(12)

UK Patent Application .. GB .2 427 045 .. A

(43) Date of A Publication 13.12.2006

(21) Application No: 0511462.4
(22) Date of Filing: 06.06.2005
(71) Applicant(s):

(72)

(74)

Transitive Limited

(Incorporated in the United Kingdom)
5th Floor Alder Castle, 10 Noble Street,
LONDON, EC2V 7QJ, United Kingdom

Inventor(s):
Paul Knowles
Gavin Barraclough

Agent and/or Address for Service:
Appleyard Lees

15 Clare Road, HALIFAX, West Yorkshire,
HX1 2HY, United Kingdom

(51)

(52)

(56)

(58)

INT CL:
GO6F 9/455 (2006.01)
GO6F 9/50 (2006.01)

GO6F 9/46 (2006.01)

UK CL (Edition X ):
G4A AFN AFP

Documents Cited:
US 20040054517 A1 US 20030066056 A1

Field of Search:

UK CL (Edition X ) G4A

INT CL” GO6F

Other: WPI, EPODOC, TXTE, INSPEC, IBM-TDB, XPESF,
XP13E

(54)

(57)

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

This print takes account of replacement documents submitted after the date of filing to enable the application to comply

Abstract Title: Converting program code with access coordination for a shared resource

A dynamic binary translator 19 converts a subject
program 17 into target code 21 on a target
processor 13. For a multi-threaded subject
environment, the translator 19 provides a global
token 501 common to each thread 171,172, and one
or more sets of local data 502, which together are
employed to coordinate access to a memory 18 as a
shared resource. Adjusting the global token 501
allows the local datastructures 502a,b in each
thread to detect potential interference with the
shared resource 18.

with the formal requirements of the Patents Rules 1995

Thread 1
171

502a

Thread 2
172

i i

523 523
Local_Address Local_Address
522 522
Local_Value Local_Value
521 521
Local_Token - Local_Token
K 502b
Global Token
501
17 19 21
Subject Code Translator Translated Code
E/ 27 (Target Code)
Operating System 20
Target Processor
L-13
15
14

Fig. 5

VY S0 Lcv ¢ 99

Original Printed on Recycled Paper



1/7

17 19 21
Subject Code Translator Translated Code
] 27 (Target Code)
Operating System 420
Target Processor
- 13
15 d
14
Fig. 1
|
Translator 19 : Target Code 21
[
190 ~. |
Run Loop //(2_(;-2)\‘ Execute
\, \':_—// ?lockts(é) ((j)f o
201) arget Code R
192
<
Generate
Block(s) of
Target Code




217

Subject Code 17 Target Code 21
[block entry point] [block entry point]
Sl >  (no cou.r.;tcrpart)
o T G

T3
[block exit point] B

[block exit point]

Fig. 3



3/7

403 <

402 -

405 404
Res Reg RFlag
GP Reg
Subject Processor
N

ﬂ 400

Fig. 4



4/7

Thread 1

171 ﬁ

Thread 2

i

523 523
Local Address v Local Address '
522 522
Local Value - Local_Value r
521 21
[ocal_Token g Local_Token r g
502a 502b
Global Token
501
17 19 21
Subject Code Translator Translated Code
27 (Target Code)
18 Operating System 420
Target Processor
13
15 1

Fig. 5

14

LE XY



5/7

Provide Global Token and
Local Datastructure

602

dentify Subjec
et/Check Instruction

y y
Adjust Global Token .~ %93 Compare Stored Local J~~ %04
and Store Local Datastructure with
Datastructure Global Token

Fig. 6



6/7

Adjust
Global Token

y

Copy Global Token

To Local Token

y

Load Data
From Shared Location

A

Copy Data to
Local Value

A

Copy Location to
Local Address

Fig. 7

vee
. ".
LA X Y

® vee



7/7

Address OK?

807

y

801

Token OK?

Value OK?

Store New Value

Y

Adjust Global Token

Adjust Global Token

\4

v
Indicate Success

Indicate Failure

Fig. 8

805

806



10

15

20

25

30

2427045

1

METHOD AND APPARATUS FOR CONVERTING PROGRAM CODE
WITH ACCESS COORDINATION FOR A SHARED RESOURCE

The present invention relates generally to the field
of computers and computer software and, more particularly,
to program code conversion methods and apparatus useful,
for example, in code translators, emulators and

accelerators which convert program code.

In both embedded and non-embedded CPUs, there are
predominant Instruction Set Architectures (ISAs) for which
large bodies of software exist that could be “accelerated”
for performance, or “translated” to a myriad of capable
processors that could present better cost/performance
benefits, provided that they could transparently access
the relevant software. One also finds dominant CPU
architectures that are locked in time to their ISA, and
cannot evolve in performance or market reach. Such CPUs

would benefit from a software-oriented processor

co-architecture.

Program code conversion methods and apparatus to .

facilitate such acceleration, translation and co-
architecture capabilities are disclosed, for example, in

published PCT application W0O00/22521, and others.

Embodiments of the present invention are particularly
concerned with program code conversion, whereby a subject
program 1is converted into target code executable by a

target processor in a target computing platform.

Performing program code conversion inevitably brings

overheads in the conversion process, compared with native

L X N J
.



10

15

20

25

30

execution of the subject program on a subject processor.
It is generally desirable to reduce this overhead in the
conversion process. Also, it 1is generally desired to
produce target code which executes correctly and

efficiently on a target processor.

A thread 1is a portion of a program that can run
independently of, and concurrently with, other portions of
the program. In a multi-threaded processing environment,
more than one thread (or more than one processor) has
access to a shared resource, such as memory. A mechanism
for coordinating access to the shared resource is usually
required, in order to avoid interference such as conflicts
or unexpected Dbehaviour. For example, unintentional
interference can arise when two threads independently
update data at a particular memory location. The access

coordination mechanism is usually specific to thes®****

LN ]
instruction set architecture of the subject processor. Ing °*..
many cases, the subject access coordination mechanism is

not readily implemented on a target processor following..: .

program code conversion. Firstly, the target processor may
have no hardware-based coordination mechanism. Secondly, ,**°°,

the target coordination mechanism may operate differently.:t:;
to the subject mechanism. In both of these examples, there T
is a difficulty in providing an adequate substitute for
the subject access coordination mechanism that is expected

by the subject code.

According to the present invention there is provided
an apparatus and method as set forth in the appended
claims. Preferred features of the invention will be
apparent from the dependent claims, and the description

which follows.



10

15

20

25

30

The following 1is a summary of various aspects and
advantages realizable according to embodiments of the
invention. It is provided as an introduction to assist
those skilled in the art to more rapidly assimilate the
detailed design discussion that ensues and does not and is
not intended in any way to limit the scope of the claims

that are appended hereto.

In one aspect of the present invention there 1is
provided a method of providing an access coordination
mechanism of a shared resource, for use in program code
conversion from subject code having multiple subject
threads into target code executable by a target processor,
the method including steps of: (a) providing a plurality

of local datastructures each associated with one of the

multiple subject threads, and a global token common tos

each of the subject threads; (b) decoding the subject code! °..°

to identify a subject setting instruction which sets a |,

subject access coordination mechanism in relation to a,,.

shared resource, and a subject checking instruction which

checks the subject access coordination mechanism; (c) in,

response to the subject setting instruction, generating,* ®*:
target code for adjusting the global token, and storing at o
least a local token in the 1local datastructure for a
current thread, wherein the local token is derived from
the adjusted global token; (d) in response to the subject
checking instruction, generating target code for comparing

at least the stored local token against the global token

to determine potential interference with the shared

resource.



10

15

20

25

30

In particular, the inventors have developed methods
directed at expediting program code conversion, which are
particularly useful in connection with a run-time
translator which provides dynamic binary translation of

subject program code into target code.

The present invention also extends to a translator
apparatus arranged to perform any of the methods defined
herein. Also, the present invention extends to computer-
readable storage medium having recorded thereon
instructions implementable by a computer to perform any of

the methods defined herein.

The accompanying drawings, which are incorporated in
and constitute a part of the specification, illustrate
presently preferred implementations and are described as

follows:

Figure 1 1is a block diagram illustrative of an ,
apparatus wherein embodiments of the invention find..: .
application;

Figure 2 1is a schematic flow diagram illustrating a,*® %°:

preferred method of execution control during program code

conversion;

Figure 3 is a schematic diagram to show a relationship
between subject instruction and target instructions

following program code conversion;

Figure 4 is a schematic diagram of an example subject
processor having a reservation as a hardware-oriented

access coordination mechanism;



10

15

20

25

30

Figure 5 1is a schematic diagram of a target processor
having an access coordination mechanism for a shared

resource, as employed in preferred embodiments of the

present invention;

Figure 6 1s an overview of a method employed in

preferred embodiments of the present invention;

Figure 7 1s a schematic flow diagram illustrating the

method of Figure 6 in more detail; and

Figure 8 is a schematic flow diagram illustrating the

method of Figure 6 in more detail.

The following description 1is provided to enable a,

L
person skilled in the art to make and use the invention®
ve -

and sets forth the best modes contemplated by thes “ee
inventors of carrying out their invention. Various .o,

*
modifications, however, will remain readily apparent toO...

those skilled in the art, since the general principles of "

LR N J

the present invention have been defined hereina:",-
¢ oo

specifically to provide an improved program codes o3

conversion method and apparatus.

In the terminology below, a subject program is
intended to execute on a subject computing platform
including a subject processor. A target computing platform
including a target processor 1is wused to execute the
subject program, through a translator which performs
dynamic program code conversion. The translator performs

code conversion from subject code to target code, such



10

15

20

25

30

that the target code is executable on the target computing

platform.

Figure 1 illustrates an example target computing
platform 14, comprising a target processor 13 including
target registers 15 together with memory 18 storing a
plurality of software components 17, 19, 20, 21, and 27.
The software components include an operating system 20,
subject code 17 to be translated, translator code 19,
translated code (target code) 21, and an abstract register

bank 27, amongst others.

In one embodiment, the translator code 19 1is an
emulator to translate subject code of a subject
instruction set architecture (ISA) into translated target
code of another ISA, with or without optimisations. That'

is, the translator 19 emulates a subject processor, whilst:

actually executing the subject program 17 as target codes

21 on the target processor 13. In another embodiment, the .2,

translator 19 functions as an accelerator for translating ...

subject code into target code, each of the same ISA, by

performing program code optimisations.

The translator 19, i.e., a compiled version of source
code implementing the translator, and the translated code
21, i.e., the translation of the subject code 17 produced
by the translator 19, run in conjunction with the
operating system 20 running on the target processor 13,

which 1is typically a microprocessor or other suitable

computer.

It will be appreciated that the structure illustrated

in Figure 1 1is exemplary only and that, for example,

¢
X XA N ]

o L

[ X XX ]

[ ]
.« >
-



10

15

20

25

30

software, methods and processes according to the invention
may be implemented in code residing within or beneath an
operating system. The subject code 17, translator code
19, operating system 20, and storage mechanisms of the
memory 18 may be any of a wide variety of types, as known

to those skilled in the art.

In the apparatus according to Figure 1, program code
conversion 1is preferably performed dynamically, at run-
time, while the target code 21 is running. The translator
19 runs inline with the translated program 21. In this
case, the translator 1is a dynamic binary translator. In
another example embodiment, the translator 19 1is an
interpreter which translates and executes individual
subject instructions in turn as one or more corresponding

target code instructions. tieses

e o
e » o
e oo

The translator 19 is preferably employed as an

application compiled for the target architecture. The *3°
subject program 17 is translated by the translator 19 atnoﬂs
run-time to execute on the target architecture 14. The ...

subject program 17 is translated by the translator 19 at: e
run-time to execute directly on the target architecture.“'.:
The translator 19 also transforms subject operating system
(OS) calls made by the subject program 17 so that they

work correctly when passed to the target 0S 20.

Running the subject program 17 through the translator
19 involves two different types of code that execute in an
interleaved manner: the translator code 19; and the
target code 21. The translator code 19 is generated such
as by a compiler, prior to run-time, based on a high-level

source code implementation of the translator 19. By



10

15

20

25

30

contrast, the target «code 21 is generated by the
translator code 19, throughout run-time, based on the

stored subject code 17 of the program being translated.

In the preferred embodiment, at least one abstract
register bank 27 1is provided (also referred to as the
subject register bank 27 or global register store 27). 1In
a multiprocessor environment, optionally more than one
abstract register bank 27 1is provided according to the

architecture of the subject processor.

A representation of a subject processor state is
provided by components of the translator 19 and the target
code 21. That is, the translator 19 stores the subject
processor state 1in a variety of explicit programming

language devices such as variables and/or objects. Thelseess

compiler used to compile the translator 19 determines how!*, °.

the state and operations are implemented in the translator

code. The target code 21, by comparison, provides subject °:°

processor state implicitly in the target registers 15 and .
in memory locations 18, which are manipulated by the ,,..

.
coen

target instructions of the target code 21. For example, _ ...

the low-level representation of the global register store
27 is simply a region of allocated memory. In the source
code of the translator 19, however, the global register
store 27 1is a data array or an object which can be

accessed and manipulated at a higher level.

Figure 2 is a schematic flow diagram illustrating a
preferred method of execution control during program code

conversion.



w

10

15

20

25

30

As shown in Figure 2, control initially resides with a
translator control loop 190. In step 201, the control loop
190 calls a code generation function 192 of the translator
code 19, which translates a block of the subject code 17
into a corresponding block of translated code 21. Then, in
step 202, that block of translated code 21 is executed on
the target processor 13. Conveniently, the end of each
block of translated code 21 contains instructions to
return control back to the control loop 201. In other
words, the steps of translating and executing the subject
code are interlaced, such that portions of the subject

program 17 are translated and then executed in turn.

Here, the term “basic block” will be familiar to those
skilled in the art. A basic block is a section of code

with exactly one entry point and exactly one exit pointé.u:-

which limits the block code to a single control path. For:*. °.

this reason, basic blocks are a useful fundamental unit of

control flow. Suitably, the translator 19 divides the '+

subject code 17 into a plurality of basic blocks, where ..
each basic block 1s a sequential set of instructions ....

between a first instruction at a single entry point and a . vos

last instruction at a single exit point (such as a jump,
call or branch instruction). The translator may select
just one of these basic blocks (block mode) or select a
group of the basic blocks (group block mode). A group
block suitably comprises two or more basic blocks which
are to be treated together as a single unit. Further, the
translator may form iso-blocks representing the same basic

block of subject code but under different entry

conditions.



10

15

20

25

30

10

In the preferred embodiments, trees of Intermediate
Representation (IR) are generated based on a subject
instruction sequence, as part of the process of generating
the target code 21 from the original subject program 17.
IR trees are abstract representations of the expressions
calculated and operations performed by the subject
program. Later, the target code 21 is generated based on
the IR trees. Collections of IR nodes are actually
directed acyclic graphs (DAGs), but are referred to

colloquially as “trees”.

As those skilled in the art may appreciate, in one
embodiment the translator 19 is implemented using an
object-oriented programming language such as C++. For
example, an IR node is implemented as a C++ object, and
references to other nodes are implemented as C++§"-L
references to the C++ objects corresponding to those other:’s e
nodes. An IR tree 1is therefore implemented as a .

collection of IR node objects, containing various

references to each other.

Further, in the embodiment under discussion, IR &4 eee

generation uses a set of abstract register definitions
which correspond to specific features of the subject
architecture upon which the subject program 17 is intended
to run. For example, there is a unique abstract register
definition for each physical register on the subject
architecture (“subject register”). As such, abstract
register definitions in the translator may be implemented
as a C++ object which contains a reference to an IR node
object (i.e., an IR tree). The aggregate of all IR trees
referred to by the set of abstract register definitions is

referred to as the working IR forest (“forest” because it



10

15

20

25

30

11

contains multiple abstract register roots, each of which
refers to an IR tree). These IR trees and other processes

suitably form part of the translator code generation

function 192.

Figure 3 1is a schematic diagram to show an example
relationship between instructions in a subject program and
instructions in a target program, following program code

conversion in preferred embodiments of the present

invention.

In this example, subject instructions S1-S3 result in
functionally equivalent target instructions T1-T3. The
subject instruction S1 has been removed such as by a dead
code elimination optimisation and has no counterpart in
the generated target code. Subject instruction S2 results&-ﬁ-
in one equivalent target instruction T3. By contrast,s'u:.
subject instruction S3 results in two target instructions .

Tl & T2. There may be a one to none, one to one, one to

[ X R ) L[]
* o

many or many to one relationship between the target and oo

subject code instructions. soce

L] LN R
. * o
L X ] L]

As also shown in Figure 3, another commonly used
optimisation is to perform code rescheduling, whereby an
instruction sequence in the target code is not equivalent
to the original sequence in the subject code. Here, the
second subject instruction S2 has been rescheduled as the

third target instruction T3.
Subject Access Coordination

Figure 4 is a schematic diagram of an example subject

processor 400. The subject processor 400 has access to a



10

15

20

25

30

12

memory 401, and includes at least one general purpose
register 402, as will be familiar to those skilled in the
art. The illustrated subject processor 400 is typical of a

RISC processor.

In this example, the subject ©processor further
includes an access coordination mechanism in the form of a
reservation 403. Typically, the reservation 403 is part of
the physical hardware of the subject processor 400. The
reservation 403 provides an access coordination mechanism
for a shared resource such as the memory 401. Usually only

one reservation 403 is provided in the processor 400.

The reservation 403 1is wused to detect whether a

potential interference has occurred in relation to the

shared resource, namely the memory 401. E-":'

In this example, the reservation 403 comprises a

reservation flag 404, and a special-purpose reservation

register 405. The reservation flag 404 is typically a one-
bit flag to show whether a reservation has been set or sese,

cleared. The reservation register 405 is used to store a » eoe

. ]
o0 [ ]

memory address.

Most commonly, the reservation 403 is wused 1in
combination with "“load-link” and “store-conditional” type
instructions. The load-link instruction is used to set (or
seal) the access coordination mechanism. The store-
conditional instruction 1is wused to check the access
coordination mechanism, to detect potential interference

with the shared resource.



10

15

20

25

30

13

Each of these 1instructions 1s associated with a

specified address, in the example form:

retry:
load-link [MEM LL]
... perform operations on the loaded data
store-conditional [MEM SC]

branch if store-conditional fails: retry

When a load-link type instruction is encountered, data
is read from a memory address (i.e. [MEM LL]) associated
with that instruction, the address [MEM LL] is written to

the reservation register 404, and the reservation flag 405

is set.

The data read from the memory address can then be useds'u:-
in one or more operations (i.e. one or more intervening .
subject instructions). For example, incrementing, adding kN .
or bit-shifting operations are performed on the read data....3:
Typically only a small number of operations are performed..u..

ca0o 80

between corresponding load-link and store-conditional . ese
L X ] L]

instructions, such as one, two or three instructions.
This is to reduce the 1likelihood of interference.
However, there 1is generally no limit on the number of
instructions that can be performed between a pair of load-

link and store-conditional instructions.

The store-conditional instruction is used to write the
result of those intervening operations back to the memory
401, usually at the same memory address as the data was

read from. That is, the load-link and store-conditional



10

15

20

25

30

14

instructions are usually created in matched pairs such

that [MEM LL] is the same address as [MEM SC].

The store-conditional instruction compares the given

store address [MEM SC], against the address stored in the

reservation register 404 (which should still be MEM LL).

If the compared addresses are equal (i.e. MEM SC equals

the stored MEM LL), and the reservation flag 405 is still

set, then the store is performed.

In a multi-threaded environment, a potentially

interfering event may have occurred elsewhere in the
subject system (i.e. 1in another subject thread or on
another subject processor) . Here, a potentially

interfering event is detected by either (a) the register

flag 405 has been cleared when it should still be set,
(b) the address held in the reservation register 404
not the same as the address (i.e. [MEM SC]) specified

the store-conditional instruction.

Ly L]
.
Or:.. LR )

. oe 0.
ls: .I.

If the store-conditional instruction succeeded (i.e. eeee,

no interference was detected), then the reservation flag . soe

405 1is cleared and program execution continues. However,

if the store-conditional failed, then usually the program

repeatedly loops back to the load-link instruction until

the instructions are performed without interference.

As examples of potentially interfering events,

the

reservation flag 405 is typically cleared by interrupts,

systems calls or any store to the memory address held in

the reservation register 404,



10

15

20

25

30

15

As another example, a second load-link instruction
(e.g. in another thread) will set the reservation flag
405, and alter the address stored in the reservation
register 404 to the address (e.g. [MEM LL2]) associated
with that second load-link instruction. The second load-
link instruction will therefore cause the first store-

conditional instruction to fail.

To allow the reservation 403 to function at high
efficiency, logic gates for setting and checking the
reservation register 404 and the reservation flag 405 are
typically hard-wired into the subject processor 405.
Similarly, logic gates for clearing the reservation flag
405 are typically hard-wired into the subject processor.
This specially adapted hardware minimises the

computational overhead associated with these procedures.

As a particular example, a PowerPC type processor
provides a reservation and has an instruction set
architecture which supports a pair of instructions for
load-link & store-conditional functionality, known as
“lwarx” and “stwcx”. As further background to this
example, a more detailed discussion is available at

http://www—128.ibm.com/developerworks/library/pa—atom.

In this subject hardware-based reservation system, the
reservation is blown (i.e. the flag 405 is cleared or the
reservation register 404 altered) when an interrupt is
received or a system call performed. Should a context
switch take place between threads, a load-link in one
thread of execution will not be matched by a store-
conditional in another thread (which could cause a store

to falsely take place) if the 0S chooses to reschedule



10

15

20

25

30

16

tasks (which will typically be performed upon interrupt or
system call). As such, at a hardware level, one
reservation 1is provided per processor, not per-software-

task.
Target Access Coordination

Figure 5 is a schematic diagram of a target computing
platform 14 which includes a mechanism for coordinating
access to a shared resource, as employed in preferred

embodiments of the present invention.

The translator 19 1is arranged to support multiple
threads in one or more subject programs 17. The translator

19 coordinates access to a shared resource such as the

memory 18 by the multiple threads, and allows a potential:

interference to be detected.

Referring to Figure 5, the translator 19 provides a

global token 501, and one or more sets of local data 502,

which together are employed to coordinate access to the _

memory 18.

In the preferred embodiment, the translator 19
provides one local data structure 502 for each thread of
the subject program 17. Figure 5 illustrates first and
second data structures 502a, 502b associated with first

and second threads 171, 172, respectively.

The access coordination mechanism (i.e. the global
token 501 and each local data structure 502) is
conveniently stored in the memory 18 as shown in Figure 5.

Alternatively, all or part of the data 1is stored in



10

15

20

25

30

17

suitable registers 15 of target processor 13, if
available. That 1is, the target code 21 may hold one or
more elements of the access coordination data in a target
register. In particular, the global token 501 is desirably

held in a target register 15.

As shown in Figure 5, each local data structure 502
comprises a local token 521, a local value 522 and a local
memory address 523. The local token 521 stores a token,
which 1s derived from the global token 501. The 1local
value 0522 stores a data value read from the shared
resource (i.e. read from the memory 18). The local address

523 stores an address from which the data has been read.

The 1local address 523 1is suitably formatted as a
subject address representing a subject address space (e.q.
as an address appropriate to the memory 401 of the subject
system of Figure 4). The subject address space is referred
to by subject instructions 17. The translator 19

translates the subject address into a target address

appropriate to the target computing system 14 and the ,

target memory 18. Alternatively, the stored local address

523 is formatted as the translated target address.

Figure 6 1s an overview of a preferred method of
providing an access coordination mechanism as employed in
embodiments of the present invention. The method 1is
suitably performed in the translator 19, which generates
target code 21 to implement the method on the target

processor 13.

Referring to Figure 6, the method includes the step
601 of providing the global token 501 and at least one

eee .
.

sess
.

* wow



10

15

20

25

30

18

local datastructure 502, as discussed above referring to

Figure 5.

Step 602 comprises decoding the subject program 17 to
identify instructions that refer to a subject access
coordination mechanism (i.e. the access coordination
mechanism 403 provided in the subject processor 400 of
Figure 4). In particular, this step comprises identifying
(a) a subject setting instruction which sets the subject
access coordination mechanism (such as a load-link
instruction), and (b} a subject checking instructions
which checks the subject access coordination mechanism

(such as a store-conditional instruction).

Step 603 comprises (a) in response to the subject
setting instruction, adjusting the global token 501, and
storing the local datastructure 502 for a first thread
171. Here, the local token 521, local value 522 and local
address 523 are written into the local datastructure 502
(e.g. in the memory 18) by target code when a subject

load-link instruction 1is encountered.

Step 604 comprises (b) 1in response to the subject
checking instruction, comparing the stored local
datastructure 502 against at least a current value of the
global token 501 to determine potential interference with
the shared resource 18. The comparing step also compares
data provided in the checking instruction against the
local datastructure 502. Further, the step 604 comprises

adjusting the global token 501.

Figure 7 is a schematic flow diagram illustrating step

603 of Figure 6 in more detail.



10

15

20

25

30

19

The translator 19 identifies the subject setting
instruction, such as the subject code load-1link
instruction load-link [MEM LL] which operates on the subject
reservation 403. The corresponding target code 21
produced by the translator performs the steps illustrated
in Figure 7. Briefly, Figure 7 shows the step 701 of
adjusting the global token 501, the step 703 of reading
data from the shared resource, and steps 702, 704 and 705

of storing the local datastructure 502.

The step 701 comprises adjusting the global token 501.
Suitably, the global token is a numerical value, such as a
64-bit numerical counter, and adjusting the global token
is an arithmetic operation. Most conveniently, adjusting
the global token 501 comprises incrementing the counter.
An increment instruction is performed relatively
inexpensively in many target processors 13. Alternatively,
the counter is decremented. Other forms of adjustment are

also possible. The adjustment shows that the global token

has changed from its previous form or value. Also, the

global token will change again in response to subsequent

adjustments.

Ideally, the operation or operations to adjust the
global token 501 are themselves ©performed without
interference. Otherwise, there is no guarantee that the
global token 501 1is correctly adjusted. In particular,
the translator 19 itself may be running on the target
processor as one thread amongst a plurality of target

threads.

] L4
¢ @ [ ]
o (X ]



10

15

20

25

30

20

Suitably, the global token 501 1is adjusted without
interference, using a mechanism appropriate to the target
processor. Ideally, an atomic operation is used, if such
exist in the instruction set architecture target
processor, or by using a target processor’s own load-link

and store-conditional mechanism, if such exists.

Some instruction set architectures support operations
that read data from memory, operate on the data and write
the results back into memory as a single step. Such
operations do not comprise separate sub-steps, and
therefore cannot be broken down. Operations of this type
are known as “atomic” because of their logical
indivisibility. Usually, an atomic operation occurs in
the processor in a single bus cycle. Logically, any other
attempts to operate on the data must take place either

before or after the atomic operation.

Atomic operations are commonly provided on CISC
processors. As a particular example, where the target

processor comprises an x86-family processor, adjusting the

global token 501 comprises incrementing a global token

counter using an atomic compare-exchange type instruction

(e.g. a “cmpxchg” instruction).

The step 702 comprises storing the current value of
the global token 501 as the local token 521 of the local

datastructure 502.

The step 703 comprises loading data from a memory
location specified in the subject load-link instruction
(i.e. a location in the target memory 18 relating to the

subject address [MEM LL]). That is, the subject setting



10

15

20

25

30

21

instruction provides a setting address in relation to the
shared resource, and a data value 1is read from the shared
resource in response to the setting address (i.e. with

appropriate address transformation if needed).

The steps 704 and 705 comprise storing a copy of the
loaded data and the setting address (e.g. MEM LL), as the

local value 522 and the local address, respectively, in

the local datastructure 502.

Generic pseudo code for implementing steps 701 to 705

is:

[atomically] adjust global token
load [MEM LL]

local token = global token
local mem = MEM LL

local value = value in MEM LL

Figure 8 is a schematic flow diagram illustrating step

604 of Figure 6 in more detail.

evee

The subject code store-conditional instruction 1S .+ ses

L * o
(X .

conveniently divided into several sub-steps in target

code, as illustrated in Figure 8.

Step 801 comprises comparing a checking address (i.e.
[MEM SC]) derived from an address specified in the subject
store-conditional instruction against the local address
523 stored in the local datastructure 502. Again, address
transformation 1is performed 1if needed. A successful
compare (where the checking address and the stored local

address are identical) shows that the subject store-



10

15

20

25

30

22

conditional instruction matches with the preceding load-
link instruction. A failed compare (where the addresses
are not identical) indicates that another load-link
instruction has been executed in the current thread 171.
Such a situation can arise unintentionally in poorly
written subject code. Here, there is no guarantee that the
intervening instructions between the first load-link and
the corresponding store-conditional have been performed

without interference.

The step 802 comprises comparing the stored local
token 521 against the current value of the global token
501. If the local token 521 is not equal to the global
token 501, then the global token 501 has 1likely been
adjusted by potentially interfering instructions in
another thread 172 (or even in the present thread 171).
For example, another thread may have performed an
interfering load-link type setting instruction. In this
case there is no guarantee that the intervening operations
since the local token 521 was stored have been performed

without interference.

Other target code instructions can be set up to adjust
the global token 501, ideally using an atomic operation
such as [atomically] adjust global token as discussed above. For
example, stores, system calls or interrupts on the subject
processor would normally clear the subject processor’s
reservation flag 405. These subject processor events and
instructions are ideally translated into target code which

adjusts the global token 501.

In step 803, the value 522 stored as local value is

compared with the wvalue currently stored in the memory

LR ]



(62}

10

15

20

25

30

23

location ([MEM SC]) specified in the subject checking
instruction (store-conditional instruction). If the
values are not identical, this shows that another store
has taken place on that memory location. Hence, it 1is
detected that the intervening instructions between the
subject setting and checking instructions have not been

performed without interference.

There is the possibility that, coincidentally, the
value 522 of local value corresponds to that of another store
instruction which last wrote to the relevant memory
address. However, this additional check means that a
false positive is obtained only where both the global
token has been adjusted to an expected value, and the same

value has been stored.

Ideally, the checks of steps 801-803 are performed ins'“:’
combination. These three checks together provide a robustf’g:-

but relatively inexpensive mechanism to detect potential

interference in relation to a shared resource such as °
L]

L L]
e L]
e

memory, in a multi-threaded environment.

Step 804 comprises performing the store requested by « s
the subject checking instruction (i.e. the store- o
conditional instruction). That is, where each of the
comparisons of steps 801, 802 and 803 was successful, the
result of the intervening operations 1s stored to the
location ([MEM SC]) specified in the subject checking

instruction.

Step 805 comprises adjusting the global token such as
with an atomic increment (e.q. compare-exchange)

instruction, as discussed above for step 701.



10

15

20

24

Step 806 comprises indicating that the checking and
storing operation was successful, such that operation of
the subject program may now continue. For example, a
success/fail flag is provided and referred to by the

target code 21 or the translator 19.

Steps 807 and 808 are reached where any of the compare

operations of steps 801-803 are not successful (fail).

Step 807 comprises adjusting the global token such as
with an atomic increment (e.qg. compare-exchange)

instruction, as discussed above for step 701.

Step 808 comprises indicating that the checking and
storing operation failed. For example, a success/fail flag
is set to indicate a fail and is referred to by the target seeess
code 21 or the translator 19. Ideally, the success/failgﬁ.?
flag is used to branch back and retry the whole sequence

from the corresponding load-link instruction.

Example program instructions for steps 801-808 are ....

shown below in generic pseudo code: . vee
- L] ®
L] *



(6]

10

15

20

25

30

25

If ((local mem == MEM SC)
and (local token == global token)
and (local value == contents of MEM SC))

then:
perform store [MEM SCJ
[atomically] adjust global token
set success flag

else

[atomically] adjust global token
set failure flag

The preferred embodiments discussed herein have many
benefits and advantages. The embodiments discussed herein
advantageously provide a soft-oriented approach to access
coordination, which is still relatively efficient and

cost-effective to implement in a translator and to execute

as target code.
oo »

The examples given herein are generic, and the .

principles of the present invention apply to all,,: .

combinations of subject and target processors where

subject code setting and checking instructions (e.g. load—.‘ .

®oass

link and store-conditional instructions) are to be.“. :
executed on an architecture that uses a different access
coordination mechanism, or that provides no such
mechanism. In particular, the present embodiments allow a
behaviour equivalent to a hardware-oriented reservation to

be performed efficiently on target processors that do not

provide hardware support for a reservation.

As particular, non-limiting, examples, PowerPC and
MIPS type processors provide load-link & store-conditional

mechanisms wusing a hardware-supported reservation. By



10

15

20

25

30

26

contrast, x86, Itanium and Sparc type processors do not
provide a reservation. In the preferred embodiments these

processors are able to perform atomic operations on memory

relatively inexpensively.

The principles discussed herein can also be applied
where subject and target processors both have load-link &
store-conditional mechanisms, but where there 1is not a
direct mapping between those mechanisms. Further, in cases
where the subject and target processors both have load-
link & store-conditional mechanism, it 1s still desirable
to keep the target processor reservation independent of
load-link & store-conditional instructions in subject
code. This is because the translator is also running on
the target processor, and will itself make use of the
target processor’s reservation. In this way interference

between the translator and the translated target code cans'":'

LR »
o @ [

be reduced. v,

As discussed above, the preferred embodiments of the °

sew

present invention are based around the observation that,
at the software layer, detecting reschedule events such as  eeee,

interrupts or system calls may be difficult or expensive.‘.:.:
However, storing information per-thread is less expensive. -
The preferred design is based around storing, per-thread,
three pieces of information, namely a flag indicating that
an access coordination mechanism is set, the address
loaded from, and the loaded value. The flag is cleared
(i.e. set to indicate a fail condition) should a system

call occur within this thread, or an interrupt occur which

is handled through the translator.



10

15

20

25

30

27

The value is used to detect when the relevant memory
content has changed at the point of the store-conditional
checking instruction following the load-link setting
instruction. Ideally, the system should not just detect
whether the value is the same on store-conditional as it
was at the point of the load-link, it should also detect
any intervening changes. Detecting these from software is

potentially prohibitively expensive.

In practice, a given memory address is typically only
accessed by atomic- or non-atomic- instructions. As such,
it is sufficient to cause store-conditional instructions
to invalidate all access coordination mechanisms in the
system. This will potentially cause an access coordination
mechanism to be invalidated unnecessarily, but this can
happen anyway (e.g. where a thread receives a hardware
interrupt between a load-link and store-conditional, butE"';
no intervening event interferes with the atomicity of thefn_}

operation taking place). In order to make a store-

LN X J
conditional instruction break an access coordination °
o e

-

mechanism elsewhere in the system, the preferred
embodiments of the present invention move from a pure per— ses¢,

thread model as described above, which 3just features a e« sos
one-bit flag to indicate reservation held, to a model -
introducing the global token. The per-thread £flag 1is
provided as a per-thread local token. The advantage of
this is that all access coordination mechanisms in all
other threads are caused to fail just by modifying the one
single global token, rather than attempting to update

flags in all threads in the system.

Although a few preferred embodiments have been shown

and described, it will be appreciated by those skilled in



10

15

20

25

30

28

the art that various changes and modifications might be
made without departing from the scope of the invention, as

defined in the appended claims.

Attention 1is directed to all papers and documents
which are filed concurrently with or previous to this
specification in connection with this application and
which are open to public inspection with this
specification, and the contents of all such papers and

documents are incorporated herein by reference.

All of the features disclosed in this specification
(including any accompanying claims, abstract and
drawings), and/or all of the steps of any method or
process so disclosed, may be combined in any combination,
except combinations where at least some of such features

and/or steps are mutually exclusive.

Each feature disclosed in this specification
(including any accompanying claims, abstract and drawings)
may be replaced by alternative features serving the same,
equivalent or similar purpose, unless expressly stated
otherwise. Thus, unless expressly stated otherwise, each
feature disclosed is one example only of a generic series

of equivalent or similar features.

The invention is not restricted to the details of the
foregoing embodiment(s). The invention extends to any
novel one, or any novel combination, of the features
disclosed in this specification (including any
accompanying claims, abstract and drawings), or to any
novel one, or any novel combination, of the steps of any

method or process so disclosed.

L X ] L4
9 @ L]
. oo

L]
(X X ]

L]
LR ] [

LER N ]
L] L
eeee
L LA R
. L] L]

LR J L



10

15

20

25

30

29

Claims

1. A method of providing an access coordination
mechanism of a shared resource, for use in program code
conversion from subject code having multiple subject
threads into target code executable by a target processor,

the method including steps of:

(a) providing a plurality of local datastructures each
associated with one of the multiple subject threads, and a

global token common to each of the subject threads;

(b) decoding the subject code to identify a subject
setting instruction which sets a subject access
coordination mechanism in relation to a shared resource,
and a subject checking instruction which checks the

subject access coordination mechanism;

(c) in response to the subject setting instruction,

generating target code for adjusting the global token, and

ese L]
* °
e

storing at least a local token in the local datastructure
for a current thread, wherein the local token is derived sese,

from the adjusted global token; T

LR J .

(d) in response to the subject checking instruction,
generating target code for comparing at least the stored
local token against the global token to determine

potential interference with the shared resource.

2. The method of claim 1, further comprising the step
of adjusting the global token in response to an event

which potentially interferes with the shared resource.



10

15

20

25

30

30

3. The method of claim 2, further comprising:

detecting a system call from the subject code or an
interrupt affecting the subject code, and in response
adjusting the global token to show potential interference

with the shared resource.
4. The method of claim 1, further comprising:

performing the step (c) in relation to a first subject

thread;

adjusting the global token in relation to a second

subject thread; and

performing the step (d) in relation to the first

subject thread, thereby determining potential interference;

with the shared resource by the second subject thread.
5. The method of claim 1, wherein:

the step (c) further comprises storing data derived,***°,

from the subject setting instruction into the local + ses

datastructure; and

the step (d) further comprises comparing data derived
from the subject checking instruction against data from

the local datastructure.
6. The method of claim 1, wherein:

the step (c) further comprises storing in the local

datastructure a local address derived from a setting



10

15

20

25

30

31

address specified in the subject setting instruction for

reading from the shared resource;

the step (d) further comprises comparing the local
address against a checking address derived from the

subject checking instruction.
7. The method of claim 1, wherein:

the step (c) further comprises storing in the local
datastructure a local value which stores a data value read
from the shared resource with respect to a setting address

specified in the subject setting instruction; and

the step (d) further comprises comparing the local

value against data value read from the shared resource
.

with respect to a checking address specified in thee

subject checking instruction.

8. The method of claim 1, wherein: vee o

the step (c) further comprises:

storing in the local datastructure a local address
derived from a setting address specified in the subject
setting instruction for reading from the shared resource,
and a local value which stores a data value read from the

shared resource with respect to the setting address; and

the step (d) further comprises:

comparing the local address against a checking

address derived from the subject checking instruction; and

*
[ XX XX}



10

15

20

25

30

32

comparing the local value against data value read

from the shared resource with respect to the checking

address.

9. The method of claim 1, wherein the step (d)
further comprises storing a new data value to the shared

resource in response to the subject checking instruction.

10. The method of claim 1, wherein the step (d)

further comprises adjusting the global token.

11. The method of claim 1, wherein the global token is

a numerical counter value.

12. The method of claim 11, wherein storing the local

token comprises copying a current value of the globall*'"**

token. o oo

[
LR
[

13. The method of claim 11, wherein adjusting the _

global token comprises incrementing the counter.

4
(XN X J

14. The method of claim 1, comprising adjusting thee »v°:

°e L]

global token atomically on the target processor.

15. The method of claim 1, comprising translating
subject code executable by a subject processor into the

target code executable by the target processor.

16. The method of claim 15, comprising performing

dynamic binary translation from the subject code into the

target code.



o

10

15

20

33

17. The method of «c¢laim 15, wherein the target
processor comprises a different type of processor to the

subject processor.

18. A translator apparatus arranged to perform the method

of any preceding claim.

19. A computer-readable medium having recorded thereon
instructions implementable by a computer to perform the

method of any of claims 1 to 17.

19. A method of providing an access coordination
mechanism of a shared resource, for use in program code
conversion from subject code having multiple subject
threads into target code executable by a target processor,

substantially as hereinbefore described with reference to

.
veo® oo

the accompanying drawings.
.01‘

20. A local datastructure substantially as hereinbefore ,

a3
»

described. eue o

e %



Application No:

Claims searched:

&Y o
T v The % -~
: Patent m; yf ’\i
%. O ﬂlce g Y, 4
60&72.) %{ P\Q@é INVES]OR IN PEOPLE
GB0511462 .4 Examiner: Mr Nikki Dowell
11020 Date of search: 22 September 2005

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
A - US2004/0054517 Al
(Altman et al.) see whole document especially paragraphs 0041 to 0044
and 0055 to 0061
A - US2003/0066056 Al
(Petersen et al.) see whole document especially paragraph 0045
Categories:
X Document indicating lack of novelty or inventive A Document ndicating technological background and/or state
step of the art.
Y  Document mndicating lack of inventive step if P Document published on or after the declared priority date
combined with one or more other documents of but before the filing date of this invention.
same category.
& Member of the same patent family E  Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC

X .

| G4A

Il

.

Worldwide search of patent documents classified in the following areas of the rc”

| GO6F

|

The following online and other databases have been used in the preparation of this search report

(WPI, EPODOC, TXTE, INSPEC, IBM-TDB, XPESP, XP13E

An Execntive Agency of the Department of Trade and Industry



	Abstract
	Bibliographic
	Drawings
	Description
	Claims
	Search_Report

