【发明名称】
一种改性沸石在处理养虾废水中的应用

【摘要】
本发明涉及废水处理，具体地说是一种改性沸石在处理养虾废水中的应用；首先采用改性剂对天然沸石进行改性处理，再在反应器中将改性沸石与养虾废水充分接触，对养虾废水进行处理，以氨氮去除率为考察沸石处理效果。本发明优点为：改性剂容易得到，价格便宜，操作简单，有实际应用价值，再生效果好。
权利要求书

1. 一种改性沸石在处理养虾废水中的应用，其特征在于：首先采用改性剂对天然沸石进行改性处理，再在反应器中将改性沸石与养虾废水充分接触，对养虾废水进行处理，以氨氮去除率考察沸石处理效果。

2. 按照权利要求1所述改性沸石在处理养虾废水中的应用，其特征在于：所述改性剂为0.05~0.30mol/L的HCl，0.01~0.05mol/L的H₂SO₄，0.2~1.0mol/L的NaCl，0.05~0.25mol/L的NaOH，或0.03~0.15mol/L的HCl与0.2~1.0mol/L的NaCl混合溶液。

3. 按照权利要求2所述改性沸石在处理养虾废水中的应用，其特征在于：当改性剂为HCl和NaCl混合溶液时，最佳浓度NaCl为0.8mol/L，HCl为0.09mol/L。

4. 按照权利要求1所述改性沸石在处理养虾废水中的应用，其特征在于：采用改性剂对天然沸石进行改性处理时间≥2小时。

5. 按照权利要求1所述改性沸石在处理养虾废水中的应用，其特征在于：采用改性剂对天然沸石进行改性处理时间最好≥4小时。

6. 按照权利要求1所述改性沸石在处理养虾废水中的应用，其特征在于：改性沸石对养虾废水进行处理时，改性沸石与养虾废水接触时间≥30分钟。

7. 按照权利要求1所述改性沸石在处理养虾废水中的应用，其特征在于：在流化床中应用改性沸石对养虾废水进行处理时，空速V₆：V₇流为1.2~2.4。

8. 按照权利要求7所述改性沸石在处理养虾废水中的应用，其特征在于：空速V₆：V₇流为1.8时最好。

9. 按照权利要求1所述改性沸石在处理养虾废水中的应用，其特征在于：改性沸石失去活性后，使用NaCl溶液再生时，pH值在10.1~10.4较好。
一种改性沸石在处理养虾废水中的应用

技术领域

本发明涉及废水处理，具体地说是一种改性沸石在处理养虾废水中的应用。通过对天然沸石进行改性处理，提高了去除氨氮的效率。

背景技术

随着生物工程技术、水处理技术、自动检测及计算机控制等高新技术的应用，把水产养殖从自然生态系引入人工（或半人工）控制的半生态系的新境界。养殖方式的改进在大幅度提高产量，推动水产养殖业发展的同时，对自身所依赖的水环境的破坏也日益加剧。在水产养殖中，水质的好坏直接影响着养殖对象的生存和生长。在诸多影响因素中，氮、磷的过量往往是造成水质恶化的主要因素。杨胜科等（杨胜科，王文科，李翔，沸石去除地下水中氨氮的影响因子分析及作用机理探讨[J]，西安工程学院学报，2000，22（3）：69-72）研究结果表明，养殖水中的氮主要来源于鱼饲料中蛋白质的分解，而氨可以通过亚硝酸单胞菌的硝化作用被氧化为亚硝酸盐。水中浓度过高的氨对鱼虾体内酶的催化作用和细胞膜的稳定性产生严重影响，并破坏水生系统和渗透平衡，亚硝酸盐浓度过高也会对鱼虾产生毒害。因此必须采取去除氨氮的措施。

目前去除水中氨氮的方法较多，有生化法、吹脱法、活性吸附法、折点加氯法、液膜法等，但因设备复杂、容易造成二次污染等原因，不适合用于微污染水源中的氨氮去除。近年来，国内外开展了用沸石去除水中氨氮的研究，该法因成本低、再生容易、管理方便及其优异的除氨氮性能，已得到广泛关注。

天然沸石是含水多孔硅酸盐的总称，其结晶构造主要是由（SiO）四面体构成，其中部分Si为Al3+取代，导致负电荷过剩，因此，结构中有碱金属（或碱土金属）等平衡电荷的离子，同时沸石构架中有一定孔径的空腔和孔道，决定了其具有吸附、离子交换等性质（Zorbas A, Constantinides T, Vlyssides A G, Heavy Metal Uptake by Natural Zeolite and Metals Partitioning in Sewage Sludge Compost [J], Bioresource Technology, 2000, 72:113-119; Ortega E, Cheeseman C, Knight J, Properties of Alkali-Activated Clinoptilolite [J], Cement and Concrete Research, 2000, 30:1641-1646），其离子交换选择性顺序为：Cs⁺>Rb⁺>K⁺>NH₄⁺>Ba²⁺>Sr²⁺>Na⁺>Ca²⁺>Fe³⁺>Al³⁺>Mg²⁺>Li⁺。可见其对氨氮具有很强的选择性吸附能力，因而可被用于氨氮废水的处理。

发明内容

本发明的目的在于提供一种改性沸石在处理养虾废水中的应用，采用改性沸石处理养虾废水成本低、再生容易、使用方便。

为实现上述目的，本发明采用的技术方案如下：
首先采用改性剂对天然沸石进行改性处理，再在反应器中将改性沸石与养虾废水充分接触，对养虾废水进行处理，以氨氮去除率考察沸石处理效果。改性时先将沸石用去离子水清洗干净，烘干，称取一定质量的沸石，浸泡在一定浓度的改性溶液中，充分搅拌≥2小时，烘干，备用。

所述改性剂可为0.05~0.30mol/L的HCl、0.01~0.05mol/L的H₂SO₄、0.2~1.0mol/L的NaCl、0.05~0.25mol/L的NaOH或0.03~0.15mol/L的HCl与0.2~1.0mol/L的NaCl混合溶液；当改性剂为HCl和NaCl混合溶液时，最佳浓度NaCl为0.8mol/L，HCl为0.09mol/L；采用改性剂对天然沸石进行改性处理时间通常应≥2小时，最好≥4小时，此时可改性充分完全；改性沸石对养虾废水进行处理时，改性沸石与养虾废水接触时间应≥30分钟；在流化床中采用改性沸石对养虾废水进行处理时，空速（V_{水}:V_{沸石})通常可为1.2-2.4，空速（V_{水}:V_{沸石})为1.8时最好；改性沸石失去活性后，可使用NaCl溶液再生时，pH值在10.1~10.4较好。

本发明具有如下优点：
1. 使用方便，效果好。本发明可有效处理养殖过程中产生的养虾废水中的氨氮。
2. 成本低。本发明方法中改性剂（如HCl和NaCl混合溶液）容易得到，价格便宜，操作简单，有实际应用价值。
3. 再生效果好。本发明方法中再生时使用NaCl碱性溶液，再生效果好。

具体实施方式

实施例1
改性沸石处理剂的制备
首先将沸石用去离子水清洗干净，烘干，称取20克20~30目的沸石，浸泡在50ml改性溶液中，充分搅拌4小时，用去离子水清洗，烘干，制成改性沸石处理剂，备用。在用酸或碱性溶液改性时，需用去离子水清洗至中性。

实施例2
改性沸石对养虾废水处理效果
准确称取5g按实施例1方式改性的沸石处理剂（使用不同浓度改性剂溶液），和100ml养虾废水若干份，分别放入一系列250ml锥形瓶内，室温下在摇床上振荡1h，取上清液，用纳氏试剂分光光度法测出溶液中氨氮浓度，计算出氨氮去除率。结果见表1-5。

<table>
<thead>
<tr>
<th>HCl溶液 (mol/L)</th>
<th>0.05</th>
<th>0.1</th>
<th>0.15</th>
<th>0.2</th>
<th>0.25</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>氨氮去除率 (%)</td>
<td>56.41</td>
<td>58.55</td>
<td>60.93</td>
<td>62.91</td>
<td>61.02</td>
<td>54.21</td>
</tr>
</tbody>
</table>
表 2. 用 NaCl 改性沸石对养虾废水处理效果

<table>
<thead>
<tr>
<th>NaCl 溶液 (mol/L)</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>氨氮去除率 (%)</td>
<td>64.15</td>
<td>65.89</td>
<td>66.91</td>
<td>68.10</td>
<td>68.02</td>
</tr>
</tbody>
</table>

保持 NaCl 溶液浓度为 0.8mol/L 不变，改变 HCl 用量，对沸石进行改性处理，结果见表 3。

表 3. 用 HCl 和 NaCl 改性沸石处理养虾废水效果

<table>
<thead>
<tr>
<th>HCl 溶液 (mol/L)</th>
<th>0.03</th>
<th>0.06</th>
<th>0.09</th>
<th>0.12</th>
<th>0.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>氨氮去除率 (%)</td>
<td>68.15</td>
<td>69.09</td>
<td>69.79</td>
<td>69.78</td>
<td>69.57</td>
</tr>
</tbody>
</table>

表 4. 用 NaOH 改性沸石对养虾废水处理效果

<table>
<thead>
<tr>
<th>NaOH 溶液 (mol/L)</th>
<th>0.05</th>
<th>0.10</th>
<th>0.15</th>
<th>0.2</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>氨氮去除率 (%)</td>
<td>54.75</td>
<td>54.89</td>
<td>55.18</td>
<td>56.43</td>
<td>52.82</td>
</tr>
</tbody>
</table>

表 5. 用 H$_2$SO$_4$ 改性沸石对养虾废水处理效果

<table>
<thead>
<tr>
<th>H$_2$SO$_4$ 溶液 (mol/L)</th>
<th>0</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>氨氮去除率 (%)</td>
<td>54.12</td>
<td>54.35</td>
<td>54.39</td>
<td>54.18</td>
<td>54.13</td>
<td>53.82</td>
</tr>
</tbody>
</table>

从实验结果来看，用 HCl 和 NaCl 改性沸石对氨氮去除效果较好。

实施例 3
改性处理时间对养虾废水处理效果
保持 NaCl 溶液浓度为 0.8mol/L 不变，改变改性处理时间，结果见表 6。

表 6. 改性处理时间对养虾废水处理效果

<table>
<thead>
<tr>
<th>改性时间</th>
<th>1h</th>
<th>2h</th>
<th>3h</th>
<th>4h</th>
<th>5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>氨氮去除率 (%)</td>
<td>64.25</td>
<td>67.89</td>
<td>68.06</td>
<td>68.10</td>
<td>68.12</td>
</tr>
</tbody>
</table>

采用改性剂对天然沸石进行改性处理时间通常应≥2 小时，最好≥4 小时，此时可改性充分完全。

实施例 4
不同空速条件下改性沸石对养虾废水处理效果
在玻璃反应器中，装填 50g 用 HCl 和 NaCl 改性沸石，用泵连续进样，采用不同的空速，进行处理。
反应温度 20℃，原水氨氮：1 mg/L，结果列于表 5。
表 7. 不同空速条件下改性沸石对养虾废水处理效果

<table>
<thead>
<tr>
<th>空速（V 水：V 沸石）</th>
<th>1.2</th>
<th>1.5</th>
<th>1.8</th>
<th>2.2</th>
<th>2.4</th>
<th>2.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>氨氮去除率（%）</td>
<td>69.47</td>
<td>69.08</td>
<td>68.95</td>
<td>67.98</td>
<td>61.13</td>
<td>47.53</td>
</tr>
</tbody>
</table>

实施例 5
不同 pH 值下再生后改性沸石对养虾废水处理效果
采用 NaCl 溶液做再生剂，NaCl 浓度为 2mol/L。改变溶液 pH 值对沸石进行再生，通过测定氨氮去除率来考察再生效果，再生效果见表 6。
表 8. 不同 pH 值下再生后改性沸石对养虾废水处理效果

<table>
<thead>
<tr>
<th>pH 值</th>
<th>9.2</th>
<th>9.5</th>
<th>9.8</th>
<th>10.1</th>
<th>10.4</th>
<th>10.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>氨氮去除率（%）</td>
<td>66.51</td>
<td>66.59</td>
<td>66.83</td>
<td>68.11</td>
<td>68.30</td>
<td>68.02</td>
</tr>
</tbody>
</table>

考虑经济实用性，改性沸石在 pH 值 10.1~10.4 下再生较好。

实施例 6
停留时间对氨氮去除的影响
保持交换柱高度，改性沸石量不变，改变进水流速。考察不同流速下沸石去除氨氮效果。
表 9 停留时间对氨氮去除的影

<table>
<thead>
<tr>
<th>流速（m/h）</th>
<th>停留时间（min）</th>
<th>氨氮去除率</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22</td>
<td>40</td>
<td>68.1</td>
</tr>
<tr>
<td>0.3</td>
<td>30</td>
<td>65.4</td>
</tr>
<tr>
<td>0.4</td>
<td>22</td>
<td>57.1</td>
</tr>
<tr>
<td>0.5</td>
<td>16</td>
<td>50.2</td>
</tr>
</tbody>
</table>

改变流速对除氨氮效果的影响较大。流速快，停留时间短，对氨氮去除率较低。停留时间过长，不经济。考虑具体情况，选择停留时间 30 分钟。