

US 20080187931A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0187931 A1 Rothenberg et al.

Aug. 7, 2008 (43) **Pub. Date:**

(54) MUTATIONS ASSOCIATED WITH IRON DISORDERS

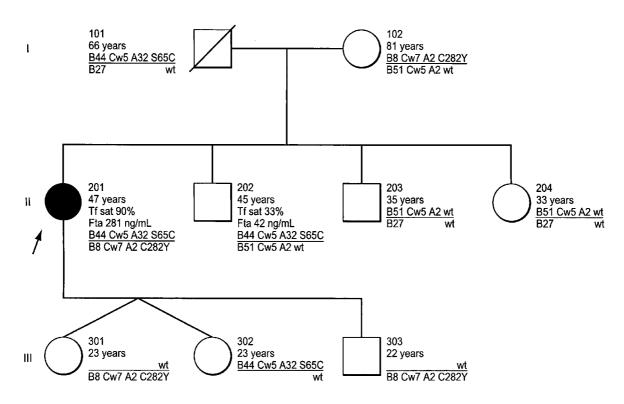
Barry E. Rothenberg, Delmar, CA (76)Inventors: (US); Ritsuko Sawada-Hiraj, San Diego, CA (US); James C. Barton, Birmingham, AL (US)

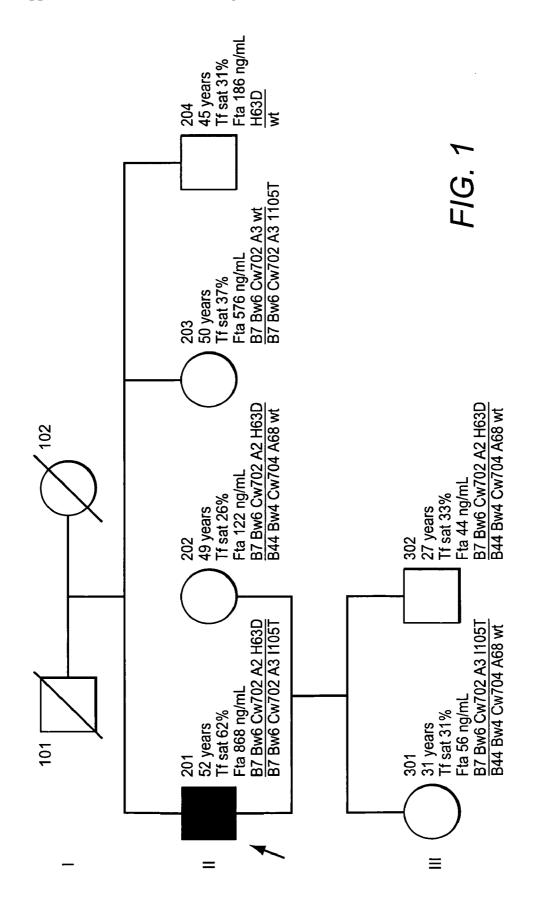
> Correspondence Address: FISH & ASSOCIATES, PC **ROBERT D. FISH** 2603 Main Street, Suite 1050 Irvine, CA 92614-6232

- (21) Appl. No.: 12/005,791
- (22) Filed: Dec. 28, 2007

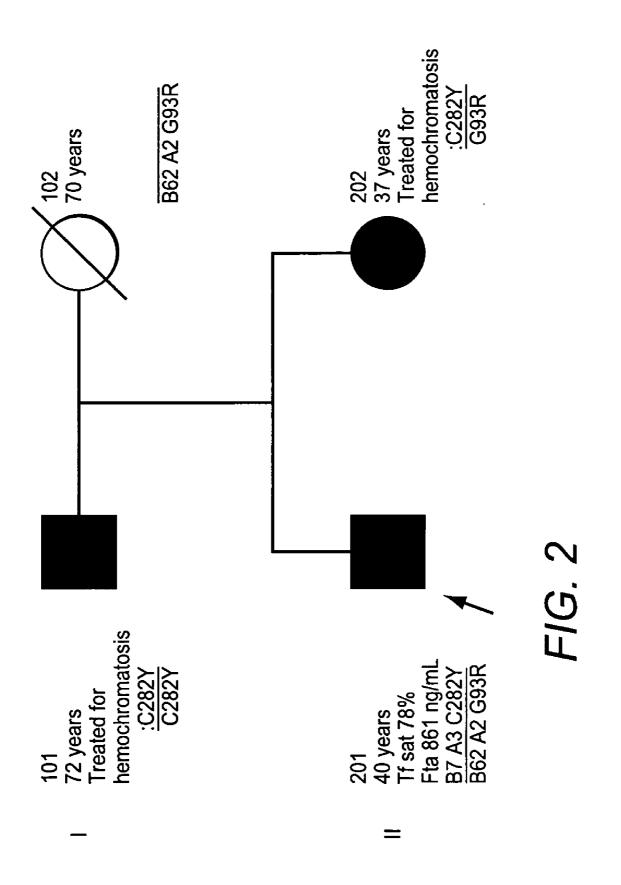
Related U.S. Application Data

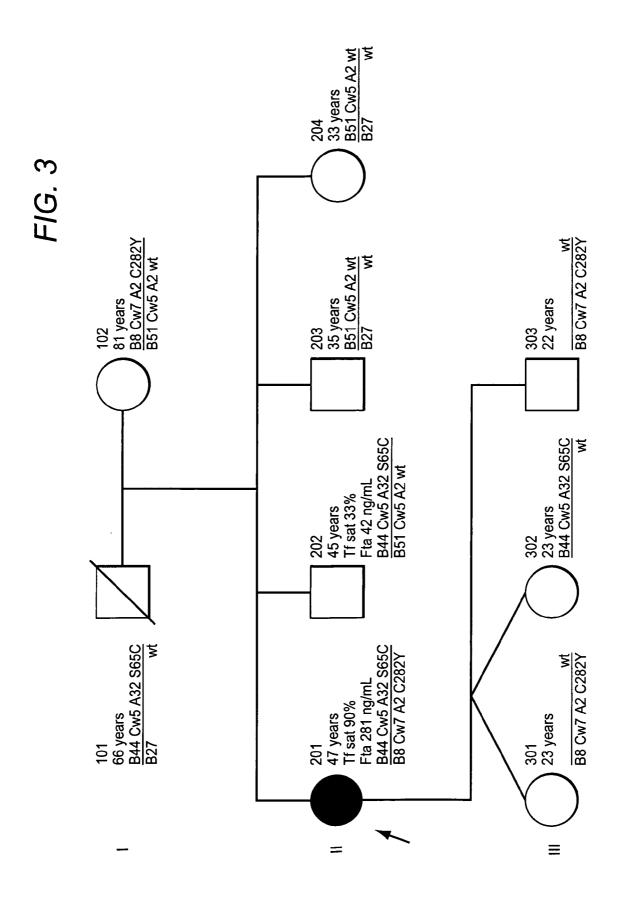
Continuation of application No. 11/252,452, filed on (63) Oct. 18, 2005, now abandoned, which is a continuation


of application No. 09/981,606, filed on Oct. 16, 2001, now Pat. No. 6,955,875, which is a continuation of application No. 09/277,457, filed on Mar. 26, 1999, now Pat. No. 6,355,425.


Publication Classification

- (51) Int. Cl. (2006.01)C12Q 1/68


ABSTRACT (57)


The invention features a method of diagnosing an iron disorder, e.g., hemochromatosis, or a genetic susceptibility to developing such a disorder in a mammal by determining the presence of a mutation in exon 2 or in an intron of an HFE nucleic acid.

Patent Application Publication

MUTATIONS ASSOCIATED WITH IRON DISORDERS

BACKGROUND OF THE INVENTION

[0001] Hemochromatosis is the most common progressive (and sometimes fatal) genetic disease in people of European descent. Hemochromatosis is a disease state characterized by an inappropriate increase in intestinal iron absorption. The increase can result in deposition of iron in organs such as the liver, pancreas, heart, and pituitary. Such iron deposition can lead to tissue damage and functional impairment of the organs.

[0002] In some populations, 60-100% of cases are attributable to homozygosity for a missense mutation at C282Y in the Histocompatibility iron (Fe) loading (HFE) gene, a major histocompatibility (MHC) non-classical class I gene located on chromosome 6p. Some patients are compound heterozygotes for C282Y and another mutation at H63D.

SUMMARY OF THE INVENTION

[0003] The invention is based on the discovery of novel mutations which are associated with aberrant iron metabolims, absorption, or storage, or in advanced cases, clinical hemochromatosis. Accordingly, the invention features a

method of diagnosing an iron disorder, e.g., hemochromatosis or a genetic susceptibility to developing such a disorder, in a mammal by determining the presence of a mutation in exon 2 of an HFE nucleic acid. The mutation is not a C-+Gmissense mutation at position 187 of SEQ ID NO:1 which leads to a H63D substitution. The nucleic acid is an RNA or DNA molecule in a biological sample taken from the mammal, e.g. a human patient, to be tested. The presence of the mutation is indicative of the disorder or a genetic susceptibility to developing it. An iron disorder is characterized by an aberrant serum iron level, ferritin level, or percent saturation of transferrin compared to the level associated with a normal control individual. An iron overload disorder is characterized by abnormally high iron absorption compared to a normal control individual. Clinical hemochromatosis is defined by an elevated fasting transferrin saturation level of greater than 45% saturation.

[0004] For example, the mutation is a missense mutation at nucleotide 314 of SEQ ID NO:1 such as 314C which leads to the expression of mutant HFE gene product with amino acid substitution 1105T. The 1105T mutation is located in the al helix of the HFE protein and participates in a hydrophobic pocket (the "F" pocket). The alpha helix structure of the α 1 domain spans residues S80 to N108, inclusive. The 1105T mutation is associated with an iron overload disorder.

TABLE 1

		Human HFE o	DNA sequenc	ce	
atgggcccg	cgagccaggc				
cggcgcttct	cctcctgatg	cttttgcaga	ccgcggtcct	gcaggggcgc	ttgctgcgtt
cacactctct	gcactacctc	ttcatgggtg	cctcagagca	ggacctgggt	ctttccttgt
ttgaagcttt	gggctacgtg	gatgaccagc	tgttcgtgtt	ctatgatcat	gagagtcgcc
				H631	D S65C
				aagccagatg	
tgagtcagag	tctgaaaggg G93I		tgttcactgt	tgacttctgg	actattatgg I105T
aaaatcacaa	ccacagcaag	gagtcccaca	ccctgcaggt	cateetggge	tgtgaaatgc
aagaagacaa	cagtaccgag	ggctactgga	agtacgggta	tgatgggcag	gaccacctcg
aattctgccc	tgacacactg	gattggagag	cagcagaacc	cagggcctgg	cccaccaagc
				ggcctacctg	
gccctgcaca	gctgcagcag	ttgctggagc	tggggagagg	tgttttggac	caacaagtgc
				gaccactcta	
ccttgaacta	ctacccccag	aacatcacca	tgaagtggct	gaaggataag	cagccaatgg
atgccaagga	gttcgaacct	aaagacgtat	tgcccaatgg	ggatgggacc	taccagggct
ggataacctt	ggctgtaccc	cctggggaag	agcagagata	tacgtgccag	gtggagcacc
caggcctgga	tcagcccctc	attgtgatct	gggagccctc	accgtctggc	accctagtca
				gttcattgga	
taatattaag	gaagaggcag	ggttcaagag	gagccatggg	gcactacgtc	ttagctgaac
gtgagtgaca	cgcagcctgc	agactcactg	tgggaaggag	acaaaactag	agactcaaag
				ttgaacctaa	
tgcctgacga	actccttgat	tttagccctc	tctgttcatt	tcctcaaaaa	gatttcccca
tttaggtttc	tgagttcctg	catgccggtg	atccctagct	gtgacctctc	ccctggaact
gtctctcatg	aacctcaagc	tgcatctaga	ggcttccttc	atttcctccg	tcacctcaga
gacatacacc	tatgtcattt	catttcctat	ttttggaaga	ggactcctta	aatttggggg
acttacatga	ttcattttaa	catctgagaa	aagctttgaa	ccctgggacg	tggctagtca
taaccttacc	agatttttac	acatgtatct	atgcattttc	tggacccgtt	caacttttcc
tttgaatcct	ctctctgtgt	tacccagtaa	ctcatctgtc	accaagcctt	ggggattctt
ccatctgatt	gtgatgtgag	ttgcacagct	atgaaggctg	tgcactgcac	gaatggaaga
ggcacctgtc	ccagaaaaag	catcatggct	atctgtgggt	agtatgatgg	gtgtttttag
caggtaggag	gcaaatatct	tgaaaggggt	tgtgaagagg	tgttttttct	aattggcatg
aaggtgtcat	acagatttgc	aaagtttaat	ggtgccttca	tttgggatgc	tactctagta
ttccagacct	gaagaatcac	aataattttc	tacctggtct	ctccttgttc	tgataatgaa
aattatgata	aggatgataa	aagcacttac	ttcgtgtccg	actcttctga	gcacctactt
acatgcatta	ctgcatgcac	ttcttacaat	aattctatga	gataggtact	attatcccca
tttcttttt	aaatgaagaa	agtgaagcag	gccgggcacg	gtggctcgcg	cctgtggtcc
cagggtgctg	agattgcagg	tgtgagccac	cctgcccagc	cgtcaaaaga	gtcttaatat
atatatccag	atggcatgtg	tttactttat	gttactacat	gcacttggct	gcataaatgt
ggtacaacca	ttctgtcttg	aagggcaggt	gcttcaggat	accatataca	gctcagaagt
ttcttcttta	ggcattaaat	tttagcaaag	atatctcatc	tcttcttta	aaccattttc
				gtgatttacg	

TABLE 1-continued

	Human HFE cDNA sequence	
acaacttgtc tattacctgt atgtacattg tattgtaaaa	aattaaagct gttatttaat tagccagtga tagtattatt gttgcattaa aaatgcatat aaaaaaa [®] Accession No. U60319)	

TABLE 2

Human HFE gene product

MGPRARPALLLLMLLQTAVLQG RLLRSHSHLHYLFMGASEQDLGLSLFEALGYVDDQLFVFYDHESRRVRPR TPWVSSRISSQMWLQLSQSLKGWDHMFTVDFWTIMENHNHSKESHTLQVI LGCEMQEDNSTEGYWKYGYDGDHLEFCPDTLDWRAAEPRAWPTKLEWER HKIRARQNRAYLERDCPAQLQQLLELGRGVLDQQVPPLVKVTHHVTSSVT TLRCRALNYPQNITMKWLKDKWPMDAKEFEPKDVLPNGDGTYQGWITLAV PPGEEQRYTCQWVEHPGLDQPLIVTIWEPSPSGTLVIGVISGIAVFVVIL FIGILFIILRKRQGSRGAMGHYVLAERE (SEQ ID NO: 2; GENBANK [®] Accession No. U60319)

Residues 1-22 = leader seQuence; α 1 domain underlined; residues 63, 65, 93, and 105 indicated in bold type)

Other mutations include nucleotide 277 of SEQ ID NO: 1, e.g., 277C which leads to expression of mutant HFE gene product G93R and one at nucleotide 193 of SEQ ID NO: 1, e.g., 193T, which leads to expression of mutant HFE gene product S65C.

[0005] Any biological sample containing an HFE nucleic acid or gene product is suitable for the diagnostic methods described herein. For example, the biological sample to be analyzed is whole blood, cord blood, serum, saliva, buccal tissue, plasma, effusions, ascites, urine, stool, semen, liver tissue, kidney tissue, cervical tissue, cells in amniotic fluid, cerebrospinal fluid, hair or tears. Prenatal testing can be done using methods used in the art, e.g., amniocentesis or chori-

onic villa sampling. Preferably, the biological sample is one that can be non-invasively obtained, e.g., cells in saliva or from hair follicles.

[0006] The assay is also used to screen individuals prior to donating blood to blood banks and to test organ tissue, e.g., a donor liver, prior to transplantation into a recipient patient. Both donors and recipients are screened.

[0007] In some cases, a nucleic acid is amplified prior to detecting a mutation. The nucleic acid is amplified using a first oligonucleotide primer which is 5' to exon 2 and a second oligonucleotide primer is 3' to exon 2. To detect mutation at nucleotide 314 of SEQ ID NO: 1, a first oligonucleotide primer which is 5' to nucleotide 314 and a second oligonucleotide primer which is 3' to nucleotide 314 is used in a standard amplification procedure such as polymerase chain reaction (PCR). To amplify a nucleic acid containing nucleotide 277 of SEQ ID NO: 1, a first oligonucleotide primer which is 5' to nucleotide 277 and a second oligonucleotide primer which is 3' to nucleotide 277 is used. Similarly, a nucleic acid containing nucleotide 193 of SEQ ID NO: 1 is amplified using primers which flank that nucleotide. For example, for nucleotide 277, the first primer has a nucleotide sequence of SEQ ID NO: 3 and said second oligonucleotide primer has a nucleotide sequence of SEQ ID NO: 4, or the first primer has a nucleotide sequence of SEQ ID NO: 15 and said second oligonucleotide primer has a nucleotide sequence of SEQ ID NO: 16. Table 3, below, shows examples of primer pairs for amplification of nucleic acids in exons and introns of the HFE gene.

TABLE 3

Target DNA	Forward Primer	Reverse Primer
	I. PRIMERS USED FOR .	AMPLIFICATION
Exon 2	CCTCCTACTACACATGGTTAAGG (SEQ ID NO: 3)	GCTCTGACAACCTCAGGAAGG (SEQ ID NO: 4)
Exon 3	GGTGGAAATAGGGACCTATTCC (SEQ ID NO: 5)	CACTCTGCCACTAGCACTATAGG (SEQ ID NO: 6)
Exon 4	GTTCCAGTCTTCCTGGCAAGG (SEQ ID NO: 7)	AAATGCTTCCCATGGATGCCAG (SEQ ID NO: 8)
RT-PCR	AAAGGATCCACCATGGGCCCGCGAGCCAGG (SEQ ID NO: 9)	GTGAGTCTGCAGGCTGCGTG (SEQ ID NO: 10)
Intron 4	GTTCCAGTCTTCCTGGCAAGG (SEQ ID NO: 11)	AAATGCTTCCCATGGATGCCAG (SEQ ID NO: 12)
Intron 5	GTTCCAGTCTTCCTGGCAAGG (SEQ ID NO: 13)	AAATGCTTCCCATGGATGCCAG (SEQ ID NO: 14)
	II. PRIMERS USED FOR	AMPLIFICATION
Exon 2	GTGTGGAGCCTCAACATCCTG (SEQ ID NO: 15)	ACAAGACCTCAGACTTCCAGC (SEQ ID NO: 16)

Target DNA	Forward Primer	Reverse Primer
Exon 3	GGTGGAAATAGGGACCTATTCC (SEQ ID NO: 17)	CACTCTGCCACTAGAGTATAGG (SEQ ID NO: 18)
Exon 4	GTTCCAGTCTTCCTGGCAAGG (SEQ ID NO: 19)	TTACCTCCTCAGGCACTCCTC (SEQ ID NO: 20)
RT-PCR	AAAGGATCCACCATGGGCCCGCGAGCCAGG (SEQ ID NO: 21)	GTGAGTCTGCAGGCTGCGTG (SEQ ID NO: 22)
Intron 4	TGCCTGAGGAGGTAATTATGG (SEQ ID NO: 23)	AAATGCTTCCCATGGATGCCAG (SEQ ID NO: 24)
Intron 5	TGCCTGAGGAGGTAATTATGG (SEQ ID NO: 25)	AAATGCTTCCCATGGATGCCAG (SEQ ID NO: 26)

TABLE 3-continued

[0008] Mutations in introns of the HFE gene have now been associated with iron disorders and/or hemochromatosis. By "exon" is meant a segment of a gene the sequence of which is represented in a mature RNA product, and by "intron" is meant a segment of a gene the sequence of which is not represented in a mature RNA product. An intron is a part of a primary nuclear transcript which is subsequently spliced out to produce a mature RNA product, i.e., a mRNA, which is then transported to the cytoplasm. A method of diagnosing an iron disorder or a genetic susceptibility to developing the disorder is carried out by determining the presence or absence of a mutation in an intron of HFE genomic DNA in a biological sample. The presence of the mutation is indicative of the disorder or a genetic susceptibility to developing the disorder. The presence of a mutation in an intron is a marker for an exon mutation, e.g., a mutation in intron 4, e.g., at nucleotide 6884 of SEQ ID NO:27 is associated with the S65C mutation in exon 2. A mutation in intron 5, e.g., at nucleotide 7055 of SEQ ID NO:27 is associated with hemochromatosis. In some cases, intron mutations may adversely affect proper splicing of exons or may alter regulatory signals. Preferably, the intron 4 mutation is 6884C and the intron 5 mutation is 7055G. To amplify nucleic acid molecule containing nucleotide 6884 or 7055, primers which flank that nucleotide, e.g., those described in Table 3, are used according to standard methods. Nucleic acid-based diagnostic methods may or may not include a step of amplification to increase the number of copies of the nucleic acid to be analyzed. To detect a mutation in intron 4, a patient-derived nucleic acid may be amplified using a first oligonucleotide primer which is 5' to intron 4 and a second oligonucleotide primer which is 3' to intron 4, and to detect a mutation in intron 5, the nucleic acid may be amplified using a first oligonucleotide primer which is 5' to intron 5 and a second oligonucleotide primer which is 3' to intron 5 (see, e.g., Table 3).

[0009] In addition to nucleic acid-based diagnostic methods, the invention includes a method of diagnosing an iron overload disorder or a genetic susceptibility thereto by determining the presence of a mutation in a HFE gene product in a biological sample. For example, the mutation results in a decrease in intramolecular salt bridge formation in the mutant HFE gene product compared to salt bridge formation in a wild type HFE gene product. The mutation which affects salt bridge formation is at or proximal to residue 63 of SEQ ID NO:2, but is not amino acid is substitution H63D. Preferably, the mutation is between residues 23-113, inclusive of SEQ ID NO:2 (Table 2), more preferably, it is between residues 90-100, inclusive, of SEQ ID NO:2, more preferably, it is between residues 58-68, inclusive, of SEQ ID NO:2, and most preferably, the mutation is amino acid substitution S65C. Alternatively, the mutation which affects salt bridge formation is a mutation, e.g., an amino acid substitution at residue 95 or proximal to residue 95 of SEQ ID NO:2. Preferably, the mutation is G93R. Such an HFE mutation is detected by immunoassay or any other ligand binding assay such as binding of the HFE gene product to a transferrin receptor. Mutations are also detected by amino acid sequencing, analysis of the structural conformation of the protein, or by altered binding to a carbohydrate or peptide mimetope.

[0010] A mutation indicative of an iron disorder or a genetic susceptibility to developing such a disorder is located in the α 1 helix (e.g., which spans residues 80-108, inclusive, of SEQ ID NO:2) of an HFE gene product. The mutation may be an addition, deletion, or substitution of an amino acid in the wild type sequence. For example, the mutant HFE gene product contains the amino acid substitution 1105T or G93R or in the loop of the β sheet of the HFE molecule, e.g., mutation S65C

[0011] Isolated nucleic acids encoding a mutated HFE gene products (and nucleic acids with nucleotide sequences complementary to such coding sequences) are also within the invention. Also included are nucleic acids which are at least 12 but less than 100 nucleotides in length. An isolated nucleic acid molecule is a nucleic acid molecule that is separated from the 5' and 3' sequences with which it is immediately contiguous in the naturally occurring genome of an organism. "Isolated" nucleic acid molecules include is nucleic acid molecules which are not naturally occurring. For example, an isolated nucleic acid is one that has been amplified in vitro, e.g, by PCR; recombinantly produced; purified, e.g., by enzyme cleavage and gel separation; or chemically synthesized. For example, the restriction enzyme, Bst4C I (Sib Enzyme Limited, Novosibirsk, Russia), can be used to detect the G93R mutation (point mutation 277C); this enzyme cuts the mutated HFE nucleic acid but not the wild type HFE nucleic acid. Such nucleic acids are used as markers or probes for disease states. For example, a marker is a nucleic acid molecule containing a nucleotide polymorphism, e.g., a point mutation, associated with an iron disorder disease state flanked by wild type HFE sequences. The invention also encompasses nucleic acid molecules that hybridize, preferably under stringent conditions, to a nucleic acid molecule encoding a mutated HFE gene product (or a complementary strand of such a molecule). Preferably the hybridizing nucleic acid molecule is 400 nucleotides, more preferably 200 nucleotides, more preferably 100, more preferably 50, more preferably 25 nucleotides, more preferably 20 nucleotides, and most preferably 10-15 nucleotides, in length. For example, the nucleotide probe to detect a mutation is 13-15 nucleotides long. The nucleic acids are also used to produce recombinant peptides for generating antibodies specific for mutated HFE gene products. In preferred embodiments, an isolated nucleic acid molecule encodes an HFE polypeptide containing amino acid substitution I105T, G93R, or S65C, as well as nucleic acids the sequence of which are complementary to such nucleic acid which encode a mutant or wild type HFE gene product.

[0012] Also within the invention are substantially pure mutant HFE gene products, e.g., an HFE polypeptide containing amino acid substitution I105T, G93R, or S65C. Substantially pure or isolated HFE polypeptides include those that correspond to various functional domains of HFE or fragments thereof, e.g., a fragment of HFE that contains the α 1 domain.

[0013] Wild type HFE binds to the transferrin receptor and regulates the affinity of transferrin receptor binding to transferrin. For example, a C282Y mutation in the HFE gene product reduces binding to the transferrin receptor, thus allowing the transferrin receptor to bind to transferrin (which leads to increased iron absorption).

[0014] The polypeptides of the invention encompass amino acid sequences that are substantially identical to the amino acid sequence shown in Table 2 (SEQ ID NO:2). Polypeptides of the invention are recombinantly produced, chemically synthesized, or purified from tissues in which they are naturally expressed according to standard biochemical methods of purification. Biologically active or functional polypeptides are those which possess one or more of the biological functions or activities of wild type HFE, e.g., binding to the transferrin receptor or regulation of binding of transferrin to the transferrin receptor. A functional polypeptide is also considered within the scope of the invention if it serves as an antigen for production of antibodies that specifically bind to an HFE epitope. In many cases, functional polypeptides retain one or more domains present in the naturally-occurring form of HFE.

[0015] The functional polypeptides may contain a primary amino acid sequence that has been altered from those disclosed herein. Preferably, the cysteine residues in exons 3 and 4 remain unchanged. Preferably the modifications consist of conservative amino acid substitutions. The terms "gene product", "protein", and is "polypeptide" are used herein to describe any chain of amino acids, regardless of length or post-translational modification (for example, glycosylation or phosphorylation). Thus, the term "HFE polypeptide or gene product" includes full-length, naturally occurring HFE protein, as well a recombinantly or synthetically produced polypeptide that correspond to a full-length naturally occurring HFE or to a particular domain or portion of it.

[0016] The term "purified" as used herein refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. Polypeptides are

said to be "substantially pure" when they are within preparations that are at least 60% by weight (dry weight) the compound of interest. Preferably, the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight the compound of interest. Purity can be measured by any appropriate standard method, for example, by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.

[0017] Diagnostic kits for identifying individuals suffering from or at risk of developing an iron disorder are also within the invention. A kit for detecting a nucleotide polymorphism associated with an iron disorder or a genetic susceptibility thereto contains an isolated nucleic acid which encodes at least a portion of the wild type or mutated HFE gene product, e.g., a portion which spans a mutation diagnostic for an iron disorder or hemochromatosis (or a nucleic acid the sequence of which is complementary to such a coding sequence). A kit for the detection of the presence of a mutation in exon 2 of an HFE nucleic acid contains a first oligonucleotide primer which is 5' to exon 2 and a is second oligonucleotide primer is 3' to exon 2, and a kit for an antibody-based diagnostic assay includes an antibody which preferentially binds to an epitope of a mutant HFE gene product, e.g., an HFE polypeptide containing amino acid substitution I105T, G93R, or S65C, compared to its binding to the wild type HFE polypeptide. An increase in binding of the mutant HFE-specific antibody to a patient-derived sample (compared to the level of binding detected in a wild type sample or sample derived from a known normal control individual) indicates the presence of a mutation which is diagnostic of an iron disorder, i.e., that the patient from which the sample was taken has an iron disorder or is at risk of developing one. The kit may also contain an antibody which binds to an epitope of wild type HFE which contains residue 105, 93, or 65. In the latter case, reduced binding of the antibody to a patient-derived HFE gene product (compared to the binding to a wild type HFE gene product or a gene product derived from a normal control individual) indicates the presence of a mutation which is diagnostic of an iron disorder, i.e., that the patient from which the sample was taken has an iron disorder or is at risk of developing one.

[0018] Individual mutations and combinations of mutations s in the HFE gene are associated with varying severity of iron disorders. For example, the C282Y mutation in exon 4 is typically associated with clinical hemochromatosis, whereas other HFE mutations or combinations of mutations in HFE nucleic acids are associated with disorders of varying prognosis. In some cases, hemochromatosis patients have been identified which do not have a C282Y mutation. The I105T and G93R mutations are each alone associated with an increased risk of iron overload (compared to, e.g., the H63D mutation alone), and the presence of both the I105T and H63D mutation is associated with hemochromatosis. Accordingly, the invention includes a method of determining the prognosis for hemochromatosis in a mammal suffering from or at risk of developing said hemochromatosis by (a) detecting the presence or absence of a first mutation in exon 4 in each allele of an HFE nucleic acid, e.g., patient-derived chromosomal DNA, and (b) detecting the presence of a second mutation in exon 2 in each allele of the nucleic acid. The presence of the first mutation in both chromosomes, i.e. an exon 4 homozygote such as a C282Y homozygote, indicates a more negative prognosis compared to the presence of the second mutation in one or both chromosomes, i.e., an exon 2 heterozygote or homozygote. An exon 4 mutation homozygote is also associated with a more negative prognosis compared to the presence of a first mutation (exon 4) in one allele and the presence of the second mutation (exon 2) in one allele, i.e., a compound heterozygote.

[0019] Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 is a diagram of the family of proband 1 (HFE genotype H63D/I105T). □=male, ●=female, ◎=deceased, ■=hemochromatosis phenotype. Proband 1 is indicated by an arrow. Phenotype and genotype data: age in year saturation; % Ftn=serum ferritin concentration. I105 separate chromosomes. The sister of the proband (II, 203) has hyperferritine-mia.

[0021] FIG. **2** is a diagram of the family of proband 2 (HFE genotype C282Y/G93R). Symbols and abbreviations are the same as those described for FIG. **1**. Proband 2 is indicated with an arrow. G93R, C282Y, and wt alleles are known to exist only on separate chromosomes. The father and sister of the proband are being treated for hemochromatosis.

[0022] FIG. **3** is a diagram of the family of proband 3 (HFE genotype C282Y/S65C) Symbols and abbreviations are the same as those described for FIG. **1**. Proband **3** is indicated with an arrow. S65C, C282Y, and wt alleles are know to exist only on separate chromosomes. Proband **3** also has porphyria cutanea tarda, and her brother (II, 203) has ankylosing spondylitis.

DETAILED DESCRIPTION

[0023] A proband is the first individual in a family identified to be affected by hemochromatosis. Forward and reverse sequencing of HFE exons 2, 3, 4, and 5, and of portions of HFE introns 2, 4, and 5 was carried out on biological samples taken from twenty hemochromatosis probands who lacked C282Y homozygosity, C282Y/H63D compound heterozygosity, or H63D homozygosity. Four probands had novel HFE coding region mutations. Probands 1 and 2 were heterozygous for previously undescribed mutations: exon 2, nt 314T→C (314C; I105T) , and exon 2, nt 277G→C (277C; G93R) respectively; these probands were also heterozygous for H63D and C282Y, respectively. Probands 3 and 4 were heterozygous for an HFE mutation in exon 2, nt 193A→T (193T; S65C) Twelve other probands did not have an exon 2 HFE exon mutation; four were heterozygous for H63D. In probands 1, 2, 3, and 4, the amino acid substitutions I105T, G93R, and S65C (respectively) occurred on separate chromosomes from those with the C282Y or H63D mutations. In 176 normal control subjects, two were heterozygous for S65C; I105T and G93R were not detected in controls. Nine probands were heterozygous and two probands were homozygous for a base-pair change at intron 2, nt 4919T/C (SEQ ID NO:27). Heterozygosity for a base-pair change in intron 4 (nt 6884T \rightarrow C) was detected only in probands 3 and 4, both of whom also had S65C and HLA-A32. The intron 2 mutation is not diagnostic of an iron disorder and appears randomly in the population. One proband was heterozygous for a base-pair change at intron 5 (nt 7055A \rightarrow G)

[0024] The data described herein indicate that, in addition to the C282Y and H63D HFE mutations, the HFE exon and intron 5 mutations described herein are diagnostic (and prognostic) of iron disorders.

Pathology of Iron Overload

[0025] Iron plays an essential role in normal growth and development, but in elevated concentrations, iron is a toxic inorganic molecule and is the leading cause of death in children by poisoning. It has been implicated in the pathophysiology of a number of common diseases, e.g., hepatitis, cancer, heart disease, reperfusion injury, rheumatoid arthritis, diabetes, AIDS, and psychological abnormalities (e.g. depression). [0026] The incidence of cancer (especially liver cancer) rises dramatically in the course of hemochromatosis. Iron, acting alone or in synergy with other environmental agents, catalyzes free radical formation. These free radicals which mediate tissue damage also cause DNA double strand breaks and oncogene activation. Iron may also play a role in the pathogenesis of rheumatic diseases and in predisposition to heart disease. High levels of iron can also cause diabetes with 2% of diabetics being hemochromatosis patients. High levels of iron may also affect the disease progression of many viral diseases. Individuals infected with such viruses as hepatitis (e.g., hepatitis B or C) or HIV should be tested for HFE mutations because of the impact increased iron stores have on the treatment and prognosis of such diseases.

[0027] Excessive iron stores and iron deposition is also a major contributing factor in the pathology and treatment of non-valvular heart disease. These conditions include dilated cardiomyopathy cased by deposition of iron in myocardial fibers; myocardial injury the product of anthracycline cardiomyopathy and re-perfusion injury. Increased iron stores may also be a contributing factor in myocardial infarction due to atherosclerosis. Some evidence suggests a significant increase in the incidence of reported heart disease in probands (cardiac symptoms-32%, insulin-dependent diabetes-18%, cardiac arrhythmia-17%, clinically significant coronary artery atherosclerosis-9%, and congestive heart failure-7%. Cardiac complications have been detected in 30% of patients. These include EKG abnormalities, congestive heart failure and cardiac arrhythmias. An increased frequency of HFE mutations in individuals with porphyria cutanea tarda indicates that HFE mutations may predipose an individual to developing this syndrome.

[0028] The effect of iron overload is irreparable damage to vital organs and a multiplicity of associated pathologies described above. The multiplicity of clinical symptoms (and associated pathologies) often causes misdiagnosis of hemochromatosis or failure to diagnose hemochromatosis.

[0029] Untreated hemochromatosis is characterized by iron overload of parenchymal cells, which is toxic and the probable cause of various complications including cirrhosis, and liver cancer, arthropathy, hypogonadotropic hypogonadism, marrow aplasia, skin disorders, diabetes mellitus, and cardiomyopathy. There are 1.5 to 2 million active cases in the U.S. of which 40% have progressive liver disease because they have not been properly diagnosed or treated.

[0030] In untreated hemochromatosis, iron is universally deposited in the hepatocytes of the liver. The iron is found primarily in the cytoplasm of hepatocytes, and by electron microscopy in lysosomal vacuoles, and in more severe cases iron has also been reported deposited in mitochondria. Other liver toxins such as alcohol, and hepatitis exacerbate the

damage caused by the iron deposition. Patients with hemochromatosis are advised not to drink, because of increased liver damage, or to smoke, as iron deposition can also occur in the lungs.

[0031] Individuals which are homozygous (and to a lesser extent heterozygous) for an HFE mutation are at risk for developing increased levels of blood lead. Thus, it is important to identify heterozygous as well as homozygous patients.
[0032] Identification and detection of mutations in the HFE gene are critical to understanding the general mechanisms of iron disorders and diagnosing iron-related pathologies.

Nucleic Acid-based Assays for HFE Mutations

[0033] A biological sample containing RNA or DNA is obtained from an individual and the nucleic acid extracted. Optionally, the nucleic acid is amplified according to standard procedures such as PCR. A nucleic acid polymorphism, e.g, a single base pair polymorphism, is detected using methods well known in the art of molecular biology. For example, a mutation is detected using a standard sequencing assay, nucleic acid hybridization, e.g, using standard Southern, Northern, or dot blot hybridization assay systems and an HFE-specific oligonucleotide probe, restriction enzyme fragment polymorphism analysis, oligonucleotide ligation assay (OLA; Nikerson et al., 1990, Nucl. Acids Res. 87:8923-8927), primer extension analysis (Nikiforov et al., 1994, Nucl. Acids Res. 22:4167-4175), single strand conformation polymorphism (SSCP) analysis, allele-specific PCR (Rust et al., 1993, Nucl. Acids Res. 6:3623-3629), denaturing gradient gel electrophoresis (DGGE), fluorescent probe melting curve analysis (Bernard et al., 1998, Am. J. Pathol. 153:1055-61), RNA mismatch cleavage assay, capillary hybridization, or TaqMan[™] assay (PE Applied Biosystems, Foster City, Calif.). Nucleic acid hybridization assays are also carried out using a bioelectronic microchip technology known in the art, e.g., that described in Sosnowski et al., 1997, Proc. Natl. Acad. Sci. U.S.A. 94:1119-1123; Cheng et al. 1998, Nature Biotechnology 16:541-546; or Edman et al., 1997, Nucl. Acids Res. 25:4907-4914.

Detection of Mutations Using Antibodies and Other HFE Ligands

[0034] Anti-HFE antibodies are know in the art. e.g., those described by Feder et al., 1997, J. Biol. Chem. 272:14025-14028, or are obtained using standard techniques. Such antibodies can be polyclonal or monoclonal. Polyclonal antibodies can be obtained, for example, by the methods described in Ghose et al., Methods in Enzymology, Vol. 93, 326-327, 1983. An HFE polypeptide, or an antigenic fragment thereof, is used as an immunogen to stimulate the production of HFEreactive polyclonal antibodies in the antisera of animals such as rabbits, goats, sheep, rodents and the like. HFE antibodies specific for mutated HFE gene products are raised by immunizing animals with a polypeptide spanning the mutation, e.g., a polypeptide which contains the mutations described herein. For example, the entire $\alpha 1$ domain of a mutant HFE gene product is used as an immunogen. Monoclonal antibodies are obtained by the process described by Milstein and Kohler in Nature, 256:495-97, 1975, or as modified by Gerhard, Monoclonal Antibodies, Plenum Press, 1980, pages 370-371. Hybridomas are screened to identify those producing antibodies that are highly specific for an HFE polypeptide containing a mutation characteristic of an iron metabolism abnormality or clinical hemochromatosis. Preferably, the antibody has an affinity of at least about 10^5 liters/mole, preferably at least 10^6 liters/mole, more preferably at least 10^3 liters/mole, and most preferably, an affinity of at least about 10^9 liters/mole.

[0035] Antibodies specific for the wild type HFE can also be used to diagnose hemochromatosis or iron metabolism abnormalities. Such antibodies are also useful research tools to identify novel mutations indicative of iron disorders or hemochromatosis. A reduction in binding to a wild type HFEspecific antibody indicates the presence of a mutation. Antibody binding is detected using known methods.

[0036] For example, an ELISA assay involves coating a substrate, e.g., a plastic dish, with an antigen, e.g., a patientderived biological sample containing an HFE gene product. An antibody preparation is then added to the well. Antibodies specific for a mutant HFE gene product bind or fail to bind to a patient-derived sample in the well. Non-binding material is washed away and a marker enzyme e.g., horse radish peroxidase or alkaline phosphatase, coupled to a second antibody directed against the antigen-specific primary antibody is added in excess and the nonadherent material is washed away. An enzyme substrate is added to the well and the enzyme catalyzed conversion is monitored as indicative of presence of the mutation. Antibodies are also labelled with various sizes of colloidal gold particles or latex particles for detection of binding.

[0037] The invention employs not only intact monoclonal or polyclonal antibodies, but also an immunologically-active antibody fragment, for example, a Fab or $(Fab)_2$ fragment; an antibody heavy chain, an antibody light chain; a genetically engineered single-chain Fv molecule (Ladner et al., U.S. Pat. No. 4,946,778).

EXAMPLE 1

Selection and Characterization of Subjects

[0038] All individuals studied were Caucasians, 18 years of age or older, and from central Alabama. Twenty probands were identified that were either heterozygous for C282Y or H63D, or lacked these mutations. Hemochromatosis is typically diagnosed by detecting elevated saturation of transferrin, with elevated serum ferritin levels, combined with liver biopsy. Each proband patient described below was previously diagnosed to have hemochromatosis by the working diagnostic criterion for hemochromatosis of the American College of Pathologists (elevated fasting transferrin saturation of greater than 60% saturation for males and greater than 50% saturation for females) on at least two occasions in the absence of other known causes. Probands were interviewed regarding their general medical history, diet (including estimated iron content and ethanol consumption), medicinal iron use, receipt of blood transfusion, prior significant hemorrhage, blood donation for transfusion and/or therapeutic phlebotomy, and pregnancy and lactation. Each proband was also evaluated for viral hepatitis B and C and other hepatic disorders, excess ethanol intake, and hereditary, and acquired anemia. Iron overload was defined as evidence of systemic iron overload demonstrated by otherwise unexplained elevated serum ferritin concentration (≧300 ng/mL in men, ≧200 ng/mL in women), increased hepatic iron content determined using hepatic biopsy specimens, or iron>4 g mobilized by phlebotomy. Complications of iron overload were evaluated and treated, and therapeutic phlebotomy was performed using

standard methods. HFE mutation analysis for C282Y and H63D and human leukocyte antigen (HLA) immunophenotyping or molecular typing were performed using known methods. In some family members, HLA haplotyping had been performed previously for other disease associations, or their HLA type could be deduced from analysis of their kinship and HFE genotyping results. Measurement of serum iron and other clinical laboratory parameters and analysis of hepatic biopsy specimens were performed using routine methods. Control subjects (n=176) who were in apparently good health and were unrelated to the hemochromatosis probands were recruited from the general population. Iron parameters were measured and HLA typing was performed in two control subjects after HFE genotyping revealed that they had the S65C mutation.

EXAMPLE 2

HFE Gene Analysis

[0039] PCR amplification was used to detect mutations. Genomic DNA was prepared from peripheral blood buffy coat or saliva using the QIAmpBlood Kit (QIAGEN, Valencia, Calif.) or FTA Paper and FTA purification reagent (Fitzco Inc., Maple Plain, Minn.), respectively. Fragments were amplified from genomic DNA using eLONGase (Life Technologies, Gaithersburg, Md.) or HotStarTaq DNA polymerase (QIAGEN, Valencia, Calif.).

[0040] Primers used to amplify each exon are shown in Table 3.

TABLE 4

		Hu	man HFE gen	omic DNA		
1	ggatccttta	accgaggaga	ttattatagc	cggagetetg	aagcagcaat	ctcagttctt
61	gtgatagtga	gcaaagaact	acaaactaac	accaaaatgc	aagcttaaag	caaagtttat
121	tgaagcacaa	taatacactc	tgagggacag	cgggcttatt	tctgcgaagt	gaactcagca
181	cttctttaca	gagctcaagg	tgcttttatg	gggtttgtgg	ggaggagttg	aggtttgggc
241			atgttatttg			
301	taaaccgtgc	atggtcttac	ctataatctg	ttaagaaaag	cctcccaggg	atgggggggc
361			ttataatgat			
421			catgtgccac		-	
481			ggccacagac			
541			gaatttaggt			
601			ctcccaactg			
661 721			taggagcagg			
721 781			tgaaacactt			
841			attggttaat			
901			attgaatttt			taaggttgag
961			gctactttcc	-		-
1021			cacctagtgt			
1081			aagacctgtt			
1141			tgtagggtga	-		
1201			acggggacgt		-	-
1261			cctgatgctt			
1321			cgggcgaact			
1381			gggagtttgc			
1441	gcaagcccct	ctccctactt	tctgcgtcca	gaccccgtga	gggagtgcct	accactgaac
1501	tgcagatagg	ggtecetege	cccaggacct	gccccctccc	ccggctgtcc	cggctctgcg
1561	gagtgacttt	tggaaccgcc	cactcccttc	ccccaactag	aatgctttta	aataaatctc
1621	gtagttcctc	acttgagccg	agctaagcct	ggggctcctt	gaacctggaa	ctcgggttta
1681			gtttttccc			
1741			gagcaaaccc			
1801			tggggggggg			
1861			gagacetgg g			
1921			tttccccact			
1981			cgtttgaact	-		
2041 2101			attaagaggc			
2161			agttacattc			aatttcagatt
2221			caaagaacat			
2281			cttagttgac			
2341			cctcagcaca			
2401			atgaggcatg			
2461			ggcagagete			
2521			ttgaataata			
2581			ccagccatgt			
2641			ctttgatatt			
2701	caaatgagca	gaaagatata	caacatcagg	aaatcatggg	tgttgtgaga	agcagagaag
2761			gctgacactt			
2821			cccaggcaaa			
2881			tcatgtgtgt			
2941	ggaaggtgga	ctaccatctg	catgtaggat	gtctagcagt	atcctgtcct	ccctactcac
3001			ccagtcttga			
3061			cctggttaag			
3121			gaagtaggta			
3181			tgtggtgtga			
3241	acaggctttt	aaaagattgc	tctggctgct	atgtggaaag	cagaatgaag	ggagcaacag

TABLE 4-continued

		Hu	man HFE gen	omic DNA	
3301					aggcaagagg tagtggagtg
3361 3421					tcctgaatat attctgaagg
3421 3481					gaattggctg ggtgtagtag ctcaggagtt caagaccagc
3541					aaaatttaget gggtgtgggtg
3601		-			gagggtattg cttgagccca
3661					cttcagccta ggtgacagag
3721					ttaaagttga ctttgttctt
3781	tattttaatt	ttattggcct	gagcagtggg	gtaattggca	atgccatttc tgagatggtg
3841					gcatttggac atgttaagtt
3901					gcagttcagt gtaagaattc
3961					agcactttgg tggctgaggc
4021 4081					ccaacatggt gaaaccccat
4081	-				acgeetatag teeeaggttt tgeaggttge agtgagetga
4201					ctctgtctca aaaaaaaaaaa
4261					aggatttggg tctaatttgc
4321					acacettaae attttetaga
4381	atccaccagc	tttagtggag	tctgtctaat	catgagtatt	ggaataggat ctgggggcag
4441					agtaaagagc acccaggact
4501					aaaatgagga ccagacacag
4561					tectgetece etectaetae
4621 4681					ctctgcacta cctcttcatg
4681 4741					ctttgggcta cgtggatgac agccccgaac tccatgggtt
4801					agagtetgaa agggtgggat
4861					acaaccacag caagggtatg
4921					tcatcttttc atgcatcttg
4981					aagagggaag gaatttgctt
5041					cctattcctt tggttgcagt
5101					ggtcatcctg ggctgtgaaa
5161					gtatgatggg caggaccacc
5221 5281		-			acccagggcc tggcccacca
5281 5341					cagggcctac ctggagaggg aggcgttctg gaccaacaat
5401					agagtggagg aggttgcagg
5461			-		tgtgtgcctc tccaaattct
5521					ttgagatgta tgagacagcc
5581	acaagtcatg	ggtttaattt	cttttctcca	tgcatatggc	tcaaagggaa gtgtctatgg
5641	-			-	tacctgttaa aaattcagaa
5701					gcacttttgg aggccgaggc
5761 5821					acatggtgaa acccgtctct
5821					Egtagtccca gctaattgga gttgcactga gccaagatcg
5941					tottaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaa
6001		-			aggacaaaat atcaagtgag
6061					tctttcatag aacatagcaa
6121					aacaatgcct cctaggttga
6181	cccaggtgaa	actgaccatc	tgtattcaat	cattttcaat	gcacataaag ggcaattAta
6241					tacatgtgag gagaacaagc
6301 6361					atcttaggac acaaaatggt
6361 6421					ctttcctccaa cctatagaag cccctctcct catccttcct
6421 6481					atgtgacete tteagtgace
6541					tcaccatgaa gtggctgaag
6601			-	-	acgtattgcc caatggggat
6661					gggaagagca gagatatacg
6721					tgatctgggg tatgtgactg
6781					ggagtgcctg aggaggtaat
6841					ggctgagggt ggcaatcaaa
6901 6961					tggcacccta gtcattggag
6961 7021					tggaattttg ttcataatat aagtetetta gtaeetetge
7081					tccatgggaa gcatttttct
7141					cagaaaataa tggttctccG
7201					cctactattt tgcaagagct
7261					gtggctattc tcagaaccca
7321					taaagaagac cccatgaggtt
7381					aaagaatgat cacattcagc
7441					ggattccatt aggtgaggtt
7501 7561					aagtaggaga gtataaggca gtttgcttag ctatcactca
7621					ggaaaagaga atcagaaaga
7681					ggttatgatc actggggtgt
					_ 0000 0

TABLE 4-continued

		Hu	man HFE gen	omic DNA		
7741				gateteett		
7801 7861				tagaaagcca aggtctaaat		
7921				cctaggtttg		
7981				ctacgtctta		
8041	-			-		gagtgcatttt
8101				aacctaaaca		
8161	-	-	-	tcaaaaagat		
8221				acctctcccc		
8281 8341				tcctccgtca ctccttaaat		
8401						a ccttaccaga
8461				acccgttcaa		-
8521	tctgtgttac	ccagcaactc	atctgtcacc	aagccttggg	gattcttcca	tctgattgtg
8581				actgcacgaa		
8641				atgatgggtg		
8701 8761				tttttctaat gggatgctac		
8821				cttgttctga		
8881				cttctgagca		
8941	catgcacttc	ttacaataat	tctatgagat	aggttactatt	atccccatt	cttttttaaa
9001				gctcacgcct		
9061				gatcgagacc		
9121				agetgggegt		
9181 9241				tggcatgaac ctaggcgaca		
9241 9301				aaaaaagaaa		
9361 9361				actcagtcaa		
9421				cctagaataa		
9481	-	-		aatgagcttg		
9541	cagaaaacaa	ccaactgacc	ctcagctgtc	atgtttcctt	taaaagtccc	tgaaggaagg
9601	tcctggaatg	tgactccctt	gctcctctgt	tgctctcttt	ggcattcatt	tctttggacc
9661				ctagtggccc		
9721				gaactctggt		
9781				aatggaagcc		
9841 9901				ccggtgcaca		
9961 9961				atcagttcac ggagtgcaat		
10021				tcctgtctca		
10081				ttttgtattt		
10141		-		ctgacctcgt		
10201	ccaaagtgct	gagattacag	gtgtgagcca	ccctgcccag	ccgtcaaaag	agtettaata
10261				tgttactaca		
10321				tgcttcagga		
10381				gatatctcat		
10441				aaaaagtaaa		
10501 10561		-	-	tgttatttaa tgttgcatta		
10621				ttattgaagt		
10621				ttattttgct		
10741						trccactctag
10801				gttatttac		
	atatgacaaa	ttatttctct	cttaatatct	tactatactg	aaagcagact	gctataaggc
	ttcacttact			-	-	
10981	-			gagatttcaa	-	-
11041	-			catcagcaac		
11101	-	-		ggtgttttt	-	
11161 11221	tattcataaa			-		
11221				ccatggtagt		g ctgagggttt
11341				gagggggcgtg		
11401				caagaaacta		
11461	0 0			gaactgggaa		
	ccactctgat				-	
11581				gtcatcttat		
11641				aaaacaaaac		
11701		-		tttttcaaa	-	
11761	-		-	attaaagatt	-	
	tgtaattgtg					
11881 11941				aatgttacta ttgacatcct		
11741	Julaalill	ucceyaaaye	Juaggaugug	lugacatoot	geacycattl	accaectyat

TABLE 4-continued

Human HFE genomic DNA					
12061	atgcatgcat tctggtatct caagcattct atttctgagt aattgtttaa ggtgtagaag agatagatat ggtggatttg gagttgatac ttatatattt tctatttctt ggatggatga atttgtacat taaaagtttt ccatgg (SEO ID NO:27: GENBANK [®] Accesson No. Z92910)				

[0041] Exon 1 spans nt 1028-1324, inclusive; exon 2 spans nt 4652-4915, inclusive; exon 3 spans nt 5125-5400, inclusive; exon 4 spans nt 6494-6769, inclusive; exon 5 spans nt 6928-7041, inclusive; exon 6 spans nt 7995-9050, inclusive, and exon 7 spans nt 10206-10637, inclusive. Intron 4 spans nt 6770-6927, inclusive, and intron 5 spans nt 7042-7994, inclusive.

[0042] Total RNA for the RT-PCR was prepared from 1.5 mL of whole blood using the RNeasy Blood Kit (QIAGEN, Valencia, Calif.). Total messenger RNA encoding the HFE gene was transcribed and amplified with the primers shown above using standard methods, e.g., the Superscript ONE-STEP RT- PCR System (Life Technologies, Gaithersburg, Md.). The amplified product was directly subcloned into the pCR2.1-TOPO vector and transfected into TOP 10 bacteria (Invitrogen, Carlsbad, Calif.). Plasmid DNAs isolated from the subcloning were prepared with the UltraClean Mini Prep Kit (Mo Bio, Solana Beach, Calif.) and sequenced.

[0043] DNA sequencing was performed using the ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit (PEApplied Biosystems, Foster City, Calif.) and analyzed on an ABI Prism 377.

[0044] To detect mutations in exon 2 of the HFE gene, the genomic DNA of probands and normal control subjects were amplified and subjected to a dot blot hybridization assay. 1.0 µl of each resulting PCR product was then applied to a Magna Graph nylon membrane (MSI, Westboro, Mass.). The membranes were treated with 0.5 N NaOH/1.5 M NaCl to denature the DNA, neutralized with 0.5 M Tris-HCl (pH 8.0)/1.5 M NaCl, and rinsed with 2×SSC (1×SSC=0.15 M NaCl/0.015 M sodium citrate, pH 7.0). The DNAs were fixed on the membrane by UV irradiation using a Stratalinker 1800 (Stratagene, Inc., La Jolla, Calif.). The ECL 3'-oligolabelling and detection system (Amersham, Arlington Heights, Ill.) was used for synthesis of labeled oligonucleotide probes, hybridization, and signal detection. The oligonucleotide sequences used to detect each point mutation were (substituted bases are shown as upper case letters):

TABLE 5

Oligonucleotde Probes				
Point Mutation	Oligonucleotide			
G93R mutation	gtctgaaaCggtgggat (SEQ ID NO:28)			
I105T mutation	acttctggactaCtatgg (SEQ ID NO:29)			
S65C mutation	atcatgagTgtcgccgt (SEQ ID NO:30)			

For signal detection, each oligonucleotide was labeled with fluorescein-11-dUTP using terminal deoxynucleotidyl trans-

ferase according to the manufacturer's instructions (Amersham Ltd., Arlington Heights, Ill.). The membranes were prehybridized in 5×SSC, 0.1% Hybridization buffer component, 0.02% SDS, 5% LiquidBlock at 42° C. for approximately 2 hours. Labelled oligonucleotide probes were added to individual bags containing the membranes and prehybridization buffer and incubated at 42° C. overnight. The blots were washed twice with 5×SSC, 0.1% SDS for 5 minutes at room temperature. Stringency washes for hybridization with oligonucleotides having the sequence of SEQ ID NO: 30 or 28 were performed twice in 0.2×SSC/0.1% SDS for 15 minutes at 42° C. Membranes probed with an oligonucleotide having the sequence of SEQ ID NO:29 was washed twice under less stringent conditions (0.5×SSC/0.1% SDS, 15 minutes at 42° C.). Detection of a fluorescent signal was performed according to standard methods.

EXAMPLE 3

Characterization of Probands

[0045] The mean age of the twenty probands was 44 ± 11 years (range 27-62 years); thirteen (65.0%) were men and seven (35.0%) were women. Eleven had iron overload. One had hepatic cirrhosis, two had diabetes mellitus, four had arthropathy, and two had hypogonadotrophic hypogonadism. One proband also had hereditary stomatocytosis, another had beta-thalassemia trait, a third had ethanol intake>60 g daily, and a fourth had porphyria cutanea tarda. No proband is had evidence of excess oral or parenteral iron intake, or of viral hepatitis B or C. At diagnosis of hemochromatosis, evaluation for common HFE mutations revealed that eleven probands were C282Y heterozygotes, five were H63D heterozygotes, and four did not inherit C282Y or H63D.

[0046] The mean age of the initial 176 control subjects was 52 ± 15 years (range 18-86 years); 79 (44.9%) were men and 97 (55.1%) were women. There was no significant difference in the mean ages of men and women. Frequencies of HFE genotypes among the control subjects are shown in Table 6. These values are similar to those previously reported from normal persons from the same geographic area.

TABLE 6

Frequencies of HFE Genotypes in Alabama Subjects.				
HFE Genotype	Hemochromatosis Probands with "Atypical" HFE Genotypes, % (n)	Normal Control Subjects, % (n)		
wt/wt	15.00 (3)	60.23 106)		
C282Y/wt	45.00 (9)	13.06 (23)		
H63D/wt	20.00 (4)	15.34 (27)		
S65C/wt	5.00(1)	1.14(2)		
C282Y/S65C	5.00 (1)	0		
C282Y/G93R	5.00 (1)	0		

Frequencies of HFE Genotypes in Alabama Subjects.				
HFE Genotype	Hemochromatosis Probands with "Atypical" HFE Genotypes, % (n)	Normal Control Subjects, % (n)		
H63D/1105T	5.00(1)	0		
H63D/C282Y	0	6.82 (12)		
H63D/H63D	0	3.41 (6)		

Results are expressed as percentage (n). The wild-type (wt) allele was defined as the HFE configuration in which the mutations C282Y, H63D, S65C, I105T, or G93R were not detected.

EXAMPLE 4

Identification of Novel HFE Mutations in Hemochromatosis Probands

[0047] The following novel mutations (missense mutations) were identified in probands 1 and 2: exon 2, nt $314T \rightarrow C$ (I105T), and exon 2, nt $277G \rightarrow C$ (G93R), respectively (Table 7; FIGS. 1 and 2). Probands 3 and 4 had a S65C mutation The S65C mutation has been observed in hemochromatosis patients but has not been deemed to be indicative of a disease state. In contrast, the data presented herein indicate that the S65C mutation is diagnostic of a disease state. This result is surprising in view of earlier observations. Other than C282Y or H63D, no HFE exon mutations were detected in the remaining sixteen of the twenty probands (Table 6). Nine probands were heterozygous for a base-pair change at intron 2, nt 4919T/C (SEQ ID NO:27); two probands were homozygous for this base-pair change. Heterozygosity for a base-pair change in intron 4 (nt 6884T \rightarrow C) was detected only in probands 3 and 4, both of whom also inherited S65C. One proband was heterozygous for a base-pair change at intron 5, nt 7055A \rightarrow G.

[0048] Using dot blot methodology, heterozygosity for the S65C mutation was detected in two of 176 normal control subjects (Table 6). The G93R or I105T mutations were not detected in normal control subjects (Tables 6 and 8).

EXAMPLE 5

Association of Novel HFE Coding Region Mutations to C282Y and H63D and HFE Intron Alleles

[0049] In proband 1, two mutations of exon 2 (H63D and I105T) were detected. After subcloning the genomic fragment, the subclones revealed that these mutations occurred on separate chromosomes; this observation was confirmed by family studies indicating segregation of I105T

and Uncommon HFE Gene	otypes in Alaba	ma Subjects*
	Transferrin	Serum Ferri

TABLE 7

	Age (years)), HFE		Transferrin	Serum Ferritin,	Hepatocyte	Phlebotomy,
Subject†	Sex	Genotype	HLA Type	Saturation, %	ng/mL	Iron Grade	Units
Proband 1	52 M	H63D/I105T	A2, 3; B7, 7	62	868	2+	20
Proband 2‡	40 M	C282Y/G93R	A2, 3; B7, 62	78	861	4+	34
Proband 3§	47 F	C282Y/S65C	A2, 32; B8, 44;	90	281	3+	37
			Bw4, 6; Cw5, 7				
Proband 4**	81 F	S65C/wt	A2, 32; B14, 62	100	5,135	N.D.	37
Normal Control 1	28 M	S65C/wt	A2, 31; B35, 60	28	141	N.D.	N.D.
Normal Control 2	69 M	S65C/wt	A24, 26; B8,	42	747	2+	N.D.
			B37; Bw4, 6;				
			Cw6, 5 (or 7)				

*Serum transferrin saturation, serum ferritin concentration, and percutaneous hepatic biopsy were performed before therapeutic phlebotomy was initiated. Reference ranges for these parameters are 15-45%; 20-300 ng/mL (men) and 20-200 ng/mL (women); and 0-1+, respectively. Iron depletion (serum ferritin ≤ 20 ng/mL) was induced by removing the indicated numbers of units of blood. None of these persons had evidence of hepatic cirrhosis, diabetes mellitus, hemochromatosis-associated arthropathy, hypogonadotrophic hypogonadism, other endocrinopathy, or cardiomopathy. N.D. = not done. The mutations indicated are exon 4, nt 845G \rightarrow A (C282Y); exon 2, nt 187C \rightarrow G (H63D); exon 2, nt 314T \rightarrow C (105T); exon 2, nt 277G \rightarrow C (G93R); and exon 2, nt 193A \rightarrow T (S65C). The wild-type (wt) allele was defined as an HFE allele in which the mutations C282Y, H63D, S65C, 1105T, or G93R were not detected.

[†]Countries of origin: Probands 1 and 2, England; Proband 3, Wales, England, and Americas (Cherokee); Proband 4, England and Ireland; Normal Control 1, England; Normal Control 2, The Netherlands.

[‡]The father and sister of Proband 2 are presently undergoing therapy for hemochromatosis and iron overload, but their clinical and genetic data were unavailable.

§Proband 3 had porphyria cutanea tarda alleviated with therapeutic phlebotomy.

Phenotypes :

**Proband 4 had hereditary stomatocytosia unaffected by phlebotomy treatments. 37 units of blood were removed by phlebotomy before treatment was discontinued due to stroke apparently unrelated to anemia or iron overload (post-treatment serum ferritin 1,561 ng/mL). Her 59 year-old daughter (who does not have hereditary stomatocytosis) had transferrin saturation 42%, serum ferritin 62 ng/mL, HLA type A1, 32; B14, 15; Bw4, 6; Cw3, 8, and HFE genotype S65C/H63D. These data permitted assignment of the S65C mutation in this family to a haplotype carrying HLA-A32; linkage of S65C and HLA-A32 was also observed in the family of Proband 3.

TABLE 8

Frequencies of I						
	wt*	C282Y	H63D	S65C†	I105T	G93R
Hemochromatosis Probands with	0.500	0.275	0.125	0.050	0.025	0.025
"Atypical" HFE Genotypes (n = 20) Normal Control Subjects (n = 176)	0.750	0.099	0.145	0.006	\$	\$

The wild-type (wt) allele was defined as an HFE allele in which the mutations C282Y, H63D, S65C, I105T, or G93R were not detected. †S65C was detected in 2 of 22 (0.091) proband chromosomes and in 2 of 266 (0.0075) control

7S65C was detected in 2 of 22 (0.091) proband chromosomes and in 2 of 266 (0.0075) control chromosomes that did not bear the C282Y, H63D, S65C, I105T, or G93R mutation. #Based on this data set, the frequency of the I105T and G93R HFE alleles is estimated to be <0.0028, respectively.

and H63D (FIG. 1). In proband 2 (HFE genotype C282Y/G93R), RT-PCR analysis (with subsequent subcloning and sequencing) revealed that these HFE mutations occurred on separate chromosomes. Family studies of proband 3 (HFE genotype C282Y/S65C) indicated that the C282Y and S65C HFE alleles segregated independently, establishing their occurrence on separate chromosomes (Table 7, FIG. 3).

[0050] In proband 1 (HFE genotype H63D/I105T), the I105T mutation was co-inherited with HLA-A3, B7. In probands 3 and 4 and their respective families, S65C was inherited on the same chromosome as HLA-A32, indicating that HLA-A32 is a marker for chromosomes bearing the S65C mutation, and individuals with HLA-A32 have an increased risk for developing hemochromatosis. The G93R mutation is associated with HLA-A2, and individuals with that haplotype have an increased risk for developing hemochromatosis. The I105T mutation is associated with HLA-A3, e.g., HLA-A3, B7, and individuals with that haplotype have an increased risk for developing hemochromatosis. Among twenty probands tested, the nucleotide polymorphism in intron 4 (nt 6884T \rightarrow C) was detected in probands 3 and 4, both of whom also had S65C. Subjects that tested positive for the S65C mutation all were found to have the intron 4 (6884T \rightarrow C) mutation, including two probands (3 and 4), their families, and two normal controls.

EXAMPLE 6

HFE Coding Region Mutations and Clinical Phenotype

[0051] The I105T and G93R mutations were associated with a hemochromatosis clinical phenotype in probands 1 and 2 who also inherited H63D and C282Y, respectively. Proband 3 had clinical evidence of hemochromatosis, iron overload, and porphyria cutanea tarda associated with compound heterozygosity for C282Y and S65C. Proband 4 had severe iron overload associated with heterozygosity for S65C and co-inheritance of hereditary stomatocytosis (Table 7). The sister of proband 1 (HFE genotype I105T/wt) was not completely evaluated for hyperferritinemia (FIG. 1). Otherwise, family members of probands who were heterozygous for novel HFE mutations described herein had little or no evidence of abnormal iron parameters, a hemochromatosis phenotype, or of iron overload (Table 7 and 9; FIGS. 1 and 3). Normal Control 1 who had HFE genotype S65C/wt had a

TABLE 9

	I	Iemochromatiosis (H	IC) Family st	udy/patent	<u>. </u>		
Subject/Age/Sex	HLA Type	exon 2	exon 4	intron 4 5636bp	Tf sat** %		Diagnosis/Hepatocyte Iron grade
Proband 1/57M (201)	A2, 3; B7, 7	H63D/H, 1105T/1	Wt	Т	62	868	HC/2+
brother/45M(204)		H63D/H	Wt	T^*	31	186	
sister/50F(203)	A3, 3: B7, 7	1105T	Wt*	T*	37	576	
daughter/31F(301)	A32, 68; B7, 44	1105T/1	Wt*	T^*	31	56	
son/27M(302)	A2, 68; B7, 44	H63D/H	Wt*	Т*	33	44	
Proband 2/40M	A2, 3; B7, 62	G93R/G	C282Y/C	Т	78	861	HC/4+
Father		Wt	C282Y/Y*	Т*			HC
Sister		G93R/G	C282Y/C*	Т*			HC
Proband 3/47(201)	A2, 32; B8, 44	S65C/S	C282Y/C	T/C	90	281	HC/3+
brother/45M(202)	A2, 32; B44, 51	S65C/S	Wt	T/C	33	42	
mother/81F(102)	A2, 2; B8, 51	Wt	C282Y/C	T*	NT	NT	
sister/33F(204)	A2, 7; B27, 51	Wt	Wt	Т*	NT	NT	
brother/35M(203)	A2, 7; B27, 51	Wt	Wt*	T*	NT	NT	
sister		Wt	C282Y/C*	T*			
sister		S65C/S	Wt*	T/C*			
Proband 4/81F	A2, 32; B14, 62	S65C/S	Wt	T/C	100	S135	HC + stomatocytosis
daughter/59*	A1, 32; B14, 15	H63D/H, S65C/S	Wt*	T/C	42	62	
Control 1/28M	A2, 31; B35, 60	S65C/S	Wt	T/C	28	141	
Control 2/69M	A24, 26; B8, 37	S65C/S	Wt	T/C	42	747	2+

*RE cut

**normal (15-45%)

***20-300 ng/ml(men)

2C-200 ng/ml(women)

normal iron phenotype (Table 7) Normal Control 2, who also had the HFE genotype S65C/wt, had hyperferritinemia and mildly increased stainable hepatocellular iron deposition, but had no symptoms or other objective findings attributable to iron overload (Table 7). These data indicate that S65C heterozygosity is associated with abnormal iron parameters.

EXAMPLE 7

HLA Gene Linkage

[0052] In the family of proband 1, the I105T mutation was linked to HLA-A3, B7, markers which are often linked to the C282Y mutation and its ancestral haplotype. HLA-A3, B7 is also significantly more common among C282Y-negative hemochromatosis probands than in normal control subjects tested. S65C was linked to HLA-A32 in probands 3 and 4 (and their respective families). The base-pair change in intron is 4 (nt 6884T \rightarrow C) was detected only in probands who inherited the S65C mutation. These data indicate that an intron 4 mutation (nt 6884 \rightarrow C) is a marker for chromosomes bearing

the S65C HFE allele. Three of four probands who inherited mutated HFE exon 2 mutations described herein also inherited the C282Y or H63D mutations on separate chromosomes. In a fourth proband, the co-inheritance of S65C heterozygosity and hereditary stomatocytosis was associated with severe iron overload.

[0053] Altered interactions of transferrin receptor, transferrin, and C282Y and H63D mutant HFE protein contribute to the pathology of hemochromatosis. The S65C, G93R, and I105T mutations are located within the α 1 domain: in the α 1 helix of the HFE class I-like heavy chain (I105T and G93R), and at the tip of the A chain loop of the β -pleated sheet (S65C). These mutations affect the overall structure of the HFE gene product, and specifically affect the salt bridge between residues H63and D95. The I105T substitution also inhibits proper folding of the α 1 domain of the HFE gene product, and specifically affects the hydrophobicity of the hydrophobic F pocket.

[0054] Other embodiments are within the following claims.

SEQUENCE LISTING

13

```
<160> NUMBER OF SEQ ID NOS: 30
```

<210> SEQ ID NO 1 <211> LENGTH: 2506 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

```
<400> SEQUENCE: 1
```

atgggcccgc gagccaggcc	ggcgcttctc	ctcctgatgc	ttttgcagac	cgcggtcctg	60
cagggggggt tgctgcgttc	acactctctg	cactacctct	tcatgggtgc	ctcagagcag	120
gaccttggtc tttccttgtt	tgaagctttg	ggctacgtgg	atgaccagct	gttcgtgttc	180
tatgatcatg agagtcgccg	tgtggagccc	cgaactccat	gggtttccag	tagaatttca	240
agccagatgt ggctgcagct	gagtcagagt	ctgaaagggt	gggatcacat	gttcactgtt	300
gacttctgga ctattatgga	aaatcacaac	cacagcaagg	agtcccacac	cctgcaggtc	360
ateetggget gtgaaatgea	agaagacaac	agtaccgagg	gctactggaa	gtacgggtat	420
gatgggcagg accaccttga	attctgccct	gacacactgg	attggagagc	agcagaaccc	480
agggcctggc ccaccaagct	ggagtgggaa	aggcacaaga	ttcgggccag	gcagaacagg	540
gcctacctgg agagggactg	ccctgcacag	ctgcagcagt	tgctggagct	ggggagaggt	600
gttttggacc aacaagtgcc	tcctttggtg	aaggtgacac	atcatgtgac	ctcttcagtg	660
accactctac ggtgtcgggc	cttgaactac	tacccccaga	acatcaccat	gaagtggctg	720
aaggataagc agccaatgga	tgccaaggag	ttcgaaccta	aagacgtatt	gcccaatggg	780
gatgggacct accagggctg	gataaccttg	gctgtacccc	ctggggaaga	gcagagatat	840
acgtgccagg tggagcaccc	aggcctggat	cagcccctca	ttgtgatctg	ggagccctca	900
ccgtctggca ccctagtcat	tggagtcatc	agtggaattg	ctgtttttgt	cgtcatcttg	960
ttcattggaa ttttgttcat	aatattaagg	aagaggcagg	gttcaagagg	agccatgggg	1020
cactacgtct tagctgaacg	tgagtgacac	gcagcctgca	gactcactgt	gggaaggaga	1080
caaaactaga gactcaaaga	gggagtgcat	ttatgagctc	ttcatgtttc	aggagagagt	1140

-continued	
- tgaacctaaa catagaaatt gcctgacgaa ctccttgatt ttagccttct ctgttcattt	1200
cctcaaaaag atttccccat ttaggtttct gagttcctgc atgccggtga tccctagctg	1260
tgacetetee cetggaactg teteteatga aceteaaget geatetagag getteettea	1320
tttcctccgt cacctcagag acatacacct atgtcatttc atttcctatt tttggaagag	1380
gactccttaa atttgggggga cttacatgat tcattttaac atctgagaaa agctttgaac	1440
cctgggacgt ggctagtcat aaccttacca gatttttaca catgtatcta tgcattttct	1500
ggaccegtte aaetttteet ttgaateete tetetgtgtt aeeeagtaae teatetgtea	1560
ccaagcettg gggattette catetgattg tgatgtgagt tgeacageta tgaaggetgt	1620
gcactgcacg aatggaagag gcacctgtcc cagaaaaagc atcatggcta tctgtgggta	1680
gtatgatggg tgtttttagc aggtaggagg caaatatctt gaaaggggtt gtgaagaggt	1740
gttttttcta attggcatga aggtgtcata cagatttgca aagtttaatg gtgccttcat	1800
ttgggatgct actctagtat tccagacctg aagaatcaca ataattttct acctggtctc	1860
tccttgttct gataatgaaa attatgataa ggatgataaa agcacttact tcgtgtccga	1920
ctcttctgag cacctactta catgcattac tgcatgcact tcttacaata attctatgag	1980
ataggtacta ttatccccat ttcttttta aatgaagaaa gtgaagtagg ccgggcacgg	2040
tggetegege etgtggteece agggtgetga gattgeaggt gtgageeace etgeeeagee	2100
gtcaaaagag tettaatata tatateeaga tggeatgtgt ttaetttatg ttaetaeatg	2160
cacttggctg cataaatgtg gtacaaccat tctgtcttga agggcaggtg cttcaggata	2220
ccatatacag ctcagaagtt tcttctttag gcattaaatt ttagcaaaga tatctcatct	2280
cttcttttaa accattttct ttttttgtgg ttagaaaagt tatgtagaaa aaagtaaatg	2340
tgatttacgc tcattgtaga aaagctataa aatgaataca attaaagctg ttatttaatt	2400
agccagtgaa aaactattaa caacttgtct attacctgtt agtattattg ttgcattaaa	2460
aatgcatata ctttaataaa tgtacattgt attgtaaaaa aaaaaa	2506
<210> SEQ ID NO 2 <211> LENGTH: 348 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 2	
Met Gly Pro Arg Ala Arg Pro Ala Leu Leu Leu Met Leu Leu Gln	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Thr Ala Val Leu Gln Gly Arg Leu Leu Arg Ser His Ser Leu His Tyr 20 25 30	
Leu Phe Met Gly Ala Ser Glu Gln Asp Leu Gly Leu Ser Leu Phe Glu 35 40 45	
Ala Leu Gly Tyr Val Asp Asp Gln Leu Phe Val Phe Tyr Asp His Glu 50 55 60	
Ser Arg Arg Val Glu Pro Arg Thr Pro Trp Val Ser Ser Arg Ile Ser 65 70 75 80	
Ser Gln Met Trp Leu Gln Leu Ser Gln Ser Leu Lys Gly Trp Asp His	
85 90 95	
Met Phe Thr Val Asp Phe Trp Thr Ile Met Glu Asn His Asn His Ser	
Met Phe Thr Val Asp Phe Trp Thr Ile Met Glu Asn His Asn His Ser 100 105 110 Lys Glu Ser His Thr Leu Gln Val Ile Leu Gly Cys Glu Met Gln Glu	

-continued

										-	con	tın	ued						
	115					120					125								
Asp Ası 130		Thr	Glu	Gly	Tyr 135	Trp	Lys	Tyr	Gly	Tyr 140	Asp	Gly	Gln	Asp					
lis Leu .45	u Glu	Phe	Суз	Pro 150	Asp	Thr	Leu	Asp	Trp 155	Arg	Ala	Ala	Glu	Pro 160					
Arg Ala	a Trp	Pro	Thr 165	Lys	Leu	Glu	Trp	Glu 170	Arg	His	Lys	Ile	Arg 175	Ala					
Arg Glı	n Asn	Arg 180	Ala	Tyr	Leu	Glu	Arg 185	Asp	Cys	Pro	Ala	Gln 190	Leu	Gln					
3ln Leu	u Leu 195	Glu	Leu	Gly	Arg	Gly 200		Leu	Asp	Gln	Gln 205		Pro	Pro					
Jeu Val 210	l Lys		Thr	His	His 215		Thr	Ser	Ser	Val 220		Thr	Leu	Arg					
ys Arg		Leu	Asn	Tyr 230		Pro	Gln	Asn	Ile 235		Met	Lys	Trp	Leu 240					
iya Aal	р Lуз	Gln			Asp	Ala	Lys			Glu	Pro	Lys							
eu Pro	o Asn		245 Asp	Gly	Thr	Tyr		250 Gly	Trp	Ile	Thr		255 Ala	Val					
ro Pro	o Gly	260 Glu	Glu	Gln	Arg	Tyr	265 Thr	Cys	Gln	Val	Glu	270 His	Pro	Gly					
eu Asj	275 p Gln		Leu	Ile	Val	280 Ile	Trp	Glu	Pro	Ser	285 Pro	Ser	Gly	Thr					
290 Jeu Val		Glv	Val	Ile	295 Ser	Glv	Ile	Ala	Val	300 Phe	Val	Val	Ile	Leu					
05		1		310		1			315					320					
he Ile	e Gly	Ile	Leu 325	Phe	Ile	Ile	Leu	Arg 330	ГÀа	Arg	Gln	Gly	Ser 335	Arg					
Bly Ala	a Met	Gly 340	His	Tyr	Val	Leu	Ala 345	Glu	Arg	Glu									
<pre><210> \$ <211> I <212> 7 <212> 7 <213> C <220> F <223> C </pre>	LENGT TYPE: DRGAN FEATU DTHER DIIGO	H: 2: DNA ISM: RE: INFO nucl	Arti DRMAJ	ION :	Des	ecrip		ı of	Arti	ifici	ial S	Seque	ence :						
ctccta	acta	caca	tggti	ca aq	33										23				
<pre><210> S <211> I <212> T <213> C <220> F <223> C </pre>	LENGT TYPE : DRGAN FEATU	H: 2: DNA ISM: RE: INF(L Arti DRMAJ	ION	Des	crip		ı of	Arti	ifici	ial S	Seque	ence						
<400> S	SEQUE	NCE:	4																
ctctga	acaa	cctc	aggaa	ag g											21				
<210> S <211> I <212> J <213> C <223> F	LENGT FYPE : DRGAN	H: 22 DNA ISM:	2	lfici	lal S	Seque	ence												

16

-continued	
223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer	
400> SEQUENCE: 5	
gtggaaata gggacctatt cc	22
:210> SEQ ID NO 6	
211> LENGTH: 22	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE: 223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer	
400> SEQUENCE: 6	
actotgoca otagactata gg	22
210> SEQ ID NO 7	
<211> LENGTH: 21	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
(220> FEATURE:	
223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer	
:400> SEQUENCE: 7	
gttecagtet teetggeaag g	21
210> SEQ ID NO 8	
<211> LENGTH: 22 <212> TYPE: DNA	
212> TIPE: DNA 213> ORGANISM: Artificial Sequence	
220> FEATURE:	
223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer	
:400> SEQUENCE: 8	
aaatgettee catggatgee ag	22
<210> SEQ ID NO 9	
<211> LENGTH: 30	
212> TYPE: DNA	
213> ORGANISM: Artificial Sequence	
220> FEATURE: 223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer	
:400> SEQUENCE: 9	
aaaggateea eeatgggeee gegageeagg	30
:210> SEQ ID NO 10	
<211> LENGTH: 20	
<pre><212> TYPE: DNA </pre>	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<pre>:223> OTHER INFORMATION: Description of Artificial Sequence:</pre>	
:400> SEQUENCE: 10	
ytgagtctgc aggctgcgtg	20
210> SEQ ID NO 11	
<211> LENGTH: 21	
<212> TYPE: DNA	

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 11 gttccagtct tcctggcaag g 21 <210> SEQ ID NO 12 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 12 aaatgcttcc catggatgcc ag 22 <210> SEQ ID NO 13 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 13 21 gttccagtct tcctggcaag g <210> SEQ ID NO 14 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 14 aaatgettee catggatgee ag 2.2 <210> SEQ ID NO 15 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 15 gtgtggagcc tcaacatcct g 21 <210> SEQ ID NO 16 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 16 acaagacete agaetteeag e 21 <210> SEQ ID NO 17

17

18

-continued

<211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 17 22 ggtggaaata gggacctatt cc <210> SEQ ID NO 18 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 18 cactctgcca ctagagtata gg 22 <210> SEQ ID NO 19 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 19 gttecagtet teetggeaag g 21 <210> SEQ ID NO 20 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 20 21 ttacctcctc aggcactcct c <210> SEQ ID NO 21 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 21 aaaggatcca ccatgggccc gcgagccagg 30 <210> SEQ ID NO 22 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 22 gtgagtctgc aggctgcgtg 20

<210> SEO ID NO 23 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 23 tgcctgagga ggtaattatg g 21 <210> SEQ ID NO 24 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 24 aaatgettee catggatgee ag 22 <210> SEQ ID NO 25 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 25 tgcctgagga ggtaattatg g 21 <210> SEQ ID NO 26 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 26 aaatgettee catggatgee ag 22 <210> SEQ ID NO 27 <211> LENGTH: 12146 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 27 ggatccttta accgaggaga ttattatagc cggagctctg aagcagcaat ctcagttctt 60 gtgatagtga gcaaagaact acaaactaac accaaaatgc aagcttaaag caaagtttat 120 tgaagcacaa taatacactc tgagggacag cgggcttatt tctgcgaagt gaactcagca 180 cttctttaca gagctcaagg tgcttttatg gggtttgtgg ggaggagttg aggtttgggc 240 tgtatctgag tgacaggatg atgttatttg attgaagttt atagctatac aatctaaaat 300 taaactgtgc atggtcttac ctataatttg ttaagaaaag cctcccaggg atggggggg 360 aaaactgtat gtaaattcta ttataatgat ggcatgatga acttggggtg aacttgaaga 420 caggettttg tgttgttggg catgtgecac ettagggaat ttecaectgt acceteettt 480

19

				-contir	nued		
ctctttctcc	aggatattt	ggccacagac	tttatcataa	actccatccc	ttagggtggc	540	
attagggtag	tcttgggcct	gaatttaggt	gggccagtgg	ctgtcttagt	gacagcettt	600	
ccgctctctt	ctgtcatccc	ctcccaactg	ctaatgtcta	actacctaac	aattacccat	660	
taaatcagtg	tgtctggggt	taggagcagg	cctcaatatg	tttaatcatt	ctccagataa	720	
tcccaatact	gtaaagtttg	tgaaacactt	gtcagataat	tcaattatga	aggctgtgga	780	
acgtgtttca	gtaggatcta	attggttaat	gttatgactt	aattaatttg	aatcaaaaaa	840	
caaaatgaaa	aagctttata	tttctaagtc	aaataagaca	taagttggtc	taaggttgag	900	
ataaaatttt	taaatgtatg	attgaatttt	gaaaatcata	aatatttaaa	tatctaaagt	960	
tcagatcaga	acattgcgaa	gctactttcc	ccaatcaaca	acaccccttc	aggatttaaa	1020	
aaccaagggg	gacactggat	cacctagtgt	ttcacaagca	ggtaccttct	gctgtaggag	1080	
agagagaact	aaagttctga	aagacctgtt	gcttttcacc	aggaagtttt	actgggcatc	1140	
tcctgagcct	aggcaatagc	tgtagggtga	cttctggagc	catccccgtt	tccccgcccc	1200	
ccaaaagaag	cggagattta	acgggggacgt	gcggccagag	ctggggaaat	gggcccgcga	1260	
gccaggccgg	cgcttctcct	cctgatgctt	ttgcagaccg	cggtcctgca	ggggcgcttg	1320	
ctgcgtgagt	ccgagggctg	cgggcgaact	agggggcgcgg	cggggggtgga	aaaatcgaaa	1380	
ctagctttt	ctttgcgctt	gggagtttgc	taactttgga	ggacctgctc	aacccaatcc	1440	
gcaagcccct	ctccctactt	tctgcgtcca	gaccccgtga	gggagtgcct	accactgaac	1500	
tgcagatagg	ggtccctcgc	cccaggacct	gccccctccc	ccggctgtcc	cggctctgcg	1560	
gagtgacttt	tggaaccgcc	cactcccttc	ccccaactag	aatgetttta	aataaatctc	1620	
gtagttcctc	acttgagctg	agctaagcct	ggggctcctt	gaacctggaa	ctcgggttta	1680	
tttccaatgt	cagctgtgca	gtttttccc	cagtcatctc	caaacaggaa	gttcttccct	1740	
gagtgettge	cgagaaggct	gagcaaaccc	acagcaggat	ccgcacgggg	tttccacctc	1800	
agaacgaatg	cgttgggcgg	tgggggcgcg	aaagagtggc	gttggggatc	tgaattette	1860	
accattccac	ccacttttgg	tgagacctgg	ggtggaggtc	tctagggtgg	gaggctcctg	1920	
agagaggcct	acctcgggcc	tttccccact	cttggcaatt	gttcttttgc	ctggaaaatt	1980	
aagtatatgt	tagttttgaa	cgtttgaact	gaacaattct	cttttcggct	aggctttatt	2040	
gatttgcaat	gtgctgtgta	attaagaggc	ctctctacaa	agtactgata	atgaacatgt	2100	
aagcaatgca	ctcacttcta	agttacattc	atatctgatc	ttatttgatt	ttcactaggc	2160	
atagggaggt	aggagctaat	aatacgttta	ttttactaga	agttaactgg	aattcagatt	2220	
atataactct	tttcaggtta	caaagaacat	aaataatctg	gttttctgat	gttatttcaa	2280	
gtactacagc	tgcttctaat	cttagttgac	agtgattttg	ccctgtagtg	tagcacagtg	2340	
ttctgtgggt	cacacgccgg	cctcagcaca	gcactttgag	ttttggtact	acgtgtatcc	2400	
acattttaca	catgacaaga	atgaggcatg	gcacggcctg	cttcctggca	aatttattca	2460	
atggtacacg	gggctttggt	ggcagagete	atgtctccac	ttcatagcta	tgattcttaa	2520	
acatcacact	gcattagagg	ttgaataata	aaatttcatg	ttgagcagaa	atattcattg	2580	
tttacaagtg	taaatgagtc	ccagccatgt	gttgcactgt	tcaagcccca	agggagagag	2640	
cagggaaaca	agtctttacc	ctttgatatt	ttgcattcta	gtgggagaga	tgacaataag	2700	
caaatgagca	gaaagatata	caacatcagg	aaatcatggg	tgttgtgaga	agcagagaag	2760	

-continued	
- tcagggcaag tcactctggg gctgacactt gagcagagac atgaaggaaa taagaatgat	2820
attgactggg agcagtattt cccaggcaaa ctgagtgggc ctggcaagtt ggattaaaaa	2880
gegggtttte teageactae teatgtgtgt gtgtgtgggg ggggggggggg egtgggggg	2940
ggaaggggga ctaccatctg catgtaggat gtctagcagt atcctgtcct ccctactcac	3000
taggtgctag gagcactccc ccagtcttga caaccaaaaa tgtctctaaa ctttgccaca	3060
tgtcacctag tagacaaact cctggttaag aagctcgggt tgaaaaaaaat aaacaagtag	3120
tgctggggag tagaggccaa gaagtaggta atgggctcag aagaggagcc acaaacaagg	3180
ttgtgcaggc gcctgtaggc tgtggtgtga attctagcca aggagtaaca gtgatctgtc	3240
acaggetttt aaaagattge tetggetget atgtggaaag cagaatgaag ggageaacag	3300
taaaagcagg gagcccagcc aggaagctgt tacacagtcc aggcaagagg tagtggagtg	3360
ggctgggtgg gaacagaaaa gggagtgaca aaccattgtc tcctgaatat attctgaagg	3420
aagttgctga aggattctat gttgtgtgag agaaagagaa gaattggctg ggtgtagtag	3480
ctcatgccaa ggaggaggcc aaggagagca gattcctgag ctcaggagtt caagaccagc	3540
ctgggcaaca cagcaaaacc ccttctctac aaaaaataca aaaattagct gggtgtggtg	3600
gcatgcacct gtgatcctag ctactcggga ggctgaggtg gagggtattg cttgagccca	3660
ggaagttgag gctgcagtga gccatgactg tgccactgta cttcagccta ggtgacagag	3720
caagaccetg teteceetga ecceetgaaa aagagaagag ttaaagttga etttgttett	3780
tattttaatt ttattggcct gagcagtggg gtaattggca atgccatttc tgagatggtg	3840
aaggcagagg aaagagcagt ttggggtaaa tcaaggatct gcatttggac atgttaagtt	3900
tgagattcca gtcaggcttc caagtggtga ggccacatag gcagttcagt gtaagaattc	3960
aggaccaagg cagggcacgg tggctcactt ctgtaatccc agcactttgg tggctgaggc	4020
aggtagatca tttgaggtca ggagtttgag acaagcttgg ccaacatggt gaaaccccat	4080
gtctactaaa aatacaaaaa ttagcctggt gtggtggcgc acgcctatag tcccaggttt	4140
tcaggaggct taggtaggag aatcocttga acccaggagg tgcaggttgc agtgagctga	4200
gattgtgcca ctgcactcca gcctgggtga tagagtgaga ctctgtctca aaaaaaaaa	4260
aaaaaaaaaa aaaaaaaaa aactgaagga attattcctc aggatttggg tctaatttgc	4320
cctgagcacc aactcctgag ttcaactacc atggctagac acaccttaac attttctaga	4380
atccaccage tttagtggag tetgtetaat catgagtatt ggaataggat etgggggggg	4440
tgagggggtg gcagccacgt gtggcagaga aaagcacaca aggaaagagc acccaggact	4500
gtcatatgga agaaagacag gactgcaact caccetteae aaaatgagga eeagacacag	4560
ctgatggtat gagttgatgc aggtgtgtgg agcctcaaca tcctgctccc ctcctactac	4620
acatggttaa ggcctgttgc tctgtctcca ggttcacact ctctgcacta cctcttcatg	4680
ggtgcctcag agcaggacct tggtctttcc ttgtttgaag ctttgggcta cgtggatgac	4740
cagetgtteg tgttetatga teatgagagt egeegtgtgg ageeeegaae teeatgggtt	4800
tccagtagaa tttcaagcca gatgtggctg cagctgagtc agagtctgaa agggtgggat	4860
cacatgttca ctgttgactt ctggactatt atggaaaatc acaaccacag caagggtatg	4920
tggagagggg gcctcacctt cctgaggttg tcagagcttt tcatcttttc atgcatcttg	4980
aaggaaacag ctggaagtct gaggtcttgt gggagcaggg aagagggaag gaatttgctt	5040

-continued	
cctgagatca tttggtcctt ggggatggtg gaaataggga cctattcctt tggttgcagt	5100
taacaagget ggggattttt ecagagteee acaeeetgea ggteateetg ggetgtgaaa	5160
tgcaagaaga caacagtacc gagggctact ggaagtacgg gtatgatggg caggaccacc	5220
ttgaattetg eeetgacaca etggattgga gageageaga acceagggee tggeeeacea	5280
agetggagtg ggaaaggeae aagatteggg eeaggeagaa eagggeetae etggagaggg	5340
actgccctgc acagctgcag cagttgctgg agctggggag aggtgttttg gaccaacaag	5400
gtatggtgga aacacacttc tgcccctata ctctagtggc agagtggagg aggttgcagg	5460
gcacggaatc cctggttgga gtttcagagg tggctgaggc tgtgtgcctc tccaaattct	5520
gggaagggac tttctcaatc ctagagtctc taccttataa ttgagatgta tgagacagcc	5580
acaagtcatg ggtttaattt cttttctcca tgcatatggc tcaaagggaa gtgtctatgg	5640
cccttgcttt ttatttaacc aataatcttt tgtatattta tacctgttaa aaattcagaa	5700
atgtcaaggc cgggcacggt ggctcacccc tgtaatccca gcactttggg aggccgaggc	5760
gggtggtcac aaggtcagga gtttgagacc agcctgacca acatggtgaa acccgtctct	5820
aaaaaaatac aaaaattagc tggtcacagt catgcgcacc tgtagtccca gctaattgga	5880
aggetgagge aggageateg ettgaacetg ggaageggaa gttgeaetga geeaagateg	5940
cgccactgca ctccagccta ggcagcagag tgagactcca tcttaaaaaa aaaaaaaaa	6000
aaaaagagaa ttcagagatc tcagctatca tatgaatacc aggacaaaat atcaagtgag	6060
gccacttatc agagtagaag aatcctttag gttaaaagtt tctttcatag aacatagcaa	6120
taatcactga agctacctat cttacaagtc cgcttcttat aacaatgcct cctaggttga	6180
cccaggtgaa actgaccatc tgtattcaat cattttcaat gcacataaag ggcaatttta	6240
tctatcagaa caaagaacat gggtaacaga tatgtatatt tacatgtgag gagaacaagc	6300
tgatctgact gctctccaag tgacactgtg ttagagtcca atcttaggac acaaaatggt	6360
gteteteetg tagettgttt ttttetgaaa agggtattte etteeteeaa eetatagaag	6420
gaagtgaaag ttecagtett eetggeaagg gtaaacagat eeeeteet eateetteet	6480
ctttcctgtc aagtgcctcc tttggtgaag gtgacacatc atgtgacctc ttcagtgacc	6540
actctacggt gtcgggcctt gaactactac ccccagaaca tcaccatgaa gtggctgaag	6600
gataagcagc caatggatgc caaggagttc gaacctaaag acgtattgcc caatggggat	6660
gggacctacc agggctggat aaccttggct gtaccccctg gggaagagca gagatatacg	6720
tgccaggtgg agcacccagg cctggatcag cccctcattg tgatctgggg tatgtgactg	6780
atgagagcca ggagctgaga aaatctattg ggggttgaga ggagtgcctg aggaggtaat	6840
tatggcagtg agatgaggat ctgctctttg ttaggggatg ggctgagggt ggcaatcaaa	6900
ggetttaaet tgetttttet gttttagage eetcaeegte tggeaeeeta gteattggag	6960
tcatcagtgg aattgctgtt tttgtcgtca tcttgttcat tggaattttg ttcataatat	7020
taaggaagag gcagggttca agtgagtagg aacaaggggg aagtctctta gtacctctgc	7080
cccagggcac agtgggaaga ggggcagagg ggatctggca tccatgggaa gcattttct	7140
catttatatt ctttggggac accagcagct ccctgggaga cagaaaataa tggttctccc	7200
cagaatgaaa gtctctaatt caacaaacat cttcagagca cctactattt tgcaagagct	7260
gtttaaggta gtacaggggc tttgaggttg agaagtcact gtggctattc tcagaaccca	7320

		-continued	
aatctggtag ggaatgaaat	tgatagcaag taaatgtagt	taaagaagac cccatgaggt	7380
cctaaagcag gcaggaagca	aatgcttagg gtgtcaaagg	aaagaatgat cacattcagc	7440
tggggatcaa gatagccttc	tggatcttga aggagaagct	ggattccatt aggtgaggtt	7500
gaagatgatg ggaggtctac	acagacggag caaccatgcc	aagtaggaga gtataaggca	7560
tactgggaga ttagaaataa	ttactgtacc ttaaccctga	gtttgcttag ctatcactca	7620
ccaattatgc atttctaccc	cctgaacatc tgtggtgtag	ggaaaagaga atcagaaaga	7680
agccagctca tacagagtcc	aagggtcttt tgggatattg	ggttatgatc actggggtgt	7740
cattgaagga teetaagaaa	ggaggaccac gatctccctt	atatggtgaa tgtgttgtta	7800
agaagttaga tgagaggtga	ggagaccagt tagaaagcca	ataagcattt ccagatgaga	7860
gataatggtt cttgaaatcc	aatagtgccc aggtctaaat	tgagatgggt gaatgaggaa	7920
aataaggaag agagaagagg	caagatggtg cctaggtttg	tgatgcctct ttcctgggtc	7980
tettgtetee acaggaggag	ccatggggca ctacgtctta	gctgaacgtg agtgacacgc	8040
agcctgcaga ctcactgtgg	gaaggagaca aaactagaga	ctcaaagagg gagtgcattt	8100
atgagetett catgttteag	gagagagttg aacctaaaca	tagaaattgc ctgacgaact	8160
ccttgatttt agccttctct	gttcatttcc tcaaaaagat	ttccccattt aggtttctga	8220
gtteetgeat geeggtgate	cctagctgtg acctctcccc	tggaactgtc tctcatgaac	8280
ctcaagctgc atctagaggc	tteetteatt teeteegtea	cctcagagac atacacctat	8340
gtcatttcat ttcctatttt	tggaagagga ctccttaaat	ttggggggact tacatgattc	8400
attttaacat ctgagaaaag	ctttgaaccc tgggacgtgg	ctagtcataa ccttaccaga	8460
tttttacaca tgtatctatg	cattttctgg acccgttcaa	cttttccttt gaatcctctc	8520
tctgtgttac ccagtaactc	atctgtcacc aagccttggg	gattetteea tetgattgtg	8580
atgtgagttg cacagctatg	aaggctgtac actgcacgaa	tggaagaggc acctgtccca	8640
gaaaaagcat catggctatc	tgtgggtagt atgatgggtg	tttttagcag gtaggaggca	8700
aatatettga aaggggttgt	gaagaggtgt tttttctaat	tggcatgaag gtgtcataca	8760
gatttgcaaa gtttaatggt	gccttcattt gggatgctac	tctagtattc cagacctgaa	8820
gaatcacaat aattttctac	ctggtctctc cttgttctga	taatgaaaat tatgataagg	8880
atgataaaag cacttacttc	gtgtccgact cttctgagca	cctacttaca tgcattactg	8940
catgcacttc ttacaataat	tctatgagat aggtactatt	atccccattt cttttttaaa	9000
tgaagaaagt gaagtaggcc	gggcacggtg gctcacgcct	gtaatcccag cactttggga	9060
ggccaaagcg ggtggatcac	gaggtcagga gatcgagacc	atcctggcta acatggtgaa	9120
accccatctc taataaaaat	acaaaaaatt agctgggcgt	ggtggcagac gcctgtagtc	9180
ccagctactc ggaaggctga	ggcaggagaa tggcatgaac	ccaggaggca gagcttgcag	9240
tgagccgagt ttgcgccact	gcactccagc ctaggtgaca	gagtgagact ccatctcaaa	9300
aaaataaaaa taaaaataaa	aaaatgaaaa aaaaaagaaa	gtgaagtata gagtatctca	9360
tagtttgtca gtgatagaaa	caggtttcaa actcagtcaa	tctgaccgtt tgatacatct	9420
cagacaccac tacattcagt	agtttagatg cctagaataa	atagagaagg aaggagatgg	9480
ctcttctctt gtctcattgt	gtttcttctg aatgagcttg	aatcacatga aggggaacag	9540
cagaaaacaa ccaactgatc	ctcagctgtc atgtttcctt	taaaagtccc tgaaggaagg	9600

23

-continued	
teetggaatg tgacteeett geteetetgt tgetetettt ggeatteatt tetttggace	9660
ctacgcaagg actgtaattg gtgggggacag ctagtgggccc tgctgggctt cacacacggt	9720
gteeteesta ggecagtgee tetggagtea gaactetggt ggtattteee teaatgaagt	9780
ggagtaagct ctctcatttt gagatggtat aatggaagcc accaagtggc ttagaggatg	9840
cccaggtcct tccatggagc cactggggtt ccggtgcaca ttaaaaaaaa aatctaacca	9900
ggacattcag gaattgctag attctgggaa atcagttcac catgttcaaa agagtctttt	9960
ttttttttt gagactctat tgcccaggct ggagtgcaat ggcatgatct cggctcactg	10020
taacetetge eteccaggtt caagegatte teetgtetea geeteecaag tagetgggat	10080
tacaggcgtg caccaccatg cccggctaat ttttgtattt ttagtagaga cagggtttca	10140
ccatgttggc caggetggtc tcgaactete etgacetegt gateegeetg eeteggeete	10200
ccaaagtgct gagattacag gtgtgagcca ccctgcccag ccgtcaaaag agtcttaata	10260
tatatateca gatggeatgt gtttaettta tgttaetaea tgeaettgge tgeataaatg	10320
tggtacaagc attetgtett gaagggeagg tgetteagga taccatatae ageteagaag	10380
tttcttcttt aggcattaaa ttttagcaaa gatatctcat ctcttctttt aaaccatttt	10440
ctttttttgt ggttagaaaa gttatgtaga aaaaagtaaa tgtgatttac gctcattgta	10500
gaaaagctat aaaatgaata caattaaagc tgttatttaa ttagccagtg aaaaactatt	10560
aacaacttgt ctattacctg ttagtattat tgttgcatta aaaatgcata tactttaata	10620
aatgtacatt gtattgtata ctgcatgatt ttattgaagt tcttgttcat cttgtgtata	10680
tacttaatcg ctttgtcatt ttggagacat ttattttgct tctaatttct ttacattttg	10740
tettaeggaa tattteatt caactgtggt ageegaatta ategtgttte tteaetetag	10800
ggacattgtc gtctaagttg taagacattg gttattttac cagcaaacca ttctgaaagc	10860
atatgacaaa ttatttctct cttaatatct tactatactg aaagcagact gctataaggc	10920
ttcacttact cttctacctc ataaggaata tgttacaatt aatttattag gtaagcattt	10980
gttttatatt ggttttattt cacctgggct gagatttcaa gaaacacccc agtcttcaca	11040
gtaacacatt tcactaacac atttactaaa catcagcaac tgtggcctgt taatttttt	11100
aatagaaatt ttaagteete attteette ggtgtttttt aagettaatt tttetggett	11160
tattcataaa ttottaaggt caactacatt tgaaaaatca aagacotgoa ttttaaatto	11220
ttattcacct ctggcaaaac cattcacaaa ccatggtagt aaagagaagg gtgacacctg	11280
	11340
tcctgaaggt aaaggaataa agaatgggtg gaggggggtg cactggaaat cacttgtaga	
gaaaagcccc tgaaaatttg agaaaacaaa caagaaacta cttaccagct atttgaattg	
	11520
ccactctgat aatcattgag tcaagtacag caggtgattg aggactgctg agaggtacag	
gccaaaattc ttatgttgta ttataataat gtcatcttat aatactgtca gtattttata	
	11700
atttttcata aactcagttt taaactaact ttttttcaaa ccacaatctg atttaacaat	
gactatcatt taaatatttc tgactttcaa attaaagatt ttcacatgca ggctgatatt	11820
tgtaattgtg attetetetg taggetttgg gtataatgtg ttetttteet tttttgeate	11880

25

agegattaac ttetacaete taacatgtag aatgttaeta caatattaaa gtattttgta 11940 tgacaatttt atttgaaage etaggatgeg ttgacateet geatgeattt attaettgat 12000 atgcatgcat tctggtatct caagcattct atttctgagt aattgtttaa ggtgtagaag 12060 agatagatat ggtggatttg gagttgatac ttatatattt tctatttctt ggatggatga 12120 atttgtacat taaaagtttt ccatgg 12146 <210> SEQ ID NO 28 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 28 gtctgaaacg gtgggat 17 <210> SEQ ID NO 29 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 29 acttetggae tactatgg 18 <210> SEQ ID NO 30 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: oligonucleotide primer <400> SEQUENCE: 30 atcatgagtg tcgccgt 17

1-15. (canceled)

16. A kit for diagnosing an iron disorder or a genetic susceptibility to developing said disorder in a mammal, comprising an antibody which preferentially binds to an epitope of a mutant HFE gene product, wherein said gene product comprises amino acid substitution 1105T, G93R, or 865C.

17. A kit for diagnosing an iron disorder or a genetic susceptibility to developing said disorder in a mammal, comprising an antibody which preferentially binds to an epitope of a wild type HFE gene product, wherein said gene product comprises amino acid substitution 1105, G93, or 865.

* * * * *