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NUCLEIC ACHD ERROR SUPRESSION

RELATED APPLICATION(S)

{6001] This application clairns the benefit of priority to U.S. Provisional Application No.

637380915, filed October 25, 2022, which is hereby incorporated by reference in its entivety.

TECHNICAL FIELD
{0082] The invention relates generally to the field of medical diagnostics. In particular,
embodiments of the disclosure relate to methods and systems for reducing sequencing error

rates in cancer detection and other ficlds requiring low crvor sequencing.

BACKGROUND

{00031 Monitoring circulating cell-free DNA (cfDNA) has been shown to be a promising
clinical tool for non-invasive cancer detection. While analysis of cancer-specific epigenetic
markers, such as DNA methylation and histone modifications, has been applied to cfDNA for
detection of various cancers, ouitation-based approaches using direct genomic sequencing of
somatic variants found in circulating tumor DNA (CtDNA) afford more specificity and
chinically-actionable information. As such, ctDNA genome sequencing is preferable for
clinical applications, particularly in cases where there is low burden of disease, such as early
cancer sereening, detection of minimal residual disease (MRD) after treatroent or surgery and
relapse monitoring of emergent resistant mutations for guided therapy. In these scenarios,
tumor fraction is low, such that robust detection requires methods with exquisife sensitivity.
{0004] Prevailing methods of ctDNA detection use targeted sequencing protocols, which
increase the number of genomes sequenced at a targeted location. However, high throughput
targeted sequencing rapidly exhausis available genomes for sequencing (1,000-10,000
genome equivalents (GEs) per roll of plasma), which sets a design-based ceiling on ctDNA
detection, where further increasing sequencing depth at a targeted site affords no advantage
atter the limited number of GEs has already been sequenced. Alternatively, 1o overcome
these limitations, whole genome sequencing (WGS) approaches exploit breadth of coverage
to supplant depth, eliminating the reliance on the detection of a single site to increase ctDNA

characterization in low tumor fraction settings. For example, recent method MREDetect uses
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primary fumor mutational profiles to inform genome-wide tumor single nucleotide variane
{(8NV) detection in ¢fDNA, such that the available nomber of GEs no longer is the limiting
factor for successtul ctDNA detection.

{6005] The detection challenges presented by sparsity are significant, calling for broad,
accurate and deep cfDNA sequencing. Thus, whole-genorme, low-crror, high-coverage
methods are necessary for robust ctDNA analysis. However, the costs associated with these
approaches are often prohibitive, particularly for clinical application.  Although genome
sequencing costs have rapidly dropped since the introduction of high-throughput next
generation sequencing, more recently this decrease has stagnated.  As such, sequencing cost
is still a significant barrier to implementation of high-depth WGS for liquid biopsies, where
in clinically important applications, tumor fractions are low {(~10-3) and shallow WGS is
insufficient for ctDNA detection. To estimate the cost of imaplementing WGS for successful
detection of ctDNA at such fractions, the probability of detecting a single mutation in a
ctDNA sample can be modeled, given the number of (3Es, the tumor fraction and sequencing
depth!”. It is estimated that a sequencing depth of over 100x is required for single mutation
detection in tumor-derived DNA at thas low fraction level, making the per-sample cost of
WGS exceedingly high for application at scale with established technologies (~2.000USD per
sarople using an Humina Novaseg 54 flow cell with v1.5 reagent costs).

{0006] Recently, a new low-cost, high-throughput sequencing method atilizing mostly
natural sequencing-by-synthesis (mnSBS) has been developed by Ultima Genomics. The
Ultima sequencing platform produces single-end reads at ~10 billion reads per run for 15/GB,
thus substantially lowering sequencing costs compared with current platforras. This cost
efficiency holds great promise for many genomics applications, and this approach has now
been applied to Genome-In-A-Bottle and 1000 Genomes reference samples and adapted for
single-cell RNA-seq studies. However, mnSBS/Ultima sequencing has not been harnessed
for application to clinical ¢fDNA samples for ctDNA sequencing. In addition, notably, the
crror rate profiles of this new sequencing method have not been fully characterized, nor have
they been rigorously compared with competing technologies. Importantly, for poteniial
application to clinical discase monitoring of ctDNA, it is especially crucial to have accurate
error rate estimates due to the high sensitivity of low-burden ctDNA detection.

{0087]  Accordingly, there is a need for methods of reducing sequencing error rates in
discase detection. The technical challenges tmparted by the sparsity of ctDNA in low-burden
discase settings may be overcome by increasing sequencing depth, accompanied by a low

error vate. Unique molecular identifier (UMI) error suppression technigues or duplex
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scgquencing, can increase accuracy in differentiating true somatic variant calls from crrors
introduced by sequencing, and may be combined with decp genomic sequencing to optimize

successtul detection of low-burden disease in a clinical setng.

SUMMARY

{0008] Huere, to investigate the viility of deep WGS for ctDNA detection, Ultima
Genomics’ mnSB S sequencing platforia is used to sequence circulating cell-free DNA reads
from plasma sampies from healthy controls, cancer patients and paticnt-derived xenograft
mouse models. In a first proof-of-principle study, it is shows that deep WGS (~100x) with in
silico error correction allows ctDNA detection within the part per million range. By
leveraging the cost-effective and high-throughput nature of Ultima Genomics sequencing
{109 reads per run at 1$/Gb), high coverage duplex-sequencing libraries of cell-free DNA can
be produced, achieving error rates as low as 2.7x10-7. This allows accurate assessment of
discase burden in post-treatment melanoma patients in the absence of any tumor information.
Together, this demonstrates the utility of deep WGS in clinical samples for ctDNA detection.
{0009]  According to certain aspects of the present disclosure, systems and methods are
disciosed for detecting cancer with a lower sequencing error rate.

{6010]  In an embodiment, a method comprises extracting DNA from a collection of plasma
samples; preparing a whole genome libravy with duplex adapters, wherein the whole genome
library is prepared by ligating a duplex adapter having a Unique Molecule Identifier (UM} to
an end of cach of a plurality of sirands of the extracted DNA and amplifying the extracted
DNA with a first PCR,; selecting a subset of the wheole genome library; amplifving the subset
with a second PCR to increase a number of PCR duplicates; sequencing a plurality of duplex
reads from the amplificd subset; aligning the pluorality of duplex reads to a host genome and
denoising the plurality of dupiex reads based on said alignment; detecting the presence of a
variant in at least one of the plurality of duplex reads; determining a signatore of the variant;
comyparing the signature of the variant to a collection of discase-specific variant signatures;

and determining a disease type based on the comparison.

BRIEF DESCRIPTION OF THE DRAWINGS
{6011} The accompanying drawings, which are incorporated into and constitute a part of
this specification, illustrate various exemplary embodiments and together with the

description, serve to explain the principles of the disclosed embodiments.
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1

{6012] FIG. 1is a flowchart ithustrating a method for detecting mutation signatures to
determine a cancer status, according o technigues disclosed herein

{0013] FIG. 2A is a series of graphs ilustrating ervor rates and sequencing coverage for
tumor fractions at or below 107, according to techniques disclosed herein.

{6014] FIG. 2B is a flowchart of a pre-analytical process to prepare a cfDNA library,
according to techniques disclosed herein.

{0015] FIG. 20 is a graph illastrating sequencing depths for matched Bhimina and Ultima
datasets, according to techniques disclosed herein.

{6018] FIG. 2D is a comparison of normalized read coverage of a sequenced matched
cfDNA sample, according to techniques disclosed herein.

{60171 FIG, 2K is a comparison of copy number-based variant {CNVY}) and single-
nucieotide vartant (SNV) tumor fractions, according fo techniques disclosed hersin.

{6018] FIG. 2F is a graph of an in silico mixing study, according to techniques disclosad
herein.

{0019] TFIG. 3A is a series of graphs illustrating duplex whole genome sequencing (WGS)
on a mouse (left) and patient {right) sample, according to techniques disclosed herein.
{0028] FIG. 3B is a graphical comparison of variant allele frequencies calculated using
unfiltered sequencing reads, according to techniques disclosed herein.

{0021] FIG. 3C is a graph comparing the model allele fraction of a patient with progressive
disease in duplex corrected positions and copy-number based tumor fraction estimations,
according to techniques disclosed herein.

{6022] FIG. 3D is a graph illustrating exeroplary trinucleotide frequencies from a
melanoma-assoctated UV signature.

{6023] FIG. 3K is a comparison of cosine similarities with either the SBS7 or the SBSiB
mutation across conditions, according to techniques disclosed herein

{6024] FIG. 38 is a graph illustrating a signature score and ctDNA detection of an in sifico
mixing study of metastatic melanoma samples, according to techniques disclosed herein.
{6025] FIG. 3G is a graph illustrating a series of signature scores of melanoma signature 7
in plasma cfDNA samoples using duplex WGS, according to techniques disclosed herein.
{002s8] FIG. 3H is a graph iHustrating estimated tumor fraction of samples with elevated
signature scores, according to techniques disclosed herein.

{60271 FIG. 4 is a series of graphs illustrating frequency of ¢fDNA fragment lengths in
single-end Ultima sequencing datasets maiched with paired-end Hlumina sequencing,

according to techniques disclosed herein.
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{6028] FIG. 5A is a graph fllustrating the UG specific blacklist, according to techniques
disclosed herein.

{6029] FIG. 3B is an illustration of overlap between the UG blacklist and other low
confidence regions, according to fochniques disclosed herein

{6036] FIG, 5C is a graph illustrating the overlap between melanoma fomor fissue SNVs
and low confidence regions, according to technigues disclosed herein.

{0031] FIG. 6A is a heatmap of cosing similarities in cancer-free samples and high-burden
ctDNA samples, according to techniques disclosed herein.

{6032] FIG. 68 is a boxplot of cosine similarities for three correction methods in the same
cancer-free samples and high-burden ctDNA samples, according to techniques disclosed
herein.

{00331 FIG, 7A is a graph illustrating a deconvolution of duplex-corrected mutations into
representative mutational signatures.

{0034] FIG. 7B is a correlation plot between age at cancer diagnosis and number of clock-
like mutations attributed to SBSTA and SBS1B, according to techniques disclosed herein.
{6035] FIG. 8 is a graph of a tamor-agnostic copy-number based tumor fraction estimation
in cancer-free control samples and pre-surgery melanoma plasma, according to techniques
disciosed herein.

{8036] FIG. 9A is a graph illastrating a homopolymer size between two PCR duplicates,
according to techniques disclosed herein.

{0037] FIG. 98 is 2 graph lustrating a bomopolymer size between a read and an aligned
reference, according to techniques disclosed herein.

[0038] FIG. 9C is a graph ilustrating frequency of homopolymer size across the haman
genome, according to techniques disclosed herein.

{603%]  FIG. 9D is a graph illustrating indel calling accuracy by PCR duplicate family sizes,
according to techniques disclosed herein.

{0040] FIG. 16 is a graph iBustrating a single nocleotide vartant analysis of matched
Ultima and [Humina sequencing dataseats, according to techniques disclosed herein.

{6041] FIG. 11A is a flow chart of a sequencing process providing predictable, error-robust
motifs, according to techniques disclosed herein

{6042] FIG. 118 is a graph of ewvor rate by sequencing platform, according to technigues
disciosed herein.

{0043] FIG. 12A 15 a graph of duplex WGS libraries from three starting inputs sequenced

at 1-13x coverage, according to technigues disclosed herein.
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{6044] FIG. 128 is a graph illustrating a duplication rate of the samples of FIG, 124,
{6045] FIG. 12C is a graph of the effect of downsampling experiments, according to
techniques disclosed herein.

{0046] FIG.A2D is a graph Hlustrating that duplex coverage is significantly higher at fixed
coverage, according to techniques disclosed herein.

{6047] FIG. 12K is a graph llustrating a number of duplex variants found using fgbio
versus a decision tree, according to techniques disclosed herein.

{0048] FIG. 13 s a graph (lustrating mutational ervor rates in mouse PDX samples,
according to techniques disclosed herein.

{0049] FIG. 14 is a bar graph illostrating a namber of pre-surgery samples represented in
validation experiments, according to techniques disclosed herein.

{6056] FIG, 15 is a graph illustrating detection of a chemotherapy nutational signature in
plasma-free DNA, according to techniques disclosed herein.

{0051] FIG. 16A is a bar graph dlusirating an apobec signature and measurement,
according to techniques disclosed herein.

{0052] FIG. 16B 1s a bar graph illustrating an apobec signature and measurement,
according to techniques disclosed herein.

160531 FIG. 17 is a computing node according to embodiments of the present disclosure.

DETAILED DESCRIPTION

{6054] Reference will now be made in detail to the exemplary embodiments of the present
disclosure, examples of which are iHustrated in the accompanying drawings. Wherever
possible, the same refercnce mumbers will be used throughout the drawings 1o refer to the
same or like paris.

{B055]  The systems, devices, and methods disclosed herein are described in detail by way
of examples and with reference to the figures. The examples discussed herein are examples
only and arc provided to assist in the explanation of the apparatuses, devices, systems, and
methods described hercin. None of the features or components shown in the drawings or
discussed below should be taken as mandatory for any specific implementation of any of
these devices, systems, or methods anless specifically designated as mandatory.

{6056] Also, for any methods described, regardiess of whether the method is described in
conjunction with a flow diagrarg, it should be understood that unless otherwise specified or

required by context, any explicit or implicit ordering of steps performed i the execution of a
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method does not imply that those steps must be performed in the order presented but instead
may be performed in a different ovder or in paraliel.

{0057]  As used herein, the term “exemplary” s used in the sense of “example.” rather than
“ideal.” Moreover, the terms “a” and “an” herein do not denote a limitation of quantity, but
rather denote the presence of one or more of the referenced itoms.

{0088] Cell-free DNA (cfDNA) sequencing for low-burden cancer monitoring is imited by
sparsity of cireulating tumor DNA (CtBNA), the abundance of genomic material within a
plasma sample, and pre-analvtical error rates duce to library preparation and sequencing
errors. Sequencing costs have historically favored the developrent of deep targeted
sequencing approaches for overcoming sparsity in ctBNA detection, but these technigues are
fimited by the abundance of ¢fDNA in samples, which imposes a ceiling on the maximal
depth of coverage in targeted panels.

{0059] Whole genome sequencing {WGS) is an orthogonal approach to ¢tDNA-based
cancer detection that can overcome the low abundance of ¢fDNA, supplanting breadth for
depth by integrating signal across the entire tumoral routation landscape. However, the
higher cost of WGS limits practical depth of coverage and broad adoption.

{0068] Lower sequencing costs allows for enhanced ctDNA cancer monitoring via WGS.
Emerging lower-cost WGS (Ultima Genomics, 1$/Gb) were applied to plasma samples at
~120% coverage. Copy number and single nucleotide variation profiles are comparable
between matched Ultima and Hlumina datasets, however the deeper WGBS coverage enables
ctDNA detection at the parts per million range. These lower sequencing costs are further
harnessed to tmplement duplex error-corrected seguencing at the scale of the entire genome,
derponstrating a ~3,000x decrease in ervors in the plasma of patient-derived xenograft mouse
models when compared to raw sequencing reads, and error rates as low as ~10-7 in plasma
samples from paticnts with metastatic melanoma. The higbly de-noised plasma WGS is
leveraged to undertake cancer rmonitoring in the more challenging context of low burden
melanoma without matched twmor sequencing. In this context, duplex-corrected WGS
allowed us to harness known mutational signature paticrns for discase monitoring without
matched tumors, paving the way for de novo cancer monitoring.

{6061] Deep WGS may be used for ctDNA detection with low-pass sequencing. Low-cost
WGS (Ultima Genomics, $1/Gh) may be used to plasma samples at 120x coverage. Copy
number and single nucleotide variation profiles were comparable between matched Ultima
and {Humina datasets, bowever the deeper WGS coverage enabled ctDNA detection at the

paris per million range. These lower sequencing costs were further harnessed o tmplement
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duplex error-corrected at the scale of the entire genome, demonsirating a ~30{00x decrease in
errors in the plasma of patient-derived xenograft mouse models when compared to raw
sequencing reads, and ervor rates as low as ~107 in plasma samples from patients with
metastatic melanoma. The highly de-noised plasma WS was leveraged to undertake cancer
monitoring in the more challenging context of low burden melanoma without matched tumeor
sequencing. In this context, duplex-cotrected WGS allowed the harnessing of known
mutational signature patterns for disease monitoring without matched tumors, paving the way
for de novo cancer monitoring. Sequencing may be done using Ultima Genomics’ sequencing
platform to sequence 2.6x107 £ 1.4x10° circulating ¢fDNA reads from 31 plasma samples (n
= & healthy controls; n = 19 cancer patient samples; n = 4 patient-derived xenograft mouse
sampies). Deep WGS (~100x) with in sifico ervor correction allows ctDNA detection within
the part per milkion range over the sequenced genome. The cost-effective and ultra high-
throughput nature of Ultima Genomics sequencing (107 reads per run at 1$/Gb) can produce
4.15 % 3.23 coverage (range 1.02-11.55) duplex-sequencing libraries of cfDNA and achieve
ervor rates as low as 2.7x1077. Together, the results of sequencing and running the in sifico
error cotrection demonstrate the feasibility and atlity of deep WGS in clinical samples for
ctDNA detection. High-throughput short-read sequencing has revolationized the lguid biopsy
field, and sequencing costs have historically decreased at a rate faster than Moore’s Law.
However, the decrease in cost has stagnated over the past decade. The emergence of a high-
throughput, low-cost sequencing platform would allow for deeper and broader sequencing of
samples and patient populations, respectively. To work towards this goal, a comparative
analysis of Ultima and Hllumina short-read sequencing platforms was performed,
demonstrating that these two approaches have comparable tumor-informed analysis
capabilities for circulating tumor DNA detection (FIG. 2A4-2F). Importantly, these tomor-
informed approaches allow for ctDNA detection even at the part per nullion range, therchy
making such analysis siitable for minimal residoal disease detection. To further expand and
demonstrate the utility of the technology. the more challenging problem of ¢tDNA detection
in tumor-agnostic settings, where discase status or fumor origin is unknown, was addressed.
For this important clinical context, whole-genome duplex correction was ermaployed to
achicve low error rates, allowing us to deconvolve the celi-free BNA mutational
compendivm into represcntative mutational signatures o detect ¢tDNA in the pre-operative
setting, without matched temor sequencing (FIG. 3A-3H). Compared to coramonly-used
off-the-shelf panels, whole-genome analysis has the benefit of sequencing breadih, allowing

for the detection of rarve tumor-derived muotations that may not be present in targeted panels.

-8



WO 2024/091545 PCT/US2023/035877

One of ordinary skill in the art may envision that the methods can be harnessed for de novo
cancer onitoring in low burden disease scenarios, providing a powerful tool for diagnosing
cancer and detecting relapses at the earlicst stages, leading to better patient outcomes overall.
In addition to de novo cancer detection, the method can be used for cancer screcuning {e.g.,
screening for bladder cancer, melanoma, lung cancer, lynch syndrome cancer, BRCA
syndrome cancers, based on APOBEC, UV, wobacco, MSI, and BRCA signatures,
respectively).

{6062] It is noted that this method is not only useful for de novo detection {(e.g. signatures)
for tumor monitoring, but also for using tumor informed approaches. In this case, the duplex
sequencing will decrease ervor and provide enhanced signal resolution for detection of a
compendia of tumor-confirmed mutations. FIG. 2C illustrates the use of a tumor informed
approach, which does not rely on signature analysis.

{0063] In anembodiment, this method is not only useful for monitoring, but also for non-
invasive whole genome characterization of mutations in cancer (for example to identfy
actionable driver mutations or mutations that stratify paticnts to specific therapies). This is
done again via reducing error of various sorts. FIG. 2B illustrates this characterization, which
does not rely on signature analysis.

{6064] In an embodiment, this method enables non-invasive detection and discovery of
driver mutations in somatic mosaicism. FIG. 2E shows detection of non-malignant mutation,
specifically, detection of clonal hematopoiesis mutations.

{0065] FIG. 1 is a flowchart illustrating an exemplary method for detecting variants in
DNA using duplex sequencing and denoising, according to an exemplary crabodiment of the
present disclosure. For example, an exemplary method 108 {e.g., steps 182-118) may be
performed, in part, by a processor automatically or in response to a request by a user.

{0066] According to one embodiment, the exemplary method 106 for detecting varianis
may include one or more of the following steps. In step 182, the method includes extracting
DNA from a collection of plasma samples. Plasma can be from any human fhad, including
urine, saliva, peritoneal fluid, cerebral spinal fluid, erc. The extracted DNA may be ¢fDNA
or genomic DNA.

{6067] Genomic DNA can be extracted using the (1Aamp DNA Mini Kit ((Jiagen, catd
563034} and the QiAamp DNA blood Kit {(Jtagen, cat# 51104} for tissue and blood samples,
respectively, and sheared to 450bp (Covari)y. In an exemplary experiment, sequencing
libraries were prepared on Tpg of DNA using the TraSeq DNA PCR-Free Library

Preparation Kit (Hlumina), with one additional bead cleanup performed after end-repair and
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after adapter ligation. Extracted DNA was quantified using a Qubit 3.0 fluorometer and
length analysis was performed using an Agilent Bioanalyzer or High Sensitvity Fragment
Amnalyzer. 2x150bp paired-end sequencing was performed on cither a HiSeq X or NovaSeqg
v1.0 [llumina machine.

{6068] Cell-free DNA can be extracted from plasma using the Maghind cfDNA exiraction
kit (Omega Biotek, M3298). Mamsfacturer recommendations for extraction were followed,
but elution volume was increased to 35ul. and elotion time was increased to 20 minutes on a
thermoraixer at 1,600 rpm (room temperature). Bxtracted cfDNA was quantified using a
(Jubit 3.0 fluorometer and length analysis was performed using an Agilent Bioanalyzer or
High Sensitivity Fragment Analyzer.

{0069]  In step 164, the method includes preparing a whole genome library with duplex
adapters. In some embodiment, the library is prepared by ligating a duplex adapter having a
three base pair Unigue Molecule Idenufier (UMI) and amplifying an amount of DNA with a
first PCR to a level that allows for sequencing.

{6073]  The duplex adapters contain a three base pair UMI that allows for tracing a top
strand of the DNA 0 a bottom strand of the native DNA molecule. In vare mutation settings
such as early detection and minimal residoal disease, ctBNA content can fall below 1 in
10,0060 concentrations. Therefore, in 1 mL of plasma containing 1,000-10,000 GEs, at most 1
circulating tumor read can be expected to overlap each somatic locus, which 1s lower than the
per-base error rate of high-throughput sequencers (~1 error per 1000 bases). To overcome
this issue, deep-targeted sequencing approaches can use UMIs that are incorporated during
library preparation for sequencing ervor correction. While strand-agnostic UMils can bhelp
collapse sequencing exrors, UMIs that link forward and reverse DNA strands (i.e. Duplex
sequencing) can be used to collapse errors that arise on one strand {such as G>T transversions
due to oxidative DNA damage) or during library preparation.

{6071] Extracted cfDNA libraries can be generated in a sinmilar fashion as in Hlamina whole
genome sequencing, although the full-length adapters are replaced with stubby Y-adapters
containing the three UMI hases (IDT Duplex Seq adapters (10807993

{6072] A first PCR amplification creates a set of PCR duplicates that increase the amount
of DNA allowing for sequencing. These duplicates can be used to remove sequencing errors
when two or more molecules with the same UMI are mapped back.

{00731 In anexemplary experiioent, six PCR cycles were carried out using indexing
primers for input masses above Sng, and § cycles were performed for < Sng. Libraries were

quantified as described above. To enhance duplicate recovery in human samples, 4ng of
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prepared libraries was subjected to 6 additional PCR cycles prior to Ultima library
conversion. Mouse PDX samples did not andergo additional PCR cycles prior to Ultima
library conversion.

{0074]  In step 166, the method includes selecting a subsct of the whole genome Hbrary and
amplidying the subset with a sccond PCR to increase an amount of PCR duplicates. As with
the first PCR amoplification, these duplicates can be used to remove sequencing errors when
two or more molecules with the same UMI are mapped back.

{0075]  1n step 108, the method may include sequencing a series of reads from the amplified
subset.

{0076)  Illumina sequencing: Homina sequencing hibraries were sequenced on a HiSeq X or
NovaSeql.0 using 2x150 patred-end sequencing.

{80771 Ultima sequencing: Hlumina sequencing libraries were sent to Ultima Genomics
{(Newark, CA) for library conversion and sequencing.

{6078]  In step 118, the method includes aligning the reads to a host genome {e.g., the
human genome) and denoising the duplex reads, using original sequencing reads and
collapsed read information.

{0079]  FastQ reads were adapter and UM trimumed using cutadapt (version X). Trimmed
reads were then aligned o the human genome (version hg38) using bwa merm (with
pararneters - K 100000000 -p -v3 -t 16 -Y). Trimamed UMI's were added to the alignment
files as an additional RX tag. Single-strand and duplex correction was carvied out using the
fgbio suite of tools {(version 2.0). For single-strand error correction, reads were grouped by
UM (fgbio GroupReadsByUmi -s edit) and conseunsus calls were performed (fghio
CallMolecularConsensusReads -—-min-reads 2). Resuolting error-collapsed fastQs were
realigned to the human genome using bwa mem. For duplex ervor corvection, single-strand
consensus sequencing was performed independently on top-strand-mapping and bottom-
strand-mapping reads. Bottom-strand mapping reads were subsequently reverse
complemented and merged with top-strand mapping reads. Reads were then ve-grouped by
UMI and error correction was performed to obtain duplex corvected reads. Uncorrecied reads
that belonged to a duplex family were processed to measure the following read-specific
features:

{60861 1. Base pair at the variant position

{60811 2. Edit distance of the read to the reference

{6082] 3. Total number of single-micleotide variants on the read

{0083] 4. Read mapping quality
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{6084] 5. The position along the read from the extremities of the BNA fragment

{G085]  In step 112, the method includes extracting a variant from the duplex reads. The
type of variant is defined by a mutation, for example, a C base mutated into T (represented as
{>T) and the base pairs adjacent to the mutated base. For example: A{A>TI]A is one type of
variant. AJA>CA is another type of variant, as is AJA>GIA, A{U>AJA, ete. There are 96
types of variant.

{0086] Reads are filtered based on whether 1) all reads in a duplex family carried the same
variant; 2} the edit distance was lower than 2; 3) the total number of single-nucleotide
variants on the read was below 10; 4} the mapping qoality was the highest possible value (60
for bwa memy}; 5) the position along the read was greater or equal to 10.

160871 In step 114, the method includes comparing the extracted variant to a collection of
cancer specific variant signatures. Certain cancers have very well-defined variant types, ie.,
cancer specific mutatonal signatures. Melanoma, for example, is a cancer with a distinet
signature that is related to the skin’s exposure o UV rays. Some lung cancers will show a
signature associated with exposure to tobacco. This signature matching process is shown by
FEG. 3E. The fraction measurement estimation represented along the v-axis is found by
using copy-nuntber based tumor fraction estimation.

{6088] Copy mumber analysis was performed using ichorCNA (version). Tumor fractions
were estimated after correcting for library and sequencing artifacts via a panel of normals
from cancer-free controls (CTRL-01 to CTRL-03) sequenced on the same insrument as the
sample.

{6089]  In low tumor burden settings, not all somatic mutations from the tamor are
represented in the celi-free DNA sequencing pool, and any genomic locus is expected to be
covered by at most one circulating tumor DNA read. Therefore, read-based TT estimation
frameworks, and not locus-based TF estimations, are necessary to accurately guantify ctbNA
content.  Genome-wide mutations from the sequencing reads may be integrated and
sununarized as a weighted sum of single-base substitotion (SBS) reference mutational
signatures. Expectedly, in a re-analysis of publicly available PCAWG melanoma datasets, it
was found that the UV-associated SBS7Y nutational signature was most abundant in
melanoma WGS datasets, and that clock-like signatures 1A/B weakly correlated with age of
paticnts at tissue coliection (spearman’s p = .26, p-value = .0071, FiGs, 6A-68). The
trinucleotide contexts of cFDNA variants were explored through mutation signature analysis
at each level of denoising (UMI-agnostic, single-stranded and duplex), in order to investigate

the potential sources conferring mutations in these samples. Cosine similarities between the
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1

UV-associated SBS7 signature and high burden samples were highest after duplex correction
{(mean cosine similarities to SBS7 of 0.967+0.02 and 0.365+0.03 between duplex corrected
and uncorrected samples, p-value = 1.6x10* (Wilcoxon rank sum test)), FIGs. TA-7B).
Similar mprovements were found when measuring cosine similarities between clock-like
signatures and cancer-free controls, highlighting the tmportance of duplex correction for
accurate signature analysis (FIGs. TA-78).

{6096] Given the ability of de nove mutation identification in error corrected cfDNA WGS
to deliver profiles matching SBST and clock-like signatures for identifyving melanoma and
age-associated civculating DNA fragments, respectively, a iumor-agnostic approach for
ctDNA detection was developed based on mutational patterns. As a first step, SBS
mutational signatures are deconvolved from plasma ctDNA mixtures using a non-negative
maximurn likelihood model, and a tumor fraction is estimated by taking the weight of the
mmor-associated SBS signature and normalizing by total number of mutations and depth of
sequencing. Second, a signature score is calculated in order to determine whether the cancer-
associated SBS signatures better explain the observed mutation profiles compared to a
random permutation of the cancer-associated motifs. To analytically validate this approach,
an in sifico mixing study was conducted, combining duplex-denoised reads from two high
burden ctDNA samples (MEL-12.A and MEL-12.B) and a cancer-free control ({CTRL-06) at
10x sequencing depth (after duplex consensus), in varying proportions {expected tumor
fractions from 0 to 1%). As a resuit, estumated tumor fractions were readily detectable at
expected tumor fractions of 10 (receiving operating characteristic area under the curve
(.90}, with signature scores highly specific for melanoma at 1(7 dilutions (FIG. 3F).

{6091] In an embodiment, a signate-based ctDNA detection platform for pre-operative
ctDNA detection (1.e. nnnor-agnostic ctDNA detection) was applied. Plasma samples were
sequenced from four patients with stage [l melanoma, three cancer-free controls, and one
treatment-unresponstve patient (S separate time points) with stage IV melanoma. Notably,
signature scores for ctDNA detection showed perfect separation between cancer-free conirols
and samples from melanoma patients {(FiGs. 3G-3H), whilc copy-number based analysis
could not resolve these two groups (FIG, 8).

{0092]  Tumor genotyping can be performed via cfDNA & normal tissue sequencing when
the tumor burden in the plasma is high (> 10%, sources). Mutect? can be used with the
normal tissue. A quality threshold was established, and only SNVs are kept. Then, four
blacklists ave applicd to create a final tumor panel. {encode, gnomad, local blacklist,

centromeres)
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{0093] Read counting was performed in 1Mbp bins using houncopy {excluding duplicates
and reads with a mapping quality below 60). Read counts were adjusted for mappability and
GC content using hmimcopy. Separate panels of normals were created for Hlumina and
Uldma datasets, respectively, using cancer-free controls (CTRL-01 to CTRL-05; =5 per
seguencing instrument). Tumor fraction cstimates were obtained using ichotCNA (version).
For plotting purposes (Figure 1X, Supplemental Figure Y), corrected log?2 read counts
outpuited by ichorCUNA were used. Bins marked by ichorCNA as copy gains, amplifications
and high-level amplifications were marked and colored as chromosome gains (pink). Bins
marked as homozygous deletion states and hemizygous deletions were marked and colored as
chromosome losses (blue). Copy neutral regions were marked as neutral (black). Bins with
corrected log? read counts between -0.05 and 0.05 were marked as neutral (black) as well.
{6094]  In step 116, the method includes determining a cancer status based on a match
between variant signatures.

{6095] Variants detected using the denoising method described above in were used.
Variants with allele frequencies greater than 30% were presurned o be geroline putations
and were discarded. Remaining reads were aggregated, and the frequencies of the variants in
thetr trinucleotide context were calculated. These trinucleotide variant frequencies were
compared fo the trinucleotide variant frequencies of publicly available references for different
biological processes. In this context, given that processed saroples were from cancer-free
controls and melanoma patients, it was assumed that the sample’s trinucleotide variant
frequencies would bie a combination of aging-related trinuclestide frequencics and UV-
damage associated trinucieotide frequencies. The sample’s frequencics were fit to the
references using a non-negative maximum likelihood method. To remove false positives, a
permutation test was performed. This test involved randomly changing the trinucleonde
frequencies of the UV-associated (melanoma) reference signature and performing the non-
negative maxinum likelihood fit. I the sample showed a stronger fit to the randomly-
permted frequencies than to the original one, it was deemed to be a false positive. This
cxercise was repeated 10,000 times to obtain a signature score. If the sampie had a signature
score below 0.001, it was deemed acceptable. Samples above this threshold were deemed
cancer-negative.

{6096]  In some embodiments, the method may include exhaustive WGS. In addition to
WS, embodiments of the present disclosure may use less exhaustive sequencing methods
such as whole exome sequencing {WES) or SNP genotyping. Various enrichment modalities

may be employed, inclading but not imited to: exome enrichment, targeted gene envichment,
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and/or specific mutation enrichinent. For example, exome curichiment may comywise whole
exome sequencing. Targeted gene envichment may inclade sequencing entire genes,
including one or more of introns, exons, and/or coding sequences. A specific mutation
enrichment may target a specific position of the genome, including, e.g., an cxon, an introy,
and/or some other user-defined position. Technologies o accomplish enrichment of at least
one of the aforementioned regions are typically hybridization based or primer based. Such
cxamples inchude: targeted variant sequencing; targeted gene sequencing; whole exome
sequencing; targeted PCR; nested PCR; and/or linear PCR.

{6097]  In cases where a Himited input is used, such as in cell-free DNA, 1t is possible to
exhaustively sequence the sample (i.e., sequence every single molecule available).
Accordingly, some embodimentis of the present disclosure may include cxhaustive whole
cxome sequencing, exhaustive cfDNA sequencing, and/or exhaustive targeted sequencing.
{0098] FiIGs. 2A-2F depict wiralow ciDNA detection requiring deep sequencing coverage
and low error rates.

{6099] FIG. 24 is a collection of graphs showing a simulated sequencing coverage.
Sinulation analysts shows that lower ervor rates and high sequencing coverage are required
for accurate ctDNA detection when tumor fractions are at or below 107,

{60166]  Simmlations for FI. 2A were performed assuming a tumor-mutational
compendivm of 10,000 SNVs at different ervor vates (10-3, 10-4 and 10-5), coverages (1, 10
and 1) and wmor fracdons (8, 10-6, 10-3). For each of the 50,000 SNV mutations,
coverage was simulated using a poisson distribution. Each sinmlated sequenced base pair
was classificd as either ctBYNA or ¢fDNA according to the tumor fraction, and errors
misclassified as CtDNA were determined according to the error rate. Estimated tumor
fractions were calculated by summing the ctDNA molecules and the ervors, and dividing by
the total base pairs simulated.

{60101]  FIG. 2B is a pre-analytical workflow for cfDNA hbrary preparation. The
workflow, similar to that of the embodiment shown in FIG. 1, comprises obtaining plasma,
from which cfDNA is extracted. The double stranded DNA library is prepared for
sequencing, which is done using the [umina sequencing method or Ultioa library
conversion and subsequent Ultima sequencing.

160162] K., 2C is a graph comparing sequencing depth (genome equivalents) of matched
Hinmina and Ultima datasets, across 15 matched cfDNA samples.

{60163] FIG. 2D is a comparison of normalized read coverage for Humina {top} and

Ultima {bottom) matched cfDNA samples (chromosomes).
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{60104] FIG. 2K is a comparison of copy number variations (CNV} mumor fraction and
single-nucleotide variants (SNV) turnor fraction using Hlumina and Ultima datasets. On the
left graph, the CNV tumor fraction estimation measured with BHumina or Ultima sequencing
is shown in matched samples using ichorCNA. Matched cancer-free controls were used to
create a panel of normaal prior to tumor fraction estimation.

{00105}  On the night graph of FIG. 2E, single nucleotide vartant-based tamor fraction
estimation measured with Hlumina or Ultima sequencing is shown. Somatic SNVs were
udentified through matched tumor-normal sequencing. Two samples without tumor
sequencing and with low c¢tDNA fraction {e.g., less than 5% measured through CNV
analysis} were omitted.

{00166] K16, 2F depicts an expected tumor fraction score with and without exror
suppression. An in sifico mixing study of metastatic melanoma sample MEL-01 with cancer-
free control CTRL-03 (50 replicates per tumor fraction, 80X coverage per replicate} show the
ctiect with (red) and without (blue) tumor-informed analytic denoising applied using Ultima-
spectfic quality filtering.

{60107 FIGs, 3A-3H depict duplex correction allowing ctDNA without tomor sequencing.
FEG. 3A depicts ervor vates in mouse and human DNA among duplex sequencing, single
strand sequencing, and uncorrected groups. The graph on the left shows error rates for
duplex WS sequencing on mouse PDX samples {(n=3). Open circles in the graph on the left
represent samples for which no sequencing errors were detected. The graph on the right
represents duplex WGS sequencing in patient sample MEL-12.1 intersected with tumor
mutation profiles of 107 melanoma patients retrieved from the Pan Cancer Analysis of Whole
Genoroe Consortiurn. Base changes matching the somatic nutation of the tumor were
considered errors (after removing germline and somatic mutations from the matched patient
data).

{00108]  To first test the accuracy of duplex error correction, duplex libraries were prepared
using ¢fDNA obtained {rom the plasma of mice with patient-derived xenografis (n=4,
NOD/Shild species; n = 1 lung cancer; n = 3 diffuse large B cell lymphoma). Tumor
fractions, defined as the fraction of reads uniquely mapping to the human genorme, were
(0,49, 40%, 73% and 96%. To estimate the error rate of the duplex libraries, nustation levels
were investigated at well characterized homozygous variant sites for NOD/ShiLi mice in the
three samples with elevated roouse-mapped reads. Overall, only two bases out of over
4.2x10° total bases were sequenced that were inconsistent with the known genotype of the

mice for an ervor rate of 4.75x107 (FIG. 3A). These results are consistent with a previous
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report cmploying whole genome duplex sequencing {Abascal et al, 2021 reports ervor rates of
2x107 using similar protocols).

{00189] KI5, 3B s a series of graphs comparing variant allele frequencies caleulated using
unfiltered sequencing reads. Variant allele frequencies are showsn in positions where a
variant was found using uncorrected reads (left column) and in duplex corrected reads (right
coluron). Top and bottom rows are representative examples for cancer-free and high-burden
patient samples, respectively.

{60116} FIG. 3C is a graph comparing the model allele fraction of a patient with
progressive discase (samples MEL-12 A-E) in duplex corrected positions (allele fractions
below 30% only) and copy-mumber based tumor fraction estimations.

{00111} FIG. 3D and 3K illustrate an exemplary method of signature matching between
sequencing reads. The signature 7 veference of FIG. 3D is a publicly available signature
associated with UV exposure {Z.e., a melanoma specific signatore). The signatures of FIG.
4E show uncorrected, single- strand correction, and duplex correction of a control signature
and a melanoma patient with a MEEL-12 D signature. Each bar on the signature represents a
specific trimucleotide mutation (i.e., there are 96 bars) and the y-axis shows the relative
proportion of rinucleotide mutaton. The duplex corrected MEL-12 D signature is matched
o the reference signature, and the cancer-like signature is only apparent in the cancer patient
after duplex correction.

{00112} FIG. 3F is a graph illustrating a signature score and ctDNA detection of an i
sifico mixing study of metastatic melanoma samples MEL-12.A/B with cancer-frec control
CTRL-0G (10 veplicates per turaor fraction, 10x coverage per replicate).

{60113]  In the top row, the signature score is ased to estimate the contribution of signature
SB3& (melanoma UV associated) in the decomposition of a sample’s trinucleotide
frequencies into refercnce signatures.

{00114} In the bottom row, CtDNA detection by expected tumor fraction. Z-scores
estimation was used to calculate mutation signature SBS7 detection in comparison to
detection in TF=0 replicates. Ground truth variants originating from either the high-burden
sample MEL-12.A/B. or the cancer-free sample CTRL-06 are shown in blue (full curcle:
MEL-12.A/B; open circle: CTRL-06). Error bars represent the standard deviation in the
number of variants per replicate at a given expected tumor fraction.

{60115] FIG. 3G is a graph illusirating a series of signature scores of melanoma signature 7
in plasma cfDNA samples using duplex WGS (n=9 melanoma saroples; 0=3 controls).

Samples in red are from patient MEL-12 with stage IV melanoma at different time poinis in
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their clinical course. Samples in blue each represent a separate patient (MEL-08 to MEL-11}.
Samples in pink represent control samples.

{00116} FIG. 3H is a graph illustrating estimated tumor fraction of samples with elevated
signature scores. The X-axis depicts the clinical timepoint for cach patient sample. Tumor
fractions were estimated by sultiplying the number of single nucleotide variants found in
duplex corrected reads by the weight of signature 7 after reference signature decomposition
and normalization by depth of coverage. An assumed 10,000 SNV tumor mutational profile
was assurned for tumor fraction estimation.

{60117]  FIG. 4 depicts ¢fDNA fragment lengths in single-end sequencing datasets matched
with paired-end sequencing. Fragment lengths are accurately recovered between single-end
Ultima reads when comparced to paired-end Hiumina sequencing for ciDNA molecules below
200 base pairs.

{00118] FIGs. 5A-5C depict the effective of artifact blacklisting on a single nucleotide
variant detection.

[00119] FIG. 5A is a graph illustrating the UG specific biacklist. The UG specific blacklist
includes regions with low GC content, tandem repeats, regions with poot mappability,
regions with high coverage variability and regions with homopolymers greater than 10 base
pairs.

{001201 FIG. 5B is an itlastration of overlap between the UG blacklist and other low
confidence vegions. Other low confidence regions include centromeres, simple repeats,
regions that encode biacklist, and gnomad regions with AF value greater than 0.001.

{60121] FIG. 8C is a graph illustrating the overap between melanoma tumor tissue SNVs
and low confidence regions. The effects of blacklists on the recovery of somatic single
nucleotide variants (SNVs) are shown in 107 melanoma tissue samples obtained from the Pan
Cancer Analysis of Whole Genomes consortivn.

{60122] FIGs. 6A-6B depict cosine similarities in high burden and cancer-free samples for
clock-like and UV-associated signatures SB51B and 3857, respectively.

{60123 FIG. 6A is 3 heatmap of cosing similarities in cancer-free samples and high-burden
ctDNA samples. The beatmap of cosine simularities in duplex-corrected, single strand
corrected and uncorrected reads from cancer-free samples (n=3) or high burden ctDNA
samples (=5, all from patient MEL-12 with stage IVB melanoma}. The x-axis is ordered

alpha-numerically, without hierarchical clustering
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{60124] FIG. 6B is a boxplot of cosine similarities for three correction methods in the same
cancer-free samples and high-burden ctDNA samples, according to technigques disclosed
herein.

{00125 FlGs. TA-7B depict the re-analysis of 107 melanoma mutational signatures from
the Pan-Cancer Analysis of Whole Genomes consortivm.

{60126] FIG. 7A is a graph showing the signature fraction of a mumber of variant
signatures. DPeconvolution of duplex-corrected mutations into representative mutational
signatures was performed using a non-negative maximum likelthood model. Boxplots are
ordered in increasing order of the median for each signatore.

{001271  FIG. 7B is a correlation plot between age at cancer diagnosis and the number of
clock-like mutations attributed to SBS1A and SBS1B, The number of mutations was
obtained by multiplying the weights of SBSTA and SBSIEB by the total number of routations
found after duplex correction.

{00128} FIG. 8 depicts turnor-agnostic copy-number based tumor fraction estimation in
cancer-free confrol saroples (n=3) and pre-surgery melanoma plasma {(n=4),

[00129]  In another embodiment, whole genome sequencing may occur without duplex, to
reach an SNV-based tumor fraction estimation

{60136] SNV-based tamor fraction estimation was carried out by counting cell-free DNA
reads with matching tumor-spectfic somatic motations (muotation calling pipeline described
below}. To bmit the effect of problematic regions of the genome, a platform-specific
blacklist was built. For Hiumina scquencing, regions ideutified in the ENCODE blacklist
(rource), cenfromeres {source), sirople repeat regions (source) and positions with high
mutation rates (GNOMAD, AF>0.001, source) were not considered. For Ultima sequencing,
Uldma-specific low-confidence regions composed of homopolymers, AT-rich regions,
tandem repeats and regions with poor mappability and high coverage variability were
additionally excluded.

{00131} To limit the effect of sequencing ervors, custom scripts were uvsed for platform-
specific denoising. Hlumina alignment files were filtered to contain read pairs overlapping
somatic rautation positions. Paited-end reads were filteved for X, Y, 2 and were only kept if
both R1 and R2 carried the somatic mutation or the reference base pair. Tumor fractions were
estimated by dividing the number of filtered reads containing the somatic mutation by the
total number of filtered reads.

{60132] Ultima alignment files were subset to reads overlapping with somatic mutation

positions. Reads were filtered by X, Y, Z. Tumor fractions were estimated by dividing the
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number of filtered reads containing the somatic mutation by the total number of filtered
reads.

{00133] SNV model fraining sets and feature space

{00134} Training seis were obtained from plasma cnriched for ctDNA SNV fragments (froe
fabel} from specific melanoma turors and cfDNA SNV reads (false label} from healthy
controls without known cancer as listed in sop tab xx. Candidate reads were extracted from
custom denoised alignment files. For tue label sets, patients with high burden metastatic
disease were used and only reads which represented matched tumor variants were retained.
{60135] A custom deep-learning model is used for signal to noise enhancerent, similar to
previous work (Widman et al, 2022), and effectively categorized candidate SNV reads.
Candidate SNV reads were extracted using pysam {(v0.15.2). Additionally, compelling
regional and scquencing toch specific features were encoded as input to the deep learning
model architecture with a custom python {(v3.6.8) script. Two separate input structures are
described below, corresponding to cach component of the ensemble model.

{00136]  For the MLP, a tabular set of feature valaes is provided as an input.

{60137]  The feature selection for this was performed on SNV reads post filtering in both
the true and false label settings. Specific features and their corresponding single variable
AUC performance is described in sup tab xx. As highlighted in previous work (Widman et
al, 2022), dssue-specific transeriptional features aid in defining the likelihood for observing
somatic wmrHations in a gepomuc region. Local tumor mustation density is categorized by
quantifying WGS SNV mutation calls from the PCAWG database (edge ref 81) and the total
number of SNV mutations are counfed from available rmelanoma derived tumor samples.
Additionally, local histone CHiP-Seq marks and tissue specific bulk RNA expression values
were reported as standard RPKM values from primary tssue alignments in ENCODE (edge
ref 95). Regional DNase peaks (lifted to GRCh38) were also included, which were obtained
frora narrowpeak files as reported in ENCODE (edge vef 95,96). Melanoma specific ATAC
peak calls as reported in TCGA (edge ref 82) were aiso included.

{60138] Since the deep learning model is designed to operate on a read level compendiun,
values for the features defined above were computed using a sliding window around cach
candidate read. The optimal length for this sliding window was defined in previous work
(Widrman et al, 2022). Additionally, regional chromatin annotation tracks (ChromHMM -
fifted to GRCh38) (edge ref 83) were obtained from ENCODE, Hi-C SNIPER(edge ref 97)

bed files were used to extract HI-C compartment information. Lastly, regional features for
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replication timing and mean expression values (lifted to GRCh38) were pulled from previous
literature (edge vef 37).
{60138]  In addition, Ultima specific read level featores were included. These include the
following:
e X-FC1 - number of features (SNPs) on the same read
s X-PFC2 - npmber of features {SNPs) on the same read that passed the filter
{matching the reference for —+3 hascs)
#  X-FLAGS - propagated from the bam file flag.
8 od_1- edit (Levenshiein) distance of the read from the reference, before SNV
of interest.
e ed 2- edit (Levenshtein) distance of the read from the reference, after SNV of
interest.
[00148]  Next for the CNN a one-bot encoded tensor structure of the candidate read was
used, stmilar to previous work (Widman et al, 20223, Each read is encoded with a variant
{sequencing artifact/noise from healthy controls or somatic mutation from high burden umor
plasma sarmople). The encoded tensor has an image-like stracture with a shape of 125240,
The rows correspond to one hot encoded nucleotides (N,A.C,T,() corresponding to the
reference and the read. The penultimate row dimension is used to mark the position along the
read highlighting the SNV of interest. Lastly, the absence/presence (/1) of a cycle skip (as
defined by Ultima) is encoded along the last row dimension to add further relevance to tri-
nucieatide context of the SNV of mnterest. The columns correspond to individual nucleotides
along the fength of the read. While reads have a maximum length of 200, the extra 40 base
pairs are padded with the reference genome thereby adding additional relevant contextoal
information.
{60141} SNV model design and training
{00142} The decp-learning model has an enseroble structure and consists of two major
components - a regionalfread specitic multt layer perceptron (MLP) and a sequence based
convolutinnal neural network (CNNj, whose weight matrices are jointly learnt,
{60143} The MLP which takes a feature matrix as input consists of a linear stack of four
dense blocks. Fach block is defined as consisting of a fully connected layer with a Rel.U
activation. Furthermore, for the purpose of regularization the input to cach fully connected

fayer is batch normalized and the output is passed through a dropout layer.
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{60144] The CNN consists of four one dimensional convolution layers with non-linear
ReLlJ activations, which extract sequential information at different spatial resolutions.
Muoreover, as in classical deep learning frameworks, cach convobstion layer (post nonlinear
activation) is followed by a max pooling layer. The output is then passed through a stack of 3
dense blocks as defined above.

{00145] Subsequently, the latent output of both the MLP and UNN 1s then concatenated and
passed through a single dense block. Finally, a probability score between O (sequencing
noiscy and 1 (frue somatic nutation) is obtained by using a single sigmoid-activated fully-
comnected layer. This probability score reflects the model’s estimate on whether a candidate
SNV mutation present in the encoded vead is likely from signal or noise. The ensemble model
is built in Keras (v.2.3.0} with a Tensortlow base {1.14.0).

{00146} o train the ensemble model, the objective function defined as a binary cross
entropy loss is minimized. Performance metrics were reported within balanced sets.

{00147 UMI Correction improves insertion-deletion mutation {indel) detection accuracy in
{ltima sequencing datasets

{60148]  UMiIs add a umigue barcode to each DNA molecule. During PCR, the barcode tag
{and DNA meolecule) is duplicated multiple tmes. PCR duplicates can be thereby identified
using the UML Identified duplicates can be used to correct sequencing errors, as if is
unlikely that the same ervor will occur on two PCR duplicates. It should be noted that the
Ultima flow-based sequencing is prone to homopolymer size errors, which are interpreted as
false indel. FIG, %A is a graph illustrating a homopolymer size between two PCR duplicates,
whereas FIG. 98 is a graph tllustrating a homopolymer size between a read and an aligned
reference. For reference, FEG. 8C is a graph illustrating frequency of homopolymer size
across the human genome, according to lechnigues disclosed herein. To farther illustrate the
increased accuracy of UM correction, FEG. 913 is a graph illustrating insertion-deletion
mutations indel calling accuracy by PCR duplicate family sizes, according to technigues
disciosed hereisn.

{00148 UM ligated reads allow for the detection of error robust irinucleotide motifs in
{ltima sequencing datasets

{60156 UMiIs can also be used to find error-robust single nucleotide variants. These
variants gencrally fall in cycle shift motifs, which are specific trinucleotides that Ultima has
determined to be robust to errors. Details on cycle shifts are shown in FIG. 14, a graph
itlustrating a single nucleotide vanant analysis of matched Ultima and Hlumina sequencing

datasets. FEGs. 11A-B show that flow-based sequencing provides predictable error-robust
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maotifs. FIG. 11A is a flow chait of a sequencing process providing predictable, error-robust
motifs, and FIG, 118 1s a graph of ervor rate by sequencing platform, according to technigues
disciosed herein.

{00151)  Werlab improvements and the development of a novel machine learning classifier
for duplex variant detection

{60152]  In some embodiments of the present disclosare, molecular and computational
improvements were made to the methodology to improve yield of duplex moleciles. The
molecular improvement is shown by a more efficient bottlenecking of DNA molecules (FIG.
12A-B). FIG. 124 s a graph of duplex WGS libraries from three starting inputs sequenced
at 1-13x coverage. Duplex correction was applied, and the yield of duplex vecovery (depth of
duplex-only coverage by total sequenced coverage) was measured, as shown in the graph.
FEG. 128 illustrates the duplication rate of the samples of FIG. 12A atn = 3.

{001533] In FIG. 12€, a downsampling expertment shows that improved bottlenecking
achieves higher duplex coverage at a fasier rate than other embodiments. This is further
ilustrated by FIG. 12D, which is a a graph illustrating that duplex coverage is significantly
higher at fixed coverage. FIG. 12E is a graph illustrating a number of duplex variants found
using the duplex method (fgbio) versus a decision tree. FIG, 13 furthers this illustration with
mutational error rates in mouse PDX samples (with N = 3 per condition). This data dlustrates
the expanded applicability of the processes of the disclosed embodiments, inclading
application to melanoma, stage TH, with a baseline timepoint.

{60154 Some embodiments of the present disclosure produce more samples, including pre-
surgery samapies as shown in FIG. 14, Plasma cell-free DNA was obtained from patients
with bladder cancer who may or may not have received chemotherapy. FIG. 15 shows that
embodiments of the present disclosure detect a chemotherapy mutational signatore in most
saraples that may have received chemotherapy, and specifically illustrates the application to
bladder cancer, and the detection of an “APOBEC” signature and chernotherapy. In samples
who never received chemo (green) or cancer-free controls (blue}, the chemotherapy signal is
not measured.

{00155} Bladder cancer typically shows the APOBEC mutational signature, This signature
can also be detected 1n the plasma cell-free DNA, as shown in FIGs. 16A-B. Darker bars
represent the APOBEC signature of tumors, and the lighter bars represent the APOBEC
measurement in cfDNA.

{60186] FIG. 17 is a schematic of an example of a computing node. Computing node 18 is

only one example of a suitable computing node and is not intended to suggest any limitaton
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as to the scope of usc or functionality of embodiments described herein.  Regardiess,
computing node 18 is capable of being implemented and/or performing any of the
functionality set forth hereinabove.

(001577  In computing node 18 there is a computer systemvserver 12, which is operational
with numerous other general purpose or special purpose computing System environmenis or
configurations. Examples of well-known computing systems, environments, and/or
configurations that may be suitable for use with computer system/server 12 include, but are
not limited to, personal computer systems, scrver computer systems, thin clients, thick
chients, handheld or laptop devices, multiprocessor sysiems, microprocessor-based systers,
set top boxes, programmable consumer electronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed computing environments that include any of
the above systems or devices, and the like.

[00138] Computer system/server 12 may be described in the general context of computer
systern-executable instructions, such as program modules, being executed by a computer
systern. (Geunerally, program modules may include routines, programs, objects, components,
logic, data structures, and so on that perform particular tasks or implement particalar abstract
data types. Computer system/server 12 may be practiced in distributed computing
environments where tasks are performed by remote processing devices that are linked
through a communications petwork. In a distributed computing environment, program
modules may be located in both local and remote computer system storage media incloding
memory storage devices.

{0015%]  As shown in FEG. 17, computer systenvserver 12 in computing node 18 is shown
in the form of a general-purpose computing device. The componenis of computer
system/server 12 may include, but are not Hmited to, one or more processors or processing
units 16, a system memory 28, and a bus 18 that couples various sysiem components
including system memory 28 to processor 16.

{00160] Bus 18 represents one or more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a
processor or focal bus using any of a variety of bus architectures. By way of examople, and
not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture {(MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, Peripheral Component interconnect (PCI) bus, Peripheral
Component Interconnect Express (PCle), and Advanced Microcontroller Bus Architectare

{AMBA).
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{00161} Computer systenvserver 12 typically includes a variety of computer system
readable media. Such media may be any available media that is accessible by computer
systemy/server 12, and it inchides both volatile and non-volatile media, removable and non-
removable media.

{00162} System memory 28 can inchude computer system readable media in the form of
volatile memory, such as random access memory (RAM) 36 and/or cache memory 32.
Algorithm Computer system/server 12 may further include other removable/mon-removable,
volatile/non-volatile computer system storage media. By way of examaple only, storage
systermn 34 can be provided for reading from and writing to a non-removable, non-volatile
magnetic media {not shown and typically called a "hard drive"). Although not shown, a
magnetic disk drive for reading from and writing to a removabie, non-volatile magnetic disk
(e.g., a "floppy disk™), and an optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or other optical media can be
provided. In such instances, each can be connected o bus 18 by one or more data media
interfaces. As will be further depicted and described below, memory 28 may include at least
one program product having a set (e.g., at least one) of program modiles that are configure
to carry oul the functions of embodiments of the disclosure.

{60163]  Program/utility 48, having a set (at least one} of program modules 42, may be
stored in memory 28 by way of example, and not limitation, as well as an operating system,
ong or more application programs, other program modules, and program data. Each of the
operating system, one of more application programs, other program madules, and program
data or some combination thercof, may include an implementation of a networking
environment. Program modules 42 generally carry out the fimetions and/or methodologies of
embodiments as described herein.

{00164} Computer systerm/server 12 may also conununicate with one ot more external
devices 14 such as a kevboard, a pointing device, a display 24, etc.; one or more devices that
enable a user to interact with computer system/server 12; and/or any devices {e.g., network
card, modem, efc.) that enable computer systemy/server 12 to conunmnicate with ong or more
other computing devices. Such communication can occur via Input/Qutput (1/0) interfaces
22. suil vet, computer systern/server 12 can communicate with one or more networks sach
as a local arca network {LAN}, a general wide arca network (WAN), and/or a public network
(e.z., the Intermet) via network adapter 28, As depicted, network adapter 20 comuunicates
with the other components of corputer system/server 12 via bus 18. It should be understood

that although not shown, other hardware and/or software components could be used in
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conjunction with computer systemyserver 12. Examples, include. but are not limited to:
microcode, device drivers, redundant processing units, external disk drive arrays, RAID
systems, tape drives, and data archival storage systems, etc.

{60165]  In various embodiments, a learning system is provided. In some embodiments, a
feature vector is provided to a learning system. Based on the input features, the keaming
system generates one or more ovtputs. [n some embodiments, the output of the learning
system is a feature vector. In some embodiments, the leaming system comprises an SVM. In
other embodiments, the learning system comprises an artificial neural network. In some
embodiments, the learning system is pre-tramned using training data. o some emnbodiments
tratning data is retrospective data. In some embodiments, the retrospective data is stored in a
data store. In some embodiments, the learning system may be additionally rained through
manual curation of previously generated outpuis.

{00166} In some embodiments, the learning system, 1s a trained classifier. In some
embodiments, the trained classifier is a random decision forest. However, it will be
appreciated that a variety of other classificrs are suitable for use according to the present
disclosure, including linear classifiers, support vector machines (SVM), or neural networks
such as recurrent neural networks (RNN).

{00167]  Suitable artificial neural networks include but are not limited to a feedforward
neural network, a radial basis function network, a self-organizing map, learning vector
quantization, a recurrent neural network, a Hopfield network, a Boltzmann machine, an echo
state network, long short term memory, a bi-directional recurrent neural network, a
hierarchical recurrent neural network, a stochastic neural network, a modular neural network,
an associative newral network, a deep neural network, a decp belief network, a convolutional
neural networks, a convolutional deep belief network, a large memory storage and retrieval
neural network, a deep Boktzrnann machine, a deep stacking network, a tensor deep stacking
network, a spike and slab restricted Boltzmann machine, a compound hierarchical-deep
maodel, a deep coding network, a multifayer kernel machine, or a deep Q-network.

{00168] The present disclosure may be embodied as a system, a method, and/or a computer
program product. The computer program product may include a computer readable storage
mediurn {or media) having computer readable program instructions thereon for causing a
Processor to carry out aspects of the present disclosure.

{60169] The computer readable storage medium can be a tangible device that can retain and
store instnuctions for use by an instruction execution device. The computer readable storage

medium may be, for example, but is not limited to, an electronic storage device, a magnetic
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storage device, an optical storage device, an electromagnetic storage device, a sepiconductor
storage device, or any suitable combination of the foregoing. A non-exhaustive list of more
specific examples of the computer readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access memory (RAM), a recad-ounly
memory {ROM), an crasable programmable read-only memory (EPROM or Flash mermory),
a static random acecess memory (SRAM), a poriable compact disc read-only memory (CD-
ROM;}, a digital versatite disk (DVDY, a memory stick, a floppy disk, a mechanically encoded
device such as punch-cards or raised structures in a groove having instructions recorded
thereon, and any suitable combination of the foregoing. A computer readable storage
medium, as used herein, is not to be construed as being transitory signals per se, such as radio
waves ot other freely propagating clectromagnetic waves, clectromagnetic waves propagating
through a waveguide or other transmission media (e. g, light pulses passing through a fiber-
optic cable}, or electrical signals transmitted through a wire.

{60176] Computer readable program instructions described herein can be downloaded to
respective computing/processing devices from a computer readable storage medivm or to an
external corputer or external storage device via a network, for example, the Internet, a local
area network, a wide area network and/or a wireless network. The network may comprise
copper fransmission cabies, optical transmission fibers, wireless transmission, routers,
firewalls, switches, gateway computers and/or edge servers. A network adapter card or
network interface in each computing/processing device veceives computer readable program
instructions from the network and forwards the compuicr readable program instructions for
storage in a coraputer readable storage medium within the respective computing/processing
device.

{00171} Computer readable program instructions for carrying out operations of the present
disclosure may be assembler instructions, instruction-sct-architecture (ISA) instructions,
machine instructions, machine dependent instructions, microcode, firroware instructions,
state-setting data, or cither source code or object code written in any combination of one o
more programming languages, including an object oriented programming fanguage such as
Smalltalk, C++ or the like, and conventional procedural programming languages, such as the
*“C7 programmung language or similar prograroming languages. The computer readable
program instructions may execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or server. {n the latier scenario, the

remote computer may be connected to the user’s computer through any type of network,
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inchuding a local arca network (LAN) or a wide arca network (WAN}, or the connection may
be made to an external computer (for example, through the Tnternet using an Internet Service
Provider). In some embodiments, electronic circuitry including, for example, programmable
logic curcuitry, ficld-programumable gate arrays (FPGA), or prograramable logic arrays (PLA)
may execute the computer readable program instructions by utilizing state information of the
computer readable program instructions to personalize the electronic circuitry, in order o
perform aspects of the present disclosure.

{00172} Aspects of the present disclostre are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparanss {systems), and corputer program
products according to embodiments of the disclosure. It will be understood that each block of
the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by computer readable prograr
instructions.

{60173] These computer readable program instructions may be provided to a processor of a
general purpose computer, special purpose compuier, or other programumable data processing
apparatus to produce a machine, such that the instractions, which execute via the processor of
the computer or other programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart and/or block diagram block or
blocks. These computer readable program instructions may also be stored in a computer
readable storage mediom that can divect a computer, a programmable data processing
apparatus, and/or other devices to function in a particuiar manner, such that the computer
readable storage medium having instructions stored therein comprises an article of
manufacture nclading instructions which implement aspects of the fanction/act specified in
the flowchart and/or block diagram block or blocks.

{60174} The computer readable program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other programmable apparatus or other
device to produce a computer implemented process, such that the instructions which execute
on the computer, other programmable apparatus, or other device implement the functions/acts
specified in the flowchart and/or block diagram block or blocks.

{60175] The flowchart and block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according o various embodiments of the present disclosure. In this regard,

cach block in the flowchart or block diagrams may represent a modale, segment, or portion of
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instructions, which cormprises onc ot more executable instructions for iraplementing the
specified logical function(s). In some alternative implementations, the functions noted in the
block may oceur out of the order noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concurrently, or the blocks may sometimes
be executed in the reverse order, depending upon the functionality involved. I will also be
noted that each block of the block diagrams andf/or flowchart tlustration, and combinations of
blocks in the block diagrams and/or flowchart illustration, can be implemented by special
purpose hardwarc-based systerns that perform the specified functions or acts or carry out

combinations of special purpose hardware and computer instructions.
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We claim:

1. A method comprising:

extracting DNA from a collection of samples from an organism;

preparing a sequence Hbrary with duplex adapters, wherein the sequence library is
prepared by ligating a duplex adapter having a Unigue Molecule Identifier (UMI) to an end
of cach of a plurality of strands of the extracted DNA and amplifying the extracted DNA with
a furst PCR;

selecting a subset of the sequence library;

amplitving the subset with a second PUR to increase a number of PCR duplicaies;

sequencing a plurality of duplex reads from the amplified subset;

aligning the plurality of duplex reads o a host genome and denoising the plurality of
duplex reads based on said alignment;

detecting the presence of a variant in at least one of the plurality of duplex reads;

determining a signature of the variant;

comparing the signature of the variant 1o a collection of disease-specific vartant
signaturcs; and

determining a disease type based on the comparison.

2. The method of claim 1, wherein the UMI has exactly three base pairs.

3. The method of claim 1, wherein the UMI has less than five base pairs.

4. The method of claim 1, whercin the disease type is a cancer {ype.

5. The method of claim 1, wherein the cancer type comprises bladder cancer.

6. The method of claim 1, whercin the sequence library comprises one of a whole

genome hbrary or a whole exome library.

-7

/. The method of claim 6, wherein preparing the sequence library with duplex adapiers

further comprises collapsing one or more errors on a strand of extracted DNA.
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8. The method of claim 1, wherein amplifying the extracted DNA with the first PCR
comprises removing sequencing errors based on the presence of two or more molecules with

the same UMIL

9. The method of claim 1, wherein sequencing the plurality of duplex reads comprises

sequencing on a paired-end system.

i0. The method of clatm 1, wherein
sequencing the phirality of daplex reads comprises sequencing on a single-end system
and, wherein
aligning the plurality of duplex reads to the host genome comprises:
obtaining a plurality of single-cnd DNA sequencing reads;
separating a top-mapping strand of the DNA from a bottom-mapping strand of
DNA;
performing exvor collapsing on cach of the top-mapping strands and the
bottom-mapping strands;
reverting the bottom-mapping strands (o op-mapping strands by re-grouping
bhased on UMI; and

performing error cotrecting between the top and bottom strands.

i1, The method of claim I, wherein
sequencing the plurality of duplex reads comprises sequencing on a single-end system
and, wherein
aligning sequences o a host genome comprises:
obtaining a plurality of single-cnd DNA sequencing reads;
creating a synthetic paired-end read; and

performing error correcting on all strands,

12. The method of claim 1, whercin sequencing the plurality of duplex reads comprises

cing a serics of oncorrected reads belonging to a duplex family.

o
0]

s
o]
&
o]
¥

13 The method of claim 12, further compising processing uncorrected reads belonging

to a duplex fanuly to measure a vead specific feature.
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14. The method of claim 13, further comprising filtering the uncorrected reads based on

the measured read specific feature.

15. The method of claim 1, further comprising trimming the sequence of reads from the

amplified subset.

16. The method of claim 1, wherein comparing the extracted variant to a collection of
cancer-specific variant signatures comprises:

calculating a tumor fraction esumation of a duplex-corrected signature;

plotting the wmor fraction estimation to create a duplex-corrected signature for the
extracted vartant; and

matching the duplex-corrected signature to a reference signature.

17. The method of claim 16, wherein the signature comprises a relative proportion of a

trinucleotide mutation.

1&. The method of claim 4, further comprising:
correcting for library and sequencing artifacts by a panel of cancer-free controls
sequenced on the same system; and

estimating a tumor fraction.

19. The method of claim 1, further comprising integrating a genome-wide mutation from
the sequencing reads as a weighted sum of single-base substitution (SBS) reference

mutational signatures.

26 The method of claim 19, wherein integrating the genome-wide mutation comprises:

deconvolving 3BS mutational signatures from plasma DNA mixtures using a non-
negative maximum likelihood modcl;

estimating a tumor fraction by taking 2 weight of & umor-associated SBS signature
and normalizing by a total number of mutations and depth of sequencing; and

calculating a signature score to determaine that the cancer-associated SCS explains an

observed mutation profile.
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21 The method of claim 1, further comprising discarding a variant with an allele

frequency greater than 30%.

22. The method of claim 21, further comprising:
aggregating reads having a variant with alicle frequency less than 3(%;
calculating a frequency of variants in the aggregated reads winucleotide context; and
comparing the calculated winucleotide variant frequency with a number of reference

frequencies for different biological processes.

23. The method of claim 1, wherein determining a disease status comprises:

randomly changing a trinucleotide frequency of a reference signature from the
collection;

performing a non-negative maxinmum likelihood fit between the randomiy-permutated
trinucleotide frequency and a frequency of the signature; and

scoring the fit below a discasc-negative threshold.

24. The method of claim 1, wherein the DNA 1s genomic DNA.

o
n

The method of claim 1, wherein the DNA 1s cell-free DNA (cfDNA).

26. The method of claim 1, wherein detecting the presence of the variant comprises:
providing the plurality of duplex reads to a pretrained machine learning model; and
receiving therefrom an indication of a base variant irrespective of comparative

sequence length.

27. The method of claim 26, wherein the pretrained machine learning model comprises an

artiticial neural network.

~

S. The method of clatm 27, whergin the artificial neural network is one of a feedforward

Iy

neural network, a radial basis function network, a self-organizing map, learning vector
quantization, a recurrent neural network, a Hopficld network, a Boltzmann machine, an echo
state network, long short term remory, a bi-directional recurrent neural network, a
hierarchical recurrent neural network, a stochastic neural network, a modular neural network,

an associative neural network, a deep nevral network, a deep belief network, a convolutional
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neural networks, a convolutional deep beliet network, a large memory storage and retrieval
neural network, a deep Boltzmann machine, a deep stacking network, a tensor deep stacking
network, a spike and slab restricted Boltzmann machine, a compound hierarchical-deep
model, a decp coding network, a muitilayer kernel machine, or a deep Q-network.

249, The method of claim 26, wherein the pretrained machine learning model comprises a

trained classifier.

30. The method of clatm 29, wherein the trained classifier 18 a random decision forest.
31. The method of claim 1, wherein the collection of samples coraprises a collection of

plasma samples.

32 The method of claim 1, wherein the sequence library comprises a whole genome

sequence library.

33. A computer program product for reducing sequencing error rates, the computer
program product comprising a computer readable storage medium having program
instructions embodied therewith, the program instnuctions executable by a processor to caose

the process to perform a method according to any one of claims 1-32.
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Simulated sequencing coverage
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FIG. 3D
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