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NUCLEIC ACID ERROR SUPRESSION 

RELATED APPLICATION(S) 

[0001] This application claims the benefit of priority to U.S. Provisional Application No.  

63/380915, filed October 25, 2022, which is hereby incorporated by reference in its entirety.  

TECHNICAL FIELD 

[0002] The invention relates generally to the field of medical diagnostics. In particular, 

embodiments of the disclosure relate to methods and systems for reducing sequencing error 

rates in cancer detection and other fields requiring low error sequencing, 

BACKGROUND 

[0003] Monitoringcirculatingcell-free DNA (cfDNA) has been shownto be promising 

clinical tool for non-invasive cancer detection. While analysis of cancer-specific epigenetic 

markers, such as DNA methylation and histone modifications, has been applied to fDNA for 

detection of various cancers, mutation-based approaches using direct genomic sequencing of 

somatic variants found in circulating tumor DNA (ctDNA) afford more specificity and 

clinically-actionable information. As such, ctDNA genome sequencing is preferable for 

clinical applications, particularly in cases where there is low burden of disease, such as early 

cancer screening, detection of mivimal residual disease (MRD) after treatment or surgery and 

relapse monitoring of emergent resistant mutations for guided therapy. In these scenarios, 

tumor fraction is low, such that robust detection requires methods with exquisite sensitivity.  

[0004] Prevailing methods of ctDNA detection use targeted sequencing protocols, which 

increase the number of genomes sequenced at a targeted location. However, high throughput 

targeted sequencing rapidly exhausts available genomes for sequencing (1000-10,000 

genome equivalents (GEs) per mL of plasma), which sets a design-based ceiling on etDNA 

detection. where further increasing sequencing depth at a targeted site affords no advantage 

after the limited number of GEs has already been sequenced. Alternatively, to overcome 

these limitations, whole genome sequencing (WGS) approaches exploit breadth of coverage 

to supplant depth, eliminating the reliance on the detection of a single site to increase ctDNA 

characterization in low tumor fraction settings. For example, recent method MRDetect uses 
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primary tumor mutational profiles to inform genome-wide tumor single nucleotide variant 

(SNV) detection in cfDNA, such that the available number of GEs no longer is the limiting 

factor for successful ctDNA detection.  

[0005] The detection challenges presented by sparsity are significant, calling for broad, 

accurate and deep cfDNA sequencing. Thus, whole-genorne, low-error, high-coverage 

methods are necessary for robust ctDNA analysis. However, the costs associated with these 

approaches are often prohibitive, particularly for clinical application. Although genome 

sequencing costs have rapidly dropped since the introduction of high-throughput next 

generation sequencing, more recently this decrease has stagnated. As such, sequencing cost 

is still a significant barrier to implementation of high-depth WGS for liquid biopsies, where 

in clinically important applications, tumor fractions are low (~10-5) and shallow WGS is 

insufficient for ctDNA detection. To estimate the cost of implementing WGS for successful 

detection of ctDNA at such fractions, the probability of detecting a single mutation in a 

cfDNA sample can be modeled, given the number of GEs. the tumor fraction and sequencing 

depth t It is estimated that a sequencing depth of over 100x is required for single mutation 

detection in tumor-derived DNA at this low fraction level, making the per-sample cost of 

WGS exceedingly high for application at scale with established technologies (-2000USD per 

sample using an Illumina Novaseg S4 flow cell with v1.5 reagent costs).  

[0006] Recently, a new low-cost, high-throughput sequencing method utilizing mostly 

natural sequencing-by-synthesis (mnSBS) has been developed by Ultimna Genomics. The 

Ultina sequencing platform produces single-end reads at -10 billion reads per run for IS/GB.  

thus substantially lowering sequencing costs compared with current platforms. This cost 

efficiency holds great promise for many genomnics applications, and this approach has now 

been applied to Genome-In-A-Bottle and 1000 Genomes reference samples and adapted for 

single-cell RNA-seq studies. However, mnSBS/Ultima sequencing has not been harnessed 

for application to clinical cfDNA samples for ctDNA sequencing. In addition, notably, the 

error rate profiles of this new sequencing method have not been fully characterized, nor have 

they been rigorously compared with competing technologies. Importantly, for potential 

application to clinical disease monitoring of etDNA, it is especially crucial to have accurate 

error rate estimates due to the high sensitivity of low-burden ctDNA detection.  

[0007] Accordingly, there is a need for methods of reducing sequencing error rates in 

disease detection. The technical challenges imparted by the sparsity of ctDNA in low-burden 

disease settings may be overcome by increasing sequencing depth, accompanied by a low 

error rate. Unique molecular identifier(UMI) error suppression techniques or duplex 
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sequencing, can increase accuracy in differentiating true somatic variant calls from errors 

introduced by sequencing, and may be combined with deep genomic sequencing to optimize 

successful detection of low-burden disease in a clinical setting 

SUMMARY 

[0008] Here, to investigate the utility of deep WGS for ctDNA detection, Ultima 

Genomics' mnSBS sequencing platform is used to sequence circulating cell-free DNA reads 

from plasma samples from healthy controls, cancer patients and patient-derived xenograft 

mouse models. In a first proof-of-principle study, it is shows that deep WGS (--100x) with in 

silico error correction allows ctDNA detection within the part per million range. By 

leveraging the cost-effective and high-throughput nature of Ultima Genomics sequencing 

(109 reads per run at 1$/Gb), high coverage duplex-sequencing libraries of cell-free DNA can 

be produced, achieving error rates as low as 2.7xlO-7. This allows accurate assessment of 

disease burden in post-treatment melanoma patients in the absence of any tumor information.  

Together, this demonstrates the utility of deepVGS in clinical samples for ctDNA detection.  

[0009] According to certain aspects of the present disclosure, systems andmethods are 

disclosed for detecting cancer with a lower sequencing error rate.  

[0010] In an embodiment, a method comprises extracting DNA from a collection of plasma 

samples; preparing a whole genome library with duplex adapters, wherein the whole genone 

library is prepared by ligating a duplex adapter having a Unique Molecule Identifier (JMI) to 

an end of each of a plurality of strands of the extracted DNA andamplifying the extracted 

DNA with a first PCR; selecting a subset of the whole genome library; amplifying the subset 

with a second PCR to increase a number of PCR duplicates; sequencing a plurality of duplex 

reads from the amplified subset; aligning the plurality of duplex reads to a host genome and 

denoising the plurality of duplex reads based on said alignment; detecting the presence of a 

variant in at least one of the plurality of duplex reads; determining a signature of the variant; 

comparing the signature of the variant to a collection of disease-specific variant signatures; 

and determining a disease type based on the comparison.  

BRIEF DESCRIPTION OF THE DRAWINGS 

[0011] The accompanying drawings, which are incorporated into andconstitute a part of 

this specification, illustrate various exemplary embodiments and together with the 

description, serve to explain the principles of the disclosed embodiments.
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[0012] FIG. 1 is a flowchart illustrating a method for detecting mutation signatures to 

determine a cancer status, according to techniques disclosed herein.  

[0013] FIG. 2A is a series of graphs illustrating error rates and sequencing coverage for 

tumor fractions at or below 105 according to techniques disclosed herein.  

[0014] FIG. 2B is a flowchart ofapre-analytical process toprepare a cfDNA library, 

according to techniques disclosed herein.  

[0015] FIG. 2C is a graph illustrating sequencing depths for matched Illumina and Ultima 

datasets, according to techniques disclosed herein.  

[0016] FIG. 2D is a comparison of normalized read coverage of a sequenced matched 

cfDNA sample, according to techniques disclosed herein.  

[0017] FIG. 2E is a comparison of copy number-based variant (CNV) and single

nucleotide variant (SNV) tumor fractions, according to techniques disclosed herein.  

[0018] FIG. 2F is a graph of an in silicon mixing study, according to techniques disclosed 

herein.  

[0019] FIG. 3Ais a series of graphs illustratingduplex whole genome sequencing (WGS) 

on a mouse (left) and patient (right) sample, according to techniques disclosed herein.  

[0020] FIG. 3B is a graphical comparison of variant allele frequencies calculated using 

unfiltered sequencing reads, according to techniques disclosed herein.  

[0021] FIG. 3C isagraph comparing the model allele fractionof patient with progressive 

disease in duplex corrected positions and copy-number based tumor fraction estimations, 

according to techniques disclosed herein.  

[0022] FIG.3Disagraphillustrating exemplary trinucleotide frequenciesfrom a 

melanoma-associated UV signature.  

[0023] FIG. 3E is a comparison of cosine similarities with either the SBS7 or the SBSIB 

mutation across conditions, according to techniques disclosed herein.  

[0024] FIG. 3F is agraph illustrating signature score andctDNA detection ofan in silicon 

mixing study of metastatic melanoma samples., according to techniques disclosed herein.  

[0025] FIG. 3G is a graph illustrating a series of signature scores of melanoma signatures 

in plasma fDNA samples using duplex WGS, according to techniques disclosed herein.  

[0026] FIG. 3H is a graph illustrating estimated tumor fraction of samples with elevated 

signature scores, according to techniques disclosed herein.  

[0027] FIG. 4 is a series of graphs illustrating frequency of cfDNA fragment lengths in 

single-end Ultima sequencing datasets matched with paired-end Illumina sequencing, 

according to techniques disclosed herein.  
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[0028] FIG. 5A is a graph illustrating the UG specific blacklist, according to techniques 

disclosed herein.  

[0029] FIG. 5B is an illustration of overlap between the UG blacklist and other low 

confidence regions. according to techniques disclosed herein.  

[0030] FIG. 5C is a graph illustrating the overlap between melanoma tumor tissue SNVs 

and low confidence regions, according to techniques disclosed herein.  

[0031] FIG. 6A is a heatmap of cosine similarities in cancer-free samples and high-burden 

ctDNA samples, according to techniques disclosed herein, 

[0032] FIG. 6B is a boxplot of cosine similarities for three correction methods in the same 

cancer-free samples and high-burden ctDNA samples, according to techniques disclosed 

herein, 

[0033] FIG. 7A is a graph illustrating a deconvolution of duplex-corrected mutations into 

representative mutational signatures.  

[0034] FIG. 7B is a correlation plot between age at cancer diagnosis and number of clock

like mutations attributed to SBS1 A and SBS1B, according to techniques disclosed herein.  

[0035] FIG. 8 is a graph of a tumor-agnostic copy-number based tumor fraction estimation 

in cancer-free control samples and pre-surgery melanoma plasma, according to techniques 

disclosed herein.  

[0036] FIG. 9A isagraph illustrating ahomopolymer size between two PCR duplicates, 

according to techniques disclosed herein.  

[0037] FIG. 9B is a graph illustrating a homopolymer size between a read and an aligned 

reference, according to techniques disclosed herein.  

[0038] FIG. 9C is a graph illustrating frequency of homopolymer size across the human 

genome, according to techniques disclosed herein.  

[0039] FIG. 9D is a graph illustrating indel calling accuracy by PCR duplicate family sizes, 

according to techniques disclosed herein.  

[0040] FIG. 10 is a graph illustrating a single nucleotide variant analysis of matched 

Ultima and Illumina sequencing datasets. according to techniques disclosed herein.  

[0041] FIG. 11A is a flow chart of a sequencing process providing predictable, error-robust 

motifs, according to techniques disclosed herein.  

[0042] FIG. 11B is a graph of error rate by sequencing platform. according to techniques 

disclosed herein.  

[0043] FIG. 12A is a graph of duplex WGS libraries from three starting inputs sequenced 

at 1-13x coverage, according to techniques disclosed herein.  
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[0044] FIG. 12B is a graph illustrating a duplication rate of the samples of FIG. 12A.  

[0045] FIG. 12C is a graph of the effect of downsampling experiments, according to 

techniques disclosed herein.  

[0046] FIG.12D is a graph illustrating that duplex coverage is significantly higher at fixed 

coverage, according to techniques disclosed herein.  

[0047] FIG. 12E is a graph illustrating a number of duplex variants found using fgbio 

versus a decision tree, according to techniques disclosed herein.  

[0048] FIG. 13 is a graph illustrating mutational error rates in mouse PDX sales, 

according to techniques disclosed herein.  

[0049] FIG. 14 is a bar graph illustrating a number of pre-surgery samples represented in 

validation experiments, according to techniques disclosed herein.  

[0050] FIG. 15 is a graph illustrating detection of a chemotherapy mutational signature in 

plasma-free DNA, according to techniques disclosed herein.  

[0051] FIG. 16A is a bar graph illustrating an apobec signature and measurement, 

according to techniques disclosed herein.  

[0052] FIG. 16B is a bar graph illustrating an apobec signature and measurement, 

according to techniques disclosed herein.  

[0053] FIG. 17 is a computing node according to embodiments of the present disclosure.  

DETAILED DESCRIPTION 

[0054] Reference will now be made in detail to the exemplary embodiments of the present 

disclosure, examples of which are illustrated in the accompanying drawings. Wherever 

possible, the same reference numbers will be used throughout the drawings to refer to the 

same or like parts.  

[0055] The systems, devices, and methods disclosed herein are described in detail by way 

of examples and with reference to the figures. The examples discussed herein are examples 

onlyand are provided to assist in the explanation of the apparatuses, devices, systems, and 

methods described herein. None of the features or components shown in the drawings or 

discussed below should be taken as mandatory for any specific implementation of any of 

these devices, systems, or methods unless specifically designated as mandatory.  

[0056] Also, for any methods described, regardless of whether the method is described in 

conjunction with a flow diagram, it should be understood that unless otherwise specified or 

required by context, any explicit or implicit ordering of steps performed in the execution of a 
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method does not imply that those steps must be performed in the order presented but instead 

may be performed in a different order or in parallel.  

[0057] As used herein, the term "exemplary"is used in the sense of "example," rather than 

"ideal." Moreover, the terms "a" and "an" herein do not denote a limitation of quantity, but 

rather denote the presence of one or more of the referenced items.  

[0058] Cell-free DNA (cfDNA) sequencingfor low-burden cancermonitoring is limitedby 

sparsity of circulating tumor DNA (ctDNA), the abundance of genomic material within a 

plasma sample, and pre-analytical error rates due to library preparation and sequencing 

errors. Sequencing costs have historically favored the development of deep targeted 

sequencing approaches for overcoming sparsity in ctDNA detection, but these techniques are 

limited by the abundance of cfDNA in samples, which imposes a ceiling on the maximal 

depth of coverage in targeted panels.  

[0059] Whole genome sequencing (WGS) is an orthogonal approach to ctDNA-based 

cancer detection that can overcome the low abundance of cfDNA, supplanting breadth for 

depth by integrating signal across the entire tumoral mutation landscape. However, the 

higher cost of WGS limits practical depth of coverage and broad adoption.  

[0060] Lower sequencing costs allows for enhanced ctDNA cancer monitoring via WGS.  

Emerging lower-cost WGS (Ultima Genomics, 1$/Gb) were applied to plasma samples at 

-- 120x coverage. Copy number and single nucleotide variation profiles are comparable 

between matched Ultima and Illumina datasets, however the deeper WGS coverage enables 

ctDNA detection at the parts per million range. These lower sequencing costs are further 

harnessed to implement duplex error-corrected sequencing at the scale of the entire genome, 

demonstrating a -3,000x decrease in errors in the plasma of patient-derived xenograft mouse 

models when compared to raw sequencing reads, and error rates as low as -10-7 in plasma 

samples from patients with metastatic melanoma. The highly dc-noised plasma WGS is 

leveraged to undertake cancer monitoring in the more challenging context of low burden 

melanoma without matched tumor sequencing. In this context, duplex-corrected WGS 

allowed us to harness known mutational signature patterns for disease monitoring without 

matched tumors, paving the way for de novo cancer monitoring.  

[0061] Deep WGS may be used for ctDNA detection with low-pass sequencing. Low-cost 

WGS (Ultima Genomics, $1/Gb) may be used to plasma samples at 120x coverage. Copy 

numberand single nucleotide variation profiles were comparable between matched Ultima 

and Illumina datasets, however the deeper WCS coverage enabled ctDNA detection at the 

parts per million range. These lower sequencing costs were further harnessed to implement
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duplex error-corrected at the scale of the entire genome, demonstrating a -3000x decrease in 

errors in the plasma of patient-derived xenograft mouse models when compared to raw 

sequencing reads, and error rates as low as ~1 (in plasma samples from patients with 

metastatic melanoma. The highly de-noised plasma WGS was leveraged to undertake cancer 

monitoring in the more challenging context of low burden melanoma without matched tumor 

sequencing. In this context, duplex-corrected WGS allowed the harnessing of known 

mutational signature patterns for disease monitoring without matched tumors, paving the way 

for de novo cancer monitoring.Sequencing may be done using Ultima Genomics' sequencing 

platform to sequence 2.6x10 9 ±4x108 circulating cfDNA reads from 31 plasma samples (n 

= 8 healthy controls; n = 19 cancer patient samples; n = 4 patient-derived xenograft mouse 

samples). Deep WGS (-100x) with in silicon error correction allows ctDNA detection within 

the part per million range over the sequenced genome. The cost-effectiveand ultra high

throughput nature of Ultima Genomics sequencing (109 reads per run at 1$/Gb) can produce 

4,15± 323 coverage (range 1.02-11.55) duplex-sequencing libraries of cfDNA and achieve 

error rates as low as 2.7x10'. Together, the results of sequencing and running the insilico 

error correction demonstrate the feasibility and utility of deep WGS in clinical samples for 

etDNA detection.High-throughput short-read sequencing has revolutionized the liquid biopsy 

field, and sequencing costs have historically decreased at a rate faster than Moore's Law.  

However, the decrease in cost has stagnated over the past decade. The emergence of a high

throughput, low-cost sequencingplatform would allow for deeper and broader sequencing of 

samples and patient populations, respectively. To work towards this goal, a comparative 

analysis of Ultima and Illumina short-read sequencing platforms was performed, 

demonstrating that these twoapproaches have comparable tunor-informned analysis 

capabilities for circulating tumor DNA detection (FIG. 2A-2F). Importantly, these tumor

informed approaches allow for ctDNA detection even at the part per million range, thereby 

making such analysis suitable for minimal residual disease detection. To further expand and 

demonstrate the utility of the technology, the more challenging problem of ctDNA detection 

in tumor-agnostic settings, where disease status or tumor origin is unknown, was addressed.  

For this important clinical context, whole-genome duplex correction was employed to 

achieve low error rates, allowing us to deconvolve the cell-free DNA mutational 

compendium into representative mutational signatures to detect ctDNA in the pre-operative 

setting, without matched tumor sequencing (FIG. 3A-3H). Compared to commonly-used 

off-the-shelf panels, whole-genome analysis has the benefit of sequencing breadth, allowing 

for the detection of rare tumor-derived mutations that may not be present in targeted panels.  

- 8-
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One of ordinary skill in the art may envision that the methods can be harnessed for de novo 

cancer monitoring in low burden disease scenarios, providing a powerful toolfordiaosing 
-tsae, trvdn apuo f rYiagnosi 

cancer and detecting relapses at the earliest stages, leading to better patient outcomes overall.  

In addition to de novo cancer detection, the method can be used for cancer screening (e.g., 

screening for bladder cancer, melanoma, lung cancer, lynch syndrome cancer, BRCA 

syndrome cancers, based on APOBEC, UV, tobacco, MSI, and BRCA signatures, 

respectively).  

[0062] It is noted that this method is not only useful for de novo detection (e.g. signatures) 

for tumor monitoring, butalso for using tumor informed approaches. In this case, the duplex 

sequencing will decrease error and provide enhanced signal resolution for detection of a 

compendia of tumor-confirmed mutations. FIG. 2C illustrates the use of a tumor informed 

approach, which does not rely on signature analysis.  

[0063] In an embodiment, this method is not only useful for monitoring, but also for non

invasive whole genome characterization of mutations in cancer (for example to identify 

actionable driver mutations or mutations that stratify patients to specific therapies). This is 

done again via reducing error of various sorts. FIG. 2B illustrates this characterization, which 

does not rely on signature analysis.  

[0064] In an embodiment, this method enables non--invasive detection and discovery of 

driver mutations in somatic mosaicism. FIG. 2E shows detection of non-malignant mutation, 

specifically, detection of clonal hematopoiesis mutations.  

[0065] FIG. I is a flowchart illustrating an exemplary method for detecting variants in 

DNA using duplex sequencing and denoising, according toan exemplary embodiment of the 

present disclosure. For example, an exemplary method 100 (e.g., steps 102-118) may be 

performed, in part, by a processor automatically or in response to a request by a user.  

[0066] According to one embodiment, the exemplary method 100 for detecting variants 

may include one or more of the following steps. In step 102, the method includes extracting 

DNA from a collection of plasma samples. Plasma can be from any human fluid, including 

urine, saliva, peritoneal fluid, cerebral spinal fluid, etc. The extracted DNA may be fDNA 

or genomnic DNA.  

[0067] Genomic DNA can be extracted using the QiAamnp DNA Mini Kit (Qiagen, cat# 

563034) and the QiAamp DNA blood Kit (Qiagen, cat# 51104) for tissue and blood samples.  

respectively, and sheared to 450bp (Covari). In an exemplary experiment, sequencing 

libraries were prepared on ipg of DNA using theTruSeq DNA PCR-Free Library 

Preparation Kit (Illumina), with one additional bead cleanup performed after end-repair and 
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after adapter ligation. Extracted DNA was quantified using a Qubit 3.0 fluorometerand 

length analysis was performed using an Agilent Bioanalyzer or High Sensitivity Fragment 

Analyzer. 2xl50bp paired-end sequencing was performed on either a HiSeq X or NovaSeq 

vi.0 Illunina machine.  

[0068] Cell-free DNA can lie extractedfrom plasma using the Magbind cfDNA extraction 

kit (Omega Biotek, M3298). Manufacturer reconunendations for extraction were followed, 

but elution volume was increased to 35uL and elution time was increased to 20 minutes on a 

therrmomixer at 1,600 rpm (room temperature). Extracted cfDNA was quantified using a 

Qubit 3.0 fluorometer and length analysis was performed using an Agilent Bioanalyzer or 

High Sensitivity Fragment Analyzer.  

[0069] In step 104. the method includes preparing a whole genome library with duplex 

adapters. In some embodiment, the library is prepared by ligating a duplex adapter having a 

three base pair Unique Molecule Identifier (UMI) and amplifying an amount of DNA with a 

first PCR to a level that allows for sequencing.  

[0070] The duplexadapters contain a three base pair UMI that allows for tracing a top 

strand of the DNA to a bottom strand of the native DNA molecule. In rare mutation settings 

such as early detection and minimal residual disease, ctDNA content can fall below I in 

10,000 concentrations. Therefore, in 1 iL of plasma containing 1,000-10,000 GEs, at most I 

circulating tumor read can be expected to overlap each somatic locus, which is lower than the 

per-base error rate of high-throughput sequencers (-1 error per 1000 bases). To overcome 

this issue, deep-targeted sequencing approaches can use UMIs that are incorporated during 

library preparation for sequencing error correction. While strand-agnostic UIs can help 

collapse sequencing errors, UMIs that link forward and reverse DNA strands (i.e. Duplex 

sequencing) can be used to collapse errors that arise on one strand (such as G>T transversions 

due to oxidative DNA damage) or during library preparation, 

[0071] Extracted cfDNA libraries can be generated in a similar fashion as in Illumina whole 

genotre sequencing, although the full-length adapters are replaced with stubby Y-adapters 

containing the three UMI bases (IDT Duplex Seq adapters (1080799)).  

[0072] A first PCR amplification creates a set of PCR duplicates that increase the amount 

of DNA allowing for sequencing. These duplicates can be used to remove sequencing errors 

when two or more molecules with the same UMI are mapped back.  

[0073] In an exemplary experiment, six PCR cycles were carried out using indexing 

primers for input massesabove 5ng, and 8 cycles were performed for < 5ng. Libraries were 

quantified as described above. To enhance duplicate recovery in human samples, 4ng of 
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prepared libraries was subjected to 6 additional PCR cycles prior to Ultima library 

conversion. Mouse PDX samples did not undergo additional PCR cycles prior to Ultima 

library conversion.  

[0074] In step 106, the method includes selecting a subset of the whole genome library and 

amplifying the subset with a second PCR to increase an amount of PCR duplicates. As with 

the first PCR amplification, these duplicates can be used to remove sequencing errors when 

two or more molecules with the same UMI are mapped back.  

[0075] In step 108, the method may include sequencing a series of reads from the amplified 

subset.  

[0076] Illwnina sequencing: Illumina sequencing libraries were sequenced on a HiSeq X or 

NovaSeql.0 using 2x50 paired-end sequencing.  

[0077] Ultimasequencing: Illunina sequencing libraries were sent to Ultima Genomnics 

(Newark. CA) for library conversion and sequencing 

[0078] In step 110, the method includes aligning the reads to a host genome (e.g.,the 

human genome) and denoising the duplex reads, using original sequencing reads and 

collapsed read information.  

[0079] FastQ reads were adapter and UMI trimmed using cutadapt (version X). Trimmed 

reads were then aligned to the human genome (version hg3S) using bwa mem i(with 

parameters -K 100000000 -p -v3 -t 16 -Y). Trimmed UMIs were added to the alignment 

files as an additional RX tag. Single-strand and duplex correction was carried out using the 

fgbio suite of tools (version 2.0). For single-strand error correction, reads were grouped by 

UMI (fgbio GroupReadsByUmni -s edit) and consensus calls were performed (fgbio 

CallMolecularConsensusReads --min-reads 2). Resulting error-collapsed fastQs were 

realigned to the human genome using bwa nem. For duplex error correction, single-strand 

consensus sequencing was performed independently on top-strand-mapping and bottom

strand-mappingreads. Bottom-strand mapping reads were subsequently reverse 

complemented and merged with top-strand mapping reads. Reads were then re-grouped by 

UMI and error correction was performed to obtain duplex corrected reads. Uncorrected reads 

that belonged to a duplex family were processed to measure the following read-specific 

features: 

[0080] 1. Base pair at the variant position 

[0081] 2. Edit distance of the read to the reference 

[0082] 3.'Total number of single-nucleotide variants on the read 

[0083] 4. Read mapping quality 

- 11 -



WO 2024/091545 PCT/US2023/035877 

[0084] 5. The position along the read from the extremities of the DNA fragment 

[0085] In step 112, the method includes extracting a variant from the duplex reads. The 

type of variant is defined by a mutation, for example, a C base mutated into T (represented as 

C>T) and the base pairs adjacent to the mutated base. For example: A[A>T]A is one type of 

variant. A[A>C]A is another type of variant, as is A[A>G]A, A[C>AjA, etc. There are 96 

types of variant.  

[0086] Reads are filtered based on whether 1) all reads in a duplex family carried the same 

variant: 2) the edit distance was lower than 2; 3) the total number of single-ucleotide 

variants on the read was below 10; 4) the mapping quality was the highest possible value (60 

for bwa mem); 5) the position along the read was greater or equal to 10.  

[0087] In step 114, the method includes comparing the extracted variant to a collection of 

cancer specific variant signatures. Certain cancers have very well-defined variant typesi.e.  

cancer specific mutational signatures. Melanoma, for example, is a cancer with a distinct 

signature that is related to the skin's exposure to UV rays. Some lung cancers will show a 

signature associated with exposure to tobacco. This signature matching process is shown by 

FIG. 3E. The fraction measurement estimation represented along the y-axis is found by 

using copy-number based tumor fraction estimation.  

[0088] Copy number analysis was performed using ichorCNA (version). Tumor fractions 

were estimated after correcting for library and sequencing artifacts via a panel of normals 

from cancer-free controls (CTRL-01 to CTRL-05) sequenced on the same instrument as the 

sample.  

[0089] In low tumor burden settings, not all somatic mutations from the tumor are 

represented in the cell-free DNA sequencing pool, andany genomic locus is expected to be 

covered by at most one circulating tumor DNA read. Therefore, read-based TF estimation 

frameworks, and not locus-basedTF estimations, are necessary to accurately quantify ctDNA 

content. Genome-wide mutations from the sequencing reads may be integrated and 

summarized as a weighted sum of single-base substitution (SBS) reference mutational 

signatures. Expectedly, in a re-analysis of publicly available PCAWG melanoma datasets, it 

was found that the UV-associated SBS7 mutational signature was most abundant in 

melanoma WGS datasets, and that clock-like signatures IA/B weakly correlated with age of 

patients at tissue collection (spearman's p = 0.26, p-value = 0.0071, FIGs. 6A-6B). The 

trinucleotide contexts of cfDNA variants were explored through mutation signature analysis 

at each level of denoising (UMI-agnostic, single-stranded and duplex), in order to investigate 

the potential sources conferring mutations in these samples. Cosine similarities between the 
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UV-associated SBS7 signature and high burden samples were highest after duplex correction 

(mean cosine similarities to SBS7 of 0.967±0.02 and 0.365±0.03 between duplex corrected 

and uncorrected samples, p-value = L 6x10' (Wilcoxon rank sum test)), FIGs. 7A-7B).  

Similar improvements were found when measuring cosine similarities between clock-like 

signatures and cancer-free controls, highlighting the importance of duplex correction for 

accurate signature analysis (FIGs. 7A7B).  

[0090] Given the ability of de novo mutation identification in error corrected cfDNA WGS 

to deliver profiles matching SBS7 and clock-like signatures for identifying melanoma and 

age-associated circulating DNA fragments, respectively, a tumor-agnostic approach for 

etDNA detection was developed based on mutational patterns. As a first step, SBS 

mutational signatures are deconvolved from plasma ctDNA mixtures using a non-negative 

maximum likelihood model, and a tumor fraction is estimated by taking the weight of the 

tumor-associated SBS signature and normalizing by total number of mutations and depth of 

sequencing. Second, a signature score is calculated in order to determine whether the cancer

associated SBS signatures better explain the observed mutation profiles compared to a 

random permutation of the cancer-associated motifs. To analytically validate this approach, 

an in silicon mixing study was conducted, combining duplex-denoised reads from two high 

burden etDNA samples (MEL-12.Aand MEL-12.B) and a cancer-free control (CTRL-06) at 

IOx sequencing depth (after duplex consensus), in varying proportions (expected tumor 

fractions from 0 to 1%). As a result, estimated tumor fractions were readily detectable at 

expected tumor fractions of 10' (receiving operating characteristic area under the curve 

0,90), with signature scores highly specific for melanoma at 10- dilutions (FIG. 3F).  

[0091] In an embodiment, a signature-based ctDNA detection platform for pre-operative 

ctDNA detection (i.e. tumor-agnostic ctDNA detection) was applied. Plasma samples were 

sequenced from four patients with stage III melanoma, three cancer-free controls, and one 

treatment-unresponsive patient (5 separate time points) with stage IV melanoma. Notably, 

signature scores for ctDNA detection showed perfect separation between cancer-free controls 

and samples from melanoma patients (FIGs. 3G-3H). while copy-number based analysis 

could not resolve these two groups (FIG. 8).  

[0092] Tumor genotyping can be performed via cfDNA & normal tissue sequencing when 

the tumor burden in the plasma is high (>10%, sources). Mutect2 can be used with the 

normal tissue. A quality threshold was established, and only SNVs are kept. Then, four 

blacklists are applied to create a final tumor panel. (encode, gnomad, local blacklist, 

centromeres) 
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[0093] Read counting was performed in lMbp bins using hmincopy (excluding duplicates 

and reads with a mapping quality below 60). Read counts were adjusted for mappability and 

GC content using hmmcopy. Separate panels of normals were created for Illumina and 

Ultima datasets, respectively, using cancer-free controls (CTRL-0 to CTRL-05; n = 5 per 

sequencing instrument). Tumor fraction estimates were obtained using ichorCNA (version).  

For plotting purposes (Figure IX, Supplemental Figure Y), corrected log2 read counts 

outputted by ichorCNA were used. Bins marked by ichorCNA as copy gains, amplifications 

and high-level amplifications were marked and colored as chromosome gains (pink). Bins 

marked as honozygous deletion states and henizygous deletions were markedand colored as 

chromosome losses (blue). Copy neutral regions were marked as neutral (black). Bins with 

corrected iog2 read counts between -0.05 and 0.05 were marked as neutral (black) as well.  

[0094] In step 116, the method includes determining cancer status based on a match 

between variant signatures.  

[0095] Variants detected using the denoising method described above in were used.  

Variants with allele frequencies greater than 30% were presumed to lie ermline mutations 

and were discarded. Remaining reads were aggregated, and the frequencies of the variants in 

their trinucleotide context were calculated. These trinucleotide variant frequencies were 

compared to the trinucleotide variant frequencies of publicly available references for different 

biological processes. In this context, given that processed samples were from cancer-free 

controls and melanoma patients, it was assumed that the sample's trinucleotide variant 

frequencies would be a combination of aging-related trinucleotide frequencies and UV

damage associated trinucleotide frequencies. The sample's frequencies were fit to the 

references using a non-negative maximum likelihood method. To remove false positives, a 

permutation test was performed. This test involved randomly changing the trinucleotide 

frequencies of the UV-associated (melanoma) reference signature and performing the non

negative maximum likelihood fit. If the sample showed a stronger fit to the randomly

permuted frequencies than to the original one, it was deemed to be a false positive. This 

exercise was repeated 10,000 times to obtain a signature score. If the sample had a signature 

score below 0.001, it was deemed acceptable. Samples above this threshold were deemed 

cancer-negative.  

[0096] In some embodiments, the method may include exhaustive WGS. In addition to 

WGS, embodiments of the present disclosure may use less exhaustive sequencing methods 

such as whole exome sequencing (WES) or SNP genotyping. Various enrichment modalities 

may be employed, including but not limited to: exome enrichment, targeted gene enrichment.  
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and/or specific mutation enrichment. For example, exome enrichment may comprise whole 

exome sequencing. Targeted gene enrichmentmay include sequencing entire genes, 

including one or more of introns, exons, and/or coding sequences. A specific mutation 

enrichment may target a specific position of the genome. including, e.g., an exon, an intron, 

and/or some other user-defined position. Technologies to accomplish enrichment of at least 

one of the aforementioned regions are typically hybridization based or primer based. Such 

examples include: targeted variant sequencing; targeted gene sequencing; whole exome 

sequencing; targeted PCR; nested PCR; and/or linear PCR.  

[0097] In cases where a limited input is used, such as in cell-free DNA, it is possible to 

exhaustively sequence the sample (i.e., sequence every single molecule available).  

Accordingly, some embodiments of the present disclosure may include exhaustive whole 

exome sequencing, exhaustive cfDN A sequencing, and/or exhaustive targeted sequencing.  

[0098] FIGs. 2A-2F depict ultralow ctDNA detection requiring deep sequencing coverage 

and low error rates.  

[0099] FIG. 2A is a collection of graphs showing simulated sequencingcoverage.  

Simulation analysis shows that lower error rates and high sequencing coverage are required 

for accurate ctDNA detection when tumor fractions are at or below 105 

[00100] Simulations for FIG. 2A were performed assuming a tumor-mutational 

compendium of 10,000 SNVs at different error rates (10-3, 10-4 and 10-5), coverages (1, 10 

and 100) and tumor fractions (0, 10-6, 10-5). For each of the 50,000 SNV mutations, 

coverage was simulated using a poisson distribution. Each simulated sequenced base pair 

was classifiedas either ctDNA or cfDNA according to the tumor fraction, and errors 

misclassified as ctDNA were determined according to the error rate. Estimated tumor 

fractions were calculated by summing the tDNA molecules and the errors, and dividing by 

the total base pairs simulated.  

[00101] FIG. 2B is a pre-analytical workflow for cfDNA library preparation. The 

workflow, similar to that of the embodiment shown in FIG. 1 comprises obtaining plasma, 

from which ctDNA is extracted. The double stranded DNA library is prepared for 

sequencing, which is done using the Illumina sequencing method or Ultima library 

conversion and subsequent Ultima sequencing.  

[00102] FIG. 2C is a graph comparing sequencing depth (genome equivalents) of matched 

Illumina and U'itima datasets, across 15 matched cfDNA samples.  

[00103] FIG. 2D is a comparison of normalized read coverage for Illumina (top) and 

Ultimna(bottom) matched cfDNA samples (chromosomes).  
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[00104] FIG. 2E is a comparison of copy number variations (CNV) tumor fraction and 

single-nucleotide variants (SNV) tumor fraction using Illumina and IJltima datasets. Onthe 

leftgraph, the CNV tumor fraction estimation measured with Illumina or Ultimasequencing 

is shown in matched samples using ichorCNA. Matched cancer-free controls were used to 

create a panel of normal prior to tumor fraction estimation.  

[00105] On the right graph of FIG. 2E, single nucleotide variant-based tumor fraction 

estimation measured with Illumina or Ultima sequencing is shown. Somatic SNVs were 

identified through matched uimor-normal sequencing. Two samples without tumor 

sequencing and with low ctDNA fraction (e.g.,less than 5% measured through CNV 

analysis) were omitted.  

[00106] FIG. 2Fdepicts an expected tumor fraction score with and without error 

suppression. An insilico mixing study of metastatic melanoma sample MEL-01 with cancer

free control CTRL-05 (50 replicates per tumor fraction, 80x coverage per replicate) show the 

effect with (red) and without (blue) tumor-informed analytic denoising applied using Ultima

specific quality filtering.  

[00107] FIGs. 3A-3H depict duplex correction allowing ctDNA without tumorsequencing.  

FIG. 3A depicts error rates in mouse and human DNA among duplex sequencing, single 

strand sequencing, and uncorrected groups. The graph on the left shows error rates for 

duplex WGS sequencing on mouse PDX samples (n=3). Open circles in the graph on the left 

represent samples for which no sequencing errors were detected. The graph on the right 

represents duplex WGS sequencing in patient sample MEL-12.D intersected with tumor 

mutation profiles of 107 melanoma patients retrieved from the Pan Cancer Analysis of Whole 

Genome Consortium. Base changes matching the somatic mutation of the tumor were 

considered errors (after removing germline and somatic mutations from the matched patient 

data).  

[00108] To first test the accuracy of duplex error correction, duplex libraries were prepared 

using cfDNA obtained from the plasma of mice with patient-derived xenografts (n=4, 

NOD/ShiLtJ species; n = 1 lung cancer; n = 3 diffuse large B cell lymphoma).Tumor 

fractions, defined as the fraction of reads uniquely mapping to the human genome, were 

0.4%, 40%,73% and 96%. To estimate the error rate of the duplex libraries, mutation levels 

were investigated at well characterized homozygous variant sites for NOD/ShiLtJ mice in the 

three samples with elevated mouse-mapped reads. Overall, only two bases out of over 

4.2x106 total bases were sequenced that were inconsistent with the known genotype of the 

iriceforan error rateof4.75x10-7(FIG. 3A). These results are consistent with aprevious 

- 16-



WO 2024/091545 PCT/US2023/035877 

report employing whole genome duplex sequencing (Abascal et al, 2021 reports error rates of 

2x10- usingsimilar protocols).  

[00109] FIG. 3B is a series of graphs comparing variant allele frequencies calculated using 

unfiltered sequencing reads. Variant allele frequencies are shown in positions where a 

variant was found using uncorrected reads (left column) and in duplex corrected reads (right 

column). Top and bottom rows are representative examples for cancer-free and high-burden 

patient samples, respectively.  

[00110] FIG. 3C is a graph comparing the model allele fraction of a patient with 

progressive disease (samples MEL-12.A-E) in duplex corrected positions (allele fractions 

below 30% only) and copy-number based tumor fraction estimations.  

[00111] FIG.3Dand3E illustrate anexemplarymethod of signature matchingbetween 

sequencing reads. The signature 7 reference of FIG. 3D is a publicly available signature 

associatedwithUV exposure (i.e.,a melanoma specific signature). The signatures of FIG.  

4E show uncorrected, single- strand correction, and duplex correction of a control signature 

and a melanomna patient with a MEL-12 D signature. Each bar on the signature representsa 

specific trinucleotide mutation (i.e., there are 96 bars) and the y-axis shows the relative 

proportion of trinucleotide mutation. The duplex corrected MEL-12 D signature is matched 

to the reference signature, and the cancer-like signature is only apparent in the cancer patient 

after duplex correction.  

[00112] FIG. 3Fis agraph illustrating a signature score and ctDNA detectionof an in 

silicon mixing study of metastatic melanoma samples MEL-12 A/B with cancer-free control 

CTRL-06 (10 replicates per tumor fraction, IOx coverage per replicate).  

[00113] In the top row, the signature score is used toestimate the contribution of signature 

SBS& (melanoma UV associated) in the decomposition of a sample's trinucleotide 

frequencies into reference signatures.  

[00114] In the bottom row, ctDNA detection by expected tumor fraction. Z-scores 

estimation was used to calculate mutation signature SBS7 detection in comparison to 

detection in TF=0 replicates. Ground truth variants originating from either the high-burden 

sample MEL-12.A/B. or the cancer-free sample CTRL-06 are shown in blue (full circle: 

MEL-12.A/B; open circle: CTRL-06). Error bars represent the standard deviation in the 

number of variants per replicate at a given expected tumor fraction.  

[00115] FIG. 3G is a graph illustrating a series of signature scores of melanoma signature 7 

in plasma cfDNA samples using duplex WGS (n=9 melanoma samples; n=3 controls).  

Samples in red are from patient MEL-12 with stage IV melanoma at different time points in 
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their clinical course. Samples in blue each representa separate patient (MEL-08 to MEL-111) 

Samples in pink represent control samples.  

[00116] FIG. 311 is a graph illustrating estimated tumor fraction of samples with elevated 

signature scores. The X-axis depicts the clinical timepoint for each patient sample. Tumor 

fractions were estimated by multiplying the number of single nucleotide variants found in 

duplex corrected reads by the weight of signature 7 after reference signature decomposition 

and normalization by depth of coverage. An assumed 10,000 SNV tumor mutational profile 

was assumed for tumor fraction estimation.  

[00117] FIG. 4 depicts cfDNA fragment lengths in single-end sequencing datasets matched 

with paired-end sequencing. Fragment lengths are accurately recovered between single-end 

Ultima reads when compared to paired-end Illumina sequencing for cfDNA molecules below 

200 base pairs.  

[00118] FIGs. 5A-5C depict the effective of artifact blacklisting on a single nucleotide 

variant detection.  

[00119] FIG. 5A is a graph illustrating the UG specific blacklist, The UG specific blacklist 

includes regions with low GC content, tandem repeats, regions with poor mnappability, 

regions with high coverage variability and regions with homopolymers greater than 10 base 

pairs.  

[00120] FIG. 5B is an illustration of overlap between the UG blacklist and other low 

confidence regions. Other low confidence regions include centromeres. simple repeats, 

regions that encode blacklist, and gnomad regions with AF value greater than 0.001.  

[00121] FIG. 5C is a graph illustrating the overlap between melanoma tumor tissue SNVs 

and low confidence regions. The effects of blacklists on the recovery of somatic single 

nucleotide variants (SNVs) are shown in 107 melanoma tissue samples obtained from the Pan 

Cancer Analysis of Whole Genomes consortium.  

[00122] FIGs. 6A-6B depict cosine similarities in high burden and cancer-free samples for 

clock-like and UV-associated signatures SBSIB and SBS7, respectively.  

[00123] FIG. 6A is a heatmap of cosine similarities in cancer-free samples and high-burden 

ctDNA samples. The heatnap of cosine similarities in duplex-corrected, single strand 

corrected and uncorrected reads from cancer-free samples (n=3) or high burden ctDNA 

samples (n=5, all from patient MEL-12 with stage IVB melanoma). The x-axis is ordered 

alpha-numerically, without hierarchical clustering 
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[001241 FIG. 6B is a boxplot of cosine similarities for three correction methods in the same 

cancer-free samples and high-burdenc tDNA samples, according to techniques disclosed 

herein.  

[00125] FIGs. 7A-7B depict the re-analysis of 107 melanoma mutational signatures from 

the Pan-Cancer Analysis of Whole Genomes consortium.  

[00126] FIG. 7A is a graph showing the signature fraction of a number of variant 

signatures. Deconvolution of duplex-corrected mutations into representative mutational 

signatures was performed using a non-negative maximum likelihood modl. Boxplots are 

ordered in increasing order of the median for each signature.  

[00127] FIG. 7B is a correlation plot between age at cancer diagnosis and the number of 

clock-like mutations attributed to SBS1A and SBSIB. The number of mutations was 

obtained by multiplying the weights of SBSiA and SBSIB by the total number of mutations 

found after duplex correction.  

[00128] FIG. 8 depicts tumor-agnostic copy-number based tumor fraction estimation in 

cancer-free control samples (n=3) and pre-surgery melanoma plasma (n=4).  

[00129] In another embodiment, whole genome sequencing may occur without duplex, to 

reach an SNV-based tumor fraction estimation 

[00130] SNV-based tumor fraction estimation was carried out by counting cell-free DNA 

reads with matching tumor-specific somatic mutations (mutation calling pipeline described 

below). To limitthe effect of problematic regions of the genome., a platform-specific 

blacklist was built. For Illumina sequencing, regions identified in the ENCODE blacklist 

(source), centromeres (source), simple repeat regions (source) and positions with high 

mutation rates (GNOMAD, AF>0.001, source) were not considered. For Ultima sequencing, 

Ultima-specific low-confidence regions composed of homopolymers, AT-rich regions, 

tandem repeatsand regions with poor mappabilityand high coverage variability were 

additionally excluded.  

[00131] To limit the effect of sequencing errors, custom scripts were used for platform

specific denoising. Illumina alignment files were filtered to contain read pairs overlapping 

somatic mutation positions. Paired-end reads were filtered for X, Y, Z and were only kept if 

both RI and R2 carried the somatic mutation or the reference base pair. Tumor fractions were 

estimated by dividing the number of filtered reads containing the somatic mutation by the 

total number of filtered reads.  

[00132] Ultimna alignment files were subset to reads overlapping with somatic mutation 

positions. Reads were filtered by X, Y, Z. Tumor fractions were estimated by dividing the 
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number of filtered reads containing the somatic mutation by the total number of filtered 

reads.  

[00133] SNV model training sets and feature space 

[00134] Training sets were obtained from plasma enriched for ctDNA SNV fragments (true 

label) from specific melanoma tumors and cfDNA SNV reads (false label from healthy 

controls without known cancer as listed in sup tab xx. Candidate reads were extracted from 

custom denoised alignment files. For true label sets, patients with high burden metastatic 

disease were usedand only reads which represented matched tumor variants were retained.  

[00135] A custom deep-learning model is used for signal to noise enhancement, similar to 

previous work (Widman et al, 2022), and effectively categorized candidate SNV reads.  

Candidate SNV reads were extracted using pysam (v.15.2). Additionallycompelling 

regional and sequencing tech specific features were encoded as input to the deep learning 

model architecture with a custom python (v3.6.8) script. Two separate input structures are 

described below, corresponding to each component of the ensemble model.  

[00136] For the MLP, a tabular set of feature values is provided as an input.  

[00137] The feature selection for this was performed on SNV reads post filtering in both 

the true and false label settings. Specific features and their corresponding single variable 

AUC performance is described in sup tab xx. As highlighted in previous work (Widman et 

al, 2022), tissue-specific transcriptional features aid in defining the likelihood for observing 

somatic mutations in a genomic region. Local tumor mutation density is categorized by 

quantifying WGS SNV mutation calls from the PCAWG database (edge ref 81) and the total 

number of SNV mutations are counted from available melanoma derived tumor samples.  

Additionally, local histone CHiP-Seq marks and tissue specific bulk RNA expression values 

were reported as standard RPKL values from primary tissue alignments in ENCODE (edge 

ref 95), Regional DNase peaks (lifted to GRCh3) were also included, which were obtained 

from narrowpeak files as reported in ENCODE (edge ref 95,96). Melanoma specific ATAC 

peak calls as reported in TCGA (edge ref 82) were also included.  

[00138] Since the deep learning model is designed to operate on a read level compendium, 

values for the features defined above were computed using a sliding window around each 

candidate read. The optimal length for this sliding window was defined in previous work 

(Widman et al, 2022). Additionally, regional chromatin annotation tracks (ChromHl-IMM 

lifted to GRCh38) (edge ref 83) were obtained from ENCODE. Hi-C SNIPER(edge ref 97) 

bed files were used to extract HI-C compartment information. Lastly, regional features for 
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replication timing and mean expression values (lifted to GRCh38) were pulled from previous 

literature (edge ref 37).  

[00139] In addition, Ultima specific read level features were included. These include the 

following: 

* X-FCi - number of features (SNPs) on the same read 

" X-FC2 - number of features (SNPs) on the same read that passed the filter 

(matching the reference for -+5 bases) 

" X-FLAGS - propagated from the bam file flag.  

" edI- edit (Levenshtein) distance of the read from the reference, before SNV 

of interest.  

* ed_2- edit (Levenshtein) distance of the read from the reference, after SNV of 

interest.  

[00140] Next for the CNN a one-hot encoded tensor structure of the candidate read was 

used, similar to previous work (Widman et al, 2022). Each read is encoded with a variant 

(sequencing artifact/noise from healthy controls or somatic mutation from high burden tumor 

plasma sample). The encoded tensor has an image-like structure with a shape of 12x240.  

The rows correspond to one hot encoded nucleotides (N,AC,T,G) corresponding to the 

reference and the read. The penultimate row dimension is used to mark the position along the 

read highlighting the SNV of interest. Lastly, the absence/presence (0/) of a cycle skip (as 

defined by Ultima) is encoded along the last row dimension to acid further relevance to tri

nucleotide context of the SNV of interest. The columns correspond to individual nucleotides 

along the length of the read. While reads have a maximum length of 200, the extra 40 base 

pairs are padded with the reference genome thereby adding additional relevant contextual 

information.  

[00141] SNV model design and training 

[00142] Thedeep-learning model hasan ensemblestructure andconsistsof two major 

components - a regional/read specific multi layer perception (MLP) and a sequence based 

convolutional neural network (CNN), whose weight matrices are jointly learnt.  

[00143] The MLP which takes a feature matrix as input consists of a linear stack of four 

dense blocks. Each block is defined as consisting of a fully connected layer with a ReLIJ 

activation. Furthermore, for the purpose of regularization the input to each fully connected 

layer is batch normalized and the output is passed through a dropout layer.  
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[00144] The CNN consists of four one dimensional convolution layers with non-linear 

ReLU activations, which extract sequential information at different spatial resolutions.  

Moreover, as in classical deep learning frameworks, each convolution layer (post nonlinear 

activation) is followed by a max pooling layer. The output is then passed through a stack of 3 

dense blocks as defined above.  

[00145] Subsequently, the latent output of both the MLP and CNN is then concatenated and 

passed through a single dense block. Finally, a probability score between 0 (sequencing 

noise) and 1 (true somatic mutation) is obtained by using a single sigmoid-activated fully

connected layer. This probability score reflects the model's estimate on whether a candidate 

SNV mutation present in the encoded read is likely from signal or noise. The ensemble model 

is built in Keras (v.2.3.0) with a Tensorflow base (1140).  

[00146] To train the ensemble model, the objective function defined as a binary cross 

entropy loss is minimized. Performance metrics were reported within balanced sets.  

[00147] UMI Correction improves insertion-deletion mutation (indel) detection accuracy in 

li/dma sequencing daasets 

[00148] UMIs add a unique barcode to each DNA molecule. During PCR, the barcode tag 

(and DNA molecule) is duplicated multiple times. PCR duplicates can be thereby identified 

using the UMI Identified duplicates can be used to correct sequencing errors, as it is 

unlikely that the same error will occur on two PCR duplicates. It should be noted that the 

Ultima flow-based sequencing is prone to homopolymer size errors, which are interpreted as 

false indel. FIG. 9A is a graph illustrating a homopolymer size between two PCR duplicates, 

whereas FIG. 9B is a graph illustrating a homopolymer size between a read and an aligned 

reference. For reference, FIG. 9C is agraph illustrating frequency of homopolymer size 

across the human genome, according to techniques disclosed herein. To further illustrate the 

increased accuracy of UMI correction, FIG. 91) is a graph illustrating insertion-deletion 

mutations indel calling accuracy by PCR duplicate family sizes, according to techniques 

disclosed herein.  

[00149] UMI ligated reads allowfor the detection of error robust trinucleotide motifs in 

lidma sequencing datasets 

[00150] UMIs can also be used to find error-robust single nucleotide variants. These 

variants generally fall in cycle shift motifs, which are specific trinucleotides that Ultima has 

determined to be robust to errors. Details on cycle shifts are shown in FIG. 10, a graph 

illustrating a single nucleotide variantanalysis of matched Ultima and Illumina sequencing 

datasets. FIGs. 11A-B show that flow-based sequencingprovidespredictableerror-robust 
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motifs. FIG. 11A is a flow chart of a sequencing process providing predictable, error-robust 

motifs, and FIG. 11B is a graph of error rate by sequencing platform, according to techniques 

disclosed herein.  

[00151] Velab improvements and the development a novel machine learning classifier 

fjr duplex variant detection 

[00152] In some embodiments of the present disclosure, molecular and computational 

improvements were made to the methodology to improve yield of duplex molecules. The 

molecular improvement is shown by a more efficient bottlenecking of DNA molecules (FIG.  

12A-B). FIG. 12A is a graph of duplex WGS libraries from three starting inputs sequenced 

at 1-13x coverage. Duplex correction was applied, and the yield of duplex recovery (depth of 

duplex-only coverage by total sequenced coverage) was measured, as shown in the graph.  

FIG. 12B illustrates the duplication rate of the samples of FIG. 12A at n = 3, 

[00153] In FIG. 12C, a downsampling experiment shows that improved bottlenecking 

achieves higher duplex coverage at a faster rate than other embodiments. This is further 

illustrated by FIG. 121), which is a a graph illustrating that duplex coverage is significantly 

higher at fixed coverage. FIG. 12E is a graph illustrating a number of duplex variants found 

using the duplex method (fgbio) versus a decision tree. FIG. 13 furthers this illustration with 

mutational error rates in mouse PDX samples (with N = 3 per condition). This data illustrates 

the expandedapplicability of the processes of the disclosed embodiments, including 

application to melanoma, stage III, with a baseline timepoint.  

[00154] Some embodiments of the present disclosure produce more samples, including pre

surgery samples as shown in FIG. 14. Plasma cell-free DNA was obtained from patients 

with bladder cancer who may or may not have received chemotherapy. FIG. 15 shows that 

embodiments of the present disclosure detect a chemotherapy mutational signature in most 

samples that may have received chemotherapy, and specifically illustrates the application to 

bladder cancer, and the detection of an "APOBEC" signature and chemotherapy. In samples 

who never received chemo (green) or cancer-free controls (blue), the chemotherapy signal is 

not measured.  

[00155] Bladder cancer typically shows the APOBEC mutational signature. This signature 

can also be detected in the plasma cell-free DNA, as shown in FIGs. 16A-B. Darker bars 

represent the APOBEC signature of tumors, and the lighter bars represent the APOBEC 

measurement in cfDNA.  

[00156] FIG. 17 is a schematic of an example of a computing node. Computing node 10 is 

only one example of a suitable computing node and is not intended to suggest any limitation 
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as to the scope of use or functionality of embodiments described herein. Regardless, 

computing node 10 is capable of being implementedand/or performing any of the 

functionality set forth hereinabove.  

[00157] In computing node 10 there is a computer system/server 12, which is operational 

with numerous other general purpose or special purpose computing system environments or 

configurations. Examples of well-known computing systems, environments, and/or 

configurations that may be suitable for use with computer system/server 12 include, but are 

not limited to, personal computer systems, server computer systems, thin clients, thick 

clients, handheld or laptop devices, multiprocessor systems, microprocessor-based systems, 

set top boxes, programmable consumer electronics, network PCs, minicomputer systems, 

mainframe computer systems, and distributed computing environments that include any of 

the above systems or devices, and the like.  

[00158] Computer system/server 12 may be described in the general context of computer 

system-executable instructions, such as program modules, being executed by a computer 

system, Generally, program modules may include routines, programs, objects, components, 

logic, data structures, and so on that perform particular tasks or implement particular abstract 

data types. Computer system/server 12 may be practiced in distributed computing 

environments where tasks are performed by remote processing devices that are linked 

through a communications network. In a distributed computing environment, program 

modules may be located in both local and remote computer system storage media including 

memory storage devices.  

[00159] As shown in FIG. 17, computer system/server 12 in computing node 10 is shown 

in the form of a general-purpose computing device. The components of computer 

system/server 12 may include, but are not limited to, one or more processors or processing 

units 16, a system memory 28, and a bus 18 that couples various system components 

including system memory 28 to processor 16.  

[00160] Bus 18 represents one or more of any of several types of bus structures, including a 

memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a 

processor or local bus using any of a variety of bus architectures. By way of example, and 

not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro 

Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards 

Association (VESA) local bus, Peripheral Component Interconnect (PCI) bus, Peripheral 

Component Interconnect Express (PCIe), and Advanced Microcontroller Bus Architecture 

(AMBA).  
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[001611 Computer system/server 12 typically includes a variety of computer system 

readable media. Such media may be any available media that is accessible by computer 

system/server 12, and it includes both volatile and non-volatile media, removable and non

removable media.  

[00162] System memory 28 can include computer system readable media in the form of 

volatile memory, such as random access memory (RAM) 30 and/or cache memory 32.  

Algorithm Computer system/server 12 may further include other removable/non-removable, 

volatile/non-volatile computer system storage media, By way of example only, storage 

system 34 can be provided for reading from and writing to a non-removable, non-volatile 

magnetic media (not shown and typically called a "hard drive"). Although not shown, a 

magnetic disk drive for reading from and writing to a removable, non-volatile magnetic disk 

(e.g., a "floppy disk"), and an optical disk drive for reading from or writing to a removable, 

non-volatile optical disk such as a CD-ROM, DVD-ROM or other optical media can be 

provided. In such instances, each can be connected to bus 18 by one or more data media 

interfaces. As will be further depicted and described below, memory 28 may include at least 

one program product having a set (e.g., at least one) of program modules that are configured 

to carry out the functions of embodiments of the disclosure.  

[00163] Program/utility 40, having a set (at least one) of program modules 42, may be 

stored in memory 28 by way of example, and not limitation, as well as an operating system, 

one or more application programs, other program modules, and program data. Each of the 

operating system, one or more application programs, other program modules, and program 

data or some combination thereof, may include an implementation of a networking 

environment. Program modules 42 generally carry out the functions and/or methodologies of 

embodiments as described herein.  

[00164] Computer system/server 12 may also communicate with one or more external 

devices 14 such asa keyboard, a pointing device, a display 24, etc.; one or more devices that 

enable a user to interact with computer systemn/server 12; and/or any devices (e.g., network 

card, modem, etc.) that enable computer system/server 12 to communicate with one or more 

other computing devices. Such communication can occur via Input/Output (/O) interfaces 

22, Still yet, computer system/server 12 can communicate with one or more networks such 

as a local area network (LAN), a general wide area network (WAN), and/or a public network 

(e.g., the Internet) via network adapter 20. As depicted, network adapter 20 communicates 

with the other components of computer system/server 12 via bus 18. It should be understood 

that although not shown, other hardware and/or software components could be used in 
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conjunction with computer systemserver 12. Examples, include, but are not limited to: 

microcode, device drivers, redundant processing units, external disk drive arrays, RAID 

systems, tape drives, and data archival storage systems, etc.  

[00165] In various embodiments, a learning system is provided. In some embodiments, a 

feature vector is provided to a learning system. Based on the input features, the learning 

system generates one or more outputs. In some embodiments, the output of the learning 

system is a feature vector. In some embodiments., the learning system comprises an SVM. In 

other embodiments, the learning system comprises an artificial neural network. In some 

embodiments, the learning system is pre-trained using training data. In some embodiments 

training data is retrospective data. In some embodiments, the retrospective data is stored in a 

data store. In some embodiments, the learning system may be additionally trained through 

manual curation of previously generated outputs.  

[00166] In some embodiments, the learning system, is a trained classifier. In some 

embodiments, the trained classifier is a random decision forest. However, it will be 

appreciated that a variety of other classifiers are suitable for use according to the present 

disclosure, including linear classifiers, support vector machines (SVM), or neural networks 

such as recurrent neural networks (RNN).  

[00167] Suitable artificial neural networks include but are not limited to a feedforward 

neural network, a radial basis function network, a self-organizing map, learning vector 

quantization, a recurrent neural network, a Hopfield network, a Boltzmann machine, an echo 

state network, long short term memory, a bi-directional recurrent neural network, a 

hierarchical recurrent neural network, a stochastic neural network, a modular neural network, 

an associative neural network, a deep neural network, a deep belief network, a convolutional 

neural networks, a convolutional deep belief network, a large memory storage and retrieval 

neural network, a deep Boltzmann machine, a deep stacking network, a tensor deep stacking 

network, a spike and slab restricted Boltzmann machine, a compound hierarchical-deep 

model, a deep coding network, a multilayer kernel machine, or a deep Q-network.  

[00168] The present disclosure may be embodied as a system, a method, and/or a computer 

program product. The computer program product may include a coputer readable storage 

medium (or media) having computer readable program instructions thereon for causing a 

processor to carry out aspects of the present disclosure.  

[00169] The computerreadable storage medium can be a tangible device that can retain and 

store instructions for use by an instruction execution device. The computer readable storage 

medium may be, for example, but is not limited to, an electronic storage device, a magnetic 
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storage device, an optical storage device, an electromagnetic storage device, a semiconductor 

storage device, or any suitable combination of the foregoing. A non-exhaustive list of more 

specific examples of the computer readable storage medium includes the following: a 

portable computer diskette, a hard disk, a random access memory (RAM), a read-only 

memory (ROM), an erasable prograimable read-only memory (EPROM or Flash memory), 

a static random access memory (SRAM), a portable compact disc read-only memory (CD

ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded 

device such as punch-cards or raised structures in a groove having instructions recorded 

thereon, and any suitable combination of the foregoing. A computer readable storage 

medium, as used herein, is not to be construed as being transitory signals per se, such as radio 

waves or other freely propagating electromagnetic waves, electromagnetic waves propagating 

through a waveguide or other transmission media (e.g., light pulses passing through a fiber

optic cable), or electrical signals transmitted through a wire.  

[00170] Computer readable program instructions described herein can be downloaded to 

respective computing/processing devices from a computer readable storage medium or toan 

external computer or external storage device via a network, for example, the Internet, a local 

area network, a wide area network and/or a wireless network. The network may comprise 

copper transmission cables, optical transmission fibers, wireless transmission, routers, 

firewalls, switches, gatewaycomputersand/or edge servers. A network adapter card or 

network interface in each computing/processing device receives computer readable program 

instructions from the network and forwards the computer readable program instructions for 

storage in a computer readable storage medium within the respective computing/processing 

device.  

[00171] Computer readable program instructions for carrying out operations of the present 

disclosure may be assembler instructions, instruction-set-architecture (ISA) instructions, 

machine instructions, machine dependent instructions, microcode, firmware instructions, 

state-setting data, or either source code or object code written in any combination of one or 

more programming languages, including an object oriented programming language such as 

Smalltalk, C+± or the like, and conventional procedural programming languages, such as the 

"C" programming language or similar programming languages. The computer readable 

program instructions may execute entirely on the user's computer, partly on the user's 

computer, as a stand-alone software package, partly on the user's computer and partly on a 

remote computer or entirely on the remote computer or server. In the latter scenario, the 

remote computer may be connected to the user's computer through any type of network, 
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including a local area network (LAN) or a wide area network (WAN), or the connection may 

be made to an external computer (for example, through the Internet using an Internet Service 

Provider). In some embodiments., electronic circuitry including, for example, prograrmable 

logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) 

may execute the computer readable program instructions by utilizing state information of the 

computer readable program instructions to personalize the electronic circuitry, in order to 

perform aspects of the present disclosure.  

[00172] Aspects of the present disclosure are described herein with reference to flowchart 

illustrations and/or block diagrams of methods, apparatus (systems), and computer program 

products according to embodiments of the disclosure. It will be understood that each block of 

the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart 

illustrations and/or block diagrams, can be implemented by computer readable program 

instructions.  

[00173] These computer readable program instructions may be provided to a processor of a 

general purpose computer, special purpose computer, or other programmable data processing 

apparatus to produce a machine, such that the instructions, which execute via the processor of 

the computer or other programmable data processing apparatus, create means for 

implementingthe functions/acts specified in the flowchart and/or block diagram block or 

blocks. These computer readable program instructions may also be stored in a computer 

readable storage medium that can direct a computer, a prograrmnable data processing 

apparatus, and/or other devices to function in a particular manner, such that the computer 

readable storage medium having instructions stored therein comprises an article of 

manufacture including instructions which implement aspects of the function/act specified in 

the flowchart and/or block diagram block or blocks.  

[00174] The computerreadable program instructions may also be loaded onto a computer, 

other programmable data processing apparatus, or other device to cause a series of 

operational steps to be performed on the computer, other programmable apparatus or other 

device to produce a computer implemented process, such that the instructions which execute 

on the computer, other programmable apparatus, or other device implement the functions/acts 

specified in the flowchart and/or block diagram block or blocks.  

[00175] The flowchart and block diagrams in the Figures illustrate the architecture, 

functionality, and operation of possible implementations of systems, methodsand computer 

program products according to various embodiments of the present disclosure. In this regard, 

each block in the flowchart or block diagrams may represent a module, segment, or portion of 
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instructions, which comprises one or more executable instructions for implementing the 

specified logical function(s). In some alternative implementations, the functions noted in the 

block may occur out of the order noted in the Figures. For example, two blocks shown in 

succession may, in fact, be executed substantially concurrently, or the blocks may sometimes 

be executed in the reverse order, depending upon the functionality involved. It will also be 

noted that each block of the block diagrams andi/or flowchart illustration, and combinations of 

blocks in the block diagrams and/or flowchart illustration, can be implemented by special 

purpose hardware-based systems that perform the specified functions or acts or carry out 

coinbinations of special purpose hardware and computer instructions.  
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We claim: 

1. A method comprising: 

extracting DNA from a collection of samples from an organism; 

preparing a sequence library with duplex adapters, wherein the sequence library is 

prepared by ligating a duplex adapter having a Unique Molecule Identifier (UMI) to an end 

of each of a plurality of strands of the extracted DNA and amplifying the extracted DNA with 

a first PCR; 

selecting a subset of the sequence library; 

amplifying the subset with a second PCR to increase a number of PCR duplicates; 

sequencing a plurality of duplex reads from the amplified subset; 

aligning the plurality of duplex reads to a host genome and denoising the plurality of 

duplex reads based on said alignment; 

detecting the presence of a variant in at least one of the plurality of duplex reads; 

determininga signature of the variant; 

comparing the signature of the variant to a collection of disease-specific variant 

signatures; and 

determining a disease type based on the comparison.  

2. The method of claim 1, wherein the UMI has exactly three base pairs.  

3. The method of claim 1, wherein the IMI has less than five base pairs.  

4. The method of claim 1, wherein the disease type is a cancer type.  

5. The method of claim 1, wherein the cancer type comprises bladder cancer.  

6, The method of claim 1, wherein the sequence library comprises one of a whole 

genome library or a whole exome library.  

'7. Themethodofclaim6,x'hereinpreparing the sequence library with duplex adapters 

further comprises collapsing one or more errors on a strand of extracted DNA.  
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8. The method of claim 1, wherein amplifying the extracted DNA with the first PCR 

comprises removingsequencing errors based on the presence of two or more molecules with 

the same UML 

9. The method of claim 1, wherein sequencing the plurality of duplex reads comprises 

sequencing on a paired-end system.  

10. The method of claim 1, wherein 

sequencing the plurality of duplex reads comprises sequencing on a single-end system 

and, wherein 

aligning the plurality of duplex reads to the host genome comprises: 

obtaining a plurality of single-end DNA sequencing reads; 

separating a top-mapping strand of the DNA from a bottom-mapping strand of 

DNA; 

performing error collapsing on each of the top-mapping strands and the 

bottom-mapping strands; 

reverting the bottom-mapping strands to top-mapping strands by re-grouping 

based on UMI; and 

performing error correcting between the top and bottom strands.  

11. The method of claim 1, wherein 

sequencing the phirality of duplex reads comprises sequencing on a single-end system 

and, wherein 

aligning sequences to a host genome comprises: 

obtaining a plurality of single-end DNA sequencing reads; 

creating a synthetic paired-end read; and 

performing error correcting on all strands.  

12. The method of claim 1, wherein sequencing the plurality of duplex reads comprises 

sequencing a series of uncorrected reads belonging to a duplex family.  

13. The method of claim 12, further comprising processing uncorrected reads belonging 

to a duplex family to measure a read specific feature.  
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14. The method of claim 13. further comprising filtering the uncorrected reads based on 

the measured read specific feature.  

15. The method of claim 1, further comprising trimming the sequence of reads from the 

amplified subset.  

16. The method of claim 1, wherein comparing the extracted variant to a collection of 

cancer-specific variant signatures comprises: 

calculating a tumor fraction estimation of a duplex-corrected signature; 

plotting the tumor fraction estimation to create a duplex-corrected signature for the 

extracted variant; and 

matching the duplex-corrected signature to a reference signature.  

17. The method of claim 16. wherein the signature comprises a relative proportion of a 

trinucleotide mutation.  

18. The method of claim 4, further comprising: 

correcting for library and sequencing artifacts by a panel of cancer-free controls 

sequenced on the same system; and 

estimating a tumor fraction.  

19. The method of claim 1, further comprising integrating a genone-wide mutation from 

the sequencing reads as a weighted sum of single-base substitution (SBS) reference 

mutational signatures.  

20. The method of claim 19, wherein integrating the genome-wide mutation comprises: 

deconvolving SBS mutational signatures from plasma DNA mixtures using a non

negative maximum likelihood model; 

estimating a tumor fraction by taking a weight of a tumor-associated SBS signature 

and normalizing by a total number of mutations and depth of sequencing; and 

calculating a signature score to determine that the cancer-associated SCS explains an 

observed mutation profile.  
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21. The method of claim 1, further comprising discarding variant with an allele 

frequency greater than 30%.  

22. The method of claim 21, further comprising: 

aggregating readshaving a variant with allele frequency less than 30%; 

calculating a frequency of variants in the aggregated reads trinucleotide context; and 

comparing the calculated trinucleotide variant frequency with a number of reference 

frequencies for different biological processes.  

23. The method of claim 1, wherein determining a disease status comprises: 

randomly changing a trinucleotide frequency of a reference signature from the 

collection; 

performing a non-negative maximum likelihood fit between the randomly-permutated 

trinucleotide frequency and a frequency of the signature; and 

scoring the fit below a disease-negative threshold.  

24. The method of claim 1, wherein the DNA is genomic DNA.  

25. The method of claim 1, wherein the DNA is cell-free DNA (cfDNA).  

26. The method of claim 1, wherein detecting the presence of the variant comprises: 

providing the plurality of duplex reads to a pretrained machine learning model; and.  

receiving therefrom an indication of a base variant irrespective of comparative 

sequence length.  

27. The method of claim 26, wherein the pretrained machine learning model comprises an 

artificial neural network.  

28. The method of claim 27, wherein the artificial neural network is one of a feedforward 

neural network. a radial basis function network, a self-organizing map, learning vector 

quantization, a recurrent neural network, a Hopfield network, a Boltzmann machine, an echo 

state network, long short term memory, a bi-directional recurrent neural network, a 

hierarchical recurrent neural network, a stochastic neural network, a modular neural network, 

an associative neural network, a deep neural network, a deep belief network, a convolutional 
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neural networks, a convolutional deep belief network, a large memory storage and retrieval 

neural network, a deep Boltzmann machine, a deep stacking network, a tensor deep stacking 

network, a spike and slab restricted Boltzmann machine, a compound hierarchical-deep 

model, a deep coding network, a multilayer kernel machine, or a deep Q-network.  

29. The method of claim 26, wherein the pretrained machine learning model comprises a 

trained classifier.  

30. The method of claim 29, wherein the trained classifier is a random decision forest.  

31. The method of claim 1, wherein the collection of samples comprises a collection of 

plasma samples.  

32. The method of claim 1, wherein the sequence library comprises a whole genome 

sequence library.  

33. Acomputerprogramproduct for reducing sequencing error rates, the computer 

program product comprising a computer readable storage medium having program 

instructions embodied therewith, the program instructions executable by a processor to cause 

the process to perform a method according to any one of claims 1-32.  
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variant calling: fabio / decision-tree
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(Continued, FIG. 16B)
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