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DEPTH ESTIMATION USING MULTI-VIEW STEREO AND A CALIBRATED
PROJECTOR

BACKGROUND
[0001] Camera based depth-sensing is directed towards projecting a light pattern onto a
scene and then using image processing to estimate a depth for each pixel in the scene. For
example, in stereo depth-sensing systems, depth sensing is typically accomplished by
projecting a light pattern (which may be random) onto a scene to provide texture, and
having two stereo cameras capture two images from different viewpoints. Then, for
example, one way to perform depth estimation with a stereo pair of images is to find
correspondences of local patches between the images. Once matched, the projected
patterns within the images may be correlated with one another, and disparities between
one or more features of the correlated dots used to estimate a depth to that particular dot
pair.
[0002] Instead of using two cameras, if a known light pattern is projected onto a scene,
the known pattern along with the image obtained a single camera may be used to estimate
depth. In general, the camera image is processed to look for disparities relative to the
known pattern, which are indicative of the depth of objects in the scene.

SUMMARY

[0003] This Summary is provided to introduce a selection of representative concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used in any way that would limit the scope of the
claimed subject matter
[0004] Briefly, one or more of various aspects of the subject matter described herein are
directed towards estimating depth data for each of a plurality of pixels, including
processing images that each capture a scene illuminated with projected dots to determine
dot locations in the images. For each dot location, confidence scores that represent how
well dot-related data match known projected dot pattern data at different depths are
determined and used estimate the depth data.
[0005] Other advantages may become apparent from the following detailed description

when taken in conjunction with the drawings.
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BRIEF DESCRIPTION OF THE DRAWINGS
[0006] The present invention is illustrated by way of example and not limited in the
accompanying figures in which like reference numerals indicate similar elements and in
which:
[0007] FIGURE 1 is a block diagram representing example components that may be
configured to project and capture a light pattern for determining depth via matching with
known projected pattern data, according to one or more example implementations.
[0008] FIGS. 2 and 3 are representation of an example of projecting dots into scene a
scene for determining depth by matching captured image data with known projected
pattern data, according to one or more example implementations.
[0009] FIG. 4 is a flow diagram representing example steps that are used in determining
a depth map based upon known projected pattern data, according to one or more example
implementations.
[0010] FIG. 5 is a representation of how projected dots may be used to determine dot
peak locations at sub-pixel resolution, according to one or more example implementations.
[0011] FIG. 6 is a representation of how dot-related data may be compressed into a data
structure, according to one or more example implementations.
[0012] FIG. 7 is a flow diagram representing example steps that may be taken to
determine dot peak locations, according to one or more example implementations.
[0013] FIG. 8 is a representation of how dots resulting from a projected ray may be used
in matching expected dot locations with known projected dot pattern positions to
determine depth data, according to one or more example implementations.
[0014] FIG. 9 is a flow diagram representing example steps that may be taken to
evaluate each image-captured dot against each projected dot to determine matching
(confidence) scores at different depths, according to one or more example
implementations.
[0015] FIG. 10 is a flow diagram representing example steps that may be taken
determine whether dot peaks are close enough to be considered a match, according to one
or more example implementations.
[0016] FIG. 11 is a representation of how depth computations may be robust to semi-
occluded images, according to one or more example implementations.
[0017] FIG. 12 is a representation of how interpolation may be based upon confidence

scores at different depths, according to one or more example implementations.
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[0018] FIG. 13 is a block diagram representing an exemplary non-limiting computing
system or operating environment, in the form of a gaming system, into which one or more
aspects of various embodiments described herein can be implemented.

DETAILED DESCRIPTION
[0019] Various aspects of the technology described herein are generally directed towards
having a known light pattern projected into a scene, and using image processing on
captured images and the known pattern to provide generally more accurate and reliable
depth estimation (relative to other techniques). The technology also leverages one or more
various techniques described herein, such as enumerating over dots rather than pixels,
trinocular (or more than three-way) matching, the use of sub-pixel resolution, and
confidence-based interpolation. The light pattern may be a fixed structure known in
advance, e.g., calibrated at manufacturing time, or learned in a user-performed calibration
operation, regardless of whether the light pattern is generated in a planned pattern or a
random (but unchanged thereafter) pattern.
[0020] In one aspect, two or more cameras are used to capture images of a scene. For
example, with left and right stereo cameras, the two captured images along with the
known light pattern may be used with a three-way matching technique to determine
disparities that are indicative of depth. In other words, the known pattern, the left image
and the right image may be used to estimate a depth based upon the disparity of each
projected / captured dot. Having multiple cameras viewing the scene helps overcome
uncertainties in the depth estimation and helps reduce mismatches. In addition, the
technique is robust to the failure of a camera and continues to estimate depth (although
typically less reliably) as long as at least one camera is viewing the scene and its position
with respect to the projector is known.
[0021] A dot detection process may be used, including one that estimates the positions of
the dots to sub-pixel accuracy, giving more accurate sub-pixel disparities. This provides
for more accurate matching and avoids discretizing the disparities.
[0022] Interpolation may be used in which computed match scores (e.g., each
corresponding to confidence of the estimated depth for a pixel) are used to compute a
depth for pixels that did not have a dot-based depth estimated for them. For example, the
confidence at each depth may be used as weights in the interpolation computation. This,
along with possibly other data such as edge-based data based upon a color (e.g., RGB)

image and/or a clean IR image serves as a guide for the interpolation.
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[0023] It should be understood that any of the examples herein are non-limiting. For
example, the projected light pattern generally exemplified herein comprises generally
circular dots, but projected dots may be of any shape; (although two-dimensional projected
shapes such as dots tend to facilitate more accurate matching than one-dimensional
projections such as stripes). As such, the present invention is not limited to any particular
embodiments, aspects, concepts, structures, functionalities or examples described herein.
Rather, any of the embodiments, aspects, concepts, structures, functionalities or examples
described herein are non-limiting, and the present invention may be used various ways that
provide benefits and advantages in depth sensing and image processing in general.

[0024] FIG. 1 shows an example system in which stereo cameras 102 and 103 of an
image capturing system or subsystem 104 capture left and right stereo images 105
synchronized in time (e.g., the cameras are “genlocked”). In one implementation the
cameras 102 and 103 capture infrared (IR) images, as IR does not affect the visible
appearance of the scene (which is generally advantageous, such as in video conferencing
and object modeling applications). As can be readily appreciated, in some scenarios such
as studio environments, more than two IR depth-sensing cameras may be present. Further,
one or more other cameras may be present in a given system, such as RGB cameras, and
such other cameras may be used to help in estimating depth, for example.

[0025] InFIG. 1, a projector 106 is shown that projects an IR pattern onto a scene, such
as a pattern of dots, although other spot shapes and/or pattern types may be used. For
purposes of brevity, dots are generally described hereinafter. The pattern may be designed
(e.g., encoded) into a diffractive optical component (a diffractive optical element or
combination of elements) that disperse laser light into the scene, e.g., as a dot pattern.  As
set forth above, the pattern may be planned or random, but is learned by calibration.

[0026] FIGS. 2 and 3 exemplify the projection concept. The projector 106, represented
in FIG. 2 as a circle in between the stereo cameras 102 and 103, and in FIG. 3 as a laser
330 coupled to a diffractive optical element 332 incorporated into a device 334, projects a
dot pattern onto a scene 222 (FIG. 2). Via calibration, the projected dot pattern 108 is
known to a depth estimator 110, which may be part of an image processing system or
subsystem 112. The known dot pattern may be maintained in any suitable data structure,
and in one implementation tracks at least the (x, y) coordinate, (which may be at a sub-
pixel resolution as described below), of each dot at various possible depths; this

corresponds to storing the projected ray of each dot. An alternative is to represent each
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dot as a bit vector including neighbors for vector matching with camera-captured dots
similarly represented by vectors.

[0027] The cameras 102 and 103 capture the dots as they reflect off of object surfaces in
the scene 222 and (possibly) the background. In general, one or more features of the
captured dots are indicative of the distance to the reflective surface. Note that FIGS. 2 and
3 (or any of the drawings herein) are not intended to be to scale, nor represent the same
scene as one another, nor convey any sizes, distance, dot distribution pattern, dot density
and so on.

[0028] Note that the placement of the projector 106 may be outside the cameras (e.g.,
FIG. 1), or in between the cameras (FIGS. 2 and 3) or at another location, such as above or
below one or both of the cameras. The examples herein are in no way limiting of where
the cameras and/or projector are located relative to one another, and similarly, the cameras
may be positioned at different positions relative to each other. Notwithstanding, the
relative locations of the cameras and projector are known, e.g., as determined at
manufacturing time and/or able to be re-measured if needed.

[0029] By illuminating the scene with a relatively large number of distributed infrared
dots, ¢.g., typically on the order of hundreds of thousands, the cameras 102 and 103
capture texture data as part of the infrared image data for any objects in the scene. As
described herein, to facilitate more accurate dot matching between left and right images,
the dots in the images, along with the known dot pattern are processed.

[0030] In one implementation the example image capturing system or subsystem 104
includes a controller 114 that via a camera interface 116 controls the operation of the
cameras 102 and 103. The exemplified controller 114, via a projector interface 118, also
may control the operation of the projector 106. For example, the cameras 102 and 103 are
synchronized (genlocked) to capture stereo images at the same time, such as by a
controller signal (or different signals for each camera). The projector 106 may be turned
on or off, pulsed, and otherwise have one or more parameters controllably varied, for
example.

[0031] The images 105 captured by the cameras 102 and 103 are provided to the image
processing system or subsystem 112. In some implementations, the image processing
system 112 and image capturing system or subsystem 104, or parts thereof, may be
combined into a single device. For example a home entertainment device may include all
of the components shown in FIG. 1 (as well as others not shown). In other

implementations, parts (or all) of the image capturing system or subsystem 104, such as
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the cameras and projector, may be in a separate device that couples to a gaming console,
personal computer, mobile device, dedicated processing device and/or the like. Indeed, a
gaming console is exemplified below as one environment that may be used for processing
images into depth data.

[0032] The image processing system or subsystem 112 includes a processor 120 and a
memory 122 containing one or more image processing components, such as the depth
estimator 110. In one aspect, the depth estimator 110 includes a trinocular matching
component 126 or the like that uses the images as well as the known projector pattern 106
to estimate depth data. One or more depth maps 128 may be obtained via the depth
estimator 110 as described herein.

[0033] Also shown in FIG. 1 is an interface 132 to the image processing system or
subsystem 118, such as for connecting a computer program, keyboard, game controller,
display, pointing device, microphone for speech commands and/or the like as appropriate
for a user to interact with an application or the like that uses the depth map.

[0034] FIG. 4 is a generalized flow diagram showing example steps of one overall
process, including a one-time calibration process at step 400, such as at a time of
manufacturing the device; (it is possible that calibration may be repeated by the device
owner or by sending the device for service, such as if shipping, heat or other
environmental factors cause drift.

[0035] The example steps used in depth map generation are described in further detail
below, and in general, include a dot detection process in which the positions of the
camera-captured dots are located and stored, as represented by step 402 (and with
reference to FIG. 7). Data representative of the camera-captured dots are matched against
data representative of the known projected dots, as generally represented at step 404 (and
with reference to FIGS. 9 and 10).

[0036] After matching, some post-processing may be performed at step 406, which in
general cleans up anomalies. Interpolation is performed at step 408 in order to determine
depth values for pixels that do not have a direct dot-based estimated depth value, e.g., for
pixels in between dots. Interpolation may be based on confidence scores of nearby pixels
that have direct dot-based estimated depth values, as well as on other techniques such as
edge detection that factors in whether a depth is likely to change for a pixel because the
pixel may be just beyond the edge of a foreground object.

[0037] After interpolation fills in the pixel depth values needed to complete the depth

map, step 410 outputs the depth map. The process repeats at an appropriate frame rate via
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step 412, until frames of depth maps are no longer needed, ¢.g., the device is turned off, an
application that wants frames of depth map is closed or changes modes, and so on.

[0038] With respect to dot detection, in general, the dots have a soft circularly symmetric
profile similar to a Gaussian or blurred circle (although the exact shape does not
significantly matter). In infrared images, each pixel that is illuminated by at least part of a
dot has an associated intensity value. In one or more implementations, each input image is
blurred, e.g., with a 1-2-1 filter used on each pixel (as known in image processing), which
reduces noise. A next operation uses an s x s max filter (a sliding s x s window that finds
the maximum intensity value in each window position, also well-known in image
processing) on the image to compare cach pixel to find pixels that are local maxima (or
ties the maxima) within an s x s area. A suitable value for s is five (5).

[0039] For every such local maximum point, a horizontal and vertical three-point
parabolic fit to the intensities is used to find a sub-pixel peak location and maximum (e.g.,
interpolated) value at that location; (that is, interpolation may be used to adjust for when
the peak is not centered in the sub-pixel). As can be seen in the pixels (represented as
squares of a partial image 550 of FIG. 5), a feature for this dot pattern is the dot peak
intensity location. This can be estimated to within sub-pixel accuracy. More particularly,
as represented in FIG. 5, the X-shaped crosses in the finer grid representation 552
represent the estimated dot centers, with the pixels divided into sub-pixels by the dashed
lines. Each estimated center corresponds to a sub-pixel. The centers of some additional
dots outside the exemplified grid (e.g., the grid may be part of a larger image) are also
shown.

[0040] Note that FIG. 5 subdivides the pixels into 2x2 sub-pixels to double the
resolution. However instead of double sub-pixel resolution, even higher resolution may be
obtained by subdividing the pixels further, e.g., into nine sub-pixels each, sixteen sub-
pixels each and so on; (non-square subdivision may be used as well).

[0041] Data representing the detected peaks may be stored in a data structure that
includes for each peak the sub-pixel location and the peak magnitude, and also provides
additional space for accumulating information during dot matching, such as a matching
score. In one or more implementations, by construction of the diffractive optical element,
the peaks are not located any closer than d pixels apart, whereby a smaller data structure
(storage image comprising an array of cells) may be used. More particularly, as
represented in FIG. 6, in a compression operation 660, the data for each peak obtained

from the image 662 may be put into a bin that is computed by dividing its true position by
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d and rounding to the nearest pixel, providing a compressed image structure 664. Note
that the grid of cells in FIG. 6 is not representative of a sub-pixel grid as in FIG. 5, but
rather represents a way to compress the needed size of the data structure by eliminating the
need to reserve storage for many of the pixels that do not have a peak.

[0042] A suitable compression parameter is one that is large enough to remove as much
space between dots (peaks) as possible, but small enough so that two distinct dots do not
collide into the same cell. In the above example, a compression factor of two was used, as
any pair of peaks is at least two pixels away from one another.

[0043] FIG. 7 summarizes an example dot detection process, beginning at step 702
where a captured image is blurred to reduce noise. Note that FIG. 7 is performed on each
image, e.g., left and right, which may be performed in parallel, at least to an extent. Step
704 represents using a max filter to find the peaks.

[0044] For each peak, or local maximum point, steps 706, 708 and 710 store the
representative information in the data structure, including the sub-pixel location of the
peak, and the (e.g., interpolated) intensity value at that location. This fills the data
structure, which as represented in FIG. 6, is typically sparse because of the design of the
diffractive optical element. Step 712 compresses the data structure, as also shown and
described with reference to FIG. 6.

[0045] Once the images have been processed to find the dot peaks and store them in the
compressed data structure matching occurs. In one alternative, trinocular dot matching is
used. Note that instead of processing each pixel, in one implementation, trinocular dot
matching uses a plane sweep algorithm to estimate the disparity for each dot in the laser
dot pattern. Because the projector pattern is known (computed and stored during a
calibration operation), trinocular dot matching matches each dot in the known pattern with
both the left and right image to estimate the per-dot disparity.

[0046] In general, for the known pattern, the dots’ ray (x, y) positions at different depths
may be pre-computed. As represented in FIG. 8, if the depth is at D1, then the left camera
image should have a corresponding dot at (sub-pixel) 881L, and the right camera image
should have a corresponding dot at (sub-pixel) 881R; if the depth is D2, these sub-pixel
locations will have shifted to 8821 and 882R, respectively. Each possible depth may be
used, however in one or more implementations a sampling of some of the depths may be
used. For example, a depth change that moves about one pixel may be used, in which the

depth change may be related to the inverse depth.
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[0047] For a given depth and a dot location in the known pattern, each image is
processed in a disparity sweep, including to determine whether it also has a dot at the
expected corresponding position at that depth. For computational efficiency, the three-
way matching may operate on a tile-by-tile basis (and tiles may be fattened so that 2D
support can be properly aggregated), where each tile has its own disparity sweep
performed.

[0048] In one implementation, the disparity sweep returns the winning match scores in a

multi-band image, whose bands correspond to a MatchTriplet structure:

struct MatchPair
{
float score; // matching score (# similar neighbors)

float d; // estimated disparity
¥

struct MatchStack

{
MatchPair curr; // newest match being considered
MatchPair prev; // previous match

MatchPair best; // best match so far

35

struct MatchTriplet

{
MatchStack left; // match in left image
MatchStack right; // match in right image
MatchPair both; // match in both images

35

[0049] As represented in FIG. 9, the disparity sweep has an outer iteration (steps 902,
920 and 922) over all the disparities specified by the disparity sweep range (dMin, dMax),
which represent the minimum and maximum depths that are to be measured. The disparity
sweep includes intermediate iterations over the left and right images (steps 904, 916 and

918), and inner iterations over the (x, y) peak cells in the tile (steps 906, 912 and 914).
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[0050] In general, for the current depth, the inner loop at step 908 evaluates whether
there is a match at the projected dot’s location and the expected left dot location, and
similarly whether there is a match at the projected dot’s location and the expected right dot
location. However, generally because of noise, even if there should be a match, there may
not be one at the exact location, and thus neighbors / neighboring pixels or sub-pixels are
also evaluated in one implementation.

[0051] In general, the more similar neighbors, the more confidence that there is a match.
With respect to neighbors, to aggregate support spatially, the scores of neighbors with
compatible disparities are increased, e.g., by calling an UpdateNeighbors routine. This
operation disambiguates among potential matches, as the number of neighbors (within the
neighbor distance of each peak) is the score on which winning match decisions may be
based.

[0052] An alternative way (or additional way) to match dots with pattern data is by
representing each captured dot as a vector and each known projected dot as vectors, in
which the vectors include data for a dot’s surrounding neighborhood (pixel or sub-pixel
values). The vector representations for the known projection pattern of dots may be pre-
computed and maintained in a lookup table or the like. The closest vector, e.g., evaluating
the captured dot vector against a set of vectors at different depths, is given the highest
confidence scores, the next closest the next highest score and so on to a lowest confidence
score.

[0053] The vectors may be bit vectors, with each bit value indicating whether a dot
exists or not for each surrounding position in a neighborhood. Then, for each dot in a
captured image after computing its neighborhood bit vector, the distance (e.g., the
Hamming distance) between the bit vectors may be used to find the closest match. Note
that this may be efficiently done in low-cost hardware, for example. Further, this vector-
based technique may be highly suited for certain applications, ¢.g., skeletal tracking.
[0054] In one or more implementations, at the deepest level within the disparity sweep
stage is a TestMatch subroutine (e.g., FIG. 10) that tests whether two peaks are
compatible. Peaks are compatible if they are close enough in epipolar geometry; (note that
another test that may be used is to check whether the left and right peaks have similar
magnitude). If the score (epipolar distance) is within a tolerance (tol) parameter (step
1002) and is a new match (step 1004), the NewMatch routine is used to push this match
onto the MatchStack structure (step 1006). A suitable value for the tol parameter may be
set to 1.5 pixels.

10
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[0055] At the end of the matching stage, the MatchStack structure for each projector
peak contains the winning match in its best field. The MatchTriplet has the winning
match for the best match on the left image, best match on the right image and the best
match on which both left and right agree together.

[0056] In actual practice, a small difference exists in the images captured by the left and
right cameras, which results in neighboring peaks in some scenarios to merge to one dot at
the time of detection. In an ideal scenario, the best match on the left image, best match on
the right image and the best match that both left and right will all result in the same
disparity; the best joint disparity is ideally be the best three-way matched disparity.
However, noise, intensity values below the threshold and so forth can cause missing dots,
which result in different disparities.

[0057] Further, semi-occlusion can prevent both cameras from seeing the same dot.
Semi-occlusion is generally represented in FIG. 11, where the left camera C1 cannot
capture in its corresponding image 11 the projected dot 1100, but the right camera C2 can
in its image 12. Therefore, a robust decision may be used that allows a two-view match to
be the final winner for determining a dot’s depth even when a valid (but lower scoring)
three-way match exists.

[0058] The final result typically has sparse errors due to confident-incorrect dot matches.
These artifacts may be reduced by performing one or more post-processing steps. For
example, one step may remove floating dots, comprising single outlier dots that have a
significantly different disparity from the nearest dots in a 5x5 neighborhood. The mean
and the standard deviation (sigma) of the disparities of the dots in the neighborhood may
be used for this purpose, ¢.g., to remove the disparity assigned to the current pixel if it is
different from the mean disparity by greater than three sigma.

[0059] Another post-processing step is to perform a uniqueness check. This checks with
respect to the left and right depth data that there are no conflicting depths for a particular
pixel. One implementation considers the (projected, left pixel) pair, and (projected, right)
pair; when there is a clash in either of the pairs the lower scoring pixel is marked as
invalid. An alternative three-way uniqueness check also may be used instead of or in
addition to the two-way check.

[0060] Dot matching allows obtaining disparity-based depth estimates for the dots,
resulting in a sparse disparity map. A next stage is an interpolation operation (an up-
sampling stage) that starts with the sparse depth estimated at the dots and interpolates the

missing data at the rest of the pixels, e.g., to provide a depth map with a depth value for

11
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every pixel. One interpolation process uses a push-pull interpolation technique guided by
the matching score and/or by a guide image or images (e.g., a clean IR image without dots
and/or an RGB image or images) to recover the dense depth of the scene. Distance of the
pixel being (for which depth is being interpolated) to each of the dots being used is one
way in which the interpolation is being weighted.

[0061] FIG. 12 represents the concept of using confidence scores (e.g., S1 - S6)
associated with detected dots. For example, for a given ray represented by the arrow in
FIG. 12, the camera may have detected nearby dots, but one dot, represented by the score
S3, is where it is expected to be in the captured image when comparing to the projected
dot at depth D3 and thus has a higher confidence score. As described above, confidence
scores may be computed by neighbor matches (e.g., the number of neighbors summed) or
via vector bitmap similarity (e.g., inversely proportional to the Hamming distance), or via
another matching technique. In interpolation for determining depth values for nearby
pixels, more weight is given to this depth.

[0062] Thus, the up-sampling stage propagates these sparse disparities / depth values to
the other pixels. The dot matching scores may be used as a basis for interpolation weights
when interpolating depths for pixels between the dots.

[0063] In practice, interpolation also may factor in edges, ¢.g., include edge-aware
interpolation, because substantial depth changes may occur on adjacent pixels when an
object’s edge is encountered. Color changes in an RGB image are often indicative of an
edge, as are intensity changes in an IR image. If an RGB and/or a clean IR (no dot) view
of the scene is available at a calibrated position, the sparse depth may be warped to this
view and perform an edge-aware interpolation using techniques such as edge-aware push-
pull interpolation or using bilateral filtering. Note that clean IR may be obtained using a
notch filter that removes the dots in a captured IR image (and possibly uses a different
frequency IR source that illuminates the whole scene in general to provide sufficient IR).
[0064] Note that the weights for confidence scores and/or edges can be learned from
training data. In this way, for example one confidence score that is double another
confidence score need not necessarily be given double weight, but may be some other
factor.

[0065] Some of the techniques described herein may be applied to a single camera with a
known projector pattern. For example, dot based enumeration with the above-described
trinocular enumeration already deals with missing pixels, and thus while likely not as

accurate as three- (or more) way matching, the same processes apply, such as if a camera
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fails. Further, as can be readily appreciated, if a system is designed with only a single
camera, the match pair structure and FIG. 9 may be modified for a single image, ¢.g., by
removing the right image fields and the right image intermediate iteration.

[0066] Similarly, additional fields may be added to the data structure and additional
intermediate iterations may be used for more than two cameras. For example, a studio
setup may have more than two cameras, and these may be positioned around the projector
rather than in line with it. Steps 904, 916 and 918 of FIG. 9 may be modified for any
number of cameras, ¢.g., to select first camera image (step 904), evaluate whether the last
camera image has been processed (step 916) and if not, to select the next camera image
(step 918).

[0067] Thus, one advantage described herein is that multi-view matching is performed,
as this reduces the probability of false correspondence and in addition reduces the number
of neighboring points needed to support or verify a match. Further, regions that are in
shadow in one camera or the other can still be matched to the expected dot position
(although with lower reliability). Indeed, the same matching algorithm may be modified /
extended to perform matching using the projector and a single camera, or to perform
matching using the projector pattern and more than two cameras.

[0068] Via calibration, any random or known dot pattern projected onto the scene may
be used, including a static dot pattern. This is in contrast to solutions that use dynamic
structured light that needs a complicated projector with fast switching and precise control.
[0069] Further, a multi-view sterco solution as described herein improves the estimated
depth in practice. The matching need only occur at dots and not at every pixel, which is far
more efficient. Also, because dot locations may be estimated to sub-pixel precision, match
dots that are only fairly close in terms of epipolar geometry and obtain sub-pixel disparity
estimates may be matched. Lastly the developed system is robust to failure of cameras
within a multi-view setup, with good quality depth estimated even with a single camera
viewing the projected dot pattern.

[0070] One or more aspects are directed towards a projector that projects a light pattern
of dots towards a scene, in which the light pattern is known for the projector and
maintained as projected dot pattern data representative of dot positions at different depths.
A plurality of cameras, (e.g., a left camera and a right camera), each fixed relative to the
projector, capture synchronized images of the scene from different perspectives. A depth
estimator determines dot locations for captured dots in each image and computes a set of

confidence scores corresponding to different depths for each dot location in each image, in
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which each confidence score is based upon the projected dot pattern data and a matching
relationship with the dot location in each synchronized image. The depth estimator further
estimates a depth at each dot location based upon the confidence scores. Each dot location
may correspond to a sub-pixel location.

[0071] A confidence score may be based upon a number of matching neighbors between
a dot location and the projected dot pattern data, and/or based upon a vector that represents
the captured dot’s location and a set of pattern vectors representing the projected dot
pattern data at different depths. A vector that represents the captured dot’s location may
comprise a bit vector representing a neighborhood surrounding the captured dot location,
and the set of pattern vectors may comprise bit vectors representing a neighborhood
surrounding the projected dot position at different depths. The set of confidence scores
may be based upon a closeness of the bit vector representing the neighborhood
surrounding the captured dot location to the set of bit vectors representing the
neighborhood surrounding the projected dot position at the different depths.

[0072] The depth estimator may remove at least one dot based upon statistical
information. The depth estimator may further for conflicting depths for a particular pixel,
and to select one depth based upon confidence scores for the pixel when conflicting depths
are detected.

[0073] The depth estimator may interpolate depth values for pixels in between the dot
locations. The interpolation may be based on the confidence scores, and/or on edge
detection.

[0074] One or more aspects are directed towards processing an image to determine dot
locations within the image, in which the dot locations are at a sub-pixel resolution. Depth
data is computed for each dot location, including accessing known projector pattern data at
different depths to determine a confidence score at each depth based upon matching dot
location data with the projector pattern data at that depth. A depth value is estimated
based upon the confidence scores for the dot sub-pixel location associated with that pixel.
For pixels that are in between pixels associated with the depth values, interpolation is used
to find depth values. The interpolating of the depth values may use weighted interpolation
based on the confidence scores for the dot sub-pixel locations associated with the pixels
being used in an interpolation operation.

[0075] The dot locations may be contained as data within a compressed data structure.
This is accomplished by compressing the data to eliminate at least some pixel locations

that do not have a dot in a sub-pixel associated with a pixel location.
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[0076] Computing the depth data for each dot location at different depths may comprise
determining left confidence scores for a left image dot and determining right confidence
scores for a right image dot. Determining the depth value may comprise selecting a depth
corresponding to a highest confidence, including evaluating the left and right confidence
scores for each depth individually and when combined together.

[0077] Computing the depth data based upon matching the dot location data with the
projector pattern data may comprise evaluating neighbor locations with respect to whether
cach neighbor location contains a dot. Computing the depth data may comprise
computing a vector representative of the dot location and a neighborhood surrounding the
dot location.

[0078] One or more aspects are directed towards estimating depth data for each of a
plurality of pixels, including processing at least two synchronized images that each capture
a scene illuminated with projected dots to determine dot locations in the images, and for
cach dot location in each image, determining confidence scores that represent how well
dot-related data match known projected dot pattern data at different depths. The
confidence scores may be used to estimate the depth data.

[0079] Also described herein is generating a depth map, including using the depth data
to estimate pixel depth values at pixels corresponding to the dot locations, and using the
pixel depth values and confidence scores to interpolate values for pixels in between the dot
locations. Further described is calibrating the known projected dot pattern data, including
determining dot pattern positions at different depths, and maintaining the known projected
dot pattern data in at least one data structure.

EXAMPLE OPERATING ENVIRONMENT

[0080] It can be readily appreciated that the above-described implementation and its
alternatives may be implemented on any suitable computing device, including a gaming
system, personal computer, tablet, DVR, set-top box, smartphone and/or the like.
Combinations of such devices are also feasible when multiple such devices are linked
together. For purposes of description, a gaming (including media) system is described as
one exemplary operating environment hereinafter.

[0081] FIG. 13 is a functional block diagram of an example gaming and media system
1300 and shows functional components in more detail. Console 1301 has a central
processing unit (CPU) 1302, and a memory controller 1303 that facilitates processor
access to various types of memory, including a flash Read Only Memory (ROM) 1304, a
Random Access Memory (RAM) 1306, a hard disk drive 1308, and portable media drive
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1309. In one implementation, the CPU 1302 includes a level 1 cache 1310, and a level 2
cache 1312 to temporarily store data and hence reduce the number of memory access
cycles made to the hard drive, thereby improving processing speed and throughput.
[0082] The CPU 1302, the memory controller 1303, and various memory devices are
interconnected via one or more buses (not shown). The details of the bus that is used in
this implementation are not particularly relevant to understanding the subject matter of
interest being discussed herein. However, it will be understood that such a bus may
include one or more of serial and parallel buses, a memory bus, a peripheral bus, and a
processor or local bus, using any of a variety of bus architectures. By way of example,
such architectures can include an Industry Standard Architecture (ISA) bus, a Micro
Channel Architecture (MCA) bus, an Enhanced ISA (EISA) bus, a Video Electronics
Standards Association (VESA) local bus, and a Peripheral Component Interconnects (PCI)
bus also known as a Mezzanine bus.

[0083] In one implementation, the CPU 1302, the memory controller 1303, the ROM
1304, and the RAM 1306 are integrated onto a common module 1314. In this
implementation, the ROM 1304 is configured as a flash ROM that is connected to the
memory controller 1303 via a Peripheral Component Interconnect (PCI) bus or the like
and a ROM bus or the like (neither of which are shown). The RAM 1306 may be
configured as multiple Double Data Rate Synchronous Dynamic RAM (DDR SDRAM)
modules that are independently controlled by the memory controller 1303 via separate
buses (not shown). The hard disk drive 1308 and the portable media drive 1309 are shown
connected to the memory controller 1303 via the PCI bus and an AT Attachment (ATA)
bus 1316. However, in other implementations, dedicated data bus structures of different
types can also be applied in the alternative.

[0084] A three-dimensional graphics processing unit 1320 and a video encoder 1322
form a video processing pipeline for high speed and high resolution (e.g., High Definition)
graphics processing. Data are carried from the graphics processing unit 1320 to the video
encoder 1322 via a digital video bus (not shown). An audio processing unit 1324 and an
audio codec (coder/decoder) 1326 form a corresponding audio processing pipeline for
multi-channel audio processing of various digital audio formats. Audio data are carried
between the audio processing unit 1324 and the audio codec 1326 via a communication
link (not shown). The video and audio processing pipelines output data to an A/V

(audio/video) port 1328 for transmission to a television or other display / speakers. In the
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illustrated implementation, the video and audio processing components 1320, 1322, 1324,
1326 and 1328 are mounted on the module 1314.

[0085] FIG. 13 shows the module 1314 including a USB host controller 1330 and a
network interface (NW I/F) 1332, which may include wired and/or wireless components.
The USB host controller 1330 is shown in communication with the CPU 1302 and the
memory controller 1303 via a bus (e.g., PCI bus) and serves as host for peripheral
controllers 1334. The network interface 1332 provides access to a network (e.g., Internet,
home network, etc.) and may be any of a wide variety of various wire or wireless interface
components including an Ethernet card or interface module, a modem, a Bluetooth
module, a cable modem, and the like.

[0086] In the example implementation depicted in FIG. 13, the console 1301 includes a
controller support subassembly 1340, for supporting four game controllers 1341(1) -
1341(4). The controller support subassembly 1340 includes any hardware and software
components needed to support wired and/or wireless operation with an external control
device, such as for example, a media and game controller. A front panel 1/O subassembly
1342 supports the multiple functionalities of a power button 1343, an ¢ject button 1344, as
well as any other buttons and any LEDs (light emitting diodes) or other indicators exposed
on the outer surface of the console 1301. The subassemblies 1340 and 1342 are in
communication with the module 1314 via one or more cable assemblies 1346 or the like.
In other implementations, the console 1301 can include additional controller
subassemblies. The illustrated implementation also shows an optical I/O interface 1348
that is configured to send and receive signals (e.g., from a remote control 1349) that can be
communicated to the module 1314.

[0087] Memory units (MUs) 1350(1) and 1350(2) are illustrated as being connectable to
MU ports "A" 1352(1) and "B" 1352(2), respectively. Each MU 1350 offers additional
storage on which games, game parameters, and other data may be stored. In some
implementations, the other data can include one or more of a digital game component, an
executable gaming application, an instruction set for expanding a gaming application, and
a media file. When inserted into the console 1301, each MU 1350 can be accessed by the
memory controller 1303.

[0088] A system power supply module 1354 provides power to the components of the
gaming system 1300. A fan 1356 cools the circuitry within the console 1301.

[0089] An application 1360 comprising machine instructions is typically stored on the

hard disk drive 1308. When the console 1301 is powered on, various portions of the
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application 1360 are loaded into the RAM 1306, and/or the caches 1310 and 1312, for
execution on the CPU 1302. In general, the application 1360 can include one or more
program modules for performing various display functions, such as controlling dialog
screens for presentation on a display (e.g., high definition monitor), controlling
transactions based on user inputs and controlling data transmission and reception between
the console 1301 and externally connected devices.

[0090] The gaming system 1300 may be operated as a standalone system by connecting
the system to high definition monitor, a television, a video projector, or other display
device. In this standalone mode, the gaming system 1300 enables one or more players to
play games, or enjoy digital media, e.g., by watching movies, or listening to music.
However, with the integration of broadband connectivity made available through the
network interface 1332, gaming system 1300 may further be operated as a participating
component in a larger network gaming community or system.

CONCLUSION

[0091] While the invention is susceptible to various modifications and alternative
constructions, certain illustrated embodiments thereof are shown in the drawings and have
been described above in detail. It should be understood, however, that there is no
intention to limit the invention to the specific forms disclosed, but on the contrary, the
intention is to cover all modifications, alternative constructions, and equivalents falling

within the spirit and scope of the invention.
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CLAIMS

1. A system comprising:

a projector that projects a light pattern of dots towards a scene, in which the light
pattern is known for the projector and maintained as projected dot pattern data
representative of dot positions at different depths;

a plurality of cameras, each of the plurality of cameras fixed relative to the
projector and configured to capture synchronized images of the scene from different
perspectives; and

a depth estimator, the depth estimator configured to determine dot locations for
captured dots in each of the synchronized images and to compute a set of confidence
scores corresponding to different depths for each dot location in each of the synchronized
images, each confidence score based upon the projected dot pattern data and a matching
relationship with the dot location in each synchronized image, the depth estimator further

configured to estimate a depth at each dot location based upon the confidence scores.

2. The system of claim 1 wherein each dot location corresponds to a sub-pixel
location.
3. The system of claim 1 wherein each confidence score is based upon a

number of matching neighbors between a dot location and the projected dot pattern data.

4. The system of claim 1 wherein each confidence score is based upon a
vector that represents a captured dot’s location and a set of pattern vectors representing the

projected dot pattern data at different depths.

5. The system of claim 4 wherein the vector that represents the captured dot’s
location comprises a bit vector representing a neighborhood surrounding the captured
dot’s location, wherein the set of pattern vectors comprises bit vectors representing a
neighborhood surrounding the projected dot position at different depths, and wherein the
set of confidence scores is based upon a closeness of the bit vector representing the
neighborhood surrounding the captured dot’s location to the set of bit vectors representing

the neighborhood surrounding the projected dot position at the different depths.
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6. The system of claim 1 wherein the depth estimator is further configured to

remove at least one dot based upon statistical information.

7. The system of claim 1 wherein the depth estimator is further configured to
check for conflicting depths for a particular pixel, and to select one depth based upon

confidence scores for the pixel when conflicting depths are detected.

8. The system of claim 1 wherein the depth estimator is further configured to

interpolate depth values for pixels in between the dot locations.

9. A machine-implemented method comprising:

processing, by a processing device, an image to determine dot locations within an
image, in which the dot locations are at a sub-pixel resolution;

computing, by the processing device, depth data for each dot location, including
accessing known projector pattern data at different depths to determine a confidence score
at each depth based upon matching dot location data with the projector pattern data at that
depth;

determining, by the processing device, for each pixel of a plurality of pixels, a
depth value based upon the confidence scores for the dot sub-pixel location associated
with that pixel; and

interpolating, by the processing device, depth values for pixels that are in between

pixels associated with the depth values.

10.  One or more machine-readable devices or machine logic having executable
instructions, which when executed perform operations, comprising:

estimating depth data for each of a plurality of pixels, including processing at least
two synchronized images that each capture a scene illuminated with projected dots to
determine dot locations in the images, and for each dot location in each image,
determining confidence scores that represent how well dot-related data match known
projected dot pattern data at different depths, and using the confidence scores to estimate

the depth data.
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