Grease Removing Method and Device

Title: GREASE REMOVING METHOD AND DEVICE

Abstract: The invention concerns a grease removing method and device, in particular for removing grease from surfaces covered with lanolin. The inventive method comprises a step which consists in cleaning the surface to be degreased with a cleaning solvent and a step which consists in rinsing the cleaned surface with a rinsing solvent, said cleaning solvent comprising a solvent A including dipropylene glycol monoethyl ether, and having a boiling point or a flash point higher than 70°C, and said rinsing solvent comprising a solvent B including 1,1,1,2,3,4,5,5,5-decafluoropentane, and having a boiling point lower than 70°C and a surface tension less than 30 mN/m.

Abrégé: La présente invention se rapporte à un procédé et à un dispositif de dégraissage. Elle permet notamment de dégraissier des surfaces recouvertes de lanoline. Le procédé de l’invention comprend une étape de nettoyage de la surface à dégraissier avec un solvent de nettoyage et une étape de rinçage de la surface nettoyée avec un solvent de rinçage, ledit solvent de nettoyage comprenant un solvent A comprenant du dipropylène glycol monoéthyle éther, et ayant un point d’ébullition supérieur à 100°C et ne possédant pas de point éclair ou un point éclair supérieur à 70°C, et ledit solvent de rinçage comprenant un solvent B comprenant du 1,1,1,2,3,4,5,5,5-decafluoropentane, et ayant un point d’ébullition inférieur à 70°C et une tension superficielle inférieure à 30 mN/m.
PROCEDE ET DISPOSITIF DE DEGRAISSAGE

DESCRIPTION

5 Domaine technique de l’invention
La présente invention se rapporte à un procédé et à un dispositif de dégraissage.
Elle permet de dégraisser des surfaces recouvertes de lanoline ou d’autres graisses.

10 Art antérieur
Les chlorofluorocarbones ont été largement utilisés en tant que produits de dégraissage. Parmi ceux-ci, le CFC113 a été utilisé en raison de son fort pouvoir dégraissant en particulier vis-à-vis de graisses animales telles que la lanoline.
Cependant leur production et leur commercialisation sont interdites depuis 1995 car ils détruisent la couche d’ozone.

15 De nombreux produits et procédés physiques et chimiques ont été développés depuis pour tenter de remplacer les fluorocarbones et notamment le CFC113. Certains procédés physiques font appel à des techniques d’abrasion et de laser.

20 Certains procédés chimiques font appel à des solutions provisoires pour tenter de remplacer le CFC113, en mettant par exemple en oeuvre un solvant organique unique de type hydrofluorocarbone, en particulier du HCFC-141b (marque de commerce). Dans ces solvants des atomes de chlore sont remplacés par des atomes d’hydrogène afin de diminuer leur durée de vie.
Cependant, ils restent quand même néfastes pour la couche d’ozone, et leur interdiction est programmée pour 2004.

D’autres procédés chimiques font appel à des procédés aqueux ou semi-aqueux, à des procédés monosolvant à froid ou à chaud, et à des procédés co-solvant.

Les procédés aqueux ou semi-aqueux associent une phase de nettoyage réalisée avec des solutions tensioactives pour les procédés aqueux, ou avec un solvant organique pour les procédés semi-aqueux, et une phase de rinçage à l’eau. La technique est sensiblement différente de celle des procédés utilisant les fluorocarbones.

Le procédé monosolvant à froid met en œuvre des solvants organiques d’origine pétrolière qui possèdent des points éclairs bas. L’utilisation de ce type de produit demande cependant des contraintes de sécurité supplémentaires par rapport aux autres procédés.

Outre les inconvénients précités, il n’existe pas à l’heure actuelle de solvants présentant des caractéristiques similaires à celles du CFC113, c’est à dire un point d’ébullition faible, une tension superficielle basse, un fort pouvoir dégraissant vis-à-vis de graisses telles que la lanoline, une absence de point éclair, et ne présentant pas de danger pour la couche d’ozone.

Enfin, il n’existe pas de procédé de dégraissage permettant d’atteindre l’efficacité de dégraissage obtenue avec les procédés utilisant le CFC113.
Exposé de l'invention

La présente invention fournit précisément un procédé et un dispositif de dégraissage palliant les inconvénients précités, sans danger pour la couche d’ozone, et permettant d’atteindre l’efficacité de dégraissage obtenue avec les procédés utilisant le CFC113.

Le procédé de la présente invention se caractérise notamment en ce qu’il comprend une étape de nettoyage de la surface à dégraissier avec un solvant de nettoyage et une étape de rinçage de la surface nettoyée avec un solvant de rinçage, ledit solvant de nettoyage comprenant un solvant A ayant un point d'ébullition supérieur à 100°C et ne possédant pas de point éclair ou un point éclair supérieur à 70°C, ledit solvant de rinçage comprenant un solvant B ayant un point d'ébullition inférieur à 70°C et une tension superficielle inférieure à 30mN/m.

Le procédé de l'invention est un procédé co-

Il peut être réalisé à froid ou à chaud, de préférence à chaud, par exemple de la température ambiante (20 à 25°C) jusqu'à environ 10°C en dessous du point d'ébullition du solvant de nettoyage.

Selon l'invention, le nettoyage de la surface avec le solvant de nettoyage peut être réalisé avantageusement en présence d'ultrasons.

Selon l'invention, le solvant A peut être choisi parmi un alcool, une cétone, un éster, un diester, un éther, un éther glycol, ou un mélange de ceux-ci, et le solvant B peut être un solvant choisi dans les familles
des hydrofluoroéthers, des hydrofluorocarbones, ou des alcanes perfluorés, ou un mélange de solvants choisis dans ces familles.

Selon une première variante de la présente invention le solvant de nettoyage peut être constitué de solvant A pur, et le solvant de rinçage peut être constitué de solvant B pur. En d'autres termes, les solvants A et B peuvent être utilisés séparés et purs.

Selon une deuxième variante de la présente invention, le solvant de nettoyage comprenant le solvant A peut comprendre en outre du solvant de rinçage comprenant le solvant B. En d'autres termes, le solvant de nettoyage peut comprendre du solvant A et du solvant B. Ainsi, le solvant A peut être utilisé mélangé à du solvant B et le solvant B peut être utilisé pur.

Selon l'invention, le solvant A peut être par exemple du dipropylène glycol monométhyle éther (DPM), et le solvant B peut être par exemple du 1,1,1,2,3,4,4,5,5,5-décafluoropentane.

Le DPM est un solvant organique de formule chimique brute C₇H₁₅O₃ à haut point d'ébullition, 188°C, présentant un excellent pouvoir dégraissant, même vis-à-vis de la lanoline, ces deux produits étant miscibles en toutes proportions.

Le 1,1,1,2,3,4,4,5,5,5-décafluoropentane, de formule brute C₅H₂F₁₀, possède un point d'ébullition à 55°C et une tension superficielle faible, de 14,1 mN/m. Son pouvoir de destruction de l'ozone est nul. Ce produit est commercialisé notamment par la société Du Pont de Nemours sous la marque de commerce VERTREL XF.
Dans le cas où le solvant de nettoyage est un mélange du solvant A et du solvant B, les proportions peuvent être par exemple de 30 à 95% en volume de A dans le mélange, de préférence de 60 à 80% en volume, le reste étant du solvant B.

La présente invention se rapporte également à l'utilisation des solvants A et B définis ci-dessus, par exemple dans les conditions décrites ci-dessus, et à l'utilisation d'un dispositif pour la mise en œuvre du procédé de l'invention. Le dispositif est décrit dans les exemples ci-dessous.

La présente invention consiste donc notamment à associer deux solvants organiques particuliers, de nettoyage et de rinçage qui, mis en œuvre par exemple dans un procédé co-solvant, conduisent à un dégraissage de qualité équivalente ou supérieure à celle obtenue avec le CFC 113 de l'art antérieur sans nuire à la couche d'ozone. Elle est applicable au dégraissage de tous types de graisses ou d'huiles minérales, végétales, animales ou synthétiques, par exemple de la lanoline.

D'autres caractéristiques et avantages apparaîtront encore à l'homme du métier à la lecture des exemples qui suivent, donnés à titre illustratif et non limitatif, en référence aux dessins annexés.

Figures

- la figure 1 est une représentation schématique d'un procédé co-solvant selon une première variante de
la présente invention dans lequel les solvants de nettoyage et de rinçage sont séparés,

- la figure 2 est un graphique illustrant une cinétique de dégraissage réalisée à 50°C suivant le procédé de la présente invention,

- la figure 3 est une représentation schématique d'un procédé co-solvant selon une deuxième variante de la présente invention dans lequel le solvant de nettoyage est un mélange de solvants selon l'invention.

Exemples

Les figures 1 et 3 sont des représentations schématiques d'un dispositif utilisé pour la mise en œuvre du procédé de la présente invention suivant deux modes de réalisation.

Sur ces figures, le dispositif 1 comprend dans une enceinte 3 : une cuve de nettoyage 5 destinée à contenir un solvant de nettoyage, une cuve de rinçage 7 destinée à contenir un solvant de rinçage, une gouttière de condensation 9 placée dans l'enceinte 3 sur sa périphérie et au-dessus des cuves 5 et 7, des serpentins de condensation 11 placés dans l'enceinte et au-dessus des cuves 5 et 7, et des moyens de filtration 13 et 15 permettant de pomper et filtrer respectivement le solvant de nettoyage et le solvant de rinçage et de les réinjecter dans les cuves.

Le dispositif comprend de préférence un ou plusieurs des éléments suivants : un séparateur d'eau 17, un générateur d'ultrasons 19 pour la cuve 5 de nettoyage, et un moyen de chauffage 21 pour les cuves 5 (non représenté) et 7 respectivement de lavage et de
rinçage. Le moyen de chauffage peut être une plaque chauffante.

Les serpents de condensation 9 sont de préférence reliés à un groupe froid (non représenté). Ils sont en partie haute du dispositif. Ils permettent de condenser les vapeurs de solvant de rinçage.

Le solvant ainsi condensé ruisselle dans la gouttière de condensation 9 vers le séparateur d'eau 17. Ce séparateur peut être un séparateur chimique ou physique. Il permet de débarrasser le solvant condensé de vapeur d'eau condensée. Le solvant est ensuite acheminé vers la cuve de rinçage comme l'indique la flèche f.

Dans les deux modes de réalisation ci-dessous, le solvant A de nettoyage est du dipropyène glycol monométhyle éther (DPM), et le solvant B de rinçage est du 1,1,1,2,3,4,4,5,5,5-décafluoropentane commercialisé par la société Du Pont de Nemours sous la marque de commerce VERTREL XF.

La surface à nettoyer est celle d'une pièce préférentiellement métallique mais pouvant également être composée de tout matériau compatible avec les solvants A et B utilisés, c'est-à-dire non érodé par ces solvants. La pièce peut être par exemple en plastique, en céramique, en un matériau de type semi-conducteur, etc... Elle est suspendue dans un panier (non représenté) pour être immergée dans le solvant de nettoyage soumis aux ultrasons et chauffé à une température de 50°C. Elle est dégraissée par solubilisation de la graisse dans le solvant. La pièce est ensuite immergée dans le solvant de rinçage chauffé
à une température légèrement inférieure à son point d'ébullition, c'est-à-dire à 53°C. Elle est ensuite remontée dans la partie intermédiaire du dispositif où elle est rincée par le solvant de rinçage en phase gazeuse qui se trouve au-dessus des cuves 5 et 7. Elle est alors amenée au niveau d'un matelas d'air froid (non représenté) où elle est entièrement séchée.

Un mouvement de rotation du panier contenant la pièce à dégraissier dans les différents bains a permis d'améliorer le dégraissage.

L'efficacité de dégraissage d'une pièce recouverte de lanoline avec le procédé de la présente invention a été supérieure à celle des procédés de l'art antérieur, notamment à celle obtenue avec un procédé au CFC113.

Ceci a été mis en évidence par une étude comparative de la solubilisation de la lanoline dans le solvant CFC 113 et le solvant A de la présente invention, et par une étude de cinétiques de dégraissage.

L'étude comparative a montré une solubilité totale de la lanoline dans le solvant A et une solubilité de seulement 440 g/l dans le CFC 113.

La figure 2 est un graphique illustrant une des cinétiques de dégraissage réalisée à 50°C suivant le procédé de la présente invention avec les solvants ci-dessus. Sur ce graphique, l’axe des abscisses représente le temps en minutes, et l’axe des ordonnées l’angle de contact en degrés (Ac en degrés).

Le faible angle de contact de 25° obtenu après 1 heure de traitement montre un dégraissage de très bonne qualité.
Selon une première variante de la présente invention représentée sur la figure 1, les solvants de nettoyage et de rinçage sont dans des cuves séparées.

Selon une deuxième variante de la présente invention représentée sur la figure 3, le procédé est mis en œuvre avec un mélange des deux solvants précités dans la cuve de nettoyage. Le solvant de rinçage contenu dans le mélange de la cuve de nettoyage s'évapore sous l'action du chauffage et des ultrasons.

Un ajustement de concentration du solvant B dans le mélange solvants A+B permettant de conserver préférentiellement de 60 à 80°C de solvant A dans le mélange est assuré par un déversement en continu de la cuve de rinçage vers la cuve de nettoyage contenant les deux solvants.

Cette deuxième variante permet d'obtenir un dégraissage de qualité supérieure à celle obtenue dans la première variante du fait de l'agitation supplémentaire du mélange de solvants A et B par cavitation, au moyen des ultrasons, et ébullition du solvant B.
REVENDICATIONS

1. Procédé de dégraissage d'une surface comprenant une étape de nettoyage de la surface à dégraissier avec un solvant de nettoyage et une étape de rinçage de la surface nettoyée avec un solvant de rinçage,
 ledit solvant de nettoyage comprenant un solvant A comprenant du dipropylnène glycol monométhyle éther, et ayant un point d'ébullition supérieur à 100°C et ne possédant pas de point éclair ou un point éclair supérieur à 70°C,
 ledit solvant de rinçage comprenant un solvant B comprenant du 1,1,1,2,3,4,4,5,5,5-décafluoropentane, et ayant un point d'ébullition inférieur à 70°C et une tension superficielle inférieure à 30mN/m.

2. Procédé selon la revendication 1, dans lequel le solvant de nettoyage est constitué de solvant A pur, et dans lequel le solvant de rinçage est constitué de solvant B pur.

3. Procédé selon la revendication 1, dans lequel le solvant de nettoyage comprenant le solvant A comprend en outre du solvant B.

4. Utilisation d'un solvant A comprenant du dipropylnène glycol monométhyle éther, et ayant un point d'ébullition supérieur à 100°C et ne possédant pas de point éclair ou un point éclair supérieur à 70°C, et d'un solvant B comprenant du 1,1,1,2,3,4,4,5,5,5-décafluoropentane, et ayant un point d'ébullition
inférieur à 70°C et une tension superficielle inférieure à 30mN/m pour dégraisser une surface.

5. Utilisation selon la revendication 4, dans laquelle les solvants A et B sont utilisés séparés et purs.

6. Utilisation selon la revendication 4, dans laquelle le solvant A est utilisé mélangé à du solvant B, et le solvant B est utilisé pur.

7. Utilisation selon l'une quelconque des revendications 4 à 6, dans laquelle le dégraissage consiste à éliminer, de ladite surface, de la lanoline et/ou d'autres huiles ou graisses d'origine minérale, végétale, animale ou synthétique.

8. Utilisation d'un dispositif 1 comprenant dans une enceinte 3 : une cuve de nettoyage 5 destinée à contenir un solvant de nettoyage, une cuve de rinçage 7 destinée à contenir un solvant de rinçage, une gouttière de condensation 9 placée dans l'enceinte 3 sur sa périphérie et au-dessus des cuves 5 et 7, des serpentiens de condensation 11 placés dans l'enceinte et au-dessus des cuves 5 et 7, et des moyens de filtration 13 et 15 permettant de pomper et filtrer respectivement le solvant de nettoyage et le solvant de rinçage et de les réinjecter dans les cuves, pour la mise en œuvre d'un procédé selon la revendication 1.
9. Utilisation selon la revendication 8, le dispositif comprenant en outre un séparateur d’eau 17.

10. Utilisation selon la revendication 8 ou 9, le dispositif comprenant en outre, pour la cuve 5 de nettoyage, un générateur d’ultrasons 19.

11. Utilisation selon la revendication 8, 9 ou 10, le dispositif comprenant en outre, pour les cuves 5 et 7 respectivement de nettoyage et de rinçage, un moyen de chauffage 21.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| IPC 7 | C11D7/50 | C23G5/02 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

| IPC 7 | C11D | C23G |

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data bases consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 94 28196 A (ALLIED SIGNAL INC) 8 December 1994 (1994-12-08) page 41, line 10 - line 27; claims 1-8; examples 1-4,10</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 688 860 A (DAIKIN IND LTD) 27 December 1995 (1995-12-27) page 3, line 38 - line 54; claims; examples 3,4</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>DATABASE WPI Section Ch, Week 199816 Derwent Publications Ltd., London, GB; Class E16, AN 1998-175316 XP002170358 & JP 10 036894 A (MITSUI FLUOROCHEMICAL CO LTD), 10 February 1998 (1998-02-10) abstract</td>
<td>1,3,4</td>
</tr>
</tbody>
</table>

进一步的文档见附录 C。

Date of the actual completion of the international search

3 January 2002

Date of mailing of the international search report

16/01/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5816 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 040-0016

Authorized officer

Grittern, A
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| A | FR 2 751 899 A (RHONE POULENC CHIMIE)
6 February 1998 (1998-02-06)
claims | 1-8 |
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 9428196</td>
<td>08-12-1994</td>
<td>AU 693453 B2 02-07-1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7047094 A 20-12-1994</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2163351 A1 08-12-1994</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1127017 A 17-07-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0701634 A1 20-03-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8506615 T 16-07-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9428196 A1 08-12-1994</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1119456 A 27-03-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9420601 A1 15-09-1994</td>
<td></td>
</tr>
<tr>
<td>JP 10036894</td>
<td>10-02-1998</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3855897 A 25-02-1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9710797 A 17-08-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000515199 T 14-11-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6306223 B1 23-10-2001</td>
<td></td>
</tr>
</tbody>
</table>
RAPPORT DE RECHERCHE INTERNATIONALE

A. CLASSEMENT DE L'OBJET DE LA DEMANDE

CIB 7 C11D7/50 C2365/02

Selon la classification internationale des brevets (CIB) ou à la foi selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7 C11D C23G

Documentation consultée autre que la documentation minimale dans la mesure où ces documents révèlent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 94 28196 A (ALLIED SIGNAL INC) 8 décembre 1994 (1994-12-08) page 41, ligne 10 - ligne 27; revendications 1-8; exemples 1-4,10</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 688 860 A (DAIKIN IND LTD) 27 décembre 1995 (1995-12-27) page 3, ligne 38 - ligne 54; revendications; exemples 3,4</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>DATABASE WPI Section Ch. Week 199816 Derwent Publications Ltd., London, GB; Class E16, AN 1998-175316 XP002170358 & JP 10 036894 A (MITSUI FLUOROCHEMICAL CO LTD), 10 février 1998 (1998-02-10) abrégé</td>
<td>1, 3, 4</td>
</tr>
</tbody>
</table>

X Voir la suite du cadre C pour la fin de la liste des documents

X Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

 A document définissant l'état général de la technique, non considéré comme particulièrement pertinent

 E document antérieur, mis publié à la date du dépôt international ou après cette date

 L document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (celle qu'indiquée)

 O document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens

 P document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

 T document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

 X document particulièrement pertinent; l'acte n'est revendiqué que parce qu'il est essentiellement pertinent

 Y document particulièrement pertinent; l'acte n'est revendiqué que parce qu'il est essentiellement pertinent

 Z document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

3 janvier 2002

Date d'expédition du présent rapport de recherche internationale

16/01/2002

Nom et adresse postale de l'administration chargée de la recherche internationale

Officier Européen des Brevets, P.B. 5816 Patentlaan 2 NL-2280 HD Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo ml, Fax (+31-70) 340-2016

Fonctionnaire autorisé

Grittern, A
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FR 2 751 899 A (RHONE POULENC CHIMIE) 6 février 1998 (1998-02-06) revendications</td>
<td>1-8</td>
</tr>
<tr>
<td>Document brevet cité au rapport de recherche</td>
<td>Date de publication</td>
<td>Membre(s) de la famille de brevet(s)</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>WO 9428196</td>
<td>08-12-1994</td>
<td>AU 693453 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7047094 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2163351 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1127017 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0701634 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8506615 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9428196 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1119456 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9420601 A1</td>
</tr>
<tr>
<td>JP 10036894</td>
<td>10-02-1998</td>
<td>AUCUN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3855897 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9710797 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000015199 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6306223 B1</td>
</tr>
</tbody>
</table>