, and for simple challenge/response operations for
authentication of the smart card 122 and verification of the platform 100, as
will be discussed below. In the present embodiment, the processor 400 is an
8-bit microcontroller, which has a built-in operating system and is arranged to
communicate with the outside world via asynchronous protocols specified
through ISO 7816-3, 4, T=0, T=1 and T=14 standards. The smartcard also
comprises non-volatile memory 420, for example flash memory, containing an
identifier |sc of the smartcard 122, a private key Ssc, used for digitally signing
data, and a certificate Certsc, provided by a trusted third party certification
agency, which binds the smartcard with public-private key pairs and includes
the corresponding public keys of the smartcard 122 (the same in nature to the
certificate Certpp of the trusted display processor 260). Further, the smartcard
contains ‘seal’ data SEAL in the non-volatile memory 420, the significance of
which will be discussed further below.

A preferred process for authentication between a user smart card 122

and a platform 100 will now be described with reference to the flow diagram in

10

15

20

25

30

WO 00/73880 27 PCT/GB00/02004

Figure 17. As will be described, the process conveniently implements a
challenge/response routine. There exist many available challenge/response
mechanisms. The implementation of an authentication protocol used in the
present embodiment is mutual (or 3-step) authentication, as described in
ISO/IEC 9798-3. Of course, there is no reason why other authentication
procedures cannot be used, for example 2-step or 4-step, as also described in
ISO/IEC 9798-3.

initially, the user inserts their user smart card 122 into the smart card
reader 120 of the platform 100 in step 2700. Beforehand, the platform 100 will
typically be operating under the control of its standard operating system and
executing the authentication process, which waits for a user to insert their
user smart card 122. Apart from the smart card reader 120 being active in this
way, the platform 100 is typically rendered inaccessible to users by ‘locking’
the user interface (i.e. the screen, keyboard and mouse).

When the user smart card 122 is inserted into the smart card reader
120, the trusted device 260 is triggered to aftempt mutual authentication in
step by generating and transmitting a nonce A to the user smart card 122 in
step 2705. A nonce, such as a random number, is used to protect the
originator from deception caused by replay of old but genuine responses
(called a ‘replay attack’) by untrustworthy third parties.

In response, in step 2710, the user smart card 122 generates and
returns a response comprising the concatenation of: the plain text of the
nonce A, a new nonce B generated by the user smart card 122, the ID of the
trusted device 260 and some redundancy; the signature of the plain text,
generated by signing the plain text with the private key of the user smart card
122; and a certificate containing the ID and the public key of the user smart
card 122.

The trusted device 260 authenticates the response by using the public
key in the certificate to verify the signature of the plain text in step 2715. If the
response is not authentic, the process ends in step 2720. If the response is
authentic, in step 2725 the trusted device 260 generates and sends a further
response including the concatenation of: the plain text of the nonce A, the

nonce B, the ID of the user smart card 122 and the acquired integrity metric;

10

15

20

25

30

WO 00/73880 28 PCT/GB00/02004

the signature of the plain text, generated by signing the plain text using the
private key of the trusted device 260; and the certificate comprising the public
key of the trusted device 260 and the authentic integrity metric, both signed by
the private key of the TP.

The user smart card 122 authenticates this response by using the
public key of the TP and comparing the acquired integrity metric with the
authentic integrity metric, where a match indicates successful verification, in
step 2730. If the further response is not authentic, the process ends in step
2735.

If the procedure is successful, both the trusted device 260 has
authenticated the user smart card 122 and the user smart card 122 has
verified the integrity of the trusted platform 100 and, in step 2740, the
authentication process executes the secure process for the user. Then, the
authentication process sets an interval timer in step 2745. Thereafter, using
appropriate operating system interrupt routines, the authentication process
services the interval timer periodically to detect when the timer meets or
exceeds a pre-determined timeout period in step 2750.

Clearly, the authentication process and the interval timer run in parallel
with the secure process.

When the timeout period is met or exceeded, the authentication process
triggers the trusted device 260 to re-authenticate the user smart card 122, by
transmitting a challenge for the user smart card 122 to identify itself in step
2760. The user smart card 122 returns a certificate including its ID and its
public key in step 2765. In step 2770, if there is no response (for example, as
a result of the user smart card 122 having been removed) or the certificate is
no longer valid for some reason (for example, the user smart card has been
replaced with a different smart card), the session is terminated by the trusted
device 260 in step 2775. Otherwise, in step 2770, the process from step 2745
repeats by resetting the interval timer.

In this preferred implementation, the monitor 105 is driven directly by a
monitor subsystem contained within the trusted component itself. In this
embodiment, in the trusted component space are resident the trusted
component itself, and displays generated by the trusted component on

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

29

monitor 105. This arrangement is described further in the applicant's
copending European Patent Application No. 99304164.9, entitled "System for
Digitally Signing a Document" and filed on 28 May 1999 (and any patent
applications claiming priority therefrom, including an International Patent
Application of even date to the present application), which is incorporated by
reference herein.

As will become apparent, use of this form of trusted device provides a
secure user interface in particular by control of at least some of the display
functionality of the host computer. More particularly, the trusted device (for
these purposes termed a trusted display processor) or a device with similar
properties is associated with video data at a stage in the video processing
beyond the point where data can be manipulated by standard host computer
software. This allows the trusted display processor to display data on a
display surface without interference or subversion by the host computer
software. Thus, the trusted display processor can be certain what image is
currently being displayed to the user. This is used to unambiguously identify
the image (pixmap) that a user is signing. A side-effect of this is that the
trusted display processor may reliably display any of its data on the display
surface, including, for example, the integrity metrics of the prior patent
application, or user status messages or prompts.

The elements and functionality of a "trusted display" in which the trusted
device is a trusted display processor will now be described further with
reference to Figures 3 and 4.

It will be apparent from Figure 3 that the frame buffer memory 315 is
only accessible by the trusted display processor 260 itself, and not by the
CPU 200. This is an important feature of the preferred embodiment, since it is
imperative that the CPU 200, or, more importantly, subversive application
programs or viruses, cannot modify the pixmap during a trusted operation. Of
course, it would be feasible to provide the same level of security even if the
CPU 200 could directly access the frame buffer memory 315, as long as the
trusted display processor 260 were arranged to have ultimate control over
when the CPU 200 could access the frame buffer memory 315. Obviously,
this latter scheme would be more difficult to implement.

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

30

A typical process by which graphics primitives are generated by a host
computer 100 will now be described by way of background. Initially, an
application program, which wishes to display a particular image, makes an
appropriate call, via a graphical API (application programming interface), to
the operating system. An API typically provides a standard interface for an
application program to access specific underlying display functions, such as
provided by Windows NT™, for the purposes of displaying an image. The API
call causes the operating system to make respective graphics driver library
routine calls, which result in the generation of graphics primitives specific to a
display processor, which in this case is the trusted display processor 260.
These graphics primitives are finally passed by the CPU 200 to the trusted
display processor 260. Example graphics primitives might be ‘draw a line
from point x to point y with thickness z' or ‘fill an area bounded by points w, X,
y and z with a colour a’.

The control program of the microcontrolier 300 controls the
microcontroller to provide the standard display functions to process the
received graphics primitives, specifically:

receiving from the CPU 200 and processing graphics primitives to form
pixmap data which is directly representative of an image to be displayed on
the VDU 105 screen, where the pixmap data génerally includes intensity
values for each of the red, green and blue dots of each addressable pixel on
the VDU 105 screen;

storing the pixmap data into the frame buffer memory 315; and

periodically, for example sixty times a second, reading the pixmap data
from the frame buffer memory 315, converting the data into analogue signals
using the video DAC and transmitting the analogue signals to the VDU 105 to
display the required image on the screen.

Apart from the standard display functions, the control program includes
a function to mix display image data deceived from the CPU 200 with trusted
image data to form a single pixmap. The control program also manages
interaction with the cryptographic processor and the trusted switch 135.

The trusted display processor 260 forms a part of the overall “display
system’ of the host computer 100; the other parts typically being display

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

31

functions of the operating system, which can be ‘called’ by application
programs and which access the standard display functions of the graphics
processor, and the VDU 105. In other words, the ‘display system’ of a host
computer 100 comprises every piece of hardware or functionality which is
concerned with displaying an image.

As already mentioned, the trusted display of this embodiment relies on
interaction between the trusted display processor and the user smartcard 122.
Particularly significant is the 'seal' data SEAL in the non-volatile memory 420,
which can be represented graphically by the trusted display processor 260 to
indicate to the user that a process is operating securely with the user's
smartcard, as will be described in detail below. In the present embodiment,
the seal data SEAL is in the form of an image pixmap, which was originaily
selected by the user as a unique identifier, for example an image of the user
himself, and loaded into the smartcard 122 using well-known techniques. The
processor 400 also has access to volatile memory 430, for example RAM, for
storing state information (such as received keys) and providing a working area
for the processor 400, and an interface 440, for example electrical contacts,
for communicating with a smart card reader.

Seal images can consume relatively large amounts of memory if stored
as pixmaps. This may be a distinct disadvantage in circumstances where the
image needs to be stored on a smartcard 122, where memory capacity is
relatively limited. The memory requirement may be reduced by a number of
different techniques. For example, the seal image could comprise: a
compressed image, which can be decompressed by the trusted display
processor 260; a thumb-nail image that forms the primitive element of a
repeating mosaic generated by the trusted display processor 260; a naturally
compressed image, such as a set of alphanumeric characters, which can be
displayed by the trusted display processor 260 as a single large image, or
used as a thumb-nail image as above. In any of these alternatives, the seal
data itself may be in encrypted form and require the trusted display processor
260 to decrypt the data before it can be displayed. Alternatively, the seal data
may be an encrypted index, which identifies one of a number of possible

images stored by the host computer 100 or a network server. In this case, the

10

15

20

25

30

WO 00/73880 32 PCT/GB00/02004

index would be fetched by the trusted display processor 260 across a secure
channel and decrypted in order to retrieve and display the correct image.
Further, the seal data could comprise instructions (for example PostScript™
instructions) that could be interpreted by an appropriately programmed trusted
display processor 260 to generate an image.

Figure 18 shows the logical relationship between the functions of the
host computer 100, the trusted display processor 260 and the smartcard 122,
in the context of enacting a trusted signing operation. Apart from logical
separation into host computer 100, trusted display processor 260 or smartcard
122 functions, the functions are represented independently of the physical
architecture, in order to provide a clear representation of the processes which
take part in a trusted signing operation. In addition, the ‘standard display
functions’ are partitioned from the trusted functions by a line x-y, where
functions to the left of the line are specifically trusted functions. In the
diagram, functions are represented in ovals, and the ‘permanent’ data
(including the document image for the duration of the signing process), on
which the functions act, are shown in boxes. Dynamic data, such as state
data or received cryptographic keys are not illustrated, purely for reasons of
clarity. Arrows between ovals and between ovals and boxes represent
respective logical communications paths.

In accordance with Figure 18, the host computer 100 includes: an
application process 3500, for example a wordprocessor process, which
requests the signing of a document; document data 3505; an operating
system process 3510; an APl 3511 process for receiving display calls from the
application process 3500; a keyboard process 3513 for providing input from
the keyboard 110 to the application process 3500; a mouse process 3514 for
providing input from the mouse 115 to the application process 3500; and a
graphics primitives process 3515 for generating graphics primitives on the
basis of calls received from the application process via the APl 3511 process.
The API process 3511, the keyboard process 3513, the mouse process 3514
and the graphics primitives process 3515 are build on top of the operating
system process 3510 and communicate with the application process via the

operating system process 3510.

10

15

20

25

30

WO 00/73880 33 PCT/GB00/02004

The remaining functions of the host computer 100 are those provided
by the trusted display processor 260. These functions are: a control process
3520 for co-ordinating all the operations of the trusted display processor 260,
and for receiving graphics primitives from the graphics primitives process and
signature requests from the application process 3500; a summary process
3522 for generating a signed summary representative of a document signing
procedure in response to a request from the control process 3520; a signature
request process 3523 for acquiring a digital signature of the pixmap from the
smartcard 122; a seal process 3524 for retrieving seal data 3540 from the
smartcard 122: a smartcard process 525 for interacting with the smartcard
122 in order to enact challenge/response and data signing tasks required by
the summary process 3522, the signature request process 3523 and the seal
process 3524; a read pixmap process 3526 for reading stored pixmap data
3531 and passing it to the signature request process 3523 when requested to
do so by the signature request process 3523; a generate pixmap process
3527 for generating the pixmap data 3531 on the basis of graphics primitives
and seal image data received from the control process 3520; a screen refresh
process 3528 for reading the pixmap data, converting it into analogue signals
and transmitting the signals to the VDU 105; and a trusted switch process
3529 for monitoring whether the trusted switch 135 has bear activated by the
user. The smartcard process 3525 has access to the trusted display
processor's identity data Ipp, private key Spp data and certificate Certpp data
3530. In practice, the smart card and the trusted display processor interact
with one another via standard operating system calls.

The smartcard 122 has: seal data 3540; a display processor process
3542 for interacting with the trusted display processor 260 to enact
challenge/response and data signing tasks; smartcard identity data Isc,
smartcard private key data Ssc and smartcard certificate data Certsc 3543.

In other embodiments of the invention, the functionality of trusted
switch 135 may be replaced by software. When the trusted switch process
529 is activated (as in step 630), instead of waiting for operation of a
dedicated switch, the trusted component 260 uses its random number

generation capability to generate a nonce in the form of a textual string. This

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

34

textual string is then displayed on the trusted display in a message of the form
"Please enter <textual string> to confirm the action>. To confirm the action,
the user must then enter the given textual string, using the keyboard 110. As
the textual string will be different every time, and because no other software
has access to this textual string (it passes only between the trusted processor
300 and the display), it will not be possible for malicious software to subvert
this confirmation process.

On each individual smart card may be stored a corresponding respective
image data which is different for each smart card. For user interactions with
the trusted component, e.g. for a dialogue box monitor display generated by
the trusted component, the trusted component takes the image data 1001
from the user’s smart card, and uses this as a background to the dialogue box
displayed on the monitor 105. Thus, the user has confidence that the
dialogue box displayed on the monitor 105 is generated by the trusted
component. The image data is preferably easily recognizable by a human
being in a manner such that any forgeries would be immediately apparent
visually to a user. For example, the image data may comprise a photograph
of a user. The image data on the smart card may be unique to a person
using the smart card.

In a preferred implementation of the present invention, a user may
specify a selected logical or physical entity on the computer platform, for
example a file, application, driver, port, interface or the like for monitoring of
events which occur on that entity. Two types of monitoring may be provided,
firstly continuous monitoring over a predetermined period, which is set by a
user through the trusted component, and secondly, monitoring for specific
events which occur on an entity. In particular, a user may specify a particular
file of high value, or of restricted information content and apply monitoring of
that specified file so that any interactions involving that file, whether
authorized or not, are automatically logged and stored in a manner in which
the events occurring on the file cannot be deleted, erased or corrupted,
without this being immediately apparent.

Referring to Fig. 5 herein, there is illustrated schematically a logical
architecture of the computer entity 500. The logical architecture has a same

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

35

basic division between the computer platform, and the trusted component, as
is present with the physical architecture described in Figs. 1 to 4 herein. That
is to say, the trusted component is logically distinct from the computer
platform to which it is physically related. The computer entity comprises a
user space 504 being a logical space which is physically resident on the
computer platform (the first processor and first data storage means) and a
trusted component space 513 being a logical space which is physically
resident on the trusted component 260. In the user space 504 are one or a
plurality of drivers 506, one or a plurality of applications programs 507, a file
storage area 508; smart card reader 120; smart card interface 255; and a
software agent 511 which operates to perform operations in the user space
and report back to trusted component 260. The trusted component space is a
logical area based upon and physically resident in the trusted component,
supported by the second data processor and second memory area of the
trusted component. Confirmation key device 135 inputs directly to the trusted
component space 513, and monitor 105 receives images directly from the
trusted component space 513. External to the computer entity are external
communications networks eg the Internet 501, and various local area
networks, wide area networks 502 which are connected to the user space via
the drivers 506 which may include one or more modem ports. External user
smart card 503 inputs into smart card reader 120 in the user space.

In the trusted component space, are resident the trusted component
itself, displays generated by the trusted component on monitor 105; and
confirmation key 135, inputting a confirmation signal via confirmation key
interface 306.

Referring to Fig. 6 herein, within agent 511, there is provided a
communications component 601 for communicating with the trusted
component 260; and a file monitoring component 600 the purpose of which is
to monitor events occurring on specified logical or physical entities, eg data
files, applications or drivers on the computer platform, within the user space.

Referring to Fig. 7 herein, there is illustrated schematically internal
components on the trusted component 260 resident in trusted space 513.

The trusted component comprises a communications component 700 for

10

15

20

25

30

WO 00/73880 36 PCT/GB00/02004

communicating with software agent 511 in user space; a display interface
component 701 which includes a display generator for generating a plurality of
interface displays which are displayed on monitor 100 and interface code
enabling a user of the computing entity to interact with trusted component
202; an event logger program 702 for selecting an individual file, application,
driver or the like on the computer platform, and monitor the file, application or
driver and compile a log of events which occur on the file, application or
driver; a plurality of cryptographic functions 703 which are used to
cryptographically link the event log produced by event logger component 702
in a manner from which it is immediately apparent if the event log has been
tampered with after leaving event logger 702; a set of prediction algorithms
704 for producing prediction data predicting the operation and performance of
various parameters which may be selected by a user for monitoring by the
trusted component; and an alarm generation component 705 for generating
an alarm when monitored event parameters fall outside pre-determined
ranges set by a user, or fall outside ranges predicted by prediction algorithms
704.

Operation of the computer entity, and in particular operation of trusted
component 260 and its interactivity with agent 511 for monitoring of events on
the computer platform will now be described.

Referring to Fig. 8 herein, there is illustrated schematically a set of
process steps carried out by the computer entity for generating a dialogue
display on monitor 105 and for establishing to a user of the monitor that the
trusted component within the computer entity is present and functioning.
Firstly, in step 800, a user of the computer entity enters his or her smart card
122 into smart card reader port 120. A pre-stored algorithm on the smart card
generates a nonce R1, and downloads the nonce R1 to the trusted
component through the smart card reader 120, smart card interface 255 and
via data bus 225 to the trusted component 260. The nonce R1 typically
comprises a random burst of bits generated by the smart card 122. Smart
card 122 stores the nonce R1 temporarily on an internal memory of the smart
card in order to compare the stored nonce R1 with a response message to be

received from the trusted component. In step 802, the trusted component

10

15

20

25

30

WO 00/73880 37 PCT/GB00/02004

receives the nonce R1, generates a second nonce R2, concatenates R1 with
R2, and proceeds to sign the concatenation R1||R2 using cryptographic
functions 703. The process of applying a digital signature in order to
authenticate digital data is well known in the art and is described in
“Handbook of Applied Cryptography”, Menezes Vanoorschot, Vanstone, in
sections 1.6 and 1.83. Additionally, an introduction to the use of digital
signatures can be found in “Applied Cryptography — Second edition”,
Schneier, in section 2.6. Trusted component 260 then resends the signed
nonces back to the smart card in step 803. The smart card checks the
signature on the received message returned from the trusted component in
step 804 and compares the nonce contained in the received message with the
originally sent nonce R1, a copy of which has been stored in its internal
memory. If the nonce returned from the trusted component is different to that
from the stored nonce then in step 805 the smart card stops operation in step
806. Difference in nonce's indicates that the trusted component is either not
working properly, or there has been some tampering with the nonce data
between the smart card reader 120 and trusted component 260 resulting in
changes to the nonce data. At this point, smart card 122 does not "trust" the
computer entity as a whole because its generated nonce has not been
correctly returned by the computer entity.

If the nonce returned from the trusted component is identical to that as
originally sent by the smart card and the comparison of the two R1 nonce's in
805 is successful, in step 807, the smart card then proceeds to retrieve a
stored image data from its internal memory, append the nonce R2, sign the
concatenation, encrypt the stored image data and send the encrypted image
data and the signature to the trusted component via smart card reader 120.
The trusted component receives the encrypted image and signature data via
smart card reader interface 305, and data bus 304 and in step 808 decrypts
the image data and verifies the signature using its cryptographic functions
703, and verifies the nonce R2. The image data is stored internally in the
memory area of the trusted component. The trusted component then uses the

image data as a background for any visual displays it generates on monitor

10

15

20

25

30

WO 00/73880

105 created by trusted component 260 for interaction with the human user in
step 809.

Referring to Figs. 9 to 11 herein, there will now be described a set of
process steps carried out by the computer entity for selecting items to be
monitored on the computer platform, and for activating a monitoring session.
In step 900, a user selects the security monitoring function by clicking pointing
device 115 on an icon presented on a normal operating system view on
monitor 105. The icon is generated by a display generator component of
display interface 701 of the trusted component 260. Clicking the icon causes
the trusted component to generate a dialogue box display on the monitor 105,
for example as illustrated in Fig. 10 herein. The dialogue box display on
monitor 105 is generated directly by display interface component 701 in a
secure memory area of trusted component 260. Display of the image 1001
downloaded from the user's smart card 503 gives a visual confirmation to a
user that the dialogue box is generated by the trusted component, since the
trusted component is the only element of the computer entity which has
access to the image data stored on the smart card. On the security monitoring
dialogue box, there is an icon for "file" 1002 which is activated in a file
monitoring mode of operation (not described herein) of the computer entity,
and an "event" icon 1003 for event monitoring operation. A user selects an
event monitoring menu 1100 by clicking the "event” icon 1003 by operating
the pointing device 115 on the event icon 1003, in step 902. On activation of
the "event" icon, the trusted component generates a second dialogue box
comprising an event monitoring menu 1100 which also has the users
preloaded image displayed as a backdrop to the event monitor menu 1100 as
previously. The event monitor menu comprises a dialogue box having data
entry areas 1101-1103, each having a drop down menu, for selecting items on
the computer platform such as a user file, a driver, or an application. In
general, any physical or logical component of the computer platform which
gives rise to event data when events occur on that component can be
selected by the trusted component. For ease of description, in the following,
selections will be described primarily in relation to data files, application

programs and drivers, although it will be appreciated that the general methods

38 PCT/GB00/02004

10

15

20

25

30

WO 00/73880 39 PCT/GB00/02004

and principles described herein are applicable to the general set of
components and facilities of the computer platform. By activating the drop
down menu on each of selection boxes 1101-1103, there is listed a
corresponding respective list of data files, drivers, or applications which are
present on the computer platform. A user may select any of these files and/or
applications and/or drivers by activating the pointing device on the selected
icon from the drop down menu in conventional manner in steps 904, 905, 906.
Additionally, the event monitor menu comprises an event select menu 1104.
The event select menu lists a plurality of event types which can be monitored
by the event logger 702 within the trusted component, for the file, application
or driver which is selected in selection boxes 1101, 1102, 1103 respectively.
Types of event which can be monitored include events in the set: file copied -
the event of a selected file being copied by an application or user; file saved -
the event of whether a specified file is saved by an application or user; file
renamed - the event of whether a file has been renamed by an application or
user, file opened - the event of whether a file is opened by an application or
user; file overwritten - the event of whether data within a file has been
overwritten; file read - the event of whether data in a file has been read by any
user, application or other entity; file modified - the event of whether data in a
file has been modified by a user, application or other entity; file printed - the
event of whether a file has been sent to a print port of the computer entity;
driver used - whether a particular driver has been used by any application or
file; driver reconfigured - the event of whether a driver has been reconfigured;
modem used - subset of the driver used event, applying to whether a modem
has been used or not; disk drive used - the event of whether a disk drive has
been used in any way, either written or read; application opened - the event of
whether an application has been opened; and application closed - the event of
whether an application has been closed. Once the user has selected the
application, driver or file and the events to be monitored in dialog box 1100,
the user activates the confirmation key 135, which is confirmed by
confirmation key icon 1105 visually altering, in order to activate a monitoring
session. A monitoring session can only be activated by use of the dialog box

1100, having the user's image 1001 from the user's smart card display

10

15

20

25

30

WO 00/73880 40 PCT/GB00/02004

thereon, and by independently pressing confirmation key 135. Display of the
image 1001 on the monitor 100, enables the user to have confidence that the
trusted component is generating the dialog box. Pressing the confirmation
key 135 by the user, which is directly input into trusted component 202
independently of the computer platform gives direct confirmation to the trusted
component that the user, and not some other entity, e.g. a virus or the like is
activating the monitoring session.

The user may also specify a monitoring period by entering a start time
and date and a stop time and date in data entry window 1106. Alternatively,
where a single event on a specified entity is to be monitored, the user can
specify monitoring of that event only by confirming with pointing device 115 in
first event only selection box 1107.

Two modes of operation will now be described, in the first mode of
operation, continuous event monitoring of specified entities over a user
specified period occurs. In the second mode of operation, continuous
monitoring of a specified entity occurs until a user specified event has
happened, or until a user specified period for monitoring that user specified
event has elapsed.

In Fig. 12 herein, there is illustrated a procedure for continuous
monitoring of a specified logical or physical entity over a user specified
monitoring period.

Referring to Fig. 12 herein, there is illustrated schematically process
steps operated by trusted component 260 in response to a user input to start
an event monitoring session as described with reference to figs. 8 to 11 herein
before. In step 1200, display interface 701 receives commands from the user
via the dialogue boxes which are input using pointing device 115, keyboard
110 via data bus 225 and via communications interface 700 of the trusted
component. The event logger 702 instructs agent 511 in user space to
commence event monitoring. The instructions comprising event logger 702
are stored within a memory area resident within the trusted component 260.
Additionally, event logger 702 is also executed within a memory area in the
trusted component. In contrast, whilst the instructions comprising agent 511

are stored inside the trusted component 260 in a form suitable for execution

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

41

on the host processor ie in CPU native programs area 403 of the trust
component, agent 511 is executed within untrusted user space ie outside of
the trusted component 260. Agent 511 receives details of the file, application
and/or drivers to be monitored from event logger 702. In step 1200, agent 511
receives a series of event data from the logical entity (eg file, application or
driver) specified. Such monitoring is a continuous process, and agent 511
may perform step 1200 by periodically reading a data file in which such event
data is automatically stored by the operating system (for example in the
Microsoft windows 4.0™ operating system which contains the facility for
logging events on a file). However, in order to maximize security, it is
preferable the agent 511 periodically gathers event data itself by interrogating
the file, application or driver directly to elicit a response. in step 1201, the
collected data concerning the events of entity are reported directly to the
trusted component 260, which then stores them in a trusted memory area in
step 1202. In step 1203, the event logger checks whether the user specified
predetermined monitoring period from the start of the event monitoring
session has elapsed. If the event monitoring session period has not yet
elapsed, event logger 702 continues to await further events on the specified
files, applications or drivers supported by the agent 511, which steps through
steps 1200 - 1202 as previously until the predetermined user specified period
has elapsed in step 1203. In step 1204, the trusted component takes the
content of the event data stored in trusted memory and applies cryptographic
function 703 to the event log to provide a secure event log file. The process of
securing the event log file as described herein before is such that the secured
file has at least the properties of:

e Authentication — an authorised user or program should be able to

correctly ascertain the origin of the event log file;
e Integrity — It should be possible to verify that the event log file has not
been modified by an unauthorised individual or program.

Optionally, the secured file should have the property of confidentiality -
unauthorised users or programs should not be able to access the information
contained within the event log file; and the property of non-repudiation —
proper authentication of data cannot later be falsely denied.

10

15

20

25

30

WO 00/73880 42

The trusted component in step 1205 writes the secure event log file to a
memory device. The memory device may either be in trusted space, or in user
space. For example the secure event log file may be stored in a user
accessible portion of a hard disk drive 240.

By providing a secure event log file containing data describing a plurality
of events which have occurred on a specified file, application or driver, a user
reading the file can be confident that the data in the file has been written by
the trusted component and has not been corrupted. Any corruption to the data
are immediately evident. In the best mode herein, securing of the event log file
is made by applying a chaining algorithm which chains arbitrary chunks of
data as is known in the art. In such chaining processes, the output of a
previous encryption process is used to initialize a next encryption process.
The amounts of data in each encrypted data block are of arbitrary length,
rather than being a single plain text block. Details of such chaining algorithms
which are known in the art can be found in "Handbook of Applied
Cryptography”, Menezes Vanoorschot, Vanstone, on page 229. The key used
during the chaining process is one stored within the trusted component 260,
preferably the private signature key of the trusted component. The validity of
the secured event log can then readily be confirmed by any entity possessing
the public signature key of the trusted component. Such methods are well
known to those skilled in the art of information security.

Event data is preferably gathered by the use of additional device drivers.
NT is designed so that additional device drivers may be inserted between
existing device drivers. It is therefore possible to design and insert drivers that
trap access to files, applications, and other device drivers, and provide details
of the interactions as event data. Information on the design and use of device
drivers may be found, for example, in the "The Windows NT Device Driver
Book’ (author A.Baker, published by Prentice Hall). Also, commercial
companies such as "BlueWater Systems’ offer device driver toolkits.

Referring to Fig. 13 herein, there is illustrated a set of process steps
applied by the trusted component and agent 511 for monitoring one off special
events specified by the user by data entry through dialogue boxes as

described herein before. Details of special events to be monitored are

PCT/GB00/02004

10

15

20

25

30

WO 00/73880 43 PCT/GB00/02004

specified by the user in step 1300. Details of the particular entity, eg a file
application or driver to be monitored are entered in step 1301. In step 1302,
details of the event types and entity to be monitored are sent to the agent 511
from the trusted component. The agent then proceeds to continuously monitor
for the events on that particular specified entity in step 1303. Periodically, it is
checked whether any event has occurred in step 1304 by the agent, and if no
event has yet occurred, the agent continues in step 1303 to monitor the
specified entity. When an event has occurred, in step 1305 details are passed
back to the trusted component in step 1305. The trusted component then
applies a cryptographic function to the event data to provide secure event
data in step 1306, and in step 1307 writes the secure event data to a memory
area either in trusted space or in user space as herein before described with
reference to Fig. 12.

The secure event data is a log that can be used, for example, for
auditing. An investigator can inspect the log comprised of the secure event
data. That investigator can use standard cryptographic techniques to verify
the integrity of the event data, and that it is complete. The investigator can
then construct a history of the platform. This is useful for investigating attacks
on the platform, or alleged improper use of the platform. The event data has
been gathered by an impartial entity (the trusted component 260) whose
behavior cannot be modified by a user or unilaterally by the owner of the
platform. Hence the event log serves as an honest record of activities within
the platform. The event log can be published as a report or automatically
interpreted by, for example, a computer program that is outside the scope of
this invention.

Types of event data which may be stored in the event log include the
following. The following lists should be regarded as a non-exhaustive, and in
other embodiments of the present invention common variations as will be
recognized by those skilled in the art may be made: a time of an event
occurring; a date of an event occurring, whether or not a password has been
used, if a file is copied, a destination to which the file has been copied to; if a
file has been operated on, a size of the file in megabytes; a duration for which

a file was open; a duration over which an application has been online; a

10

15

20

25

30

WO 00/73880

duration of which a driver has been online; an internet address to which a file
has been copied, or to which a driver has accessed, or to which an application
has addressed: a network address to which a file has been copied, to which
an application has addressed, or to which a driver has corresponded with.

The event data stored in the event log may be physically stored in a data
file either on the platform or in the trusted component. The event log data is
secured using a chaining function, such that a first secured event data is used
to secure a second secured event data, a second secured event data is used
to secure a third event data, etc so any changes to the chain of data are
apparent.

In addition to providing the secured event log data, the trusted
component may also compile a report of events. The report may be displayed
on monitor 105. ltems which may form the content of a report include the
events as specified in the event log above, together with the following: time of
an event, date of an event, whether or not a password was used, a destination
of the file it is copied to, a size of a file (in megabytes), a duration a file or
application has been open, a duration over which a driver has been online, a
duration over which a driver has been used, a port which has been used, an
internet address which has been communicated with, a network address
which has been communicated with.

Agent 511 performs event monitoring operations on behalf of trusted
component 2060 however whereas trusted component 260 is resident in a
trusted space 513, agent 511 must operate in the user space of the computer
platform. Because the agent 511 is in an inherently less secure environment
than the trusted space 513, there is the possibility that agent 511 may become
compromised by hostile attack to the computer platform through a virus or the
like. The trusted component deals with the possibility of such hostile attack by
either of two mechanisms. Firstly, in an alternative embodiment the agent 511
may be solely resident within trusted component 260. All operations
performed by agent 511 are performed from within trusted user space 513 by
the monitoring code component 600 operating through the trusted
components’ communications interface 700 to collect event data. However, a

disadvantage of this approach is that since agent 511 does not exist, it cannot

44 PCT/GB00/02004

10

15

20

25

30

WO 00/73880 45 PCT/GB00/02004

act as a buffer between trusted component 260 and the remaining user space
504.

On the other hand, the code comprising agent 511 can be stored within
trusted space in a trusted memory area of trusted component 260, and
periodically "launched" into user space 504. That is to say, when a monitoring
session is to begin, the agent can be downloaded from the trusted component
into the user space or kernel space on the computer platform, where it then
resides, performing its continuous monitoring functions. In this second
method, which is the best mode contemplated by the inventors, to reduce the
risk of any compromises of agent 511 remaining undetected, the trusted
component can either re-launch the complete agent from the secure memory
area in trusted space into the user space at periodic intervals, and/or can
periodically monitor the agent 511 in user space to make sure that it is
responding correctly to periodic interrogation by the trusted component.

Where the agent 511 is launched into user space from its permanent
residence in trusted space, this is effected by copying code comprising the
agent from the trusted component onto the computer platiorm. Where a
monitoring session has a finite monitoring period specified by a user, the
period over which the agent 511 exists in user space can be configured to
coincide with the period of the monitoring session. That is to say the agent
exists for the duration of the monitoring session only, and once the monitoring
session is over, the agent can be deleted from user/kernel space. To start a
new monitoring session for a new set of events and/or entities, a new agent
can be launched into user space for the duration of that monitoring session.

During the monitoring session, which may extend over a prolonged
period of days or months as specified by a user, the trusted component
monitors the agent itself periodically.

Referring to Fig. 14 herein, there is illustrated schematically process
steps carried out by trusted component 260 and agent 511 on the computer
platform for launching the agent 511 which is downloaded from trusted space
to user space, and in which the trusted component monitors the agent 511
once set up and running on the computer platform.

10

15

20

25

30

WO 00/73880 46 PCT/GB00/02004

In step 1400, native code comprising the agent 511 stored in the trusted
components secure memory area is downloaded onto the computer platform,
by the computer platform reading the agent code directly from the trusted
component in step 1401. In step 1402, the data processor on the computer
platform commences execution of the native agent code resident in user
space on the computer platform. The agent continues to operate as described
herein before continuously in step 1403. Meanwhile, trusted component 260
generates a nonce challenge message in step 1404 after a suitable selected
interval, and sends this nonce to the agent which receives it in step 1405. The
nonce may comprise a random bit sequence generated by the trusted
component. The purpose of the nonce is to allow the trusted component to
check that the agent is still there and is still operating. If the nonce is not
returned by the agent, then the trusted component knows that the agent has
ceased to operate and/or has been compromised. In step 1407 the agent
signs the nonce and in step 1408 the agent sends the signed nonce back to
the trusted component. The trusted component receives the signed nonce in
step 1409 and then repeats step 1404 sending a new nonce after a pre-
selected period. If after a predetermined wait period 1406, commencing when
the nonce was sent to the agent in step 1404, the trusted component has not
received a nonce returned from the agent, then in step 1410 the trusted
component generates an alarm signal which may result in a display on the
monitor showing that the agent 511 is incorrectly operating, and that file
monitoring operations may have been compromised.

In a second embodiment, trusted component 260 may operate to gather
information about the use of data and platform resources with programs using
utilities and functions provided by the operating system resident on the
computer platform. This information may include access rights, file usage,
application usage, memory (RAM) utilization, memory (hard disk) utilization,
and main processor instruction cycle allocation statistics.

The prior patent application ‘Trusted Computing Platform’ describes a
method whereby the trusted component cooperates with other entities and
reports to them the values of integrity metrics measured by the trusted

component. Those other entities then compare the measured metrics with the

10

15

20

25

30

WO 00/73880 47 PCT/GB00/02004

proper values that are contained in a digital certificate published by a trusted
third party. That prior patent application gives an example of a static metric - a
digest of the platform’s BIOS memory. The measurements made by the
method of this application may also be reported as integrity metrics, but
because they are potentially always changing, they are called dynamic
integrity metrics - a measured value may be different now from the value
measured a few seconds previously. Entities must repeatedly request the
current value of a measured dynamic metric. For example one integrity metric,
according to the best mode described herein, comprises a Boolean value
which indicates whether an event which has occurred is apparently
incompatible with a policy governing access to data. For example such a
Boolean would be TRUE if a mobile software such as a Java applet wrote
over files in the user space, even though the mobile software did not have
write permission to those files.

Another integrity metric comprises a Boolean value which indicates that
unusual behavior has been detected. Such unusual behavior may not
necessarily indicate that the computer platform has become unsafe, but may
suggest caution in use of the computer platform. Prudent entities
communicating with the computer platform may choose not to process very
sensitive data on that platform if the second integrity metric indicates that
unusual behavior has been detected. Unusual behavior is difficult to
accurately define, unless a platform is used to do repetitive operations. In the
best mode herein, unusual data may be defined and monitored for by the
trusted component as being behavior of a resource on the computer platform
which is outside a pre-determined number of standard deviations of a
historical mean measurement of behavior compiled over a pre-determined
period. For example where a data file has historically over a pre-determined
period had a size within a particular range, eg 140 - 180 megabytes, if the file
size increases dramatically, eg to 500 megabytes, and outside a pre-
determined number of standard deviations which can be preset, then the
second integrity metric Boolean value may change state to a true state,
indicating unusual behavior.

10

WO 00/73880 48 PCT/GB00/02004

As a further example, if an application, eg a word processing application,
has a history of saving data files with a frequency in a predetermined range,
for example in the range of 1 to 10 saves per day, and the application
changes behavior significantly, eg saving 100 saves per day, then a Boolean
metric for monitoring that parameter may trigger to a true state.

Of course, as previously mentioned, it may be that the trusted
component takes a proactive role in reporting urgent events, instead of waiting
to be polled by an integrity challenge. Events can be matched inside the
trusted component 260 with policy rules stored inside the trusted component.
If an event breaches a rule that the policy considers to be crucial, the trusted
component 260 can immediately send an alarm indication message to a
relevant entity, and/or display an emergency message to the user on the
monitor 105 using the style of dialog box indicated in Figures 10 and 11.

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

49

Claims:

1. A computer entity comprising:

a computer platform comprising a data processor and at least one
memory device; and

a trusted component, said trusted component comprising a data

processor and at least one memory device;

wherein said data processor and said memory of said trusted component
are physically and logically distinct from said data processor and memory of
said computer platform; and

means for monitoring a plurality of events occurring on said computer
platform.

2. The computer entity as claimed in claim 1, wherein said
monitoring means comprises a software agent operating on said computer
platform, for monitoring at least one event occurring on said computer

platform, and reporting said event to said trusted component.

3. The computer entity as claimed in claim 2, wherein said software
agent comprises a set of program code normally resident in said memory
device of said trusted component, said code being transferred into said
computer platform for performing monitoring functions on said computer

platform.

4. The computer entity as claimed in claim 1, where said trusted
component comprises an event logging component for receiving data
describing a plurality of events occurring on said computer platform, and

compiling said event data into secure event data.

10

15

20

25

30

WO 00/73880 50 PCT/GB00/02004

5. The computer entity as claimed in claim 4, wherein said event
logging component comprises means for applying a chaining function to said

event data to produce said secure event data.

6. The computer entity as claimed in claim 1, further comprising a

display interface for generating an interactive display comprising:

means for selecting an entity of said computer platform to be monitored;
and

means for selecting at least one event to be monitored.

7. The computer entity as claimed in claim 1, further comprising
prediction means for predicting a future value of at least one selected
parameter.

8. The computer entity as claimed in claim 1, further comprising a
confirmation key means connected to said trusted component, and
independent of said computer platform, for confirming to said trusted

component an authorisation signal of a user.

9. The computer entity as claimed in claim 1, wherein logical

entities to be monitored are selected from the set:

at least one data file;

at least one application;

at least one driver component.

10. A computer entity comprising:

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

51

a computer platform having a first data processor and a first memory
device; and

a trusted monitoring component comprising a second data processor

and a second memory device, wherein

said trusted monitoring component stores an agent program resident in
said second memory area, said agent program arranged to be copied to said
first memory area for performing functions on behalf of said trusted

component, under control of said first data processor.

1. A computer entity comprising:

a computer platform comprising a first data processor and a first memory
device;

a trusted monitoring component comprising a second data processor

and a second memory device;

a first computer program resident in said first memory area and
operating said first data processor, said first computer program reporting back
events concerning operation of said computer platform to said trusted

monitoring component; and

a second computer program said second computer program resident in
said second memory area of said trusted component, said second program

operating to monitor an integrity of said first program.

12. The computer entity as claimed in claim 11, wherein said
computer program monitors an integrity of said first computer program by
sending to said first computer program a plurality of interrogation messages,
and monitoring a reply to said interrogation messages made by said first
computer program.

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

52

13. The computer entity as claimed in claim 12, wherein a said
interrogation message is sent in a first format, and returned in a second

format, wherein said second format is a secure format.

14. A method of monitoring a computer platform comprising a first

data processor and a first memory means, said method comprising the steps
of:

reading event data describing events occurring on at least one logical or

physical entity comprising said computer platform,

securing said event data in a second data processing means having an
associated second memory area, said second data processing means, said
second memory area being physically and logically distinct from said first data
processing means and said first memory area, such that said secure event

data cannot be altered without such alteration being apparent.

15. The method as claimed in claim 14, where a said event to be
monitored is selected from the set of events:

copying of a data file;

saving a data file;

renaming a data file;

opening a data file;

overwriting a data file;

modifying a data file;

10

15

20

25

30

WO 00/73880 53 PCT/GB00/02004

printing a data file;

activating a driver device;

reconfiguring a driver device;

writing to a hard disk drive;

reading a hard disk drive;

opening an application;

closing an application.

16. The method as claimed in claim 14, wherein a said entity to be

monitored is selected from the set:

at least one data file stored on said computer platform;

a driver device of said computer platform;

an application program resident on said computer platform.

17. The method as claimed in claim 14, wherein said step of
monitoring said entity comprises continuously monitoring a said entity over a

pre-selected time period.

18. The method as claimed in claim 14, wherein said step of

monitoring said entity comprises:

monitoring said entity until such time as a pre-selected event occurs on
said entity.

10

15

20

25

30

WO 00/73880 PCT/GB00/02004

54

19. The method as claimed in claim 14, wherein said step of

monitoring said entity comprises:

monitoring a said entity for a selected event, until a predetermined time

period has elapsed.
20. A method of monitoring a computer platform comprising a first
data processing means and a first memory means, said method comprising

the steps of:

generating an interactive display for selecting at least one entity
comprising said computer platform;

generating a display of events which can be monitored;

generating a display of entities of said computer platform;

selecting at least one said entity;

selecting at least one said event; and

monitoring a said entity for a said event.

21. A method of monitoring a computer platform comprising a first
data processing means and first memory means, said method comprising the
steps of:

storing a monitoring program in a second memory area, said second
memory area being physically and logically distinct from said first memory
area;

transferring said monitoring program from said second memory area to
said first memory area;

10

15

20

WO 00/73880 PCT/GB00/02004

55

monitoring at least one entity of said computer platform from within said

computer platform; and

reporting an event data from said monitoring program to said second

data processor.
22. A method of monitoring a computer platform comprising a first
data processing and a first memory means, said method comprising the steps

of;

monitoring at least one entity comprising said computer platform from
within said computer platform;

generating an event data describing a plurality of events occurring on

said computer platform;

reporting said event data to a second data processing means having an

associated second memory means; and

processing said event data into an secure format.

WO 00/73880

PCT/GB00/02004

1/15

130 —
INTERNET
105 —.
LAN 125
100
122
O =e—= 1]
0
115 135 120
(W} _
| L"' =2 &u FIGURE 1
11oj
[215
200~ 205
RAM
CPU |«
210 260
ROM } 105
h \ [
TRUSTED
220~ BIOS DEVICE T_—’ vbU
BRIDGE <
219 3
<‘ﬁ 225\ .
A
110
230 1 250 25 I
SCSI LAN 10 KEYBOARD
t 3 1 120~
\ SMART
\ 235 ! CARD
HARD CD READER
DISK ROM » MOUSE |
2407 245/ s 1157 FIGURE 2

SUBSTITUTE SHEET (RULE 26)

WO 00/73880

PCT/GB00/02004

2/15
310y [260
315
i @ (300
N CconTrOL [130°
VRAM : N—¥| PROGRAM
MICRO cent [T
- IS ert
CONTROLLER — ?: Asi: /DP/’354
{335
(%} STATE
CRYPTO
PROC ﬁ | DIGEST | 361
L VDAC
I \320
330/ \a25
FIGURE 3
/440
CONTACTS
RAM s PROC P;fﬁ’
3
o FIGURE 4
Sec SEAL
Certg
\ 420

SUBSTITUTE SHEET (RULE 26)

PCT/GB00/02004

WO 00/73880

3/15

501

508

120 507

Applications

513

Key

105

Fig. 5

SUBSTITUTE SHEET (RULE 26)

WO 00/73880 PCT/GB00/02004

4/15

File Monitoring

Interface
Event E’" 701
Logger ." Alarm
‘ Functions
o 705
Functions Prediction
Algorithms 704
513

Fig. 7

SUBSTITUTE SHEET (RULE 26)

WO 00/73880 PCT/GB00/02004

5/15

User inserts smart card into smart card reader

. Smart card generates a first NONCE and
downloads to trusted component

Trusted component receives first NONCE
and generates a second NONCE

803

Trusted component concatenates and signs
first and second NONCE

804

mart card checks signature and compares
ent version of first NONCE with received versiog

806

Identical

NONCES? Stop

807

Smart card encrypts signed image data and
second NONCE and sends to trusted componen

808

Trusted component decrypts image and
verifies signature and second NONCE

809

Trusted component applies image to
dialog box display
Fig. 8

SUBSTITUTE SHEET (RULE 26)

WO 00/73880 PCT/GB00/02004

6/15

900
~

User selects security monitoring function

TC generates dialog box display with
image background and displays on monitor

User selects event monitor option

Trusted component generates second dialog
box with image background

User selects file(s)

User selects driver(s)

User selects application(s)

User selects event types to be monitored

908

< User activates confirmation key $

Fig. 9

SUBSTITUTE SHEET (RULE 26)

WO 00/73880

PCT/GB00/02004

7115

1000

Security Functions

Fig. 10

= ™
ofl \=8
> -~
Ll

o
of -8
iII -

SUBSTITUTE SHEET (RULE 26)

PCT/GB00/02004

WO 00/73880

8/15

004t

L1 B

vOLL N AJUO JUBA3

/

\

/

_U\/\BF !
) [

pones a4 | (]

paweu-al 9|i4

dojg/uels pous
edi1y doig/ues polied

|

|

JaAlQ 10888

pealsld | X
psjuLd)14 oneoyddy 1080
S1LIMIBAO)i w\mo:N uonedl|day 108|8s
pauado a|i4 [A{A |
psiipow aji4| = SIN
paldod 8|14 b~
A |

™

109|9S Juang

109|8s 10 9|} 8dA)

suonoun4 Ajunoeg

)

suoloun4 Ajlinoag

a4

SUBSTITUTE SHEET (RULE 26)

WO 00/73880 PCT/GB00/02004

9/15

1200

Agent obtains event data from user specified
logical entity, eg. File, driver or application

Agent reports event data to trusted component

Trusted component creates event log file
and stores received event data in trusted memory

Predetermined user specified period elapsed?

1204

rusted component applies cryptographic
functions to event log data to provide secure
event log file

1205

Trusted component writes secure event
log file to memory in either trusted space or user
space, eg. Hard disk memory

SUBSTITUTE SHEET (RULE 26)

WO 00/73880 PCT/GB00/02004

10/15

Input details of special events

Input entity details

Send details to agent

Monitor entity

Event
occurred?

Report details to trusted component

Trusted component applies cryptographic
function to event log data to provide secure
event log file

1307

Trusted component writes secure event
log file to memory in trusted space or in user space
eg. Hard disk memory

Fig. 13

SUBSTITUTE SHEET (RULE 26)

PCT/GB00/02004

WO 00/73880

11115

Jusuodwod
pajsni} 01 Yoeq 43ONON

vl O

Olvi

/A. Weje ajelousr) v

paubis spuas jusby

80vi

JDONON subis yusby

L0V L

A

¢IONON paubis aneosy

poiad

paulwislapaid yiep
vovi 3

abessaw abua|jeyo pue

JDONON S8AI8231 Jusby

Sovi

S9)N09Xd
8po0o Jusbe aAleN

13014%
9p0J ,JUBDe, 8Aljeu JO

uolnoaxXs SB8duUsWod NdO
cavi 4

JONON saiessuab O

SBA

oovlL
AN

(Ajuo peay)

JUBUOQWIOD pajsni])
~o~_ o} Juabe, speal Nd))

oL

wJoje|d

Jaindwo)

0

apoD SANEN

9¢

jusuodwo)
paisni|

SUBSTITUTE SHEET (RULE 26)

WO 00/73880

12/15

2400~ SwITCH-ON

240

DEVICE
ACCESSED

PCT/GB00/02004

Dl

FIRST?

2410y WRITE POSITIVE

BOOLEAN VALUE

2425 ‘

READ HASH
INSTRUCTIONS

INO l

WRITE NEGATIVE
BOOLEAN VALUE

2415

2430 l

DEVICE

\ DIRECT CPU TO
EXECUTE HASH
INSTRUCTIONS

ACCESSED?

l

COMPUTE DIGEST

\2435

l

WRITE DIGEST

DEVICE MEMORY

l

N
2440

DIRECT CONTROL
TO BIOS

FIGURE 15

~2445

SUBSTITUTE SHEET (RULE 26)

WO 00/73880

13/15

PCT/GB00/02004

TRUSTED DEVICE TRUSTED PARTY USER
2500f MEASURE |
| INTEGRITY |
| METRIC |
| |
| 2505, v '
GENERATE
' CERTIFICATE '
2515 I I
\ 12510+ ¥ |
' I WRITE | 520
II\ITEGAnggIﬁTRIC ++— CERTIFICATE ' C
l TO DEVICE | |GENERATE NONCE
2530 | | 1 2525
RECEIVE |]
CHALLENGE & CHALLENGE Cmiﬁglz
GENERATE DIGEST| \] |
2535 ¢ I | : /2540
SIGN & RETURN | TN RECEIVE RESPONSE&
DIGEST l VERIFY CERTIFICATE
f : : Ne—< OKTY 2545
. | | [2550
: | | EXTRACT PUBLIC
. | | KEY & DECRYPT
: | | DIGEST
: : I 2555
* 1 TN
: | 2580 \‘ I [2560
X | |
: | END | | VERIFYNONCE
. | |
: I f—Ne—<OK? 2565
: l | 2570
: | | [
; | | ICOMPARE METRICS
X | |
: : Ne—< 0K 2975
2590
v [: : /2585
| |

ESTABLISH
SECURE SECURE COMMUNICATIONS

COMMUNICATIONS

FIGURE 16

SUBSTITUTE SHEET (RULE 26)

ESTABLISH
SECURE

COMMUNICATIONS

WO 00/73880

PCT/GB00/02004

14/15

TRUSTED DEVICE AUTHENTICATION/ LOGON SMART CARD
SECURE PROCESS
INSERT LOGON
SMART CARD
2700 — | 2710
TRANSMIT > RETURN
NONCE RESPONSE
2705 s]
2720

RESPONSE? END

2725

TRANSMIT FURTHER
RESPONSE
v Y
END
2740| £y ECUTE SECURE
PROCESS 2735
SETINTERVAL |2745
> TIMER
2750
N
2760
¥ Y 2765
CHALLENGE LOGON . RETURN
SMART CARD CERTIFICATE
N END | 2775
2770
FIGURE 17

SUBSTITUTE SHE

ET (RULE 26)

PCT/GB00/02004

WO 00/73880

NAN «—]

15/15

]

8¢St
HS3Y43Y
N3340S

LSt
dVIAXId
3J1VH3IN3IO

d0SS300dd AV1dSIa d3aLsnyl

0€S€ 1930
‘SAIN ‘Ql

92G¢ €2G¢
dVINXId 1S3N03Y
avay HNLYNOI
i wh kN Z25¢
1€6€ 4 AHVYNINNS
dVWNXId N
4 > y2se
N Iv3s
0cse //
TOHLINOD ~
N
N
~N

GeGe
ayvo
VA

625t
HOLIMS
a3aLsndl

'505¢E
IN3IWNo0a

LG
QdvOgA3r

olse

O
o
-—

Glse
S3AALLINIG
SOIHdVHO

ANFLSAS ONILVHIHO

81 JANOId

evae
1430
A ‘al

[AZ°1%
HOSS300dd
AV1dSId

ovGe
viva
ER)

(44
ayvd LHVINS

N

QYVvOgAIM

T 33n0N

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inter nal Application No

PCT/GB 00/02004

A. CLASSIFICATION UBJECT MATTER

OF S
IPC 7 GO6F1/00

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

WPI Data, EPO-Internal, PAJ

Electronic data base consulted during the intemational search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X WO 98 45778 A (ZUTA MARC)

abstract; figure 1

4 April 1995 (1995-04-04)
the whole document

Y WO 95 27249 A (INTEL CORP)

abstract; figure 1
claims 1-36

15 October 1998 (1998-10-15)

page 16, line 1 —page 20, Tast line
page 26, line 1 —-page 32, last line

Y US 5 404 532 A (ALLEN WADE C ET AL)

12 October 1995 (1995-10-12)

/-

1,14-16

2,3,10,
11,17-22

2,3,10,
11

17-19

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" eanier document but published on or after the intemational
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0O" document referring to an oral disclosure, use, exhibition or
other means

“P" document published prior to the intemational filing date but
later than the priority date claimed

"T" later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principie or theory underlying the

invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-—
ments, such combination being obvious to a person skilled

in the art.

"&" document member of the same patent family

Date of the actual completion of the intemational search

6 July 2000

14/07/2000

Date of mailing of the intemational search report

Name and mailing address of the {SA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016

Authorized officer

Powell, D

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inter nal Application No

PCT/GB 00/02004

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropnate, of the relevant passages

Relevant to claim No.

Y CA 2 187 855 A (COMPONENT ORIENTED
PROTECTIVE) 13 June 1997 (1997-06-13)
abstract; figure 1

claims 1-20

page 9, line 23 -page 10, last line

Y WO 95 24696 A (INTEGRATED TECH AMERICA
;MOONEY DAVID M (US); WOOD DAVID E (US);
K) 14 September 1995 (1995-09-14)
abstract; figure 3

page 2, line 26 -page 3, line 19

claims 1-20

Y EP 0 895 148 A (SIEMENS AG)
3 February 1999 (1999-02-03)
the whole document

20

21

22

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

.ormation on patent family members

Interr

1al Application No

PCT/GB 00/02004

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 9845778 A 15-10-1998 AU 6850798 A 30-10-1998

US 5404532 A 04-04-1995 NONE

WO 9527249 A 12-10-1995 AU 2237995 A 23-10-1995
CN 1149343 A 07-05-1997
EP 0754321 A 22-01-1997
JP 10501907 T 17-02-1998

CA 2187855 A 13-06-1997 NONE

WO 9524696 A 14-09-1995 us 5610981 A 11-03~1997
AT 175505 T 15-01-1999
AU 703856 B 01-04-1999
AU 2092695 A 25-09-1995
BR 9506968 A 01-06-1999
CA 2183759 A 14-09-1995
CN 1146813 A 02-04-1997
DE 69507129 D 18-02-1999
DE 69507129 T 05-08-1999
EP 0748474 A 18-12-1996
NZ 282954 A 24~11-1997

EP 0895148 A 03-02-1999 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

