(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization /) -sady
(19) World Intellectual Property Organization /g5 I MIEVAN A1 0100 0 00 0 0 0
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
15 March 2012 (15.03.2012) PCT WO 2012/033554 Al
(51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
GO6F 15/16 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. L HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
PCT/US2011/039209 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NL
(22) International Filing Date: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
6 June 2011 (06.06.2011) SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(25) Filing Language: English
L.) (84) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of regional protection available): ARIPO (BW, GH,
(30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
12/879,594 10 September 2010 (10.09.2010) Us ZM, ZW), Furasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(71) Applicant (for all designated States except US): INTER- EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
NATIONAL BUSINESS MACHINES CORPORA- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
TION [US/US]; New Orchard Road, Armonk, New York SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
10504 (US). GW, ML, MR, NE, SN, TD, TG).
(72) Inventor; and Declarations under Rule 4.17:
(75) Inventor/Applicant (for US only): TANG, Chungiang . , .
[CN/US]; 19 Skyline Drive, Hawthorne, New York 10532 as to applicant's en{z.tlement to apply for and be granted
(US). a patent (Rule 4.17(i1))
) L I — as fto the applicant's entitlement to claim the priority of
(74) Agents: GROLZ, Edward W et al; Scu. y, Scott, Mur- the earlier application (Rule 4.17(iii))
phy & Presser, 400 Garden City Plaza, Suite 300, Garden
City, New York 11530 (US). Published:
(81) Designated States (unless otherwise indicated, for every with international search report (Art. 21(3))

kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

(54) Title: ON DEMAND VIRTUAL MACHINE IMAGE STREAMING

Virtual Machine

106

ODS Operation Flow

104

:‘ :Tt ‘; 4 TR
o T 3: read / prefetch
Compuje node R A 110 ~
: mt B 1 i
runningkvM g E i o [..c:g Network
108 o E] & 1o
S T=T e - ==z
i : o l,’) 1: copy tiny image metadata
1 N, ',r (2.3MB for 10GB image) Image Templates
on Storage Server]
Local Disk
Fig. 1

2012/033554 A1 I 00 O A0 OO0 0 A0

<

W

(57) Abstract: On demand image streaming (ODS), in one aspect, may perform both copy-on-write and copy-on-read to gradually
bring data on remote storage server to a host's local disk. Prefetching may be performed during the time the resources are other -
wise idle to bring in data from the remote storage server to the host's local disk. A new image format and the corresponding block
device driver for a hypervisor or the like may be also provided. ODS' image format may include a header and a bitmap that indi-
cates whether the data sectors are on local disk or remote storage server, and an image content, for instance, stored in raw format.

WO 2012/033554 PCT/US2011/039209

ON DEMAND VIRTUAL MACHINE IMAGE STREAMING

FIELD

[0001] The present application generally relates to computer systems and more particularly to an

on demand virtual machine image streaming, for example, for cloud environment or others.

BACKGROUND

[0002] In Cloud computing environment, the block device storage needed by a virtual machines
(VM) can be allocated from multiple sources: the host’s direct-attached storage (DAS, i.e., local
disk), network-attached storage (NAS, e.g., NFS), or storage area network (SAN). These options

offer different performance, reliability, and availability at different costs.

[0003] One currently known VM creation method copies over the entire VM file in raw format
(a byte-by-byte copy of physical block device’s content) from a read-only image template stored
at an NAS to a DAS local to a host. Only then, could the host’s VM be booted up and executed.
Such methodology incurs a long delay due to the time it takes to copy the entire image template

to the DAS until the new VM can be started and used.

[0004] Another known method only performs copy-on-write to the host’s DAS, i.e., only store
modified data on DAS while unmodified data are always read from the backing image. Using an
image template stored on NAS as the backing image may support a faster VM creation because it
need not copy the image template from NAS to DAS when creating a new VM. However,
repeatedly reading unmodified data from NAS may generate excessive network traffic and I/O
load on the share NAS server. This is the case especially in Cloud environment where many
VMs are involved. Such a method may require that the Cloud environment provide the network

and the NAS server that have sufficient capacity for handling such traffic and I/O load.

WO 2012/033554 PCT/US2011/039209

[0005] As another consideration, the existing hypervisors can migrate a VM only if its image file
is stored on NAS. Perhaps due to the inability of migrating a VM running on DAS, a Cloud
provider may simply notify the user.of an upcoming maintenance operation on a host and asks
the user to handle the consequences of losing the VM. This may be simple for the Cloud service

provider but may not be desirable for Cloud users.
BRIEF SUMMARY

[0006] A method and system for on demand virtual machine image streaming are provided. The
method, in one aspect, may include copying, from a storage server storing one or more image
templates (also referred to as backing images) corresponding respectively to one or more virtual
machines, an image metadata associated with a selected virtual machine to a host computer’s
local storage, wherein the host computer’s local storage initially does not include an image of the
selected virtual machine. The method may also include booting the selected virtual machine at
the host computer using the copied image metadata, allowing the selected virtual machine to read
data from the image template on the storage server needed to continue executing the selected
virtual machine at the host computer, if the needed data are not stored on the host computer’s
local storage. The method may further include copying the read data of the image template to
the host computer’s local storage from the storage server, if the read data of the image template
are not stored on the host computer’s local storage. Subsequent reads to the same data are done
from the host computer’s local storage. The method may also include setting a bit in a bitmap to
indicate that the read data are stored on the host computer’s local storage. The method may yet
further include utilizing resource idle time to prefetch data of the image template (backing
image) associated with the selected virtual machine from the storage server to the host

computer’s local storage.

[0007] A method for on demand virtual machine image streaming, in another aspect, may
include copying an image metadata associated with a virtual machine, from a source computer
storing an image corresponding to the virtual machine to a target computer, wherein the target

computer initially does not include the image of the virtual machine. The method may also

WO 2012/033554 PCT/US2011/039209

include booting the virtual machine at the target computer using the copied image metadata, and
allowing the virtual machine at the target computer to read data of the image on the source
computer needed to continue executing the virtual machine at the target computer, if the needed
data of the image are not stored on the target computer. The method may also include copying
the read data of the image from the source computer to the target computer, if the read data of the
image are not stored on the target computer wherein subsequent reads of the same data read the
copied data at the target computer. The method may further include setting a bit in a bit map to

indicate that the read data are stored on the target computer.

[0008] A system for on demand virtual machine image streaming, in one aspect, may include a
target computer operable to copy an image metadata associated with a virtual machine, from a
source computer storing an image template corresponding to the virtual machine, wherein the
target computer initially does not include the image template of the virtual machine, and a
storage device locally attached to the target computer. The target computer may be further
operable to boot the virtual machine at the target computer using the copied image metadata and
allow the virtual machine at the target computer to read data of the image template on the source
computer needed to continue executing the virtual machine at the target computer, if the needed
data of the image template are not stored on the target computer. The target computer may be
further operable to copy the read data of the image template from the source computer to the
storage device locally attached to the target computer, if the read data of the image template are
not stored on the target computer, wherein subsequent reads of the same data are done from the
storage device locally attached to the target computer. The target computer may be yet further

operable to set a bit in a bit map to indicate that the read data are stored on the target computer.

[0009] A computer readable storage medium storing a program of instructions executable by a

machine to perform one or more methods described herein also may be provided.

[0010] Further features as well as the structure and operation of various embodiments are
described in detail below with reference to the accompanying drawings. In the drawings, like

reference numbers indicate identical or functionally similar elements.

WO 2012/033554 PCT/US2011/039209

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0011] Fig. 1 is a diagram showing system components and operation flow performed by the on

demand virtual machine (VM) streaming of the present disclosure in one embodiment.

[0012] Fig. 2 shows a simplified view of an ODS image format in one embodiment of the

present disclosure.

[0013] Fig. 3 an ODS driver in KVM/QEMU stack in one embodiment of the present disclosure.

[0014] Fig. 4A and Fig. 4B show comparison of VM creation using RAW image and ODS

image in one embodiment of the present disclosure.

[0015] Fig. 5 illustrates system components and operation flow for live migration of a virtual

machine with local storage by the ODS of the present disclosure.

[0016] Fig. 6 is a flow diagram illustrating a method in one embodiment for creating a new VM.

[0017] Fig. 7 is a flow diagram illustrating a method in one embodiment for live migration of

VM.

[0018] Figs. 8A-8D show possible different use cases of different features of the ODS of the

present disclosure in one embodiment.

DETAILED DESCRIPTION

[0019] An on-demand image streaming (ODS) of virtual machine images in one embodiment of
the present disclosure may perform copy-on-write (CoW), copy-on-read (CoR), and prefetching.
Copy-on-read avoids repeatedly reading a data sector from a remote storage server (e.g.,

network-attached storage (NAS)), by saving a copy of the returned sector on computer host

WO 2012/033554 PCT/US2011/039209

machine’s local disk (e.g., direct-attached storage (DAS)) for use. Prefetching uses idle time to
copy from a remote storage server (e.g., NAS) to the local disk (e.g., DAS) the rest of the image
that has not been accessed by the virtual machine. During copy-on-write and copy-on-read, the
present disclosure in one embodiment provides for updating both data and metadata on disk,

where the metadata indicate that now the data are stored in the local disk (e.g., DAS) instead of

the remote storage server (e.g., NAS).

[0020] The ODS of the present disclosure in one embodiment may include a new image format
and the corresponding block device driver for QEMU. The ODS of the present disclosure in one
embodiment may be designed for virtual machines whose images are stored on host computer’s
direct-attached storage. The main use cases of the ODS may include (1) instant creation of a
virtual machine (VM) on direct-attached storage (e.g., DAS, i.e., local disk to host) without
waiting for the completion of copying the VM’s image template from remote storage server to
DAS, and (2) live VM migration between machines that use DAS to host VMs.

[0021] The ODS of the present disclosure in one embodiment may perform both copy-on-write
and copy-on-read to gradually bring data on remote storage server to a host’s local disk. Fora
Cloud environment with a large number of VMs, copy-on-read avoids repeatedly reading the
same data sector from remote storage server, which may generate excessive network traffic or
input/output (/O) load on storage server. The ODS of the present disclosure in one embodiment
may also perform prefetching. It finds idle time to copy not-yet-touched image data from remote
storage server to the host’s local disk. ODS’ image format in one embodiment may include (1) a
header, (2) a bitmap that indicates whether the data sectors are on local disk or remote storage

server, and (3) the image content stored in raw format.

[0022] Fig. 1 is a diagram showing system components and operation flow performed by the on
demand virtual machine (VM) streaming of the present disclosure in one embodiment. A storage
server 102 stores one or more image templates 104 of corresponding one or more virtual
machines. The storage server 102 is usually located remotely from a host computer 108 hosting

a virtual machine 106 and connected via a network 110. An example of the storage server 102

WO 2012/033554 PCT/US2011/039209

may be an NAS server. The storage server 102 may be shared (e.g., shared storage server
(SONAS) and may hold image templates exported through a network file system (NFS). An
example of a local disk 112 may be DAS. DAS may be considered as ephemeral storage while
NAS may be considered as ephemeral storage. Ephemeral storage can be used to store a VM’s
disk image that contains the root file system. When the VM terminates, data on ephemeral
storage are lost. Optionally, a user can attach persistent storage to a VM. Persistent storage
exists beyond the lifetime of a VM and, for example, can be used to store a relational database’s
persistent data. In a Cloud environment, ephemeral storage is provided by host’s local disks,

possibly without hardware RAID.

[0023] VMs may be created based on read-only image templates 104, which are stored on a
storage server 102 and accessible to all hosts (e.g., computer or machine that hosts or runs VMs).
A VM’s virtual disk 114 may be stored as a regular file 116 in the host’s file system. A host
computer (a compute node) 108 may include a hypervisor such as KVM. A hypervisor (or a
virtual machine monitor) is a software component that allows multiple operating systems to run
concurrently on a given machine (hardware or processor). Depending on the hypervisor,
multiple formats for virtual disks 114 may be supported. For instance, KVM/QEMU supports
multiple formats for virtual disks. KVM is a Linux kernel virtualization infrastructure. It uses
QEMU for I/O emulation. RAW format is a byte-by-byte copy of a physical block device’s
content stored in a regular file. QCOW?2 is another image format supported by QEMU. The
QCOW?2 image only stores modified data, while unmodified data are always read from the
backing image (i.e., storage server, e.g., NAS).

[0024] Initially, the local disk 112 of the host computer 108 does not contain an image template
for running a selected virtual machine 106. In response to receiving an instruction to start up or
boot a VM 106, the ODS of the present disclosure vin one embodiment copies from the storage
server 104, a small image metadata 118 to the local disk 112 as shown at 116. The image
metadata includes a header and a bitmap. The header identifies the image template and the
bitmap is used for identifying which portions (e.g., sectors) of the image template are stored

locally. In its initial state, the bitmap in one embodiment identifies the image template’s sectors

WO 2012/033554 PCT/US2011/039209

that are entirely filled with zeros. At runtime, there is no need to copy these zero-filled sectors
from the storage server 104 to the local disk 112. The ODS of the present disclosure in another
embodiment may omit the step of copying from the storage server 104, a small image metadata
118 to the local disk 112 as shown at 116. In this case, the metadata is created from scratch on
the local disk 112, with all bits in the bitmap set to indicate that all data sectors are not stored
Jocally. The formal embodiment has the advantage of not copying zero-filled sectors in the
image template. The VM 106 is booted using the image metadata 118 and as the VM 106
accesses and reads additional data 104 from the storage server 102 to use for its booting and
execution, that data is also copied or saved to the local disk 112 as local image 116. The bit or
bits in the bitmap are also updated to indicate that the corresponding data portions or sectors of
the image template 104 have been stored locally. The next time the VM 106 needs to access the
same data, the locally stored version is used rather than going through a network to access the

image template 104 on the storage server 102.

[0025] The run time operation of the ODS of the present disclosure may include an
asynchronous copy-on-read, copy-on-write, and prefetching image data across the network in the
background. For asynchronous copy-on-read, when the VM 106 reads a sector for the first time,
a hypervisor enhanced with the ODS of the present disclosure on the host machine 108 fetches
the sector from the remote storage server 102 across the network 110. In the background, the
hypervisor on the host computer 108 enhanced with the ODS of the present disclosure in one
embodiment stores the sector in its local ODS file 116 and sets the bitmap accordingly. The
bitmap is part of the ODS image and is stored on the local disk. Subsequent reads of the sector
always get data directly from the local ODS file 116 in one embodiment of the present
disclosure. For a direct write (copy-on-write) to the local disk, when the VM writes a sector, fhe
hypervisor on the host computer 108 enhanced with the ODS of the present disclosure in one
embodiment writes to the local ODS file 116 directly without the need of fetching 4KB data
from the storage server 102. The ODS of the present disclosure in one embodiment may also
perform prefetching of image data across the network in the background. Guided by a
configurable policy, as a background operation, the hypervisor on the host computer 108

enhanced with the ODS of the present disclosure in one embodiment may prefetch the entire raw

WO 2012/033554 PCT/US2011/039209

image data 104 across the network 110 in a streaming fashion and store the data in the local ODS
file 116. For example, a prefetching policy may dictate that the prefetching may start after the
VM 106 runs for 12 hours and at midnight when the workload on the network 110 and the
storage server 102 is light. As a result, no data is prefetched for a VM whose lifetime is shorter
than 12 hours according to this example policy. A system administrator or other users may set

the policy in one embodiment.

[0026] Fig. 2 shows a simplified view of an ODS image format in one embodiment of the
present disclosure. A virtual disk in the ODS format shown in Fig. 2 may be allocated for each
VM running on a host machine or computer. In one aspect, an ODS image is based on a read-
only backing image. The ODS header 202 stores a reference to the backing image 206 for
identifying the virtual machine image template. A backing image refers to a virtual machine’s
image template stored in persistent storage. The reference may be the filename of the virtual
machine image template, e.g., a string that stores the name of the raw image on which the ODS
image is based. Other references may be used to identify the virtual machine image template.
The ODS image format also include a bitmap 204, for instance, with one bit for each data sector
in the virtual disk image. The bit indicates whether the current content of the corresponding
sector is stored in the ODS image or in the backing image. For example, a bit is set to 1 if its
corresponding sector has already been copied from the raw image into the ODS image, or if the
sector has already been written by the VM locally. The size of the bitmap is proportional to the
size of the image template in one embodiment of the present disclosure. An ODS block device
driver is implemented, for example, in QEMU, which understands the ODS format and handles
disk input/output (I/O) requests issued by the VM. The space for image data 208 may be initially
empty; there is no data initially and no space need be reserved initially. The size of the space for
image data 208 may become the same as the template image from which the image data is

copied.

[0027] The ODS image format may also include a space for expanded disk data 210. A space
for expanded disk data 210 can be of arbitrary size and the size can be changed at any time in

order to support resizing of the image. There is no corresponding data in a template image for

WO 2012/033554 PCT/US2011/039209

this space 210. Further, no bitmap is needed that corresponds to the data in this space 210.
Thus, the size of the bitmap does not depend on the size of the space for expanded disk data 210;
ODS image resizing due to the space for expanded disk data 210 does not affect the bitmap. It is
a constant time operation to resize an ODS image to add “space for expanded disk data”,
regardless of the size of the “expanded disk data”. It only needs to change a “disk_size” field in
the “header” of an ODS image. The data in this space 210 may be used only locally. The space

for expanded disk data is optional.

[0028] To start a new VM, the host creates an ODS image on its local disk (e.g., DAS), whose
reference to a backing image points to the image template 206 stored in a storage server (e.g.,
NAS). For example, an ODS image that includes only the header and the bitmap may be copied
to the local disk (e.g., DAS). The VM may be then booted instantly without copying any image
data (template image) from the storage server (e.g., NAS) to the local disk (e.g., DAS), i.e., the
ODS image’s “space for disk data” section 208 initially is empty. As an example, for a 10
gigabyte (GB) original raw image, the bitmap may be only 2.5 megabytes (MB). Only the 2.5
MB bitmap plus the small header fields need be copied across the network when creating and
booting up a new VM. When handling a disk write request from the VM, QEMU’s ODS driver
may store the data in the ODS image 208 and update the bitmap 204 accordingly. This behavior

is referred to as “copy-on-write”.

[0029] When handling a disk read request from the VM, the ODS driver checks the bitmap 204
to determine if the requested data are in the ODS image. IF so, the data are read from the ODS
image and returned to the VM. If not, the data are read from the backing image 206 and returned
to the VM. While the VM continues to process the returned data, in the background, a copy of
the returned data is saved in the ODS image 208 and the bitmap 204 is updated accordingly so
that future read requests for the same data will get them from the ODS image on the local disk
(e.g., DAS) rather than from the backing image 208 on the storage server (e.g., NAS). This
behavior is referred to as “copy-on-read”. With this copy-on-read behavior, a data sector may be
read from the storage server (e.g., NAS) at most once, which helps avoid generating excessive

network traffic and I/O load on the storage server (e.g., NAS).

WO 2012/033554 PCT/US2011/039209

[0030] Copy-on-read gradually migrates the content of the backing image 206 from the storage
server (e.g., NAS) to the host computer’s local disk (e.g., DAS). ODS’s prefetching mechanism
may further leverages idle resources to accelerate data migration. Table 1 shows an example of

the detailed layout of an ODS image on disk in one embodiment of the present disclosure.

Table 1

Struct OdsImage Layout {

uint32 t magic;

uint32 t version;

uint64 t ods_header_size;

int64 t disk data_size;

char backing image[1024]

int64 t effective_backing image_size;
uint32 t all_data in ods_image;

uint32 t bitmap_unit;

uint32 t page_size;

... /* some other fields skipped */

char separate_disk data file[1024]
uint8 t padding_to_page_boundary_1[..];
uint8 t bitmap [...];

uint8_t padding_to_page boundary_2[..];
uint8 t disk_datal...];

}

[0031] The disk_data section may store disk content in the raw format. The content of the sector
with Logical Block Address LBA = n may be stored at disk_data[n*512], where 512 is the sector

size.

10

WO 2012/033554 PCT/US2011/039209

[0032] Fig. 3 an ODS driver in KVM/QEMU stack (an example hypervisor) in one embodiment
of the present disclosure. An operating system kernel 302 such as a Linux kernel may execute
on a hardware processor 304. The operating system kernel 302 may run a plurality of hypervisor
programs, e.g., KVM, a different vendor version of KVM, etc. Another example of a hypervisor
is Xen. A hypervisor program 306 (e.g., KVM) allows a virtual machine 310 to run on the
hardware processor 304. Furthermore, a hypervisor program 306 may support multiple virtual
image formats 308, e.g., raw, gcow2 and the ODS of the present disclosure. At startup of a
virtual machine 310, the virtual machine tries to read the first sector (e.g., 512 kilobytes (KB)) on
the corresponding virtual disk (the image formats 308 on a local disk). A hypervisor program
that is extended to function with the ODS of the present disclosure detects that the ODS image is
not present in the virtual disk (local disk) yet, and starts (executes) the ODS methodology of the
present disclosure. The ODS of the present disclosure streams over the needed data as described
herein, booting up the VM almost instantaneously in one embodiment. For implementation,
hypervisor user space program (e.g., gemu-kvm user space program) may be changed to add
ods.c and ods.h, without modifying other code. Particularly, no changes to the kernel of the

computer node (e.g., Linux) need be made.

[0033] Fig. 4A and Fig. 4B show comparison of VM creation using RAW image and ODS
image. The example shown creates three VMs concurrently. As shown in Fig. 4A, the VM
creation process using the RAW image format needs to wait until an entire image template is
copied from the storage server (e.g., NAS) to the local disk (e.g., DAS), and only then the VM is
booted. This is the case even if much of the copied image data is not needed during the VM
booting process and may even never be accessed throughout the VM’s lifetime. ODS creation
process of the present disclosure in one embodiment is shown in Fig. 4B. ODS boots the VM
instantly without any image data on the local disk (e.g., DAS), and copies data from the storage
server (e.g., NAS) to the host’s local disk (e.g., DAS) on demand as they are accessed by the
VM. In addition, ODS’ prefetching mechanism finds resource idle time to copy from the storage
server (e.g., NAS) to the local disk (e.g., DAS) the rest of the image or portions of the image that
has not been accessed by the VM. Prefetching may be conservative in that if ODS detects

contention on any resources (e.g., the storage server, the local disk, or the network), ODS may

11

WO 2012/033554 PCT/US2011/039209

pause prefetching temporarily and resume prefetching later when congestion disappears or
mitigates. In another embodiment, once image templates are copied to the local disk in their
entirety by the prefetching operation, the present disclosure may also cache popular image
templates on a host’s local disk (e.g., DAS) so that the cached image templates can be used to

create new VMs instantly, i.e., skipping the image copy step upon a cache hit.

[0034] The ODS of the present disclosure in one embodiment uses copy-on-read to bring data
sectors from the storage server (e.g., NAS) to a local storage (e.g., DAS) on demand as the data
are needed. Optionally, prefetching may be enabled in the ODS to use unused idle resources to
copy not-yet-touched data sectors from the storage server (e.g., Fig. 1 at 102) to the local storage
(e.g., Fig. 1 at 112). The ODS of the present disclosure in one embodiment may perform a
whole-image prefetching. In whole-image prefetching, the ODS of the present disclosure in one
embodiment uses idle resources to sequentially copy the entire image, for instance, from the first
data sector to the last data sector, from the storage server (e.g., NAS) to a local storage (e.g.,
DAS). Optionally, in locality-based prefetching, one embodiment may prefetch not-yet-accessed
data sectors that are closely related to those already accessed data sectors, instead of doing a
sequential whole-image prefetching, Optionally, in profile-based prefetching, one embodiment
may prefetch not-yet-accessed data sectors according to an image template profile that is
constructed offline. The profile may prioritize the prefetching order for data sectors based on
their importance, or identify data sectors that are usually accessed together, i.e., forming a
working set using the caching terminology. If a data sector state is already S, ods, that data
sector is skipped by the prefetching procedure. Once the prefetching is finished, it sets a flag,
e.g., all_data_in_ods_image flag, in the ODS image (e.g., see Table 1). Then all read and write
requests issued by the VM can operate on the ODS images disk_data section directly without
checking or updating the bitmap, because it is known a priori that data in the backing image will

not be needed again.

[0035] Because the data being prefetched are not needed urgently, prefetching tries to avoid
causing contention on any resource, including the processors (e.g., CPU), storage disks (e.g.,

DAS, NAS), and the network. The ODS driver monitors the response time 77 to read data from

12

WO 2012/033554 PCT/US2011/039209

a storage server (e.g., NAS) as well as the response time Tw to write data to a local disk (e.g.,
DAS). If Tr < Cr and Tw < Cw, the ODS driver continues prefetching, where Cr and Cw are two
constant thresholds, e.g., Cr=30 milliseconds (ms) and Cw=30 ms. If either response time is
above the threshold, it generates a random number to make a decision about whether to pause
prefetching. In one embodiment, with 50% probability it continues prefetching and with 50%
probability it pauses prefetching for a fixed period of time. If it decides to pause prefetching, it
will wake up later to probe whether the resource contention has disappeared by tentatively
copying a small amount of data from a storage server (e.g., NAS) to a local disk (e.g., DAS). It

monitors the response times, and decides whether to continue prefetching or go back to sleeping.

[0036] Due to the randomness in deciding whether to pause prefetching when the response time
is above the threshold, in one embodiment of the present disclosure, when multiple ODS
instances contend with each other, 50% of the actively-prefetching ODS instances pause
prefetching after each round of prefetching operation, until either all ODS instances stop

prefetching or the bottleneck resource is relieved of congestion.

[0037] To reduce noises, the response times are calculated as exponential moving averages.

T =0.97™ +0.1S

r_new_sample (1)

T = 0.9T" +0.18

w_new__sample (2)

[0038] Unlike resource management systems that submit multiple concurrent disk I/O requests,
prefetéhing in ODS of the present disclosure in one embodiment may be conservative in resource
consumption. For example, it keeps at most one outstanding read request to the backing image
on a storage server (e.g., NAS) and at most one outstanding write request to the ODS image on a
local disk (e.g., DAS). After it prefetches some data sectors from the storage server (e.g., NAS),
it immediately submits the next read request to the storage server (e.g., NAS) and concurrently

writes the previously returned data to the local disk (e.g., DAS). When the network latency is

13

WO 2012/033554 PCT/US2011/039209

low (as it is in data centers) and the system is free of contention, it can drive either the storage

server (e.g., NAS) or the local disk (e.g., DAS) to its full utilization.

[0039] A policy can be specified to control when prefetching starts. For instance, for the use
case of fast VM creation, prefetching can be configured to start 12 hours after the VM is created
so that no prefetching is performed for short-lived VMs. For the use of VM migration,
prefetching can be configured to start immediately after the VM is migrated so that the migration

of virtual disk image can finish earlier.

[0040] The ODS of the present disclosure in another embodiment may be used in live VM
migration. For instance, in a Cloud environment, the capability of live VM migration greatly
enhances the Cloud maintenance and operation. For example, over time it is unavoidable that a
host needs hardware maintenance (e.g., replacing an unreliable CPU fan) or software
maintenance (e.g., applying a security patch to the hypervisor; for KVM, the hypervisor is
Linux). Some maintenance operations require rebooting the host and may cause downtime for
VMs running on the host. With the capability of live VM migration, the affected VMs can be
migrated to other hosts before the maintenance operation starts so that there is no user-perceived

downtime.

[0041] To migrate a VM from a source host to a target host, all existing hypervisors (including
| KVM, Xen, and VMware) require the VM’s image file be stored on shared storage that is
accessible to both the source host and the target host. Even with DAS, it is still possible to make
the VM’s image file on the source host accessible to the target host (e.g., through NFS) so that
VM migration can sucéeed. However, in this case, all disk I/O requests generated by the VM on
the target host would be directed to and processed by the source host. A reboot of the source

host would make the image file unavailable and fail the VM running on the target host.

[0042] The ODS of the present disclosure in one embodiment supports live migration of a VM
running on a host’s local disk (e.g., DAS). Fig. 5 illustrates system components and operation

flow for live migration of a virtual machine with local storage by the ODS of the present

14

WO 2012/033554 PCT/US2011/039209

disclosure. A source host is a physical computer or machine and runs a VM 508 using the VM’s
ODS image 504 on its local disk 510. A target host 506 is another physical computer or machine
to which the VM 508 is being migrated. The VM 508 on the source host 502 is referred to as
source VM; The VM on the target host 506 is referred to as target VM 512 for the sake of
explanation. Before the migration starts, the source host 502 exports the VM’s image file 504 to
the target host 506 through NFS so that the image file is accessible to the target host through
network. The target host 506 creates on its local disk 514 (e.g., DAS) an ODS image 516 with a
header field of the ODS image’s metadata that references or points to the image file exported by
the source host as the backing image." The VM 508 then can be migrated instantly without
actually copying the VM’s image file 504 from the source host 502 to the target host 506. That
is, the target VM 512 may be booted on the target host 506 using only the ODS image 516 that
initially only includes a reference to a backing image. As the target VM 5 12 runs
uninterruptedly on the target host 506, the ODS of the present disclosure in one embodiment
allows the target VM 512 to bring in data through copy-on-read. In addition, the ODS of the
present disclosure in one embodiment uses prefetching to copy the rest of the image from the
source host 502 to the target host 506. Once prefetching finishes, the VM’s image file 504 is
completely copied to the target host 506 and the target VM 512 no longer depends on the source

host 502 in any way. The source host 502 then can be shut down for maintenance.

[0043] With the above-described ODS procedures for virtual machine live migration with local
storage, a VM may be migrated instantly without moving data on local storage. A migrated VM
(target VM) may continue to run at the new location, and data may be copied on demand as the
target VM needs it. The target VM-generated writes are stored locally. Idle time for resources is
utilized to prefetch data left behind on fhe original host (source host). Once all data are

prefetched from the source host to the target host, migration fully completes.

[0044] Fig. 6 is a flow diagram illustrating an on demand virtual machine image streaming
method in one embodiment for creating a new VM. At 602, the method may include copying,
from a storage server storing one or more image templates corresponding respectively to one or

more virtual machines, an image metadata associated with a selected virtual machine to a host

15

WO 2012/033554 PCT/US2011/039209

computer’s local storage. The host computer’s local storage initially does not include an image
template of the selected virtual machine. At 604, the method may include booting the selected
virtual machine at the host computer using the copied image metadata. At 606, the method may
include allowing the selected virtual machine to read data from the image template on the storage
server needed to continue executing the selected virtual machine at the host computer, if the
needed data are not stored on the host computer’s local storage. At 608, the method may include
copying the read data of the image template to the host computer’s local storage from the storage
server, if the read data of the image template are not stored on the host computer’s local storage.
Subsequent reads to the same data are done from the host computer’s local storage. At 610, the
method may include setting a bit in a bitmap to indicate that the read data are stored on the host
computer’s local storage. At 612, data writes to the image template by the selected virtual
machine is written to the host computer’s local storage. At 614, resource idle time may be
utilized to prefetch data of the image template associated with the selected virtual machine from
the storage server to the host computer’s local storage. In another aspect, response times may be
monitored during image prefetching and prefetching may be temporarily paused if a long

response time is detected, for example, if a response time exceeds a threshold value.

[0045] In one aspect, the image metadata that is copied from the storage server initially includes
a reference to the image template. The image metadata may be augmented at the host
computer’s local storage with a bitmap that maps a bit to a corresponding sector of the image
template. In another aspect, the image metadata copied from the storage server may also include
this bitmap in addition to the reference to the image template. The corresponding bit in the bit
map for the data needed to run the virtual machine is checked to determine whether the data of
the image template needed to run the selected virtual mé.chine is stored on the host computer’s
local storage. Depending on the bit in the bit map, the selected virtual machine reads the image
template on the storage server or copied image template on the host computer’s local storage.
The storage server and the host computer may be computers in a Cloud environment, where for

example, a plurality of virtual machines is installed for clients to the Cloud.

16

WO 2012/033554 PCT/US2011/039209

[0046] Fig. 7 is a flow diagram illustrating a method for on demand virtual machine streaming,
for instance, for live migration of VM. At 702, the method may include copying an image
metadata associated with a virtual machine, from a source computer storing an image template
corresponding to the virtual machine to a target computer. The target computer initially does not
include the image template of the virtual machine. At 704, the method may include booting the
virtual machine at the target computer using the copied image metadata. At 706, the method
may include allowing the virtual machine at the target computer to read data of the image
template on the source computer needed to continue executing the virtual machine at the target
computer, if the needed data of the image template are not stored on the target computer. At
708, the method may include copying the read data of the image template from the source
computer to the target computer, if the read data of the image template are not stored on the
target computer. The subsequent reads of the same data are done from the copied data at the
target computer. At 710, the method may include setting a bit in a bit map to indicate that the
read data are stored on the target computer. At 712, the virtual machine data writes are written to
the target computer. At 714, resource idle time may be utilized to prefetch data of the image

template associated with the virtual machine from the source computer to the target computer.

[0047] In one aspect, the image metadata that is copied from the source computer initially
includes a reference to the image template. The image metadata may be augmented at the target
computer with a bitmap that maps a bit to a corresponding sector of the image template. In
another aspect, the image metadata copied from the source computer may also include this
bitmap in addition to the reference to the image template. The corresponding bit in the bit map
for the data needed to run the virtual machine is checked to determine whether the data of the
image template needed to run the virtual machine is stored on the target éomputer. Depending
on the bit in the bit map, the virtual machine reads the image template on the source computer or
copied image template on the target computer. The method shown in Fig. 7 may be performed
for live migration of the virtual machine directly from the source computer to the target
computer without needing to utilize a separate storage server. The VM can be migrated instantly
without migrating its image file. As the VM runs uninterruptedly on the target host, the ODS of

the present disclosure in one embodiment may use copy-on-read and prefetching to gradually

17

WO 2012/033554 PCT/US2011/039209

migrate the image file from the source host to the target host. Once prefetching finishes, the VM

no longer needs to depend on the source host, which can be shut down for maintenance.

[0048] In one aspect, the features of ODS (copy-on-write, copy-on-read, and prefetching) can be
enabled individually to support different use cases. Figs. 8A-8D show possible different use
cases of different features of the ODS of the present disclosure in one embodiment. In Fig. 8A,
only copy-on-write is enabled in ODS. This most basic configuration can be used as a
replacement of QEMU’s existing COW image format while providing the following benefits: 1)
ODS respects QEMU’s cache=none option and cache =writethrough option and guarantees data
integrity in the event of power failure. 2) ODS’ bitmap section and disk data section are properly
aligned on page boundary and provides superior performance. In the setup of Fig. 8A, which
may be a Cloud as well as a non-Cloud environment, the storage options for the ODS image and
the image template are flexible. Both can be stored on host’s local disk(s) (e.g., DAS), both can
be stored on a storage server (e.g., NAS), or one is stored on host’s local disk(s) (e.g., DAS)

while the other is stored on a storage server (e.g., NAS).

[0049] The setups in Figs. 8B and 8C may be suitable for a Cloud environment, where the image
template is stored on a storage server (e.g., NAS) and the ODS image is stored on a host
computer’s local disk (e.g., DAS). They support fast VM creation and can gradually migrate the
content of the image template into the ODS image to avoid excessive load on network and the

storage server NAS.

[0050] Fig. 8D shows a setup, where the image template is stored on a storage server (e.g., NAS)
and the three ODS images are all stored on a host computer’s local storage (e.g., DAS). This
setup allows multiple VMs to use separate copy-on-write ODS images but share a single read-
only copy of the “ODS (CoR-+prefetch)” image, which provides on the local storage (e.g., DAS)
a mirror of the image template’s content. This setup avoids copying the image template’s
content from a remote network storage server (e.g., NAS) to a host computer’s local storage

(e.g., DAS) multiple times, each time for a different VM.

18

WO 2012/033554 PCT/US2011/039209

[0051] The present disclosure also provides for data integrity. Suppose the following events
happen in a sequence: (1) the VM submits a disk write request; (2) the ODS driver (after some
processing) acknowledges the successful completion of the write operation; and (3) the host
immediately loses power. After power recovers, the VM’s next read to the same sector should

get the content written before the failure.

[0052] Table 1 above shows an example layout of an ODS image on disk in one embodiment of
the present disclosure. The ODS of the present disclosure in one embodiment preserves data
integrity regardless of when the power failure happens. For example, when performing copy-on-
write and copy-on-read, the ODS of the present disclosure in one embodiment may update disk
data and bitmap separately. A power failure between the two updates still would not

compromise data integrity in the present disclosure in one embodiment as explained below.

[0053] A bit in the bitmap can be in one of two states, Siy_gacking=0 OF Sin_ods=1, Which means the
corresponding sector’s content is in the backing image or the ODS image, respectively. A
sector’s state can only change from Sy _sacking 10 Sin_ods, and can never change from S;s_oas to
Sin_backing. There are two scenarios that can change a sector’s state from S, packing 10 Sin_ods: COPY-

on-write and copy-on-read.

[0054] Copy-on-write happens when ODS handles a disk write request from the VM. For
brevity, the discussion below assumes that the write request spans over two disk sectors (d1, d2).
Let bit(dl) and bit(d2) denote the states of dI and d2 in the bitmap, respectively. Further assume
that, before the write operation, bit(dl) = Sin_backing and bit(d2) = Sin_packing. Other cases with
more data sectors involved and different initial states can be analyzed in a way similar to the

example below.

[0055] Handling the write request in ODS may involves the following sequence of operations:
» ODS-W1I: the VM issues a write request for two sectors (dI, d2).
« ODS-W?2: the ODS driver stores d! in the ODS image’s disk_data section on disk.
« ODS-W3: the ODS driver stores d2 in the ODS image’s disk_data section on disk.

19

WO 2012/033554 PCT/US2011/039209

« ODS-W4: the ODS driver updates bit(dl) from Si_packing t0 Sin_ods-
« ODS-W35: the ODS driver updates bit(d2) from Si_packing 10 Sin_ods-
« ODS-W6: the ODS driver acknowledges to the VM the completion of the write

operation.

[0056] Note that bir(d]) and bit(d2) may belong to the same sector, and hence ODS-W4 and
ODS-W5 may be performed in a single update. Considering a worst-case analysis, separate

ODS-W4 and ODS-WS5 for a worst-case analysis.

[0057] The host may fail after any step above. The present disclosure shows that ODS preserves
data integrity regardless of the failures. In particular, ODS introduces no more complication than
what may happen to the RAW image format. That is, data integrity in ODS is at least as good as

data integrity in the RAW image format.

[0058] If the VM uses the RAW image format, handling this disk write involves the following
sequence of operations:

« RAW-WI: the VM issues a write request for two sectors (d1, d2).

o RAW-W2: the RAW driver stores dI on disk.

« RAW-W3: the RAW driver stores d2 on disk.

o RAW-W4: the ODS driver acknowledges to the VM the completion of the write

operation.

[0059] Before the VM’s write operation, the “old” contents of d! and d2 are stored in the
backing image. After the VM’s write operation, their “new” contents are stored in the ODS
image. Now consider the failure cases with ODS one by one:

« Fail after ODS-WI. In this case, ODS’ behavior is equivalent to having a power failure
on the RAW image format after RAW-W1. The effect is that the write operation is simply lost,
which is an allowed, correct behavior, since the driver did not yet acknowledge to the VM the

completion of the write.

20

WO 2012/033554 PCT/US2011/039209

« Fail after ODS-W2. In this case, dI is written to the ODS image, but bit(dl) is not
updated and remains Sin packing. After power recovers, the VM’s next read to d gets its content
from the backing image, as if the new dI content in the ODS image does not
exist. This behavior is correct and is equivalent to having a power failure on the RAW image
format after RAW-WI. The effect is that the write operation is simply lost, which is an allowed,
correct behavior, since the driver did not yet acknowledge to the VM the completion of the write.

« Fail after ODS-W3. Similar to the one above, after power recovers, the VM’s next read
to dI or d2 gets the old content from the backing image, as if the new content in the ODS image
does not exist. This behavior is correct and is equivalent to having
a power failure on the RAW image format after RAW-W1.

« Fail after ODS-W4. After power recovers, the VM’s next read to dI gets its new content
from the ODS image, whereas the VM’s next read to d2 gets its old content from the backing
image (because bit(d]) = Sin_ous and bit(d2) = Sin_backing)- This behavior
is correct and is equivalent to having a power failure on the RAW image format after RAW-W2.

« Fail after ODS-W5. After power recovers, the VM’s next read to dI or d2 gets the new
content from the ODS image (because bit(dl) = Si_oas and bit(d2) = Sin_ods). This behavior is
correct and is equivalent to having a power failure on the RAW image format after RAW-W3,
i.e., the write operation is completed but not yet acknowledged.

« Fail after ODS-W6. After power recovers, the VM’s next read to dI or d2 gets the new
' content from the ODS image (because bit(d1) = Sin_oas and bit(d2) = Siy_ods). This behavior is

correct and is equivalent to having a power failure on the RAW image format after RAW-W4.

[0060] The analysis above proves that the ODS of the present disclosure in one embodiment may
preserve data integrity during copy-on-write. Following a similar process, it can be proven that
the ODS of the present disclosure in one embodiment also may preserve data integrity during
copy-on-read, by following the correct update sequence—first updating the ODS image’s disk

data section and then updating the bitmap section.

[0061] An implementation of the ODS of the present disclosure in one embodiment may reduce

disk input/output (/O) overhead. For instance, compared with the RAW image format, a naive

21

WO 2012/033554 PCT/US2011/039209

implementation of ODS may incur overhead on reading and writing the bitmap. In the worst
case, a set of sequential write requests from the VM may generate the following

write sequence on the host’s file system: write s1, write bif(s]), write 52, write bit(s2), write s3,
write bit(s3), - - -, and so forth. Here s/, 52, and 53 are sectors with consecutive logical block
address, and bit(si) is the corresponding bit of si in the bitmap. In this example, the disk head
may move back and forth between the ODS image’s disk data section and bitmap section. A
technique is presented in one embodiment of the present disclosure to eliminate in most common

cases the overhead associated with updating the bitmap, while not compromising data integrity.

[0062] In a Cloud environment, the size of a VM’s image template is typically much smaller
than the ephemeral storage space allocated for the VM. For example, 10GB is

the maximum image template size allowed for a known VM running on DAS, while the
ephemeral storage space provided to that VM is 170GB or more. The additional ephemeral
storage space can be provided to the VM either by expanding the VM’s root disk based on the
image template, or by attaching additional virtual disks to the VM. Another known Cloud
targets enterprise customers and provides more flexible configurations. It allows a VM to use a

root disk much larger than 10GB.

[0063] Below is the process of preparing a Linux image template in a Cloud. The image
template uses the RAW image format. Suppose the initial image template size is 50GB. Itis
first installed with the needed software and fully tested. Then the ext3 file system in the image
template is resized to its minimum size (e.g., from 50GB down to 12GB) by using the resize2fs
tool. The image template is finally truncated to fit the minimum file system size (e.g., from
50GB to 12GB). The resizing and truncating step gets rid of garbage data generated during
installation and testing, and produces an image template of a minimum size. A small image
template helps reduce the amount of data transferred from NAS to DAS when create new VMs

based on the image template.

[0064] Following the example above, the 12GB image template can be used to create VMs

whose root disk sizes may vary, depending on how much the user pays. For example, the

22

WO 2012/033554 PCT/US2011/039209

following QEMU command creates a 100GB ODS image on DAS, based on the 12GB image
template stored on NFS.

gemu-img create -f ods -b /nfs/template.raw vm.ods 100G

[0065] After using fdisk to expand the virtual disks partition size from 12GB to 100GB, resize2fs
can be used to expand the ext3 file system in the ODS image from 12GB to 100GB, which will
become the VM’s large root file system. Note that using resize2fs to expand a file system is a

quick operation because it need not relocate blocks.

[0066] In the ODS image format shown in Table 1, disk data size is the size of the ODS image
perceived by the VM, and effective backing image size is the size of the backing image. For the

example above, disk data size=100G and effective backing image size=12G.

[0067] Fig. 2 illustrates the concept that the ODS image can be larger than the backing image.
For a data sector whose logical block address (LBA) is beyond the size of the backing image, its
content cannot reside in the backing image and can only reside in the ODS image. Since the
sector’s state is known a priori, there is no need to capture the sector’s state in the ODS image’s
bitmap section. As a result, the size of the bitmap is proportional to the size of the backing
image, rather than the size of the ODS image.

[0068] For a 2TB ODS image pointing to a 10GB backing image, the size of the bitmap is only
2.5MB. Because of its small size, the entire bitmap can be easily cached in memory, which
avoids the overhead of repeatedly reading the bitmap from disk. In a known Cloud, 10GB is the
maximum image template size allowed for a VM running on DAS. When handling a read
request from the VM for a sector S whose logical block address (LBA) is beyond the size of the
backing image, the ODS driver knows that, simply based on the LBA, this sector cannot be in the
backing image and hence reads it from the ODS image’s disk data section. When handling a
write request from the VM for the sector S, the ODS driver directly writes the data to the disk

23

WO 2012/033554 PCT/US2011/039209

data section and there is no need to update the bitmap (actually, there is even no corresponding

bits for the sector S in the bitmap).

[0069] Because the image template is reduced to its minimum size by resize2fs and the data in
the image template are mostly read-only by its template nature (e.g., program executable), most
disk write requests from the VM target sectors are those whose addresses are beyond the size of
the backing image. For these write requests, the ODS driver writes the data to a local disk (e.g.,
DAS) directly and there is no overhead in updating the bitmap.

[0070] Below one optimization for sparse image templates where many data sectors are filled
with zeros is described in one embodiment of the present disclosure. For a RAW image template
image.raw, the gemu-img tool may be used to create an ODS image template image. ods whose
backing image is image.raw. The size of image.ods is identical to the size of image.raw. When
creating image.ods, gemu-img can search for zero-filled sectors S and set their states in the
bitmap 10 Sin_ods. The states for non-zero sectors are set to Sin_backing. At runtime, when the VM
reads the sector S whose state is Si;_ods, the ODS driver reads from the ODS image’s disk data
section and gets a zero-filled sector returned, which is the desired behavior. This happens
because the ODS image is stored on the host’s file system as a sparse file, and the sector S has

never been written before, and hence the host operating system (OS) returns a zero-filled sector.

[0071] The ODS image template image.ods is stored on NAS together with image.raw. When
creating a new VM on a host, it copies image.ods from a storage server (e.g., NAS) to a local
storage (e.g., DAS), and resizes image.ods to the larger target size. Copying image.ods is fast
bécause its disk data section is empty and hence the size of image.ods is small. Specifically, for
a 10GB image.raw, image.ods is only about 2.5MB. Resizing image.ods into a larger virtual
disk only may include updating the disk_data_size field in Table 1 to a larger value. When the
VM boots, the ODS driver will automatically

truncate the disk data section to size indicated by the disk_ data_ size field.

24

WO 2012/033554 PCT/US2011/039209

[0072] When a VM boots, the ODS driver loads the ODS images bitmap section from disk into
memory, which contains data sectors initial states. In the present disclosure, these two copies of
bitmap are referred to as on-disk state and in-memory state, respectively. At runtime, the ODS
driver always keeps the in-memory state up-to-date, but may lazily update the on-disk state in
order to reduce disk I/O overhead. However, it is guaranteed that, in the event of power failure,

stale information in the on-disk state would never compromise data integrity.

[0073] When the VM reads a sector whose in-memory state is Si,_ods, the ODS drivers reads the
sector from the ODS image and returns it to the VM. No additional overhead is involved. When
the VM reads a sector whose in-memory state is Si,_packing, the ODS driver reads the sector from
the backing image and returns it to the VM. After the VM continues to process the returned data,
in the background (i.e., asynchronously), the ODS driver writes the sector’s content into the ODS
images disk data section and updates the sector’s in-memory state from Si_packing 10 Sin_ods-
However, the sector’s on-disk state is not updated and remains Si_acking, which reduces disk I/O
overhead. The “dirty” bits of the in-memory state can be flushed to update the on-disk state
lazily, either periodically (e.g., once every hour) or when the VM shuts down. Ifthe host loses
power before the on-disk state is updated, after power recovers, the ODS driver re-loads the stale
on-disk state into memory, and the sector’s state is observed as Si_packing- When handling the
VMs next read to this sector, the ODS driver repeats the copy-on-read process again: reading the
sector from the backing image, returning it to the VM, asynchronously writing it to the ODS
image, and updating the in-memory state from Si_packing t0 Sin_ods- Without immediately updating
the on-disk state during copy-on-write, the VM still gets the correct sector content after recovery,

although it may ignore the sector’s content already copied to the ODS image.

[0074] When the VM writes to a sector, the ODS drivers checks the on-disk state (as opposed to
the in-memory state) to determine the appropriate action. If the sector’s on-disk state is Si_ods
(the sector’s in-memory state is also Siy_ods), the ODS driver writes the sector to the ODS image
directly and acknowledge to the VM that the write operation has completed. No bitmap updating
overhead is involved. If the sector’s on-disk state is Si, paciing (the sector’s in-memory state can

be either Sin_packing OF Sin_ods)» the ODS driver writes the

25

WO 2012/033554 PCT/US2011/039209

sector to the ODS image, updates the on-disk state to S, ous (2lso updates the in-memory state to
Sin_oas if it currently is Sin_packing)s and acknowledges to the VM the completion of the write

operation. In this case, it may incur the overhead of updating the on-disk state.

[0075] In another embodiment, asynchronous implementation may be provided that reduce
memory overhead. All block device drivers in QEMU implement the BlockDriver interface,
which provides APIs to do both synchronous I/O and asynchronous I/0O. The former only allows
the block device to handle one outstanding I/O request at a time. The latter allows the block
device to handle multiple outstanding I/O requests concurrently, by having the block device

driver notify the VM of the completion of I/O operations through callback functions.

[0076] The ODS of the present disclosure in one embodiment implements the asynchronous
interface. In some corner cases, doing copy-on-write and copy-on-read on the same data sector
is handled carefully. Suppose the VM submits a read request Ry for a data sector d whose in-
memory state is Sin_packing, and then submits a write request W, for the same sector d before the
read finishes. When handling this, suppose the ODS driver finishes the operations in the
following sequence:

1. Read the sector’s old content from the backing image, as part of the copy-on-read
operation for Ry.

2. Write the sector’s new content to the ODS image, as part of the copy-on-write
operation for W.

3. Write the sector’s old content to the ODS image, as part of the copy-on-read operation
for R,.

[0077] A race condition may occur when doing copy-on-write and copy-on-read for the same
data sector. What is left in the ODS image is the sectors old content, which is an incorrect
outcome. To properly handle this and other similar race conditions, before performing copy-on-
read for a data sector d, the ODS driver checks whether there is one outstanding copy-on-write
operation for d. If so, the copy-on-read operation is abandoned. Similarly, before performing

copy-on-write for a data sector d, the ODS driver checks whether these is one outstanding copy-

26

WO 2012/033554 PCT/US2011/039209

on-read operation for d. If so, the copy-on-write operation is delayed until the outstanding copy-

on-read operation finishes, which ensures that the new content is left on the disk.

[0078] The ODS of the present disclosure in one embodiment may perform the following
optimizations:

« The size of an ODS image’s bitmap section is proportional to the size of the backing
image rather than the size of the ODS image. For a 2TB ODS image pointing to a 10GB backing
image, the size of the bitmap is only 2.5MB. Note that 10GB is the
maximum image template size allowed for a known Cloud’s VM running on DAS.

e Because of the small size of the bitmap, a complete copy of the bitmap can be kept in
memory to avoid overhead in repeatedly reading the on-disk bitmap.

* Once prefetching finishes, an ODS image works almost identical to a RAW image.

Disk read or write requests issued by the VM are executed against the ODS image’s disk data
section directly, without any overhead in checking the in-memory bitmap or updating the on-disk
bitmap.

* When handling a VM’s read or write request for a sector whose logical block address is
beyond the size of the backing image, the ODS driver reads or writes the ODS image’s disk data
section directly, without any overhead in checking the in-memory bitmap or updating the on-disk
bitmap.

e When handling a VM’s read request for a sector whose in-memory state is already
Sin_ods, the sector is read from the ODS image directly, without overhead in updating the on-disk
bitmap.

* A copy-on-read operation only updates the in memory bitmap and does not immediately
update the on-disk bitmap. |

* A copy-on-read operation is not on the critical path of returning the data to the VM.

The data are saved to the ODS image asynchronously in the background, while the VM
continues to process the data read from the backing image.

« When handling a VM’s write request for a sector whose on-disk state is already Si,_oas,

there is no overhead in updating the on-disk bitmap.

27

WO 2012/033554 PCT/US2011/039209

« If a sector in the backing image is completely filled with zeros, its initial state in the
ODS image’s on-disk bitmap can be set to Si_oas S0 that reading or writing the sector is treated as
if the sector is already in the ODS image and there is no overhead in updating the on-disk
bitmap.

« Resizing an ODS image is a constant time operation that only needs to update the

disk_data_size field in the layout shown in Table 1.

[0079] The ideas of the ODS of the present disclosure in one embodiment include copy-on-write,
copy-on-read, and prefetching. Theoretically, it may be possible to implement copy-on-read and
prefetching in existing copy-on-write formats already supported by QEMU (e.g., CoW and
QCOW?2), which avoids the complication of introducing a new image format. The new ODS
image format of the present disclosure in one embodiment achieves high performance in the
most common cases. The COW format is almost identical to the ODS format. It also includes a
header, a bitmap section, and a disk data section. The current implementation of the COW driver
ignores QEMU’s cache=none option and cache=writethrough option. As aresult, it may
corrupt disk data in the event of power failure. This implementation issue potentially can be
fixed, but the COW format itself has a fundamental limitation—its disk data section is not
aligned on 4KB page boundary. Even if VMs read or write request is aligned on 4KB page
boundary of the virtual disk, after the request is translated to operate on the COW images disk
data section, it may no longer be aligned on the host file systems 4KB page boundary. Because
the hosts page cache operates on 4KB pages, a misaligned request may cause multiple disk I/Os
on the host. For example, a well-aligned 4KB write issued by the VM may be translated into a
misaligned 4KB write in the host, which causes the inefficient read-modify-write behavior, i.e.,
reading 8KB, modifying 4KB, and writing back 8KB. The ODS foﬁnat of the present disclosure
in one embodiment addresses this problem by adding the padding sections shown in Table 1 to
ensure that the bitmap section and the disk _data section are properly aligned on 4KB page
boundary. |

[0080] QCOW?2 is the “native format of QEMU. It significantly differs from COW and ODS in

that, instead of leveraging the host file systems support for sparse files, it implements its own

28

WO 2012/033554 PCT/US2011/039209

two-level index to support sparse image files. The index maps a logical block address into a
location in the image file where the blocks content is actually stored. This address mapping

flexibility allows QCOW?2 to provide advanced features such as snapshot and compression.

[0081] On the other hand, QCOW2s two-level index also incurs overhead, especially additional
disk seeks to read or update the index. Compared with the optimizations in ODS, a potential
implementation of QCOW?2 enhanced with copy-on-read and prefetching has the following
limitations:

» The size of the index is proportional to the size of the (large) QCOW2 image rather than
the size of the (small) backing image. As a result, the index may not be fully cached in memory.

» Even after prefetching finishes, it still needs to read the on-disk index in order to handle
a read request issued by the VM, which means extra disk /O operations.v

» Even after prefetching finishes, it still needs to read (and potentially write) the on-disk
index in order to handle a write request issued by the VM.

« When handling a VM’s read or write request for a sector whose logical block address is
beyond the size of the backing image, it still needs to read or write the index.

« Copy-on-read and prefetching operations are likely to update the on-disk index more

frequently because it cannot keep the entire index in memory.

[0082] The optimizations in the ODS of the present disclosure eliminate the overhead in
updating the on-disk bitmap in most common cases. By contrast, the same level of optimization
cannot be achieved with QCOW2s two-level index. Since the advanced features of QCOW2
(i.e., snapshot, compression, and encryption) are not used in Cloud, the present disclosure in one
embodiment may opt for a simpler image format that provides better performance, i:e., ODS
format. QCOW2’s snapshot capability has the best potential to be useful to Cloud. A Cloud
typically provides two snapshot-like functions: 1) reliable backup, and 2) bundling an image like,
i.e., taking a snapshot of the root file system, converting it into an image template, and
registering the image template with Cloud for future reuse. However, QCOW2’s snapshot is
stored in the QCOW2 image on DAS and hence is unreliable as a backup mechanism and cannot

be used as an image template to create a new VM on another host.

29

WO 2012/033554 PCT/US2011/039209

[0083] The present disclosure in one embodiment may support both fast virtual machine (VM)
creation and good runtime performance in Cloud. The existing solutions bear at least one two
limitations: 1) slow VM creation time due to copying the entire image before creation (e.g., the
raw image format driver in KVM); 2) high network traffic and poor performance at runtime due
to repeatedly reading data from remote storage server (e.g., the qcow2 image format driver in

KVM).

[0084] In one embodiment, the on-demand image streaming (ODS) of the present disclosure
may provide both fast VM provisioning and good runtime performance. The ODS of the present
disclosure may enhance hypervisor with the new “ods™ image format and the corresponding
driver. Compared with the raw image format used in some existing Clouds, the ODS introduces
less network traffic and less input/output (I/O) load on the storage server, not only at the time of
provisioning but also aggregated throughout the lifetime of VM. Unlike the raw image format
that is used in some existing Clouds, the ODS can boot a VM without making a complete copy
of the image template across the network. It may boota VM instantaneously and then fetch data

blocks from the storage server on demand as the data blocks are accessed by the VM.

[0085] Unlike the QCOW?2 image format, which performs only a copy-on-write but not a copy-
on-read and hence may repeatedly read the same data block from a storage server, the ODS of
the present disclosure in one embodiment may read a data block from a storage server at most
once and then store that block on a local disk for later reuse. Another advantage of the ODS of
the present disclosure over QCOW2 may be that QCOW2’s data layout in a local disk differs
from that of the raw image format; on the other hand, the data block layout of the ODS of the
present disclosure may be identical to that of the raw image format. As aresult, the ODS’s

runtime performance may be superior to that of QCOW2.

[0086] Experiments show that 1) the ODS of the present disclosure can boot a known operating
system server within 14 seconds while transferring less than 17 megabyte (MB) data across the

network; and 2) the ODS’s runtime performance is as good as the raw image format.

30

WO 2012/033554 PCT/US2011/039209

[0087] In another embodiment, the ODS of the present disclosure may further include an
advanced feature that prefetches the entire VM image from a storage server in the background
when or while the resources such as the disk, network, and CPU are otherwise idle. This feature
hides network latency and evenly spreads out resource consumption as opposed to waiting and

copying the entire VM image at a time of VM creation.

[0088] The ODS of the present disclosure may be utilized in Cloud environment. The ODS can
also be used in a non-Cloud environment. Further ODS may be utilized with only copy-on-write
enabled, for instance, to serve as a high-performance CoW format. Moreover, the
implementation of the ODS may be transparent to the guest VM (selected VM running on
hypervisor or the like) and hence may be widely applicable.

[0089] The ODS of the present disclosure may be implemented as part of a hypervisor or an
extension to a hypervisor or like functionality, for instance, providing all functionalities of a
hypervisor without any modifications to the guest VM. The capability of ODS, i.e., copy-on-

write, copy-on-read, and prefetching, is not provided by any existing hypervisor.

[0090] The size of an ODS image’s bitmap section is proportional to the size of the backing
image rather than the size of the ODS image. Further, a complete copy of the bitmap can be kept
in memory due to the small size of the bitmap, which avoids overhead in repeatedly reading the
on-disk bitmap. In one aspect, a copy-on-read operation may only update the in-memory bitmap

and need not immediately update the on-disk bitmap, which helps reduce disk I/O overhead.

[0091] When handling a VM’s read and/or write request for a sector whose logical block address
is beyond the size of the backing image, the ODS driver reads and/or writes the ODS image’s
disk data section directly, without any overhead in checking the in-memory bitmap and/or
updating the on-disk bitmap. Also, once prefetching finishes, disk read and/or write requests
issued by the VM are executed against the ODS image’s disk data section directly, without any
overhead in checking the in-memory bitmap and/or updating the on-disk bitmap.

31

WO 2012/033554 PCT/US2011/039209

[0092] In another aspect, a copy-on-read operation may not be on the critical path of returning
the data to the VM, and the data may be saved to the ODS image asynchronously in the
background while the VM continues to process the data read from the backing image.

[0093] Yet in another aspect, if a data sector in the bécking image is completely filled with
zeros, its initial state in the ODS image’s on-disk bitmap is set as if the sector is already in the
ODS image, which avoids the overhead in updating the on-disk bitmap and reading the data

sector from the storage server.

[0094] As will be appreciated by one skilled in the art, aspects of the present invention may be
embodied as a system, method or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-code, etc.) or an embodiment
combining software and hardware aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the
form of a computer program product embodied in one or more computer readable medium(s)

having computer readable program code embodied thereon.

[0095] Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may be, for example, but not limited to,
an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus,
or device, or any suitable combination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium would include the following: an
electrical connection having one or more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable

combination of the foregoing. In the context of this document, a computer readable storage

32

WO 2012/033554 PCT/US2011/039209

medium may be any tangible medium that can contain, or store a program for use by or in

connection with an instruction execution system, apparatus, or device.

[0096] A computer readable signal medium may include a propagated data signal with computer
readable program code embodied therein, for example, in baseband or as part of a carrier wave.
Such a propagated signal may take any of a variety of forms, including, but not limited to,
electro-magnetic, optical, or any suitable combination thereof. A computer readable signal
medium may be any computer readable medium that is not a computer readable storage medium
and that can communicate, propagate, or transport a program for use by or in connection with an

instruction execution system, apparatus, or device.

[0097] Program code embodied on a computer readable medium may be transmitted using any
appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc.,

or any suitable combination of the foregoing.

[0098] Computer program code for carrying out operations for aspects of the present invention
may be written in any combination of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk, C-+ or the like and conventional
procedural programming languages, such as the "C" programming language or similar
programming languages, a scripting language such as Perl, VBS or similar languages, and/or
functional languages such as Lisp and ML and logic-oriented languages such as Prolog. The
program code may execute entirely on the user's computer, partly on the user's computer, as a
stand-alone software package, partly on the user's computer and partly on a remote computer or
entirely on the remote computer or server. In the latter scenario, the remote computer may be
connected to the user's computer through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may be made to an external computer

(for example, through the Internet using an Internet Service Provider).

[0099] Aspects of the present invention are described with reference to flowchart illustrations

and/or block diagrams of methods, apparatus (systems) and computer program products

33

WO 2012/033554 PCT/US2011/039209

according to embodiments of the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by computer program instructions.
These computer program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute via the processor of the computer or
other programmable data processing apparatus, create means for implementing the functions/acts

specified in the flowchart and/or block diagram block or blocks.

[00100] These computer program instructions may also be stored in a computer readable
medium that can direct a computer, other programmable data processing apparatus, or other
devices to function in a particular manner, such that the instructions stored in the computer
readable medium produce an article of manufacture including instructions which implement the

function/act specified in the flowchart and/or block diagram block or blocks.

[00101] The computer program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable apparatus or other devices to produce a
computer implemented process such that the instructions which execute on the computer or other
programmable apparatus provide processes for implementing the functions/acts specified in the

flowchart and/or block diagram block or blocks.

[00102] The flowchart and block diagrams in the figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods and computer
program products according to various embodiments of the present invention. In this regard,
each block in the flowchart or block diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions for implementing the specified
logical function(s). It should also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted in the figures. For example, two

blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks

34

WO 2012/033554 PCT/US2011/039209

may sometimes be executed in the reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the specified functions or acts, or

combinations of special purpose hardware and computer instructions.

[00103] The systems and methodologies of the present disclosure may be carried out or
executed in a computer system that includes a processing unit, which houses one or more
processors and/or cores, memory and other systems components (not shown expressly in the
drawing) that implement a computer processing system, or computer that may execute a
computer program product. The computer program product may comprise media, for example a
hard disk, a compact storage medium such as a compact disc, or other storage devices, which
may be read by the processing unit by any techniques known or will be known to the skilled

artisan for providing the computer program product to the processing system for execution.

[00104] The computer program product may comprise all the respective features enabling
the implementation of the methodology described herein, and which - when loaded in a computer
system - is able to carry out the methods. Computer program, software program, program, or
software, in the present context means any expression, in any language, code or notation, of a set
of instructions intended to cause a system having an information processing capability to
perform a particular function either directly or after either or both of the following: (a)
conversion to another language, code or notation; and/or (b) reproduction in a different material

form.

[00105] The computer processing system that carries out the system and method of the
present disclosure may also include a display device such as a monitor or display screen for
presenting output displays and providing a display through which the user may input data and
interact with the processing system, for instance, in cooperation with input devices such as the
keyboard and mouse device or pointing device. The computer processing system may be also

connected or coupled to one or more peripheral devices such as the printer, scanner, speaker, and

35

WO 2012/033554 PCT/US2011/039209

any other devices, directly or via remote connections. The computer processing system may be
connected or coupled to one or more other processing systems such as a server, other remote
computer processing system, network storage devices, via any one or more of a local Ethernet,
WAN connection, Internet, etc. or via any other networking methodologies that connect different
computing systems and allow them to communicate with one another. The various
functionalities and modules of the systems and methods of the present disclosure may be
implemented or carried out distributedly on different processing systems or on any single

platform, for instance, accessing data stored locally or distributedly on the network.

[00106] The terminology used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting of the invention. As used herein, the
singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further understood that the terms "comprises"
and/or "comprising," when used in this specification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps, operations, elements, components, and/or

groups thereof.

[00107] The corresponding structures, materials, acts, and equivalents of all means or step
plus function elements, if any, in the claims below are intended to include any structure,
material, or act for performing the function in combination with other claimed elements as
specifically claimed. The description of the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be apparent to those of ordinary skill in
the art without departing from the scope and spirit of the invention. The embodiment was
chosen and described in order to best explain the principles of the invention and the practical
application, and to enable others of ordinary skill in the art to understand the invention for

various embodiments with various modifications as are suited to the particular use contemplated.

36

WO 2012/033554 PCT/US2011/039209

[00108] Various aspects of the present disclosure may be embodied as a program,
software, or computer instructions embodied in a computer or machine usable or readable
medium, which causes the computer or machine to perform the steps of the method when
executed on the computer, processor, and/or machine. A program storage device readable by a
machine, tangibly embodying a program of instructions executable by the machine to perform

various functionalities and methods described in the present disclosure is also provided.

[00109] The system and method of the present disclosure may be implemented and run on
a general-purpose computer or special-purpose computer system. The computer system may be
any type of known or will be known systems and may typically include a processor, memory
device, a storage device, input/output devices, internal buses, and/or a communications interface
for communicating with other computer systems in conjunction with communication hardware

and software, etc.

[00110] The terms “computer system” and “computer network™ as may be used in the
present application may include a variety of combinations of fixed and/or portable computer
hardware, software, peripherals, and storage devices. The computer system may include a
plurality of individual components that are networked or otherwise linked to perform
collaboratively, or may include one or more stand-alone components. The hardware and
software components of the computer system of the present application may include and may be
included within fixed and portable devices such as desktop, laptop, and/or server. A module may
be a component of a device, software, program, or system that implements some “functionality”,

which can be embodied as software, hardware, firmware, electronic circuitry, or etc.

[00111] The embodiments described above are illustrative examples and it should not be
construed that the present invention is limited to these particular embodiments. Thus, various
changes and modifications may be effected by one skilled in the art without departing from the

spirit or scope of the invention as defined in the appended claims.

37

WO 2012/033554 PCT/US2011/039209

We claim:

1. A method for on demand virtual machine image streaming, comprising:

copying, from a storage server storing one or more image templates corresponding
respectively to one or more virtual machines, an image metadata associated with a selected
virtual machine to a host computer’s local storage, wherein the host computer’s local storage
initially does not include an image of the selected virtual machine;

booting the selected virtual machine at the host computer using the copied image
metadata;

allowing the selected virtual machine to read data from the image template on the storage
server needed to continue executing the selected virtual machine at the host computer, if the
needed data are not stored on the host computer’s local storage;

copying the read data of the image template to the host computer’s local storage from the
storage server, if the read data of the image template are not stored on the host computer’s local
storage, wherein subsequent reads to the same data are done from the host computer’s local
storage;

setting a bit in a bitmap to indicate that the read data are stored on the host computer’s
local storage; and

utilizing resource idle time to prefetch data of the image template associated with the

selected virtual machine from the storage server to the host computer’s local storage.
2. The method of claim 1, wherein the image metadata initially includes a reference to
the image template and the bitmap that maps a bit to a corresponding sector of the image

template.

3. The method of claim 1, wherein response times are monitored during image

prefetching and prefetching is temporarily paused if a response time exceeds a threshold value.

38

WO 2012/033554 PCT/US2011/039209

4. The method of claim 1, wherein the size of the bitmap is proportional to the size of the
image template on the storage server rather than the size of the corresponding image stored on

the host computer’s local storage.
5. The method of claim 1, wherein a complete copy of the bitmap can be kept in memory.

6. The method of claim 1, wherein the selected virtual machine’s read and/or write
requests for a sector whose logical block address is beyond the size of the image template on the
storage server are handled by reading and/or writing the sector directly in the host computer’s

local storage without checking the bitmap and/or without updating the bitmap.

7. The method of claim 1, wherein after the prefetching finishes, one or more disk read
and/or write requests issued by the selected virtual machine are executed using image data stored
on the host computer’s local storage directly, without checking the bitmap and/or updating the
bitmap.

8. The method of claim 1, the bitmap is kept in memory and on disk at the host computer
and wherein a copy-on-read operation only updates the in-memory bitmap and does not

immediately update the on-disk bitmap.

9. The method of claim 1, wherein a copy-on-read operation is not on the critical path of
returning the data to the VM, and the data are saved to the ODS image asynchronously in the
background while the VM continues to process the data read from the backing image.

10. The method of claim 1, wherein if a data sector in the image template on the storage
server is completely filled with zeros, initial state of the data sector in the bitmap stored on host
computer’s local storage is set as if the data sector is already copied to the host computer’s local

storage.

39

WO 2012/033554 PCT/US2011/039209

11. The method of claim 1, wherein the method is implemented in a hypervisor,

providing functionalities of the hypervisor without modifications to the selected virtual machine.

12. A method for on demand virtual machine image streaming, comprising:

copying an image metadata associated with a virtual machine, from a source computer
storing an image template corresponding to the virtual machine to a target computer, wherein the
target computer initially does not include the image template of the virtual machine;

booting the virtual machine at the target computer using the copied image metadata;

allowing the virtual machine at the target computer to read data of the image template on
the source computer needed to continue executing the virtual machine at the target computer, if
the needed data of the image template are not stored on the target computer;

copying the read data of the image template from the source computer to the target
computer, if the read data of the image template are not stored on the target computer wherein
subsequent reads of the same data read the copied data at the target computer; and

setting a bit in a bit map to indicate that the read data are stored on the target computer.

13. The method of claim 12, wherein the image metadata initially includes a reference to
the image template and the bitmap that maps a bit to a corresponding sector of the image

template.

14. The method of claim 12, further including determining whether the data needed to
run the virtual machine is stored on the target computer by checking the bit in the bit map,
wherein depending on the bit in the bit map, the virtual machine reads data from the source

computer or from the target computer.
15. The method of claim 12, further including utilizing resource idle time to prefetch

data of the image template associated with the virtual machine from the source computer to the

target computer.

40

WO 2012/033554 PCT/US2011/039209

16. The method of claim 12, wherein the steps are performed for live migration of the
virtual machine from the source computer to the target computer wherein a separate storage

server is not utilized.

17. A computer readable storage medium storing a program of instructions executable by
a machine to perform a method for on demand virtual machine image streaming, comprising:

copying, from a storage server storing one or more image templates corresponding
respectively to one or more virtual machines, an image metadata associated with a selected
virtual machine to a host computer’s local storage, wherein the host computer’s local storage
initially does not include an image template of the selected virtual machine;

booting the selected virtual machine at the host computer using the copied image
metadata;

allowing the selected virtual machine to read data from the image template on the storage
server needed to continue executing the selected virtual machine at the host computer, if the
needed data are not stored on the host computer’s local storage;

copying the read data of the image template to the host computer’s local storage from the
storage server, if the read data of the image template are not stored on the host computer’s local
storage, wherein subsequent reads to the same data are done from the host computer’s local
storage; and

setting a bit in a bitmap to indicate that the read data are stored on the host computer’s

local storage.

18. The computer readable storage medium of claim 17, wherein the image metadata

initially includes a reference to the image template.

19. The computer readable storage medium claim 18, wherein the image metadata

further includes the bitmap that maps a bit to a corresponding sector of the image template.

20. The computer readable storage medium of claim 17, further including determining

whether the data of the image template needed to run the selected virtual machine is stored on

41

WO 2012/033554 PCT/US2011/039209

the host computer’s local storage by checking the bit in the bit map, wherein depending on the
bit in the bit map, the selected virtual machine reads the image template on the storage server or

copied image template on the host computer’s local storage.

21. The computer readable storage medium of claim 17, further including utilizing
resource idle time to prefetch data of the image template associated with the selected virtual

machine from the storage server to the host computer’s local storage.

22. A system on demand virtual machine image streaming, comprising:

a target computer operable to copy an image metadata associated with a virtual machine,
from a source computer storing an image template corresponding to the virtual machine, wherein
the target computer initially does not include the image template of the virtual machine; and

a storage device locally attached to the target computer,

the target computer further operable to boot the virtual machine at the target computer
using the copied image metadata and allow the virtual machine at the target computer to read
data of the image template on the source computer needed to continue executing the virtual
machine at the target computer, if the needed data of the image template are not stored on the
target computer,

the target computer further operable to copy the read data of the image template from the
source computer to the storage device locally attached to the target computer, if the read data of
the image template are not stored on the target computer, wherein subsequent reads of the same
data are done from the storage device locally attached to the target computer,

the target computer further operable to set a bit in a bit map to igdicate that the read data

are stored on the target computer.

23. The system of claim 22, wherein the image metadata initially includes a reference to

the image template.

24. The system of claim 23, wherein the image metadata further includes the bitmap that

maps a bit to a corresponding sector of the image template.

42

WO 2012/033554 PCT/US2011/039209

25. The system of claim 22, further including utilizing resource idle time to prefetch data
of the image template associated with the virtual machine from the source computer to the target

computer.

43

PCT/US2011/039209

WO 2012/033554

1/8

121!

I "S14

19A10Q 93eI101§ UO
sarepdws |, oFewu]

(98ewr go(1 105 GNET)

JS1 [007]

41!

rIepelow oFew Aur) £doo 1]

mopg wogerddQ S@O

SUIYIRIA TEMMIA

901

801

sm&oo

PCT/US2011/039209

WO 2012/033554

2/8

BJEp JSIp papuedxs J0f aoeds

H

01¢ \\

T 314

8
=
S
o
%ﬂ
—go
=
5
But
&
3
3
8,
w3

70T 0z
s

s1q [620]

i
i

|

m deuniq || Jepeey uo a8ew| SO
I

I

a8eur merx @«.... syurod oFeun SO

eRp o8eun puISLIO

&

JI9AI3S 95e10)S AOWIY
uo d8em] Mey

90¢ \

PCT/US2011/039209

WO 2012/033554

3/8

¢ 314

SOLIOWIOW puE S108S0001d a10m
IO SUO YIIM SIRMPIRY [BOISAYJ

14113

[ouISY XnuI'|

ooy WAY

_— C0¢

oouds 1esn wAy-nwsh

A SenD

7moob Mel L

30¢

/ 0r¢

PCT/US2011/039209

WO 2012/033554

72}
UOT)USIUOD o8ew a1 Jo W =4 &
Sumgojeyerd Pa30919p 01 anp 1821 9} yoyoyerd & m Jo.o
oumSSY Sumyojeyord esneg 01 oW S[pI pUI g & %
L | =5 T O o
I
| B =
!]
3 “ ! = INA
| _
© om0
<
J93SN pud .I0J o
c yexn 19yqjo o8eun
APBAI IAA WA
E j00g ps ﬁﬁoEMU \aﬁu
o] ®
'L A E = CNA
b L 1 TNA
Ak 1 TINA

OIJeIY,
heliiTe)

qy 81

(dnyavis w4 yomnb)
Sao Mm

Vv 811

(Apva.
St (A 240f2q Avjop)
SO moyyum

PCT/US2011/039209

WO 2012/033554

5/8

G 31

ISIA (820 416
SPIDMIYD DIDP 240U O}

Sunuvang puvwaq-uQ

ASIJ [BI0°]

i

!

! N
t

! IS0

m 23an0g

i

Clg

vIvp 23p40)S Suraom o/m

NA 1981e], UONDISNY 241 JUDISUT

JALA 29IN0S

PCT/US2011/039209

WO 2012/033554

6/8

Korjod 19730 10/pUB SE0INO0SOI JO AJIGRIRAR

oY} wo paseq punoidyoeq oy} ur

Sumoeyerd wuopzed Areuondo

3

98e10)s Te00] S, 10INdWOO 1SOT T} 0} SAIIM JAA 210}

A

h

deumiq

arepdn

A

3

93®I0]S [BOO] O} TIOX PISSAOOR OIE BJEp SUIES o7} O} Speal
juanbasqng -oFe103s T200] S, I0INdTI0S JSOY 13 0} BIEp peal oyt AdoD

4

A

"IOAISS 9FRI0)S o) WOX A

Y] UNI 0} Papaal Bjep peay]

»

eyepEIoW oSt pardos of) SuISn (JALA) SUTIOLUI [BNIIIA ST} 100

A

A

93e10]8
[eoo] s 103ndwos 1507 0} IoAIes aSe10)s € woy ejepelaw afewr Ado)

PCT/US2011/039209

WO 2012/033554

7/8

Ko110d 19130 JO/pUR S9OINOSAI JO AJIIqR[IEAR
oY) uo paseq punoigyoeq oy ur Sunydieyeid uoped AffeuondO

a8e10)s [e00] s, J10)ndTI0d JSOY OTf) 0} SSILIM A 9I0IS

deuniq ojepdny

1omdurod 3081e) 91 JO 93RIO0IS [800] ST} WO PISSOOOR OI8 BIEp SUILS
a1 03 speal jusnbasqng xenduros 1031e) o1 0} BIRp peal oY AdO)

IOAISS Dm.muoupm Y] WOy JNA 2Y3 Unl 0] papasu ejep peay

Jondnos 1810}
a1} 18 vlepRIOW oFeuyl pardos oyl Suisn (A A) SUTYOR [eniIA Y3 jJoog

Iomndwoo 10318} 0} 50IN0S B WOI BlRpejow ofeun Ado)

PCT/US2011/039209

WO 2012/033554

8/8

(MOD)
Sdo .
orerdue) « (ga19121d-90D) das wﬂm
oSewr sSao (M00D)
Sdo
oerdwoy y (g210321d-+40D+MOD) ‘31
o8eun Sdo I8 =
orejduoe)) (40D+MO0D) .
oSeun) Sdo ds wﬁm
orerdurey J (M0D) .
oSeun X Sdo <w wﬁm

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 11/39209

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 15/16 (2011.01)
USPC - 709/231

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8)- GO6F 15/16 (2011.01);
USPC- 709/231 h

Minimum documentation searched (classification system followed by classification symbols)

USPC- 709/201, 203, 230, 219; 700/1, 90; 725/86, 87;
Patents and NPL (classification, keyword; search terms below)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

bitmap, host, store

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PubWest (US Pat, PgPub, EPO, JPO), GoogleScholar (PL, NPL), FreePatentsOnline (US Pat, PgPub, EPO, JPO, WIPO, NPL);
search terms: image, server, stream, cloud, on demand, domain, virtual machine, fetch, pre fetch, metadata, metainformation, bit,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2010/0107163 A1 (LEE) 29 April 2010 (29.04.2010), para [0034], [0046), [0050], [0084]- 1-25
[0110}
Y US 2010/0042993 A1 (VASILEVSKY et al.) 18 February 2010 (18.02.2010), para [0010}-[0015], | 1-25
[0019], [0023], [0051], [0052], [0063], [0069], [0088])-[0090), [0104), [0111), [0126], [0165],
[0191]
Y.P US 2010/0333085 A1 (CRIDDLE et al.) 30 December 2010 (30.12.2010), para [0011]}-[0235] 1-25
Y US 2009/0006534 A1 (FRIES et al.) 01 January 2010 (01.01.2010), para [0009]-{0038) 1-25
Y US 2009/0328030 A1 (FRIES) 31 December 2009 (31.12.2009), para [0011]-[0050)] 1-25
Y US 2008/0178244 A1 (AYRES et al.) 24 July 2008 (24.07.2008), para [0008}-[0045] 1-25
Y US 2006/0155735 A1 (TRAUT et al.) 13 July 2006 (13.07.2006), para [0016}-{0065) 1-25

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date N

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“Q” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than
the priority date claimed

later document published after the international filing date or priority
date and not in conflict with the a;:Elication but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

08 September 2011 (08.09.2011)

Date of mailing of the international search report

27 SEP 201

Name and mailing address of the ISA/US

Mail Stop PCT, Atin: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - wo-search-report

