Title: ANTIBIOTIC PLASTIC FOOD WRAP HAVING EXCELLENT ANTI-WETTING PROPERTIES

Abstract: The present invention relates to an antibiotic plastic food wrap characterized by including 96-98 wt% of synthetic resin, 1-2 wt% of silica nanotubes containing silver nanoparticles, and 1-2 wt% of water-repellent silica nanotubes. As such, in addition to having excellent antibiotic function, the antibiotic plastic food wrap prevents the moisture contained in fruit, etc. from collecting on and thereby fogging up the surface of the film when frozen. Food, vegetables, fruit, etc. are wrapped in the same. Therefore, the merit of the invention is the suitability of the same as a plastic food wrap.

WO 2013/051766 A1
명세서

발명의 명칭: 무적성이 우수한 항균성 식품포장용 랩

기술분야

[1] 본 발명은 항균성 식품포장용 랩에 관한 것으로, 더욱 상세하게는 항균수지에
분산되어 우수하게 나노입자를 함합시키고 내구력이 우수한
실리카 나노튜브를 함하하여 식품포장용 랩을 제조함으로써, 항균성 및 무적성
특성에 우수한 것을 특징으로 하는 항균성 식품포장용 랩에 관한 것이다.

배경기술

[2] 일반적으로 식품류는 생산, 가공, 유통과정 중에 유해성 세균이나 부패균 등의
 접촉에 의한 유해 미생물군(microflora)의 증식으로 식품이 변질되기 쉬우므로
 이를 방지하고, 신선도를 유지할 수 있도록 항균수지 랩 등으로 식품을 포장하여
 유통시킨다. 따라서, 식품포장용 랩 제조업체들은 유해성 세균이나 부패균을
 제거할 뿐만 아니라 세균들의 활동을 정지시키거나 또는 살균하는 기능을 갖는
 우수한 항균성 식품포장용 랩을 개발하기 위해 노력하고 있다.

[3] 항균성 식품포장용 랩은 랩의 성형 압축시 항균수지나 나노 크기의 음
나노입자를 함합하여 분산시킬 경우 비슷한 나노입자가 항균수지 융용액
 내에서 운반되면서 내에 발생하여 세균을 분산되지 않아 항균성 식품포장용 랩
 내에 균일하게 음나노입자가 분포되지 아니하여 항균성 기능이 저하하는
 문제점 등이 발생하였다.

[4] 한편, 항균수지 융용액 내에서 음나노입자의 분산력을 높이기 위한 방안으로
 개발된 항균성 레필의 특허내용들을 살펴보면, 대한민국 특허공보
 특1997-10467호 및 대한민국 공개특허공보 특1999-79669호에는 플리에스테르
 레필에 음, 구리, 아연 등의 이온으로 이루어진 용액에서 선택한 어느 하나의
 금속이온을 평균 입경이 0.1-5.0밀인 다공질의 구형 실리카에 피복시킨 단체를
 함유한 항균성 식품포장용 레필이 알려져 있으나 상기와 같은 항균성
 식품포장용 랩의 경우에는 음나노입자를 다공질의 구형 실리카에 피복시킨
 단체를 사용하여 항균수지 융용액에 혼합하여 분산력을 높였다. 그러나
 구형 실리카 단체를 사용함에 따라 여전히 운동성이 발생할 우려가 있으며, 음
 나노입자가 식품포장용 레필 내에서 균일하게 분산되지 않 경우에는
 식품포장용 레필의 항균성 기능이 저하되는 부분에 접한 식품이 상하는 문제점
 등이 발생할 우려가 있다.

[5] 또한 대한민국 특허공보 제10-654573호에는 음, 동, 티탄, 아연, 산화 티탄
 및 산화아연으로 이루어진 용액에서 선택한 어느 하나를 평균 입경이 3.7밀인
 다공성 무면정 구형 실리카 입자에 담지시키고 단체를 플리에스테르 수지 융용액에
 투입하여 제조한 코팅 소성물을 플리에스테르 레필의 일부에 코팅시킨
 식품포장용 레필이 알려져 있지만 상기와 같은 특허의 경우에도 구형 실리카
입자를 사용함에 따라 폴리에스테르 수지 용액 내에서 균일하게 분산되지 않아 상기에서 상술한 바와 같은 문제점들이 발생할 우려가 있다.

[7] 하지만 식품 포장용에 사용되는 필름은 냉동식품, 체소류, 과일류 등을 포장시, 포일류 등에 편리하게 있는 수분에 의해 필름의 표면에 물방울이 맺혀 흐리지게 된다. 이런 현상에 의해 제품의 외관이 나빠지거나 보관성이 좋지 않아 상품의 질을 훼손시키는 문제점들이 발생하게 된다.

발명의 상세한 설명

기술적 과제

[9] 따라서, 상기와 같은 문제점을 해결하기 위한 방안으로 본 발명은 합성수지에서 분산력이 우수한 음 나노입자를 흩어진 실리카 나노튜브와 무작위가 우수한 실리카 나노튜브를 첨가하여 식품포장용 필름을 제조함으로써, 항균성 기능이 우수하되 약선이나 냉동식품, 체소류, 과일류 등을 포장시, 과일류 등에 편리하게 있는 수분에 의해 필름의 내부 표면에 물방울이 맺혀 흐리지게 함의 예방함으로써 식품포장용 필름의 용도로 사용하기가 적합한 것을 특징으로 하는 항균성 식품포장용 필름을 제공함을 과제로 한다.

과제 해결 수단

[10] 상기의 과제를 해결하기 위한 본 발명은 음 나노입자 함유 실리카 나노튜브를 함유한 항균성 식품포장용 필름에 있어서,

[11] 합성수지 96~98 중량%와 음 나노입자 함유 실리카 나노튜브 1~2 중량% 및 발수성 실리카 나노튜브 1~2 중량%로 이루어지는 것을 특징으로 하는 항균성 식품포장용 필름을 과제 해결 수단으로 한다.

[12] 그리고 상기 합성수지는 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리스티렌 수지, 폴리에스테르 수지, 염화비닐수지, 폴리염화비닐렌 수지, 폴리에틸렌테레프탈렌 섬유, 폴리우레탄 섬유 등에서 1종을 선택하여 사용하며,

[14] 또한 상기 발수성 실리카 나노튜브는 실리카 전구체에 발수성 실란 단량체를 1 : 0.1~0.5의 물비의 범위에서 혼합하여 공절합시키는 것이고,
상기 설리카 전구체는 테트라에톡시오르소실리카이트 (tetraethoxyorthosilicate, TEOS) 또는 테트라메톡시오르소실리카이트 (tetramethoxyorthosilicate, TMOS) 중에서 1종을 선택하여 사용하며,

상기 발수성 실린 단방체는 \([CF_3(CF_2)\text{CH}_2\text{CH}_2\text{O})_m \text{Si(CH}_2\text{CH}_2\text{O})_n \text{Si(CH}_2\text{CH}_2\text{O})_m \text{Si(CH}_2\text{CH}_2\text{O})_n \) \([CF_3(CF_2)\text{CH}_2\text{CH}_2\text{O})_m \text{Si(CH}_2\text{CH}_2\text{O})_n \text{Si(CH}_2\text{CH}_2\text{O})_m \text{Si(CH}_2\text{CH}_2\text{O})_n \) 중에서 선택된 단독화합물을 혹은 2종 이상의 혼합물을 사용하며,

상기 발수성 설리카 나노튜브는 평균 직경 50~100nm, 평균 길이 1~100㎛ 크기에 의해 특징이다.

발명의 효과

상기의 구조 해결 수단에 의한 본 발명은 항균성 및 무적성 특성이 우수한 항균성 식품포장용 랩으로, 항균성 기능을 수행할 뿐만 아니라 냉동식품, 제조류, 과일류 등을 포장시, 과일류 등에 함유되어 있는 수분에 의해 필름의 표면에 물방울이 맺히며 흐리지는 것을 예방함으로써 무적성의 특성이 우수하다 식품포장용 랩의 용도로 사용하기가 적합한 것이 장점이다.

도면의 간단한 설명

도 1은 본 발명에 따른 항균성 식품포장용 랩에 사용되는 은 나노입자 함유 설리카 나노튜브의 개략도,

도 2는 본 발명에 따른 설치에 1에 사용된 은 나노입자-설리카 나노튜브를 적은 TEM(5000배 확대) 사진,

도 3은 본 발명에 따른 설치에 1에 사용된 은 나노입자-설리카 나노튜브의 XRD 측정결과를 나타낸 그래프,

도 4a는 본 발명의 설치에 1에 따른 발수성 설리카 나노튜브를 1,000배 확대 활영하여 나타낸 SEM 사진,

도 4b는 본 발명의 설치에 1에 따른 발수성 설리카 나노튜브를 5,000배 확대 활영하여 나타낸 SEM 사진,

도 5는 본 발명의 설치에 1에 따른 발수성 설리카 나노튜브의 FT-IR 측정결과를 나타낸 그래프,

도 6은 비교에 1에 사용된 은 나노입자가 분산 함유된 구상형 메조세공 설리카를 적은 SEM(30,000배 확대) 사진,

도 7은 비교에 1에 사용된 은 나노입자-구상형 메조세공 설리카의 XRD 측정결과를 나타낸 그래프,

도 8은 본 발명에 따른 설치에 1의 랩을 사용하여 백을 200g 그릇에 넣고 랩으로 감싼 다음 24시간 방치한 후 무적성을 측정한 결과를 나타낸 사진,

도 9는 비교에 1의 랩을 사용하여 백을 200g 그릇에 넣고 랩으로 감싼 다음 24시간 방치한 후 무적성을 측정한 결과를 나타낸 사진,

도 10은 본 발명에 따른 설치에 1의 랩의 표면을 30,000배로 확대하여 적은 SME 사진,
도 11은 비교에 1의 랑의 표면을 30,000배로 확대하여 찍은 SME 사진에 관한 것이다.

발명의 실시를 위한 최선의 형태

이하, 본 발명의 바람직한 실시예를 첨부한 도면인 도 1 내지 도 11에 의거하여 상세히 설명하며, 각 도면 및 상세한 설명에서 일반적인 항균성 식품포장용 랑으로부터 이 분야의 종사자들이 용이하게 알 수 있는 구성 및 작용에 대한 도시 및 언급은 간략히 하거나 생략하였다.

본 발명은 협안조직을 항암이어기나 나노튜브를 항한 항균성 식품포장용 랑에 있어서,

함성수지 96~98 중량%와는 나노입자 협안조직을 항슈라 나노튜브 1~2 중량% 및
발수성 실리카 나노튜브 1~2 중량%로 이루어지는 것을 특징으로 한다.

본 발명에서 사용하는 함성수지는 식품포장용으로 사용가능한 수지인
폴리에틸렌 수지, 폴리프로필렌 수지, 폴리스티렌 수지, 폴리에스테르 수지,
염화비닐수지, 폴리염화비닐리신 수지, 폴리에틸렌테레프탈레이트 수지,
페놀수지 중에서 1종을 선택하여 사용하는 것이 바람직하다.

본 발명에서 운 나노입자 협안조직을 항슈라 나노튜브의 혼합량은 1~2 중량%인 것이 바람직하며, 단체의 혼합량이 1 중량% 미만인 경우에는 항균성 기능이 제대로 발현되지 않을 우려가 있고, 단체의 혼합량이 2 중량%를 초과할 경우에는 단체의 증가량에 비례하여 항균성 기능은 현저히 상당되는 않는다.

그러나 본 발명에서 사용하는 운 나노입자 협안조직을 항슈라 나노튜브는 본
출원인이 이바일한인건에서 특허등록 제10-1010677호로 특허등록바 있는 운
나노입자 협안조직을 항슈라 나노튜브를 사용하였다.

따라서, 운 나노입자 협안조직을 항슈라 나노튜브는 구형 실리카에 비해 함성수지
용융액 내에서의 분산력이 우수하므로 압출성형된 식품포장용 랑 내에서
균일하게 분산되므로 항균성 기능이 상당된다.

본 발명에서 사용하는 운 나노입자 협안조직을 항슈라 나노튜브는 도 1에 도시된 바와
같은 형상으로 남아있실라 나노튜브의 물체(10)에 형성된 미세한 기공에 운
나노입자(20)가 흡착된 구조로서, 운 나노입자가 20000~100000 ppm 항유되는
것이 바람직하다. 운 나노입자의 항유량이 20000 ppm 미만이 될 경우에는
항균작용이 충분히 발현되지 않을 우려가 있고, 운 나노입자의 항유량이 100000
ppm을 초과할 경우 항균성을 현저하게 증가하지 않으면서 실리카 나노튜브의
제조원자가 상승하는 비경제적인 문제점이 발생할 우려가 있다.

또한 본 발명에서 사용하는 운 나노입자 협안조직을 항슈라 나노튜브는 평균
내경(d)이 30~60 nm, 평균 길이(l)가 10~30 μm의 것이 바람직하다. 실리카
나노튜브의 평균 내경과 평균 길이가 장기에서 한정한 범위 내일 경우에는
구상형 배조제공 구조의 실리카와는 달리 나노튜브 구조에 의해 운 나노입자
자체가 함성수지 용융액 내에서 엉킴현상 등이 발생하지 않아 분산력이 우수한
것이 특징이다.

그리고 본 발명에서 사용하는 발수성 실리카 나노튜브는 도 4a 및 도 4b의 사진에 도시된 바와 같이, 본 출원인이 이미 대한민국에서 특허등록 제10-1057476호로 특허등록자로서는 발수성 실리카 나노튜브를 사용하였다.

따라서, 본 발명에 따른 확인성 식품포장용 램은 일반적인 식품포장용 램에 비해 냉동식품, 체소류, 과일류 등으로 포장시, 과일류 등에 함유되어 있는 수분에 의해 젖은 표면에 물방울이 묻히 흐르는 것을 예방할 수 있는 무적성의 특성이 우수한 것이 특징이다.

본 발명에서 사용하는 발수성 실리카 나노튜브는 그 제조방법에 대해서는 대한민국 특허공보 제10-1057476호에 상세히 상술되어 있지만, 여기서 다시 상세히 설명하기로 한다.

상기 발수성 실리카 나노튜브는 실리카 전구체에 발수성 실란 단량체 1: 0.1~0.5의 물 비의 범위에서 혼합하여 공충합시키는 것이 바람직하며, 이때 생성되는 실리카는 채널길이가 길고 불소 판능기를 가진 1차원 신형 미세세공 나노실리카가 형성된다.

이때 형성되는 세공의 채널길이는 10,000~50,000 nm이다. 발수성 실란 단량체 혼합량의 물 비가 0.1 미만이 될 경우에는 나노실리카의 표면에 불소기가 충분하게 결합되지 아니하여 무적성의 성능이 저하될 우려가 있고, 발수성 실란 점유단량체 혼합량의 물 비가 0.5를 초과할 경우에는 괴연되므로 납빠진 우려가 있다.

상기 실리카 전구체는 테트라에톡시오르소실리케이트(tetraethoxyorthosilicate, TEOS) 또는 테트라메톡시오르소실리케이트(tetramethoxyorthosilicate, TMOS) 중에서 1종을 선택하여 사용한다.

또한 상기 발수성 실란 단량체는 \([\text{CF}_{3}\text{(CF)}_{2}\text{(CH)}_{2}\text{Si(CH}_{3}\text{CH}_{2})_{n}\text{O}_{m}]\), \([\text{CF}_{3}\text{(CF)}_{2}\text{(CH)}_{2}\text{Si(CH}_{3}\text{CH}_{2})_{n}\text{O}_{m}]\), \([\text{CH}_{2}\text{(C}_{2}\text{H}_{5})_{n}\text{Si(CH}_{3}\text{CH}_{2})_{m}\text{O}_{n}]\), \([\text{CH}_{2}\text{(C}_{2}\text{H}_{5})_{n}\text{Si(CH}_{3}\text{CH}_{2})_{m}\text{O}_{n}]\) 중에서 선택된 단독화합물 혹은 2종 이상의 혼합물을 사용하는 것이 바람직하다. 이때 상기 발수성 실란 단량체에서, \(n\)은 0-21의 정수, \(m\)은 0-21의 정수, \(n\)은 1-3의 정수 또는 1-3의 정수이다.

상기 발수성 실리카 나노튜브는 일반적인 미세세공 실리카 구조체에 비하여 높은 경질성과 결정성과 무적성을 갖는 것이 특징이다.

즉, 본 발명은 도 10에 도시된 전자현미경의 사진을 살펴보면, 미세세공이 잘 발달되어 있음을 확인할 수 있으며, 약 100 nm 내외의 미세세공을 통하여 공기의 순환이 이루어짐으로써, 램의 내부 표면에 물방울이 묻히 흐르는 것을 예방할 수 있고, 상기 미세기공은 은 나노입자 함유 실리카 나노튜브에 의해 형성되는 것으로 추정된다.

따라서, 본 발명에 따른 확인성 식품포장용 램은 합성수지에 분산력이 우수한 은 나노입자를 흩 partida 실리카 나노튜브와 발수성이 우수한 실리카 나노튜브를 합참하여 식품포장용 램을 제조함으로써, 확인성 및 무적성을 특성
우수한 것이 장점이다.

[50] 이하 본 발명에 따른 항균성 식품포장용 램을 하기의 실시예를 통해 구체적으로 설명하면 다음과 같으며, 본 발명은 하기의 실시예에 의해서만 반드시 한정되는 것이 아니다.

1. 항균성 식품포장용 램의 제조

(실시예 1)

LDPE 980g과 음 나노입자 함유 실리카 나노튜브 10g 및 발수성 실리카
나노튜브 10g를 혼합하여 통상적인 방법에 따라 두께 10μm의 항균성 식품포장용
램을 제조하였다. 본 실시예 1에서 사용한 음 나노입자 함유 실리카 나노튜브는
실리카 나노튜브에 음 나노입자가 2000ppm가 함유되고, 실리카 나노튜브의
평균 내경은 30~60nm, 평균 길이는 10~30 μm이었고, 발수성 실리카 나노튜브는
TEOS 실리카 전구체에 발수성 실란 단량체인 [CF₃(CF₂)₆(CH₂)₃]₃Si(CH₃CH₂O)₃를
사용하여 합성한 실리카 나노튜브로서, 평균 직경 50~100nm, 평균 길이 1~100μm
크기인 것을 사용하였다.

참고로, 도 2는 본 발명에 따른 실시예 1에 사용된 음 나노입자-실리카
나노튜브를 적은 TEM(5000배 확대) 사진이고, 도 3은 본 발명에 따른 실시예 1에
사용된 음 나노입자-실리카 나노튜브의 XRD 측정결과를 나타낸 그래프이다.

그리고 도 4a는 본 발명의 실시예 1에 따른 발수성 실리카 나노튜브를 1,000배
확대 촬영하여 나타낸 SEM 사진이고, 도 4b는 본 발명의 실시예 1에 따른
발수성 실리카 나노튜브를 5,000배 확대 촬영하여 나타낸 SEM 사진이며, 도 5는
본 발명의 실시예 1에 따른 발수성 실리카 나노튜브의 FT-IR 측정결과를 나타낸
그래프에 관한 것이다.

(실시예 2)

LDPE 960g과 음 나노입자 함유 실리카 나노튜브 20g 및 발수성 실리카
나노튜브 20g을 혼합하여 통상적인 방법에 따라 두께 10μm의 항균성 식품포장용
램을 제조하되, 음 나노입자 함유 실리카 나노튜브 및 발수성 실리카 나노튜브는
실시예 1과 동일한 것을 사용하였다.

(비교예 1)

LDPE 990g과 음 나노입자 함유 구상형 메조세공 실리카 10g을 혼합하여
통상적인 방법에 따라 두께 10μm의 항균성 식품포장용 램을 제조하였다. 본
비교예 1에서 사용한 음 나노입자 함유 구상형 메조세공 실리카는 평균 입경이
3.0μm 크기의 구상형 메조세공 실리카에 음 나노입자가 20000ppm가 함유된 것을
사용하였다.

참고로, 도 6은 비교예 1에 사용된 음 나노입자가 분산 함유된 구상형 메조세공
실리카를 적은 SEM(30,000배 확대) 사진이고, 도 7은 비교예 1에 사용된
음나노입자 함유 구상형 메조세공 실리카의 XRD 측정결과를 나타낸
그래프이다.

2. 항균성 식품포장용 램의 평가
상기 1의 방법에 의해 제조한 항균성 식품포장용 랩을 대상으로 대장균 (*Escherichia coli*) 및 포도상구균 (*Staphylococcus aureus*)에 대한 항균력 시험을 JIS Z 2801 : 2006(항균가공제품, 항균성 시험방법, 항균효과)에 의거 실시하였으며, 그 결과는 항균활성치(R)의 값은 아래 [표 1]의 내용과 같다.

시험주주는 *Escherichia coli* ATCC 8739와 *Staphylococcus aureus* ATCC 6538p를 각각 사용하였다.

표 1

<table>
<thead>
<tr>
<th>구분</th>
<th>실시에</th>
<th>비교에</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>E.coli</td>
<td>6.2</td>
<td>6.4</td>
</tr>
<tr>
<td>S.aureus</td>
<td>3.4</td>
<td>3.7</td>
</tr>
</tbody>
</table>

상기 [표 1]의 내용에 의하면 항균성 시험에 있어서, 실시에 1의 대장균 (*E. coli*)의 항균활성치(R)는 6.2 및 6.4으로서 항균효과가 99.99%이상이며, 포도상구균 (*S. aureus*)의 항균활성치(R)는 3.4 및 3.5로서 항균효과가 99.90%이상인데 반해 비교에 1의 경우에는 대장균 (*E. coli*)의 항균활성치(R)는 3.5로서 항균효과가 99.90%이며, 포도상구균 (*S. aureus*)의 항균활성치(R)는 2.1로서 항균효과가 90.00%이었다.

즉, 상기 [표 1]에서 나타난 바와 같이, 본 발명에 따른 항균성 식품포장용 랩인 실시에 1 및 실시에 2는 나노입자 함유 실리카 건조투브를 사용함에 따라 비교에 1의 구상형 메조세공 실리카를 사용한 것에 비해 대장균 (*E. coli*) 및 포도상구균 (*S. aureus*)에 대한 항균력이 모두 우수한 것이 확인되었으며, 이는 실시에 1 및 2에서 사용한 실리카 건조투브가 비교에 1의 구상형 메조세공 실리카에 비해 항균성 식품포장용 랩 내에서의 분산력이 우수한 것에 기인하는 것으로 추정된다.

그리고 상기 실시에 1, 2 및 비교에 1의 무적성 시험은 백을 각각 200g씩 그릇에 넣고 랩으로 감싼 다음 24시간 방치한 후 무적성을 측정한 결과 아래 [표 2]의 내용과 같다.

표 2

<table>
<thead>
<tr>
<th>구분</th>
<th>실시에</th>
<th>비교에</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>무적성</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

- ○: 식품포장용 랩에 물방울이 전혀 보이지 않는 양호한 상태 - ×: 식품포장용 랩에 물방울 또는 수증기가 맺혀 있는 불량 상태
상기 [표 2]에서 나타난 바와 같이 무작위 시험기에 있어서, 실시에 1 및 실시에 2는 램의 내부 표면에 물방울이 맹하지 않아 무작성의 특성이 우수한데 반해 비교에 1은 램의 내부 표면에 수증기가 맹혀 무작성의 특성이 불량상태인 것으로 확인된 바와 같이 실시에 1, 2는 비교에 1과는 달리 발수성 실리카 나노튜브를 합성수지 내에 혼합함에 따라 무작성이 우수한 것으로 나타났다.

즉, 본 발명에 따른 실시에 1은 도 10에 도시된 사전의 내용과 같이 램의 표면에 형성된 약 100 nm 내외의 미세세공들이 은 나노입자 함유 실리카 나노튜브에 의해 형성되는 것으로 추정되며, 상기 미세세공들을 통하여 공기의 순환이 이루어짐으로써, 무작성의 특성이 우수하고, 비교에 1은 도 11에 도시된 사전의 내용과 같이 램의 표면에 미세기공들이 형성되지 않음에 따라 무작성의 특성이 불량한 것을 확인할 수 있었다.

참고로, 도 8은 본 발명에 따른 실시에 1의 램을 사용하여 밤을 200g 그릇에 넣고 램으로 갈한 다음 24시간 방치한 후 무작성을 측정한 결과를 나타낸 사진이고, 도 9는 비교에 1의 램을 사용하여 밤을 200g 그릇에 넣고 램으로 갈한 다음 24시간 방치한 후 무작성을 측정한 결과를 나타낸 사진이며, 도 10은 본 발명에 따른 실시에 1의 램의 표면을 30,000배로 확대하여 적은 SME 사진이고, 도 11은 비교에 1의 램의 표면을 30,000배로 확대하여 적은 SME 사진에 관한 것이다.

본 실시에는 상기 [표 1] 및 [표 2]에 나타난 바와 같이 본 발명에 따른 실시에 1, 2가 비교에 1에 비해 항균성 및 무작성의 특성이 모두 우수한 것으로 확인되었다.

상술한 바와 같은, 본 발명의 바람직한 실시에 따른 항균성 식품포장용 램을 상기한 설명 및 도면에 따라 도시하였지만, 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상은 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.

발명의 실시를 위한 형태

본 발명은 은 나노입자 함유 실리카 나노튜브를 함유한 항균성 식품포장용 램에 있어서, 항균수지 96~98 중량%와 은 나노입자 함유 실리카 나노튜브 1~2 중량% 및 발수성 실리카 나노튜브 1~2 중량%로 이루어지는 항균성 식품포장용 램을 발명의 실시를 위한 형태로 한다.

한편, 상기 항균수지는 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리스チレン 수지, 폴리에스테르 수지, 염화비닐수지, 폴리염화비닐릴렌 수지, 폴리에틸렌테레프탈알데트 수지, 폴리수지 중에서 1종을 선택하여 사용하는 것이 바람직하다.

아울러, 상기 나노입자 함유 실리카 나노튜브는 은 나노입자가 20000~100000 ppm 함유되도록 하는 것이 바람직하다.
또한, 상기 나노입자 함유 실리카 나노튜브는 평균 내경이 30~60 nm, 평균 길이가 10~30 \(\mu m \)인 것이 바람직하다.

또한, 상기 반수성 실리카 나노튜브는 실리카 전구체에 발수성 실란 단량체를 1 : 0.1~0.5의 물 비의 범위에서 혼합하여 공극함시키는 것이 바람직하다.

또한, 상기 실리카 전구체는 테트라에톡시오르소실리케이트(tetraethoxyorthosilicate, TEOS) 또는 테트라메톡시오르소실리케이트(tetramethoxyorthosilicate, TMOS) 중에서 1종을 선택하여 사용하는 것이 바람직하다.

또한, 상기 발수성 실란 단량체는 \([\text{CF}_2(\text{CF}_2)_{m}](\text{CH}_2)_{n}\text{Si(CH}_3\text{CH}_2\text{O})_o\text{, } [\text{CF}_2(\text{CF}_2)(\text{CH}_2)_{m}\text{Si(CH}_3\text{CH}_2\text{O})_o\text{, } [\text{CH}_3(\text{C}_6\text{H}_5)_{m}](\text{CH}_2)_{n}\text{Si(CH}_3\text{CH}_2\text{O})_o\text{, } [\text{CH}_3(\text{CH}_2)_{m}\text{Si(CH}_3\text{O})_o\text{ 중에서 선택된 단독화합물 혹은 2종 이상의 혼합물을 사용하는 것이 바람직하다.}

단, 상기 발수성 실란 단량체에서, \(m\)은 0-21의 정수, \(n\)은 0-21의 정수, \(o\)은 1-3의 정수 \(o\)는 1-3의 정수이다.

또한, 상기 발수성 실리카 나노튜브는 평균 직경 50~100nm, 평균 길이 1~100\(\mu m \) 크기가 있는 것이 바람직하다.

산업상 이용가능성

본 발명은 함성수지에 분산력이 우수한 은 나노입자를 흡착시킨 실리카 나노튜브와 무작성이 우수한 실리카 나노튜브를 접합하여 식품포장용 �цеп을 제조함으로써, 항균성 기능이 우수함 뿐만 아니라 냉동식품, 체소류, 과일류 등에 포장시, 과일류 등에 함유되어 있는 수분에 의해 뼈의 내부 표면에 물방울이 맺혀 호러지는 것을 예방함으로써 식품포장용 뼈의 용도로 사용하기가 적합함에 따라 산업상 널리 이용될 것으로 기대된다.
청구범위

[청구항 1] 은 나노입자 함유 실리카 나노튜브를 함유한 항균성 식품포장용
락에 있어서,
함성수지 96~98 중량%와 은 나노입자 함유 실리카 나노튜브 1-2 중량% 및 발수성 실리카 나노튜브 1-2 중량%로 이루어지는 것을 특징으로 하는 항균성 식품포장용 램.

[청구항 2] 제 1항에 있어서,
상기 항성수지는 폴리에틸렌 수지, 폴리프로필렌 수지,
폴리스티렌 수지, 폴리애세트 수지, 염화비닐수지,
폴리에틸렌비닐리렌 수지, 폴리에틸렌테레프탈레이트 수지, 폐늘수지
중에서 1종을 선택하여 사용하는 것을 특징으로 하는 항균성
식품포장용 램.

[청구항 3] 제 1항에 있어서,
상기 나노입자 함유 실리카 나노튜브는 은 나노입자가
20000~100000 ppm 함유되는 것을 특징으로 하는 항균성
식품포장용 램.

[청구항 4] 제 2항 또는 제 3항 중 어느 한 항에 있어서,
상기 나노입자 함유 실리카 나노튜브는 평균 내경이 30~60 nm,
평균 길이가 10~30 μm의 것을 특징으로 하는 항균성 식품포장용
램.

[청구항 5] 제 1항에 있어서,
상기 발수성 실리카 나노튜브는 실리카 전구체에 발수성 실란
단량체를 1: 0.1-0.5의 볼 비의 범위에서 흩합하여 공축함시키는
것을 특징으로 하는 항균성 식품포장용 램.

[청구항 6] 제 6항에 있어서,
상기 실리카 전구체는
테트라에톡시오톨로실리케이트(tetraethoxyorthosilicate, TEOS)
또는 테트라메톡시오로실리케이트(tetramethoxyorthosilicate, TMOS) 중에서 1종을 선택하여 사용하는 것을 특징으로 하는
항균성 식품포장용 램.

[청구항 7] 제 6항에 있어서,
상기 발수성 실란 단량체는 [CF₃(CF₂)₃(CH₂)ₘ]Si(CH₂CH₂O)ₙ, [CF₃
(CF₂)₉(CH₂)ₘ]Si(CH₂CH₂O)ₙ, [CH₃(CH₂O)ₙ(CH₂)ₘ]Si(CH₂CH₂O)ₙ, [CH₃
(CH₂)ₙ]Si(CH₂O)ₙ 중에서 선택된 단독화합물 혹은 2종 이상의
혼합물을 사용하는 것을 특징으로 하는 항균성 식품포장용 램.
단, 상기 발수성 실란 단량체에서, n은 0-21의 정수, m은 0-21의
정수, n은 1-3의 정수로는 1-3의 정수이다.
[공구항 8] 제 5에 있어서,
상기 발수성 실리카 나노튜브는 평균 직경 50~100nm, 평균 길이 1~100μm 크기인 것을 특징으로 하는 항균성 식품포장용 랩.
A. CLASSIFICATION OF SUBJECT MATTER

C08K 3/36(2006.01)i, C08K 7/00(2006.01)i, C08L 23/02(2006.01)i, B65D 65/38(2006.01)i, B65D 81/24(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C08K 3/36; B82Y 40/00; B65D 81/24; B65D 81/28; C08J 5/18; B82Y 30/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS (KIPO internal) & Keywords: nano tube, nano silver, antibacterial

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>KR 10-1004027 B1 (THERMOLON KOREA CO., LTD) 31 December 2010</td>
<td>1-5, 8</td>
</tr>
<tr>
<td></td>
<td>See abstract and the claims.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>KR 10-1057476 B1 (THERMOLON KOREA CO., LTD) 17 August 2011</td>
<td>1-5, 8</td>
</tr>
<tr>
<td></td>
<td>See abstract, the claims and paragraph [0040].</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>KR 10-2010-0054304 A (KIM, SANG MAN et al.) 25 May 2010</td>
<td>1-5, 8</td>
</tr>
<tr>
<td></td>
<td>See abstract and the claims.</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search

27 SEPTEMBER 2012 (27.09.2012)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonja-ro, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer

Date of mailing of the international search report

28 SEPTEMBER 2012 (28.09.2012)

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☒ Claims Nos.: 6-7
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
 Claim 6 refers to claim 6, and the matter for which protection is sought in claim 6 is not clear. Claim 7 refers to claim 6, and the matter for which protection is sought in claim 7 is also unclear. Thus, a meaningful international search of claims 6 to 7 can not be carried out.

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

☐ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-1057476 B1</td>
<td>17.08.2011</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>KR 10-2010-0054304 A</td>
<td>25.05.2010</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분야(IPC))
C08K 3/36(2006.01)i, C08K 7/00(2006.01)i, C08L 23/02(2006.01)i, B65D 65/38(2006.01)i, B65D 81/24(2006.01)i

B. 조사항목
조사된 최소문헌(국제특허분야를 기재)
C08K 3/36; B82Y 40/00; B65D 81/24; B65D 81/28; C08J 5/18, B82Y 30/00
조사된 기술분야에 속하는 최소문헌 외의 문헌
한국특허출원신청공보 및 한국공개특허신청공보: 조사된 최소문헌과 기재된 IPC
일본특허출원신청공보 및 일본공개특허신청공보: 조사된 최소문헌과 기재된 IPC
국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
eKOMPASS(특허청 내부 검색시스템) & 카이드, 나노트브, 은나노, 항균성

C. 관련문헌

<table>
<thead>
<tr>
<th>카테고리</th>
<th>연용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 첨부문서</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>KR 10-004027 B1 (주) 다동공리아 2010.12.31 초록 및 첨부문서 참조.</td>
<td>1-5,8</td>
</tr>
<tr>
<td>Y</td>
<td>KR 10-0054746 B1 (주) 다동공리아 2011.08.17 초록, 첨부문서 및 [0040] 단락 참조.</td>
<td>1-5,8</td>
</tr>
<tr>
<td>Y</td>
<td>KR 10-2010-0054304 A (김성만 외 1명) 2010.05.25 초록 및 첨부문서 참조.</td>
<td>1-5,8</td>
</tr>
</tbody>
</table>

* 연용된 문헌의 특별 카테고리:
 "A" 특별한 관련없이 있는 것으로 보이는 일반적인 기술수준을 정의한 문헌
 "E" 국제출원일로부터 2년 동안 걸린 또는 우선신청일까지의 기간 동안의 행정 처리 결과 문헌
 "L" 우선권 주장시 의문을 제기하는 문헌 또는 다른 출원문헌의 공개일 또는 다른 특별한 이유(어류를 비롯)를 바탕으로 인용된 문헌
 "O" 구두 개시, 사용, 청구 또는 기타 수단을 연계하고 있는 문헌
 "P" 우선신청이 완료되었으나 국제출원일 이후에 공개된 문헌
 "X" 국제출원일 또는 우선신청 후에 공개된 문헌으로, 출원과 상충하지 않으며 발명의 기초가 되는 데러나 기존의 기존을 이행하기 위해 인용된 문헌
 "Y" 특별한 관련이 있는 문헌, 해당 문헌 하나만으로 청구된 발명의 신규성 또는 진보성이 없는 것으로 본다
 "Y" 특별한 관련이 있는 문헌, 해당 문헌이 하나 이상의 다른 문헌과 조합하는 경우로 그 조합이 당일자에 제작한 경우 청구된 발명은 진보성이 없는 것으로 본다
 "&" 동일한 대응특허문헌에 속하는 문헌

국제조사의 실시 연도
2012년 09월 28일 (28.09.2012)

국제조사보고서 발송일
2012년 09월 28일 (28.09.2012)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 장서로 189,
대구(동산동, 정부대장정사)
팩스번호 82-42-472-7140

실사관
남수연
전화번호 82-42-481-8297

식별 PCT/ISA/210 (두 번째 월요일) (2009년 7월)
PCT 제17조(2)(a)의 규정에 따라 다음과 같은 이유로 일부 청구항에 대하여 본 국제조사보고서가 작성되지 아니하였습니다.

1. □ 청구항: 이 청구항은 본 기관이 조사할 필요가 없는 대상에 관련됩니다. 즉,

2. □ 청구항: 6-7
 이 청구항은 유효한 국제조사를 수행할 수 없을 정도로 소장의 요건을 충족하지 아니하는 국제출원의 부분과 관련된 다. 구체적으로는,
 청구항 6은 청구항 6을 인용하는 형식으로 기재되어 있어, 보호받고자 하는 발명이 불명확합니다. 그리고 청구항 7은
 청구항 6을 인용하는 형식으로 기재되어 있어 또한 보호받고자 하는 발명이 불명확합니다. 따라서 청구항 6.7에 대하여
 유효한 국제조사를 수행할 수 없습니다.

3. □ 청구항: 이 청구항은 중속청구항이나 PCT규칙 6.4(a)의 두 번째 및 세 번째 문장의 규정에 따라 작성되어 있지 않습니다.

본 국제조사기관은 본 국제출원에 다음과 같이 다수의 발명이 있다고 합니다.

1. □ 출원인이 모든 추가수수료를 기간 내에 납부하였으므로, 본 국제조사보고서는 모든 조사 가능한 청구항을 대상으로 합니다.

2. □ 추가수수료 납부를 요구하지 않고도 모든 조사 가능한 청구항을 조사할 수 있었으므로, 본 기관은 추가수수료 납부를
 요구하지 아니하였습니다.

3. □ 출원인이 추가수수료의 일부만을 기간 내에 납부하였으므로, 본 국제조사보고서는 수수료가 납부된 청구항만을 대상
 으로 합니다. 구체적인 청구항은 아래와 같습니다.

4. □ 출원인이 기간 내에 추가수수료를 납부하지 아니하였습니다. 따라서 본 국제조사보고서는 청구범위에 처음 기재된 발
 명에 한정되어 있으며, 해당 청구항은 아래와 같습니다.

이의신청에 관한 기재

- 출원인의 이의신청 및 이의신청로 납부(해당하는 경우)와 함께 추가수수료가 납부되었습니다.
- 출원인의 이의신청과 함께 추가수수료가 납부되었으나 이의신청효과 보정요구서에 명시된 기간 내에 납부되지 아니하였습니다.
- 이의신청 없이 추가수수료가 납부되었습니다.

서식 PCT/ISA/210 (첫 번째 용지의 계속(2)) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-1057476 B1</td>
<td>2011.06.17</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>KR 10-2010-0054304 A</td>
<td>2010.05.25</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>

서식 PCT/ISA/210 (대응특허 추가용지) (2009년 7월)