特許協力条約に基づいて公開された国際出願

世界知的所有権機関
国際事務局

国際公開日
2009年7月16日(16.07.2009)

国際特許分類
H02K 5/10 (2006.01)

国際出願番号：PCT/JP2009/000017

国際出願B：2009年1月6日(06.01.2009)

国際出願の言語：日本語

国際公開の言語：日本語

出願人：日本国(米国を除く全ての国について)
株式会社東芝(KABUSHIKI KAISHA TOSHIBA)(JP/JP)

代理人：菊池進,長尾聡,箕輪光等

発明の名称：水中駆動モータアセンブリ

オーガスト・デ・オランジュ

Abstract : A casing (2) of a motor used underwater which houses a reduction gear device (3) and a motor (4) is filled with an electrical insulating material (8) whose thermal conductivity is higher than that of air. The heat dissipation ability of the motor (4) can be improved by using the electrical insulating material (8) having a high thermal conductivity. Accordingly, the capacity of the coil of the motor (4) can be increased and the output/volume ratio can be improved.

要約: 水中で使用するモータにおいて、減速機 (3) およびモータ (4) を収容したケーシング (2) 内に、空気よりも熱伝導率の高い電気絶縁材 (8) を充填する。熱伝導率の高い電気絶縁材 (8) を用いることにより、モータ (4) の放熱性を向上することができる。それにより、モータ (4) のコイルの大容量化が可能となり、出力/体積比を向上させることができる。

添付公開書類: 国際審査報告書
明細書
水中駆動モータアセンプリ
技術分野
本発明は、水中で使用される水中駆動モータアセンプリに関する。
背景技術
一般的なモータの動作原理について、図を用いて以下説明する。図はモータを軸方向に垂直な面で切断した横断面図である。
モータ「00」は、円筒形のモータハウジング「0」の内側に永久磁石で構成されたステータ「02」が配設されている。ステータ「02」を構成する永久磁石は、S極「02_a」、「02_c」、N極「02_b」、「02_d」となるように配置されている。対向する永久磁石の内面の極性が異なる配置とすることにより、ステータ「02」の間に平行な磁場が発生する。ステータ「02」の内側にはロータ「03」が配置されている。ロータ「03」はコイル「04_a」、「04_b」、「04_c」を巻きつけた鉄心「05」、鉄心「05」を支持するシャフト「06」から構成されている。鉄心「05」はシャフト「06」から放射状に延びた突起部「05_a」、「05_b」、「05_c」を有し、コイル「04_a」、「04_b」、「04_c」はそれぞれ突起部「05_a」、「05_b」、「05_c」巻き付けられている。
以下、このような構成からなるモータ「00」の動作について説明する。コイル「04_a」、「04_b」、「04_c」に電流を通し、突起部「05_b」をN極に、突起部「05_a」、「05_c」をS極に磁化すると、突起部「05_b」とS極「02_c」が引き合い、また突起部「05_a」、「05_c」とN極「02_b」が引き合ってロータ「03」が時計回りに回転する。コイル「04_a」、「04_b」、「04_c」に流す電流の方向を切り替え、図4に示すシャフト「06」よりも上側をN極に、下側をS極になるよう制御することにより、ロータ「03」は時計回りに回転し続ける。ロータ「03」のトルクはシャフト「06」を介して外部に伝達され、モータ「00」の出力となる。
このように、モータはステータとロータの磁界的相互作用によってロータが回転して駆動する。また、現在はステータにコイルを取り付けてロータに永久磁石を用いた構造や、ステータとロータの双方ともコイルを取り付けて磁界を発生させる構造、またロータの内側にステータを配置して外側のロータが回転する構造など、さまざまな構造のモータが用いられている。何れの構造のモータについても、水中で使用するには、コイルの短絡を防ぐために防水手段を講じる必要がある。

また、特に原子炉内で運用するロボット等に適用するモータは、耐水性のほかに耐放射性や、狭陥部での運用を可能とするためにより小型であることが求められる。単純にモータを小型にするとモータ出力が低下してしまうため、モータを小型化するには出力体積比を向上させて必要な出力を維持できるようにする必要がある。コイルの容量（通電可能な最大電流）を高めれば出力体積比を向上することができるが、モータ運転時の発熱量も増加するため、コイルの放熱性を高めて焼損を防ぐ必要がある。

モータの放熱性を向上するために従来用いられている手法は、冷却空気をコイルの周辺に流し出して冷却を促進するものなど、水中での運用を想定している（例えば、特許文献1参照。）。

特許文献1：特開平3－178535号公報
特許文献2：特開2003－86690号公報

発明の開示

発明が解決しようとする課題

上述した冷却空気を用いてモータの放熱を促進する技術は水中での運用を前提としているため、水中ではケーシング内の防水を維持できなくなる。

したがって、本発明は、ケーシングによってモータを防水し、かつモータの放熱性を向上して、水中で使用可能であり従来よりも小型で必要な出力が
得られる水中駆動モータアセンブリの提供を目的とする。

課題を解決するための手段

【0011】記目的を達成するため、本発明による水中駆動モータアセンブリは、ケーシングと、このケーシングに収容されたモータと、このモータと前記ケーシングの間に充填され空気よりも熱伝導率の高い電気絶縁物質を備え、前記モータは、ステータ、このステータの磁界との相互作用によって回転するロータ、前記ステータと前記ロータのうち少なくとも一方を磁化するコイル、前記ロータの回転によって回転するシャフトから構成されていることを特徴とする。

発明の効果

【0012】本発明の水中駆動モータアセンブリによれば、モータをケーシングに収容してコイルを防水する従来のモータよりも高い放熱性が得られるためコイルの大容量化が可能となり、コイルの大容量化によるモータの出力体積比向上によってモータの小型化が可能となる。

図面の簡単な説明

【0013】図1本発明の実施例1による水中駆動モータアセンブリの概要を示す縦断面図。

図2図1に示した減速機、モータ、レゾルバの構造の概要を示す縦断面図。

図3実施例2による水中駆動モータアセンブリの概要を示す縦断面図。

図4一般的なモータの概要を示す横断面図。

符号の説明

【0014】水中駆動モータアセンブリ

2 ケーシング
3 減速機
4 モータ
5 レゾルバ
6 Oリング
7 ベアリング
8 電気絶縁材
「2 ケーブル
「2 モータケーブル
「3 レゾルバケーブル
「4 2 3 保護部
2 4 湿度センサ
3 「 減速機シャフト
3 2 太陽歯車
3 3 遊星歯車
3 4 内歯車
3 5 プレート
4 「 モータハウジング
4 2 ロータ
4 3 モータシャフト
4 4 ステータ
4 5 ベアリング
4 6 ブラシ
4 7 コミュテータ
4 8 コイル
5 「 助磁コイル
5 2 検出コイル
「 0 0 モータ
「 0 「 モータハウジング
「 02 ステータ
「 02 a, 「 02 c S 極
「 02 b, 「 02 d N 極
「 03 ロータ
発明を実施するための最良の形態

以下本発明の実施例について図面を参照しながら説明する。

実施例 1

本発明の実施例については、図面を用いて以下説明する。図面は本実施例による水中駆動モータアセンブリの概要を示す絶縁面図である。

水中駆動モータアセンブリは、直列に配列された減速機 3、モータ 4、レゾルバ 5 と、これらを収容するケーシング 2 から構成されている。ケーブル「がケーシング 2 を貫通してケーシング 2 内部へ引き込まれ、ケーブル「はモータケーブル「2 とレゾルバケーブル「3 に分岐し、モータケーブル「2 はモータ 4、レゾルバケーブル「3 はレゾルバ 5 にそれぞれ接続されている。モータケーブル「2 は図示しない電源からモータ 4 へ給電を行う電線、レゾルバケーブル「3 はレゾルバ 5 の出力信号を図示しない出力器へ送る電線であり、ケーブル「はモータケーブル「2 とレゾルバケーブル「3 を束ねて被覆したものである。ケーブル「のケーシング 2 規格部は、例えば樹脂や R T V ゴム（室温加硫型ゴム：room-temperature vulcanized rubber）を用いて形成した保護壁「4 によって防水され固定されている。

減速機 3 からは減速機シャフト「がケーシング 2 を貫通して突出しており、減速機シャフト「はペアリング 7 に保持されている。減速機シャフト「がケーシング 2 規格部は、ケーシング 2 に設けられた O リング 6 によって防水されている。減速機 3 はモータ 4 の出力を低速トルクに変換して減速機シャフト「に出力する。

また、ケーシング 2 と、ケーシング 2 に内蔵される減速機 3、モータ 4、レゾルバ 5 それぞれとの間隙には、電気絶縁材 8 が充填されている。電気絶縁材 8 には、例えばシリコーンを主成分とするゲル状素材、エポキシ樹脂、
ポリイミド樹脂、ポリエーテルエーテルケトン等の芳香族ポリエーテルケトン樹脂のうち少なくとも一つを用いる。

[0020] ブラシ付きのDCモーターを例として、減速機3、モータ4、レゾルバ5の内部構造について、図2を用いて説明する。図2は減速機3、モータ4、レゾルバ5の内部構造の概要を示す縦断面図である。図2においては、減速機3として遊星歯車式減速機が「段組み込まれた例を示している。必要に応じて多段に構成して減速比を上げることも可能である。

[0021] 図2における減速機3は、モータハウジング4「に収容されたモータシャフト43と一体化した太陽歯車32、太陽歯車32を囲縁するように配置された複数の遊星歯車33、さらに遊星歯車33の外周に配置された内歯車34と、遊星歯車33の太陽歯車32まわりの公転運動によって回転するプレート35と、プレート35と一体化した減速機シャフト3「から構成されている。

[0022] モータ4は、モータハウジング4「に収容されたロータ42、ロータ42と一体化したモータシャフト43、ロータ42の外周に配置されたコイル48、モータケーブル「2に接続されたブラシ46と、ブラシ46と接触しコイル48に流す電流の方向を切り替えるためのコムテータ47、コイル48を囲縁するように配置され磁界を生成する永久磁石からなるステータ44から構成されている。コイル48はモータケーブル「2、ブラシ46とコムテータ47を介して図示しない電源の給電を受けて磁界を発生する。前述したように、このコイル48が発生した磁界とステータ44の永久磁石による磁界の相互作用によってロータ42を回転させる。モータシャフト43の一端はレゾルバ5に、他端は減速機3に接続されている。また、モータシャフト43を支持するよう、モータハウジング4「にベアリング45が設けられている。

[0023] レゾルバ5は、モータシャフト43に接続された励磁コイル5「と、励磁コイル5「を囲縁するように配置された検出コイル52から構成されている。検出コイル52にはレゾルバケーブル「3が接続されている。
本実施例の作用について以下説明する。モータケーブル「2よりブラシ46、コムテータ47を介してロータ42のコイル48に給電を行い、ロータ42とモータシャフト43を回転させる。モータシャフト43と一体化した太陽歯車32が回転すると、内歯車34が固定されているため、遊星歯車33は内歯車34および太陽歯車32とがみ合いながら自転し、さらに太陽歯車32のまわりを公転する。遊星歯車33の公転によりブレート35が回転し、ブレート35と一体化した減速機車シャフト3が回転する。その結果、減速機3はモータシャフト43の出力力を低速高トルクに変換して減速機シャフト3にに出力する。この減速機シャフト3は、例えばロボットの駆動部などに取り付けられる。

レゾルバ5は、モータシャフト43の回転によって励磁コイル5が回転すると、検出コイル52が励磁コイル5の回転角に応じた正弦波状の信号を出力する。この信号はレゾルバケーブル「3を介して図示しない出力装置へ出力される。レゾルバ5の出力信号によって、モータシャフト43の回転角を読み取ることができる。

このように水中駆動モータアセンブリ「を駆動させると、主にコイル48の発熱によってモータ4が昇温する。電気絕縁材8は空気よりも伝熱性が高く、ケーシング2内を空気でバージするよりもモータ4の放熱性を向上させることができる。

すなわち、本実施例で説明したDCモータのように流体への浸漬が不可能であるブラシ46やコムテータ47が組み込まれたモータであっても、モータ4をケーシング2内に収め、モータ4とケーシング2の間間に電気絕縁材8を充填した防水構造とすることで、モータ4の放熱性を高め、コイルの大容量化が可能となり水中駆動モータアセンブリ「の体積に対する出力を高めることができるので小型で出力の大きなモータを得ることができる。

また、従来のようにケーシング2内を空気でバージする際に必要となる空気供給用のチューブを不要とすることができる。

また、長期の運用や衝撃などによってOリング6や保護部「4、あるいは
ケーシング 2 の劣化、破損などの原因で水が侵入し得る隙間ができた場合であっても、固体である電気絶縁材 8 によって防水が維持され、健全性を向上することができる。

また、電気絶縁材 8 にタンプステン粉末を混入することにより、耐放射性を向上させることも可能である。

なお、本実施例においてはステータ 4 4 に永久磁石を、ロータ 4 2 にコイル 4 8 を設けた構成として説明したが、ステータ 4 4 にコイルを取り付け、ロータ 4 2 に永久磁石を用いた構造や、ステータ 4 4 とロータ 4 2 の双方ともコイルを取り付けて磁界を発生させる構造、またロータ 4 2 の内側にステータ 4 4 を配置して外側のロータ 4 2 が回転する構造など、種々の異なった構造を有するモータであっても同様の効果を奏する。

実施例 2

本発明の実施例 2 について、図 3 を用いて以下説明する。図 3 は本実施例による水中駆動モータアセンブリの概要を示す縦断面図である。なお、実施例 2 と同一構成には同一の符号を付し、重複する説明は省略する。

本実施例においては、湿度センサ 2 4 をケーシング 2 の内側に設置している。湿度センサ 2 4 でケーシング 2 内の湿度を監視することにより、例えば仮設の 4 からケーシング 2 内へ徐々に浸水しつつある状況において、浸水流れてモータ 4 やレゾルバ 5 に達して絶縁破壊が起こるよりも先に浸水を察知することが可能となる。また、湿度センサ 2 4 の配置によって浸水箇所を特定することが可能である。例えば、保護部 4 のようにケーシング 2 を貫通して防水処理を施した部位が複数あれば、それに伴せて湿度センサ 2 4 を複数配置することによって浸水箇所の特定が可能である。
請求の範囲

[1] ケーシングと、
このケーシングに収容されたモータと、
このモータと前記ケーシングの間に充填され空気よりも熱伝導率の高い電気絶縁物質とを備え、
前記モータは、ステータ、このステータの磁界との相互作用によって回転するロータ、前記ステータと前記ロータのうち少なくとも一方を磁化するコイル、前記ロータの回転によって回転するシャフトを有することを特徴とする水中駆動モータアセンブリ。

[2] 前記モータは、前記ロータに取り付けられ前記ロータを磁化するコイルと、前記ロータの回転を相に応じて前記コイルへの通電電流の向きを切り替えられるブラシおよびコムテータとを備え、
前記ステータは永久磁石であることを特徴とする請求の範囲「記載の水中駆動モータアセンブリ。

[3] 前記モータと直列に配列され前記ケーシングに収容された回転相検出手段を備えることを特徴とする請求の範囲「または2記載の水中駆動モータアセンブリ。

[4] 前記電気絶縁物質はシリコーンを主成分とするゲル状素材、エポキシ樹脂、芳香族ポリエーテルケトン樹脂、ポリイミド樹脂のうち少なくともいずれかひとつを含有することを特徴とする請求の範囲「乃至3のうち何れか「項記載の水中駆動モータアセンブリ。

[5] 前記電気絶縁物質はタングステン粉末を含有することを特徴とする請求の範囲「乃至4のうち何れか「項記載の水中駆動モータアセンブリ。

[6] 前記ケーシングに内設された湿度センサを備えることを特徴とする請求の範囲「乃至5の何れか「項記載の水中駆動モータアセンブリ。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H02KS/10 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H02K5/10

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996
Jitsuyo Shinan Toroku Koho 1996-2009
Kokai Jitsuyo Shinan Koho 1971-2009
Toroku Jitsuyo Shinan Koho 1994-2009

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2008-167609 A (Mitsubishi Motors Corp.), 17 July, 2008 (17.07.08), Par. No. [0037] ; Fig. 3 (Family: none)</td>
<td>1-6</td>
</tr>
<tr>
<td>Y</td>
<td>Microfilm of the specification and drawings annexed to the request of Japanese Utility Model Application No. 163887/1983 (Laid-open No. 73352/1985) (Mitsubishi Electric Corp.), 23 May, 1985 (23.05.85) , Fig. 1 (Family: none)</td>
<td>1-6</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 03 February, 2009 (03.02.09)

Date of mailing of the international search report 10 February, 2009 (10.02.09)

Name and mailing address of the ISA/ Japanese Patent Office

Facsimile No. A thonzed officer

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2002-345817 A (Olympus Optical Co., Ltd.), 03 December, 2002 (03.12.02), Par. No. [0034] (Family: none)</td>
<td>5</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2004-297892 A (Ebara Corp.), 21 October, 2004 (21.10.04), Par. No. [0084] (Family: none)</td>
<td>6</td>
</tr>
</tbody>
</table>
国際調査報告
国際出願番号 PCT/JP2009/000017

A. 発明の属する分野の分類（国際特許分類（IPC））
IntCl H02K5/10(2006.01)

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
IntCl H02K5/10

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1922－1996
日本国公開実用新案公報 1971－2009
日本国実用新案登録公報 1996－2009
日本国登録実用新案公報 1994－2009

国際調査で使用した電子データベース（データベースの名称、調査に使用した利用）

C. 関連すると認められる文献
引用文献のカテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 関連する 請求の範囲の番号
Y JP 2008-167609 A (三菱自動車工業株式会社) 2008.07.17, 段落 [O 037], 図3（ファミリーなし） 1-6
Y 日本国実用新案登録 出願58-163887 号 日本国実用新案登録 出願公開 60-73452 号 の願書に添付した明細書及び図面の内容を撮影したマ イクロフィルム (三菱電機株式会社) 1985.05.23, 第1図（ファミリーなし） 1-6

*引用文献のカテゴリー
「A」 特に関連ある文献ではなく、一般的技術水準を示すもの
「B」 国際出願前の出願または特許であるが、国際出願日 以後に公表されたもの
「L」 優先権主張に疑義を含むする文献又は他の文献の 発行日若しくは他の特別な理由を確立するために引用す る文献（理由を付す）
「O」 頃頭による開示、使用、展示等に言及する文献
「R」 国際出願 日前で、かつ優先権の主張の基礎となる出願
「P」 国際出願 日前の他に公表された文献

IT 国際出願 日又は優先 日後出願された文献であって 出願が明示的でないとき、発明が発表された文 件の理解のために引用するもの
IX 特に関連ある文献であって、当該文献のみで発明 の新規性又は進歩性が認められるもの
UY 特に関連ある文献であって、当該文献又は他の 文献との比較により、当該文献の新規性又は進歩性が 認められるもの

r&j 同一パテントファミリー文献

国際調査を完了した日 03.02.2009 国際調査報告の発送日 10.02.2009

国際調査機関の名称及びあて先
日本国特許庁 1isa 5JP
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員） 3V 3740
安食 泰秀
電話番号 03-3581-1101 内線3358

様式 PCT/ISA/210 (第2ページ) （2007年4月）
<table>
<thead>
<tr>
<th>号</th>
<th>引用文献の内容</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2004-297892 A（株式会社荏原製作所）2004.10.21、段落[0084]（ファミリーなし）</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>