5/099340 A2 | IV VY00 00 A O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

27 October 2005 (27.10.2005)

(10) International Publication Number

WO 2005/099340 A2

(51) International Patent Classification:

(21) International Application Number:

Not classified

PCT/1B2005/001623

(22) International Filing Date:

18 April 2005 (18.04.2005)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/562,982 19 April 2004 (19.04.2004) US
60/562,983 19 April 2004 (19.04.2004) US
60/564,579 23 April 2004 (23.04.2004) US
(71) Applicant (for all designated States except US): SE-

CUREWAVE S.A. [LU/LU]J; 26 Place de 1a Gare, L-1616

Luxembourg (LU).

(72) Inventor; and

(75) Inventor/Applicant (for US only): USOV, Viacheslav
[RU/L.U]J; 18A rue de la Chapelle, L.-8017 Strassen (LU).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(84)

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,
TJ,TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU,
ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: ON-LINE CENTRALIZED AND LOCAL AUTHORIZATION OF EXECUTABLE FILES

& (57) Abstract: A system and method for controlling the execution of executable files. The executables are identified by either
& a cryptographic digest or a digital certificate. The crytographic digest is computed from the binary image of the executable. An
executable that is attempting to execute is intercepted by a protection module that consults a database of stored rules over a secure
channel to determine whether or not the executable can be identified as a permitted executable and whether or not it has permission
to execute on a particular computer system under certain specified conditions. If a stored permission is available, it is used to control
the execution. Otherwise, the user is consulted for permission.

=

10

15

20

25

WO 2005/099340 PCT/IB2005/001623

ON-LINE CENTRALIZED AND LOCAL AUTHORIZATION
OF EXECUTABLE FILES

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. Provisional Application, Serial No. 60/562,983,
filed April 19, 2004, and titled “A Generic Framework for Runtime Interception and
Execution Control of Interpreted Languages.”

This application is related to and claims priority to U.S. Provisional Application Serial
No. 60/562,982, filed April 19, 2004, and titled “ONLINE CENTRALIZED AND LOCAL
AUTHORIZATION OF EXECUTABLE FILES.”

This application is related to U.S. Provisional Application Serial No. 60/564,579, filed
April 23, 2004, titled “TRANSPARENT ENCRYPTION AND ACCESS CONTROL FOR MASS
STORAGE DEVICES.”

FIELD OF THE INVENTION

The invention extends the security framework of the contemporary computer
operating systems. It relies on the operating system to provide system services to load and/or

execute standalone executable modules.

DESCRIPTION OF THE RELATED ART

Cryptographic digests, public and symmetric key cryptography, and digital
certificates are used extensively in order to identify executables and secure communication
links between the server and the protection module. A number of algorithms (SHA-1 for
digests and certificates, RSA public key cryptography for certificates and secure
communications, AES for secure communications) are known to persons skilled in the art and

are employed by the system.

A technique for intercepting system services on the MS Windows NT family of
operating systems is used. The technique involves overwriting ("patching") the system

service table. The technique is known to persons skilled in the art.

10

15

20

25

30

WO 2005/099340 PCT/IB2005/001623

The prior art has employed black-list systems, execution pattern systems, purely
white-list systems, white-list systems in combination with black-list systems and execution
pattern systems, and systems with cryptographic digests, digital certificates and fixed priority

rules. Fach of these is discussed in turn.

BLACK-LIST SYSTEMS

These systems check whether an executable is previously known as harmful. Systems
follow the black-list approach when a knowingly harmful executable or an executable that
appears to be harmful is blocked or the user is asked for a decision. Such a system typically
results in a quick spread of harmful executables that the systems are not aware of. Other

systerms that follow a black-list approach often fail to detect harmful executables.

Systems that follow a black-list approach also rely on a vendor-supplied update,
which leaves an organization essentially unprotected and business process interrupted for a
period of time. Even after such an update is delivered, certain harmful self-modified
executables may not be disabled. These systems require continual updates by their vendors or
systerm administrators, and are unable to block previously unknown harmful executables until

after these executables have caused some harm (possibly in another organization).

EXECUTION PATTERN SYSTEMS

This type of system monitors the behavior of an executable and if the behavior
correlates with that of previously known harmful executables, the executable is considered
harmful. These systems may also require updates from their vendors and are unable to block
all the harmful executables. They may also generate a significant number of false alarms and

may still miss harmful executables while generating a large.number of false positives.

BLACK-LIST COMBINED WITH EXECUTION PATTERN SYSTEMS

These systems still have the same problems as those above. Black-list and execution-
pattern systems are greatly inferior to this system in terms of security. In principle, it might
be possible to combine some of the competing products with either another one and/or

custorn software, but this results in a system that is very difficult to implement and support.

WHITE-LIST SYSTEMS
These systems are very secure, but are not flexible, because the users may need to run
unknown executables which are not harmful. With purely white list systems, this requires a

prior authorization by a system administrator. There are a number of products that implement

10

15

20

25

WO 2005/099340 PCT/IB2005/001623

the v;hiteglist"épf)roach; hokaevef, fﬁey do not support at least one of the following: local
authorization, spread monitoring and flexible rules. With the white list approach, any
unknown executable is blocked, or the user, if trusted, is asked for a decision - the latter lets
the user disallow an executable even when it is executed automatically, without the user's
prior consent. Systems that follow a strictly white-list approach, while very secure, are

inflexible.

WHITE-LIST COMBINED WITH BLACK-LIST SYSTEMS COMBINED WITH EXECUTION PATTERN
SYSTEMS

In these systems, certain users or computers are exempt from white-list checking, and
only black-list in combination with execution pattern checking applies. While this does
reduce the risk significantly, the exempt users face the same risks as those in non-white-list

systems. even the systems that follow a combined approach still exhibit these deficiencies.

Some sy/stems have employed cryptographic digests and digital certificates at the time
when an executable is introduced to the system - but they are unable to deal with the
executables that are introduced in a way they cannot handle, or with the executables
introduced when these systems were inactive. Other systems have used cryptographic digests
and digital sign atures at the time of execution, but not via intercepting system services, which

makes it possible to circumvent their protection.

Yet still other systems implement a fixed priority rule scheme, or are not scoped, or

do not support flexible rule targets.

BRIEF SUMM.ARY OF THE INVENTION

Thié system adds local authorization to the white-list combined with black-list
approach; local authorization may only be enabled for a selected number of trusted users. The
other users work in a very secure environment. The trusted users are always able to disallow
an undesirable executable, even if it is started automatically by an insecure or compromised
application, Sirxce such locally authorized executables are the only potentially harmful
executables, spread of harmful executables can be detected reliably and in a very straight-

forward way.

10

15

20

25

30

WO 2005/099340 PCT/IB2005/001623

The automatic security escalation, i.e., switching to the white-list-only mode for all
the users immediately-, limits a detected spread before it may affect the organization
significantly; this is not possible with black-list or execution-pattern systems, because there is

no naturally defined s ecure environment.

SIGNIFICANT FEATURES OF THE PRESENT INVENTION INCLUDE:
1. The usage of cryptographic digests and digital certificates at the time of execution,

by way of intercepting the operating system's load and execute services.
2. Local authorization of unknown executables.

3. Hierarchical and scoped rules with intra-scope priorities and inter-scope priority

overrides, with hetero geneous rule objects and highly granular targets.

4. Spread monitoring, where spread is defined as a growing number of users
authorizing an executable locally. The present invention, which combines a white-1ist
approach with local authorization, guarantees that the o\nly harmful executables that may be
executed at protected computers are those locally authorized. This, in turn, guarantees that all
potentially harmful excecutables are detected and that the number of false positives is reduced

dramatically.

5. Security escalation upon detecting a spread. As soon as a spread is detected, the
system automatically transitions into a white-list-only mode, which immediately prevents all

unknown executables from being executed.

An embodimemt of the present invention is a method of controlling the execution of a
executable file on a computer system. The method includes the steps of (i) intercepting a
system service during an attempted execution of the executable file, (ii) examining an ordered
set of authorization rules to determine whether it is permissible to execute the executable file,
the ordered set of rule s describing allowed targets, objects, and schedules, wherein allowed
targets includes a list of allowed users or computer systems, allowed objects includes a list of
permitted executables , each uniquely identifiable, and whether user authorization is
permitted, and allowed schedules includes a list of conditions under which an execution is
allowed, (iii) applying; a stored permission to determine whether or not to execute the file, if
there is a rule in the set with a matching target, object, and applicable schedule, (iv)

determining whether or not there is a local authorization rule, a matching target and

10

15

20

25

WO 2005/099340 PCT/IB2005/001623

applicable schedule, if there is no rule with a matching target, object and applicable schedule,
(v) applying a recorded decision to determine whether or not to execute the file, if there is a
local authorization rule, a matching target and applicable schedule and there is a record of the
current executable, (vi) obtaining input from the user to determine whether or not to execute
the file, and storing the input in the local authorization rule for the executable, if there is mo
recorded decision, and (vii) invoking the intercepted service, if there is permission to execute
the file.

Another embodiment of the present invention is a system for controlling the execution
of an executable file. The system includes a database system, an administrative console, a
user notification component, a sexver, and a protection module. The database system is
arranged for storing and retrievin g execution rules. The administrative console is configured
for use by a system administrator to view and modify the execution rules. The user
notification component is configuared for receiving user authorization requests and sending
user replies to the requests. The server is configured for retrieving rules stored in the
database system, and is in operative communication with the administrative console to supply
the rules to and receive rules from the administrative console. The protection module is in
operative communication with the server over a secure channel to obtain stored execution
rules and in operative communication with the user notification component to send user
authorization requests and to receive user replies. The protection module is configured to
intercept services provided by an operating system for executing executable files and to apply

the execution rules to an intercepted executable file.

OBJECTS OF THE INVENTION

One object of the present invention is to control which executables may be loaded and
executed in a centralized (organization-wide) way, with an option of delegating the decision

to a trusted user locally.

Another object is to keep track of the execution attempts, successful and/or

unsuccessful.

Yet another object is to monitor the spread of locally authorized executables

throughout an organization.

10

15

WO 2005/099340 PCT/IB2005/001623

Yet another object 1s to perform a corrective action automatically whenever a spread

is detected.

Advantages over the prior systems include the use of a highly flexible set of execution

rules, and the use of interception of system services.

The use of a highly flexible set of execution rules is not possible with black-list
systems, and is implemented only to a limited degree in most white-list systems. This enables
system administrators to implement user-productivity and licensing solutions (e.g., to
authorize only a necessary minimum of executables for most users, and authorize certain
executables only for the users that require them). Because user and computer groups are

supported, system administrators can reuse the already established organizational structure.

The use of interception of system services is the most secure way of implementing
execution rules, instead of intercepting executables above the level of system services (shell

level, usermode abstractiona layers).

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the present invention will become
better understood with regard to the following description, appended claims, and
accompanying drawings where:

FIG. 1A is a system block diagram of the present invention;

FIG. 1B is a diagraxm of typical computer system; and

FIG. 2 is a flow chart showing a process in accordance with an embodiment of the

present invention.

10

15

20

25

WO 2005/099340 PCT/IB2005/001623

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1A, the system 10 includes five standalone software components: a
database system 20, a server 22, an administrative console 24, a protection module 26, and a
user notification component 28. The software components execute on an exemplary computer
system, shown in FIG. 1B, that includes a processor 12, a memory 14, a mass storage
subsystem 16, 19, a network subsystem 15, and user-oriented I/O 18, interconnected by a bus
17. The memory 14 and/or mass storage sy stem 16, 19 store the instructions of the software

components used for execution by the processor 12.

The database system 20 stores all thie execution rules in a centralized way. The

database system may be supplied by a third party.

The server 22 retrieves the rules stored in the database system 20 and transforms them
to a form that is secure and most convenient to the protected client. The server receives
execution logs from the protected client and transforms them to form most suitable for the
database storage. The server 22 supplies to and accepts execution rules from the
administrative console 24 and hosts the spread monitor 30. The server 22 contains a module
32 for communicating with other servers, if an organization employs multiple servers (which

is required when a significant number of protected clients are installed).

The administrative console 24 is a set of instruments that the system administrators
uses to view and modify the execution rules, and view execution logs. The administrative

console 24 communicates with the server 22 to perform these tasks.

The protection module 26 is a highly privileged module installed at the computers
being protected. The module intercepts the services that the operating system provides to load
and execute executable files. When a service is intercepted, the module 26 applies the
execution rules. This module communicates with the server 22 over a secure (tamper-proof)
channel 34 to receive the execution rules and to forward the execution logs. It also interacts
with the user notification component 28 to perform local authorization and to notify the user
of denied execution attempts. It stores the list 36 of locally authorized executables (because
the list is maintained by a privileged component, it can be protected from tampering by

normal executables).

10

15

20

25

30

WO 2005/099340 PCT/IB2005/001623

The user notification component 28 1is a normal application that executes in the
context of a user. It receives local authorization requests from the protection module 26 and
displays them to the user; when the user replies, it sends the reply to the protection module

26. It also receives and displays user notifications whenever an executable is denied.

To control loading and execution of executables in a centralized way, executables
must be identifiable. The executables are identified by means of cryptographic digests (an
industry standard cryptographic digest is computed from a full or partial binary image of an
executable), their filesystem or network locations, digital certificates (digital certificates are
issued by the vendors of the executables; any executable possessing a certificate by a

particular vendor are associated with that vendor), etc; this list is not exhaustive.

The identification data are organized as a hierarchical set of rules. Each rule describes
which computers and/or users it applies to; it may apply to computer and user groups, if
supported by the operating system. This is known as the "rule targets". Each rule describes
the executables it applies to, listing their di gests, filesystem locations, digital certificates, etc.
This is known as the "rule object". Special rule objects may specify that local authorization is
to be performed, or that all executables be allowed (useful if certain targets are completely
trusted). Each rule may specify additional conditions of rule applicability, such as date or
time, number of allowed executions, etc. This is known as the "rule schedules". Each rule
describes the organizational unit (e.g., a department, a site, an office, etc) it applies to, if
organizational units are supported by the op erating system. This is known as the "rule scope". If

organizational units are not supported, the global scope is assumed.

The rules are ordered according to their scope and intra-scope priority (for rules with

the same scope), and inter-scope overrides.

The rules are stored at a well-knowmn location within an organization, where they are
manipulated by designated administrators, and the changes are propagated to the participating

computers.

Referring to FIG. 2, the steps for controlling the execution of executables are as
follows. When an execution attempt takes place, the relevant system services are intercepted,
in step 100, by a privileged protection module, which examines the rules. The rules are
examined in order, in step 102, as describecl above. If a rule with a matching object (different

than local authorization), a matching target and an applicable schedule is found, as

10

15

20

25

30

WO 2005/099340 PCT/IB2005/001623

determined in step 104, the permission associated with the target allows or denies the
executable, in step 106. If a local authorization rule with a matching target and an applicable
schedule is found, as determined in step 108, then:

1. If the local authorization data do not contain a record on the current
executable, as determined in step 1 10, the user is prompted with details on the executable.
The user allows or denies the executable, in step 112, and, optionally, instructs the system to
store his decision permanently in the local authorization data, in step 112.

2. If the local authorization data do contain a record on the current
executable (identifiable by a cryptographic digest), the recorded decision is applied, in step
114.

If the executable is authorized during the rule search sequence, the original system

service is invoked, in step 116.

If the executable is not authorized during the search sequence, or is explicitly denied
during the search sequence, the original system service is not invoked, and an appropriate

failure status is returned to the user.

LOAD AND EXECUTION AUDIT

Each rule may have special audit targets. When a rule allows or denies an execution
attempt, and if the rule has a matching audit target, the execution attempt and the system
decision are recorded in step 124. I'f a rule that has allowed or denied an execution attempt, in
step 120, does not have a matching audit target, as determined in step 122, the rules are
examined again (in the same order) , in step 126, for matching audit targets. A rule may
contain only audit targets; such a rule is ignored for execution control, but is considered for
execution audit. The audit trails are transferred to a centralized audit storage in step 128,
which provides means to retrieve thie audit data based on a number of search criteria (where
the execution attempt took place, ona behalf of which user, involving which executable, when,

etc).

To monitor the spread of locally authorized executables, an agent is provided that
periodically accesses the centralized audit data storage and checks to determine whether any
particular executable has been locally authorized by a number of distinct users that exceeds a
threshold established by system administrators. If such a condition arises, an alert is

generated.

10

15

20

25

WO 2005/099340 PCT/IB2005/001623

When an alert is generated as described above, the system may automatically perform
a corrective action if configured by system administrators. It may disable local authorization
rules so as to prevent further spread of the executable throughout the organization. The
system may also carry out a custom action, e.g., running a job that removes the offending

executable from the clients.

Some operating systexms have built-in capabilities for delivering a centralized and
hierarchical set of data to computers within an organization. With these operating systems,
the database system may only” be required to keep the processed execution logs, and the
server is required to process the execution logs and host the spread monitor. Likewise, the
administrative console communicate directly with the system supplied facilities to view and
manipulate the execution rules, and communicate with the server to query the execution logs.
The protection module, in turn, receives the execution rules directly from the operating

system.

In one implementation, for users or computers in the white-list-only mode (taking into
account the scope and priority of execution rules), any unauthorized executable is prevented
from loading and executing. FFor users or computers in the local authorization mode, an
attempt to load and execute am executable that is not authorized centrally or locally, the user
is requested to allow or deny the executable. Centrally unauthorized executables that have
been locally authorized are allowed to execute without user intervention. The spread monitor
generates alerts whenever an executable is authorized locally by a number of users exceeding
a threshold set by system admuinistrators; if security escalation is configured for spread alerts,

the protected computers are automatically requested to switch into the white-list-only mode.

Although the present invention has been described in considerable detail with
reference to certain preferred ~versions thereof, other versions are possible. Therefore, the
spirit and scope of the append.ed claims should not be limited to the description of the

preferred versions contained herein. .

10

10

15

20

25

30

WO 2005/099340 PCT/IB2005/001623

CLAIMS

What is claimed is:

1. A method of controlling the execution of a executable file on a computer system, the
method comprising:

intercepting a system service during an attempted execution of the executable file;

examining an ordered set of authorization rules to determine whether it is permissible
to execute the executable file, the ordered set of rules describing allowed targets, objects, and
schedules, wherein allowed targets includes a list of allowed users or computer systems,
allowed objects includes a list of permitted executables, each uniquely identifiable, and
whether uiser authorization is permitted, and allowed schedules includes a list of conditions
under whiich an execution is allowed,

applying a stored permission to determine whether or not to execute the file, if there is
a rule in the set with a matching target, object, and applicable schedule;

determining whether or not there is a local authorization rule, a matching target and
applicable schedule, if there is no rule with a matching target, object and applicable schedule;

applying a recorded decision to determine whether or not to execute the file, if there is
a local authorization rule, a matching target and applicable schedule and there is a record of
the currenit executable; and

obtaining input from the user to determine whether or not to execute the file, and
storing the input in the local authorization rule for the executable, if there is no recorded
decision; and

in-voking the intercepted service, if there is permission to execute the file.

2. A meth.od of controlling execution as recited in claim 1, wherein each executable in the list

of permitted executables is identifiable by means of a cryptographic digest.

3. A meth.od of controlling execution as recited in claim 2, wherein the cryptographic digest

is computed from the binary image of the executable.

4. A meth.od of controlling execution as recited in claim 3, where in the binary image is a full

binary image.

11

10

15

20

25

30

WO 2005/099340 PCT/IB2005/001623

5. A method of controlling execution as recited in claim 3, where in the binary image is a

partial binary image.

6. A method of controlling execution as recited in claim 1, wherein the list of permitted

executables is identifiable by means of a digital certificate.

7. A method of controlling execution as recited in claim 1, further comprising denying the

execution of the executable file, if there is no permission to execute the file.

8. A method of controlling execution as recited in claim 7,
wherein the ordered set of rules includes, for each rule, a special audit target; and
further comprising determining whether a rule that denied execution of the executable
has a matching special audit target, and if the rule has a matching special audit target,

recording the attempted execution and the denial in an execution audit trail..

9. A method of controlling execution as recited in claim 8, further comprising, if the rule does
not have a matching special audit target, examining the set of rules again for matching audit

targets.

10. A method of controlling execution as recited in claim 1,
wherein the ordered set of rules includes, for each rule, a special audit target; and
further comprising determining whether a rule that permitted execution of the
executable has a matching special audit target, and if the rule has a matching special audit
target, recording the attempted execution and the permission to execute in an execution audit

trail.

11. A method of controlling execution as recited in claim 10, further comprising if the rule
does not have a matching special audit target, examining the set of rules again for matching

audit targets.

12. A system for controlling the execution of an executable file, the system comprising:
a database system for storing and retrieving execution rules;
an admuinistrative console for use by a system administrator to view and modify the

execution rules;

12

10

15

20

25

30

WO 2005/099340 PCT/IB2005/001623

a} user notification component for receiving user authorization requests and sending
user replies to the requests;

a server for retrieving rules stored in the database system, the server in operative
communication with the administrative console to supply the rules to and receive rules from
the administrative console; and

a protection module in operative communication with the server over a secure channel
to obtain stored execution rules and in operative communication with the user notification
component to send user authorization requests and to receive user replies, the protection
module configured to intercept services provided by an operating system for executing

executable files and to apply the execution rules to an intercepted executable file.

13. A system for controlling the execution of an executable file as recited in claim 12,
wherein execution rules stored in the database include an oxrdered set of rules
describing allowed targets, objects, and schedules,
wherein allowed targets includes a list of allowed users or computer systems, allowed
objects includes a list of permitted executables, each uniquely identifiable, and whether user
authorization is permitted, and allowed schedules includes a list of conditions under which an

execution is allowed.

14. A method of controlling execution as recited in claim 13, wherein each executable in the

list of permyitted executables is identifiable by means of a cryptographic digest.

15. A method of controlling execution as recited in claim 14, wherein the cryptographic

digest is computed from the binary image of the executable.

16. A method of controlling execution as recited in claim 15, wherein the binary image is a

full binary image.

17. A method of controlling execution as recited in claim 15, wherein the binary image is a

partial binaxy image.

18. A method of controlling execution as recited in claim 13, wherein the list of permitted

executables is identifiable by means of a digital certificate.

13

WO 2005/099340 PCT/IB2005/001623

19. A method of controlling execution as recited in claim 12, further comprising a centralized
audit storage system for storing audit data when execution rules applied to an intercepted

executable file have special audit targets indicating that the permission or denial of execution

should be recorded.

14

PCT/IB2005/001623

WO 2005/099340

VYl "Old

A~ TN

sboj
uonhoaxe

jeseqelep |«
abelo]s oInl

Ajdai Josn

1/4

A

8josu0d A 7
sAlessiuWpe <
A 4
A
lllllllll a jusuodwoo
! 4T ~| uoneoynou Josn
|
_ y
|
|
m sysenbal
! uofjezuoyine
m 290
1
ddv |
. N
+e
Jojuow _|L'||_/
> e npouw uonoajoid
pesids | OMES ZIIIIKQ p 108}
0% " [suueyo -
jooud-jaduwie} I8
A 4
e s|npowl
SUOREOIUNWILIOD $9|(eInoaxe
Q5—~| pezuoyne

A

JOAIDS

Ajjeooj o 31|

80IN3S
a|geINoaXe Peo

PCT/IB2005/001623

dl Old

S

O/ MIoMISN

2]

O/13s1d

pieoqfAey

7 B

A J

weysAsans O/l

paads
MO pue 4| 1asn

A\

2/4

WO 2005/099340

~ /e
ot Aowsy N\O\ Ndd

WO 2005/099340

A

PCT/IB2005/001623

intercept the system service

100

A 4

examine the rules in a specified order

{03

matching
object, target

06

rule, matching
target, and
applicable

Y

current
cutab

No
v [

[

Yes

user give or denies permission
store answer in local authorization data

/:M

apply recorded decision

A

///é

A 4

invoke original service if executable is authorized |«

A 4

end

3/4

FIG. 2A

WO 2005/099340 PCT/IB2005/001623
(start)
A

allow or deny execution attempt L~ 20

No tching /2.
audit
rget’

Yes // L7

v
record execution attempt

‘/[gé

L» examine rules again for matching audit targets

A 4

transfer audit trail to audit storage s

end

FIG. 2B

4/4

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

