United States Patent

US006640293B1

(12) (10) Patent No.: US 6,640,293 B1
Paredes et al. 5) Date of Patent: Oct. 28, 2003
(54) APPARATUS AND METHOD OF UTILIZING 5,499,204 A * 3/1996 Barrera et al. 365/49
ALIAS HIT SIGNALS TO DETECT ERRORS 5,640,534 A * 6/1997 Liuetal. ..cccccoueeeenene 711/146
WITHIN THE REAL ADDRESS TAG ARRAYS 5,668,972 A * 9/1997 Liuetal.coccccceeeeeeen. 711/136
5,805,855 A * 9/1998 Liu et al. ccoooorrrrvronennnn. 711/108
(75) Inventors: Jose Angel Paredes, Austin, TX (US), g’ggg’gf 2 : ;ﬁggg Ean g ;ﬁg%
Bruce Joseph Ronchetti, Austin, TX Py N M CLAL e
A . 6,021,485 A 2/2000 Feiste et al.couu...... 7127216
(US); Binta Minesh Patel, Round 6,202,128 BL * 32001 Chan etal. ..oooocrreen. 711/131
EO;:? X (IiS); .Ge%;ge(llj\gNeﬂ 6,266,768 B1 * 7/2001 Frederick, Ir. et al. 712/220
attimore, Austin,
* cited by examiner
(73) Assignee: International Business Machines)) .
Corporation, Armonk, NY (US) Primary Examiner—Tuan V. Thai . .
ttorney, Agent, or Firm—XKelly K. Kordik; Winstea
78 A A Firm—Xelly K. Kordik; Winstead
(*) Notice: Subject to any disclaimer, the term of this Sechrest & Minick P.C.; Mark E. McBurney
patent is extended or adjusted under 35 57 ABSTRACT
U.S.C. 154(b) by 434 days. 67)
A data processing system including a processor having a
(21) Appl. No.: 09/624,105 load/store unit and method for utilizing alias hit signals to
(22) Filed Jul. 24. 2000 detect errors within the read address tag arrays.
ile ul. 24,
(51) It CL7 oo, GO6F 12/00 Within a load store uni.t, implementgd Within a Processor, a
(52) . 711/210; 711/200; 712/217 real addrgss tag array is utthf.:d to indicate when efffzct.lve
(58) 712216, 217 address aliasing occurs in a primary cache array. If aliasing
712/220711/200 202 203’ 210’ occurs, Alias Hit §igna1§ are then used to clear any .aliased
’ ’ ? ’ entries. These Alias Hit signals can also be utilized to
(56) References Cited determine if there has been some type of failure within the

U.S. PATENT DOCUMENTS
5,168,560 A * 12/1992 Robison et al. 711/133

601

; Address-in Latch

real address tag array.

15 Claims, 6 Drawing Sheets

233

e

Data in of 36 bits, 30 bit tag, 4 bits parity, valid bit, valid parity

8 bits steering

603

data in enable

]ﬁf
| 604 6/05

10of32 Data in Steering 8 into 1
Decoded ‘
Entries ; L,
Read/Write \ ¥
Primitive 1 = =
802 \ Tag Parity Valid
// \ | (30 bitx {4 bitx Bits
B 8 ways) 8 ways) ((2x8 bits)
10f32
Entries Data|Array <
[
Decoded | Port 1, Valid Parity
! std riw “Clear cells
° e
I Po\rt 2, Addr
cir only Match?
| Tag Compare & Valid f
V v E Yes
606)
D Data Path CL/cIe Boundary‘Latches (Clear Va_!"i)
607 e L

Y ———
Party Chook

~608

*

610

> Parity Error

|
[> Tag Compare Resultsm]

609

611

US 6,640,293 B1

Sheet 1 of 6

Oct. 28, 2003

U.S. Patent

9cl
. Z2NN
L DI 2>
Jardepy Jeidepy
gel 7 4 Al
2154 8 ccl
cli
ia1depy lsydepy
SUOIEOIUNWIWO) o/l WvHd Nndo
/ / / /
vel 8ll pLL 9Ll

}IOMISN

ovi

oct

US 6,640,293 B1

Sheet 2 of 6

Oct. 28, 2003

U.S. Patent

SSIN 17
SSIN 1]
syoen
Z10oL

:,--_-_-_-,-_-,-_-_-;.-_.:-_-4-.:.-_-_-_-,-_-,-_-_._.4 :_..-_-_-_.:
| INd : | one4 |
| bnxd ' onxd | v1Z
| (ON1)3N3ND |
| m&\ SSIN/aYO || s9vL
m T ||| 3ovis
| N s12 ONY | ,
| L1z 912 |
| | = || 2owis
| yod bey Jesin oop| V| | 0LVHT Ioep | e
| R = |

- iz |

~H _
_ |
“ %4 Zhe |
|
- [mad - — ova {5
| 602 T oz oep| | FOVL 09VL| [50p 902 802 | cie
| | pd | HOLvdSIa
| |
| a (| vy e Oic a9 |wd | WrA
I u }) |
g0z y02 winsn €02 202 L[o
et e Se 2
‘ oz v

110 aId6ay' L/oNX4 gz "old 110 elidbey'L/0NX 0l¢

VvZ 9Ol vz'old|¢ Old

US 6,640,293 B1

Sheet 3 of 6

Oct. 28, 2003

U.S. Patent

ga¢ 9Old

_ ,1i1l\\\\\}\!lt!lll\llli}ll_lll%lllvl |||||||| % IIIIIIIIIIIIIIIIIIIIIIIIIIIII
, ~lleuuod [olewuod
| wg T 1 0w
SN % < _le
ole|x | | m’
woud | Y ez
m eyoe) |1
W ; Pl geny M
| o8p M oep
m o9p NIC
eeq - SR/
1pY ~—H ! ,
s | - luw g _ﬂ_i Em&
_ ! vee | 28 ——
o | i i
g1oL | gﬂ 62z <
| 18160y f) wod
! ; L€z a0y~
5€2 A
eleq — €62 | gez _A | %NZ T 922
| N I £22
| (sl
yal | —/ !
| (0us) (0as) (0¥ ||
Py PRI 062 3n3n0 3030 | 30300 SHdS
4ed | ~ ¥30HO ViVa | | ¥Y30403Y y
woid4 | Mod bel 1es|n IHOLS 3H01S avon
Zlwoiy = ﬁ _ 612
......... voolges e/ — e

U.S. Patent

601

Address-in Latch

Oct. 28, 2003

Sheet 4 of 6

FIG. 3

US 6,640,293 B1

233

e

Data in of 36 bits, 30 bit tag, 4 bits parity, valid bit, valid parity
®
8 bits steering v v v 603
data in enable
® i i i
1 0of 32 Data in Steering 8 into 1 604 605
Decoded
Entries J,
Read/Write \
Primitive = -
802 Tag Parity Valid
(30 bit x (4 bit x Bits |
. 8 ways) 8 ways) |(2x8 bits) -
10f32 ¢
Entries Data|Array »
y
Decoded Port 1, k Valid Parity
¢ std riw Clear cells
Y I Port 2, | Addr
cir only [Match?
Tag Compare & Valid
i Yes
' = - 606
Data Path Cycle Boundary|Latches (Clear Va“d?)
A
v \ 607 -
Hit ?
Parity Check
608

Parity Error

\
609

610

Tag Compare Results

\

611

U.S. Patent Oct. 28, 2003 Sheet 5 of 6 US 6,640,293 B1

SET A
EA —1 ’ *
RA RA RA RA
TAG TAG TAG TAG
HO H1 H2 H3
SET B
EA —1 ' ’
RA RA RA RA
TAG TAG TAG TAG

HO H1 H2 H3

U.S. Patent Oct. 28, 2003 Sheet 6 of 6 US 6,640,293 B1

(Start) FIG. 5

L

For a selected setof | - 501
RA Tag Arrays,
Count The Number of
Bits Asserted in
N-bit Hit Field

503
/

Report An Error

One

Bit Asserted
?

No

A

;05
Increment Counter K
(K initialized to zero)
507
506 /
Yes

Report An Error

Yes

US 6,640,293 B1

1

APPARATUS AND METHOD OF UTILIZING
ALIAS HIT SIGNALS TO DETECT ERRORS
WITHIN THE REAL ADDRESS TAG ARRAYS

CROSS REFERENCE TO RELATED
APPLICATION

The present invention is related to the following patent

applications:

U.S. patent application Ser. No. 09/435,862, entitled
“Real Address Tag Array”; now U.S. Pat. No. 6,477,
635.

U.S. patent application Ser. No. 09/263,665, entitled
“System and Method for Store Forwarding”; now U.S.
Pat. No. 6,349,382.

U.S. patent application Ser. No. 09/213,331, entitled
“System and Method for Permitting Out-of-Order
Execution of Load and Store Instructions”; now U.S.
Pat. No. 6,301,654.

U.S. patent application Ser. No. 09/259,140, entitled
“System and Method for Executing Store Instructions”,
now U.S. Pat. No. 6,336,183 and

U.S. patent application Ser. No. 09/259,139, entitled
“System and Method for Merging Multiple Outstand-
ing Load Miss Instructions,” now U.S. Pat. No. 6,336,
168 which are all hereby incorporated by reference
herein.

TECHNICAL FIELD

The present invention relates in general to data processing
systems, and in particular, to the execution of load and store
instructions in a processor.

BACKGROUND INFORMATION

Aliasing occurs when a Real Address (RA) may be
mapped to multiple Effective Addresses (EA). This is the
case in certain architectures where bits 50 and 51 of the EA
always translate to bits 50 and 51 of the RA. Therefore, there
might be four EAs that can map to the same RA.

Because it is an error in such architecture to store more
than one cache line at two different EAs which map to the
same RA, the herein disclosed structure of the Real Address
Tag addresses the problem by invalidating the previously
stored cache line to make room for the next line at the new
EA. Bits 50 and 51 of the EA are used to select between 4
sub-arrays (for each set) in the RA Tag which contain the RA
the current EA maps into. During a cycle in which a new EA
is mapped to a RA (through the ERAT or some other
Effective to Real address translation mechanism), the RA
Tag looks up the new RA and compares it with the RAs
already stored in its 4 sub-arrays. If a match occurs, then a
different EA already maps to the RA and the cache line at the
old EA location must be invalidated. This is known as an
Alias Hit.

In order to invalidate the cache line, the RA Tag sends a
“1 hot” signal to other logic blocks (Cache, Tag, ERAT, etc.)
specifying which EA the Alias Hit was detected for. Since
bits 50 and 51 of the EA were used for storing the RA, the
RA Tag simply needs to send a 4-bit field to the other logic
blocks to inform them which line to clear. For example, if
sub-array 0 hits then bits 50 and 51 of the EA must have been
00, and the 4 bit field is 0001, if sub-array 1 hits then bits 50
and 51 of the EA must have been 01 and the 4 bit field is
0010, etc.

Encoding the bits in this way (known as 2B encoding)
makes it easier for the other logic blocks to decode the

10

15

20

25

30

35

40

45

50

55

60

65

2

location and thus improve access time. The arrays simply
need to perform logical ANDing of bits for the number of
address bits minus 1. For instance, if the address is 2 bits
wide, the encoding would be 0001, 0010, 0100, 1000. The
active bits would map directly to the wordline addresses. If
the address is 3 bits wide then the encoding would be
00010001, 00010010, 00010100, etc. And only a 2 input
logical AND is necessary to map to the correct wordline.
When all bits are ‘0’ then no wordlines are being selected.

If a failure occurs within the RA Tag or in some other
logic block which controls it, there might be a case in which
more than one Alias Hit is detected. This should be flagged
as a failure, since the job of the RA Tag is to avoid multiple
Aliasing altogether. Therefore, there is a need for a solution
for detecting such failures.

SUMMARY OF THE INVENTION

The present invention addresses the foregoing need by
utilizing the Alias Hit signals to detect errors within the RA
tag arrays. More specifically, an error is reported if more
than one Alias Hit signal is received from a set of RA tag
arrays, or if more than one Alias Hit signal is received from
more than one set of RA tag arrays.

The foregoing has outlined rather broadly the features and
technical advantages of the present invention in order that
the detailed description of the invention that follows may be
better understood. Additional features and advantages of the
invention will be described hereinafter which form the
subject of the claims of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present
invention, and the advantages thereof, reference is now
made to the following descriptions taken in conjunction with
the accompanying drawings, in which:

FIG. 1 illustrates a data processing system configured in
accordance with the present invention;

FIG. 2, FIGS. 2A and 2B together, illustrate a load/store
unit configured in accordance with the present invention;

FIG. 3 illustrates further detail of a real address tag array
in accordance with the present invention;

FIG. 4 illustrates separate sets of RA tag arrays; and

FIG. 5 illustrates a process for implementing the present
invention.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth such as specific word or byte lengths, etc. to provide
a thorough understanding of the present invention. However,
it will be obvious to those skilled in the art that the present
invention may be practiced without such specific details. In
other instances, well-known circuits have been shown in
block diagram form in order not to obscure the present
invention in unnecessary detail. For the most part, details
concerning timing considerations and the like have been
omitted inasmuch as such details are not necessary to obtain
a complete understanding of the present invention and are
within the skills of persons of ordinary skill in the relevant
art.

Refer now to the drawings wherein depicted elements are
not necessarily shown to scale and wherein like or similar
elements are designated by the same reference numeral
through the several views.

A representative hardware environment for practicing the
present invention is depicted in FIG. 1, which illustrates a

US 6,640,293 B1

3

typical hardware configuration on of workstation 113 in
accordance with the subject invention having central pro-
cessing unit (CPU) 110, and a member of other units
interconnected via system bus 112. CPU 110 embodies the
Ioad/store unit 201 of the present invention as described
below. Workstation 113 includes random access memory
(RAM) 114, read only memory (ROM) 116, and input/
output (I/O) adapter 118 for connecting peripheral devices
such as disk units 120 and tape drives 140 to bus 112, user
interface adapter 122 for connecting keyboard 124, mouse
126, and/or other user interface devices such as, a touch
screen device (not shown) to bus 112, communications
adapter 134 for connecting workstation 113 to a data pro-
cessing network, and display adapter 136 for connecting bus
112 to display device 128. CPU 110 may include other
circuitry (other than load/store unit 201) not shown herein,
which will include circuitry commonly found within a
microprocessor, €.g., execution unit, bus interface unit,
arithmetic logic unit, etc. CPU 110 may also reside on a
single integrated circuit.

FIG. 2, FIGS. 2A and 2B together illustrates load/store
(L/S) unit 201 configured in accordance with the present
invention. L/S unit 201 is located within CPU 110, which
may be configured in accordance with typical microproces-
sor architectures.

L/S unit 201 has two pipelines so that two load or store
instructions can be issued per machine cycle. Registers
202-205 receive instructions from fixed point units (FXUs)
0 and 1 (not shown) in a manner well-known in the art 64-bit
adder 206 adds operands received from registers 202 and
203, while 64-bit adder 207 adds operands from registers
204 and 205 to produces a pair of 64-bit effective addresses
(EAs). These effective addresses are outputted to registers
208 and 209, respectively. Registers 208 and 209 capture the
effective addresses (EA). They then both feed LMQ (load
miss queue) 218, LRQ (load reorder queue) 220 and SRQ
(store reorder queue) 222, which all need a portion of the EA
in addition to the real address from registers 216 and 217 to
perform address checking. Additionally, the effective
addresses are decoded to access tag arrays 210 and 211 to
determine if there is a hit or a miss within L1 cache 236
(FIG. 2B). If there is a miss, then the addresses are passed
through registers 212 and 213 and sent to the 1.2 cache (not
shown).

Furthermore, the effective addresses are sent from adders
206 and 207 to be decoded and to access the effective real
address translator (ERAT) arrays 214 and 215, respectively,
which output translated addresses through registers 216 and
217.

Further, the effective addresses from adders 206 and 207
access the L1 cache 236 for the load operation after being
decoded by the decoders within the L1 cache 236. If there
is a hit in the L1 cache 236, then the data is read out of the
L1 cache 236 into registers 237, 238, and formatted by
formatters 240, 241, and returned on the result bus to be sent
to a register file (RegFile) (not shown). The cache line read
out of L1 cache 236 is also returned into the registers
202-205 for operations that are dependent on the result as an
operand.

Essentially, the three cycles performed within L/S unit
201 are the execute cycle (where the addition is performed),
the access cycle (where access to the arrays is performed),
and the result cycle (where the formatting and forwarding of
data is performed).

If there is a miss in the cache, the request is then sent
down to the L2 cache (not shown). The load miss queue

10

15

20

25

30

40

45

50

55

60

65

4

(LMQ) 218 waits for the load data to come back from the 1.2
cache (not shown). The data associated with that cache line
is loaded into the L1 cache 236.

These load operations can be performed speculatively and
out of order. Store instructions are also executed out of order.
Store instructions are divided into store address and store
data instructions. The individual instructions are executed as
soon as their operands are available and an execution unit is
available to execute them. Store address instructions are
translated and put in the store reorder queue (SRQ) 222.
Store data instructions read the FXU (fixed point unit) or
FPU (floating point unit) register file and send the result to
be written in the store data queue (SDQ) 221 to wait their
turn to write to the L1 cache 236. Therefore, store instruc-
tions are executed out of order, but written into the L1 cache
236 in order.

The SRQ 222 keeps track of store instructions that have
been executed. SRQ 222 maintains the store instructions in
the queue and determines when the data is available in the
SDQ 221 and when the store instruction is next to complete.
The store to the L1 cache 236 is then completed.

Many of the registers 223, 225-229, and 237-238, are
utilized for timing.

Cache lines within the L1 cache 236 are accessed based
on the effective address of the cache line. The RA tag array
233 keeps track of where in the L1 cache 236 a cache line
was written. The format block 231 takes the data from the
SDQ 221 and rotates it properly to write into the correct byte
positions in the L1 cache 236 upon execution of the store
instruction.

Rotate blocks 224 and 230 are utilized for store forward-
ing. Therefore, if there is a store instruction that is sitting in
the store queue and has not been written into the cache/
memory subsystem yet because it is not next to complete,
and then a younger load instruction is received that needs
that data, the data will be forwarded to the load instruction
being executed (see FIG. 4). To simplify store forwarding,
and store writes, when data is transferred to the SDQ 221,
the data is rearranged so that the data corresponding to the
location in memory of the store address is written into the
first byte of the SDQ 221 entry, the store address +1 into the
second byte, etc. The data is arranged in the order written to
memory, but is byte-aligned. When the data is written to the
L1 cache 236, it is rotated (blocks 224 and 230) so that the
data is double-word aligned.

Rotate block 239 is utilized to rotate data received from
the 1.2 cache (not shown) in response to an L1 cache miss,
for forwarding the data from the I.2 cache on to the result
bus for forwarding to the proper register file.

Block 219 contains a number of special purpose registers
to store data as a result of special purpose register instruc-
tions and read data from these registers so they get into the
normal pipeline.

Register 235 is implemented for timing purposes to stage
data from the 1.2 cache (not shown). Format blocks 240 and
241 format (or shift) cache data into the proper byte posi-
tions for the load result to the register file.

In one embodiment of the present invention, an effective
address comprising 64 bits and is corresponding 64-bit real
address may only have the four kilobyte page offset address
bits 52:63 as equal. The cache address may comprise bits
50:63, while the cache RA tag address will be comprised of
bits 22:51 of the real address. Cache aliasing is created when
the effective address is used to address the cache and bits
50:51 of the effective address do not match RA bits 50:51.
When only the RA is known, it may exist in one of four

US 6,640,293 B1

5

locations in the cache. The RA tag algorithms (FIGS. 3-5)
of the present invention solves the conversion from RA to
EA to allow correct addressing of an EA addressed cache or
array. The RA tag is used to perform real address stores,
snoop invalidates, and cache reloads.

Referring next to FIG. 3, there is illustrated further detail
of RA tag 233. In one implementation of RA tag 233, there
are included eight sub-RAMs (also referred to as data array
or tag array) 604 with 32 entries in each. There are 30 bits
of tag, plus 4 bits of parity, one valid bit and one valid parity
bit. An address will be received into latch 601 where it is
then broken up to be decoded in decoder 602 and the data
goes into array 603. The outputs of decoder 602 and array
603 am received into the data array 604. The decoded
portion gets saved in latches 605 so that they can be used for
clearing if the result of the tag compare in tag compare and
valid block 606 is positive. The comparison data is saved
within register 611. If the compare is positive, there is a hit.
A clear valid signal is generated when there is a proper hit
in the RA tag 233. This can occur as a result of a snoop hit
to the RA tag 233 or a reload instance to aliased lines. This
is produced by tag compare and valid block 606. Register
605 holds the address of the line that could create a clear
valid signal. These are used to index an array if a clear valid
signal is asserted for the RA_ tag array 604 The clear valid
signal and associated address are also sent to the tag arrays
210 and 211 (FIG. 2A). These addresses are pipelined
through staging latches 212 and 213 (FIG. 2A). Additionally
simultaneously, the data is stored in cycle boundary latches
607 in order to compute a parity check in block 608 and
report any parity error in block 609.

Within the RA tag 233, only a one-to-one mapping is
allowed between an effective address and a real address.
However, the architecture permits four effective addresses to
map to one real address. Therefore, for example, if a store
operation is performed to a particular effective address, and
then a load operation also is performed to that same effective
address, the system needs to be sure that the proper data is
loaded. Essentially what the present invention does is to
undo the map of the first effective address to the real address
when a new effective address is processed, and then a map
is plotted between the new effective address and the real
address so that at any given time there is only one mapping
of an effective address to a real address.

In a 64-bit address, the effective address comprises bits
50:63, while the RA tag 233 uses bits 22:51. As a result, bits
50 and 51 overlap, which results in the aliasing problem.
Therefore, if an effective address is used to access array 604
within RA tag 233, there are four possible matches.

Within the RA tag 233, a real address will be received and
decoded and compared to other real addresses within array
604. When a match, or hit, occurs, bits 50 and 51 associated
with the address found in array 604 are calculated. Each of
the four comparators 606 correspond to the four values
represented by bits 50:51. The first comparator represents
value ‘00°b. The second represents value ‘0O1°b, the third
‘10°b, and the fourth ‘11°b. The comparator 606 that
matches identifies the effective address of bits 50:51. This is
how the EA address is calculated for steps 306, 406, and 506
described below with respect to FIGS. 3-5, respectively.
These bits 50:51 are used to address the tag arrays 210 and
211 (FIG. 2A).

A snoop address is presented as a real address to the RA
tag 233. After the EA address is calculated with the com-
parator 606, an EA address with bits 50:51 can be used to
address the tag arrays 210 and 211. (FIG. 2A).

10

15

20

25

30

40

45

50

55

60

65

6

FIG. 4 illustrates two sets, A and B, of RA tag arrays in
a diagram simplified from the one illustrated in FIG. 3 so as
to show how an Effective Address (EA) is compared with
addresses in each of the RA tag arrays within a set by a
comparator (shown as a circle with an equal sign) to
produce, in this example, four “hit” bits HO, H1, H2, and H3.
FIG. 4 illustrates that a similar architecture is set up for each
set of RA tag arrays by illustrating sets A and B.
Under normal, error-free operation of the RA tag arrays,
the n-bit hit fields HO . . . H3 for each set will only have a
single asserted bit. In other words, only one of hit signals
HO, H1, H2, and H3 will be a 1, while the others will each
have a value of 0. Under the present invention as described
hereinafter, if more than one of the hit bits, HO . . . H3, are
asserted, then there is some type of failure that has occurred
within the RA tag array. Similarly, if there is an asserted bit
within the hit fields emanating from both of sets A and B,
then that also indicates that there has been some type of
failure within the RA tag array.
Referring to FIG. §, this process for determining if there
has been a failure in the RA tag array begins at step 501,
wherein for a selected set of RA tag arrays, the number of
bits asserted within the n-bit hit field are counted. In step
502, if more than one bit emanating from that selected set is
asserted, then in step 503 an Error is reported. If there is 0
or 1 bit asserted within the n-bit hit field, then the process
proceeds to step 504 to determine if only one bit within the
hit field has been asserted. If not, then the process returns to
step 501 to proceed to the next set of RA tag arrays, which
in the example illustrated in FIG. 4 would be set B. If in step
504, only one bit is asserted within the hit field, then the
process proceeds to step 505 to increment a counter K
(counter K was initialized to zero previous to the process
being implemented within FIG. 5). Thereafter, in step 506,
a determination is made whether or not K is greater than 1,
which would indicate that a bit has been asserted in the hit
field emanating from more than one of the sets of RA tag
arrays. As a result, an Error would be reported in step 507.
If K is not greater than one, then the process proceeds to step
508 to determine if there are still more sets of RA tag arrays
to test. If yes, the process returns to step S01. If not, the
process exits.
Although the present invention and its advantages have
been described in detail, it should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the invention
as defined by the appended claims.
What is claimed is:
1. A processor comprising a load/store unit having a
primary cache and adaptable for coupling to a memory
subsystem, the load/store unit further comprising:
a first set of real address tag arrays operable for correcting
effective address aliasing within the load/store unit;

first comparators for comparing a received real address to
real addresses in each of the real address tag arrays in
the first set;

first circuitry for determining if there is a hit in each of the

real address tag arrays in the first set as a result of the
comparing of the received real address to the real
addresses in each of the real address tag arrays in the
first set; and

first circuitry for reporting an error in circuitry associated

with the first set of real address tag arrays if the first
determining circuitry outputs more than one hit signal.

2. The processor as recited in claim 1, wherein the
circuitry associated with the first set of real address tag

US 6,640,293 B1

7

arrays includes the real address tag arrays and circuitry for
controlling the first set of real address tag arrays.

3. The processor as recited in claim 1, further comprising:

a second set of real address tag arrays operable for

correcting effective address aliasing within the load/
store unit;

second comparators for comparing the received real

address to real addresses in each of the real address tag
arrays in the second set;

second circuitry for determining if there is a hit in each of

the real address tag arrays in the second set as a result
of the comparing of the received real address to the real
addresses in each of the real address tag arrays in the
second set; and

second circuitry for reporting an error in circuitry asso-

ciated with the second set of real address tag arrays if
the second determining circuitry outputs more than one
hit signal.

4. The processor as recited in claim 3, further comprising:

third circuitry for reporting an error in circuitry associated

with either or both of the first and second sets of real
address tag arrays if both the first and second deter-
mining circuitries output a hit signal.
5. The processor as recited in claim 4, wherein the
circuitry associated with the first and second set of real
address tag arrays includes the real address tag arrays and
circuitry for controlling the first set of real address tag
arrays.
6. A method for discovering errors in a load/store unit
comprising the steps of:
comparing a received real address to real addresses in
each of a first set of real address tag arrays;

determining if there is a hit in each of the real address tag
arrays in the first set as a result of the comparing of the
received real address to the real addresses in each of the
real address tag arrays in the first set; and

reporting an error in circuitry associated with the first set

of real address tag arrays if the determining step
outputs more than one hit signal.

7. The method as recited in claim 6, wherein the circuitry
associated with the first set of real address tag arrays
includes the real address tag arrays and circuitry for con-
trolling the first set of real address tag arrays.

8. The method as recited in claim 6, further comprising
the steps of:

comparing the received real address to real addresses in

each of a second set of real address tag arrays;

determining if there is a hit in each of the real address tag

arrays in the second set as a result of the comparing of

the received real address to the real addresses in each

of the real address tag arrays in the second set; and

reporting an error in circuitry associated with the
second set of real address tag arrays if the determin-
ing step outputs more than one hit signal.

9. The method as recited in claim 8, further comprising
the step of:

reporting an error in circuitry associated with either or

both of the first and second sets of real address tag
arrays if both of the determining steps output a hit
signal.

10

20

25

30

35

40

45

50

55

8

10. The method as recited in claim 9, wherein the circuitry
associated with the first and second set of real address tag
arrays includes the real address tag arrays and circuitry for
controlling the first set of real address tag arrays.

11. Aload/store unit having a primary cache and adaptable
for coupling to a memory subsystem, the load/store unit
further comprising:

a first set of real address tag arrays operable for correcting
effective address aliasing within the load/store unit;

first comparators for comparing a received real address to
real addresses in each of the real address tag arrays in
the first set;

first circuitry for determining if there is a hit in each of the
real address tag arrays in the first set as a result of the
comparing of the received real address to the real
addresses in each of the real address tag arrays in the
first set; and

first circuitry for reporting an error in circuitry associated
with the first set of real address tag arrays if the first
determining circuitry outputs more than one hit signal.
12. The load/store unit as recited in claim 11, wherein the
circuitry associated with the first set of real address tag
arrays includes the real address tag arrays and circuitry for
controlling the first set of real address tag arrays.
13. The load/store unit as recited in claim 12, further
comprising:
a second set of real address tag arrays operable for
correcting effective address aliasing within the load/
store unit;

second comparators for comparing the received real
address to real addresses in each of the real address tag
arrays in the second set;

second circuitry for determining if there is a hit in each of
the real address tag arrays in the second set as a result
of the comparing of the received real address to the real
addresses in each of the real address tag arrays in the
second set; and

second circuitry for reporting an error in circuitry asso-
ciated with the second set of real address tag arrays if
the second determining circuitry outputs more than one
hit signal.

14. The load/store unit as recited in claim 13, further
comprising:

third circuitry for reporting an error in circuitry associated

with either or both of the first and second sets of real
address tag arrays if both the first and second deter-
mining circuitries output a hit signal.

15. The load/store unit as recited in claim 14, wherein the
circuitry associated with the first and second set of real
address tag arrays includes the real address tag arrays and
circuitry for controlling the first set of real address tag
arrays.

