US 20210055938A1

a2y Patent Application Publication o) Pub. No.: US 2021/0055938 A1

a9y United States

NARAVANEKAR et al.

43) Pub. Date: Feb. 25, 2021

(54) HYDRATION IN VIRTUAL MACHINES

(71)  Applicant: MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA
(US)
(72) Inventors: Aniket Krishnat NARAVANEKAR,
Sammamish, WA (US); Yanran HAQ,
Redmond, WA (US); Neal Robert
CHRISTIANSEN, Bellevue, WA (US);
Ping XIE, Redmond, WA (US)

(21) Appl. No.: 16/725,859

(22) Filed: Dec. 23, 2019

Related U.S. Application Data

(60)
23, 2019.

100
_\

Provisional application No. 62/891,209, filed on Aug.

Publication Classification

(51) Imt.CL
GOG6F 9/445 (2006.01)
GOG6F 9/455 (2006.01)
GO6F 8/61 (2006.01)
(52) US. CL
CPC ............ GOG6F 9/44505 (2013.01); GOGF 8/61
(2013.01); GO6F 9/45533 (2013.01)
57 ABSTRACT
Techniques are disclosed for managing applications.

Responsive to receiving a request for access to a first
application, metadata is retrieved that is written to the virtual
machine. Responsive to the metadata indicating that the first
application is not written to the virtual machine, a download
request is transmitted to a remote host. A download package
for application is received that includes one or more appli-
cation files that are operable to execute the application when
stored at the virtual machine without executing an installa-
tion process.

App Provider 1
102(1)
sow Providor
File Name Extraction Path  [Payload Size e 102(N)
App2.exe C:\Program Files\..\[ Size: 91MB
App2.dit Ci0S\System\ | Size: 15MB
Download | { Download \\/ - Cloud Data
Request Package |_ -7  Neworkls) T~ Layer
128 130 . 104 = Local Data
R i Layer

Computing Device 106

Operating System {OS) 108

l I Central Processing Unit {CPU) 116 l

l Application 110

Memory 118 l

I Synchronization Engine 11

10 Controller 120 l

Update Services 114

| |

Network Interface 122 [

tocal Directory 126

Local | C\Program Files\.. \App1.exs Type: Payload | Size: 33MB!
Drive(s) C:\Pragram Files\.. \App2.exe Type: Metadata Sizer 1KB
o128 | CAOS\SystemiAppidi Type: Payload | Size: 12MB
R C\08\SystermApp2.di Type: Metadata | Size: 1 KB




Patent Application Publication  Feb. 25,2021 Sheet 1 of 10 US 2021/0055938 A1
App Provider 1
102(1
File Batch: Feature_Name2 App Provider N
File Name Extraction Path  |Payload Size ¢oe 102(N)
App2.exe C:\Program Files\...\| Size: 91MB
App2.dil C\OS\Systemt | Size: 15MB
Download Download Cloud Data
Request | | Package N '.'?_y?{_ —
128 130 Y Local Data
Layer
Computing Device 106
Operating System (OS) 108 Central Processing Unit (CPU) 116

Application 110

Memory 118

Synchronization Engine 112

{/O Controfler 120

Update Services 114

Network interface 122

Local
 Drive(s) |

Local Directory 126

C:\Program Files\.. \Appt.exe Type: Payload | Size: 33MB
CAProgram Files\..\App2.exe Type: Metadata |Size: 1 KB
CAOS\System\App1dii Type: Payload |Size: 12MB|
COS\Systemi\App2.dl Size: 1KB | |

FIGURE 1



Patent Application Publication  Feb. 25,2021 Sheet 2 of 10 US 2021/0055938 A1

App Provider
102
200 File Batch 213: App2
\ File Name Exiraction Path  {Payload Size
App2.exe C:\Program Files\..\} Size: 91MB
App2.dil CAOS\System\ | Size: 15MB
Cloud Dgta !_aygr ‘‘‘‘‘
Local Data Layer
Computing Device 106 Synchronization Engine 112
Operating System (OS)
108
—— ; ; Cache 210
Application Interfaces Open e
202 Request Filter Driver iMetadata
— 208 209 o2
| t=App204(1) | e = bemreremomtenad
w  29App204(2) | S 1
i Open | o ipg T :
I Nt App 204(N) I { Request | gl\/letadataE
i g | 1.2

Local Drive(s) 124
. FeaweFlesa6 .
File Name File Path Payload Size | Metadata Size | Auto Dehydrate
App1l.exe C:\Program Files\..\ 33MB No No
App2.exe C:\Program Files\..\ 0 MB 1KB 5 Days Inactivity
AppN.exe C:AProgram Files\..\ 25MB 1KB 1KB
App1.di CAOS 1System) 12 MB No No
App2.dil COS\System) g MB 1KB N/A (Dependent)
AppN.di CAOS\System) 16 MB 1KB N/A (Dependent)
User lnputz 1Daevice
Activity B
48 User

220 FIGURE 2A



Patent Application Publication

225

N

Cloud Data Layer

Local Data Layer

Feb. 25,2021 Sheet 3 of 10

US

2021/0055938 A1

App Provider

File Batch 213: App2

File Name

102

Extraction Path

Payload Size

App2.exe

C:\Program Files\...\

Size: 91MB

App2.4dil

CAOS\Systemt

Size: 15MB

________ L

Download
Request
128

Computing Device

106

Operating System (OS)

108

Feature Interfaces
202

15 App 204(1) |

.

20 App 204(2) |

N App 204(N) |

iMetadata’
............... (212
§Payload§ Cache 210
i Access | o enanae .
Request} Filter Driver iMetadata
S SR «
21 209 AT

Local Drive(s) 124

Feature Files 206

220

FIGURE 2B

File Name File Path Payload Size | Metadata Size | Auto Dehydrate
App1l.exe C:\Program Files\..\ 33MB No No
App2.exe C:\Program Files\..\ 0 MB 1KB 5 Days Inactivity
AppN.exe C:AProgram Files\..\ 25MB 1KB 1KB
App1.di CAOS 1System) 12 MB No No
App2.dil COS\System) g MB 1KB N/A (Dependent)
AppN.di CAOS\System) 16 MB 1KB N/A (Dependent)

User lnputz 1Daevice

Activity B
48 User




Patent Application Publication

250

Feb. 25, 2021 Sheet 4 of 10

US 2021/0055938 A1l

App Provider
102

File Batch 213: App2

\ File Name Exiraction Path  {Payload Size
App2.exe C:\Program Files\..\} Size: 91MB
App2.dil CAOS\System\ | Size: 15MB
I H
Download Package 130 |
| | Payloads252 | |
Cloud Dgta !_aygr o e :. : ;-3 ‘
Local Data Layer
, P Y
Computing Device 106 | Response | Filter Driver 209
S Batead L 1252(1):
Operating System (OS) ; { Payload ! { ;
108 ppiE Ry (1
Feature Interfaces L :
202 Synchronization Engine
| t=App204(1) | l 1z
s 29AIp2042) | {Payload T
i Access ;| Payload |
|_NnApp 204N} | {Request! | 574
1 b

s
H

1

H &l
------- ; e swand

Local Drive(s) 124
. FeaweFlesa6 .
File Name File Path Payload Size | Metadata Size | Auto Dehydrate
App1l.exe C:\Program Files\..\ 33MB No No
App2.exe C\Program Files\..\ | Size: 91MB 1KB 5 Days Inactivity
AppN.exe C:AProgram Files\..\ 25MB 1KB 30 Days Inactivity
App1.di CAOS 1System) 12 MB No No
App2.dil COS\System) Size: 15MB 1KB 5 Days Inactivity
AppN.di CAOS\System) 16 MB 1KB 30 Days Inactivity
User lnputz 1Daevice
Activity B
218
User
220 FIGURE 2C




US 2021/0055938 A1l

Feb. 25,2021 Sheet 5 of 10

Patent Application Publication

€ 'Ol

ajen

0% J91ua) eleQ

,,,,,,,,, peuey
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ - qOTE
ST
..qgTE
FEYSEI
29T¢
,,,,,,,,, peuey
....................................... eoTE v
ZeWA | | TEWA < wmv»@@ Aem
- B8TE jansag £aTIE
- g91¢
J3jjo4u0) <
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, sTE
SEVVETS 0E v @
e
o 200¢

ove

DEE yiomieN
SUOIEDIUNWILIOYD



Patent Application Publication

400
\

Feb. 25,2021 Sheet 6 of 10

Feature Host 4

US 2021/0055938 A1l

402(1
File Batch: Feature_Name2 Feature Host N
File Name Extraction Path  |Payload Size s 402(N)

Feature_NameZ2.exe {C:\Program Files\...\| Size: 94MB
Feature_Name2.dll C:\OS\System\ | Size: 45MB
Download Download P N

Request Package o Network(s) TN

\ /

428 430 ~. M

C—

— et

Virtual Machine 406

Operating System (OS) 408

Central Processing Unit (CPU) 446

Application 440

Memory 448

FIGURE 4




Patent Application Publication  Feb. 25,2021 Sheet 7 of 10 US 2021/0055938 A1
501

00—

50
S

COMPUTING DEVICE

l 505
\

RETRIEVE METADATA THAT IS WRITTEN TO THE LOCAL DRIVE OF THE }

3
RECEIVE A REQUEST FOR ACCESS TO A FIRST APPLICATION ON THE ]

COMPUTING DEVICE TO INDICATE WHETHER THE FIRST APPLICATION IS
WRITTEN TO THE LOCAL DRIVE OF THE COMPUTING DEVICE

l 507
\
[ CAUSE A DOWNLOAD REQUEST TO BE TRANSMITTED TO AN APPLICATION J

PROVIDER THAT IS ASSOCIATED WITH THE APPLICATION

l 509
&

RECEIVE, FROM THE APPLICATION PROVIDER BASED ON THE DOWNLOAD ]

REQUEST, A DOWNLOAD PACKAGE FOR APPLICATION

l 511
\

WRITE THE APPLICATION FILES TO THE LOCAL DRIVE OF THE COMPUTING

DEVICE

_ J
l 533
J

SERVICE THE REQUEST BY LAUNCHING THE APPLICATION ON THE
COMPUTING DEVICE WITHOUT EXECUTING THE INSTALLATION PROCESS

515

J

END

FIGURE 5



Patent Application Publication  Feb. 25,2021 Sheet 8 of 10 US 2021/0055938 A1
601

3N

603

MACHINE

l 605
\

[ RETRIEVING METADATA THAT IS STORED AT THE VIRTUAL MACHINE IN

[ RECEIVING A REQUEST TO LAUNCH A FIRST APPLICATION ON A VIRTUAL

| —

ASSOCIATION WITH THE FIRST APPLICATION, THE METADATA INDICATING
THAT FILES ASSOCIATED WITH THE FIRST APPLICATION ARE NOT STORED AT
THE VIRTUAL MACHINE

l 607
4

TRANSMITTING A DOWNLOAD REQUEST TO AN APPLICATION HOST THAT IS
ASSOCIATED WITH THE FIRST APPLICATION

l 609
&

RECEIVING, FROM THE APPLICATION HOST, A DOWNLOAD PACKAGE
E

N/

N/

INCLUDING ONE OR MORE APPLICATION FILES THAT ARE OPERABLE TO
XECUTE THE FIRST APPLICATION WHEN STORED AT THE VIRTUAL MACHINE
WITHOUT EXECUTING AN INSTALLATION PROCESS

1
|

SERVICING THE REQUEST BY LAUNCHING THE APPLICATION WITHOUT
EXECUTING THE INSTALLATION PROCESS

-

613

S

END

FIGURE 6



Patent Application Publication  Feb. 25,2021 Sheet 9 of 10 US 2021/0055938 A1

701
{

700 BEGIN
N 703
|
ENSTALLING A FIRST APPLICATION ON A COMPUTING DEVICE, WHEREIN FiLESJ

ASSOCIATED WITH THE FIRST APPLICATION ARE STORED AT ALOCAL
STORAGE OF THE COMPUTING DEVICE

L 705
|

[INSTALUNG A SECOND APPLICATION ON THE COMPUTING DEVICE, WHEREIN}

FILES ASSOCIATED WITH THE SECOND APPLICATION ARE STORED AT ON A
REMOTE COMPUTING DEVICE

l 707
\

[STOR!NG, AT THE LOCAL STORAGE OF THE COMPUTING DEVICE, METADATA

INDICATIVE THAT THE SECOND APPLICATION {S NOT WRITTEN TO THE LOCAL
STORAGE OF THE COMPUTING DEVICE

l 709
)

DETERMINING THAT THE METADATA INDICATES THAT THE SECOND J

APPLICATION IS NOT WRITTEN TO THE LOCAL DRIVE OF THE COMPUTING
DEVICE

l 711
{

CAUSING A DOWNLOAD REQUEST TO BE TRANSMITTED TO THE REMOTE
COMPUTING DEVICE

l 7{3

[ RECEIVING, FROM THE REMOTE COMPUTING DEVICE BASED ON THE

DOWNLOAD REQUEST, A DOWNLOAD PACKAGE FOR THE SECOND
APPLICATION

l s

WRITING THE APPLICATION FILES TO THE LOCAL STORAGE OF THE
COMPUTING DEVICE

l 7@7

[ SERVICING THE REQUEST BY LAUNCHING THE SECOND APPLICATION ON ]
T

HE COMPUTING DEVICE WITHOUT EXECUTING THE INSTALLATION PROCESS

719

FIGURE 7 END



Patent Application Publication  Feb. 25,2021 Sheet 10 of 10  US 2021/0055938 A1l

801
{

800 ~ BEGIN
803
\
INSTALLING A FIRST APPLICATION AT A VIRTUAL MACHINE, WHEREIN FILES J

ASSOCIATED WITH THE FIRST APPLICATION ARE STORED ON A LOCAL
VIRTUAL STORAGE OF THE VIRTUAL MACHINE

l 805
|

INSTALLING A SECOND APPLICATION AT THE VIRTUAL MACHINE, WHEREIN
FILES ASSOCIATED WITH THE SECOND APPLICATION ARE STORED ON A
REMOTE HOST

l 807
\
[ STORING, AT THE VIRTUAL MACHINE, METADATA INDICATIVE THAT THE ]

SECOND APPLICATION IS NOT WRITTEN TO LOCAL VIRTUAL STORAGE OF
THE VIRTUAL MACHINE

l 809
)

DETERMINING THAT THE METADATA INDICATES THAT THE SECOND J

APPLICATION IS NOT WRITTEN TO THE LOCAL VIRTUAL STORAGE OF THE
VIRTUAL MACHINE

l 811
{
13

CAUSING A DOWNLOAD REQUEST TO BE TRANSMITTED TO THE REMOTE
! K

HOST
[RECE!V!NG, FROM THE REMOTE HOST BASED ON THE DOWNLOAD REQUEST,

A DOWNLOAD PACKAGE FOR THE SECOND APPLICATION

l 81&5

[WR!T!NG THE APPLICATION FILES TO THE LOCAL VIRTUAL STORAGE OF THE

VIRTUAL MACHINE

l 8{7

[ SERVICING THE REQUEST BY LAUNCHING THE SECOND APPLICATION

WITHOUT EXECUTING THE INSTALLATION PROCESS

819

FIGURE 8 END



US 2021/0055938 Al

HYDRATION IN VIRTUAL MACHINES

PRIORITY APPLICATION

[0001] This application claims the benefit of and priority
to U.S. Provisional Application No. 62/891,209, filed Aug.
23, 2019, entitled “HYDRATION OF APPLICATIONS,”
the entire contents of which are incorporated herein by
reference.

BACKGROUND

[0002] Computing devices are often configured with
applications and software components that far exceed those
that are routinely used. Locally storing all of the files that are
needed to implement both routinely and seldom used appli-
cations consumes a substantial amount of storage space.
This is particularly troublesome in computing devices hav-
ing low storage capacity.

[0003] Some techniques may reduce an overall software
footprint on a computing device by removing seldom used
application files. Such techniques enable users to manually
select applications for uninstalling to free up storage space.
However, when the application is needed in the future, the
application must be reinstalled.

[0004] It is with respect to these and other considerations
that the disclosure made herein is presented.

SUMMARY

[0005] Regardless of how seldom a user needs to use an
application, the application must be installed, even if it is to
be used only one time. Users typically install applications
that are only used for a short period of time, yet most users
do not uninstall these applications after use. Additionally,
these applications take up storage space on the device. When
the applications are installed on computing instances in a
virtualized environment, the user may have increased costs
when the user is charged based on the amount of storage
capacity that is used. In such scenarios, the options for a user
are:

[0006] 1. Install—use application—uninstall when not
needed
[0007] 2. Install—use application—leave the application

installed, takes up storage space

[0008] 3. Install—use application—uninstall when not
needed—initiate reinstall procedure when needed again—
download installer—install again and repeat

[0009] Various embodiments are disclosed for installing
applications in a “placeholder” format. In one embodiment,
when an application is installed, instead of the entire set of
files being installed, one or more placeholders are created
instead. The placeholder contains the metadata (file names,
sizes, time stamps, permissions, version, etc.) but not the
contents. The size of this placeholder may be small com-
pared to the original file. When the user needs to launch an
application, the file is retrieved from a remote location
where the file was previously uploaded—either by the
author of the application, by an enterprise administrator, or
other service provider.

[0010] By automating a device’s application storage in the
manner described, users may have the freedom to install
multiple applications without having to worry about the
storage requirements. Additionally, enterprise administrators
can provide a superset of every application that may be
needed by enterprise users in a seamless manner, where

Feb. 25, 2021

applications that are not locally present can be provided
on-demand without having to go through installation pro-
cedures.

[0011] In some embodiments, when the storage device is
full or a predetermined condition is met (age of the instal-
lation, for example), the installed application’s files may be
converted to being a “placeholder”. In this manner, more
recently used applications may be physically installed on the
user’s device and old/stale applications may be converted to
placeholders. An uninstallation process is not needed to
convert an application to placeholders. Since the application
is not functionally uninstalled, the application appears to the
user as if it is fully and physically present on the device. If
the user needs to launch an application that has been
replaced with placeholders, the application may be launched
without the need for reinstallation. In scenarios such as
gaming consoles where the size of a game application is
significant, the user may nevertheless be able to install a
large number of games on a limited capacity console.
[0012] Insome embodiments, a web-based service may be
provided that allows upload of assets necessary for an
application, including code binaries. In one embodiment, an
operating system (OS) component may be implemented that
intercepts application launches and monitors dependencies
while retrieving them from the web service when needed.
[0013] The technologies described herein enable a com-
puting device to save storage space by foregoing writing the
files needed for applications to local storage and automati-
cally downloading the files as the applications are called
upon. In an example embodiment, a computing device may
be initially configured with some applications in a hydrated
state and other applications in a dehydrated state. In the
event that a dehydrated application is invoked, the comput-
ing device may automatically download and locally store the
files that are associated with the application.

[0014] Due to the existence of the placeholder files, the
application (i.e., an application for which placeholders are
locally stored rather than the actual application files) may
appear to be locally available from the perspective of a user
of'the computing device and even other applications running
on the computing device. For example, an icon for the
application may appear within an application menu of the
computing device. However, when a request is generated by
the user (or another application) for the application, the
computing device may quickly determine that it is currently
in the dehydrated state. Then, based on this determination,
the computing device may respond by performing an inter-
mediary step (i.e., a step in between receiving the request
and servicing the request) to fully download and hydrate the
needed application files. After completing this intermediary
step, the computing device may then fulfill the request as if
the application files were hydrated when the request was
initially received.

[0015] In an embodiment, a computing device has a stor-
age medium that includes some application files stored in a
hydrated state and other application files stored in a dehy-
drated state. As used herein, the term “hydrated state” when
used to describe a state of file refers to a state in which the
data for the file is stored locally on the storage medium of
the computing device. For example, if a determination is
made that an application is to be hydrated, then one or more
of the binaries that are unique to this application are actually
written to and take up space (e.g., bytes) on the storage
medium. In contrast, the term “dehydrated state” when used



US 2021/0055938 Al

to describe a state of a file refers to a state in which the data
for the file is not stored locally on the storage medium of the
computing device. For example, if an application is stored in
a dehydrated state on the computing device, then binaries
that are unique to this application are not written to and do
not take up space on the storage medium.

[0016] With regard to automatically hydrating applica-
tions onto the local drive as needed, the computing device
may receive a request for access to an application that is
currently dehydrated. Upon receiving the request, the com-
puting device may retrieve at least some metadata that is
written to the storage medium in association with the
requested application. For example, in some embodiments,
placeholder files may be written to the storage medium in
place of the actual files associated with dehydrated applica-
tion. The placeholder files may comprise metadata that
indicates an address from which the application files may be
downloaded. In some embodiments, the placeholder files
also indicate an application provider of the application files.
Stated plainly, the individual placeholder files may point to
the actual application files for which they are serving as
placeholders.

[0017] The computing device may then use the place-
holder metadata to generate a download request that is
associated with the requested application file. In some
embodiments, the computing device may provide the place-
holder metadata to a synchronization engine to identify the
requested application file and to indicate the appropriate
location from which the requested application file can be
obtained. Based on the placeholder metadata, the synchro-
nization engine may then generate and send the download
request to the appropriate data provider.

[0018] Various embodiments are further disclosed for
installing operating system and other system components of
a virtual machine in a “placeholder” format. In one embodi-
ment, when operating system components and applications
are configured for a virtual machine, instead of the entire set
of files being installed, one or more placeholders are created
instead. The placeholders contain the metadata (file names,
sizes, time stamps, permissions, version, etc.) but not the
contents. Only a minimal set of operating system compo-
nents and applications are locally stored, and other operating
system components and applications are dehydrated. When
the virtual machine needs to launch a dehydrated application
or a dehydrated operating system component, the file is
retrieved from a remote location (e.g., a remote host) where
the needed data for this file is stored.

[0019] By reducing the storage needed for a wvirtual
machine until the files are actually needed, the amount of
storage needed by one or more virtual machines may be
substantially reduced. If the service provider implements a
pay-as-you-go pricing model for storage, then the described
embodiments may allow for a decrease in the costs associ-
ated with obtaining and running virtual machines. Addition-
ally, enterprise administrators can provide a superset of
every application that may be needed by enterprise virtual
machine users in a seamless manner, where applications that
are not present at the virtual machine can be provided
on-demand without having to go through installation pro-
cedures.

[0020] In some embodiments, when a predetermined con-
dition is met (age of the installation, storage used by a virtual
machine, for example), one or more files may be converted
to being a “placeholder”. If the virtual machine needs to

Feb. 25, 2021

launch a function or application that has been replaced with
placeholders, the function or application may be launched
without the need for reinstallation.

[0021] The technologies described herein enable users of
virtualized services to save storage space by foregoing
writing the files needed for the operating system and appli-
cations to storage associated with the virtual machine and
automatically downloading the files as the functions/appli-
cations are called upon. In an example embodiment, a virtual
machine may be initially configured with some operating
system components and applications in a hydrated state and
other system components and applications in a dehydrated
state. In the event that a dehydrated system component or
application is invoked, the virtual machine may automati-
cally download and locally store the files that are associated
with the system component or application.

[0022] Due to the existence of the placeholder files, the
dehydrated application or function may appear to be avail-
able from the perspective of the virtual machine and other
applications running on the virtual machine. However, when
a request is generated for the dehydrated application, the
virtual machine may determine that it is currently in the
dehydrated state. Then, based on this determination, the
virtual machine may respond by performing an intermediary
step (i.e,, a step in between receiving the request and
servicing the request) to fully download and hydrate the
needed application files. After completing this intermediary
step, the virtual machine may then fulfill the request as if the
application files were hydrated when the request was ini-
tially received.

[0023] These and various other applications will be appar-
ent from a reading of the following Detailed Description and
a review of the associated drawings. This Summary is
provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed
Description. This Summary is not intended to identify key
applications or essential applications of the claimed subject
matter, nor is it intended that this Summary be used to limit
the scope of the claimed subject matter. Furthermore, the
claimed subject matter is not limited to implementations that
solve any or all disadvantages noted in any part of this
disclosure.

DRAWINGS

[0024] The Detailed Description is described with refer-
ence to the accompanying figures. In the figures, the left-
most digit(s) of a reference number identifies the figure in
which the reference number first appears. The same refer-
ence numbers in different figures indicate similar or identical
items. References made to individual items of a plurality of
items can use a reference number with another number
included within a parenthetical (and/or a letter without a
parenthetical) to refer to each individual item. Generic
references to the items may use the specific reference
number without the sequence of letters.

[0025] FIG. 1 illustrates an example system in accordance
with the disclosure.

[0026] FIG. 2A illustrates an example dataflow scenario in
accordance with an embodiment.

[0027] FIG. 2B illustrates an example dataflow scenario in
accordance with an embodiment.

[0028] FIG. 2C illustrates an example dataflow scenario in
accordance with an embodiment.



US 2021/0055938 Al

[0029] FIG. 3 is a diagram illustrating a data center in
accordance with the present disclosure;

[0030] FIG. 4 illustrates an example system in accordance
with the disclosure.

[0031] FIG. 5 is a flow diagram of an example method in
accordance with the present disclosure.

[0032] FIG. 6 is a flow diagram of an example method in
accordance with the present disclosure.

[0033] FIG. 7 is a flow diagram of an example method in
accordance with the present disclosure.

[0034] FIG. 8 is a flow diagram of an example method in
accordance with the present disclosure.

DETAILED DESCRIPTION

[0035] The following Detailed Description describes tech-
nologies that enable a computing device or virtual machine
to save storage space by foregoing writing the data for
application or operating system files to local storage and
then automatically downloading the application or operating
system files as associated applications are called upon.
[0036] As described above, the term “dehydrated file”
may refer to a data file that is stored on a local drive of a
client device in a format that makes the data file visible to
auser in a file-browser GUI while at least some content data
of the data file is absent from the local drive. For example,
a dehydrated file may be a relatively small file that is stored
locally on a client device to represent a hydrated counterpart
file that is stored in a cloud database. An example dehy-
drated file may include a thumbnail image (e.g., a reduced-
size visual representation of file content data) and place-
holder metadata that identifies the name of the file and points
to its hydrated counterpart in the cloud. More generally, we
can define a dehydrated file as any file that has metadata but
does not have the entire content on disk. Accordingly,
hydration is the act of retrieving any content not already on
disk by downloading it from the cloud.

[0037] As described above, the term “hydrated file” refers
to a file for which file content data is stored on a local drive
of'a client device so that the data file can be accessed locally
without fetching the file content data from a cloud database.
A partially hydrated state is one where the file is mixed
between hydrated and dehydrated. In the partially hydrated
state some but not all of the content is on disk. The
mechanisms described in this disclosure will address par-
tially hydrated files as well as fully dehydrated files.
[0038] In a more general embodiment, a dehydrated file
may be defined as any file that has metadata but does not
have the entire content on disk. Hydration, then, is the act of
retrieving any content not already on disk by downloading
it from the cloud.

[0039] The disclosed technologies represent a substantial
advantage over existing systems where applications and OS
components are stored locally at a computing device or
virtual machine. These shortcomings may exacerbate com-
puting resource scarcity issues including the overuse of
processing resources as well as the finite nature of local
storage space. It can be appreciated, therefore, that the
disclosed technologies represent a substantial advance
toward reducing processor and storage usage associated with
providing applications and functions on computing devices
and virtualized resources.

[0040] Generally described, a computing device or virtual
machine may be initially configured with files in a hydrated
state and other files in a dehydrated state. As a specific

Feb. 25, 2021

example, an operating system (OS) that is running on a
virtual machine may include some applications that are
frequently used and other applications that are rarely used.
To conserve storage space, the relative frequencies of use of
the various applications may be weighed as a factor for
selecting some batches of application files to store on the
virtual machine in a hydrated state and other batches of
application files to leave in a dehydrated state. For example,
batches of application files that enable implementation of
frequently used applications may be fully hydrated whereas
other batches of application files that enable implementation
of rarely used applications may be left dehydrated. Then,
when a request is received that requests access to an indi-
vidual dehydrated application file, the virtual machine may
automatically retrieve, from an appropriate application pro-
vider, one or more application files that is associated with
this dehydrated application file. For example, requesting a
batch of files associated with the dehydrated application file
may be retrieved. Alternatively, a single file may be retrieved
as it is accessed. After receiving the specific batch of
application files from the appropriate application provider,
the virtual machine may fulfill the request by providing full
access to the application that is now hydrated but that was
previously dehydrated when the request was initially
received. In this way, predetermined batches of application
files remain immediately accessible at a virtual machine
without perpetually consuming significant amounts of stor-
age space on the virtual machine. That is, such predeter-
mined batches of application files only consume significant
storage space if actually called upon in a request—but are
otherwise stored as metadata only which does not take up a
significant amount of storage space.

[0041] As described in more detail below, in some
embodiments, placeholder files are stored on an individual
basis for dehydrated application files in lieu of the full
version of these application files (i.e., payload and all).
Exemplary such placeholder files may include placeholder
metadata that indicates a application provider from which a
corresponding application file can be readily obtained and/or
an address from which the corresponding application file can
be readily obtained. The metadata may also indicate whether
a payload associated with the requested application file is
currently written to the local drive.

[0042] As used herein, the term “application” refers to a
specific computing functionality that can be performed by a
computing device or virtual machine by use of one or more
individual application files and/or batches of application
files. The payloads for individual batches of application files
may be downloaded and written to local storage of a
computing device or virtual machine to enable that comput-
ing device to support additional applications such as, for
example, additional hardware use cases or additional soft-
ware use cases. As a specific example, a computing device
or virtual machine may be equipped with a camera that is
suitable for performing facial recognition techniques and a
batch of application files may include software code that
enables the computing device or virtual machine to imple-
ment such techniques via the camera. Thus, the batch of
application files may include drivers and/or any other suit-
able type of computer readable instructions that are usable to
implement a desired functionality. Exemplary applications
include, but are not limited to, the wide array of computing
functionalities that are available to add or remove from a
computing device via the Applications on Demand (com-



US 2021/0055938 Al

monly referred to as “FODs”) that are available for use on
the MICROSOFT WINDOWS 10 operating system.
[0043] As used herein, the term “application file” refers to
any computing file that is usable individually and/or in
conjunction with one or more other computing files to
enable a functioning computing device (e.g., a general-
purpose computer that is executing a typical operating
system) or virtual machine to implement an “application” as
defined herein. For example, individual computing files of a
group or batch of computing files that enables a general-
purpose computer to perform a facial recognition application
may be aptly referred to as application files. Such files may
include binaries, media, extension associations,

[0044] In some embodiments, a dehydrated application
may be launched when core components have been down-
loaded and stored locally, before all of the associated appli-
cation files are downloaded. This may allow for faster
execution of a dehydrated application, in particular when a
significant amount of data that is not immediately needed to
launch the application has yet to be downloaded. The
additional data may be downloaded in the background as the
application executes.

[0045] In some embodiments, when an application is
purchased, a core set of metadata may be stored on the
computing device and larger files such as binaries and media
may be downloaded at a later time when the application is
launched. This may be useful when a device is on a limited
bandwidth connection and the user wishes to purchase or
otherwise install an application for later use.

[0046] It can be appreciated that when an application is
dehydrated, uninstallation of such an application will be
relatively simple as only the stored metadata associated with
the dehydrated application needs to be removed from the
device.

[0047] In some embodiments, applications may be
selected for dehydration automatically based on one or more
criteria. For example, such criteria may include:

[0048] applications that have not been accessed for more
than a specified period of time

[0049] a limit as to the amount of storage that is to be used
for applications (the selection of which applications to
dehydrate may be determined based on a prioritization
scheme)

[0050] the user or administrator may be allowed to select
which applications to dehydrate; in some embodiments, the
user or administrator may be allowed to pin an application
so that the application is not allowed to be dehydrated.
[0051] Dehydrated applications may be stored at a remote
service, such as a storage service or a service configured to
store dehydrated applications. For virtual machines, dehy-
drated applications may be stored at a host that provides a
central depository for applications. In some embodiments,
the host may be located to be geographically advantageous
to the virtual machines. In some embodiments the remote
service or central depository may track versions of applica-
tions and provide the latest version of an application so that
devices or virtual machines that download dehydrated appli-
cations will always receive the latest versions of the appli-
cations.

[0052] Turning now to FIG. 1, illustrated is a system 100
for enabling a computing device 106 to store predetermined
files in a dehydrated state on a local drive 124 while
retaining on-demand accessibility of the files at the com-
puting device 106. In the illustrated example, a first batch of

Feb. 25, 2021

files that corresponds to an application titled “Appl” is
stored in a hydrated state such that a payload of each
individual application file within this first batch is stored on
the local drive 124 of the computing device 106. The
respective payloads of the individual application files may
include, for example, binaries, permissions, registry settings,
extension settings, and other data that is usable to implement
the application. Also shown in the illustrated example, a
second batch of files that corresponds to an application titled
“App2” is stored in a dehydrated state such that placeholder
files are stored in place of the actual application files of this
batch. In some embodiments, the placeholder files are stored
within a local directory 126 of the computing device 106 at
the same path as the actual application files would be stored
if hydrated (e.g., with payload written to local storage) onto
the computing device 106. In this way, user interactions with
the computing device 106 that result in an actual application
file being called at a specific file path will turn up the actual
application file, if present, or the respective placeholder if
the called upon application file is not hydrated onto the
computing device 106. The placeholder files do not include
a payload of the associated actual files but rather include
metadata that indicates properties of the corresponding
actual files (e.g., the full file with corresponding payload).
The metadata associated with any particular file may indi-
cate an application provider from which the particular file,
including the corresponding payload, may be obtained. As
described in more detail below, when a particular batch of
files is in a dehydrated state, the metadata from a placeholder
file in this particular batch may be used by the computing
device 106 to retrieve all of the actual files for that particular
batch on-demand when a single file associated with the
placeholder file from the batch is requested.

[0053] For purposes of adequately conveying the concepts
and technical benefits described herein, it may be beneficial
to prescribe a data size to the respective payloads for actual
application files and to the metadata for placeholder files.
Thus, as illustrated, the second batch of files includes two
actual files that are named “App2.exe” and “App2.dll” with
payloads of 91 MB and 15 MB, respectively (shown in the
cloud data layer on the application provider 102(1)). As
further illustrated, the two placeholder files corresponding to
these two actual files are a mere 1 KB each (shown in the
local data layer on the local drive 124). Thus, under these
specific but nonlimiting circumstances, the second batch of
application files will consume a mere 2 KB of local storage
space when stored in a dehydrated state in contrast to 106
MB of local storage space when stored in a hydrated state.

[0054] The computing device 106 may include an appli-
cation 110 that is installed onto the local drive 124. In some
embodiments, at least some batches of files that are usable
to implement various applications of the application 110
may be stored on the local drive 124 in a dehydrated state.
In particular, it should be appreciated that the techniques
described herein are usable to reduce the software footprint
of the OS 108 and/or the application 110. This reduction in
the software footprint is accomplished by storing files which
are usable to implement the application 110 in a dehydrated
state. Configuring the computing device 106 according to
the techniques described herein enables users and/or soft-
ware components to issue requests (e.g., call upon) for
dehydrated application files and to have these requests
serviced just as if the dehydrated application files were fully
hydrated at the time when the request was generated. This is



US 2021/0055938 Al

accomplished by automatically hydrating the requested
application files (and in some embodiments other commonly
batched application files) immediately upon receiving a
request. Then, following this intermediary step of hydrating
the requested application files, the computing device 106
may then respond to the request by provisioning access to
the payload of the newly hydrated application file. That is,
the computing device 106 receives the request when the
payload is not locally available and slightly delays respond-
ing to the request until after having downloaded and/or
written the payload to the local drive 124.

[0055] In some implementations, the computing device
106 may utilize a synchronization engine 112 for retrieving
download packages when requests are issued that seek
access to files that are currently dehydrated on the comput-
ing device 106. For example, when the OS 108 receives a
request that identifies a specific application that is currently
dehydrated, the OS 108 may retrieve metadata that is stored
in a placeholder file for the specific application. The OS 108
may then provide the metadata to the synchronization engine
112 to cause a download request 128 to be transmitted to an
application provider 102(1) that is associated with the spe-
cific application. As described above, the metadata that is
stored in the placeholder file may include an identification of
which application provider (of numerous potential applica-
tion providers) from which the requested application file can
be obtained. As used herein, the term “metadata” refers
specifically to a set of data that provides information about
a corresponding file and, more particularly, about how the
computing device 106 can acquire a payload associated with
the corresponding file. In some embodiments, the metadata
may also indicate whether the payload for the requested
application is currently written to the local drive of the
computing device. Stated alternatively, the metadata may
include an indication of whether or not the application that
is specifically requested is currently hydrated at the com-
puting device.

[0056] The download request 128 may include an identi-
fication of the requested application for which access has
been requested. In some instances, the download request 128
may omit any specific identification of the individual files.
For example, the request may be generated based on a user
entering a run command to start a currently dehydrated
application by accessing an associated executable (e.g.,
“.exe”) file. In this example, the run command may specifi-
cally reference the file named “App2.exe” without referenc-
ing the related file named “App2.dll.” Thus, this run com-
mand may cause the OS 108 to generate a request for access
to the file named “App2.exe.” In response to the request, the
synchronization engine 112 may generate a download
request 128 for this specifically requested application file
only but does not request the related file named “App2.
dll”—even though these files are commonly batched. One
reason that the synchronization engine 112 might not iden-
tify all of these commonly batched application files in the
download request 128 is that the various components of the
computing device 106 may lack visibility as to which files
are batched together. For example, the OS 106 may be
designed to simply fulfill requests on an application basis
and the requested files may omit indications as to any
relationships to other files they may have. Exemplary syn-
chronization engines 112 include, but are not limited to,
SYNC API developed by DROPBOX, BACKUP AND
SYNC developed by GOOGLE, and the ONEDRIVE UNI-

Feb. 25, 2021

VERSAL WINDOWS PLATFORM (UWP) APP for
MICROSOFT’S WINDOWS 10. Accordingly, it can be
appreciated that the synchronization engine 112 may be a
native component of the OS 108 or may be an add-on
component that is downloaded and installed onto the client
device 106 separately from the OS 108.

[0057] Upon receiving the download request 128, the first
application provider 102(1) may identify an entire pre-
defined batch of files to which the requested application
belongs. For example, as illustrated, the first application
provider 102(1) may determine that the requested applica-
tion (e.g., the file named “App2.exe”) belongs to a batch of
application files named “File Batch: App2”). Then, rather
than returning merely the requested file, the first application
provider 102(1) may return a download package 130 that
includes the entire identified batch of application files. Thus,
in the illustrated example, in response to the download
request 128 identifying the single file named “App2.exe,”
the first application provider 102(1) returns both of the
requested “App2.exe” file and also the “App2.dll” file—and
any other application files that are commonly batched. In
some embodiments, the first application provider 102(1)
may return the download package 130 in the form of a
compressed archive file to increase the speed at which the
entire batch of application files becomes hydrated on the
computing device 106. Since while implementing the
desired application the computing device 106 is likely going
to request access to the other application files within a batch,
delivering the download package 130 as a compressed
archive folder also decreases the overall network bandwidth
that would otherwise be consumed if each application file
were individually delivered as requested by the computing
device 106.

[0058] Upon receipt of the download package 130, the
computing device 106 may write each of the individual files
onto the local drive 124 (e.g., a hard disk, a solid-state hard
drive, or any other suitable volatile or non-volatile storage
medium) in order to convert the individual application files
from the dehydrated state into the hydrated state. In some
embodiments, once the entire batch of files is fully hydrated
(or while the batch is actively being hydrated), the comput-
ing device 106 services the request by provisioning access to
the requested application by using the newly downloaded
payload thereof. Alternatively, the computing device 106
may service the request by provisioning access to the newly
downloaded payload of the requested application even
before the payload is written to the local drive 124. For
example, the request may be serviced by directly loading the
payload from the download package into a memory or cache
of the computing device 106.

[0059] In some implementations, the computing device
106 further includes update services 114 that are configured
to automatically update various components such as, for
example, the OS 108 and/or the application 110. For
example, as new versions of the OS 108 and/or application
110 become available from a corresponding provider, the
update services 114 may download the installation files (e.g.,
a cabinet file having the “.cab” extension) and then install
the already downloaded installation files at an appropriately
scheduled time (e.g., during off-peak usage). In some
embodiments, the update services 114 are further configured
to automatically update the metadata that corresponds to
specific dehydrated applications when updates to the dehy-
drated applications become available from an application



US 2021/0055938 Al

provider 102. For example, the update services 114 may
periodically communicate with the application provider(s)
102 for the various applications that are currently dehy-
drated on the computing device 106 to determine when new
version(s) of the files become available. Then, as the new
version(s) of the files become available, the update services
114 may update the metadata that is stored in the placeholder
for the files so that the “updated” metadata now indicates
how to obtain the updated files and updated payloads
thereof. For example, the metadata may be undated so that
the previous addresses in the metadata that indicated where
to download the previous version of the application files are
overwritten with new addresses that indicate where to down-
load the new versions of the files.

[0060] As further illustrated, the computing device 106
includes a central processing unit (“CPU”) 116 that is
connected, via a bus (not shown in FIG. 1), to various
components such as the local drive 124, a memory 118, an
input/output (I/O) controller 120, and/or a network interface
122. It can be appreciated that the system components
described herein (e.g., the application(s) 110, the OS 108,
and/or the synchronization engine 112) may, when loaded
into the CPU 116 and executed, transform the CPU 116 and
the overall computing device 106 from a general-purpose
computing system into a special-purpose computing system
customized to facilitate the functionality presented herein.
The CPU 116 may be constructed from any number of
transistors or other discrete circuit elements, which may
individually or collectively assume any number of states.
More specifically, the CPU 116 may operate as a finite-state
machine, in response to executable instructions contained
within the software modules disclosed herein. These com-
puter-executable instructions may transform the CPU 116 by
specifying how the CPU 116 transitions between states,
thereby transforming the transistors or other discrete hard-
ware elements constituting the CPU 116.

[0061] The local drive 124 and associated computer-read-
able media provide non-volatile storage for the computing
device 106. Although the description of computer-readable
media contained herein refers to a mass storage device, such
as a solid-state drive and/or a hard disk, it should be
appreciated by those skilled in the art that computer-read-
able media can be any available computer storage media or
communication media that can be accessed by a computing
architecture such as, for example, the system 100. Commu-
nication media includes computer-readable instructions,
data structures, program modules, and/or other data in a
modulated data signal such as a carrier wave or other
transport mechanism and includes any delivery media. The
term “modulated data signal” means a signal that has one or
more of its characteristics changed or set in a manner so as
to encode information in the signal. By way of example, and
not limitation, communication media includes wired media
such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared and other
wireless media. Combinations of the any of the above are
also included within the scope of computer-readable media.

[0062] By way of example, and not limitation, computer
storage media may include volatile and non-volatile, remov-
able and non-removable media implemented in any method
or technology for storage of information such as computer-
readable instructions, data structures, program modules or
other data. For example, computer storage media includes,
but is not limited to, RAM, ROM, EPROM, EEPROM, flash

Feb. 25, 2021

memory or other solid-state memory technology, CD-ROM,
digital versatile disks (“DVD”), HD-DVD, BLU-RAY, or
other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by the computing
device 106. For purposes of the claims, the phrase “com-
puter storage medium,” “computer-readable storage
medium,” and variations thereof, does not include waves,
signals, and/or other transitory and/or intangible communi-
cation media, per se.

[0063] The I/O controller 120 may receive and process
input from a number of other devices, including a keyboard,
mouse, or electronic stylus (not shown in FIG. 1). Similarly,
the I/O controller 120 may provide output to a display screen
(e.g., to display the file-browser GUI described herein), a
printer, or other type of output device (also not shown in
FIG. 1). The network interface 122 may enable the comput-
ing device 106 to connect to one or more network(s) 104
such as a local area network (LAN), a wide area network
(WAN), a wireless local area network (WLAN), or any other
suitable network for passing information between the com-
puting device 106 and the application provider(s) 102.
[0064] Turning now to FIG. 2A, an example datatlow
scenario 200 is illustrated in which the computing device
106 performs an open request 208 for a requested applica-
tion that is currently stored on the local drive 124 in a
dehydrated state. As illustrated, the computing device 106
may receive user activity 216 that is generated based on a
user 220 interacting with an input device 218 (e.g., a
keyboard, a mouse, a touchscreen, a microphone, or any
other suitable input component). The user 220 may perform
the user activity 216 via the input device 218 to request
access to applications—regardless of whether those appli-
cations are currently hydrated on the computing device 106.
As illustrated, the OS 108 includes application interfaces
202 that are usable to access each of a first application
204(1) through an Nth application 204(N).

[0065] In various embodiments, the application interfaces
202 may be represented (e.g., graphically displayed) by the
computing device 106 to the user 220 in a consistent manner
for individual application 204 regardless of whether those
individual applications are currently hydrated on the com-
puting device 106. For example, a particular one of the
application interfaces 202 may be designed to expose an
icon to the user 220 that is selectable to cause the computing
device 106 to implement a particular application. The appli-
cation interfaces 202 may cause this icon to be exposed to
the user 220 even when the underlying application 204 that
performs the particular application is dehydrated on the
computing device 106. That is, the icon is exposed to and/or
is selectable by the user 220 even if the payloads for the files
206 that actually enable the computing device 106 to launch
the particular application is not present in the local drive
124.

[0066] For purposes of FIG. 2A, the state of the computing
device 106 is such that the application interfaces 202 expose
representations of a first application 204(1), a second appli-
cation 204(2), and an Nth application 204(N). The state of
the computing device 106 is further implemented such that
the first application 204(1) and the Nth application 204(N)
are fully hydrated on the computing device 106. For
example, as illustrated, a plurality of application files 206
that enable implementation application the first application



US 2021/0055938 Al

204(1) and the Nth application 204(N) are shown to be
written to the local drive(s) 124. Specifically, each of the
application files named “Appl.exe,” “AppN.exe,” “Appl.
dll,” and “AppN.dll” are shown as having their payloads
fully written to the local drive 124. Individual ones of the
application files 206 may include various properties such as
a file name, a file path, a payload size, a metadata size,
and/or an auto-dehydrate parameter. For purposes of the
present discussion, values are prescribed for each of these
properties in a table that extends downward from the black
application file box that is labeled 206. These values are used
solely to convey aspects of the present disclosure and are not
intended to be limiting in any way.

[0067] In the illustrated example, the hydrated status of
the first application 204(1) results in 33 MB of storage being
consumed to store the application file named “Appl.exe,”
and also an additional 12 MB of storage being consumed to
store the application file named “Appl.dll.” As further
illustrated, some additional 41 MB of storage is consumed
in order to retain a hydrated status of the Nth application
204(N). In contrast to the first and Nth applications, the
second application 204(2) is dehydrated in the state of the
computing device 106 illustrated in FIG. 2A. That is, the
individual application files 206 that uniquely correspond to
the second application 204(2) are shown to be in a dehy-
drated state such that the payloads of these application files
are not stored locally on the local drive(s) 124. Thus, as
illustrated, even though the second application 204(2) is
implemented using a batch of two application files that
together would require an allocation of 106 MB of local
drive space to be fully hydrated on the computing device
106, these application files are stored locally in a dehydrated
state that omits the actual payloads but includes metadata
with information that is usable to obtain the payloads if
requested. These dehydrated application files may serve as
placeholders to the hydrated application files (e.g., that
include the payloads) and the metadata may indicate an
application provider from which the corresponding hydrated
application files can be readily obtained and/or an address
from which the corresponding hydrated application files can
be readily obtained. In the illustrated embodiment, the fully
hydrated application files are stored by a application pro-
vider 102 as part of a file batch that uniquely corresponds to
the second application 204(2).

[0068] With respect to the specific data flow scenario 200
illustrated in FIG. 2A, the user activity 216 that is received
in association with the application interfaces 202 results in
a series of interactions between various components of the
computing device 106 and the application provider 102. For
example, as illustrated, the user activity 216 results in an
open request 208 being transmitted from the OS 108 to a
filter driver 209. For purposes of the present discussion,
presume that the open request 208 is requesting data asso-
ciated with the application file named “App2.exe.” The filter
driver 209 may be a file system driver such as, for example,
the “cldfit.sys™ driver that is commonly deployed in con-
junction with Microsoft’s OneDrive. As described above,
the application files 206 include both fully hydrated appli-
cation files and dehydrated application files (e.g., place-
holder files). The filter driver 209 assists with handling
requests for access to the various application files that are
stored in the local drive 124. For example, as illustrated,
when a user performs some computing action that causes
generation of an open request 208 in association with a

Feb. 25, 2021

particular application file, the filter driver 209 passes the
open request 208 through to the local drive 124. In some
embodiments, the open request 208 may include a reparse
point that tags one or more fields of metadata 212 associated
with the requested file. The reparse point may inform the
filter driver 212 of which field of the metadata is indicative
of the hydration status of the requested application file. For
example, the filter driver 209 may query the local drive 124
for data associated with the requested application file based
on the open request 208. If the payload for the requested
application file is stored locally on the local drive 124, then
the filter driver 209 may simply service the open request 208
as normal. In contrast, if the filter driver 209 queries the
local drive 124 and determines that the requested application
file is dehydrated such that the payload is not available from
the local drive 124, then the filter driver 209 may obtain the
metadata 212 that is stored in association with the dehy-
drated file and store this metadata 212 in a cache 210.

[0069] Turning now to FIG. 2B, illustrated is an exem-
plary dataflow scenario 225 in which the computing device
responds to a payload access request 211 by transmitting a
download request 128 to an appropriate application pro-
vider. As illustrated, after the filter driver 209 having already
cached the metadata 212 responsive to the open request 208,
the OS 108 then transmits the payload access request to the
filter driver 209. An example payload access request 211
may be a read request associated with the requested appli-
cation file (e.g., the OS may request to read some portion of
the payload for the requested application file). As another
example, the payload access request 211 may be a write
request associated with the requested application file (e.g.,
the OS may request to write data to some portion of the
payload for the requested application file).

[0070] Responsive to the payload access request 211, the
synchronization engine 112 may then generate a download
request 128 based on the metadata 212. In some embodi-
ments, the metadata 212 may include an address from which
the requested application file can be obtained. Additionally,
or alternatively, the metadata 212 may indicate an appro-
priate application provider from which the requested appli-
cation file can be obtained. For example, as described above,
the request 208 is requesting access to the application file
named “App2.exe.” Therefore, the download request 128
may include an identifier of the particular application pro-
vider 102 that is shown in FIG. 2A since this particular
application provider 102 may provide access to the file batch
213 that is entitled “App2.” In some embodiments, the
download request 128 is transmitted to the application
provider 102 in response to the first payload access request
211 that is received following the initial open request 208
that resulted in the caching of the metadata 212. It will be
appreciated that such embodiments may reduce unnecessary
network traffic because under a variety of circumstances an
open request 208 may be received that requests data asso-
ciated with file properties only without any subsequent
request for actual access to the payload ever being issued.
Thus, some embodiments may refrain from hydrating appli-
cation files upon receipt of a corresponding open request but
rather will wait until a payload access request is received.
[0071] Turning now to FIG. 2C, an example datatlow
scenario 250 is illustrated in which the computing device
106 responds to the payload access request 211 of FIG. 2B
after having intermediately downloaded and hydrated the
requested application file by obtaining and writing the



US 2021/0055938 Al

corresponding payload to the local drive 124. As illustrated,
the computing device 106 receives a download package 130
from the application provider 102. The download package
130 is provided in response to the download request 128.
Furthermore, the download package 130 may include an
entire batch of files to which the requested application file
belongs. For example, in the present example, presume that
the download request 128 identifies “App2.exe” as being the
particular file that is being immediately requested in the
request 208. Under these circumstances, the application
provider 102 may identity the file named “App2.exe” as
being a part of the file batch 213 that is entitled “App2.”
Then, rather than returning merely the requested application
file, the application provider 102 may return the entire File
Batch 213 within the download package 130. Under the
present circumstances, since the download request 128 iden-
tifies the “App2.exe” file, then the application provider 102
may retrieve not only the “App2.exe” file but also the
“App2.d11” file and/or any of parts of the payload for the
application 204(2) that is currently dehydrated on the com-
puting device. Then, the application provider 102 responds
to the download request 128 for the single file by providing
a download package 130 that includes all application files
from the entire predefined batch of application files 206. In
the illustrated embodiment, the download package 130
includes 1% through Nth payloads 252.

[0072] Upon receiving the download package 130, the
synchronization engine 112 writes the payloads for the
individual application files within the file batch 213 to the
local drive 124. For example, the computing device 106
and/or synchronization engine 112 may decompress the
download package 130 and write each of the included
application files onto the local drive 124 (e.g., a hard disk,
a solid-state hard drive, or any other suitable volatile or
non-volatile storage medium) in order to convert these
application files from the dehydrated state to the hydrated
state. Thus, based on the initial request 208 that requested
access to only the single application file (e.g., the “App2.
exe” file) of the file batch 213, various system components
such as the filter driver 209, the synchronization engine 112,
and the application provider 102 work together to fully
hydrate the entire batch of application files (even those not
yet requested) by downloading and then locally storing all of
their corresponding payloads. Then, once the entire batch
213 of application files is fully hydrated (or while the batch
is actively being hydrated), the computing device 106 ser-
vices the request 208 by providing a response 254 to the
OS—where the response 254 provides access to the pay-
loads 252 that are newly downloaded to the computing
device and written to the local drives 124 thereof.

[0073] In some embodiments, an entire payload for the
requested application file may be fully hydrated in response
to an initial receipt of any payload access request. In this
way, as soon as any portion of a payload is requested for a
particular application file, the entire payload then becomes
fully hydrated and available from the local drive. In other
embodiments, specific portions of a payload for the
requested application file may be hydrated onto the local
drive incrementally as numerous incremental payload access
requests are received. For example, a first payload access
request may be received that requests access to a specific
portion of the payload for the requested application file. This
first payload access request may trigger the hydration of one
or more other portions of the payload that are proximate to

Feb. 25, 2021

the requested portion. For example, if the requested appli-
cation file is a map file that defines various rooms in a map
of a three-dimensional first person perspective video game,
then a payload access request for a portion of the payload
that defines a specific room may trigger the hydration of
other portions of the payload that define adjacent rooms. In
this way, if the player walks from the specific room into any
other adjacent room, then the data needed to render the
appropriate adjacent room is fully hydrated and ready to use
from the local drive.

[0074] As illustrated in FIGS. 2A-2B, in some embodi-
ments, the metadata 212 that is usable for identifying and
contacting an appropriate application provider 102 from
which individual application files 206 can be obtained is
stored on the local drive 124 even for fully hydrated appli-
cation files. In this way, individual application files 206 can
be converted from a hydrated state to a dehydrated state
simply by deleting the associated payload from the local
drive 124. In this way, dehydrating individual application
files does not require the computing device 106 to commu-
nicate with the application provider 102 to obtain and store
metadata 212. Rather, the metadata 212 can in some embodi-
ments be permanently stored on the computing device 106
so that in the event that the payloads 252 are corrupted or
deleted (inadvertently or intentionally), the computing
device 106 retains the ability to cause the filter driver 209
and the synchronization engine 112 to work together to
obtain and fully hydrate any desired application files 206.

[0075] Insome embodiments, individual ones of the appli-
cation files 206 include an auto-dehydrate parameter that
indicates one or more conditions under which the computing
device 106 is to deallocate storage capacity of the local drive
124 from the payload 252 for any particular application file
206. In some instances, deallocating storage capacity for a
payload 252 may include actually deleting the payload from
the local drive 124. In some instances, deallocating storage
capacity for a payload 252 may include permitting the
computing device 106 to overwrite storage capacity that is
currently used to store the payload 252. As illustrated, for
example, the application files 206 may be associated with
auto-dehydrate parameters that restrict the individual files
from being dehydrated or, alternatively, set a time period of
inactivity after which the individual files are to be dehy-
drated. For example, the application files 206 that are
associated with the 1% application 204(1) have an auto-
dehydrate parameter of “No” that restricts these application
files 206 from being dehydrated. Such a parameter may be
suitable for “core” OS applications or any other application
or application files thereof that are to remain permanently
hydrated on the computing device 106. As another example,
the application files 206 associated with the 2" application
204(2) and the Nth application 204(N) each have a corre-
sponding auto-dehydrate parameter that sets a time period of
inactivity after which these application files are to be dehy-
drated on the computing device 106. In the specific but
non-limiting example illustrated in FIGS. 2A-2B, the appli-
cation file entitled “App2.exe” will be automatically dehy-
drated if 5 days pass without it being accessed. Such a
parameter may be suitable for application files that corre-
spond to a seldom used application so that these application
files are automatically hydrated when called upon and then
automatically dehydrated if unused for the prescribed time
period (e.g., 5 days in this example).



US 2021/0055938 Al

[0076] FIG. 3 illustrates an example computing environ-
ment in which the embodiments described herein may be
implemented. FIG. 3 illustrates a data center 300 that is
configured to provide computing resources to users 300a,
3005, or 300¢ (which may be referred herein singularly as “a
user 300” or in the plural as “the users 300”) via user
computers 302a, 3026, and 302¢ (which may be referred
herein singularly as “a computer 302" or in the plural as “the
computers 302”) via a communications network 330. The
computing resources provided by the data center 300 may
include various types of resources, such as computing
resources, data storage resources, data communication
resources, and the like. Each type of computing resource
may be general-purpose or may be available in a number of
specific configurations. For example, computing resources
may be available as virtual machines. The virtual machines
may be configured to execute applications, including Web
servers, application servers, media servers, database servers,
and the like. Data storage resources may include file storage
devices, block storage devices, and the like. Each type or
configuration of computing resource may be available in
different configurations, such as the number of processors,
and size of memory and/or storage capacity. The resources
may in some embodiments be offered to clients in units
referred to as instances, such as virtual machine instances or
storage instances. A virtual computing instance may be
referred to as a virtual machine and may, for example,
comprise one or more servers with a specified computational
capacity (which may be specified by indicating the type and
number of CPUs, the main memory size and so on) and a
specified software stack (e.g., a particular version of an
operating system, which may in turn run on top of a
hypervisor).

[0077] Data center 300 may include servers 316a, 3165,
and 316¢ (which may be referred to herein singularly as “a
server 316” or in the plural as “the servers 316”) that provide
computing resources available as virtual machines 318a and
3186 (which may be referred to herein singularly as “a
virtual machine 318 or in the plural as “the virtual machines
318”). The virtual machines 318 may be configured to
execute applications such as Web servers, application serv-
ers, media servers, database servers, and the like. Other
resources that may be provided include data storage
resources (not shown on FIG. 3) and may include file storage
devices, block storage devices, and the like. Servers 316
may also execute functions that manage and control alloca-
tion of resources in the data center, such as a controller 315.
Controller 315 may be a fabric controller or another type of
program configured to manage the allocation of virtual
machines on servers 316.

[0078] Referring to FIG. 3, communications network 330
may, for example, be a publicly accessible network of linked
networks and may be operated by various entities, such as
the Internet. In other embodiments, communications net-
work 330 may be a private network, such as a corporate
network that is wholly or partially inaccessible to the public.

[0079] Communications network 330 may provide access
to computers 302. Computers 302 may be computers uti-
lized by users 300. Computer 302a, 3025 or 302¢ may be a
server, a desktop or laptop personal computer, a tablet
computer, a smartphone, a set-top box, or any other com-
puting device capable of accessing data center 300. User
computer 302a or 30256 may connect directly to the Internet
(e.g., via a cable modem). User computer 302¢ may be

Feb. 25, 2021

internal to the data center 300 and may connect directly to
the resources in the data center 300 via internal networks.
Although only three user computers 302a, 3025, and 302¢
are depicted, it should be appreciated that there may be
multiple user computers.

[0080] Computers 302 may also be utilized to configure
aspects of the computing resources provided by data center
300. For example, data center 300 may provide a Web
interface through which aspects of its operation may be
configured through the use of a Web browser application
program executing on user computer 302. Alternatively, a
stand-alone application program executing on user computer
302 may be used to access an application programming
interface (API) exposed by data center 300 for performing
the configuration operations.

[0081] Servers 316 may be configured to provide the
computing resources described above. One or more of the
servers 316 may be configured to execute a manager 310a or
3106 (which may be referred herein singularly as “a man-
ager 310” or in the plural as “the managers 310”) configured
to execute the virtual machines. The managers 320 may be
a virtual machine monitor (VMM), fabric controller, or
another type of program configured to enable the execution
of virtual machines 318 on servers 316, for example.
[0082] It should be appreciated that although the embodi-
ments disclosed above are discussed in the context of virtual
machines, other types of implementations can be utilized
with the concepts and technologies disclosed herein.
[0083] In the example data center 300 shown in FIG. 3, a
network device 311 may be utilized to interconnect the
servers 316a and 3165. Network device 311 may comprise
one or more switches, routers, or other network devices.
Network device 311 may also be connected to gateway 340,
which is connected to communications network 330. Net-
work device 311 may facilitate communications within
networks in data center 300, for example, by forwarding
packets or other data communications as appropriate based
on characteristics of such communications (e.g., header
information including source and/or destination addresses,
protocol identifiers, etc.) and/or the characteristics of the
private network (e.g., routes based on network topology,
etc.). It will be appreciated that, for the sake of simplicity,
various aspects of the computing systems and other devices
of this example are illustrated without showing certain
conventional details. Additional computing systems and
other devices may be interconnected in other embodiments
and may be interconnected in different ways.

[0084] It should be appreciated that the network topology
illustrated in FIG. 3 has been greatly simplified and that
many more networks and networking devices may be uti-
lized to interconnect the various computing systems dis-
closed herein. These network topologies and devices should
be apparent to those skilled in the art.

[0085] It should also be appreciated that data center 300
described in FIG. 3 is merely illustrative and that other
implementations might be utilized. Additionally, it should be
appreciated that the functionality disclosed herein might be
implemented in software, hardware or a combination of
software and hardware. Other implementations should be
apparent to those skilled in the art. It should also be
appreciated that a server, gateway, or other computing
device may comprise any combination of hardware or
software that can interact and perform the described types of
functionality, including without limitation desktop or other



US 2021/0055938 Al

computers, database servers, network storage devices and
other network devices, PDAs, tablets, smartphone, Internet
appliances, television-based systems (e.g., using set top
boxes and/or personal/digital video recorders), and various
other consumer products that include appropriate commu-
nication capabilities. In addition, the functionality provided
by the illustrated modules may in some embodiments be
combined in fewer modules or distributed in additional
modules. Similarly, in some embodiments the functionality
of some of the illustrated modules may not be provided
and/or other additional functionality may be available.

[0086] Turning now to FIG. 4, illustrated is an example
system 400 for enabling a virtual machine 406 to store
predetermined batches of feature files in a dehydrated state
while retaining on-demand accessibility of the predeter-
mined batches of feature files at the virtual machine 406. In
the illustrated example, a first batch of feature files that
corresponds to a feature titled “Feature_Name2” is stored in
a hydrated state such that a payload of each individual
feature file within this first batch is stored on the virtual
machine 406. The respective payloads of the individual
feature files may include, for example, binaries, permissions,
registry settings, and other data that is usable to implement
a specific feature. Also shown in the illustrated example, a
second batch of feature files that corresponds to a feature
titled “Feature_Name2” is stored in a dehydrated state such
that placeholder files are stored in place of the actual feature
files of this batch. In some embodiments, the placeholder
files are stored within the virtual machine 406 at the same
path as the actual feature files would be stored if hydrated
(e.g., with payload written to local storage) onto the virtual
machine 406. In this way, user interactions with the virtual
machine 406 that result in an actual feature file being called
at a specific file path will turn up the actual feature file, if
present, or the respective placeholder if the called upon
feature file is not hydrated onto the virtual machine 406. The
placeholder files do not include a payload of the associated
actual feature files but rather include metadata that indicates
properties of the corresponding actual feature files (e.g., the
full feature file with corresponding payload). The metadata
associated with any particular feature file may indicate a
feature provider from which the particular feature file,
including the corresponding payload, may be obtained. As
described in more detail below, when a particular batch of
feature files is in a dehydrated state, the metadata from a
placeholder file in this particular batch may be used by the
virtual machine 406 to retrieve all of the actual feature files
for that particular batch on-demand when a single feature
file associated with the placeholder file from the batch is
requested.

[0087] As illustrated, the virtual machine 406 may include
an operating system (OS). To facilitate operation of the
virtual machine 406, at least some batches of feature files
that are usable to implement various “core” and/or fre-
quently used features of the OS 408 may be fully hydrated
on the virtual machine 406. To reduce the overall amount of
storage space that is consumed on the virtual machine 406,
at least some other batches of feature files that are usable to
implement other features of the OS 408 are left dehydrated
on the virtual machine 406—unless called upon as described
below.

[0088] The virtual machine 406 may further include an
application 440 that is installed onto the local drive 424. In
some embodiments, at least some batches of feature files that

Feb. 25, 2021

are usable to implement various features of the application
440 may be stored in a dehydrated state. In particular, it
should be appreciated that the techniques described herein
are usable to reduce the software footprint of the OS 408
and/or the application 440. This reduction in the software
footprint is accomplished by selectively storing individual
batches of feature files which are usable to implement select
features of the OS 408 and/or the application 440 in a
dehydrated state. Configuring the virtual machine 406
according to the techniques described herein enables users
and/or software components to issue requests (e.g., call
upon) for dehydrated feature files and to have these requests
serviced just as if the dehydrated feature files were fully
hydrated at the time when the request was generated. This is
accomplished by automatically hydrating the requested fea-
ture files (and in some embodiments other commonly
batched feature files) immediately upon receiving a request.
Then, following this intermediary step of hydrating the
requested feature files, the virtual machine 406 may then
respond to the request by provisioning access to the payload
of the newly hydrated feature file. That is, the virtual
machine 406 receives the request when the payload is not
locally available and slightly delays responding to the
request until after having downloaded and/or written the
payload to the virtual machine.

[0089] In some implementations, the virtual machine 406
may utilize a synchronization function for retrieving down-
load packages when requests are issued that seek access to
feature files that are currently dehydrated on the virtual
machine 406. For example, when the OS 408 receives a
request that identifies a specific feature file that is currently
dehydrated, the OS 408 may retrieve metadata that is stored
in a placeholder file for the specific feature file. The OS 408
may then provide the metadata to the synchronization func-
tion to cause a download request 428 to be transmitted to a
feature host 402(1) that is associated with the specific
feature file. As described above, the metadata that is stored
in the placeholder file may include an identification of which
feature provider (of numerous potential feature providers)
from which the requested feature file can be obtained. As
used herein, the term “metadata” refers specifically to a set
of data that provides information about a corresponding
feature file and, more particularly, about how the virtual
machine 406 can acquire a payload associated with the
corresponding feature file. In some embodiments, the meta-
data may also indicate whether the payload for the requested
feature file is currently written to the virtual machine. Stated
alternatively, the metadata may include an indication of
whether or not the feature file that is specifically requested
is currently hydrated at the virtual machine.

[0090] The download request 428 may include an identi-
fication of the requested feature file for which access has
been requested. In some instances, the download request 428
may omit any specific identification of the other feature
files—such as those that are commonly batched with the
requested feature file. For example, the request may be
generated based on a user entering a run command to start
a currently dehydrated feature and/or application by access-
ing an associated executable (e.g., “.exe”) file. In this
example, the run command may specifically reference the
file named “Feature_Name2.exe” without referencing the
related file named “Feature_Name2.dll.” Thus, this run
command may cause the OS 408 to generate a request for
access to the file named “Feature_Name2.exe.” In response



US 2021/0055938 Al

to the request, the synchronization function may generate a
download request 428 for this specifically requested feature
file only but does not request the related file named “Fea-
ture_Name2.dllI”—even though these files are commonly
batched. One reason that the synchronization function might
not identify all of these commonly batched feature files in
the download request 428 is that the various components of
the virtual machine 406 may lack visibility as to which files
are batched together. For example, the OS 406 may be
designed to simply fulfill requests on a file-by-file basis and
the requested feature files may omit indications as to any
relationships to other files they may have. The synchroni-
zation function may be a native component of the OS 408 or
may be an add-on component that is downloaded and
installed onto the virtual machine 406 separately from the
OS 408.

[0091] Upon receiving the download request 428, the first
feature host 402(1) may identify an entire predefined batch
of feature files to which the requested feature file belongs.
For example, as illustrated, the first feature host 402(1) may
determine that the requested feature file (e.g., the file named
“Feature_Name2.exe”) belongs to a batch of feature files
named “File Batch: Feature_Name2”). Then, rather than
returning merely the requested feature file, the first feature
host 402(1) may return a download package 430 that
includes the entire identified batch of feature files. Thus, in
the illustrated example, in response to the download request
428 identifying the single file named “Feature_Name2.exe,”
the first feature host 402(1) returns both of the requested
“Feature_Name2.exe” file and also the “Feature Name2.
dll” file—and any other feature files that are commonly
batched. In some embodiments, the first feature host 402(1)
may return the download package 430 in the form of a
compressed archive file to increase the speed at which the
entire batch of feature files becomes hydrated on the virtual
machine 406.

[0092] Upon receipt of the download package 430, the
virtual machine 406 may write each of the individual feature
files onto the local virtual machine storage 424 (e.g., a
virtual hard disk or any other suitable volatile or non-volatile
virtualized storage medium) in order to convert the indi-
vidual feature files from the dehydrated state into the
hydrated state. In some embodiments, once the entire batch
of feature files is fully hydrated (or while the batch is
actively being hydrated), the virtual machine 406 services
the request by provisioning access to the requested feature
file by using the newly downloaded payload thereof. Alter-
natively, the virtual machine 406 may service the request by
provisioning access to the newly downloaded payload of the
requested feature file even before the payload is written to
the virtual machine. For example, the request may be
serviced by directly loading the payload from the download
package into a memory or cache of the virtual machine 406.

[0093] FIG.5is aflow diagram of an example method 500
for hydrating individual application files or batches of
application files onto a local drive of a computing device as
called upon by a software component at the computing
device. It should be understood by those of ordinary skill in
the art that the operations of the methods disclosed herein
are not necessarily presented in any particular order and that
performance of some or all of the operations in an alternative
order(s) is possible and is contemplated. The operations
have been presented in the demonstrated order for ease of
description and illustration. Operations may be added, omit-

Feb. 25, 2021

ted, performed together, and/or performed simultaneously,
without departing from the scope of the appended claims.
[0094] At block 501, the example method 500 begins.
[0095] At block 503, a request is received for access to a
first application on the computing device.

[0096] At block 505, responsive to receiving the request,
metadata is retrieved that is written to the local drive of the
computing device to indicate whether the first application is
written to the local drive of the computing device.

[0097] Atblock 507, responsive to the metadata indicating
that the first application is not written to the local drive of the
computing device, a download request is caused to be
transmitted to an application provider that is associated with
the application.

[0098] At block 509, a download package is received for
application from the application provider based on the
download request. In an embodiment, the download package
includes one or more application files that are operable to
execute the application on the computing device when
stored on the computing device without executing an instal-
lation process.

[0099] At block 511, based on the download package for
the application files:

[0100] the application files are written to the local drive of
the computing device.

[0101] At block 513, the request is serviced by launching
the application on the computing device without executing
the installation process.

[0102] Once the request is serviced, the example method
500 ends at block 515.

[0103] FIG. 6 is a flow diagram of an example method 600
for hydrating individual application files or batches of
application files onto a local drive of a computing device as
called upon by a software component at the computing
device. It should be understood by those of ordinary skill in
the art that the operations of the methods disclosed herein
are not necessarily presented in any particular order and that
performance of some or all of the operations in an alternative
order(s) is possible and is contemplated. The operations
have been presented in the demonstrated order for ease of
description and illustration. Operations may be added, omit-
ted, performed together, and/or performed simultaneously,
without departing from the scope of the appended claims.
[0104] At block 601, the example method 600 begins.
[0105] At block 603, a request is received to launch a first
application on a virtual machine.

[0106] Atblock 605, responsive to the request, metadata is
received that is stored at the virtual machine in association
with the first application, the metadata indicating that files
associated with the first application are not stored at the
virtual machine.

[0107] Atblock 607, a download package is received from
the application host including one or more application files
that are operable to execute the first application when stored
at the virtual machine without executing an installation
process.

[0108] At block 609, based on the download package, the
request is serviced by launching the application without
executing the installation process.

[0109] Once the request is serviced, the example method
600 ends at block 611.

[0110] FIG. 7 is a flow diagram of an example method 700
for hydrating individual application files or batches of
application files onto a local drive of a computing device as



US 2021/0055938 Al

called upon by a software component at the computing
device. It should be understood by those of ordinary skill in
the art that the operations of the methods disclosed herein
are not necessarily presented in any particular order and that
performance of some or all of the operations in an alternative
order(s) is possible and is contemplated. The operations
have been presented in the demonstrated order for ease of
description and illustration. Operations may be added, omit-
ted, performed together, and/or performed simultaneously,
without departing from the scope of the appended claims.
[0111] At block 701, the example method 700 begins.
[0112] At block 703, a first application is installed on a
computing device, wherein files associated with the first
application are stored at a local storage of the computing
device.

[0113] At block 705, a second application is installed on
the computing device, wherein files associated with the
second application are stored at on a remote computing
device.

[0114] At block 707, metadata is stored at the local storage
of the computing device indicative that the second applica-
tion is not written to the local storage of the computing
device.

[0115] At block 709, responsive to a request to launch the
second application, it is determined that the metadata indi-
cates that the second application is not written to the local
drive of the computing device.

[0116] At block 711, a download request is caused to be
transmitted to the remote computing device.

[0117] At block 713, a download package for the second
application is received from the remote computing device
based on the download request. In an embodiment, the
download package includes one or more application files
that are operable to execute the second application on the
computing device without executing an installation process.
[0118] At block 715, based on the download package, the
application files are written to the local storage of the
computing device.

[0119] At block 717, the request is serviced by launching
the second application on the computing device without
executing the installation process.

[0120] Once the request is serviced, the example method
700 ends at block 719.

[0121] FIG. 8 is a flow diagram of an example method 800
for hydrating individual application files or batches of
application files onto a local drive of a computing device as
called upon by a software component at the computing
device. It should be understood by those of ordinary skill in
the art that the operations of the methods disclosed herein
are not necessarily presented in any particular order and that
performance of some or all of the operations in an alternative
order(s) is possible and is contemplated. The operations
have been presented in the demonstrated order for ease of
description and illustration. Operations may be added, omit-
ted, performed together, and/or performed simultaneously,
without departing from the scope of the appended claims.
[0122] At block 801, the example method 800 begins.
[0123] At block 803, a first application is installed at a
virtual machine, wherein files associated with the first appli-
cation are stored on a local virtual storage of the virtual
machine.

[0124] At block 805, a second application is installed at
the virtual machine, wherein files associated with the second
application are stored on a remote host.

Feb. 25, 2021

[0125] At block 807, metadata is stored, at the virtual
machine, indicative that the second application is not written
to local virtual storage of the virtual machine.

[0126] At block 809, responsive to a request to launch the
second application, it is determined that the metadata indi-
cates that the second application is not written to the local
virtual storage of the virtual machine.

[0127] At block 811, a download request is caused to be
transmitted to the remote host.

[0128] At block 813, a download package for the second
application is received from the remote host based on the
download request. In an embodiment, the download package
includes one or more application files that are operable to
execute the second application without executing an instal-
lation process.

[0129] At block 815, based on the download package, the
application files are written to the local virtual storage of the
virtual machine.

[0130] At block 817, the request is serviced by launching
the second application without executing the installation
process.

[0131] Once the request is serviced, the example method
800 ends at block 819.

Example Clauses

[0132] The disclosure presented herein may be considered
in view of the following clauses.

[0133] 1. A computing device comprising: a local drive;
one or more processors; a memory in communication with
the one or more processors, the memory storing computer-
readable instructions stored thereupon which, when
executed by the one or more processors, cause the comput-
ing device to: receive a request for access to a first appli-
cation on the computing device; responsive to receiving the
request, retrieve metadata that is written to the local drive of
the computing device to indicate whether the first applica-
tion is written to the local drive of the computing device;
responsive to the metadata indicating that the first applica-
tion is not written to the local drive of the computing device,
cause a download request to be transmitted to an application
provider that is associated with the application; receive,
from the application provider based on the download
request, a download package for application, wherein the
download package includes one or more application files
that are operable to execute the application when stored on
the computing device without executing an installation
process; and based on the download package for the appli-
cation files: write the application files to the local drive of
the computing device; and service the request by launching
the application without executing the installation process.
[0134] 2. A computer-implemented method comprising:
receiving a request to launch a first application on a virtual
machine; responsive to the request, retrieving metadata that
is stored at the virtual machine in association with the first
application, the metadata indicating that files associated with
the first application are not stored at the virtual machine;
transmitting a download request to an application host that
is associated with the first application, the download request
including aspects of the metadata to identity the first appli-
cation; receiving, from the application host, a download
package including one or more application files that are
operable to execute the first application when stored at the
virtual machine without executing an installation process;



US 2021/0055938 Al

and based on the download package, servicing the request by
launching the application without executing the installation
process.

[0135] 3. A method comprising: installing a first applica-
tion on a computing device, wherein files associated with the
first application are stored at a local storage of the computing
device; installing a second application on the computing
device, wherein files associated with the second application
are stored at on a remote computing device; storing, at the
local storage of the computing device, metadata indicative
that the second application is not written to the local storage
of the computing device; wherein responsive to a request to
launch the second application: determining that the metadata
indicates that the second application is not written to the
local drive of the computing device; causing a download
request to be transmitted to the remote computing device;
receiving, from the remote computing device based on the
download request, a download package for the second
application, wherein the download package includes one or
more application files that are operable to execute the second
application without executing an installation process; based
on the download package, write the application files to the
local storage of the computing device; and service the
request by launching the second application without execut-
ing the installation process.

[0136] 4. A method comprising: installing a first applica-
tion at a virtual machine, wherein files associated with the
first application are stored on a local virtual storage of the
virtual machine; installing a second application at the virtual
machine, wherein files associated with the second applica-
tion are stored on a remote host; storing, at the virtual
machine, metadata indicative that the second application is
not written to local virtual storage of the virtual machine;
responsive to a request to launch the second application,
determining that the metadata indicates that the second
application is not written to the local virtual storage of the
virtual machine; causing a download request to be transmit-
ted to the remote host; receiving, from the remote host based
on the download request, a download package for the second
application, wherein the download package includes one or
more application files that are operable to execute the second
application without executing an installation process; based
on the download package, writing the application files to the
local virtual storage of the virtual machine; and servicing the
request by launching the second application without execut-
ing the installation process.

[0137] In closing, although the various techniques have
been described in language specific to structural applications
and/or methodological acts, it is to be understood that the
subject matter defined in the appended representations is not
necessarily limited to the specific applications or acts
described. Rather, the specific applications and acts are
disclosed as example forms of implementing the claimed
subject matter.

What is claimed is:
1. A system comprising:
one or more processors;

a memory in communication with the one or more pro-
cessors, the memory storing computer-readable instruc-
tions stored thereupon which, when executed by the
one or more processors, cause the system to:

receive a request to launch a first application on a virtual
machine;

Feb. 25, 2021

responsive to the request, retrieve metadata that is stored
at the virtual machine in association with the first
application, the metadata indicating that files associated
with the first application are not stored at the virtual
machine;

transmit a download request to an application host that is

associated with the first application, the download
request including aspects of the metadata to identify the
first application;

receive, from the application host, a download package

including one or more application files that are operable
to execute the first application when stored at the
virtual machine without executing an installation pro-
cess; and

based on the download package, service the request by

launching the application without executing the instal-
lation process.

2. The system of claim 1, further comprising computer-
readable instructions stored thereupon which, when
executed by the one or more processors, cause the system to:

receive a request for access to a second application on the

virtual machine;

responsive to receiving the second request, retrieve meta-

data that is stored at the virtual machine indicative of
whether the second application is stored at the virtual
machine; and
responsive to the metadata indicating that the second
application is stored at the virtual machine, cause
installation of the second application at the virtual
machine, wherein files associated with the second
application are stored at the virtual machine.
3. The system of claim 1, wherein the first application is
an operating system component.
4. The system of claim 1, wherein when the first appli-
cation is not written at the virtual machine, files associated
with the first application are stored remotely from the virtual
machine.
5. A method comprising:
installing a first application at a virtual machine, wherein
files associated with the first application are stored on
a local virtual storage of the virtual machine;

installing a second application at the virtual machine,
wherein files associated with the second application are
stored on a remote host;

storing, at the virtual machine, metadata indicative that

the second application is not written to local virtual
storage of the virtual machine;

responsive to a request to launch the second application,

determining that the metadata indicates that the second
application is not written to the local virtual storage of
the virtual machine;

causing a download request to be transmitted to the

remote host;

receiving, from the remote host based on the download

request, a download package for the second applica-
tion, wherein the download package includes one or
more application files that are operable to execute the
second application without executing an installation
process;

based on the download package, writing the application

files to the local virtual storage of the virtual machine;
and

servicing the request by launching the second application

without executing the installation process.



US 2021/0055938 Al

6. The method of claim 5, wherein when a predetermined
condition is met, the files associated with the second appli-
cation are removed from the virtual machine and stored at
the remote host.

7. The method of claim 5, further comprising:

when a predetermined condition is met, the files associ-

ated with the first application are removed from the

virtual machine and stored at the remote host, and
storing, at the virtual machine, metadata indicative that

the first application is not written at the virtual machine.

8. The method of claim 7, wherein the predetermined
condition is one or more of an amount of storage that is
available, an age of installation of the second application, or
time since the second application has been accessed.

9. The method of claim 5, further comprising intercepting
application launches to determine if a requested application
is stored at the virtual machine.

10. The method of claim 5, wherein determination of
which applications are stored at the virtual machine is made
during an initial configuration of the virtual machine and as
applications are subsequently dehydrated or hydrated.

11. The method of claim 5, wherein the second application
is indicated as being locally available via a user interface
indicative of a filing system.

12. A system configured to launch applications, the sys-
tem configured to:

install a first application at a virtual machine, wherein files

associated with the first application are stored on a local
virtual storage of the virtual machine;

install a second application at the virtual machine,

wherein files associated with the second application are
stored on a remote host;

store, at the virtual machine, metadata indicative that the

second application is not written to local virtual storage
of the virtual machine;

responsive to a request to launch the second application,

determine that the metadata indicates that the second
application is not written to the local virtual storage of
the virtual machine;

cause a download request to be transmitted to the remote

host;

Feb. 25, 2021

receive, from the remote host based on the download
request, a download package for the second applica-
tion, wherein the download package includes one or
more application files that are operable to execute the
second application without executing an installation
process;

based on the download package, write the application files

to the local virtual storage of the virtual machine; and
service the request by launching the second application
without executing the installation process.

13. The system of claim 12, wherein when a predeter-
mined condition is met, the files associated with the second
application are removed from the virtual machine and stored
at the remote host.

14. The system of claim 12, further comprising:

when a predetermined condition is met, the files associ-

ated with the second application are removed from the

virtual machine and stored at the remote host, and
storing, at the virtual machine, metadata indicative that

the first application is not written at the virtual machine.

15. The system of claim 14, wherein the predetermined
condition is an amount of storage that is available to the
virtual machine.

16. The system of claim 14, wherein the predetermined
condition is a time since the second application has been
accessed or executed.

17. The system of claim 12, further comprising intercept-
ing application launches to determine if a requested appli-
cation is stored at the virtual machine.

18. The system of claim 12, wherein determination of
which applications are stored at the virtual machine is made
during an initial configuration of the virtual machine.

19. The system of claim 12, wherein the second applica-
tion is indicated as being available via a user interface
indicative of a filing system.

20. The system of claim 12, wherein the metadata com-
prises one or more of file names, sizes, time stamps, per-
missions, and version.

#* #* #* #* #*



