发明名称
一种易清洗的金刚石研磨膏及其制备方法

摘要
本发明涉及一种易清洗的金刚石研磨膏及其制备方法，所述的金刚石研磨膏是由人造金刚石微粉、丙二醇、单硬脂酸甘油酯与洗洁精组成的。本发明金刚石研磨膏具有良好的清洗性，膏体细腻，能够达到好的研磨效果的同时也方便研磨器壁的清洗。
1. 一种易清洗的金刚石研磨膏，其特征在于所述的金刚石研磨膏是由5～15重量份人造金刚石微粉、100～200重量份丙三醇、200～400重量份单硬脂酸甘油酯与115～170重量份洗涤剂组成的。

2. 根据权利要求1所述的金刚石研磨膏，其特征在于所述的金刚石研磨膏是由7～12重量份人造金刚石微粉、125～170重量份丙三醇、250～350重量份单硬脂酸甘油酯与125～160重量份洗涤剂组成的。

3. 根据权利要求1所述的金刚石研磨膏，其特征在于所述的金刚石研磨膏是由8～10重量份人造金刚石微粉、140～154重量份丙三醇、290～320重量份单硬脂酸甘油酯与138～148重量份洗涤剂组成的。

4. 根据权利要求1～3中任一项权利要求所述的金刚石研磨膏，其特征在于所述人造金刚石微粉的粒径是1.0～0.5微米。

5. 一种易清洗金刚石研磨膏的制备方法，其特征在于该制备方法的步骤如下：
 A、溶解
 将200～400重量份单硬脂酸甘油酯加到100～200重量份丙三醇中，使单硬脂酸甘油酯溶解得到一种溶液；
 B、分散
 往步骤A得到的溶液中加入5～15重量份人造金刚石微粉与115～170重量份洗涤剂，混合均匀，接着置于超声波仪中在功率120～180W与频率20～30KHz的条件下进行超声分散10～20min，得到一种乳状混合物；
 C、冷却
 将步骤B得到的乳状混合物冷却至室温，得到所述的易清洗金刚石研磨膏。

6. 根据权利要求5所述的制备方法，其特征在于在步骤A中，在水浴加热温度70～80℃的条件下溶解单硬脂酸甘油酯。

7. 根据权利要求5所述的制备方法，其特征在于在步骤A中，单硬脂酸甘油酯的用量250～350重量份；丙三醇的用量是125～170重量份。

8. 根据权利要求5所述的制备方法，其特征在于在步骤A中，单硬脂酸甘油酯的用量是290～320重量份；丙三醇的用量是140～154重量份。

9. 根据权利要求5所述的金刚石研磨膏，其特征在于在步骤B中，人造金刚石微粉的用量是7～12重量份；洗涤剂的用量是125～160重量份。

10. 根据权利要求5所述的金刚石研磨膏，其特征在于在步骤B中，人造金刚石微粉的用量是8～10重量份；洗涤剂的用量是138～148重量份。
一种易清洗的金刚石研磨膏及其制备方法

【技术领域】
[0001] 本发明属于材料加工技术领域。具体地，本发明涉及一种易清洗的金刚石研磨膏，还涉及所述易清洗金刚石研磨膏的制备方法。

【背景技术】
[0002] 研磨的特点是在研磨过程中磨料不断滚动，产生挤压力和切削两种作用，使表面积逐渐平整光滑。人造金刚石研磨膏是用精选优质金刚石微粉磨料和膏状结合剂、着色剂、防腐剂、香精等制成的一种软磨膏，适用于玻璃、陶瓷、宝石、硬质合金等高硬度材料制品的量具、刃具光学仪器及其它高光洁度工件的研磨、抛光加工。人造金刚石研磨膏主体分水溶和油溶两种，具有很好的润滑和冷却性能。金刚石微粉强度高，粒度均匀研磨效果好。例如CN04017499公开了一种金刚石研磨膏，该发明将航空柴油或机油混合得到一种油性介质，抛光效果良好，此种油性介质人造金刚石研磨膏在研磨抛光时会吸附在器壁的表面，不易清洗，对后续研磨抛光会造成不良影响。
[0003] 为了更好的解决现有技术的缺陷，本发明在总结现有的技术基础上，通过大量的实验和分析，本发明人研制出一种易清洗的金刚石研磨膏，解决研磨器壁表面的干净整洁，提高研磨效率。

【发明内容】
[0004] 【要解决的技术问题】
[0005] 本发明的目的是提供一种易清洗金刚石研磨膏。
[0006] 本发明的另一个目的是提供所述易清洗金刚石研磨膏的制备方法。
[0007] 【技术方案】
[0008] 本发明是通过下述技术方案实现的。
[0009] 本发明涉及一种易清洗的金刚石研磨膏。
[0010] 所述的金刚石研磨膏是由5～15重量份人造金刚石微粉、100～200重量份丙三醇、200～400重量份单硬脂酸甘油酯与115～170重量份洗洁精组成的。
[0011] 根据本发明的一种优选实施方式，所述的金刚石研磨膏是由7～12重量份人造金刚石微粉、125～170重量份丙三醇、250～350重量份单硬脂酸甘油酯与125～160重量份洗洁精组成的。
[0012] 根据本发明的另一种优选实施方式，所述的金刚石研磨膏是由8～10重量份人造金刚石微粉、140～154重量份丙三醇、290～320重量份单硬脂酸甘油酯与138～148重量份洗洁精组成的。
[0013] 根据本发明的另一种优选实施方式，所述人造金刚石微粉的粒径是1.0～0.5微米。
[0014] 本发明涉及一种易清洗金刚石研磨膏的制备方法。
[0015] 该制备方法的步骤如下：
[0016] A、溶解
[0017] 将200～400重量份单硬脂酸甘油酯加到100～200重量份丙三醇中，使单硬脂酸甘油酯溶解得到一种溶液；
[0018] B、分散
[0019] 往步骤A得到的溶液中加入5～15重量份人造金刚石微粉与115～170重量份洗洁精，混合均匀，接着置于超声波仪中在功率120～180W与频率20～30KHz的条件下进行超声分散10～20min，得到一种乳状混合物；
[0020] C、冷却
[0021] 将步骤B得到的乳状混合物冷却至室温，得到所述的易清洗金刚石研磨膏。
[0022] 根据本发明的一种优选实施方式，在步骤A中，在水浴加热温度70～80℃的条件下溶解单硬脂酸甘油酯。
[0023] 根据本发明的另一种优选实施方式，在步骤A中，单硬脂酸甘油酯的用量250～350重量份；丙三醇的用量是125～170重量份。
[0024] 根据本发明的另一种优选实施方式，在步骤A中，单硬脂酸甘油酯的用量是290～320重量份；丙三醇的用量是140～154重量份。
[0025] 根据本发明的另一种优选实施方式，在步骤B中，人造金刚石微粉的用量是7～12重量份；洗洁精的用量是125～160重量份。
[0026] 根据本发明的另一种优选实施方式，在步骤B中，人造金刚石微粉的用量是8～10重量份；洗洁精的用量是138～148重量份。
[0027] 下面将更详细地描述本发明。
[0028] 本发明涉及一种易清洗的金刚石研磨膏。
[0029] 所述的金刚石研磨膏是由5～15重量份人造金刚石微粉、100～200重量份丙三醇、200～400重量份单硬脂酸甘油酯与115～170重量份洗洁精组成的。
[0030] 本发明使用的人造金刚石微粉是指粒径为0.1～0.5微米的人造金刚石颗粒，人造金刚石微粉硬度高、耐磨性能好，广泛用于切割、磨削、钻探等技术领域。人造金刚石微粉是研磨抛光硬质合金、陶瓷、宝石、光学玻璃等高硬度材料的理想原料。本发明使用的人造金刚石微粉是由河南省亚龙硬材料有限公司以商品名金刚石微粉销售的产品。
[0031] 本发明使用的丙三醇在本发明组合物中主要起一种润滑剂的作用，即起到润滑膏体的作用。本发明使用的丙三醇是由云南瑞祥化玻教仪研发有限公司以商品名丙三醇销售的产品。在本发明组合物中，丙三醇是必需的组分，如果没有丙三醇，则会使膏体不能揉和在一起，缺乏一定的韧性，膏体不能起到润滑的作用。
[0032] 单硬脂酸甘油酯是C16-C18长链脂肪酸与丙三醇酯化反应产物，它是一种非离子型的表面活性剂，既含有亲水基因又含有亲油基因，它具有润湿、乳化、起泡等多种功能。在本发明组合物中，单硬脂酸甘油酯使金刚石研磨膏体细腻，主要起作润滑剂和分散剂的作用。本发明使用的单硬脂酸甘油酯是由云南瑞祥化玻教仪研发有限公司以商品名单硬脂酸甘油酯销售的产品。在本发明组合物中，单硬脂酸甘油酯是必需的组分，如果没有单硬脂酸甘油酯，则膏体不能形成膏状体。当然，也可以使用与单硬脂酸甘油酯性质和作用相近，同时对本发明金刚石研磨膏性能没有不良影响的其它酯化合物，例如乙二醇硬脂酸酯、季戊四醇单硬脂酸酯；这些其它酯化合物也在本发明保护范围之内。
洗洁精是一种日常清洁用品，它含有多种活性成分，主要成分是表面活性剂，这些成分能够使各种油腻污渍、有害物质溶解、乳化，分散悬浮，从而达到清洁的效果。在本发明组合物中，洗洁精主要起乳化剂和润湿剂的作用，达到易清洗的目的。本发明使用的洗洁精是由云南瑞祥化玻组仪研发有限公司以商品名白洗洁精销售的产品。在本发明组合物中，洗洁精是必需的组分，如果没有洗洁精，则会达不到易清洗的目的。当然，也可以使用与洗洁精性质和作用相近，同时对本发明金刚石研磨膏性能没有不良影响的其它清洗剂，例如立白洗衣液、蓝月亮洗洁手液；这些其它清洗剂也都在本发明保护范围内。

在本发明组合物中，其它组分的含量在所述的范围内时，如果人造金刚石微粉的量小于5重量份，则会不够达到研磨的效果；如果人造金刚石微粉的量大于15重量份，金刚石含量过高会使金刚石微粉聚集为颗粒状，降低研磨抛光的效果；因此，人造金刚石微粉的量为5～15重量份是合理的，优选地是7～12重量份，更优选地是8～10重量份。

同样地，其它组分的含量在所述的范围内时，如果丙三醇的量小于100重量份，则会使金刚石研磨膏起不到润滑的效果；如果丙三醇的量大于200重量份，则会使所得的金刚石研磨膏不能形成好的膏状体，具有一定的流动性；因此，丙三醇的量为100～200重量份是恰当的，优选地是125～170重量份，更优选地是140～154重量份。

其它组分的含量在所述的范围内时，如果硬脂酸甘油酯的量小于200重量份，则会使金刚石研磨膏凝固的不是很充分；如果硬脂酸甘油酯的量大于400重量份，则会使金刚石研磨膏不能很好的分散；因此，硬脂酸甘油酯的量为200～400重量份是可行的，优选地是250～350重量份，更优选地是290～320重量份。

其它组分的含量在所述的范围内时，如果洗洁精的量小于115重量份，则会清洗的效果不明显；如果洗洁精的量大于170重量份，则会对研磨抛光时切削效果产生影响，达不到预期的效果；因此，洗洁精的量为115～170重量份是合理的，优选地是125～160重量份，更优选地是138～148重量份。

根据本发明，所述的金刚石研磨膏优选地是由7～12重量份人造金刚石微粉、125～170重量份丙三醇、250～350重量份硬脂酸甘油酯与125～160重量份洗洁精组成的。

更优选地，所述的金刚石研磨膏是由8～10重量份人造金刚石微粉、140～154重量份丙三醇、290～320重量份硬脂酸甘油酯与138～148重量份洗洁精组成的。

根据本发明，所述的金刚石微粉的粒径是1.0～0.5微米。

在本发明中，如果金刚石微粉的粒径超过所述的范围，则会分散时间长，降低实验的效率。

本发明涉及一种易清洗金刚石研磨膏的制备方法。

该制备方法的步骤如下：

A. 溶解

将200～400重量份硬脂酸甘油酯加到100～200重量份丙三醇中，使硬脂酸甘油酯溶解得到一种溶液。

这个溶解步骤优选地是在水浴加热温度70～80℃的条件下将硬脂酸甘油酯溶解于丙三醇中。

有关硬脂酸甘油酯与丙三醇的情况如在前面所描述的，故在此不再赘述。

优选地，硬脂酸甘油酯的用量是250～350重量份；丙三醇的用量是125～170重
量份。
[0049] 优选地，单硬脂酸甘油酯的用量290～320重量份；三甲醇的用量是140～154重量份。
[0050] B、分散
[0051] 往步骤A得到的溶液中加入5～15重量份人造金刚石微粉与115～170份洗洁精，混合均匀，接着置于超声波仪中在功率120～180W与频率20～30KHz的条件下进行超声分散10～20min，得到一种乳状混合物。
[0052] 本发明使用超声波仪的目的在于将粒径1.0～0.5微米的金刚石微粉均匀扩散在洗洁精中，从而能够获得一种稳定的乳状混合物。
[0053] 超声波仪功率与频率都对人造金刚石微粉扩散产生很大的影响。如果其超声功率小于120W时，则会达不到分散的效果；如果其超声功率超过180W时，则会分散加剧，各组份热运动剧烈，影响金刚石微粉的均匀性。因此，其超声功率为120～180W是可取的。
[0054] 同样地，如果其超声功率小于20KHz时，则会不能达到分散的目的；如果其超声功率大于30KHz时，则会分散加剧，会吸收空气的杂质。因此，其超声频率为20～30KHz是可行的。
[0055] 如果其超声分散时间短于10min时，则会使膏体分散不均匀；如果其超声分散时间超过20min时，则膏体聚集为颗粒的现象。因此，其超声分散时间为10～20min是可取的。
[0056] 本发明使用的超声波仪是目前市场上销售的产品，例如由深圳市结盟清洗设备有限公司以商品名结盟牌超声波清洗机销售的产品。
[0057] 有关人造金刚石微粉与洗洁精的情况如在前面所描述的，故在此不再赘述。
[0058] 优选地，人造金刚石微粉的用量是7～12重量份；洗洁精的用量是125～160重量份。
[0059] 更优选地，人造金刚石微粉的用量是8～10重量份；洗洁精的用量是138～148重量份。
[0060] C、冷却
[0061] 将步骤B得到的乳状混合物冷却至室温，得到所述的易清洗金刚石研磨膏。
[0062] 在本发明中，让乳状混合物冷却方式可以是人们熟知的各种方式，例如用冷水浴或冰箱冷却方式，只是需要将步骤B得到的乳状混合物冷却至室温，就得到所述的易清洗金刚石研磨膏。
[0063] 采用标准ZYP300研磨机，使用本发明易清洗金刚石研磨膏对碳化硅、刚玉、与碳钢材料进行了研磨抛光，其研磨抛光结果为三种材料的表面粗精度均明显的降低且材料表面刮痕少，使用洗洁精清洗剂清洗效果明显，在常温下能清洗。
[0064] 同时，使用由不加入洗洁精的同样配置方法制得的金刚石研磨膏、在相同的条件下对碳化硅、刚玉与碳钢材料进行了研磨抛光，其研磨抛光结果为使用洗洁精清洗剂清洗效果和抛光效果更好、更快速。
[0065] 由上述结果清楚地看出洗洁精的加入提高了抛光和清洗的效率。
[0066] 本发明的易清洗金刚石研磨膏具有下述特点：
[0067] A、本发明的易清洗金刚石研磨膏易于清洗。
[0068] B、本发明的易清洗金刚石研磨膏中的人造金刚石微粉分散均匀，膏体细腻。
说明书

【具体实施方式】

通过下述实施例能够更好地理解本发明。

实施例1：制备易清洗金刚石研磨膏

该实施例的实施步骤如下：

A、溶解

在水浴加热温度70°C的条件下，将250重量份由云南瑞祥化玻教仪研发有限公司以商品名单硬脂酸甘油酯销售的单硬脂酸甘油酯加到100重量份丙三醇中，使单硬脂酸甘油酯溶解得到一种溶液：

B、分散

往步骤A得到的溶液中加入7重量份由云南瑞祥化玻教仪研发有限公司以商品名金刚石粉销售的单硬脂酸微粉与138重量份由云南瑞祥化玻教仪研发有限公司以商品名立白洗洁精销售的洗洁精，混合均匀，接着置于由深圳市结盟清洗设备有限公司以商品名结盟牌超声波清洗机销售的超声波仪中，在功率140W与频率20KHz的条件下进行超声分散18min，得到一种乳状混合物；

C、冷却

采用冷水浴冷却方式，将步骤B得到的乳状混合物冷却至室温，得到所述的易清洗金刚石研磨膏。

采用标准ZYP300研磨机，使用本发明易清洗金刚石研磨膏对碳化硅材料进行了研磨抛光，其研磨抛光结果表明，碳化硅材料的表面粗糙度Ra为0.270μm，相比于抛光前的表面粗糙度Ra为0.521μm明显降低，使用洗洁精清洗剂清洗效率提高，材料表面干净，几乎没有残留物，清洗时间缩短了3倍，提高了清洗的效率，清洗方便。

与此同时，使用未加入洗洁精的同样配制方法制得的金刚石研磨膏。在相同的条件下对碳化硅材料进行了研磨抛光，其研磨抛光结果为抛光后碳化硅的表面粗糙度Ra为0.293μm，使用洗洁精清洗剂清洗效果和抛光效果更好、更快速。

由上述结果清楚地看出洗洁精的加入提高了抛光和清洗的效率。

实施例2：制备易清洗金刚石研磨膏

该实施例的实施步骤如下：

A、溶解

在水浴加热温度75°C的条件下，将350重量份由云南瑞祥化玻教仪研发有限公司以商品名单硬脂酸甘油酯销售的单硬脂酸甘油酯加到200重量份丙三醇中，使单硬脂酸甘油酯溶解得到一种溶液：

B、分散
往步骤A得到的溶液中加入12重量份数由河南省亚龙硬材料有限公司以商品名金刚石粉销售的人造金刚石微粉与148重量份数由云南祥化玻教仪研发有限公司以商品名洗洁精销售的洗洁精，混合均匀，接着置于由深圳市结盟清洗设备有限公司以商品名结盟牌超声波清洗机销售的超声波仪中，在功率120W与频率30KHz的条件下进行超声分散10min，得到一种乳状混合物；

C.冷却

采用冰箱冷却方式，将步骤B得到的乳状混合物冷却至室温，得到所述的易清洗金刚石研磨膏。

采用标准ZYP300研磨机，使用本发明易清洗金刚石研磨膏对刚玉材料进行了研磨抛光，其研磨抛光结果表明，刚玉材料的表面粗糙度Ra为0.281μm，相比于抛光前的表面粗糙度Ra为0.437μm明显降低；使用洗洁精清洗剂清洗效果提高，材料表面干净，几乎没有残留物，清洗时间缩短了3倍，提高了清洗的效率，清洗方便。

与此同时，使用由不加入洗洁精的同样配置方法制得的金刚石研磨膏。在相同的条件下对刚玉研磨抛光，其研磨抛光结果为抛光后刚玉的表面粗糙度Ra为0.296μm，使用洗洁精清洗剂清洗效果和抛光效果更好、更快速。

由上述结果清楚地看出洗洁精的加入提高了抛光和清洗的效率。

实施例3：制备易清洗金刚石研磨膏

该实施例的实施步骤如下：

A.溶解

在水浴加热温度80℃的条件下，将200重量份数由云南祥化玻教仪研发有限公司以商品名单硬脂酸甘油酯销售的单硬脂酸甘油酯加到125重量份数丙三醇中，使单硬脂酸甘油酯溶解得到一种溶液；

B.分散

往步骤A得到的溶液中加入5重量份数由河南省亚龙硬材料有限公司以商品名金刚石粉销售的人造金刚石微粉与115重量份数由云南祥化玻教仪研发有限公司以商品名洗洁精销售的洗洁精，混合均匀，接着置于由深圳市结盟清洗设备有限公司以商品名结盟牌超声波清洗机销售的超声波仪中，在功率180W与频率25KHz的条件下进行超声分散12min，得到一种乳状混合物；

C.冷却

采用冷水浴冷却方式，将步骤B得到的乳状混合物冷却至室温，得到所述的易清洗金刚石研磨膏。

采用标准ZYP300研磨机，使用本发明易清洗金刚石研磨膏对碳钢材料进行了研磨抛光，其研磨抛光结果表明，碳钢材料的表面粗糙度Ra为0.228μm，相比于抛光前的表面粗糙度Ra为0.346μm明显降低；使用洗洁精清洗剂清洗效果提高，材料表面干净，几乎没有残留物，清洗时间缩短了3倍，提高了清洗的效率，清洗方便。

与此同时，使用由不加入洗洁精的同样配置方法制得的金刚石研磨膏在相同的条件下对碳钢研磨抛光，其研磨抛光结果为抛光后碳钢的表面粗糙度Ra为0.236μm，使用洗洁精清洗剂清洗效果和抛光效果更好、更快速。

由上述结果清楚地看出洗洁精的加入提高了抛光和清洗的效率。
实施例4：制备易清洗金刚石研磨膏

该实施例的实施步骤如下：

A、溶解

在水浴加热温度75℃的条件下，将400重量份由云南瑞祥化玻仪研制有限公司以商品名金刚石粉销售的单硬脂酸甘油酯加到170重量份丙三醇中，使单硬脂酸甘油酯溶解得到一种溶液；

B、分散

往步骤A得到的溶液中加入15重量份由河南省亚龙硅材料有限公司以商品名金刚石粉销售的人造金刚石微粉与170重量份由云南瑞祥化玻仪研制有限公司以商品名立白洗涤剂销售的洗洁精混合均匀，接着置于由深圳市结盟清洗设备有限公司以商品名结盟牌超声波清洗机销售的超声波仪中，在功率160W与频率28KHz的条件下进行超声分散20min，得到一种乳状混合物；

C、冷却

采用冰箱冷却方式，将步骤B得到的乳状混合物冷却至室温，得到所述的易清洗金刚石研磨膏。

采用标准ZYP300研磨机，使用本发明易清洗金刚石研磨膏对碳化硅材料进行了研磨抛光，其研磨抛光结果碳化硅材料的表面粗糙度Ra为0.273μm，相比于抛光前的表面粗糙度Ra为0.521μm明显降低；材料表面干净，几乎没有残留物，清洗时间缩短了3倍，提高了清洗的效率，清洗方便。

与此同时，使用由未加入洗洁精的同样配置方法制得的金刚石研磨膏在相同的条件下对碳化硅材料进行了研磨抛光，其研磨抛光结果为抛光后碳化硅的表面粗糙度Ra为0.286μm，使用洗洁精清洗剂清洗效果更好，产品易清洗，材料表面划痕少。

由上述结果清楚地看出洗洁精的加入提高了抛光和清洗的效率。

实施例5：制备易清洗金刚石研磨膏

该实施例的实施步骤如下：

A、溶解

在水浴加热温度72℃的条件下，将290重量份由云南瑞祥化玻仪研制有限公司以商品名单硬脂酸甘油酯销售的单硬脂酸甘油酯加到140重量份丙三醇中，使单硬脂酸甘油酯溶解得到一种溶液；

B、分散

往步骤A得到的溶液中加入8重量份由河南省亚龙硅材料有限公司公司以商品名金刚石粉销售的人造金刚石微粉与125重量份由云南瑞祥化玻仪研制有限公司以商品名立白洗涤剂销售的洗洁精混合均匀，接着置于由深圳市结盟清洗设备有限公司以商品名结盟牌超声波清洗机销售的超声波仪中，在功率170W与频率22KHz的条件下进行超声分散16min，得到一种乳状混合物；

C、冷却

采用冷水浴冷却方式，将步骤B得到的乳状混合物冷却至室温，得到所述的易清洗金刚石研磨膏。

采用标准ZYP300研磨机，使用本发明易清洗金刚石研磨膏对刚玉材料进行了研磨
抛光，其研磨抛光结果刚玉材料的表面粗糙度Ra为0.279μm，相比于抛光前的表面粗糙度Ra为0.442μm明显降低；使用洗洁精清洗剂清洗效果提高，材料表面干净，几乎没有残留物，清洗时间缩短了3倍，提高了清洗的效率，清洗方便。

[0126] 与此同时，使用由不加入洗洁精的同样配制方法制得的金刚石研磨膏在相同的条件下对刚玉材料进行了研磨抛光，其研磨抛光结果为抛光后刚玉的表面粗糙度Ra为0.283μm，使用洗洁精清洗剂清洗效果更好，产品易清洗，材料表面划痕少。

[0127] 由上述结果清楚地看出洗洁精的加入提高了抛光和清洗的效率和材料表面的清洗效果。

[0128] 实施例6：制备易清洗金刚石研磨膏

[0129] 该实施例的实施步骤如下：

[0130] A.溶解

[0131] 在水浴加热温度78℃的条件下，将320重量份由云南瑞祥化玻教仪研发有限公司以商品名硬脂酸甘油酯销售的单硬脂酸甘油酯加到154重量份丙三醇中，使单硬脂酸甘油酯溶解得到一种溶液。

[0132] B.分散

[0133] 往步骤A得到的溶液中加入10重量份由河南省亚龙硬材料有限公司以商品名金刚石粉销售的人造金刚石粉与160重量份由云南瑞祥化玻教仪发有限研公司以商品名洗洁精销售的洗洁精，混合均匀，接着置于由深圳市结盟清洗设备有限公司以商品名结盟牌超声波仪清洗机标销售的超声波仪中在功率150W与频率25KHz的条件下进行超声分散14min，得到一种乳状混合物。

[0134] C.冷却

[0135] 采用冷水浴冷却方式，将步骤B得到的乳状混合物冷却至室温，得到所述的易清洗金刚石研磨膏。

[0136] 采用标准ZYP300研磨机，使用本发明易清洗金刚石研磨膏对碳钢材料进行了研磨抛光，其研磨抛光结果碳钢材料的表面粗糙度Ra为0.219μm，相比于抛光前的表面粗糙度Ra为0.351μm明显降低；使用洗洁精清洗剂清洗效果提高，材料表面干净，几乎没有残留物，清洗时间缩短了3倍，提高了清洗的效率，清洗方便。

[0137] 与此同时，使用由不加入洗洁精的同样配置方法制得的金刚石研磨膏在相同的条件下对碳钢材料进行了研磨抛光，其研磨抛光结果为抛光后碳钢的表面粗糙度Ra为0.232μm，使用洗洁精清洗剂清洗效果更好，产品易清洗，材料表面划痕少。

[0138] 由上述结果清楚地看出洗洁精的加入提高了抛光和清洗的效率。