Title: SLC2AS AS MODIFIERS OF THE P53 PATHWAY AND METHODS OF USE

Abstract: Human SLC2A1 genes are identified as modulators of the p53 pathway, and thus as therapeutic targets for disorders associated with defective p53 function. Methods for identifying modulators of p53, comprising screening for agents that modulate the activity of SLC2A1 are provided.
SLC2As AS MODIFIERS OF THE p53 PATHWAY AND METHODS OF USE

REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. provisional patent applications 60/296,076 filed 6/5/2001, 60/328,605 filed 10/10/2001, and 60/357,253 filed 2/15/2002. The contents of the prior applications are hereby incorporated in their entirety.

BACKGROUND OF THE INVENTION

The human p53 protein normally functions as a central integrator of signals including DNA damage, hypoxia, nucleotide deprivation, and oncogene activation (Prives, Cell (1998) 95:5-8). In response to these signals, p53 protein levels are greatly increased with the result that the accumulated p53 activates cell cycle arrest or apoptosis depending on the nature and strength of these signals. Indeed, multiple lines of experimental evidence have pointed to a key role for p53 as a tumor suppressor (Levine, Cell (1997) 88:323-331). For example, homozygous p53 “knockout” mice are developmentally normal but exhibit nearly 100% incidence of neoplasia in the first year of life (Donehower et al., Nature (1992) 356:215-221).

The biochemical mechanisms and pathways through which p53 functions in normal and cancerous cells are not fully understood, but one clearly important aspect of p53 function is its activity as a gene-specific transcriptional activator. Among the genes with known p53-response elements are several with well-characterized roles in either regulation of the cell cycle or apoptosis, including GADD45, p21/Waf1/Cip1, cyclin G, Bax, IGF-BP3, and MDM2 (Levine, Cell (1997) 88:323-331).

Glucose transporters are integral membrane glycoproteins involved in transporting glucose into most cells. Glucose is a major regulator of gene transcription. In particular, it stimulates transcription of genes encoding glycolytic and lipogenic enzymes in
adipocytes and hepatocytes through the carbohydrate response element (Hemlunger, G., et al. (1997) Nature Med. 3:177-182). Glucose transport and transporter mRNAs are induced in cells by ras or src oncogenes (Flieer, J. et al. (1987) Science 235:1492-1495). Glucose transport into mammalian cells is catalyzed by members of a small family of 44- to 55-kD membrane proteins, each with specific functions and differ in their tissue distribution. The glucose transporters have 12 membrane-spanning helices and a number of important conserved residues.

Solute carrier family 2 member 8 (SLC2A8 or glucose transporter X1) is a glucose transporter that may play a role in glucose sensing. Both rodent and human SLC2A8 genes have been identified (Ibberson, M. et al. (2000) J. Biol. Chem. 275: 4607-4612; Doege, H. et al. (2000) J. Biol. Chem. 275: 16275-16280). Solute carrier family 2 member 6 (SLC2A6) is also a member of the sugar (and other) transporter family and has moderate similarity to solute carrier family 2 member 8.

The ability to manipulate the genomes of model organisms such as *Drosophila* provides a powerful means to analyze biochemical processes that, due to significant evolutionary conservation, has direct relevance to more complex vertebrate organisms. Due to a high level of gene and pathway conservation, the strong similarity of cellular processes, and the functional conservation of genes between these model organisms and mammals, identification of the involvement of novel genes in particular pathways and their functions in such model organisms can directly contribute to the understanding of the correlative pathways and methods of modulating them in mammals (see, for example, Mechler BM et al., 1985 EMBO J 4:1551-1557; Gateff E. 1982 Adv. Cancer Res. 37: 33-74; Watson KL., et al., 1994 J Cell Sci. 18: 19-33; Miklos GL, and Rubin GM. 1996 Cell 86:521-529; Wassarman DA, et al., 1995 Curr Opin Gen Dev 5: 44-50; and Booth DR. 1999 Cancer Metastasis Rev. 18: 261-284). For example, a genetic screen can be carried out in an invertebrate model organism having underexpression (e.g. knockout) or overexpression of a gene (referred to as a "genetic entry point") that yields a visible phenotype. Additional genes are mutated in a random or targeted manner. When a gene mutation changes the original phenotype caused by the mutation in the genetic entry point, the gene is identified as a "modifier" involved in the same or overlapping pathway as the genetic entry point. When the genetic entry point is an ortholog of a human gene implicated in a disease pathway, such as p53, modifier genes can be identified that may be attractive candidate targets for novel therapeutics.
All references cited herein, including sequence information in referenced Genbank identifier numbers and website references, are incorporated herein in their entireties.

SUMMARY OF THE INVENTION

We have discovered genes that modify the p53 pathway in *Drosophila*, and identified their human orthologs, hereinafter referred to as SLC2A. The invention provides methods for utilizing these p53 modifier genes and polypeptides to identify candidate therapeutic agents that can be used in the treatment of disorders associated with defective p53 function. Preferred SLC2A-modulating agents specifically bind to SLC2A polypeptides and restore p53 function. Other preferred SLC2A-modulating agents are nucleic acid modulators such as antisense oligomers and RNAi that repress SLC2A gene expression or product activity by, for example, binding to and inhibiting the respective nucleic acid (i.e. DNA or mRNA).

SLC2A-specific modulating agents may be evaluated by any convenient *in vitro* or *in vivo* assay for molecular interaction with an SLC2A polypeptide or nucleic acid. In one embodiment, candidate p53 modulating agents are tested with an assay system comprising a SLC2A polypeptide or nucleic acid. Candidate agents that produce a change in the activity of the assay system relative to controls are identified as candidate p53 modulating agents. The assay system may be cell-based or cell-free. SLC2A-modulating agents include SLC2A related proteins (e.g. dominant negative mutants, and biotherapeutics); SLC2A-specific antibodies; SLC2A-specific antisense oligomers and other nucleic acid modulators; and chemical agents that specifically bind SLC2A or compete with SLC2A binding target. In one specific embodiment, a small molecule modulator is identified using a transporter assay. In specific embodiments, the screening assay system is selected from a binding assay, an apoptosis assay, a cell proliferation assay, an angiogenesis assay, and a hypoxic induction assay.

In another embodiment, candidate p53 pathway modulating agents are further tested using a second assay system that detects changes in the p53 pathway, such as angiogenic, apoptotic, or cell proliferation changes produced by the originally identified candidate agent or an agent derived from the original agent. The second assay system may use cultured cells or non-human animals. In specific embodiments, the secondary assay system uses non-human animals, including animals predetermined to have a disease or disorder implicating the p53 pathway, such as an angiogenic, apoptotic, or cell proliferation disorder (e.g. cancer).
The invention further provides methods for modulating the p53 pathway in a mammalian cell by contacting the mammalian cell with an agent that specifically binds a SLC2A polypeptide or nucleic acid. The agent may be a small molecule modulator, a nucleic acid modulator, or an antibody and may be administered to a mammalian animal predetermined to have a pathology associated the p53 pathway.

DETAILED DESCRIPTION OF THE INVENTION

Genetic screens were designed to identify modifiers of the p53 pathway in *Drosophila* in which p53 was overexpressed in the wing (Ollmann M, et al., Cell 2000 101: 91-101).

The CG15406 gene was identified as a modifier of the p53 pathway. Accordingly, vertebrate orthologs of these modifiers, and preferably the human orthologs, solute carrier type 2A (SLC2A) genes (i.e., nucleic acids and polypeptides) are attractive drug targets for the treatment of pathologies associated with a defective p53 signaling pathway, such as cancer.

In vitro and in vivo methods of assessing SLC2A function are provided herein. Modulation of the SLC2A or their respective binding partners is useful for understanding the association of the p53 pathway and its members in normal and disease conditions and for developing diagnostics and therapeutic modalities for p53 related pathologies. SLC2A-modulating agents that act by inhibiting or enhancing SLC2A expression, directly or indirectly, for example, by affecting an SLC2A function such as transport or binding activity, can be identified using methods provided herein. SLC2A modulating agents are useful in diagnosis, therapy and pharmaceutical development.

Nucleic acids and polypeptides of the invention

Sequences related to SLC2A nucleic acids and polypeptides that can be used in the invention are disclosed in Genbank (referenced by Genbank identifier (GI) number) as GI#s 12735203 (SEQ ID NO:1), 9938031 (SEQ ID NO:2), 15489280 (SEQ ID NO:3), 13642003 (SEQ ID NO:4), and 7657680 (SEQ ID NO:5) for nucleic acid, and GI#s 12735204 (SEQ ID NO:7), 8923733 (SEQ ID NO:8), 12735153 (SEQ ID NO:9), and 7657681 (SEQ ID NO:10) for polypeptides. Additionally, nucleic acid sequence presented in SEQ ID NO:6 can also be used in the invention.

SLC2As are glucose transporter proteins with sugar transporter domains. The term “SLC2A polypeptide” refers to a full-length SLC2A protein or a functionally active fragment or derivative thereof. A “functionally active” SLC2A fragment or derivative
exhibits one or more functional activities associated with a full-length, wild-type SLC2A protein, such as antigenic or immunogenic activity, transporter activity, ability to bind natural cellular substrates, etc. The functional activity of SLC2A proteins, derivatives and fragments can be assayed by various methods known to one skilled in the art (Current Protocols in Protein Science (1998) Coligan et al., eds., John Wiley & Sons, Inc., Somerset, New Jersey) and as further discussed below. For purposes herein, functionally active fragments also include those fragments that comprise one or more structural domains of an SLC2A, such as a transporter domain or a binding domain. Protein domains can be identified using the PFAM program (Bateman A., et al., Nucleic Acids Res, 1999, 27:260-2; http://pfam.wustl.edu). For example, the sugar transporter domain of SLC2As from GI#s 8923733 (SEQ ID NO:8) and 7657681 (SEQ ID NO:10) are located at approximately amino acid residues 40 to 498 and 29 to 474, respectively (PFAM 00083). Methods for obtaining SLC2A polypeptides are also further described below. In some embodiments, preferred fragments are functionally active, domain-containing fragments comprising at least 25 contiguous amino acids, preferably at least 50, more preferably 75, and most preferably at least 100 contiguous amino acids of any one of SEQ ID NOs:7, 8, 9 or 10 (an SLC2A). In further preferred embodiments, the fragment comprises the entire transporter (functionally active) domain.

The term "SLC2A nucleic acid" refers to a DNA or RNA molecule that encodes a SLC2A polypeptide. Preferably, the SLC2A polypeptide or nucleic acid or fragment thereof is from a human, but can also be an ortholog, or derivative thereof with at least 70% sequence identity, preferably at least 80%, more preferably 85%, still more preferably 90%, and most preferably at least 95% sequence identity with SLC2A. Normally, orthologs in different species retain the same function, due to presence of one or more protein motifs and/or 3-dimensional structures. Orthologs are generally identified by sequence homology analysis, such as BLAST analysis, usually using protein bait sequences. Sequences are assigned as a potential ortholog if the best hit sequence from the forward BLAST result retrieves the original query sequence in the reverse BLAST (Huynen MA and Bork P, Proc Natl Acad Sci (1998) 95:5849-5856; Huynen MA et al., Genome Research (2000) 10:1204-1210). Programs for multiple sequence alignment, such as CLUSTAL (Thompson JD et al, 1994, Nucleic Acids Res 22:4673-4680) may be used to highlight conserved regions and/or residues of orthologous proteins and to generate phylogenetic trees. In a phylogenetic tree representing multiple homologous sequences from diverse species (e.g., retrieved through BLAST analysis), orthologous sequences
from two species generally appear closest on the tree with respect to all other sequences from these two species. Structural threading or other analysis of protein folding (e.g., using software by ProCeryon, Biosciences, Salzburg, Austria) may also identify potential orthologs. In evolution, when a gene duplication event follows speciation, a single gene in one species, such as Drosophila, may correspond to multiple genes (paralogs) in another, such as human. As used herein, the term "orthologs" encompasses paralogs. As used herein, "percent (%) sequence identity" with respect to a subject sequence, or a specified portion of a subject sequence, is defined as the percentage of nucleotides or amino acids in the candidate derivative sequence identical with the nucleotides or amino acids in the subject sequence (or specified portion thereof), after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent sequence identity, as generated by the program WU-BLAST-2.0a19 (Altschul et al., J. Mol. Biol. (1997) 215:403-410; http://blast.wustl.edu/blast/README.html) with all the search parameters set to default values. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched. A % identity value is determined by the number of matching identical nucleotides or amino acids divided by the sequence length for which the percent identity is being reported. "Percent (%) amino acid sequence similarity" is determined by doing the same calculation as for determining % amino acid sequence identity, but including conservative amino acid substitutions in addition to identical amino acids in the computation.

A conservative amino acid substitution is one in which an amino acid is substituted for another amino acid having similar properties such that the folding or activity of the protein is not significantly affected. Aromatic amino acids that can be substituted for each other are phenylalanine, tryptophan, and tyrosine; interchangeable hydrophobic amino acids are leucine, isoleucine, methionine, and valine; interchangeable polar amino acids are glutamine and asparagine; interchangeable basic amino acids are arginine, lysine and histidine; interchangeable acidic amino acids are aspartic acid and glutamic acid; and interchangeable small amino acids are alanine, serine, threonine, cysteine and glycine.

Alternatively, an alignment for nucleic acid sequences is provided by the local homology algorithm of Smith and Waterman (Smith and Waterman, 1981, Advances in Applied Mathematics 2:482-489; database: European Bioinformatics Institute http://www.ebi.ac.uk/MPsrch/; Smith and Waterman, 1981, J. of Molec.Biol., 147:195-
197; Nicholas et al., 1998, "A Tutorial on Searching Sequence Databases and Sequence Scoring Methods" (www.psc.edu) and references cited therein.; W.R. Pearson, 1991, Genomics 11:635-650). This algorithm can be applied to amino acid sequences by using the scoring matrix developed by Dayhoff (Dayhoff: Atlas of Protein Sequences and Structure, M. O. Dayhoff ed., 5 suppl. 3:353-358, National Biomedical Research Foundation, Washington, D.C., USA), and normalized by Gribskov (Gribskov 1986 Nucl. Acids Res. 14(6):6745-6763). The Smith-Waterman algorithm may be employed where default parameters are used for scoring (for example, gap open penalty of 12, gap extension penalty of two). From the data generated, the "Match" value reflects "sequence identity."

Derivative nucleic acid molecules of the subject nucleic acid molecules include sequences that hybridize to the nucleic acid sequence of SEQ ID NOs:1, 2, 3, 4, 5, or 6. The stringency of hybridization can be controlled by temperature, ionic strength, pH, and the presence of denaturing agents such as formamide during hybridization and washing. Conditions routinely used are set out in readily available procedure texts (e.g., Current Protocol in Molecular Biology, Vol. 1, Chap. 2.10, John Wiley & Sons, Publishers (1994); Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)). In some embodiments, a nucleic acid molecule of the invention is capable of hybridizing to a nucleic acid molecule containing the nucleotide sequence of any one of SEQ ID NOs:1, 2, 3, 4, 5, or 6 under stringent hybridization conditions that comprise: prehybridization of filters containing nucleic acid for 8 hours to overnight at 65°C in a solution comprising 6X single strength citrate (SSC) (1X SSC is 0.15 M NaCl, 0.015 M Na citrate; pH 7.0), 5X Denhardt's solution, 0.05% sodium pyrophosphate and 100 μg/ml herring sperm DNA; hybridization for 18-20 hours at 65°C in a solution containing 6X SSC, 1X Denhardt's solution, 100 μg/ml yeast tRNA and 0.05% sodium pyrophosphate; and washing of filters at 65°C for 1h in a solution containing 0.2X SSC and 0.1% SDS (sodium dodecyl sulfate).

In other embodiments, moderately stringent hybridization conditions are used that comprise: pretreatment of filters containing nucleic acid for 6 h at 40°C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH7.5), 5mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 μg/ml denatured salmon sperm DNA; hybridization for 18-20h at 40°C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH7.5), 5mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 μg/ml salmon sperm.
DNA, and 10% (wt/vol) dextran sulfate; followed by washing twice for 1 hour at 55° C in a solution containing 2X SSC and 0.1% SDS.

Alternatively, low stringency conditions can be used that comprise: incubation for 8 hours to overnight at 37° C in a solution comprising 20% formamide, 5 x SSC, 50 mM sodium phosphate (pH 7.6), 5X Denhardt’s solution, 10% dextran sulfate, and 20 μg/ml denatured sheared salmon sperm DNA; hybridization in the same buffer for 18 to 20 hours; and washing of filters in 1 x SSC at about 37° C for 1 hour.

Isolation, Production, Expression, and Mis-expression of SLC2A Nucleic Acids and Polypeptides

SLC2A nucleic acids and polypeptides, useful for identifying and testing agents that modulate SLC2A function and for other applications related to the involvement of SLC2A in the p53 pathway. SLC2A nucleic acids and derivatives and orthologs thereof may be obtained using any available method. For instance, techniques for isolating cDNA or genomic DNA sequences of interest by screening DNA libraries or by using polymerase chain reaction (PCR) are well known in the art. In general, the particular use for the protein will dictate the particulars of expression, production, and purification methods. For instance, production of proteins for use in screening for modulating agents may require methods that preserve specific biological activities of these proteins, whereas production of proteins for antibody generation may require structural integrity of particular epitopes. Expression of proteins to be purified for screening or antibody production may require the addition of specific tags (e.g., generation of fusion proteins). Overexpression of an SLC2A protein for assays used to assess SLC2A function, such as involvement in cell cycle regulation or hypoxic response, may require expression in eukaryotic cell lines capable of these cellular activities. Techniques for the expression, production, and purification of proteins are well known in the art; any suitable means therefore may be used (e.g., Higgins SJ and Hames BD (eds.) Protein Expression: A Practical Approach, Oxford University Press Inc., New York 1999; Stanbury PF et al., Principles of Fermentation Technology, 2nd edition, Elsevier Science, New York, 1995; Doonan S (ed.) Protein Purification Protocols, Humana Press, New Jersey, 1996; Coligan JE et al, Current Protocols in Protein Science (eds.), 1999, John Wiley & Sons, New York). In particular embodiments, recombinant SLC2A is expressed in a cell line known to have defective p53 function (e.g. SAOS-2 osteoblasts, H1299 lung cancer cells, C33A and HT3 cervical cancer cells, HT-29 and DLD-1 colon cancer cells, among others, available from
American Type Culture Collection (ATCC), Manassas, VA). The recombinant cells are used in cell-based screening assay systems of the invention, as described further below.

The nucleotide sequence encoding an SLC2A polypeptide can be inserted into any appropriate expression vector. The necessary transcriptional and translational signals, including promoter/enhancer element, can derive from the native SLC2A gene and/or its flanking regions or can be heterologous. A variety of host-vector expression systems may be utilized, such as mammalian cell systems infected with virus (e.g. vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g. baculovirus); microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage, plasmid, or cosmid DNA. A host cell strain that modulates the expression of, modifies, and/or specifically processes the gene product may be used.

To detect expression of the SLC2A gene product, the expression vector can comprise a promoter operably linked to an SLC2A gene nucleic acid, one or more origins of replication, and, one or more selectable markers (e.g. thymidine kinase activity, resistance to antibiotics, etc.). Alternatively, recombinant expression vectors can be identified by assaying for the expression of the SLC2A gene product based on the physical or functional properties of the SLC2A protein in in vitro assay systems (e.g. immunoassays).

The SLC2A protein, fragment, or derivative may be optionally expressed as a fusion, or chimeric protein product (i.e. it is joined via a peptide bond to a heterologous protein sequence of a different protein), for example to facilitate purification or detection. A chimeric product can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other using standard methods and expressing the chimeric product. A chimeric product may also be made by protein synthetic techniques, e.g. by use of a peptide synthesizer (Hunkapiller et al., Nature (1984) 310:105-111).

Once a recombinant cell that expresses the SLC2A gene sequence is identified, the gene product can be isolated and purified using standard methods (e.g. ion exchange, affinity, and gel exclusion chromatography; centrifugation; differential solubility; electrophoresis, cite purification reference). Alternatively, native SLC2A proteins can be purified from natural sources, by standard methods (e.g. immunoaffinity purification).

Once a protein is obtained, it may be quantified and its activity measured by appropriate methods, such as immunoassay, bioassay, or other measurements of physical properties, such as crystallography.

The methods of this invention may also use cells that have been engineered for altered expression (mis-expression) of SLC2A or other genes associated with the p53 pathway.
As used herein, mis-expression encompasses ectopic expression, over-expression, under-expression, and non-expression (e.g. by gene knock-out or blocking expression that would otherwise normally occur).

5 Genetically modified animals

Animal models that have been genetically modified to alter SLC2A expression may be used in in vivo assays to test for activity of a candidate p53 modulating agent, or to further assess the role of SLC2A in a p53 pathway process such as apoptosis or cell proliferation. Preferably, the altered SLC2A expression results in a detectable phenotype, such as decreased or increased levels of cell proliferation, angiogenesis, or apoptosis compared to control animals having normal SLC2A expression. The genetically modified animal may additionally have altered p53 expression (e.g. p53 knockout). Preferred genetically modified animals are mammals such as primates, rodents (preferably mice), cows, horses, goats, sheep, pigs, dogs and cats. Preferred non-mammalian species include zebrafish, C. elegans, and Drosophila. Preferred genetically modified animals are transgenic animals having a heterologous nucleic acid sequence present as an extrachromosomal element in a portion of its cells, i.e. mosaic animals (see, for example, techniques described by Jakobovits, 1994, Curr. Biol. 4:761-763.) or stably integrated into its germ line DNA (i.e., in the genomic sequence of most or all of its cells). Heterologous nucleic acid is introduced into the germ line of such transgenic animals by genetic manipulation of, for example, embryos or embryonic stem cells of the host animal.

such as electroporation, calcium phosphate/DNA precipitation and direct injection see, e.g., Teratocarcinomas and Embryonic Stem Cells, A Practical Approach, E. J. Robertson, ed., IRL Press (1987)). Clones of the nonhuman transgenic animals can be produced according to available methods (see Wilmut, I. et al. (1997) Nature 385:810-813; and PCT International Publication Nos. WO 97/07668 and WO 97/07669).

In one embodiment, the transgenic animal is a “knock-out” animal having a heterozygous or homozygous alteration in the sequence of an endogenous SLC2A gene that results in a decrease of SLC2A function, preferably such that SLC2A expression is undetectable or insignificant. Knock-out animals are typically generated by homologous recombination with a vector comprising a transgene having at least a portion of the gene to be knocked out. Typically a deletion, addition or substitution has been introduced into the transgene to functionally disrupt it. The transgene can be a human gene (e.g., from a human genomic clone) but more preferably is an ortholog of the human gene derived from the transgenic host species. For example, a mouse SLC2A gene is used to construct a homologous recombination vector suitable for altering an endogenous SLC2A gene in the mouse genome. Detailed methodologies for homologous recombination in mice are available (see Capecchi, Science (1989) 244:1288-1292; Joyner et al., Nature (1989) 338:153-156). Procedures for the production of non-rat transgenic mammals and other animals are also available (Houdebine and Chourrout, supra; Pursel et al., Science (1989) 244:1281-1288; Simms et al., Bio/Technology (1988) 6:179-183). In a preferred embodiment, knock-out animals, such as mice harboring a knockout of a specific gene, may be used to produce antibodies against the human counterpart of the gene that has been knocked out (Claesson MH et al., (1994) Scan J Immunol 40:257-264; Declerck PJ et al., (1995) J Biol Chem. 270:8397-400).

In another embodiment, the transgenic animal is a “knock-in” animal having an alteration in its genome that results in altered expression (e.g., increased (including ectopic) or decreased expression) of the SLC2A gene, e.g., by introduction of additional copies of SLC2A, or by operatively inserting a regulatory sequence that provides for altered expression of an endogenous copy of the SLC2A gene. Such regulatory sequences include inducible, tissue-specific, and constitutive promoters and enhancer elements. The knock-in can be homozygous or heterozygous.

Transgenic nonhuman animals can also be produced that contain selected systems allowing for regulated expression of the transgene. One example of such a system that may be produced is the cre/loxP recombinase system of bacteriophage P1 (Lakso et al.,
PNAS (1992) 89:6232-6236; U.S. Pat. No. 4,959,317). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355; U.S. Pat. No. 5,654,182). In a preferred embodiment, both Cre-LoxP and Flp-Frt are used in the same system to regulate expression of the transgene, and for sequential deletion of vector sequences in the same cell (Sun X et al (2000) Nat Genet 25:83-6).

The genetically modified animals can be used in genetic studies to further elucidate the p53 pathway, as animal models of disease and disorders implicating defective p53 function, and for in vivo testing of candidate therapeutic agents, such as those identified in screens described below. The candidate therapeutic agents are administered to a genetically modified animal having altered SLC2A function and phenotypic changes are compared with appropriate control animals such as genetically modified animals that receive placebo treatment, and/or animals with unaltered SLC2A expression that receive candidate therapeutic agent.

In addition to the above-described genetically modified animals having altered SLC2A function, animal models having defective p53 function (and otherwise normal SLC2A function), can be used in the methods of the present invention. For example, a p53 knockout mouse can be used to assess, in vivo, the activity of a candidate p53 modulating agent identified in one of the in vitro assays described below. p53 knockout mice are described in the literature (Jacks et al., Nature 2001;410:1111-1116, 1043-1044; Donehower et al., supra). Preferably, the candidate p53 modulating agent when administered to a model system with cells defective in p53 function, produces a detectable phenotypic change in the model system indicating that the p53 function is restored, i.e., the cells exhibit normal cell cycle progression.

Modulating Agents

The invention provides methods to identify agents that interact with and/or modulate the function of SLC2A and/or the p53 pathway. Such agents are useful in a variety of diagnostic and therapeutic applications associated with the p53 pathway, as well as in
further analysis of the SLC2A protein and its contribution to the p53 pathway. Accordingly, the invention also provides methods for modulating the p53 pathway comprising the step of specifically modulating SLC2A activity by administering a SLC2A-interacting or -modulating agent.

In a preferred embodiment, SLC2A-modulating agents inhibit or enhance SLC2A activity or otherwise affect normal SLC2A function, including transcription, protein expression, protein localization, and cellular or extra-cellular activity. In a further preferred embodiment, the candidate p53 pathway-modulating agent specifically modulates the function of the SLC2A. The phrases "specific modulating agent", "specifically modulates", etc., are used herein to refer to modulating agents that directly bind to the SLC2A polypeptide or nucleic acid, and preferably inhibit, enhance, or otherwise alter, the function of the SLC2A. The term also encompasses modulating agents that alter the interaction of the SLC2A with a binding partner or substrate (e.g. by binding to a binding partner of an SLC2A, or to a protein/binding partner complex, and inhibiting function).

Preferred SLC2A-modulating agents include small molecule compounds; SLC2A-interacting proteins, including antibodies and other biotherapeutics; and nucleic acid modulators such as antisense and RNA inhibitors. The modulating agents may be formulated in pharmaceutical compositions, for example, as compositions that may comprise other active ingredients, as in combination therapy, and/or suitable carriers or excipients. Techniques for formulation and administration of the compounds may be found in "Remington’s Pharmaceutical Sciences" Mack Publishing Co., Easton, PA, 19th edition.

Small molecule modulators

Small molecules, are often preferred to modulate function of proteins with enzymatic function, and/or containing protein interaction domains. Chemical agents, referred to in the art as "small molecule" compounds are typically organic, non-peptide molecules, having a molecular weight less than 10,000, preferably less than 5,000, more preferably less than 1,000, and most preferably less than 500. This class of modulators includes chemically synthesized molecules, for instance, compounds from combinatorial chemical libraries. Synthetic compounds may be rationally designed or identified based on known or inferred properties of the SLC2A protein or may be identified by screening compound libraries. Alternative appropriate modulators of this class are natural products, particularly

Small molecule modulators identified from screening assays, as described below, can be used as lead compounds from which candidate clinical compounds may be designed, optimized, and synthesized. Such clinical compounds may have utility in treating pathologies associated with the p53 pathway. The activity of candidate small molecule modulating agents may be improved several-fold through iterative secondary functional validation, as further described below, structure determination, and candidate modulator modification and testing. Additionally, candidate clinical compounds are generated with specific regard to clinical and pharmacological properties. For example, the reagents may be derivatized and re-screened using *in vitro* and *in vivo* assays to optimize activity and minimize toxicity for pharmaceutical development.

Protein Modulators

Specific SLC2A-interacting proteins are useful in a variety of diagnostic and therapeutic applications related to the p53 pathway and related disorders, as well as in validation assays for other SLC2A-modulating agents. In a preferred embodiment, SLC2A-interacting proteins affect normal SLC2A function, including transcription, protein expression, protein localization, and cellular or extra-cellular activity. In another embodiment, SLC2A-interacting proteins are useful in detecting and providing information about the function of SLC2A proteins, as is relevant to p53 related disorders, such as cancer (e.g., for diagnostic means).

In preferred embodiments, an SLC2A-interacting protein specifically binds an SLC2A protein. In alternative preferred embodiments, an SLC2A-modulating agent binds an SLC2A substrate, binding partner, or cofactor.

Antibodies

In another embodiment, the protein modulator is an SLC2A specific antibody agonist or antagonist. The antibodies have therapeutic and diagnostic utilities, and can be used in screening assays to identify SLC2A modulators. The antibodies can also be used in dissecting the portions of the SLC2A pathway responsible for various cellular responses and in the general processing and maturation of the SLC2A.

Antibodies that specifically bind SLC2A polypeptides can be generated using known methods. Preferably the antibody is specific to a mammalian ortholog of SLC2A polypeptide, and more preferably, to human SLC2A. Antibodies may be polyclonal, monoclonal (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab') sub.2 fragments, fragments produced by a FAb expression library, idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above. Epitopes of SLC2A which are particularly antigenic can be selected, for example, by routine screening of SLC2A polypeptides for antigenicity or by applying a theoretical method for selecting antigenic regions of a protein (Hopp and Wood (1981), Proc. Nati. Acad. Sci. U.S.A. 78:3824-28; Hopp and Wood, (1983) Mol. Immunol. 20:483-89; Sutcliffe et al., (1983) Science 219:660-66) to the amino acid sequence shown in any of SEQ ID NOs:7, 8, 9, or 10. Monoclonal antibodies with affinities of 10^8 M$^{-1}$ preferably 10^9 M$^{-1}$ to 10^{10} M$^{-1}$, or stronger can be made by standard procedures as described (Harlow and Lane, supra; Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed) Academic Press, New York; and U.S. Pat. Nos. 4,381,292; 4,451,570; and 4,618,577). Antibodies may be generated against crude cell extracts of SLC2A or substantially purified fragments thereof. If SLC2A fragments are used, they preferably comprise at
least 10, and more preferably, at least 20 contiguous amino acids of an SLC2A protein. In a particular embodiment, SLC2A-specific antigens and/or immunogens are coupled to carrier proteins that stimulate the immune response. For example, the subject polypeptides are covalently coupled to the keyhole limpet hemocyanin (KLH) carrier, and the conjugate is emulsified in Freund's complete adjuvant, which enhances the immune response. An appropriate immune system such as a laboratory rabbit or mouse is immunized according to conventional protocols.

The presence of SLC2A-specific antibodies is assayed by an appropriate assay such as a solid phase enzyme-linked immunosorbant assay (ELISA) using immobilized corresponding SLC2A polypeptides. Other assays, such as radioimmunoassays or fluorescent assays might also be used.

Other suitable techniques for antibody production involve in vitro exposure of lymphocytes to the antigenic polypeptides or alternatively to selection of libraries of antibodies in phage or similar vectors (Huse et al., Science (1989) 246:1275-1281). As used herein, T-cell antigen receptors are included within the scope of antibody modulators (Harlow and Lane, 1988, supra).

The polypeptides and antibodies of the present invention may be used with or without modification. Frequently, antibodies will be labeled by joining, either covalently or non-covalently, a substance that provides for a detectable signal, or that is toxic to cells that express the targeted protein (Menard S, et al., Int J. Biol Markers (1989) 4:131-134). A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, fluorescent emitting lanthanide metals, chemiluminescent moieties, bioluminescent moieties, magnetic particles, and the like (U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241). Also, recombinant immunoglobulins may be produced (U.S. Pat. No. 4,816,567). Antibodies to cytoplasmic polypeptides may be delivered and reach their targets by conjugation with membrane-penetrating toxin proteins (U.S. Pat. No. 6,086,900).

When used therapeutically in a patient, the antibodies of the subject invention are typically administered parenterally, when possible at the target site, or intravenously. The therapeutically effective dose and dosage regimen is determined by clinical studies. Typically, the amount of antibody administered is in the range of about 0.1 mg/kg to about 10 mg/kg of patient weight. For parenteral administration, the antibodies are formulated in a unit dosage injectable form (e.g., solution, suspension, emulsion) in association with a pharmaceutically acceptable vehicle. Such vehicles are inherently nontoxic and non-therapeutic. Examples are water, saline, Ringer's solution, dextrose solution, and 5% human serum albumin. Nonaqueous vehicles such as fixed oils, ethyl oleate, or liposome carriers may also be used. The vehicle may contain minor amounts of additives, such as buffers and preservatives, which enhance isotonicity and chemical stability or otherwise enhance therapeutic potential. The antibodies’ concentrations in such vehicles are typically in the range of about 1 mg/ml to about 10 mg/ml. Immunotherapeutic methods are further described in the literature (US Pat. No. 5,859,206; WO0073469).
Specific biotherapeutics

In a preferred embodiment, an SLC2A-interacting protein may have biotherapeutic applications. Biotherapeutic agents formulated in pharmaceutically acceptable carriers and dosages may be used to activate or inhibit signal transduction pathways. This modulation may be accomplished by binding a ligand, thus inhibiting the activity of the pathway; or by binding a receptor, either to inhibit activation of, or to activate, the receptor. Alternatively, the biotherapeutic may itself be a ligand capable of activating or inhibiting a receptor. Biotherapeutic agents and methods of producing them are described in detail in U.S. Pat. No. 6,146,628.

SLC2A, its ligand(s), antibodies to the ligand(s) or the SLC2A itself may be used as biotherapeutics to modulate the activity of SLC2A in the p53 pathway.

Nucleic Acid Modulators

Other preferred SLC2A-modulating agents comprise nucleic acid molecules, such as antisense oligomers or double stranded RNA (dsRNA), which generally inhibit SLC2A activity. Preferred nucleic acid modulators interfere with the function of the SLC2A nucleic acid such as DNA replication, transcription, translocation of the SLC2A RNA to the site of protein translation, translation of protein from the SLC2A RNA, splicing of the SLC2A RNA to yield one or more mRNA species, or catalytic activity which may be engaged in or facilitated by the SLC2A RNA.

In one embodiment, the antisense oligomer is an oligonucleotide that is sufficiently complementary to an SLC2A mRNA to bind to and prevent translation, preferably by binding to the 5’ untranslated region. SLC2A-specific antisense oligonucleotides, preferably range from at least 6 to about 200 nucleotides. In some embodiments the oligonucleotide is preferably at least 10, 15, or 20 nucleotides in length. In other embodiments, the oligonucleotide is preferably less than 50, 40, or 30 nucleotides in length. The oligonucleotide can be DNA or RNA or a chimeric mixture or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone. The oligonucleotide may include other appending groups such as peptides, agents that facilitate transport across the cell membrane, hybridization-triggered cleavage agents, and intercalating agents.

In another embodiment, the antisense oligomer is a phosphothioate morpholino oligomer (PMO). PMOs are assembled from four different morpholino subunits, each of
which contain one of four genetic bases (A, C, G, or T) linked to a six-membered morpholine ring. Polymers of these subunits are joined by non-ionic phosphodiimidate intersubunit linkages. Details of how to make and use PMOs and other antisense oligomers are well known in the art (e.g. see WO99/18193; Probst JC, Antisense Oligodeoxynucleotide and Ribozyme Design, Methods. (2000) 22(3):271-281; Summerton J, and Weller D. 1997 Antisense Nucleic Acid Drug Dev. :7:187-95; US Pat. No. 5,235,033; and US Pat No. 5,378,841).

Nucleic acid modulators are commonly used as research reagents, diagnostics, and therapeutics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used to elucidate the function of particular genes (see, for example, U.S. Pat. No. 6,165,790). Nucleic acid modulators are also used, for example, to distinguish between functions of various members of a biological pathway. For example, antisense oligomers have been employed as therapeutic moieties in the treatment of disease states in animals and man and have been demonstrated in numerous clinical trials to be safe and effective (Milligan JF, et al, Current Concepts in Antisense Drug Design, J Med Chem. (1993) 36:1923-1937; Tonkinson JL et al., Antisense Oligodeoxynucleotides as Clinical Therapeutic Agents, Cancer Invest. (1996) 14:54-65).

Accordingly, in one aspect of the invention, an SLC2A-specific nucleic acid modulator is used in an assay to further elucidate the role of the SLC2A in the p53 pathway, and/or its relationship to other members of the pathway. In another aspect of the invention, an SLC2A-specific antisense oligomer is used as a therapeutic agent for treatment of p53-related disease states.
Assay Systems

The invention provides assay systems and screening methods for identifying specific modulators of SLC2A activity. As used herein, an "assay system" encompasses all the components required for performing and analyzing results of an assay that detects and/or measures a particular event. In general, primary assays are used to identify or confirm a modulator's specific biochemical or molecular effect with respect to the SLC2A nucleic acid or protein. In general, secondary assays further assess the activity of a SLC2A modulating agent identified by a primary assay and may confirm that the modulating agent affects SLC2A in a manner relevant to the p53 pathway. In some cases, SLC2A modulators will be directly tested in a secondary assay.

In a preferred embodiment, the screening method comprises contacting a suitable assay system comprising an SLC2A polypeptide with a candidate agent under conditions whereby, but for the presence of the agent, the system provides a reference activity (e.g. transporter activity), which is based on the particular molecular event the screening method detects. A statistically significant difference between the agent-biased activity and the reference activity indicates that the candidate agent modulates SLC2A activity, and hence the p53 pathway.

Primary Assays

The type of modulator tested generally determines the type of primary assay.

Primary assays for small molecule modulators

For small molecule modulators, screening assays are used to identify candidate modulators. Screening assays may be cell-based or may use a cell-free system that recreates or retains the relevant biochemical reaction of the target protein (reviewed in Sittampalam GS et al., Curr Opin Chem Biol (1997) 1:384-91 and accompanying references). As used herein the term "cell-based" refers to assays using live cells, dead cells, or a particular cellular fraction, such as a membrane, endoplasmic reticulum, or mitochondrial fraction. The term "cell free" encompasses assays using substantially purified protein (either endogenous or recombinantly produced), partially purified or crude cellular extracts. Screening assays may detect a variety of molecular events, including protein-DNA interactions, protein-protein interactions (e.g., receptor-ligand binding), transcriptional activity (e.g., using a reporter gene), enzymatic activity (e.g., via a property of the substrate), activity of second messengers, immunogenicity and changes in cellular...
morphology or other cellular characteristics. Appropriate screening assays may use a wide range of detection methods including fluorescent, radioactive, colorimetric, spectrophotometric, and amperometric methods, to provide a read-out for the particular molecular event detected.

Cell-based screening assays usually require systems for recombinant expression of SLC2A and any auxiliary proteins demanded by the particular assay. Appropriate methods for generating recombinant proteins produce sufficient quantities of proteins that retain their relevant biological activities and are of sufficient purity to optimize activity and assure assay reproducibility. Yeast two-hybrid and variant screens, and mass spectrometry provide preferred methods for determining protein-protein interactions and elucidation of protein complexes. In certain applications, when SLC2A-interacting proteins are used in screens to identify small molecule modulators, the binding specificity of the interacting protein to the SLC2A protein may be assayed by various known methods such as substrate processing (e.g. ability of the candidate SLC2A-specific binding agents to function as negative effectors in SLC2A-expressing cells), binding equilibrium constants (usually at least about 10^7M^{-1}, preferably at least about 10^8M^{-1}, more preferably at least about 10^9M^{-1}), and immunogenicity (e.g. ability to elicit SLC2A specific antibody in a heterologous host such as a mouse, rat, goat or rabbit). For enzymes and receptors, binding may be assayed by, respectively, substrate and ligand processing.

The screening assay may measure a candidate agent’s ability to specifically bind to or modulate activity of a SLC2A polypeptide, a fusion protein thereof, or to cells or membranes bearing the polypeptide or fusion protein. The SLC2A polypeptide can be full length or a fragment thereof that retains functional SLC2A activity. The SLC2A polypeptide may be fused to another polypeptide, such as a peptide tag for detection or anchoring, or to another tag. The SLC2A polypeptide is preferably human SLC2A, or is an ortholog or derivative thereof as described above. In a preferred embodiment, the screening assay detects candidate agent-based modulation of SLC2A interaction with a binding target, such as an endogenous or exogenous protein or other substrate that has SLC2A-specific binding activity, and can be used to assess normal SLC2A gene function.

Suitable assay formats that may be adapted to screen for SLC2A modulators are known in the art. Preferred screening assays are high throughput or ultra high throughput and thus provide automated, cost-effective means of screening compound libraries for lead compounds (Fernandes PB, Curr Opin Chem Biol (1998) 2:597-603; Sundberg SA, Curr Opin Biotechnol 2000, 11:47-53). In one preferred embodiment, screening assays uses

A variety of suitable assay systems may be used to identify candidate SLC2A and p53 pathway modulators (e.g. U.S. Pat. Nos. 5,550,019 and 6,133,437 (apoptosis assays); U.S. Pat. No. 6,020,135 (p53 modulation), among others). Specific preferred assays are described in more detail below.

Transporter assays. Transporter proteins carry a range of substrates, including nutrients, ions, amino acids, and drugs, across cell membranes. Assays for modulators of transporters may use labeled substrates. For instance, exemplary high throughput screens to identify compounds that interact with different peptide and anion transporters both use fluorescently labeled substrates; the assay for peptide transport additionally uses multiscreen filtration plates (Blevitt JM et al., J Biomol Screen 1999, 4:87-91; Cihlar T and Ho ES, Anal Biochem 2000, 283:49-55).

Apoptosis assays. Assays for apoptosis may be performed by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling (TUNEL) assay. The TUNEL assay is used to measure nuclear DNA fragmentation characteristic of apoptosis (Lazebnik *et al.*, 1994, Nature 371, 346), by following the incorporation of fluorescein-dUTP (Yonehara *et al.*, 1989, J. Exp. Med. 169, 1747). Apoptosis may further be assayed by acridine orange staining of tissue culture cells (Lucas, R., et al., 1998, Blood 15:4730-41). An apoptosis assay system may comprise a cell that expresses an SLC2A, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the apoptosis assay system and changes in induction of apoptosis relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, an apoptosis assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using a cell-free assay system. An apoptosis assay may also be used to test whether SLC2A function plays a direct role in apoptosis. For example, an apoptosis assay may be performed on cells that over- or under-express SLC2A relative
to wild type cells. Differences in apoptotic response compared to wild type cells suggests that the SLC2A plays a direct role in the apoptotic response. Apoptosis assays are described further in US Pat. No. 6,133,437.

Cell proliferation and cell cycle assays. Cell proliferation may be assayed via bromodeoxyuridine (BRDU) incorporation. This assay identifies a cell population undergoing DNA synthesis by incorporation of BRDU into newly-synthesized DNA. Newly-synthesized DNA may then be detected using an anti-BRDU antibody (Hoshino et al., 1986, Int. J. Cancer 38, 369; Campana et al., 1988, J. Immunol. Meth. 107, 79), or by other means.

Cell Proliferation may also be examined using [³H]-thymidine incorporation (Chen, J., 1996, Oncogene 13:1395-403; Jeeoung, J., 1995, J. Biol. Chem. 270:18367-73). This assay allows for quantitative characterization of S-phase DNA syntheses. In this assay, cells synthesizing DNA will incorporate [³H]-thymidine into newly synthesized DNA. Incorporation can then be measured by standard techniques such as by counting of radioisotope in a scintillation counter (e.g., Beckman LS 3800 Liquid Scintillation Counter).

Cell proliferation may also be assayed by colony formation in soft agar (Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989)). For example, cells transformed with SLC2A are seeded in soft agar plates, and colonies are measured and counted after two weeks incubation.

Accordingly, a cell proliferation or cell cycle assay system may comprise a cell that expresses an SLC2A, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the assay system and changes in cell proliferation or cell cycle relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the cell proliferation or cell cycle assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system such as a cell-free assay system. A cell proliferation assay may also be used to test whether SLC2A function plays a direct role in cell proliferation or cell cycle. For
example, a cell proliferation or cell cycle assay may be performed on cells that over- or under-express SLC2A relative to wild type cells. Differences in proliferation or cell cycle compared to wild type cells suggests that the SLC2A plays a direct role in cell proliferation or cell cycle.

Angiogenesis. Angiogenesis may be assayed using various human endothelial cell systems, such as umbilical vein, coronary artery, or dermal cells. Suitable assays include Alamar Blue based assays (available from Biosource International) to measure proliferation; migration assays using fluorescent molecules, such as the use of Becton Dickinson Falcon HTS FluoroBlock cell culture inserts to measure migration of cells through membranes in presence or absence of angiogenesis enhancer or suppressors; and tubule formation assays based on the formation of tubular structures by endothelial cells on Matrigel® (Becton Dickinson). Accordingly, an angiogenesis assay system may comprise a cell that expresses an SLC2A, and that optionally has defective p53 function (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the angiogenesis assay system and changes in angiogenesis relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the angiogenesis assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system. An angiogenesis assay may also be used to test whether SLC2A function plays a direct role in cell proliferation. For example, an angiogenesis assay may be performed on cells that over- or under-express SLC2A relative to wild type cells. Differences in angiogenesis compared to wild type cells suggests that the SLC2A plays a direct role in angiogenesis.

Hypoxic induction. The alpha subunit of the transcription factor, hypoxia inducible factor-1 (HIF-1), is upregulated in tumor cells following exposure to hypoxia in vitro. Under hypoxic conditions, HIF-1 stimulates the expression of genes known to be important in tumour cell survival, such as those encoding glycolytic enzymes and VEGF. Induction of such genes by hypoxic conditions may be assayed by growing cells transfected with SLC2A in hypoxic conditions (such as with 0.1% O2, 5% CO2, and balance N2, generated in a Napco 700i incubator (Precision Scientific)) and normoxic conditions, followed by assessment of gene activity or expression by Taqman®. For example, a hypoxic induction assay system may comprise a cell that expresses an SLC2A,
and that optionally has a mutated p53 (e.g. p53 is over-expressed or under-expressed relative to wild-type cells). A test agent can be added to the hypoxic induction assay system and changes in hypoxic response relative to controls where no test agent is added, identify candidate p53 modulating agents. In some embodiments of the invention, the hypoxic induction assay may be used as a secondary assay to test a candidate p53 modulating agents that is initially identified using another assay system. A hypoxic induction assay may also be used to test whether SLC2A function plays a direct role in the hypoxic response. For example, a hypoxic induction assay may be performed on cells that over- or under-express SLC2A relative to wild type cells. Differences in hypoxic response compared to wild type cells suggests that the SLC2A plays a direct role in hypoxic induction.

Cell adhesion. Cell adhesion assays measure adhesion of cells to purified adhesion proteins, or adhesion of cells to each other, in presence or absence of candidate modulating agents. Cell-protein adhesion assays measure the ability of agents to modulate the adhesion of cells to purified proteins. For example, recombinant proteins are produced, diluted to 2.5g/mL in PBS, and used to coat the wells of a microtiter plate. The wells used for negative control are not coated. Coated wells are then washed, blocked with 1% BSA, and washed again. Compounds are diluted to 2× final test concentration and added to the blocked, coated wells. Cells are then added to the wells, and the unbound cells are washed off. Retained cells are labeled directly on the plate by adding a membrane-permeable fluorescent dye, such as calcein-AM, and the signal is quantified in a fluorescent microplate reader.

Cell-cell adhesion assays measure the ability of agents to modulate binding of cell adhesion proteins with their native ligands. These assays use cells that naturally or recombinantly express the adhesion protein of choice. In an exemplary assay, cells expressing the cell adhesion protein are plated in wells of a multiwell plate. Cells expressing the ligand are labeled with a membrane-permeable fluorescent dye, such as BCECF, and allowed to adhere to the monolayers in the presence of candidate agents. Unbound cells are washed off, and bound cells are detected using a fluorescence plate reader.

High-throughput cell adhesion assays have also been described. In one such assay, small molecule ligands and peptides are bound to the surface of microscope slides using a microarray spotter, intact cells are then contacted with the slides, and unbound cells are
washed off. In this assay, not only the binding specificity of the peptides and modulators against cell lines are determined, but also the functional cell signaling of attached cells using immunofluorescence techniques in situ on the microchip is measured (Falsey JR et al., Bioconjug Chem. 2001 May-Jun;12(3):346-53).

Primary assays for antibody modulators

For antibody modulators, appropriate primary assays test is a binding assay that tests the antibody's affinity to and specificity for the SLC2A protein. Methods for testing antibody affinity and specificity are well known in the art (Harlow and Lane, 1988, 1999, supra). The enzyme-linked immunosorbant assay (ELISA) is a preferred method for detecting SLC2A-specific antibodies; others include FACS assays, radioimmunoassays, and fluorescent assays.

Primary assays for nucleic acid modulators

For nucleic acid modulators, primary assays may test the ability of the nucleic acid modulator to inhibit or enhance SLC2A gene expression, preferably mRNA expression. In general, expression analysis comprises comparing SLC2A expression in like populations of cells (e.g., two pools of cells that endogenously or recombinantly express SLC2A) in the presence and absence of the nucleic acid modulator. Methods for analyzing mRNA and protein expression are well known in the art. For instance, Northern blotting, slot blotting, ribonuclease protection, quantitative RT-PCR (e.g., using the TaqMan®, PE Applied Biosystems), or microarray analysis may be used to confirm that SLC2A mRNA expression is reduced in cells treated with the nucleic acid modulator (e.g., Current Protocols in Molecular Biology (1994) Ausubel FM et al., eds., John Wiley & Sons, Inc., chapter 4; Freeman WM et al., Biotechniques (1999) 26:112-125; Kallioniemi OP, Ann Med 2001, 33:142-147; Blohm DH and Guiseppi-Elici, A Curr Opin Biotechnol 2001, 12:41-47). Protein expression may also be monitored. Proteins are most commonly detected with specific antibodies or antisera directed against either the SLC2A protein or specific peptides. A variety of means including Western blotting, ELISA, or in situ detection, are available (Harlow E and Lane D, 1988 and 1999, supra).

Secondary Assays

Secondary assays may be used to further assess the activity of SLC2A-modulating agent identified by any of the above methods to confirm that the modulating agent affects
SLC2A in a manner relevant to the p53 pathway. As used herein, SLC2A-modulating agents encompass candidate clinical compounds or other agents derived from previously identified modulating agent. Secondary assays can also be used to test the activity of a modulating agent on a particular genetic or biochemical pathway or to test the specificity of the modulating agent's interaction with SLC2A.

Secondary assays generally compare like populations of cells or animals (e.g., two pools of cells or animals that endogenously or recombinantly express SLC2A) in the presence and absence of the candidate modulator. In general, such assays test whether treatment of cells or animals with a candidate SLC2A–modulating agent results in changes in the p53 pathway in comparison to untreated (or mock- or placebo-treated) cells or animals. Certain assays use “sensitized genetic backgrounds”, which, as used herein, describe cells or animals engineered for altered expression of genes in the p53 or interacting pathways.

Cell-based assays

Cell based assays may use a variety of mammalian cell lines known to have defective p53 function (e.g. SAOS-2 osteoblasts, H1299 lung cancer cells, C33A and HT3 cervical cancer cells, HT-29 and DLD-1 colon cancer cells, among others, available from American Type Culture Collection (ATCC), Manassas, VA). Cell based assays may detect endogenous p53 pathway activity or may rely on recombinant expression of p53 pathway components. Any of the aforementioned assays may be used in this cell-based format. Candidate modulators are typically added to the cell media but may also be injected into cells or delivered by any other efficacious means.

Animal Assays

A variety of non-human animal models of normal or defective p53 pathway may be used to test candidate SLC2A modulators. Models for defective p53 pathway typically use genetically modified animals that have been engineered to mis-express (e.g., over-express or lack expression in) genes involved in the p53 pathway. Assays generally require systemic delivery of the candidate modulators, such as by oral administration, injection, etc.

In a preferred embodiment, p53 pathway activity is assessed by monitoring neovascularization and angiogenesis. Animal models with defective and normal p53 are used to test the candidate modulator’s affect on SLC2A in Matrigel® assays. Matrigel® is
an extract of basement membrane proteins, and is composed primarily of laminin, collagen IV, and heparin sulfate proteoglycan. It is provided as a sterile liquid at 4°C, but rapidly forms a solid gel at 37°C. Liquid Matrigel® is mixed with various angiogenic agents, such as bFGF and VEGF, or with human tumor cells which over-express the SLC2A. The mixture is then injected subcutaneously (SC) into female athymic nude mice (Taconic, Germantown, NY) to support an intense vascular response. Mice with Matrigel® pellets may be dosed via oral (PO), intraperitoneal (IP), or intravenous (IV) routes with the candidate modulator. Mice are euthanized 5 - 12 days post-injection, and the Matrigel® pellet is harvested for hemoglobin analysis (Sigma plasma hemoglobin kit). Hemoglobin content of the gel is found to correlate the degree of neovascularization in the gel.

In another preferred embodiment, the effect of the candidate modulator on SLC2A is assessed via tumorigenicity assays. In one example, xenograft human tumors are implanted SC into female athymic mice, 6-7 week old, as single cell suspensions either from a pre-existing tumor or from in vitro culture. The tumors which express the SLC2A endogenously are injected in the flank, 1 x 10⁵ to 1 x 10⁷ cells per mouse in a volume of 100 µL using a 27gauge needle. Mice are then ear tagged and tumors are measured twice weekly. Candidate modulator treatment is initiated on the day the mean tumor weight reaches 100 mg. Candidate modulator is delivered IV, SC, IP, or PO by bolus administration. Depending upon the pharmacokinetics of each unique candidate modulator, dosing can be performed multiple times per day. The tumor weight is assessed by measuring perpendicular diameters with a caliper and calculated by multiplying the measurements of diameters in two dimensions. At the end of the experiment, the excised tumors maybe utilized for biomarker identification or further analyses. For immunohistochemistry staining, xenograft tumors are fixed in 4% paraformaldehyde, 0.1M phosphate, pH 7.2, for 6 hours at 4°C, immersed in 30% sucrose in PBS, and rapidly frozen in isopentane cooled with liquid nitrogen.

Diagnostic and therapeutic uses

Specific SLC2A-modulating agents are useful in a variety of diagnostic and therapeutic applications where disease or disease prognosis is related to defects in the p53 pathway, such as angiogenic, apoptotic, or cell proliferation disorders. Accordingly, the invention also provides methods for modulating the p53 pathway in a cell, preferably a cell pre-determined to have defective p53 function, comprising the step of administering an agent to the cell that specifically modulates SLC2A activity. Preferably, the
modulating agent produces a detectable phenotypic change in the cell indicating that the p53 function is restored, i.e., for example, the cell undergoes normal proliferation or progression through the cell cycle.

The discovery that SLC2A is implicated in p53 pathway provides for a variety of methods that can be employed for the diagnostic and prognostic evaluation of diseases and disorders involving defects in the p53 pathway and for the identification of subjects having a predisposition to such diseases and disorders.

Various expression analysis methods can be used to diagnose whether SLC2A expression occurs in a particular sample, including Northern blotting, slot blotting, ribonuclease protection, quantitative RT-PCR, and microarray analysis. (e.g., Current Protocols in Molecular Biology (1994) Ausubel FM et al., eds., John Wiley & Sons, Inc., chapter 4; Freeman WM et al., Biotechniques (1999) 26:112-125; Kallioniemi OP, Ann Med 2001, 33:142-147; Blohm and Guiseppe-Elie, Curr Opin Biotechnol 2001, 12:41-47). Tissues having a disease or disorder implicating defective p53 signaling that express an SLC2A, are identified as amenable to treatment with an SLC2A modulating agent. In a preferred application, the p53 defective tissue overexpresses an SLC2A relative to normal tissue. For example, a Northern blot analysis of mRNA from tumor and normal cell lines, or from tumor and matching normal tissue samples from the same patient, using full or partial SLC2A cDNA sequences as probes, can determine whether particular tumors express or overexpress SLC2A. Alternatively, the TaqMan® is used for quantitative RT-PCR analysis of SLC2A expression in cell lines, normal tissues and tumor samples (PE Applied Biosystems).

Various other diagnostic methods may be performed, for example, utilizing reagents such as the SLC2A oligonucleotides, and antibodies directed against an SLC2A, as described above for: (1) the detection of the presence of SLC2A gene mutations, or the detection of either over- or under-expression of SLC2A mRNA relative to the non-disorder state; (2) the detection of either an over- or an under-abundance of SLC2A gene product relative to the non-disorder state; and (3) the detection of perturbations or abnormalities in the signal transduction pathway mediated by SLC2A.

Thus, in a specific embodiment, the invention is drawn to a method for diagnosing a disease in a patient, the method comprising: a) obtaining a biological sample from the patient; b) contacting the sample with a probe for SLC2A expression; c) comparing results from step (b) with a control; and d) determining whether step (c) indicates a
likelihood of disease. Preferably, the disease is cancer, most preferably a cancer as shown in TABLE 1. The probe may be either DNA or protein, including an antibody.

EXAMPLES

The following experimental section and examples are offered by way of illustration and not by way of limitation.

I. Drosophila p53 screen

The Drosophila p53 gene was overexpressed specifically in the wing using the vestigial margin quadrant enhancer. Increasing quantities of Drosophila p53 (titrated using different strength transgenic inserts in 1 or 2 copies) caused deterioration of normal wing morphology from mild to strong, with phenotypes including disruption of pattern and polarity of wing hairs, shortening and thickening of wing veins, progressive crumpling of the wing and appearance of dark "death" inclusions in wing blade. In a screen designed to identify enhancers and suppressors of Drosophila p53, homozygous females carrying two copies of p53 were crossed to 5663 males carrying random insertions of a piggyBac transposon (Fraser M et al., Virology (1985) 145:356-361). Progeny containing insertions were compared to non-insertion-bearing sibling progeny for enhancement or suppression of the p53 phenotypes. Sequence information surrounding the piggyBac insertion site was used to identify the modifier genes. Modifiers of the wing phenotype were identified as members of the p53 pathway. CG15406 was a suppressor of the wing phenotype. Human orthologs of the modifiers, are referred to herein as SLC2A.

BLAST analysis (Altschul et al., supra) was employed to identify Targets from Drosophila modifiers. For example, representative sequences from SLC2A, GI# 8923733 (SEQ ID NO:8), and GI#7657681 (SEQ ID NO:10) share 26% and 26% amino acid identity, respectively, with the Drosophila. CG15406.

Classification of transmembrane protein families in the Caenorhabditis elegans genome and identification of human orthologs. Genome Res. 2000 Nov;10(11):1679-89) programs. For example, the sugar transporter domain of SLC2A5 from GI#s 8923733 (SEQ ID NO:8) and 7657681 (SEQ ID NO:10) are located at approximately amino acid residues 40 to 498 and 29 to 474, respectively (PFAM 00083). Further, using TM-HMM we identified SLC2A5 GI#8923733 (SEQ ID NO:8) has 12 transmembrane domains with approximate start and end coordinates at amino acids (39,61) (81,103) (110,132) (136,158) (165,187) (191,213) (279,301) (316,333) (340,362) (391,413) (426,448) and (458,480). Still further, SLC2A5 GI# 7657681 (SEQ ID NO:10) has 12 transmembrane domains with approximate start and end coordinates at amino acids (27,49) (69,91) (98,117) (127,149) (156,178) (183,205) (257,279) (294,313) (320,342) (368,390) (403,425), and (440,462).

II. High-Throughput In Vitro Fluorescence Polarization Assay

Fluorescently-labeled SLC2A5 peptide/substrate are added to each well of a 96-well microtiter plate, along with a test agent in a test buffer (10 mM HEPES, 10 mM NaCl, 6 mM magnesium chloride, pH 7.6). Changes in fluorescence polarization, determined by using a Fluorolite FPM-2 Fluorescence Polarization Microtiter System (Dynatech Laboratories, Inc), relative to control values indicates the test compound is a candidate modifier of SLC2A5 activity.

III. High-Throughput In Vitro Binding Assay.

33P-labeled SLC2A5 peptide is added in an assay buffer (100 mM KCl, 20 mM HEPES pH 7.6, 1 mM MgCl$_2$, 1% glycerol, 0.5% NP-40, 50 mM beta-mercaptoethanol, 1 mg/ml BSA, cocktail of protease inhibitors) along with a test agent to the wells of a Neutralite-avidin coated assay plate and incubated at 25°C for 1 hour. Biotinylated substrate is then added to each well and incubated for 1 hour. Reactions are stopped by washing with PBS, and counted in a scintillation counter. Test agents that cause a difference in activity relative to control without test agent are identified as candidate p53 modulating agents.
IV. Immunoprecipitations and Immunoblotting

For coprecipitation of transfected proteins, 3×10^6 appropriate recombinant cells containing the SLC2A proteins are plated on 10-cm dishes and transfected on the following day with expression constructs. The total amount of DNA is kept constant in each transfection by adding empty vector. After 24 h, cells are collected, washed once with phosphate-buffered saline and lysed for 20 min on ice in 1 ml of lysis buffer containing 50 mM Hepes, pH 7.9, 250 mM NaCl, 20 mM -glycerophosphate, 1 mM sodium orthovanadate, 5 mM p-nitrophenyl phosphate, 2 mM dithiothreitol, protease inhibitors (complete, Roche Molecular Biochemicals), and 1% Nonidet P-40. Cellular debris is removed by centrifugation twice at 15,000 × g for 15 min. The cell lysate is incubated with 25 μl of M2 beads (Sigma) for 2 h at 4 °C with gentle rocking.

After extensive washing with lysis buffer, proteins bound to the beads are solubilized by boiling in SDS sample buffer, fractionated by SDS-polyacrylamide gel electrophoresis, transferred to polyvinylidene difluoride membrane and blotted with the indicated antibodies. The reactive bands are visualized with horseradish peroxidase coupled to the appropriate secondary antibodies and the enhanced chemiluminescence (ECL) Western blotting detection system (Amersham Pharmacia Biotech).

V. Expression analysis

All cell lines used in the following experiments are NCI (National Cancer Institute) lines, and are available from ATCC (American Type Culture Collection, Manassas, VA 20110-2209). Normal and tumor tissues were obtained from Impath, UC Davis, Clontech, Stratagene, and Ambion.

TaqMan analysis was used to assess expression levels of the disclosed genes in various samples.

RNA was extracted from each tissue sample using Qiagen (Valencia, CA) RNeasy kits, following manufacturer’s protocols, to a final concentration of 50ng/μl. Single stranded cDNA was then synthesized by reverse transcribing the RNA samples using random hexamers and 500ng of total RNA per reaction, following protocol 4304965 of Applied Biosystems (Foster City, CA, http://www.appliedbiosystems.com/).

Primers for expression analysis using TaqMan assay (Applied Biosystems, Foster City, CA) were prepared according to the TaqMan protocols, and the following criteria: a) primer pairs were designed to span introns to eliminate genomic contamination, and b) each primer pair produced only one product.
Taqman reactions were carried out following manufacturer's protocols, in 25 μl total volume for 96-well plates and 10 μl total volume for 384-well plates, using 300nM primer and 250 nM probe, and approximately 25ng of cDNA. The standard curve for result analysis was prepared using a universal pool of human cDNA samples, which is a mixture of cDNAs from a wide variety of tissues so that the chance that a target will be present in appreciable amounts is good. The raw data were normalized using 18S rRNA (universally expressed in all tissues and cells).

For each expression analysis, tumor tissue samples were compared with matched normal tissues from the same patient. A gene was considered overexpressed in a tumor when the level of expression of the gene was 2 fold or higher in the tumor compared with its matched normal sample. In cases where normal tissue was not available, a universal pool of cDNA samples was used instead. In these cases, a gene was considered overexpressed in a tumor sample when the difference of expression levels between a tumor sample and the average of all normal samples from the same tissue type was greater than 2 times the standard deviation of all normal samples (i.e., Tumor – average(all normal samples) > 2 x STDEV(all normal samples)).

Results are shown in Table 1. Data presented in bold indicate that greater than 50% of tested tumor samples of the tissue type indicated in row 1 exhibited over expression of the gene listed in column 1, relative to normal samples. Underlined data indicates that between 25% to 49% of tested tumor samples exhibited over expression. A modulator identified by an assay described herein can be further validated for therapeutic effect by administration to a tumor in which the gene is overexpressed. A decrease in tumor growth confirms therapeutic utility of the modulator. Prior to treating a patient with the modulator, the likelihood that the patient will respond to treatment can be diagnosed by obtaining a tumor sample from the patient, and assaying for expression of the gene targeted by the modulator. The expression data for the gene(s) can also be used as a diagnostic marker for disease progression. The assay can be performed by expression analysis as described above, by antibody directed to the gene target, or by any other available detection method.

<table>
<thead>
<tr>
<th></th>
<th>breast</th>
<th>colon</th>
<th>lung</th>
<th>ovary</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI#9938031 (SEQ ID NO:2)</td>
<td>6</td>
<td>11</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>GI#7657680 (SEQ ID NO:5)</td>
<td>0</td>
<td>11</td>
<td>9</td>
<td>30</td>
</tr>
</tbody>
</table>
WHAT IS CLAIMED IS:

1. A method of identifying a candidate p53 pathway modulating agent, said method comprising the steps of:
 (a) providing an assay system comprising a purified SLC2A polypeptide or nucleic acid or a functionally active fragment or derivative thereof;
 (b) contacting the assay system with a test agent under conditions whereby, but for the presence of the test agent, the system provides a reference activity; and
 (c) detecting a test agent-biased activity of the assay system, wherein a difference between the test agent-biased activity and the reference activity identifies the test agent as a candidate p53 pathway modulating agent.

2. The method of Claim 1 wherein the assay system comprises cultured cells that express the SLC2A polypeptide.

3. The method of Claim 2 wherein the cultured cells additionally have defective p53 function.

4. The method of Claim 1 wherein the assay system includes a screening assay comprising a SLC2A polypeptide, and the candidate test agent is a small molecule modulator.

5. The method of Claim 4 wherein the assay is a transporter assay.

6. The method of Claim 1 wherein the assay system is selected from the group consisting of an apoptosis assay system, a cell proliferation assay system, an angiogenesis assay system, and a hypoxic induction assay system.

7. The method of Claim 1 wherein the assay system includes a binding assay comprising a SLC2A polypeptide and the candidate test agent is an antibody.

8. The method of Claim 1 wherein the assay system includes an expression assay comprising a SLC2A nucleic acid and the candidate test agent is a nucleic acid modulator.
9. The method of claim 8 wherein the nucleic acid modulator is an antisense oligomer.

10. The method of Claim 8 wherein the nucleic acid modulator is a PMO.

11. The method of Claim 1 additionally comprising:
 (d) administering the candidate p53 pathway modulating agent identified in (c) to a model system comprising cells defective in p53 function and, detecting a phenotypic change in the model system that indicates that the p53 function is restored.

12. The method of Claim 11 wherein the model system is a mouse model with defective p53 function.

13. A method for modulating a p53 pathway of a cell comprising contacting a cell defective in p53 function with a candidate modulator that specifically binds to a SLC2A polypeptide comprising an amino acid sequence selected from group consisting of SEQ ID NOs:7, 8, 9, and 10, whereby p53 function is restored.

14. The method of claim 13 wherein the candidate modulator is administered to a vertebrate animal predetermined to have a disease or disorder resulting from a defect in p53 function.

15. The method of Claim 13 wherein the candidate modulator is selected from the group consisting of an antibody and a small molecule.

16. The method of Claim 1, comprising the additional steps of:
 (d) providing a secondary assay system comprising cultured cells or a non-human animal expressing SLC2A,
 (e) contacting the secondary assay system with the test agent of (b) or an agent derived therefrom under conditions whereby, but for the presence of the test agent or agent derived therefrom, the system provides a reference activity; and
 (f) detecting an agent-biased activity of the second assay system,
wherein a difference between the agent-biased activity and the reference activity of the second assay system confirms the test agent or agent derived therefrom as a candidate p53 pathway modulating agent,
and wherein the second assay detects an agent-biased change in the p53 pathway.

17. The method of Claim 16 wherein the secondary assay system comprises cultured cells.

18. The method of Claim 16 wherein the secondary assay system comprises a non-human animal.

20. A method of modulating p53 pathway in a mammalian cell comprising contacting the cell with an agent that specifically binds a SLC2A polypeptide or nucleic acid.

21. The method of Claim 20 wherein the agent is administered to a mammalian animal predetermined to have a pathology associated with the p53 pathway.

22. The method of Claim 20 wherein the agent is a small molecule modulator, a nucleic acid modulator, or an antibody.

23. A method for diagnosing a disease in a patient comprising:
 (a) obtaining a biological sample from the patient;
 (b) contacting the sample with a probe for SLC2A expression;
 (c) comparing results from step (b) with a control;
 (d) determining whether step (c) indicates a likelihood of disease.

24. The method of claim 23 wherein said disease is cancer.

25. The method according to claim 24, wherein said cancer is a cancer as shown in Table 1 as having >25% expression level.
SEQUENCE LISTING

<110> EXELIXIS, INC.

<120> SLC2A5 AS MODIFIERS OF THE p53 PATHWAY AND METHODS OF USE

<130> EX02-076C-PC

<150> US 60/296,076
<151> 2001-06-05

<150> US 60/328,605
<151> 2001-10-10

<150> US 60/357,253
<151> 2002-02-15

<160> 10

<170> PatentIn version 3.1

<210> 1
<211> 2487
<212> DNA
<213> Homo sapiens

<400> 1
cggagcgccc tccgctgcc cccgagagca ccgagcccatg caggagccgc tgcctggaggc 60
cgagggcccg gactacgaca cctttccccga gaagccgccc cctgctgcaag gggacaggcc 120
gccgggctgg accttcgaga acaaaaaaggt gtctcctgccc aacctcgccg ccagtgctgg 180
cactttcagc ttggtgtagc cctggtctca cacatccccct gtcatccccag ccctgagccg 240
cctccttggat cctgacctgc atctgaccaac atcccaagccca tctctgttttg gttccctgttt 300
ccacctggga gcagcggccc gcggcttgag tgcatgtatct ctccaaggacc cctctggcccg 360
agaagtacgc atcatgtctct cagctgtgctc gtccggcggccc ggttatagcc gcctgtgggg 420
tgccagccgc cttcctggtgc ttgctgcctgg aagagcgtgct acgggcttcc cccggggtctg 480
cacagctgcc ctcgactccgg tgtagattgct tgcggtgggg ccccccaggg ccttctggggc 540
tcttggggccc acaccccaac gcctggggcg ttcctgctcc ctgctctactc aagccctttgg 600
cctctctgctg ccctgggctgt gccttggtgtg gcggcggggc gcggctggtgc tcaatctagt 660
cctgcctgtc acgctgctgc cccatctgcc gcggcttctgg ctctctgggg gcagggcggcc 720
agaggcccttg ccggcctctgg cttggtgctcg tgggaaggac gcctagttcg acctggggattt 780
gcgcacagtc cagcagaccc tccggcggac gacgacccag gtagctgggg cttgagggcagc 840
gggccacacct gcgtgctcccgc ccattcagcc gcgggtggtgtg aatggctcctc tgcagcgctg 900
gacggggcta cgcgccctcct tggtctcttc gcagtcctac ccggctggctcgc gctgccctgctc 960
gctgcccccag aagagggagc cagccatcgtg tggggtcctgt gcggctcctgt cctggtgtga 1020
cctccgccccc ccattcagcc gcggcctgcc cagtggtgtcg ctctctgtcc ctgcacggccct 1080
catgtttgct gccaaacctga ctctgggctt gtacatcacc ttggccccca ggctcttgag
1140
ccccaacagc acctgggccg tggaaagcgc gtctctgggg gacttgccgc agccctctgc
1200
agoacccgct gccactacca cccctgggcc cctgctggcc accatgtcct tcatactggg
1260
tctgcccttg gccctgggctc ccatcacctg gtctgctcatg tcctgagctcc tcgcccctgc
1320
tgccccctgac gttgccctcag ggctctgcgt gctggccacgc tggctcaaccg ccttcgctct
1380
caccaagtcg ttcctgccag tgtgagacac cttcgccctc caggtgctctt tcttctctct
1440
cgccgccacat tgtctgggtga ggctgtgttt cacaaggtgc tgtgtgcccg agacaaaggg
1500
acggtcccttg gaggagatcg aggctctctctt ccccaagggg agaaggtcct tcttgagctta
1560
gttcaaggtc cccgcttcgg aagggccaa ccccaaggtg cttgggctctt gtgttgagctta
1620
caaacctgca cccctgggacc aagagggcagc agtcatcctc gcacaagccg acagcacagg
1680
aagagcgagtg tgtatgggggc ctcagcgagg gttccctctgg ccgctggaga gtagcactgc
1740
tgtccagcca cagccggcag ccagggcagg cacaagttcg caagttgcac tgagggcgcag
1800
gagtgcaatac aaccctgctc ccagggacag gcgccctcgtg ggtgcaactca gcgtctagcc
1860
cattccttgc cgtgaagagg acgccccacc gaaggctcag gggagagtgc agagggacag
1920
gctggaggcca gcacaagtaac gtatagctat catccgcgtct gtatcttgctc gcatactgtc
1980
gtgcaagggac gccagccgctt ggbccctcca aactttattg gccaaagccgg gaacacatctg
2040
gactttaaag gccagggcag gcggggccaca gtggctcaacg ctctgtaatcc cagcacaggctt
2100
ggaggccaaa gcaggtggat taccccaagg cagaggttca agaccaacggt gcgaacaatcg
2160
gtgaaacccc gtctctacta aaaaaataca aaaaagctggg tgtggtggca cacaccgctta
2220
gttccagctc cttgaggacgc tgaggagcga ttggtgtgac cccggagggtg gagggtgcaa
2280
tgagcttaca tcaggtccatt gcacttcacg ctggtggcaagc agagttgaaac ttggtctccca
2340
ccccctgcca aaaaaaaaaa aaaaaagccc agggccaaagg accttgggggt gcccaacctctc
2400
cctgcccccag ccacacctct gggaacaggg agctctcttc ttgcaaaagt gtttacccttt
2460
ttgtaaatct aagagagaactg gacccggt
2487

<210> 2
<211> 2487
<212> DNA
<213> Homo sapiens

<400> 2
ctgagagccgc ttcgctgcgc ccggagagaga cccggcccatg caggagccgc tgctcggacg
60
cgaggggcccg gactacgaca ccttcggccc gaagcggcgc cctgctgcag gggacagggc
120
gccgtgctgggacctgaggacatgccctgcc accttgccgc cagtgctggg
180
caatttccagc ttgggtatatg ccctgtctta cacatecctc gtcatccccg ccttggacgcg 240
tctcttggtat gcctgacttcg atctgacccaa atcccaaggoa tctctgttgg ggtccgtgttt 300
caacctggga gcagggcgcc gcaggtctcag tgtgctatgatc ctcaacaaac gcctggccccg 360
gaagctgagc atcatgtttct cagctggtgcc gtcggccgcccc ggtcatgtgcc tcataagggg 420
tgcgoacgac cccttggtatcg tcgtgcttgcc aaggacgctcg acgggctccgc cggggggcgt 480
caacagctgcc tcagctccgg tgcattgcttc tggagcatgct ccccaacagc ttggtggggtc 540
tctctgtcgct cccccacgcc tgtgcttcctag tggccggttcc agcctcctcg 600
ccctctgtcgct ccctggtcggc tgtgctgttcc gggccggggag ggctgctgtgc tcatacagat 660
cccttgctgtgc aggcttccagc ccacatacggc gcgtgctgctgc ctctctgctgg gcaggacaga 720
agagcccccttg cggggctggtct cctggtcgcgg ctggagccgag atctgagtttc actgggagtct 780
cgacacagct cagacacgac acctggagacca gcacacccgca atctgctggg ctgagccagc 840
ggccccacac tgtgtgcggcc cccattcgcttg ggcctgtgctg atgctgccttc gcgtcagcct 900
gacgaggccac cgtggtcccttg ttggcttgctcg cgcacagcgc cggctcagctg 960
gctgcctccct aagggcgacg cagccatgct ttggggctggt cggctcctgct cggctgctgat 1020
ccggcgcctgc accatggaga ccacactgcgg cagagttgctcg cctctgctgtg cagccggccat 1080
ctgtctgtgt gcacacccgct ctctggggct gcacactgcgc ttgggccccaa gcctctggtcag 1140
ccccacccacgt cagtgccgcccc cttcctgggg gactctgcccag gcctctggcc 1200
agcaccgctg ggtcactctga cccctgggtgc ccttgcggcc accatgctgcct cccataggg 1260
ctacgcctgt gcgtgctccttc cccactcctcg gcgtcctgtcg cccctgctcg 1320
tgccctgcag gcctgcctgcgt ggtgcctccac gcctcgcttcc ctctccctctt 1380
caccaagctgc ttgctgcggct cgggtgcgcc cggctgctggct cctctctctgg 1440
cgcggggcactc tgtgctttgtgc ggtgctggcttg cacaagacctg tgtgctgcccc gcacacagg 1500
acggtctccgt gcacagatgct agttcctctcc ccagctgctggg agaaggctcc tgtctgctgta 1560
ggtcaaggct ccggcgctgga ggggcggcaca ccccaagtggt cttgggctctc gttgggtgcta 1620
caaactgcga cctctgggacc aagagggcgcga gtcatctccgt gccaaccagc agacagcagg 1680
aagagccagt gtagggccgc tccagcaggg gtgccccctgg cttgggagat ctagcttgct 1740
tgctccagcaca cccggcgcaca cagggcagcgc cacagtcttgc tcaagttgcc cgggccgcaag 1800
agatgctcagct aacccgctcg cccaggacac gcctgcctgctgt ggtgacactca ggcctagctgc 1860
ccttcccccttg cgtgaaagcc gcaccccaacca gaaggtccttg gggaggactg agaggacagg 1920
gctggaggca gcacagtaac atagtcataat catcgctgctc tgatctgttgct gcacattgct 1980
gtggcagggaa gcacccgtggct cttgcctoaca agttctatgg gcacaccagg gacaattctgt 2040
gacctaaaaa gcccagggcag gcccggcaca tgggtctcaacg cctgtaatcc cagcaactttg 2100
ggagggcacaac gcaagttggag taccaccaagc caggagttca aagaccagcct ggccaaacctg 2160
gtgaaccccc gtcctcacta aaaaaatcaca aaaaagctgag tttgtggaac cacaacccgta 2220
gttccagcta cttggagggc tcagggagcgc ttcagttgaac cccgaggcttg gaggctggaa 2280
tgagctgaga ttcagctcatt gcactccagc cttggaacag gagtgaacac ttcgctcctca 2340
ccccctgccaa aaaaaaaaaa aaaaaaagcc aggagcaaggg acctggcgtgc gcacatctcct 2400
cctgccccag cccacccctct gcagaagggc agctgccatc tgacaactgt gtcacccctc 2460
tgtaaaaaat aagaggactg gaccgct 2487

<210> 3
<211> 2356
<212> DNA
<213> Homo sapiens

<400> 3
ccccctccctg cccgccagaga gaccgccccca tgacagggccc cccggttcggt gcccaggccc 60
cggactacga cacctcccccc gagaagccggc cccggtccgcc cggaggagggc gcggcgggtcg 120
gacccctgcac gaaaaaaaaggg ttcagctcgtgg ccacacctcgc cgcaggtcgc gcaggacttc 180
gcttcggttct gcgcctgtct gcataccccct ccgctgctccc agcgctggag gcgcctcctt 240
atcttgacct gccttgagcc aataccaggg ccctggttgta tgggtcctggc ttccagcttg 300
gacagcgccg ccggagctcct gcacagctag ttcctcaacag ccctctgacg ccacggactga 360
gcatactggtt tctagctgtgg cggctgctcgc cggcgctatgc gcctcatgccc ggtcgcaagc 420
gccctgtgatt ggcagctcgc gcggaggtggc cggagcggcct gcggcgggttg ctcagcatcg 480
ccctgccacccc cggcgagtgtgg attggagttgg ccccccaggg cggcggttgg ggcgctgggg 540
ccacccccgcc ggcctgctgct ggtctgcgcct cctgctgcct ctacgccttt ggccctccctg 600
tgctggctggcc ggcagcctgct gtgccgctggg aagccgctgtg ggcagcctgtg aacaggtgctc 660
tcgagtccttgc gcccacatctg ggggccccgg cgggaggac gagaagccccc 720
tgcggcggccg ggcgctgcttg gttggcgacc agctctgagtgt caccgctggag cggcgacaga 780	
tccagggcaac cgctggcggag cagacgaccgc ggtacagctgt gcggcggagc cccgcccggcc 840
agcgtgtgcc gcctacctcgc ggctgcgcttc tcagaatggc ctcgagcacag tgcagccggca 900
tccgccttcgg cctcgctatc gtcctgtcctc cttccagcag caccgctgtgc ctgcctggcc 960
ccaacagcgg cgcagccctcg cggcgctcctgc tgccgctcctg tcgtcgtcgcg ctgcctccgc 1020
tccacatgag ccctgcagcc gcacaggtgc tggctctctgt ttcagcgcccg atacagttgag 1080
tgctccacccg gatctcttcgg gctgtcatcgc aaccttcgggc caggcccttg agcccacaca 1140
gccagtgcggg cccggaaccg gtctcttcgg gggacctggcc gcagccccctg gcagccactcg 1200
ctggctacct caccctggtg cccctgcttg cccaccatcg ctctcactctg gacctgccccg 1260
tgggctgggg tgggcttgcc tgggctgcta tgctaggggt cctgccccctg gctgccccgtg 1320
gcggcccctc agggctctgc ggtgccgcac gccggctcac gctgggctgct ctcaccactg 1380
ccttctgccc agtggttggc accttgccgc tccaggtgcc ttctctttctc ttgctggcaca 1440
tcgggttggg gcagcctgggt ttcacaggtc gtgggtggtcc ggagaccaag ggagggtcccc 1500
tggagccagat cagctccttc ttcgcacgag ggagaaggtc cttcttgcgc tagtgaacgg 1560
tccggcggctg gggggtggca aaccccaggt ggtgtgggct gttggtggtgc tacaadcttg 1620
cacctggggaa caagaggcgca cagctcatcc ctgcacccag ccagagccaga ggaagacgag 1680
tgtgtagggct ccagcagcgc ggggctgcctt ggtgcagggac agtgctgacat gctgtccagc 1740
cacagcccca gcgcaggccg ccaagctagct gcagagcaacg cagttgggcaag ggggtgcat 1800
cacacccctgc atccagggac acggcctgcgg cagggtgacct cagggctagtt ccctttccct 1860	tgctgttaagg acacgccccca cagaagctca cgggagggac tgaagagcaca ggacctggagg 1920
cagcccaagta acgtagtcact atcactgcccgc ctctgatctgg tggcactctgg cttgctcaagg 1980
aagaccggcgg tttgccctca caagctttat gggcaccacca gggacactcc tggacattaa 2040
aagcaggcggc aggtggggccga cagttggctga cgcctgttaat cccagcactt ttgaggccca 2100
aagcagggtg attacccaggg ccagggagtt caagacacgc ctcggccaaaca tgggtgaacc 2160
ccgtctctca taaaaaattc aaaaaagctg ggtgtggtgg ggctcagccgc tagttcagac 2220	tacttgagg gctgaggccg catttgctgca acccggggaggg tcggcagctg aatgagctga 2280
gatcatgcca ttgcaactccac gggggtgggca cagaggtgaa actgctgcctt cacccgctgc 2340
caaaaaaaaaa aaaaaaaaa

<210> 4
<211> 1856
<212> DNA
<213> Homo sapiens

<400> 4
gacatgacgc ccgggacc caggaaaacc cagcagcttc tggggcctcc tggcgccagc 60
gcggcccgag gcggcggcgt ctccctgcgc gcctgceggc ctggccctgg cccactcagc 120
tcgggttggg gcctgctgc ata cagctccccg gcacactccta ggtggtggttgg gcctgcagcg 180
cgggccccg ggcgtgcggga cgcggcgcgctttctgggt gcggtgctgg tgcctccgggt 240
ggcgggccgg ggaggtggtc gcggcggcgtc gctgctgctgc gcggcgggcc cagctgctgc 300
cctctttggtg cctcgcctgc ggtgttgctgc gcctcagcgc gcgcagccacc 360
gtgggtatgc gcgggggag gcgcctcttc acggcggctgg ctgcggtgtc tgcctcccta 420
gtgcgcctcgg tctcatcttc cgaaatcggcc tacccagacag tcgggtggttc gctcggtctcc 480
ttgtgcagc taatggtcgt ctgtgggcac tccttgccct acctggcagg ctgggtgttg 540
gagtgggcgt ggtcggctgt gctgggggct ccggccccct cccccctgct ggccttcatg 600
tgtctcatgc cggagacccc gcggcttccct tgcagctccgc acaggggca gggaggtatg 660
gcccgcttgg ggttcctgttg gggcttcagag cagggtcggg aagacccccc atcggggcct 720
gacgagacct tcacccgctg cggtgcgtgg cccggcgcag ctcacaagcc ccctcatcctc 780
 gcgtctttcc csatgcggcc tccagcctgt cggggaggtca cggcgctcatg tggctcatga 840
gagacatct tttgaggggc caagttcagc gacagcagcc tggctccttg gctgcttggt 900
gctatccaggg ttcgctttgc agctgttggc gcgtcttcctc cggacacagc cggcggcag 960
cgtgctcttg ggctggctacgt gtgtgctgca cagagctccct ccggcgcggtac 1020
ttcacagctga cccaggggtg ccttgcgaac ccacccagag tggccacattc ggccgcctgct 1080
tcgcaacagc cttgtgtagct cagctgttggg ccgggctgcgg gacatctagc 1140
cctctcatgc ccggcctttgg gggggttgcc gggccccctcc ccgggccctcc catgtgctag 1200
atctctcttc tgcagctgcc ggccggttggc caagggcagct gcctccctcac aacagggctc 1260
attgctcttc ttcgctggcc cagagttcagc agcctcttgag aggctcttcag gcccctatgga 1320
gctgctctgg tgtgccttcgct tctctgtgtc cttctcgctc ccctacttgc ttttttgccttc 1380
ccctgaaacta aagagaaagcc ttcggagaccc atcagcaagg ctttggaggg gcctactagc 1440
ccacctcacta ggggatggag caagcctgtct actccaaagct ggggagggag cccagccccc 1500
tgctgcccccc aggggagccaaatgcaagcc ccttgggagcc tgggtctgca gggctccctcc 1560
atctgtctat gctgccttcca gccagctgcc ggggcttggag agctctcaag cttctctgttc 1620
cagctctctgc tgcgctgttgg aggactcagag aacaccttccg acctttgcag gctctgcgggtc 1680
agccctctcat ggcgaacagct aagagccggg agagggaggt gggcctctag gatcttttgc 1740
ttctggctgg aggctggcttt gggaggtgct tcaggctgcat tcaagtcgctc ctctcagcgg 1800
gctgctcttat ccgagaaggag attttggtgac caataaaga ctgacacaga aataca 1856

<210> 5
<211> 1873
<212> DNA
<213> Homo sapiens

<400> 5
gacatgaacgc ccggaggccc agagaaacca cagccgctctc tggggcctcc tggccggcagc 60
 gcggccccgag gcggcgccgtg ctctcctgcgc gcctttcggcg ctggccccggt ccacctcagc 120
 ttggttgcag cgctgctgcga cgccttcctgc aacatcctca gcctgctgcga cgccgcccccc 180
 ccggccccgg gcctggagagc ccggcgccgc tctttgttgcg gggcgtctgtg gacccctggtt 240
ggcgcggcgg gggagtgctg ggcgcggcgg cttggtgcac cggcgcggcgg caagcatgac 300
cctctctcag ctctctcag ccggggtcag cttgcattcat cgggcgcgcgc gcgcgcgcgc 360
ggcgcgcgcgc ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 420
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 480
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 540
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 600
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 660
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 720
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 780
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 840
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 900
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 960
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 1020
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 1080
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 1140
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 1200
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 1260
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 1320
ggcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgc 1380
cctgaaattta aagagacact cctgggaacc attttgaggg gcgggtgacg 1440
cctgaaattta aagagacact cctgggaacc attttgaggg gcgggtgacg 1500
cctgaaattta aagagacact cctgggaacc attttgaggg gcgggtgacg 1560
cctgaaattta aagagacact cctgggaacc attttgaggg gcgggtgacg 1620
cctgaaattta aagagacact cctgggaacc attttgaggg gcgggtgacg 1680
cctgaaattta aagagacact cctgggaacc attttgaggg gcgggtgacg 1740
cctgaaattta aagagacact cctgggaacc attttgaggg gcgggtgacg 1800
cctgaaattta aagagacact cctgggaacc attttgaggg gcgggtgacg 1860
cctgaaattta aagagacact cctgggaacc attttgaggg gcgggtgacg 1920

<210> 6
<211> 1445
<210> DNA
<213> Homo sapiens
<400> 6
gccgacatga cgccccagga cccagaggaa acccaagcgc ttctgggccc ttctgggcgc 60
agccgccccc ggggccgccg cgtttcttcg gcccctttcg cggctgcctc ggggccactc 120
agccctgcgt cgctgctccttg ctacagctctc cggcccatcc ctacgctgca ggcgccgccg 180
ccccccgacc ccgcccctgaa cagcgcggcc gcctcccttggt tcgggggtgtg gctgacccctg 240
gctggccgag cggggggagt gctgggggccg tggctggttgg accggcgcgg gcggcaagtg 300
agctctcttg cgtgctctcttg gcctcccttg gcccgccttg catgcacacgcc cgggccccag 360
gagccttgctg tcgtgtgggg cggccgcttcct caacccgccc ttggctgcggct tgtggtctcc 420
cctagtggccg cgggttcattc ctccggaatc gcctaacccag cagttctgggg gttgtctgcgc 480
tctctgtgtgc agctaatgtg gcggctgctggcc atctcctctg cctacctgtgg ggctgtggtg 540
tctggagttgc gctggtgtggc tgtgctgcggct tgtgctgcgctcc cctccctctcat gctgctctcc 600
atgtgtctca tcggccggacg ccccgctcttc ctgctgacttc agcagcagcc ccaagggcgc 660
atgtgctgctgc tcgggtgctct cggcctctgtg ccgggctggttg gggagacgc ccacatcggg 720
gctgacgaca gcttcatcct gcgcctctgtg ggccgagcgg gcatctacaca gcctctctac 780
atccggtctg ccctggactgc ccctccagag ccctcggggg gccaacgcgc gcataacgcgt cgtggtctct 840
gcagagcaca tctttgagca ggcgctgcgc aagggcagcga gcctgggcctc ggtgctgcttg 900
ggtgtcatcga aggtgtcgtt ctacagctgtg ggctgctctca tacatgcgag aacgagggcg 960
aggtgtctgcc tgggtcgttgc aggtgtgttct caggtgtctca gcaagaaagtgc ttcggggccc 1020
tacttcagtc tggccccggg tgtggcctggg aactctctgcc aagttggtcat ctcgggcccct 1080
gttctgctcag acgtgtgtgg tgcagcgtgc gtggctgctct gggcgttgctg gcggagcactg 1140
tgctggcttc ctgcgggtctc tgggggcccct aacccttggct cttcatctgca 1200
gagatttcct ctctgtctgtc gaaggcgttg gcgagcagga tctgctgcttc cactaatctcg 1260
ctctatgctt tctctgtggtc aagagagtc gcagctgtca tggagggcttc cagcctctat 1320
gagccctctt cggcgtcttc ctgtttctct tcccctctgct tctctctgctg 1380
gtgcctgaaa tctaaggaaa gactcggaa ccaatcagag cccatatttga gggcagatga 1440
cagcc

<210> 7
<211> 507
<212> PRT
<213> Homo sapiens

<400> 7

Met Gln Glu Pro Leu Leu Gly Ala Glu Gly Pro Asp Tyr Asp Thr Phe
1 5 10 15

8
<table>
<thead>
<tr>
<th>Pro Glu Lys Pro Pro Pro Ser Pro Gly Asp Arg Ala Arg Val Gly Thr</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu Gln Asn Lys Arg Val Phe Leu Ala Thr Phe Ala Ala Val Leu Gly</td>
<td>35</td>
</tr>
<tr>
<td>Asn Phe Ser Phe Gly Tyr Ala Leu Val Tyr Thr Ser Pro Val Ile Pro</td>
<td>50</td>
</tr>
<tr>
<td>Ala Leu Glu Arg Ser Leu Asp Pro Asp Leu His Leu Thr Lys Ser Gln</td>
<td>65</td>
</tr>
<tr>
<td>Ala Ser Trp Phe Gly Ser Val Phe Thr Leu Gly Ala Ala Ala Gly Gly</td>
<td>85</td>
</tr>
<tr>
<td>Leu Ser Ala Met Ile Leu Asn Leu Leu Gly Arg Lys Leu Ser Ile</td>
<td>100</td>
</tr>
<tr>
<td>Met Phe Ser Ala Val Pro Ser Ala Ala Gly Tyr Ala Leu Met Ala Gly</td>
<td>115</td>
</tr>
<tr>
<td>Ala His Gly Leu Trp Met Leu Leu Leu Gly Arg Thr Leu Thr Gly Phe</td>
<td>130</td>
</tr>
<tr>
<td>Ala Gly Gly Leu Thr Ala Ala Cys Ile Pro Val Tyr Val Ser Glu Ile</td>
<td>145</td>
</tr>
<tr>
<td>Ala Pro Pro Gly Val Arg Gly Ala Leu Gly Ala Thr Pro Gln Leu Met</td>
<td>165</td>
</tr>
<tr>
<td>Ala Val Phe Gly Ser Leu Ser Leu Tyr Ala Leu Gly Leu Leu Leu Pro</td>
<td>180</td>
</tr>
<tr>
<td>Trp Arg Trp Leu Ala Val Ala Gly Glu Ala Pro Val Leu Ile Met Ile</td>
<td>195</td>
</tr>
<tr>
<td>Leu Leu Leu Ser Phe Met Pro Asn Ser Pro Arg Phe Leu Leu Ser Arg</td>
<td>210</td>
</tr>
<tr>
<td>Gly Arg Asp Glu Glu Ala Leu Arg Ala Leu Ala Trp Leu Arg Gly Thr</td>
<td>225</td>
</tr>
<tr>
<td>Asp Val Asp Val His Trp Glu Phe Glu Gln Ile Gln Asp Asn Val Arg</td>
<td>245</td>
</tr>
</tbody>
</table>
Arg Gln Ser Ser Arg Val Ser Trp Ala Glu Ala Arg Ala Pro His Val
260 265 270

Cys Arg Pro Ile Thr Val Ala Leu Leu Met Arg Leu Leu Gln Gln Lys
275 280 285

Thr Gly Ile Thr Pro Ile Leu Val Tyr Leu Gln Ser Ile Phe Asp Ser
290 295 300

Thr Ala Val Leu Leu Pro Pro Lys Asp Asp Ala Ala Ile Val Gly Ala
305 310 315 320

Val Arg Leu Ser Val Leu Ile Ala Ala Ala Leu Thr Met Asp Leu Ala
325 330 335

Gly Arg Lys Val Leu Leu Phe Val Ser Ala Ala Ile Met Phe Ala Ala
340 345 350

Asn Leu Thr Leu Gly Leu Tyr Ile His Phe Gly Pro Arg Pro Leu Ser
355 360 365

Pro Asn Ser Thr Ala Gly Leu Glu Ser Glu Ser Trp Gly Asp Leu Ala
370 375 380

Gln Pro Leu Ala Ala Pro Ala Gly Tyr Leu Thr Leu Val Pro Leu Leu
385 390 395 400

Ala Thr Met Leu Phe Ile Met Gly Tyr Ala Val Gly Trp Gly Pro Ile
405 410 415

Thr Trp Leu Leu Met Ser Glu Val Leu Pro Leu Arg Ala Arg Gly Val
420 425 430

Ala Ser Gly Leu Cys Val Leu Ala Ser Trp Leu Thr Ala Phe Val Leu
435 440 445

Thr Lys Ser Phe Leu Pro Val Val Ser Thr Phe Gly Leu Gln Val Pro
450 455 460

Phe Phe Phe Ala Ala Ile Cys Leu Val Ser Leu Val Phe Thr Gly
465 470 475 480

Cys Cys Val Pro Glu Thr Lys Gly Arg Ser Leu Glu Gln Ile Glu Ser
485 490 495

Phe Phe Arg Met Gly Arg Arg Ser Phe Leu Arg
500 505 510
Met Gln Glu Pro Leu Leu Gly Ala Glu Gly Pro Asp Tyr Asp Thr Phe
1 5 10 15

Pro Glu Lys Pro Pro Pro Ser Pro Pro Gly Asp Arg Ala Arg Val Gly Thr
20 25 30

Leu Gln Asn Arg Val Phe Leu Ala Thr Phe Ala Ala Val Leu Gly
35 40 45

Asn Phe Ser Phe Gly Tyr Ala Leu Val Tyr Thr Ser Pro Val Ile Pro
50 55 60

Ala Leu Glu Arg Ser Leu Asp Pro Asp Leu His Leu Thr Lys Ser Gln
65 70 75 80

Ala Ser Trp Phe Gly Ser Val Phe Thr Leu Gly Ala Ala Ala Gly Gly
85 90 95

Leu Ser Ala Met Ile Leu Asn Asp Leu Leu Gly Arg Lys Leu Ser Ile
100 105 110

Met Phe Ser Ala Val Pro Ser Ala Ala Gly Tyr Ala Leu Met Ala Gly
115 120 125

 Ala His Gly Leu Trp Met Leu Leu Leu Gly Arg Thr Leu Thr Gly Phe
130 135 140

 Ala Gly Gly Leu Thr Ala Ala Cys Ile Pro Val Tyr Val Ser Glu Ile
145 150 155 160

 Ala Pro Pro Gly Val Arg Gly Ala Leu Gly Ala Thr Pro Gln Leu Met
165 170 175

 Ala Val Phe Gly Ser Leu Ser Leu Tyr Ala Leu Gly Leu Leu Leu Pro
180 185 190

Trp Arg Trp Leu Ala Val Ala Gly Glu Ala Pro Val Leu Ile Met Ile
195 200 205

Leu Leu Leu Ser Phe Met Pro Asn Ser Pro Arg Phe Leu Leu Leu Ser Arg

11
<table>
<thead>
<tr>
<th></th>
<th>210</th>
<th>215</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly Arg Asp Glu Glu Ala Leu Arg Ala Leu Ala Trp Leu Arg Gly Thr</td>
<td>210</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>Asp Val Asp Val His Trp Glu Phe Glu Gln Ile Gln Asp Asn Val Arg</td>
<td>225</td>
<td>230</td>
<td>235</td>
</tr>
<tr>
<td>Arg Gln Ser Ser Arg Val Ser Trp Ala Glu Ala Arg Ala Pro His Val</td>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>Cys Arg Pro Ile Thr Val Ala Leu Leu Met Arg Leu Leu Gln Gln Leu</td>
<td>260</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>Thr Gly Ile Thr Pro Ile Leu Val Tyr Leu Gln Ser Ile Phe Asp Ser</td>
<td>275</td>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>Thr Ala Val Leu Leu Pro Pro Lys Asp Ala Ala Ile Val Gly Ala</td>
<td>290</td>
<td>295</td>
<td>300</td>
</tr>
<tr>
<td>Val Arg Leu Leu Ser Val Leu Ile Ala Ala Leu Thr Met Asp Leu Ala</td>
<td>305</td>
<td>310</td>
<td>315</td>
</tr>
<tr>
<td>Gly Arg Lys Val Leu Leu Phe Val Ser Ala Ala Ile Met Phe Ala Ala</td>
<td>320</td>
<td>325</td>
<td>330</td>
</tr>
<tr>
<td>Asn Leu Thr Leu Gly Leu Tyr Ile His Phe Gly Pro Arg Pro Leu Ser</td>
<td>335</td>
<td>340</td>
<td>345</td>
</tr>
<tr>
<td>Pro Asn Ser Thr Ala Gly Leu Glu Ser Glu Ser Trp Gly Asp Leu Ala</td>
<td>350</td>
<td>355</td>
<td>360</td>
</tr>
<tr>
<td>Gln Pro Leu Ala Ala Pro Ala Gly Tyr Leu Thr Leu Val Pro Leu Leu</td>
<td>365</td>
<td>370</td>
<td>375</td>
</tr>
<tr>
<td>Ala Thr Met Leu Phe Ile Met Gly Tyr Ala Val Gly Trp Gly Pro Ile</td>
<td>380</td>
<td>385</td>
<td>390</td>
</tr>
<tr>
<td>Thr Trp Leu Leu Met Ser Glu Val Leu Pro Leu Arg Ala Arg Gly Val</td>
<td>395</td>
<td>390</td>
<td>395</td>
</tr>
<tr>
<td>Ala Ser Gly Leu Cys Val Leu Ala Ser Trp Leu Thr Ala Phe Val Leu</td>
<td>400</td>
<td>405</td>
<td>410</td>
</tr>
<tr>
<td>Thr Lys Ser Phe Leu Pro Val Val Ser Thr Phe Gly Leu Gln Val Pro</td>
<td>415</td>
<td>420</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>430</td>
<td>435</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>445</td>
<td>450</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>460</td>
<td>465</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Phe</td>
<td>Phe</td>
<td>Phe</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>465</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cys</th>
<th>Cys</th>
<th>Val</th>
<th>Pro</th>
<th>Glu</th>
<th>Thr</th>
<th>Lys</th>
<th>Gly</th>
<th>Arg</th>
<th>Ser</th>
<th>Leu</th>
<th>Glu</th>
<th>Gln</th>
<th>Ile</th>
<th>Glu</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td>485</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Phe</th>
<th>Phe</th>
<th>Arg</th>
<th>Met</th>
<th>Gly</th>
<th>Arg</th>
<th>Arg</th>
<th>Ser</th>
<th>Phe</th>
<th>Leu</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th><210></th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><211></td>
<td>477</td>
</tr>
<tr>
<td></td>
<td><212></td>
<td>PRT</td>
</tr>
<tr>
<td></td>
<td><213></td>
<td>Homo sapiens</td>
</tr>
</tbody>
</table>

| | <400> | 9 |

<table>
<thead>
<tr>
<th></th>
<th>Met</th>
<th>Thr</th>
<th>Pro</th>
<th>Glu</th>
<th>Asp</th>
<th>Pro</th>
<th>Glu</th>
<th>Thr</th>
<th>Gln</th>
<th>Pro</th>
<th>Leu</th>
<th>Leu</th>
<th>Gly</th>
<th>Pro</th>
<th>Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

| | Gly | Gly | Ser | Ala | Pro | Arg | Gly | Arg | Arg | Val | Phe | Leu | Ala | Ala | Phe | Ala |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 20 | | | | | | | | | | | | | | | |

<table>
<thead>
<tr>
<th></th>
<th>Ala</th>
<th>Ala</th>
<th>Leu</th>
<th>Gly</th>
<th>Pro</th>
<th>Leu</th>
<th>Ser</th>
<th>Phe</th>
<th>Gly</th>
<th>Phe</th>
<th>Ala</th>
<th>Leu</th>
<th>Gly</th>
<th>Tyr</th>
<th>Ser</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pro</th>
<th>Ala</th>
<th>Ile</th>
<th>Pro</th>
<th>Ser</th>
<th>Leu</th>
<th>Gln</th>
<th>Arg</th>
<th>Ala</th>
<th>Ala</th>
<th>Pro</th>
<th>Pro</th>
<th>Ala</th>
<th>Pro</th>
<th>Arg</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Asp</th>
<th>Asp</th>
<th>Ala</th>
<th>Ala</th>
<th>Ser</th>
<th>Trp</th>
<th>Phe</th>
<th>Gly</th>
<th>Ala</th>
<th>Val</th>
<th>Val</th>
<th>Thr</th>
<th>Leu</th>
<th>Gly</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ala</th>
<th>Ala</th>
<th>Gly</th>
<th>Val</th>
<th>Leu</th>
<th>Gly</th>
<th>Gly</th>
<th>Trp</th>
<th>Leu</th>
<th>Val</th>
<th>Asp</th>
<th>Arg</th>
<th>Ala</th>
<th>Gly</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lys</th>
<th>Leu</th>
<th>Ser</th>
<th>Leu</th>
<th>Leu</th>
<th>Cys</th>
<th>Ser</th>
<th>Val</th>
<th>Pro</th>
<th>Phe</th>
<th>Val</th>
<th>Ala</th>
<th>Gly</th>
<th>Phe</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Val</th>
<th>Ile</th>
<th>Thr</th>
<th>Ala</th>
<th>Ala</th>
<th>Gln</th>
<th>Asp</th>
<th>Val</th>
<th>Trp</th>
<th>Met</th>
<th>Leu</th>
<th>Leu</th>
<th>Gly</th>
<th>Gly</th>
<th>Arg</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Leu</th>
<th>Thr</th>
<th>Gly</th>
<th>Leu</th>
<th>Ala</th>
<th>Cys</th>
<th>Gly</th>
<th>Val</th>
<th>Ala</th>
<th>Ser</th>
<th>Leu</th>
<th>Val</th>
<th>Ala</th>
<th>Pro</th>
<th>Val</th>
<th>Tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ile</th>
<th>Ser</th>
<th>Glu</th>
<th>Ile</th>
<th>Ala</th>
<th>Tyr</th>
<th>Pro</th>
<th>Ala</th>
<th>Val</th>
<th>Arg</th>
<th>Gly</th>
<th>Leu</th>
<th>Leu</th>
<th>Gly</th>
<th>Ser</th>
<th>Cys</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Val</th>
<th>Glu</th>
<th>Leu</th>
<th>Met</th>
<th>Val</th>
<th>Val</th>
<th>Val</th>
<th>Gly</th>
<th>Ile</th>
<th>Leu</th>
<th>Leu</th>
<th>Ala</th>
<th>Tyr</th>
<th>Leu</th>
<th>Ala</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td></td>
</tr>
</tbody>
</table>

13
Trp Val Leu Glu Trp Arg Trp Leu Ala Val Leu Gly Cys Val Pro Pro
 180 185 190
Ser Leu Met Leu Leu Leu Met Cys Phe Met Pro Glu Thr Pro Arg Phe
 195 200 205
Leu Leu Thr Gln His Arg Arg Gln Glu Ala Met Ala Ala Leu Arg Phe
 210 215 220
Leu Trp Gly Ser Glu Gln Gly Trp Glu Asp Pro Pro Ile Gly Ala Glu
 225 230 235 240
Gln Ser Phe His Leu Ala Leu Leu Arg Gln Pro Gly Ile Tyr Lys Pro
 245 250 255
Phe Ile Ile Gly Val Ser Leu Met Ala Phe Gln Gln Leu Ser Gly Val
 260 265 270
Asn Ala Val Met Phe Tyr Ala Glu Thr Ile Phe Glu Gln Ala Lys Phe
 275 280 285
Lys Asp Ser Ser Leu Ala Ser Val Val Val Gly Val Ile Gln Val Leu
 290 295 300
Phe Thr Ala Val Ala Ala Val Met Asp Arg Ala Gly Arg Arg Leu
 305 310 315 320
Leu Leu Val Leu Gln Val Met Val Phe Ser Thr Ser Ala Phe
 325 330 335
Gly Ala Tyr Phe Lys Leu Thr Gln Gly Gly Pro Gly Asn Ser Ser His
 340 345 350
Val Ala Ile Ser Ala Pro Val Ser Ala Gln Pro Val Asp Ala Ser Val
 355 360 365
Gly Leu Ala Trp Leu Ala Val Gly Ser Met Cys Leu Phe Ile Ala Gly
 370 375 380
Phe Ala Val Gly Trp Gly Pro Ile Pro Trp Leu Leu Met Ser Glu Ile
 385 390 395 400
Phe Pro Leu His Val Lys Gly Val Ala Thr Gly Ile Cys Val Leu Thr
 405 410 415
Asn Trp Leu Met Ala Phe Leu Val Thr Lys Glu Phe Ser Ser Leu Met 420 425 430

Glu Val Leu Arg Pro Tyr Gly Ala Phe Trp Leu Ala Ser Ala Phe Cys 435 440 445

Ile Phe Ser Val Leu Phe Thr Leu Phe Cys Val Pro Glu Thr Lys Gly 450 455 460

Lys Thr Leu Glu Gln Ile Thr Ala His Phe Glu Gly Arg 465 470 475

<210> 10
<211> 477
<212> PRT
<213> Homo sapiens

<400> 10

Met Thr Pro Glu Asp Pro Glu Glu Thr Glu Pro Leu Leu Gly Pro Pro 1 5 10 15

Gly Gly Ser Ala Pro Arg Gly Arg Arg Val Phe Leu Ala Ala Phe Ala 20 25 30

Ala Ala Leu Gly Pro Leu Ser Phe Gly Phe Ala Leu Gly Tyr Ser Ser 35 40 45

Pro Ala Ile Pro Ser Leu Gln Arg Ala Ala Ala Pro Pro Ala Pro Arg Leu 50 55 60

Asp Asp Ala Ala Ala Ser Trp Phe Gly Ala Val Val Thr Leu Gly Ala 65 70 75 80

Ala Ala Gly Gly Val Leu Gly Gly Trp Leu Val Asp Arg Ala Gly Arg 85 90 95

Lys Leu Ser Leu Leu Leu Cys Ser Val Pro Phe Val Ala Gly Phe Ala 100 105 110

Val Ile Thr Ala Ala Gln Asp Val Trp Met Leu Leu Gly Gly Arg Leu 115 120 125

Leu Thr Gly Leu Ala Cys Gly Val Ala Ser Leu Val Ala Pro Val Tyr 130 135 140

Ile Ser Glu Ile Ala Tyr Pro Ala Val Arg Gly Leu Leu Gly Ser Cys 145 150 155 160

15
Val Gln Leu Met Val Val Val Gly Ile Leu Leu Ala Tyr Leu Ala Gly
165 170 175

Trp Val Leu Glu Trp Arg Trp Leu Ala Val Leu Gly Cys Val Pro Pro
180 185 190

Ser Leu Met Leu Leu Leu Leu Met Cys Phe Met Pro Glu Thr Pro Arg Phe
195 200 205

Leu Leu Thr Gln His Arg Arg Gln Glu Ala Met Ala Ala Leu Arg Phe
210 215 220

Leu Trp Gly Ser Glu Gln Gly Trp Glu Asp Pro Pro Ile Gly Ala Glu
225 230 235 240

Gln Ser Phe His Leu Ala Leu Leu Leu Arg Gln Pro Gly Ile Tyr Lys Pro
245 250 255

Phe Ile Ile Gly Val Ser Leu Met Ala Phe Gln Gln Leu Ser Gly Val
260 265 270

Asn Ala Val Met Phe Tyr Ala Glu Thr Ile Phe Glu Glu Ala Lys Phe
275 280 285

Lys Asp Ser Ser Leu Ala Ser Val Val Val Gly Val Ile Gln Val Leu
290 295 300

Phe Thr Ala Val Ala Ala Leu Ile Met Asp Arg Ala Gly Arg Arg Leu
305 310 315 320

Leu Leu Val Leu Ser Gly Val Val Met Val Phe Ser Thr Ser Ala Phe
325 330 335

Gly Ala Tyr Phe Lys Leu Thr Gln Gly Gly Pro Gly Asn Ser Ser His
340 345 350

Val Ala Ile Ser Ala Pro Val Ser Ala Gln Pro Val Asp Ala Ser Val
355 360 365

Gly Leu Ala Trp Leu Ala Val Gly Asn Met Cys Leu Phe Ile Ala Gly
370 375 380

Phe Ala Val Gly Trp Gly Pro Ile Pro Trp Leu Leu Met Ser Glu Ile
385 390 395 400

Phe Pro Leu His Val Lys Gly Val Ala Thr Gly Ile Cys Val Leu Thr

16
Asn Trp Leu Met Ala Phe Leu Val Thr Lys Glu Phe Ser Ser Leu Met

Glu Val Leu Arg Pro Tyr Gly Ala Phe Trp Leu Ala Ser Ala Phe Cys

Ile Phe Ser Val Leu Phe Thr Leu Phe Cys Val Pro Glu Ile Lys Gly

Lys Thr Leu Glu Gln Ile Thr Ala His Phe Glu Gly Arg
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : A61K 48/00, 49/00; A01N 63/00; C12Q 1/00
US CL : 424/ 9.1, 93.2; 435/4

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 424/ 9.1, 93.2; 435/4

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JOOST et al. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members Molecular Membrane Biology. 2001, Vol. 19, pages 247-256.</td>
<td>1-12, 16-17</td>
</tr>
<tr>
<td>A</td>
<td>US 5,942,398 A (TARTAGLIA et al) 24 August 1999 (24.08.1999), see whole document.</td>
<td>1-12, 16-17</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

- * Special categories of cited documents:
 - **A** document defining the general state of the art which is not considered to be of particular relevance
 - **B** document inadvertently or patent published on or after the international filing date
 - **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - **D** document referring to an oral disclosure, see, exhibition or other means
 - **F** document published prior to the international filing date but later than the priority date claimed

- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **&** document member of the same patent family

Date of the actual completion of the international search
12 September 2002 (12.09.2002)

Date of mailing of the international search report
05 November 2002

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703)305-3230

Authorized officer
Brian Whiteman
Telephone No. 703 308-0196

Form PCT/ISA/210 (second sheet) (July 1998)
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [] Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. [] Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. [] Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
Please See Continuation Sheet

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. [x] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-12 and 16-17

Remark on Protest

[] The additional search fees were accompanied by the applicant's protest.
[] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)
BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claim(s) 1-12, 16-17, drawn to a method of identifying a candidate p53 pathway modulating agent, said method comprising the steps of: a) providing an assay system comprising a purified SLC2A polypeptide or nucleic acid or functionally active fragment or derivative thereof; b) contacting the assay system with a test agent under conditions whereby, but for the presence of the test agent, the system provides a reference activity, and c) detecting a test agent-biased activity of the assay system.

Group II, claim(s) 13-15, drawn to a method for modulating a p53 pathway of a cell comprising contacting a cell defective in p53 with a candidate modulator that specifically binds to SLC2A polypeptide comprising an amino acid sequence set forth in either SEQ ID NOs: 7 or 10.

Group III, claim(s) 13-15, drawn to a method for modulating a p53 pathway of a cell comprising contacting a cell defective in p53 with a candidate modulator that specifically binds to SLC2A polypeptide comprising an amino acid sequence set forth in SEQ ID NO: 8.

Group IV, claim(s) 13-15, drawn to a method for modulating a p53 pathway of a cell comprising contacting a cell defective in p53 with a candidate modulator that specifically binds to SLC2A polypeptide comprising an amino acid sequence set forth in SEQ ID NO: 9.

Group V, claim(s) 1, 16, 18-19, drawn to a method of identifying a candidate p53 pathway modulating agent, said method comprising the steps of: a) providing an assay system comprising a purified SLC2A polypeptide or nucleic acid or functionally active fragment or derivative thereof; b) contacting the assay system with a test agent under conditions whereby, but for the presence of the test agent, the system provides a reference activity, and c) detecting a test agent-biased activity of the assay system, d) providing a secondary system comprising a non-human animal expressing SLC2A, e) contacting the secondary assay system with a test agent of b); and f) detecting an agent-biased activity of the secondary assay system.

Group VI, claim(s) 20-22, drawn to a method of modulating p53 pathway in a mammalian cell comprising contacting the cell with an agent that specifically binds a SLC2A polypeptide.

Group VII, claim(s) 20-22, drawn to a method of modulating p53 pathway in a mammalian cell comprising contacting the cell with an agent that specifically binds a SLC2A nucleic acid.

Group VIII, claim(s) 23-25, drawn to a method of diagnosing a disease in a patient. The inventions listed as Groups I-VIII do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The special technical feature of Group I is drawn to a method of identifying a candidate p53 pathway modulating agent, said method comprising the steps of: providing an assay system comprising a purified SLC2A polypeptide or nucleic acid, b) contacting the assay system with a test agent under conditions whereby, but for the presence of the test agent, the system provides a reference activity; and c) detecting a test agent biased activity and the reference activity identifies the test agent as a candidate p53 pathway modulating agent, the method of claim 1 further comprising providing a secondary system comprising cultured cells.

The special technical feature of Group II is drawn a method for modulating a p53 pathway of a cell comprising contacting a cell defective in p53 function with a candidate modulator that specifically binds to a SLC2A polypeptide comprising an amino acid sequence selected from either SEQ ID NO: 7 or 10.

The special technical feature of Group III is drawn a method for modulating a p53 pathway of a cell comprising contacting a cell defective in p53 function with a candidate modulator that specifically binds to a SLC2A polypeptide comprising an amino acid sequence set forth in SEQ ID NO: 8.
The special technical feature of Group IV is drawn a method for modulating a p53 pathway of a cell comprising contacting a cell defective in p53 function with a candidate modulator that specifically binds to a SLC2A polypeptide comprising an amino acid sequence set forth in SEQ ID NO: 9.

The special technical feature of Group V is drawn to a method of identifying a candidate p53 pathway modulating agent, said method comprising the steps of: providing an assay system comprising a purified SLC2A polypeptide or nucleic acid, b) contacting the assay system with a test agent under conditions whereby, but for the presence of the test agent, the system provides a reference activity; and c) detecting a test agent biased activity and the reference activity identifies the test agent as a candidate p53 pathway modulating agent, the method of claim further comprising providing a secondary system comprising a non-human animal expressing SCL2A.

The special technical feature of Group VI is drawn a method of modulating p53 pathway in a mammalian cell comprising contacting the cell with an agent that specifically binds a SLC2A polypeptide.

The special technical feature of Group VII is drawn a method of modulating p53 pathway in a mammalian cell comprising contacting the cell with an agent that specifically binds a SLC2A nucleic acid.

The special technical feature of Group VIII is drawn a method of diagnosing a disease in a patient.

Accordingly, Groups I-VIII are not so linked by the same or a corresponding technical feature as to form a single general inventive concept.

Continuation of B. FIELDS SEARCHED Item 3:
WEST 2.1, STN
search terms: SLC2A, assay, p53, GLUT, identifying, agent, compound, apoptosis assay, cell proliferation assay, angiogenesis assay, hypoxic assay