PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/70505
GOGF 17/30 A1 _

(43) International Publication Date: 23 November 2000 (23.11.00)

(21) International Application Number: PCT/US00/05517 | (81) Designated States: AE, AL, AM, AT, AT (Utility model), AU,

AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, CZ

(22) International Filing Date: 2 March 2000 (02.03.00) (Utility model), DE, DE (Utility model), DK, DK (Utility

model), DM, EE, EE (Utility model), ES, FI, FI (Utility

model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,

(30) Priority Data: JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,

09/312,229 14 May 1999 (14.05.99) Us MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,

(71) Applicant: JUSTSYSTEM PITTSBURGH RESEARCH CEN-
TER, INC. [US/US]; 4616 Henry Street, Pittsburgh, PA
15213 (US).

(72) Inventors: KANTROWITZ, Mark; 5503 Covode Street, Pitts-
burgh, PA 15217 (US). BALUJA, Shumeet; 197 Newton
Street #5, Waltham, MA 02453 (US).

(74) Agents: BYRNE, Richard, L. et al.; Webb Ziesenheim Logsdon
Orkin & Hanson, P.C., 700 Koppers Building, 436 Seventh
Avenue, Pittsburgh, PA 15219-1818 (US).

RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ,
T™, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, F], FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN,
TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD FOR RULE-BASED CORRECTION OF SPELLING AND GRAMMAR ERRORS

(57) Abstract

A computer implemented method which does not require a stored dictionary for correcting spelling errors in a sequence of words
comprises storing a plurality of spelling rules defined as regular expressions for matching a potentially illegal n—gram which may comprise
less than all letters in the word and for replacing an illegal n—-gram with a legal n—gram to return a corrected word, submitting a word from
said sequence of words to the spelling rules and replacing a word in the string of words with a corrected word.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
ClI
CcM
CN
Cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho St Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia SZ Swaziland
Azerbaijan GB United Kingdom MC Monaco TD Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Ireland MN Mongolia UA Ukraine
Brazil 1L Israel MR Mauritania UG Uganda
Belarus 1S Teeland MW Malawi us United States of America
Canada IT Ttaly MX Mexico vz Uzbekistan
Central African Republic JP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway YAY Zimbabwe
Cote d'Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba Kz Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

WO 00/70505 PCT/US00/05517

10

15

20

25

30

35

METHOD FOR RULE-BASED CORRECTION
OF SPELLING AND GRAMMAR ERRORS

BACKGROUND OF THE INVENTION

Although the availability of interactive spelling
checkers is widespread, users do not 1like to use such
systems because they are tedious. Interactive spelling
checkers ask the user about any word that does not appear
in the dictionary, even though most such words are valid.
Such dictionary-based systems also do not detect valid word
errors where the user accidentally substitutes one word for
another. Even when the interactive systems do catch the
errors (e.g., when the error yields a word that is not
found in the dictionary), the first-guess accuracy is low,
forcing the user to select the correct word from among a
list of candidate alternatives. If the systems were to
select the top-ranked candidate correction for automatic
substitution, the low first-guess accuracy would mean that
more than half of the automatic substitutions would be
incorrect. Because of the extra effort involved and the
tedious nature of the user interfaces, many users decide
not to use interactive spelling checkers.

SUMMARY OF THE INVENTION

The present invention addresses these problems

with known interactive spelling checkers. Since it has
near-perfect first-guess accuracy, it can automatically
correct errors as the user types without introducing new
errors. It shifts the emphasis from recognizing wvalid
words to recognizing errors. Identifying the nature of the
error often allows correction of the error, even if there
is no similar word in the valid word dictionary. Although
there are existing systems based on dictionaries of common
spelling errors and their associated corrections, these
systems are 1limited to recognizing only the errors
explicitly listed in the dictionary. The typical error
dictionary contains about a thousand of the most common
errors. The present invention presents a rule-based method
for detecting and correcting spelling and grammar errors.
The invention is not guaranteed to catch all errors, but

those that it does correct are extremely likely to be

WO 00/70505) PCT/US00/05517

10

15

20

25

30

35

genuine spelling and grammar errors. A variation of this
invention for handwriting recognition and optical character
recognition (OCR) improves the recognition accuracy of such
systems.

A "regular expression" 1is a computer programming
construct that comprises an n-gram template to be matched
against a string of characters in a woxd. The n-gram
template string may comprise less than all characters in
the word. Matching the string either succeeds or fails.
A matched pattern may cause addition, deletion,
transposition and/or substitution of characters in the
word. The n-gram template may comprise alternative
characters, wild card characters and position indicators.

Briefly, according to one embodiment of this
invention, there is provided a computer implemented method
which does not require a stored dictionary of valid words
for correcting spelling errors in a sequence of words. The
method comprises the steps of storing a plurality of
spelling rules defined as regular expressions for matching
a potentially illegal n-gram which may comprise less than
all letters in the word and for replacing an illegal n-gram
with a legal n-gram to return a corrected word. A word
from the sequence of words is submitted to the spelling
rules. If a corrected word is returned, it is substituted
for the misspelled word in the sequence of words. The
method may comprise submitting a corrected word to at least
one additional rule.

According to another embodiment of this
invention, there is provided a method of correcting both
spelling errors and grammar errors. The method comprises
storing a plurality of spelling and grammar rules defined
as regular expressions given the context of one or more
adjacent words. At least two adjacent words at a time from
the sequence of words are submitted to the rules. If a
corrected word or sequence of corrected words is returned,

it is substituted in the sequence of words.

WO 00/70505 ’ PCT/US00/05517

10

15

20

25

30

35

Preferably, an exception list is associated with
each regular expression or with the system as a whole to
prevent n-gram replacement where the word matches an
exception to the rule. Preferably, the spelling rules
match potentially illegal n-grams comprising two or more
characters. More preferably, the spelling rules recognize
and correct complex types of errors in addition to simple
insertions, deletions, substitutions and transpositions.

Applications of the methods disclosed herein
include word processing programs that automatically correct
errors as the user types, word processing programs with
batch spelling correction, optical character reader
programs and automatic handwriting recognition programs.

Most preferably, the methods according to this
invention include storing spelling rules using multiple
words 1in context to identify spelling errors, confusable
words and common grammar errors to identify a unique
correction from more than one possible correction or word
boundary errors comprising missing spaces, inserted spaces,
shifted spaces and combinations thereof.

According to a preferred embodiment, the stored
rules include constraints based on case restrictions, parts
of speech, capitalization and/or punctuation appearing
within the sequence of words.

The methods according to this invention may also
include a step for generating potential spelling rules
defined as regular expressions comprising selecting as
templates letters from errors in an error corpus and zero
or more letters of context to identify a set of potential
rules and the pruning from the set of potential rules those
that are too general, too specific or do not identify the
cause of the error. New rules may be generated based upon
the user's manual corrections.

A further embodiment of this invention comprises
a word completion method that 1is context sensitive
comprising the steps of storing a plurality of word

completion rules defined as regular expressions for

10

15

20

25

30

35

WO 00/70505 ’ PCT/US00/05517

matching an n-gram which may comprise less than all letters
in the word and for replacing a matched n-gram with an n-
gram to complete the word given the context of one or more
preceding words. The previous word and n-gram comprising
the initial letters of a word being typed are submitted to
the rules. If a rule is fired, the word being typed is
completed automatically.

The present invention goes beyond the state of
the art by recognizing more than just isolated whole-word
errors. It uses rules that recognize error patterns and
their associated corrections. An error dictionary that
contains only whole words can correct only as many errors
as are listed in the dictionary. The rules used by the
present invention can each correct numerous common errors
without reference to a valid word dictionary. 1In essence,
the present invention is not just recognizing the error,
but also recognizing the cause of the error. This yields
much more productive rules and, hence, a more powerful
system.

The rules used by this invention are implemented
by use of regular expressions, case-restriction flags,
space deletion, insertion and shifting, and multiple words
of context (including not just whole words and parts of
speech, but also regular expressions). This allows the
system to correct errors in a context-sensitive fashion,
correct word-boundary errors and correct many valid word
errors. The present invention can also correct many
grammatical and lexical choice errors.

Regular expressions used by this invention
include not just sequences of alphanumeric characters and
start-word and end-word flags, but also more abstract
patterns, such as left and right handedness of the letters,
sets of 1letters, and the letter that corresponds to
toggling another letter's shift Dbit. The regular
expressions are not limited to just the letters involved in
the error, but can optionally include multiple letters of

context on either or both sides of the error. The regular

WO 00/70505 ' PCT/US00/05517

10

15

20

25

30

35

expressions are constructed to contain just enough context
to uniquely identify the nature of the error and hence the
corresponding correction. This means that the rules
generalize beyond the specific examples that motivated the
rule, but are not so general as to introduce new errors
into correctly spelled text. It also means that the rules
are not limited to single insertions, substitutions,
deletions and transpositions, but can also handle other
types of errors. It can handle transpositions of letters
around one or more letters, such as the transposition of
consonants around one or more vowels or the transposition
of vowels around one or more consonants. The regular
expressions are not limited to bigrams or trigrams, but can
be n-grams of any length. The determining factor is the
length needed to wuniquely identify the correction, not
blind selection of all n-grams of a specific length.

The rules used by this invention are
bidirectional. Normally, the only use for bidirectional
rules would be to randomly introduce natural-seeming errors
into correct text. However, the bidirectional rules are
useful for ‘'correcting" between British English and
American English without requiring a separate set of rules
for each direction. If the user specifies that he/she is
writing British English, the system simply runs the rules
that correct British English to American English in
reverse.

Rule-chaining allows multiple errors to be
corrected by multiple rules, as well as more complex
spelling conventions to be represented by several rules.

The combination of multiple constraints improves
the quality of the system. For example, f/v replacement
would normally replace the word "knife" with the word
"knives" when adding the suffix "s". But when "knife" is
used as a verb, the word "knifes" is acceptable. Thus,
whether the rule identifying "ifes" as an error should
apply depends on the imputed part of speech of the affected
word.

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

The rules used by this invention may include
lists of exceptions which may themselves be regular
expressions in addition to whole words. This often yields
a significant reduction in the number of rules. It also
makes it easier for the user to override the operation of
the system for particular words.

In the following examples of rules, the §
character signifies end of word and the ~ character
signifies start of word. Any exceptions are listed after
the rule 1in parentheses, delimited by commas. Square
brackets indicate that any of the enclosed characters can
appear in the given position, conflating what would
otherwise be several rules.

mnet$ — ment

fuly$s — fully

“ht = th (html, http)

ierd = eird

eif$ — ief

the another = the other

corect = correct

its a = it's a

“a$ " laeio] — an ("a$, “one$, “one-)

away form — away from

at there — at their

of of = of

their seem -* there seem

Note that the "mnet" rule is restricted to words
whose last four letters are "mnet", whereas the "ierd" rule
can include words in which "ierd" appears in the middle,
such as "wierdly". Even the rule involving the misspelled
word "corect" 1is general because it not only covers the
pair mapping corect to correct, but also the rule will
match and correct many more spelling errors, such as
"corectly", "corected", "corection' and so on. If one
wanted to restrict this rule to matching only whole words,

one would specify the constraint as "“corects$". Also note

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

the "of of" rule, which corrects a common example of
repeated words. Other spelling checkers flag any example
of repeated words, even though "nine one one" is not an
error. The purpose of these rules is to only include
errors that are certain to be incorrect, not flag all
possible errors.

The present invention does not correct all errors
since some errors do not unambiguously specify their
correction, even given context information. In such cases,
rules may generate multiple candidate substitutions and
allow the wuser to choose from among the candidate
corrections. In any event, the present invention can be
used in combination with traditional interactive spelling
correction systems. One way is in parallel. The other way
is where the correction proposed by the present invention
is 1listed first in the set of candidate corrections
proposed by the interactive correction system. If the user
should choose not to wuse the interactive spelling
correction system, the automatic spelling correction system
will at least have improved the quality of their writing
somewhat. Given the realities of user boredom and the
tedious mnature of batch spelling correction systems,
automatic spelling correction will improve spelling
accuracy.

According to another embodiment, the present
error correction method can learn from the user's own
corrections. When the system detects the use of deletion
or transposition or insertion followed by or preceded by
cursor movement, it records the word before the correction
as well as the result of the user's correction. In cases
of multiple insertions, deletions and transpositions, it
waits until cursor movement moves outside the word to
initiate learning. If the error resulted from the action
of the automatic correction system (i.e., the user undid
the effects of the automatic correction), the system adds
the word to an exception list for the rules that generated

the error. When the exception list for a rule grows too

WO 00/70505 PCT/US00/05517

10

15

20

25

30

35

large, it triggers the rule induction system to refine the
rule. If the user did not undo a correction, the system
applies the rule induction system to generate a new rule to
address the error and similar errors in the future. Thus,
the system can adapt to the user's own typing habits.

According to yet another embodiment, the present
method may also learn from the user's behavior in using the
interactive correction system. If the user made the same
error multiple times and always chose the same correction
for the error, the system may be configured to ask the user
whether it can add the error-correction pair to the
automatic correction system. If the user agrees, this will
trigger the rule induction system.

Rule Generation

A key to the effectiveness of the present
invention 1s how the rules are produced. A large
collection of spelling and typing errors made by real
people in a natural setting has been gathered. The initial
set of rules were then written by hand, often inspired by
specific examples from the error corpus. The rules were
tested in various ways before being added to the code. For
example, a rule was run on an 80,000 word dictionary to
verify that it does not introduce errors into valid words.
If there are any exceptions, they must be added to the rule
or the rule discarded.

New rules, however, may be generated
automatically by one of two methods. The first method
tries to find the rule that maximally matches the error
corpus while minimizing the number of exceptions. The
second method is somewhat more cautious in the
generalizations it accepts, requiring rules to Dbe
statistically representative of the error corpus from a
generative perspective. This means that applying the
inverse of the rule to the dictionary should yield spelling
errors with a similar distribution to that of the corpus.
For example, the first method generated the rule

atii — ati

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

to account for errors like "inspiratiion" and
"generatiive". All of the errors in the error corpus that
match "atii" end in "ation" or "ative". Applying the

inverse of this rule to the dictionary, however, one finds
that only half of the errors generated by the inverse rule
end in "ation" or "ative". This suggests that although the
rule matches all of the errors, it generalizes beyond the
cause of the spelling error. One needs to add additional
context characters to the rule in order to limit it to just
the cases that reflect the nature of the error. Caution is
needed in developing rules for an automatic correction
system because no dictionary can be complete. For example,
most dictionaries do not include personal and family names.
The present invention is able to correct spelling errors in
names without introducing any new errors. It is desired to
minimize the likelihood of a rule causing an error while
still maximizing the number of errors it can correct. In
an interactive correction system where one wants to
identify possible errors without 100% first-guess accuracy,
the first of the two systems is to be preferred because of
the greater generality of the rules it generates.

In the first rule-design method, each error from
the error corpus generates many potential rules by
including zero or more characters on either side of the
point of the error. Each time a character is added on the
left-hand side of the rule, the corresponding character is
added to the right-hand side of the rule. For the purpose
of rule generation, rules are thought of as simply a
multiple-character substitution pair. This encompasses all
major types of spelling errors, including insertions,
deletions, transpositions, transpositions around a
character and, of course, substitutions. For example, the
transposition "ie" becoming "ei" after "c" can be
represented as the multiple-character substitution "cie"
— "cei". Similarly, the deletion of "e" in "geing" can be
represented as the multiple-character substitution "geing"

= "ging". Rules can have wildcards, negation and

10

15

20

25

30

35

WO 060/70505 PCT/US00/05517

disjunction, but this is not handled in the initial
rule-generation phase.

Since different errors may generalize to the same
sets of rules, duplicate rules are eliminated. Rules are
also eliminated according to several heuristics. The
number of times the left-hand side of the rule matches
errors in the error corpus is examined. If more of the
matches would fail to correct the error than successfully
correct the error, the rule is discarded. This heuristic
is equivalent to requiring the ratio of successful to
unsuccessful firings in the error corpus to be greater than
1, or that the unsuccessful firings represent no more than
50% of the total matches in the error corpus. This latter
figure is a tunable parameter. In some sense, it reflects
the precision of the rule in correcting errors correctly.

The left-hand and right-hand sides of the rule
are compared with a large dictionary. If the left-hand
side appears more frequently than the right-hand side, the
rule is discarded. This would mean that the rule has more
exceptions than potential corrections and hence is not a
very productive rule.

If the number of times the rule successfully
matches and corrects an error in the error corpus is too
low, the rule is discarded. The goal of this heuristic is
to have rules that successfully account for as much of the
error corpus as possible (i.e., maximize the rule's
coverage of the corpus). Given that the corpus represents
a sample of the distribution of errors in real life, rules
that match more of the corpus will fire more frequently.
This effectively minimizes the number of rules required to
correct as many errors as possible. It also maximizes the
likelihood that the rules reflect general types of errors,
instead of just memorizing the specific errors found in the
error corpus.

If the number of times the right-hand side of the
rule matches words in the dictionary is too low, the rule

is discarded. The goal of this heuristic is to have rules

- 10 -

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

that can potentially correct a very large number of
possible errors. After all, if a rule can correct only one
potential error, it would be better to list that error
explicitly than to use a rule.

If the number of times the rule matches the
errors in the corpus but fails to successfully correct the
error 1is too large, the rule is discarded. The goal of
this heuristic is to obtain rules that pinpoint the nature
of the error precisely. Failing to correct errors
successfully is an indication of a poor quality rule. A
rule that makes many mistakes will require not just
exceptions that correspond to words in the dictionary, but
also exceptions that correspond to errors. The number of
such exceptions should be minimized to zreduce the
complexity of the rules.

If the number of times the left-hand side of the
rule matches words in the dictionary is too high, the rule
is discarded. The goal of this heuristic is to minimize
the likelihood that the rule will introduce errors into
words that are correct. Such words must be included in an
exception list for the rule, and such exception lists must
be kept short. If the exception list is too long, it is an
indication of a poor gquality rule. This effectively
minimizes the number of exceptions to the rules.

If the left-hand side of the rule matches the
right-hand side of the rule, it is discarded. The reason
for this heuristic is that such rules match the results of
applying a correction, and so will not terminate if applied
iteratively. Such a rule would have to include the right-
hand side on its exception 1list. (This heuristic is
redundant because such rules will fail the second heuristic
listed above.)

If two rules correct the same collection of
errors, the rule with the lower ratio of exceptions to
right-hand side dictionary matches is preferred. The
purpose of this heuristic is to eliminate rules that are

too general.

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

It is important to limit the number of rules in
applications where memory is at a premium, such as hand-
held computers like the "Palm Pilot". The "Palm Pilot" has
only 1Mb of memory, so we had to limit the number of rules
to fit in about 5%-6% of the memory. (A dictionary based
spelling correction system would require 1Mb just for the
dictionary.)

After the rules are pruned, a fixed number "n" of
the rules will be selected. The goal is to select the
n-element subset of rules which maximizes the coverage of
the rules (the number of error-correction pairs accounted
for in the error corpus) while minimi%ing the number of
exceptions. This is accomplished using stochastic search
methods.

Another rule-design method comprises optimizing
a different measure of rule collection quality, such as
maximizing the dictionary coverage of the right-hand side
of the rules while minimizing the number of exceptions or
minimizing zrule length, or maximizing the error corpus
coverage of the left-hand side of the rule. Another rule-
design method comprises using a greedy algorithm to
incrementally add rules to the collection based on their
incremental impact on collection quality. As errors are
added tc the error corpus, they are examined to determine
what rules, if any, should be added to the rule collection.
If a rule does not fail any of the pruning tests and
increases the dictionary coverage of the collection without
adding too many exceptions, it is added to the collection.
In other words, if a new rule is of sufficient quality and
does not overlap too much with the current rule collection,
it ig added to the collection. The shortest rules are most
preferred.

The second rule design method is similar in
design to the first method but adds a few more pruning
rules. The number of times the right-hand side of the rule
matches corrections in the error corpus is examined. The

rule is inverted and applied to the correction to generate

- 12 -

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

an error which is then ccmpared with the actual error. If
the ratio of the number of times the generated error
matches the actual error to the number of times it does not
is less than one, the rule is discarded. This 1is

equivalent to requiring the rule to account for at least

50% of the corrections :t matches in the corpus. This
latter figure is a tunable parameter. In some sense it

reflects the degree to which the rule is a generative
explanation for the source of the error (i.e., a measure of
the degree to which the error distribution in the error
corpus reflects the action of the rule).

Rules are evaluated by comparing them with the
result of adding a character of context to either side of
the patterns. Three sets are formed. The first set
contains all dictionary words that match the right-hand
side of the rule. The second set contains all errors that
match the left-hand side of the rule. A subset of the
first set is obtained by examining which letters appear one
character to the left of the left-hand side pattern in the
words in the second set, and finding all elements of the
first set that match the extended patterns. These elements
are joined by the words in the first set that match the
characters that appear one character to the right of the
left-hand side pattern in the words in the second set.
Together these words form the third set. 1If the ratio of
the number of elements in the third set to the number of
elements in the first set is less than 75%, the rule is
discarded as being too general. 1In essence, this heuristic
measures the generative coverage of the rule relative to
the dictionary, requiring the distribution of errors in the
error corpus to be close to the distribution that would be
predicted by applying the inverse of the rule, at least in
an aggregate sense. If there is a large (more than 25%)
group of dictionary words whose corresponding errors do not
have representatives in the error corpus, this suggests
that the rule does not correctly account for the cause of

the errors by generalizing the errors too much.

- 13 -

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

This method can also provide a deterministic
procedure for generating a rule from an example error. One
starts with the smallest possible rule and adds characters
to the 1left and/or right of the pattern (e.g., via a
dynamic programming algorithm) until the resulting rules
are no longer discarded as unacceptable. This gives a
"fringe" of possible rules that can be evaluated by the
rule preferences described above.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The use of regular expressions to detect and

unambiguously correct spelling and grammar errors with very
high accuracy is not limited to just the letters involved
in the error, but may include any number of letters of
context on either or both sides of the error. Not only can
this method recognize and correct the traditional types of
errors (e.g., single insertion, deletion, substitution and
transposition errors), but it can also recognize and
correct more complex types of errors, such as long distance
transpositions (e.g., transposition of two consonants
around a vowel and two vowels around a consonant, as well
as Spoonerisms) and cyclical letter shifts (e.g., movement
of a letter forward or backward two or more positions, as
in "bwackard"). The regular expressions may include
n-gramg of any length and are not restricted to n-grams of
a specific length. Regular expressions may be used to
recognize exceptions to spelling and grammar correction
rules. Multiple words of context may be used to identify
and automatically correct wvalid word spelling errors,
confusable word errors, such as its/it's, and common
grammar errors. The use of multiple words of context may
be used to identify and automatically correct nonword
spelling errors where the correction would normally be
ambiguous. The use of additional context allows the system
to restrict the possible corrections to a unique
correction. The use of multiple words of context may also
be used to identify and automatically correct word boundary

errors, such as missing spaces, inserted spaces and shifted

- 14 -

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

spaces. The rules may include other constraints, such as
case restrictions, parts of speech restrictions (e.g.,
"knifes" is corrected to "knives" only when the word is a
noun, not when the word is a verb) and restrictions on the
types of punctuation which may appear between the words
(e.g., sentence and phrase-final or not).

One method of generating regular expression rules
for spelling correction uses the errors in an error corpus
and one or more letters of context to generate potential
rules and then uses a variety of heuristics to prune rules
that are either too general (i.e., which include wvalid
words within their scope), too specific (i.e., which do not
include many similar errors within their scope) or which do
not reflect the underlying cause of the error (i.e., which
generalize the errors in a fashion which might lead the
rules to introduce errors into novel words not present in
the dictionary that was used to generate the rules).

The regular expressions may include not Jjust
specific letter patterns and word boundary identifiers
(e.g., word start and word end), but more abstract patterns
such as: the keys adjacent to the letter "s", the letters
typed on the left hand, the letters in the middle two
columns of the keyboard, the gemination consonants (letters
than can be doubled) and the letter which results from
toggling another letter's shift bit (e.g., the digit 9
appears on the same key as the left parenthesis).

The rules may be bidirectional. This allows the
rules to be run in reverse. One application 1is the
generation of error-filled text. Another application is
correcting British English to American English and vice
versa, without requiring a separate set of rules for each
direction. Word completion can be thought of as a
specialized application of spelling correction. Although
there is considerable prior art for word completion, there
is no prior art for context-sensitive word completion where
one or more words of context can be used to identify the

unique completion when the word fragment would otherwise be

- 15 -

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

ambiguous if taken in isolation. Likewise, there is no
prior art for phrase completion where a word fragment (or
even whole word or words) is replaced with a phrase. Both
of these applications are easily represented within the
framework of this invention. The rules may be executed in
parallel or serial order. The present invention allows for
any number of rules to be executed, allowing multiple
errors to be corrected in the same word, as well as
allowing more complex errors to be decomposed into simpler
rules.

Where there is not a unique correction, context
ig used to reduce the number of candidate corrections
and/or the hard-coding of a list of candidate corrections
for the most common spelling errors. The prior art
generates a list of candidate corrections based on general
methods that yield unlikely corrections in addition to the
actual corrections. Hard-coding the candidate corrections
for the most common spelling errors with ambiguous
corrections will yield a spelling correction system that
seems more accurate to the user because it eliminates the
spurious choices. Standard methods of candidate generation
may be used to provide an initial list and add missing
words and delete spurious words from the list, as well as
fixing the order of the words in the list. The user's own
manual corrections to the text of the document may be used
to generate correction rules.

The present invention uses patterns that match
not Jjust the actual error, but sufficient context to
provide certainty that the potential error is indeed an
error. This permits the present invention to unambiguously
determine the correct alternative so that the rules may
execute automatically as the user types. The present
invention also allows other attributes and constraints in
addition to whole words and parts of speech, such as case
restrictions, the existence of sentence and phrase final

punctuation, space deletion for multiple-word rules and a

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

list of exceptions for each rule. The exceptions may be
specified as regular expressions and as whole words.

This makes the present invention more powerful
and compact than other spelling correction systems. For
example, only 30 zrules are necessary to correct the
differences Dbetween British and American spelling
conventions. This requires significantly less space and
executes much faster than a system which lists all of the
more than 8,000 word pairs.

The invention described herein has been
implemented in LISP source code. LISP is a well-known

language which is described, for example, in LISP Second

Edition by Patrick Henry Winston and Berthold Klaus Paul
Horn, Addison-Wesley Publishing Company (1984). The
source code includes over 850 lines of code, over 550 lines
of regular expression rules and over 20,000 lines of single
and multiple word rules. What follows is a brief guide to
the major functions that execute corrections including a
short explanation followed by the actual LISP code.
AUTOCORRECT is a function that grabs a copy of
the immediately preceding words and passes them to the
correction code. The correction code will return new
corrected words if the preceding words need to be
corrected. If so, AUTOCORRECT substitutes the new words
for the original words in the text.
(defun autocorrect (&optional char)
;; This function grabs the word and passes it to the
correction code.
;; If the correction code changes the word, it
substitutes the new word.
(interactive)
(if autocorrect-mode
(if (and *undid-correction* (not
allow-redo-of-undos))
(setqg *undid-correction* nil)

(let ((position (point)))

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

; ; Reset the flag to indicate that no correction has
been made.
(setg *made-correction* nil)
;; The call to word-end must be before the call to
word-start.
;; We set END to the minimum of the position and
word-end to
;; have it work correctly if you type a space inside
a word.
(let* ((end (min position (word-end)))
start (word-start))
word (bufstring start end))

prev-end (prev-word-end))

(
(
(
(prev-start (prev-word-start))
(prev (bufstring prev-start prev-end))
(replacement nil)
(prev-replacement nil)
tmp)
;; The purpose of this is to have a quick response
time when
;; all we're doing is hitting the spacebar to tab
over. We only
;; want to do the corrections when we hit the
spacebar within
;; or near the end of a word.
(if (space-situation position end)
(setqg replacement nil)
(setq replacement (corrected-replacement word
prev)))
;: (setqg replacement (verifier woxrd))
(if (consp replacement)
(progn
(setq tmp replacement)
(setg replacement (car tmp))
(setq prev-replacement (car (cdr tmp)))))
;; (setqg replacement (verifier replacement))
(

if replacement

5

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

(setqg position
(replace-region start end replacement
position t
(string-equal word
replacement))))
(i1f prev-replacement
(setqg position
(replace-region prev-start prev-end
prev-replacement
position nil
(string-equal prev
prev-replacement))))
(if (or replacement prev-replacement)
(setqg *made-correction* t)))
(goto-char position))))
(if (and char (char-equal char 10))
(insert-char 10 1)
(self-insert-command 1)) ; (insert " ")
(if *highlight-corrections*

(unhighlight-region (- (point) 1) (point)))

CORRECTED-REPLACEMENT. This function is called
by AUTOCORRECT to attempt a correction. First, it looks
for case errors, such as those that might result from a
failure to release the CAPSLOCK key (e.g., typing "tHIS"
instead of "This"). It then corrects single-word errors
resulting from slang usage, British English usage, multi-
word errors and common spelling errors. Finally, it
applies the spelling correction rules.

The following variables contain the indicated

rules:
slang-corrections Slang
uk-vs-us British Spelling
multi word-corrections Multiple Word Errors
autocorrections Common Spelling Errors
missing-spaces Word Boundary Errors

5

WO 00/70505 PCT/US00/05517

spell-rules Regular Expression Rules
uk-vs-us-rules Regular Expression Rules

for British Spelling

The last two variables are of the greatest
interest. The CORRECT-REPLACEMENT code follows:

PCT/US00/05517

(suotiosaaoo-buers juswsdoeTdsa xpPIOM-3D8II0D03NER) JO)

JuswaoeTdax bass)
xbueTs-309xI100% IT)

i1
. .

buets

soIny ‘paoyM orburs ‘paom TIINW ‘ystitag ‘bBuers ¢!
9 pInoys Ispao a[nI TeoTuourd 3Yyg, ‘¢

({((((a[nssx ssed-psjosaaod bjiss) 3nssax IT)
(((paom sIOIID-95eD-XTJ) 3JITNSax)) 2IST)
(((TTu 3porsded-asxd-paxT] bises)
((3Tnssx sseo-pe3oaaxod biss)
(3 porsdeo-asad-paxt] baes)
uboxd)
3TNsax IT)
(((dooTsdeo-asad-poxT1I paom oolsdeo-xXTJI) JInssx)) 1I9T)
| uboxd)
*»98BD-XTJIx JT)
(esen-po3081I00
(((a2xd sseo-Teutrbtao) asad JT) asxd-ssed-Teurbrtao)
((pxom osed-Teutbrio) osed-Teulbrao)
(TTu juswepeidsx-asaxd)

0¢

ST

(O

21

SUBSTITUTE SHEET (RULE26)

WO 00/70505

(paom juswsdeTdax)) 3I9T)

*UCT3D2II0OD Tenjoe a9yl sS:O0p uorljdounl] STYL

(aexd Teuotridoxn piaom) JuswedeTdeI-pPa3O8IIO0D UNISP)

PCT/US00/05517

WO 00/70505

(((saTna-sn-sa-3n juswsdeTdax ssoTna-Trads-93nooxs) juswadeTdsx bies)

xPUTTT9ds-ysT31Iq-3091I00% IT)
seTny burrrads ystatag ‘! 0c¢

((seTna-T1ods juswedeTdax ysaTna-TIads-sanosxs) jJuswsdeTdsa biss)

saIny butrrreds ¢!

((3uswsopeTdax
((suoT3oaxaonoine juswsdeTdal UOTIDIAXCD-PUTT)

juswsoe1dal spIom-3D8IIODOINR) IO) GT \
jquawadeTdax bijss)

22

SUBSTITUTE SHEET (RULE26)

piom o1butrg !! \
((((((dwy apo) xeo) jusweoeldsa-asaxd biss)

((quswaoeTdax (dw3 xed) xo) 3JuswedeTdsa biss)
uboxd) 0T

dwy 3IT)
(((suoT3oexzoo-paom TaTnu Asxd juswsoe(ds pIiom TITnw-3081100) dwl)) 2I97)
sxoxxd pxoMm STdI3ITNW XTq ¢!
({ (auswadeTdsa
(sn-sa-3n juswedeTdsl ypPIOM-3D2II0D0INE) IO) =
JqusweoeTdax biass)
xBUTTT2dS-UsTATIq-2309II0Dx IT)
Butrrreds ystatag ‘!

(((3uswaoeTdax

PCT/US00/05517

WO 00/70505

(((qusweoeTdax
(SuoT3081I00-28eDd juswadeTdsa piom-30a1I009seD) I0) Juswade(dsa biss)
#»O8BD-XTJIx JIT)
ase) sweN XT4q ¢/
((Juswsoerdax
(seoeds-HurssTw JusawadeTdsl ypIom-3oaxxooolne) I0) Juswsderdsa biss)
gooeds BUTSSTW XTd ¢!
(((((3uswederdax-asad ((dwiy apo) xed) a10) Juswsoeldsx-asaxd biss)
((3uswedeTdax (dwy aed) xo) juswsoeTdsa biss)
uboad)
dwy 37T)
(((sUOT]1D3IIOD-PIOM TITNW
(aoxd juswedeTdax-asad xo) jusweoeTdsx piom TiTnw-3o9xxod) dwl)) 39T)
uteby sioxaxg pIoM STAIITDW XTg ‘!
(((quswooeTdax
(sn-sa-3n juswedeTdsal xPIOM-3D2II0D0INR) IO)
Juswsoeidax bjos)
xBUTTT2ds-ySTITIQ-309IX00x IT)
uteby UOTIDAIAOD YsSTATag oTburs ‘!
((quswedeTdsa
((suot3daxxooolne juswsdeTdsI UOTIDSIIOD-PUTT)
JusweoeTdal xpIOM-3D3IIOD03INE) IO)
quaweoeidax bjss)

1

‘utebe uoT3INDL8IIOD pIom STHUTS !

0c

ST

0T

23

SUBSTITUTE SHEET (RULE26)

PCT/US00/05517

WO 00/70505

(((3usweoetdsa

(3uswedeTdoa-asxd juswsoeTdax 3ISTT)
juswadeTdax-asaxd 3IT)

[
. .

S3Tnsaax uanisy

((TTu juswsoeldsx biss)

(paom juswsoeidsx Tenbs-Hutias) IT)

(((adad-oseo-Teutrbrao juswederdax-asxd Asid 9seD-3D9II00D)
JjuswasoeTdax-asaxd bijes)

juswadeidsi-aaxd IT)

((((oseo-TeUTbTIO

98BD-PO]1D9XI0D I0) JuswadeTdsI PIOM SSED-]3D9II0D)

(((qusweopeTdsx utjerbtd)

juswsoeTdsx bijss)
juswaoeT1dax JIT)

jusweoeTdax bjss)
spow-utierbrd JT)

0T

24

SUBSTITUTE SHEET (RuLE2)

WO 00/70505 PCT/US00/05517

AUTOCORRECT-WORD is used to correct single word
errors, such as slang, British spelling and common spelling
errors. These rules are simple word-for-word
substitutions. As we generate regular expression rules, we
delete the word-for-word substitutions that match the
regular expression rules. The AUTOCORRECT-WORD code

follows:

PCT/US00/05517

WO 00/70505

((punog

(((aybtx punojy bass)

((paxom 3391 TOo-Tenbs-butxils)

(paom 3397 Tenbs-Butiaigs)

9ATITSUSS-9SED JT) IT)
i

(paxom 23387 To-Tenbs-butxjs) sem 3so3 !
SATJ}TSUS-988D

((((xTed IPD) IpPDO) IED)

I

((xTed xpo) aeod) 3ybta
(xted xeo) 33zs1 bass)

((SUOT3D3IX0D IPD) SUOTIDBIIOD

(suotjzosxxoo xed) ated bjes)

((pUnoj 30U) SUOTJDSIAOD pue) IJTTYM)
(®AT3TSUSS-3SED puUnoj

(8UOT1D8IIOD PIOM)

dwy quybTta 3397
ated) 2397)

PIOM-3D8I1I0003NEe Uunjsp)

((((3Tnsax

(suoT3oaxaod j[nsax pIom-3D3110003Nk) I0)

((pxom 3Insax Tenbs-burals)

Jnsax

(3[nsax jou) I0) IT)

(((SUOT3D2IIOD PIOM PIOM-]DIIIOCDOINER) 3JTNS3X)) 2IST)

(SUOT3D9II0D PIOM)

xPIOM-3D21I0D03NE UNJap)

oc

ST

0T

26

(RULE26)

=
LT

SUBSTITUTE SHE

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

CORRECT-MULTIWORD is used to correct multiple
word errors. It iterates over the list of rules, looking
for rules that match the current and previous word. If
there is a match, it applies the rule toc correct either or
both words (as indicated by the rule). The format of the
rules is as follows: ((ptest wtest regexp-test exceptions)
(prepl wrepl delspace) case-sensitv); "ptest" and "wtest'
are tests applied to the previous and current word;
"regexp-test" is a boolean that specifies whether ptest and
wtest are compared using simple string equality or using a
regular expression match. (If nil, string-equal is used;
if T, regular-expression match function string-match is
used.) '"string-equal" is provided since some rules do not
require the full complexity of regular-expression match.
"exceptions" 1is a list of exceptions to '"wtest". The

exceptions are always compared using a regular expression

match. '"prepl" and "wrepl" are strings used to replace the
previous and current word. If specified as "", the word is
deleted. If specified as nil, the word is left alone.

"delspace" is a boolean that indicates whether the space
between the previous and current words should be deleted.
"case-sensitv" 1s a boolean that indicates whether the
rules are case sensitive or case insensitive. Here are
examples of actual rules. The first rule shows how a
regular expression multi-word rule can be used to perform
name completion. Using this rule, typing a first name and
the first three (or more) letters of a last name, the rule
replaces the latter with a full last name when the spacebar
is touched. The =~ symbol in the rule is from a regular
expression syntax, and specifies that the letters Kan must
be at the beginning of the word. The t indicates a regular
expression rule, the () indicates no exceptions. The nil
indicates that the space between the first and last names
is retained:
(("Mark" ""Kan" t ()) ("Mark" "Kantrowitz" nil))
A simpler rule can be used to correct errors

involving loose/lose.

10

15

20

WO 00/70505 PCT/US00/05517

(("loose" "work") ("lose" "work"))

Similarly, a set of six rules relates to the
its/it's distinction.

(("its™ "a") ("it's" "a")) ; 224 examples
(("its" "the") ("it's" "the")) ; 88 examples
(("its" "an") ("it's" "an")) ; 24 examples
(("its"™ "that") ("it's" "that")) ; 10 examples
(("its" "there") ("it's" "there")) ; 7 examples
(("its" "here") ("it's" "here")) ; 2 examples

The comments after each rule indicate the number
of examples of this error found in a corpus containing
about 2,000 uses of its or it's.

For a more complex rule, look at one of the rules
for correcting a/an errors:

((""ans$" """ ["a"e”i"o”™u"hl" t (""HS$" ""honestS$" "“honor"
"“hour" ""“heir$" "“herb")) ("a" nil))

This rule says that the word "an" followed by a
word beginning with a vowel or letter h, except where the
word that follows is a single letter or one of a small set
of exceptions, is replaced with the word "a". The CORRECT-
MULTIWORD code follows:

- 28 -

PCT/US00/05517

(AjTSUSS-98EBD Amommmﬁmv 1deam Tdsad)

1

((suot3deoxs paom Isquaw) 3jou) sem !!
(((3so3d asxd To-Tenba-butais)
(3so3m paom To-Tenbs-butals) pue)
((3s93d asxd Tenbs-butiags)
(asa23m paom Tenbs-butxas) pue)
SAT3TSUSS-28eD JTI) IT)

((((®Inx apd) IpDd) IED) SATITSUSS-95ED
(((((dTnx xpd) IeD) IPD) IAPO) Ied) 2dedsSTap
({(((eTnax apo) aed) apo) Ied) Tdsam
(((dTnx apo) aed) xeo) Tdsad
(((((3Tnx xed) Ipd) Ipo) Ipd) Ied) suorizdedxs
((((2Tnx xed) apd) aIpd) xed) 3s93-dxsbax
(((Tnx aed) IPD) IEBD) IS2IM

((@1Tnax aeo) xeo) 3sa3d bass)

(suotrydeoxs 3saj-dxeboax 3seo3m 3saad)) ¢!

ST jewxoy ‘!

0c

m&
e

i

ST ' ﬁﬂm
w W&

&

3

0T h

WO 00/70505

((seTnx apo) so(nx baiss)
((seTnx xeo) a1nx bass)
((punoj jou) sSSINI pue) STTUM)
asxd IT)
(9AT3TSUSS-9seD soedsTep Tdexd 1deam suoTidadxs 3s97-dxsbax 3sa3d 3s93m snix
(TTu punoj)) 3IST)

(serna Teuorijdon asid pIom) PIOMTITNW-3IDSIIOD UNJSP)

PCT/US00/05517

WO 00/70505

((punog

(((((pxom
1deoam ! (punoj xen) I0)
(asaxd
Tdsad ! ((punoj apd) Ied) IO)

1S%S%, JBwIol)
wu 3ISTT) punog bass)
(soedsTep punoj pue) IT)

((((Tdead Tdsam 3sTT) punoj bass)

((3893-dxebex suoTideoxs paom uoTidsoxs-ssyojew) jou) IT)
((suoTjdeooxe pJom JIsquaw) Jou) sem !!
((a2ad 3so3d yojew-HButals)
(pxom 3s93m ydjew-buraas)
(punoj 3jou) 3s93-dxsbax pue) IT)

((((Tdsad fdsam 38TT) punoj bass)

((a3s93-dxsbax suorjdesoxs piom uoTidsoxs-ssyodjew) j30u) IT)

ST

0T

30

SUBSTITUTE SHEET (RULE26)

10

15

20

25

30

35

WO 00/70505 PCT/US00/05517

EXECUTE-SPELL-RULES function is used to apply
the regular expression rules. The format of the rules is
as follows: (constraint exceptions offset width
substitution case) "constraint" 1is a regular expression
that matches the word. ‘"exceptions" is a list of regular
expressions that should match any exceptions to the rule.

"offset" and "width" specify the portion of the word to be

deleted, 1f any. (Width would be 0 if no text were to be
deleted. If the entire word were to be deleted, width
would equal the word's length.) "substitution" is a string

that 1s inserted at the position indicated by offset.
"offset", incidentally, 1is relative to the first position
where constraint matches the word, not the beginning of the
word. For example, here is a rule that corrects one of the
more common s/z replacement errors that occur with British
spelling:

no

(" [aeiouy] [dmnrtl] ising" (""arisings$" demising$™"

‘"pr[oe]mising") 31 "z")

The constraint loocks for a vowel or y followed by
one of the consonants dmnrtl, followed by the string
"ising". Note that we do not include the end-of-word
symbol $ after "ising", so this rule should also match

words that end in "isingly" or other characters beyond

"ising". The exceptions list rules out four exceptions to
this rule. Since we are using O-based indexing, the 3
indicates an offset to the letter "s". The 1 indicates one

character to be deleted (the s), and a "z" is substituted.
Other example rules include:
("mnets" () 0 4 "ment")
("toin" ("dittoing" "vetoing") 0 4 "tion")
These correct common suffix transpositions. The rule
("oualy™ () 0 3 "ous")

corrects a/s substitution errors when followed by the -ly

suffix (this kind of substitution error is much more
common in that context). The rule
("blity" () 0 5 "bility")

is an example of correcting a deletion error, and

- 31 -

10

15

20

25

30

WO 00/70505 PCT/US00/05517

(" [cdfhklmnprsvwxz]eing$" ("chasseing") 1 4
"ing")
corrects a common spelling error (forgetting to delete the
silent e when adding the suffix "ing"). We can also stick
in the u that follows g if the user forgets it
(" g["ul" (""glaeiolu" "g's" ‘'gwerty" '"gabbala"
"gadi" "“gatar$" ""gat$") 0 1 "qu")

A rule to correct common semicolon-apostrophe
substitution errors (e.g., "I;d" instead of "I'd") reads,
(";d$" ("http;") 0 1 "'")

The "i before e except after c¢" rule has many more
exceptions than targeted in school (e.g., science, society,
words ending in -cied, -cier, etc.):
("cie" ("scien[ctl]" "societ" '"ancient" "hacienda" '"cie$"
"cie[drs]" "ciety" "cienlct]l") 0 3 "cie")
Additional rules correct for ei/ie transposition errors,
such as

("["cleiv" () 1 2 "ie") ;i believe, mischievous
(Here ["c] means not c.)

Rules for f£f/v replacement should probably be
restricted according to part of speech, since knife+s
becomes knives when knife is a noun, but knifes when knife
is a wverb. To do so would require integrated
part-of-speech tagging as part of this system. We
implemented such rules using multi-word rules (e.g., knife
preceded by "the" 1s a noun) without part-of-speech
tagging.

Rules to handle missing space errors, such as the
omission of space after a close-parenthesis, may include:

(m) la-zl" () 1. 0" ")
The EXECUTE-SPELL-RULES code follows:

PCT/US00/05517

WO 00/70505

((((

9seD UCIINJTISANS YIPTIM 395330 suorjdedoxe jJuTeIxlsuod

((((pxom sseoumop) paom Tenbs-burtiis) (9seo jou) I0)

((3 suotaidsoxs paom uotidsoxs-ssyodjew) 3jou)
uoryrsod pue) JT)
(((pIOM JuTeI3SUOD yYdjew-putals) uorjtsod)) 37T) 0¢
(((((((2Tnx apd) apd) IpPD) IpPO) IpoO) IeD) °sdD bjas)
((eTnx xpd) Ipd) IpO) IpoO) IeD) uUoTINlTiIsqns bias)
(((((2Tnx apo) IpPO) IpO) Ied) YIPTM bies)
((((dTnx xpo) apod) xed) 398330 biass)
(((eTnx apo) xeo) suotridsoxs bies) ST
((2Tnx xed) autexjsuod bjas) i

((senax apo) sanx bijss)

33

SUBSTITUTE SHEET (RULE26)

((soTnax xep) enx baes) !
saInI S1TUM)
(ansax 0T

sTnI) 397)

(sornx Teuotidox paom) ssIni-Tlods-93n09xXsS unjsp)

((((3Tnsax

(seTnax pxom ssTni-irads-293nos9xa) I0) G
JTnsax
((pxom 3Tnsax Tenbs-butijs) (3[nssax jou) I0) IT)

(((seTnx paom saTni-Treds-23no9xa) IJTnsar)) 3I8T)

(soTnx jeuoTidon pIom) xsSaTNI-TTads-23ND8X3 UNISP)

PCT/US00/05517

WO 00/70505

((31nsax paom bass)
a[nsax IT)

((axedaybta uorinatisqns jxedigesl ,S%5%S%, Jewiol) 3[nsax bies)
((((yaptm uotatsod +) paom Butaazsqns) 3aediybrx)
((uotatsod o paom Butxjsgns) 3Jxedijs()) 3IL9T)
((398330 uotratsod +) uotitsod bass)
uboxd)

34

=T (RULE26)

iin
= g
faniom

SUBSTITUTE SH;

10

WO 00/70505 PCT/US00/05517

As used in the foregoing specification and in the
following claims, a "regular expression" comprises an n-
gram template to be matched against a string of characters
in a word. The n-gram template string may comprise less
than all characters in the word. Matching the string
either succeeds or fails. A matched pattern may cause
addition, deletion and/or substitution of characters in the
word. The n-gram template may comprise alternative
characters, wild card characters and position indicators.

Having thus defined our invention in the detail
and particularity required by the Patent Laws, what is
desired protected by Letters Patent is set forth in the

following claims.

10

10

WO 00/70505 PCT/US00/05517

WE CLATM:

1. A computer implemented method which does not
require a stored dictionary for correcting spelling errors
in a sequence of words, said method comprising the steps
of:

a) storing a plurality of spelling rules
defined as regular expressions for matching a potentially
illegal n-gram which may comprise less than all letters in
the word and for replacing an illegal n-gram with a legal
n-gram to return a corrected word;

b) submitting a word from said sequence of
words to the spelling rules; and

c) replacing a word in the string of words with

a corrected word.

2. A computer implemented method which does not
require a stored dictionary for correcting spelling errors
and grammar errors in a sequence of words, said method
comprising the steps of:

a) storing a plurality of spelling and grammar
rules defined as regular expressions for matching a
potentially illegal n-gram which may comprise less than all
letters in the word and given the context of one or more
adjacent words replacing an illegal n-gram with a legal n-
gram to return a corrected word;

b) submitting at least two adjacent words at a
time from said sequence of words to said rules; and

c) replacing a word in the sequence of words

with a corrected word.

3. The method according teo c¢laim 1 or 2,
wherein an exception list is associated with each regular
expression or with the system as a whole to prevent n-gram
replacement where the word matches an exception to the

rule.

WO 00/70505 PCT/US00/05517

4. The method according to c¢laim 1 or 2,
comprising storing spelling rules which match potentially

illegal n-grams comprising two or more characters.

5. The method according to c¢laim 1 or 2,
comprising storing spelling rules that recognize and
correct complex types of errors in addition to simple

insertions, deletions, substitutions and transpositions.

6. The method according to claim 1 or 2 that

automatically corrects errors as the user types.

7. The method according to claim 1 or 2 that

batch process corrects errors.

8. The method according to claim 1 or 2, that

corrects text input by an optical character reader.

9. The method according to claim 1 or 2, that
recognizes errors in input from an automatic handwriting

recognition system.

10. The method according to claim 1, wherein the
spelling rules use multiple words in context to identify
spelling errors, confusable words and common grammar

errors.

11. The method according to claim 1, wherein the
spelling rules use multiple words in context to identify a

unique correction from more than one possible correction.
12. The method according to claim 1, wherein the
spelling rules use multiple words in context to correct

word boundary errors.

13. The method according to claim 12, wherein

the word boundary errors are selected from the group

- 37 -

WO 00/70505 PCT/US00/05517

comprising missing spaces, inserted spaces, shifted spaces

and combinations thereof.

14. The method according to claim 10, 11 or 12,
wherein the context words are defined by regular

expressions.

15. The method according to claim 1 or 2,
wherein the rules include constraints Dbased on case

restrictions.

16. The method according to c¢laim 1 or 2,
wherein the rules include constraints based upon parts of

speech.

17. The method according to claim 1 or 2,
wherein the rules include constraints based on
capitalization and/or punctuation appearing within the

sequence of words.

18. The method according to claim 8, wherein
letter confusion matrices are used to generate potential

rules.

19. The method according to claim 1 or 2,
wherein a corrected word is submitted to at least one

additional rule.

20. A method which does not require a stored
dictionary for correcting spelling errors in a sequence of
words comprising the steps, some of which are implemented
by a programmed computer, of:

5 a) generating potential spelling rules defined
as regular expressions for matching a potentially illegal
n-gram which may comprise less than all letters in the word
and for replacing an illegal n-gram with a legal n-gram to

return a corrected word, said step of generating potential

- 38 -

WO 00/70505 PCT/US00/05517

10

15

20

10

spelling rules comprising selecting as templates letters
from errors in an error corpus and one or more letters of
context to identify a set of potential rules and pruning
from the set of potential rules those that are too general,
too specific or do not identify the cause of the error;

b) storing said set of spelling rules defined
as regular expressions;

c) submitting a word from said sequence of
words to the spelling rules; and

a) replacing a word in the sequence of words

with a corrected word.

21. The method according to claim 20, wherein
new rules are generated based upon the user's manual

corrections.

22. A computer implemented word completion
method that is context sensitive comprising the steps of:

a) storing a plurality of word completion rules
defined as regular expressions for matching an n-gram which
may comprise less than all letters in the word and for
replacing a matched n-gram with an n-gram to complete the
word given the context of one or more preceding words;

b) submitting at least the previous word and n-
gram comprising the initial letters of a word being typed
to the rules; and

c) if a rule is fired, completing the word

being typed.

23. The method according to claim 1, 2, 20 or
22, wherein the rules are stored in any one of hash tables,

tries, linear lists and finite state automata.

24. A computer implemented method for correcting
spelling errors in a sequence of words comprising:
a) storing an ordered 1list of most likely

corrections for a plurality of often misspelled words;

- 39 -

WO 00/70505 PCT/US00/05517

10

10

15

10

b) a step for identifying words that are
misspelled; and

c) a step for displaying a candidate list of
correct words corresponding to words identified in the
previous step as misspelled and where possible placing the
ordered list of most likely corrections for the misspelled

word at the top of the candidate list.

25. A computer implemented method which does not
require a stored dictionary for correcting spelling errors
in a sequence of words and is likely to produce a unique
correction, said method comprising the steps of:

a) storing a plurality of spelling rules defined
as regular expressions for matching a potentially illegal
n-gram which may comprise less than all letters in the word
and for replacing an illegal n-gram with a legal n-gram to
return a corrected word;

b) storing additional rules based on the
presents or absence of adjacent words or punctuation for
aiding in the selection of a unique correction;

c¢) submitting a word from said sequence of words
to the spelling rules; and

d) replacing a word in the string of words with

a corrected word.

26. A computer implemented word completion
method that is context sensitive comprising the steps of:

a) storing a plurality of word completion rules
defined as regular expressions for matching an n-gram which
may comprise less than all letters in the word and for
replacing a matched n-gram to complete the word given the
part of speech of one or more preceding words;

b) submitting at least the previous word and n-
gram comprising the initial lettexrs of a word being typed
to the rules; and

c) if a rule is fired, completing the word being

typed.

WO 00/70505 PCT/US00/05517

10

15

27. A computer implemented word completion
method that is context sensitive comprising the steps of:

a) as words are entered, incrementally tagging
them with their parts of speech to infer the part of speech
of the next word to be entered;

b) storing a plurality of word completion rules
defined as regular expressions for matching an n-gram which
may comprise less than all letters in the word and for
replacing a matched n-gram with an n-gram to complete the
word given the inferred part of speech;

¢) submitting at least the previous word and n-
gram comprising the initial letters of a word being typed
to the rules; and

d) if a rule is fired, completing the word being

typed.

INTERNATIONAL SEARCH REPORT International application No.
. PCT/US00/05517

A. CLASSIFICATION OF SUBJECT MATTER

[PC(7) :GO6F 17/30
US CL :707/533; 706/48
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. - 707/533, 6, 530; 706/48, 45, 46, 47

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

EAST, WEST, DIALOG
search terms: spelling, correct$, stem, rule

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5,875,443 A (NIELSEN) 23 FEBRUARY 1999, ALL 1-27
A US 5,255,386 A (PRAGER) 19 OCTOBER 1993, ALL 1-27
A US 5,239,617 A (GARDNER et al) 24 AUGUST 1993, ALL 1-27
A US 5,075,896 A (WILCOX et al) 24 DECEMBER 1991, ALL 1-27
A US 4,471,459 A (DICKINSON et al) 11 SEPTEMBER 1984, ALL | 1-27
A US 4,342,085 A (GLICKMAN et al) 27 JULY 1982, ALL 1-27

D Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: T later document published after the international filing date or priority
.. o date and not in conflict with the application but cited to understand
“A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
document of particular relevance; the claimed invention cannot be

"E" carlier document published on or after the international filing date
considered novel or cannot be considered to involve an inventive step
"L" document which may throw doubts on priority claim(s) or which 1s when the document is taken alone
cited to establish the publication date of another citation or other . . .
special reason (as specified) °Y* document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
"On document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"p" document published prior to the international filing date but later than < g« document member of the same patent family
the priority date claimed
Date of the actual completion of the intemational search Date of mailing of the intenational search report
07 JUNE 2000 2 0 S}.B) 200
/ Vi
Name and mailing address of the ISA/US Authorized officer /
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231 MICHAEL RAZAVI
Facsimile No. (703) 305-3230 Telephone No. (703) 305-3900

Form PCT/ISA/210 (second sheet) (July 1998)»

	Abstract
	Bibliographic
	Description
	Claims
	Search_Report

