
(19) United States
US 2003.0172247A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0172247 A1
Bayer et al. (43) Pub. Date: Sep. 11, 2003

(54) SYSTEM AND METHOD FOR RAPIDLY
LOCATING HISTORICAL PERFORMANCE
DATA

(75) Inventors: Christopher Bayer, Slough (GB);
Nigel Trousdale, Slough (GB)

Correspondence Address:
Califee, Halter & Griswold LLP
Suite 1650
21 East State Street
Columbus, OH 43215-4243 (US)

(73)

(21)

(22)

Assignee: Computer Associates Think, Inc.

Appl. No.: 10/190,943

Filed: Jul. 8, 2002

Related U.S. Application Data

(60)
6, 2001.

210
PROCESSES

Provisional application No. 60/303,431, filed on Jul.

-
102 104

PROCESSOR MEMORY

? 108

BUS

Publication Classification

1) Int. Cl.' ... 5/7 51) Int. C.7 G06F 15/76

(52) U.S. Cl. .. 712/12

(57) ABSTRACT

A method is described for providing performance metrics
Stored in an array of at least three-dimensions. The method
includes receiving at least one metric criteria associated with
a performance metric. The method also includes determin
ing a list of array elements. The list represents a portion of
the array including the at least one metric criteria. The
method further includes Sorting the list of array elements
according to predetermined ordering criteria to identify a
best match of the at least one metric criteria. A System and
article of manufacture are also described for providing
performance metrics Stored in an array of at least three
dimensions.

215
s DATA

110

If O PORTS

If O DEVICES

118

112

122

REMOTE COMPUTER

Patent Application Publication Sep. 11, 2003 Sheet 1 of 5

Y-Y C

US 2003/0172247 A1

2

(EE

O
s

Of l S i

ZZ),----
US 2003/0172247 A1

CHOV, HRIGH LNI XTRHOAALGIN

SCHSSCHOORHdH

00||

z 9.InÃ¡H

Patent Application Publication Sep. 11, 2003 Sheet 2 of 5

Sep. 11, 2003 Sheet 3 of 5

9 [8]

0] ©

009

Patent Application Publication

l
y

r

US 2003/0172247 A1

(Y (1) on O D - U () (d

D

Sep. 11, 2003 Sheet 4 of 5

2 cu cus O. d) to

Patent Application Publication

Sep. 11, 2003 Sheet 5 of 5 US 2003/0172247 A1 Patent Application Publication

S 9.InÃ¡H009
019

US 2003/0172247 A1

SYSTEMAND METHOD FOR RAPIDLY
LOCATING HISTORICAL PERFORMANCE DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims priority to U.S. Provisional
Application Serial No. 60/303,431 filed Jul. 6, 2001 which
is hereby incorporated by reference in its entirety.

TECHNICAL FIELD

0002 The described systems and methods are generally
related to information processing environments and manag
ing modem computer Systems and associated electronic
devices. More Specifically, the described Systems and meth
ods are related to rapidly obtaining historical performance
data.

BACKGROUND

0003 Enterprises employ large, complex, computing
environments that include a number of enterprise compo
nents Such as Servers, routers, databases, mainframes, per
Sonal computers, intelligent agents and busineSS applica
tions, for example. Systems that monitor complex enterprise
computing environments are known in the art. From time to
time, Such monitoring Systems monitor and analyze the
performance of enterprise components, and it is useful for
Such monitoring Systems to have rapid access to certain
metrics regarding performance of the components being
analyzed. Such metrics may be sampled on-demand in
real-time or fetched from a large historical data repository.
0004 Typically, large repositories of historical data
describing enterprise component performance are created
over time by enterprise monitoring Systems configured to
track and record performance data for certain enterprise
components or groups of components. Such performance
data may be useful in analyzing the operation of a compo
nent or group of components, for example, to Schedule
future operations or to report the performance of the com
ponent(s) over time.
0005 Enterprises typically have certain criteria to deter
mine whether and which components are Subject to perfor
mance monitoring. Over time, changes to the configuration
of an enterprise System, changes to the criteria for collecting
performance data, and the addition and removal of enterprise
components may result in an incomplete performance his
tory for any particular component. Consequently, Such his
torical data repositories are complex Stores which may not
include data for every enterprise component, or for every
time period.
0006 Gaps in historical performance data may adversely
affect the ability of the monitoring System to project the
future performance of a particular component. Conse
quently, there is a need for methods and Systems that rapidly
provide an estimate of historical performance of an enter
prise component despite incomplete historical performance
data.

SUMMARY

0007. The following presents a simplified Summary of
methods, Systems, and computer readable media associated
with rapidly locating historical performance data. This Sum

Sep. 11, 2003

mary is not an extensive overview and is not intended to
identify key or critical elements of the methods, Systems,
and/or media or to delineate the Scope of the methods,
Systems, and media. It conceptually identifies the methods,
Systems, and media in a simplified form as a prelude to the
more detailed description that is presented later.
0008. This disclosure provides methods and systems for
accessing performance metricS Stored in an array of at least
three dimensions. According to one aspect of the disclosure,
a method for providing performance metricS Stored in an
array is disclosed. The method includes receiving a metric
criteria that is associated with a performance metric and
determining a list of array elements. The list of array
elements represents a portion of the array including the
metric criteria. The list is Sorted according to a predeter
mined ordering criteria. In one embodiment, the method also
includes analyzing each array element of the list to deter
mine whether it best matches the at least one metric criteria.
If a best match is determined, a reference to an array element
may be returned that best matches the performance metric.
If no best match is determined, an error code may be
returned.

0009. In accordance with a second aspect of the present
application, a System is disclosed for providing performance
metrics Stored in an array of at least three dimensions. The
System includes means for receiving at least one metric
criteria associated with a performance metric. The System
also includes means for determining a list of array elements.
The list represents a portion of the array including at least
one metric criteria. The System further includes means for
Sorting the list of array elements according to predetermined
ordering criteria, and means for analyzing each array ele
ment of the list to determine whether it best matches the at
least one metric criteria.

0010. In accordance with another aspect of the present
application, an article of manufacture is also disclosed. The
article of manufacture includes processing instructions for
providing performance metrics Stored in an array of at least
three dimensions.

0011 Certain illustrative aspects of the methods, sys
tems, and computer readable media are described herein in
connection with the following description and the annexed
drawings. These aspects are indicative, however, of but a
few of the various ways in which the principles of the
methods, Systems, and media may be employed and thus the
examples are intended to include Such aspects and equiva
lents. Other advantages and novel features may become
apparent from the following detailed description when con
sidered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0012 For a more complete understanding of the present
methods and Systems, reference is now made to the follow
ing description taken in conjunction with the accompanying
drawings in which like reference numbers indicate like
features and wherein:

0013 FIG. 1 is a schematic block diagram of an example
enterprise environment that may employ example Systems
and/or methods for enterprise management;
0014 FIG. 2 is a schematic block diagram of a personal
computer within the enterprise environment illustrated in
FIG. 1 that can Support example systems and/or methods for
enterprise management;

US 2003/0172247 A1

0.015 FIG. 3 is a schematic block diagram of an exem
plary System for Storing, maintaining and accessing histori
cal performance data;
0016 FIG. 4 is a diagram of an example of a store of
historical performance data embodied as a three dimensional
array of performance elements, and
0017 FIG. 5 is a flow chart that illustrates an example
method for rapidly locating historical performance data.

DETAILED DESCRIPTION

0.018. Example methods, systems, and computer readable
media are now described with reference to the drawings,
where like reference numerals are used to refer to like
elements throughout. In the following description, for pur
poses of explanation, numerous specific details are Set forth
in order to facilitate thoroughly understanding the methods
and Systems. It may be evident, however, that the methods
and Systems can be practiced without these specific details.
In other instances, well-known Structures and devices are
shown in block diagram form in order to Simplify the
description.
0019. An exemplary IT enterprise is illustrated in FIG. 1.
The IT enterprise 150 includes local area networks 155, 160
and 165. Communications between local area networks 155,
160 and 165, are facilitated by an intranet, extranet or
internet infrastructure 120. IT enterprise 150 further
includes a variety of hardware and Software components,
Such as workStations, printers, Scanners, routers, operating
Systems, applications, and application platforms, for
example. Each component of IT enterprise 150, such as
computer 100 and computer 122, for example, may be
monitored, analyzed and managed in accordance with the
present disclosure.
0020 FIG. 2 illustrates example computer 100 that
includes a processor 102, a memory 104, a disk 106,
input/output ports 110, and a network interface 112 operably
connected by a bus 108. The processor 102 can be a variety
of various processors including dual microprocessor and
other multi-processor architectures. The memory 104 can
include volatile memory and/or non-volatile memory. The
non-volatile memory can include, but is not limited to, read
only memory (“ROM'), programmable read only memory
(“PROM"), electrically programmable read only memory
(“EPROM"), electrically erasable programmable read only
memory (“EEPROM"), and the like. Volatile memory can
include, for example, random access memory (“RAM”),
synchronous RAM (“SRAM”), dynamic RAM (“DRAM”),
synchronous DRAM (“SDRAM”), double data rate
SDRAM (“DDR SDRAM”), and direct RAM bus RAM
(“DRRAM”). The disk 106 can include, but is not limited to,
devices like a magnetic disk drive, a floppy disk drive, a tape
drive, a Zip drive, a flash memory card, and/or a memory
stick. Furthermore, the disk 106 can include optical drives
like, a compact disk ROM (“CD-ROM"), a CD recordable
drive (“CD-R drive”), a CD rewriteable drive (“CD-RW
drive”) and/or a digital versatile ROM drive (“DVD ROM”).
The memory 104 can store processes 114 and/or data 116,
for example. The disk 106 and/or memory 104 can store an
operating System that controls and allocates resources of the
computer 100.
0021. The bus 108 can be a single internal bus intercon
nect architecture and/or other bus architectures. The bus 108

Sep. 11, 2003

can be of a variety of types including, but not limited to, a
memory bus or memory controller, a peripheral bus or
external bus, and/or a local bus. The local bus can be of
varieties including, but not limited to, an industrial Standard
architecture (“ISA') bus, a microchannel architecture
(“MSA”) bus, an extended ISA (“EISA) bus, a peripheral
component interconnect (“PCI”) bus, a universal serial
(“USB") bus, and a small computer systems interface
(“SCSI”) bus.
0022. The computer 100 interacts with input/output
devices 118 via input/output ports 110. The input/output
devices 118 can include, but are not limited to, a keyboard,
a microphone, a pointing and Selection device, cameras,
Video cards, displays, and the like. The input/output ports
110 can include but are not limited to, serial ports, parallel
ports, and USB ports.
0023 The computer 100 can operate in a network envi
ronment and thus is connected to a network 120 by a
network interface 112. Through the network 120, the com
puter 100 may be logically connected to a remote computer
122. The network 120 may include, but is not limited to,
local area networks (“LAN”), wide area networks (“WAN”),
and other networks. The network interface 112 can connect
to local area network technologies including, but not limited
to, fiber distributed data interface (“FDDI’), copper distrib
uted data interface (“CDDI), ethernet/IEEE 802.3, token
ring/IEEE 802.5, and the like. Similarly, the network inter
face 112 can connect to wide area network technologies
including, but not limited to, point to point links, and circuit
Switching networks like integrated Services digital networks
(“ISDN”), packet switching networks, and digital subscriber
lines (“DSL”).
0024 FIG. 3 illustrates one exemplary system 300 for
Storing, maintaining and accessing historical performance
data. The exemplary System includes a Store of historical
performance data 310 which enables storage and retrieval of
historical performance data. The System further includes an
application programming interface (“API”)315 that defines
a Standard Set of access routines for Storage and retrieval of
the historical performance data of store 310. API 315 is
employed, for example, by an enterprise management appli
cation 320 and a performance monitoring application 325 to
populate store 310 and to retrieve data from store 310
through queries and responses.

0025. As shown in FIG. 4, in one embodiment, the
historical performance data is Stored as a three-dimensional
array 400 of performance elements called “Performance
Cubes. A Performance Cube is a paradigm for representing,
analyzing and managing performance information. It is a
generic representation and not linked to any specific oper
ating System. Although the example embodiment is
described with reference to a three-dimensional array, an
array of more than three dimensions may be used in other
embodiments.

0026. In the Performance Cube paradigm, data is con
sidered to be stored in a logical Cube lattice, whereby
different resources are represented on the y axis 410, time
bands acroSS the day are represented acroSS the X axis 415,
and different days (such as Monday, Tuesday or Wednes
day), time periods (Such as an average day within March,
April or June) or machines (Such as machine 1, machine 2
or machine 3) are represented along the Z axis 420.

US 2003/0172247 A1 Sep. 11, 2003

0.027 Performance Cubes are a model of sampled metrics
and their values Stored in a three-dimensional lattice. For
example, Daily Performance Cubes, which contain data for
1 machine or device for a calendar day and are 2 dimen
Sional in nature, can be aggregated into 3 dimensional CubeS
containing data for multiple dates, Such as, for example, a
calendar week or a calendar month, or multiple machines
data for a Single day. In this application, Such three-dimen
Sional aggregations are called Period and Enterprise Cubes,
respectively, where each plane represents a machine-day.
0028. Further aggregation is possible by averaging multi
plane CubeS into Single-plane Average Period and Average
Enterprise Cubes, and these can be further collated into
multi-plane CubeS where each plane is itself an average of
multiple planes.

0029 Performance Cube Properies
0.030. According to one embodiment, Performance Cubes
have certain parameters or properties that may be used or
referenced by a Performance Cube Management API. Such
properties may include the properties Setforth in Table A,
below:

TABLE A

Exemplary Cube Properties

Property Property Description

Store Name The name of the long-term store where the Cube can be found, such as
the path name of the directory containing the Cube files, for example.

User Description. A string giving a specific description of the Cube.
Start Date-Time The date-time of the start of the first time-band that can be stored in the

Cube, or the first date-time used to generate an averaged Cube
Number of Time- The number of samples to be contained by this Cube.
Bands
Time-Band Size The number of seconds over which each sample was averaged.
Type The type of data to be stored in each plane of the Cube, and whether

there will be more than one plane.
Resource Set This is used to indicate whether a Cube is likely to contain all of the

resources that have been collected for a particular platform, or it is likely
to contain a subset of these.

0.031 Exemplary Cube Type definitions are illustrated in
Table B, below:

TABLE B

Exemplary Cube Types

Each plane Multiple
Cube Type contains data for: Planes

CAPMPCM ONE DAY One day No
CAPMPCM SEVERAL DAYS One day Yes
CAPMPCM ONE WEEK OF DAYS One day Yes
CAPMPCM ONE MONTH OF DAYS One day Yes
CAPMPCM ONE YEAR OF DAYS One day Yes
CAPMPCM ONE ENTERPRISE DAY One day Yes
CAPMPCM ONE AVERAGE DAY An average day No
CAPMPCM SEVERAL AVERAGE DAYS An average day Yes
CAPMPCM ONE AVERAGE ENTERPRISE DAY An average day Yes
CAPMPCM ONE AVERAGE WEEK An average week No
CAPMPCM SEVERAL AVERAGE WEEKS An average week Yes
CAPMPCM ONE AVERAGE ENTERPRISE WEEK An average week Yes
CAPMPCM ONE AVERAGE MONTH An average month No
CAPMPCM SEVERAL AVERAGE MONTHS An average month Yes
CAPMPCM ONE AVERAGE ENTERPRISE MONTH An average month Yes

US 2003/0172247 A1

TABLE B-continued

Exemplary Cube Types

Each plane
Cube Type

CAPMPCM ONE AVERAGE YEAR
CAPMPCM SEVERAL AVERAGE YEARS
CAPMPCM ONE AVERAGE ENTERPRISE YEAR

0.032 The Performance Cubes are managed via a Perfor
mance Cube Management API, such as API 315, that
enables many applications to read and write CubeS without
having reference to any underlying implementation format.
Further, performance Samples can be accessed by an enter
prise management application, Such as Unicenter TNG, and
presented as external property data, thus making them
available to any underlying applications. In addition, an
application can use Cube management and analysis routines
to perform data management functions Such as, for example,
trending averaging, compacting and extracting the data.

0.033 Consequently, any platform running an application
that Stores performance data using the Performance Cube
Management API may manage and exploit the performance
data. For example, applications may cause the performance
data to be compacted, averaged, or trended which extends
the way that other applications can exploit the data.

0034) The Performance Cube Management API provides
access to the Performance Cube repository, Such as Store
310, which may be a complex Store containing many CubeS
which have the potential to contain the data that an appli
cation needs. The present application describes methods and
systems, which may include the Performance Cube Man
agement API, for rapidly locating and opening the most
appropriate Performance Cube. To meet certain accuracy
and timelineSS preferences, the Systems and methods may
employ a cube locating methodology where the cube located
is the cube with the most important or highest number of
criteria met for a particular call This application refers to
Such a methodology as a “best match' approach.

0035. The example “best match” approach described in
the present application allows the calling application to
obtain data for a named machine or device that is appropriate
to a particular date without having to specify exactly which
Performance Cube to open. The function will search through
available Performance Cubes and determine and open the
Cube that best matches the callers requirements. This API
searches available Performance Cubes including both period
and Enterprise CubeS rather than just looking for a daily
Cube which contains data for a specific machine on a
Specific date. Accordingly, if the daily Cube is missing, but
there is data in an Enterprise Cube for the requested date
then the request will still be satisfied.

0036 Performance Cube Management

0037. In one embodiment, the Performance Cube Man
agement API allows performance samples held in Perfor
mance Cube Management (“PCM") format to be created,
extracted and transformed by external applications. The API
may be supplied as a Windows NT DLL or a Static or Shared

contains data for:

An average year
An average year
An average year

Sep. 11, 2003

Multiple
Planes

No
Yes
Yes

Library which provides a number of C functions, which can
be divided into three main levels: fundamental, derived and
composite functions.

0038 Fundamental or “low-level functions are sub-di
Vided into three functional areas-Cube control, Cube popu
lation and Cube extraction, and provide a developer with
direct access to the Performance Cube, either to load data
Samples directly into a Cube, or to Selectively extract
Specific data Samples from it.

0039) Derived or “high level functions provide more
application-friendly interfaces to the fundamental functions,
and as Such are again Sub-divided into the same three areas.
These functions include the ability to search for Cubes
containing certain data, to copy planes of data from one
Cube to another etc.

0040 Composite functions are grouped into a single area,
known as “Cube transformation”. This area provides a
Simple, Very high level interface that allows the developer to
transform one or more entire Cubes into another Cube of
different Specifications, or another format entirely.

0041 Certain fundamental functions allow the developer
to open a new or existing Performance Cube, close/write a
Cube and delete an existing Cube. Other fundamental func
tions also allow an application to add new resources,
machineS/dates and data Samples to the Cube. Such func
tions control the addition of resources and data to a Cube as
the data within the Cube is Stored in a Specialised format and
must obey certain rules. For example, a fundamental func
tion may ensure that all the resources held within the Cube
have the same number of data Samples, and conform to the
Same time-band intervals. The Cube population functions
mask this level of complexity from the developer, by
dynamically adjusting the internal Structure of the Cube to
allow new Samples, and returning meaningful error condi
tions if the application attempts to perform illegal Cube
operations.

0042. The fundamental functions allow for the extraction
of Specific data relating to a Cube. For example, the name or
names of machines for which data is Stored, the dates on
which the data was collected, and the data values and
number of Samples used to calculate the values may all be
extracted using fundamental functions.

0043 Certain derived functions include search and
browse capabilities. Derived functions provide mechanisms
to manipulate the Cube parameters and data, but with
application-friendly arguments, and more complex function
ality than the low-level functions. This includes using names
to reference items, and bulk operations Such as copying
complete planes of data from one Cube to another.

US 2003/0172247 A1

0044) They allow the client to extract data from the Cube
in a manner that embodies the Performance Cube paradigm.
Instead of Simply extracting a specific data Sample for a
given resource, the Cube extraction routines allow the
application to extract all data Samples pertaining to a specific
dimension within the Cube.

004.5 The composite functions enable the developer to
input the entire contents of a given Performance Cube and
transform it into another form. This other form could be
another Performance Cube, or a completely different data
format. Examples of Such transformation functions include:

0046) conversion to comma separated variable
(“CSV) form;

0047 averaging across Several days, compacting the
Cube by combining Several adjacent time-bands, or
period planes, into one; and

0048 generating a Cube containing data for a subset
of the originally monitored resources.

0049 Referring now to FIG. 5, there is depicted a block
diagram illustrating one methodology 500 for rapidly locat
ing historical performance data. At block 510, at least one
basic performance metric requirement is received. The basic
performance metric requirement may include a comparator
and a value associated with a particular performance metric,
Such as a date, a machine identifier, a resource Set, a Cube
type or a user description, for example. In one embodiment,
the associated metric(s) may be any data element(s) main
tained as part of a Performance Cube.
0050. At block 515 of the methodology, a list of array
elements is determined. The array elements included in the
list describe performance metrics that meet the requirement
received at block 510 and thereby potentially match a query
asSociated with the received requirement. In embodiments in
which there are multiple Stores of historical performance
data, block 515 may include deducing which store(s) to
utilize to determine the list of array elements.
0051. At block 520, the list of potentially matching array
elements are Sorted according to a predetermined order. The
Sort order is based, in part, on the received requirement.
Examples of Sort orders include, but are not limited to:

0052 1. Nearness to a required date;
0.053 2. Resource set (TRUE in preference to
FALSE) because of the increased likeliness of find
ing all the resources that the caller requires;

Sep. 11, 2003

0054 3. Nearness to a required Cube type according
to the order listed below;

0055 4. Nearness to a required time-band size, with
Smaller being taken in preference to larger;

0056 5. Nearness to a required date, with earlier
taken in preference, and

0057 6. Nearness to a required end-time for the data
(required Start time plus required number of time
bands times required time-band size), with later
taken in preference to earlier.

0058 At block 525, each array element is analyzed to
determine whether it “best matches” the received require
ment. The sorted list of array elements is traversed from
most likely to least likely (as sorted at block.520). Each array
element is opened and checked to determine if it contains the
correct resources, by default all resources specified must be
found for the Cube to be considered a match. This behavior
may be altered by certain option flags which may indicate
Specific rules for Selecting a "best match'. In an alternate
embodiment, the Sorting process results in the determination
of the “best match”, with the “best match' being the first
element of the Sorted list.

0059) At decision block 530, a “best match” determina
tion is made with respect to an array element If the array
element is considered a “best match', a handle, identifier or
pointer to the array element is returned and the process ends.
If the array element is not considered a “best match', the
methodology determines whether all of the Sorted potential
array elements have been analyzed. If all of the elements
have not been analyzed, the process proceeds to the next
element in the list and continues processing at Step 525. If
all of the elements have been analyzed, processing is
directed to step 545, at which an error code is returned
indicating that no match was found.

0060 According to one embodiment, a “best match”
function may be employed by the Performance Cube Man
agement API. The opens the “best” matching Cube to the
caller's Specified requirements. A set of option flags can be
passed in to modify the default behavior. An example of the
function “CaPmPcmOpenBestMatch is set forth below:

0061. Usage

#ifndef DONE CAPMPCM
#include <capmpcm.h>
#endiff DONE CAPMPCM *f

CAPMPCM RES ELEM *
wchar t
char *
Struct tim

matchDateTime:
int

resourceTbl = NULL:/* Any. */
userDescriptionTbl = NULL:/* Any. */

storeNameStr = “D: Performance Data performance Cubes;
startDateTime,

userDescTblSz = 0,
resourceTblSz = 0,
reserved = 0,
noTimebands = 144,
timebandSz = 300,

US 2003/0172247 A1

-continued

allResourceSet = CAWIN WILD INT,
CubeTypes = CAPMPCM ONE DAY,
option Flags = 0; f* Default.*/

CAPMPCM MACHINE NAME STR
machineNameStr = L“fred’’:

1888
* Initialise the start date-time for the date of.
* Use CapmPCmMkTime.

1888
* Locate and open the best matching Cube.

if((retrn = CaPmPcmOpenBestMatch (storeNameStr,
userDescriptionTbl,
userDescriptionTblSz,
resourceTbl,
resourceTblSz,
machineNameStr,
&startDateTime,
reserved,
noTimebands,
timebandSz,
all ResourceSet,
CubeTypes,
option Flags,
&matchDateTime)) < 0)

1888
* Determine and handle the error.

else

1888
* The Cube handle is valid so use it.

0062) The arguments for the exemplary function “CaP
mPcmOpenBestMatch” are shown in Table C, below:

storeNameStr

userDescTbil

userDescTblSz
resourceTbl

resourceTblSz
machineNameStr

startDateTime

reserved
noTimebands

timebandSz

TABLE C

CaPmPcmOpenBestMatch Arguments

(in) Top Cube store root directory to search. Can be NULL to indicate
search only the current store (current working directory for filesystem
based implementations). The name should not be wild carded.
(in) Array of Cube user descriptions to match. Can be NULL to
indicate match all. An element can be NULL or null string to match no
user description. User Description names can be wild-carded using the
standard PCM API string wild-carding.
(in) Size of the above array. Must be 0 if NULL, >0 if non-NULL.
(in) Array of resources to match. Can be NULL to indicate match any.
Any of part of the resource name (type, subtype or instance) can be
NULL to indicate matches anything or wild-carded using the standard
PCM API string wild-carding.
(in) Size of the above array. Must be 0 if NULL, >0 if non-NULL.
(in) Fully qualified name of machine that data is required for. The
machine name should not be wild-carded.

(in) The start-time for the Cube and the date for the first plane. The
date should not be wild-carded, but the time and DST state can be wild
carded with CAWIN WILD INT as per normal.
(in) Unused -for future enhancement. Set this to 0.
(in) The number of time-bands in the Cube. Set this to the required
time-band size, or wild-card it with CAWIN WILD INT as per normal.
(in) The size of each time-band in seconds. Set this to the required
time-band size, or wild-card it with CAWIN WILD INT as per normal.

Sep. 11, 2003

US 2003/0172247 A1

allResourceSet

CubeTypes

option Flags

matchDateTime

TABLE C-continued

CaPmPcmOpenBestMatch Arguments

(in) Set to FALSE to indicate a sub-set of all available resources, to
TRUE to indicate all available resources or wild-card it with
CAWIN WILD INT as per normal.
(in) The specific required Cube type or wild-carded with
CAWIN WILD INT to indicate any type is acceptable, or the new
matching value of CAPMPCM RAW DAYS ONLY which indicates
any Cube type matches for which the data in the planes is raw original
values rather than averages for several days.
(in) O indicates default behaviour. Option flags can be ored together to
select multiple options.
(out) The start date-time for the plane in the opened Cube that is the
bast match for the request parameters. This it to indicate to the caller
which plane of a period Cube is deemed the best match. The date-time

Sep. 11, 2003

will only be valid if a Cube is opened.

0063) The CaPmPcmOpenBestMatch function is called
to locate and open the best matching Cube according to the
callerS Specification. The function employs the methodology
illustrated in FIG. 5.

0064 Deduce a list of Cube stores to analyze based
on Cube Store name and machine name.

0065 Get a list of all the Cubes from the Cube stores
that match the users basic requirements for date,
machine, resource Set, Cube type and user descrip
tion.

0066) Order the list according to:
0067. 1. Nearness to the required date. This is
biased by the option flags with the default being
that an exact match is required.

0068 2. Resource set (TRUE in preference to
FALSE) because of the increased likeliness of
finding all the resources that the caller requires.

0069. 3. Nearness to the required Cube type
according to the order listed below.

0070 4. Nearness to the required time-band size,
with Smaller being taken in preference to larger
(see the CAPMPCM COMPACT AS NECES
SARY flag description).

0071 5. Nearness to the required date, with ear
lier taken in preference.

0072 6. Nearness to the required end-time for the
data (required start time plus required number of
time-bands times required time-band size), with
later taken in preference to earlier.

0073 Traverse the list from most likely to least
likely (as Sorted by the previous actions) opening
them and checking each one to see if it contains the
correct resources, by default all resources Specified
must be found for the Cube to be considered a match.
This behavior can be altered by the option flags.
When a match is found generate a virtual Cube if this
option has been requested and it is necessary.

0074. If a Cube has been successfully opened return
the handle to it and the start date-time of the match
ing plane, otherwise return the most Suitable error
code.

0075) The default order in which Cube Types are con
sidered is is shown in Table D, below:

Best

Worst

TABLED

Cube Type Default Order

CAPMPCM ONE DAY
CAPMPCM ONE ENTERPRISE DAY
CAPMPCM ONE WEEK OF DAYS
CAPMPCM ONE MONTH OF DAYS
CAPMPCM ONE YEAR OF DAYS
CAPMPCM SEVERAL DAYS
CAPMPCM ONE AVERAGE WEEK
CAPMPCM ONE AVERAGE ENTERPRISE WEEK
CAPMPCM SEVERAL AVERAGE WEEKS
CAPMPCM ONE AVERAGE MONTH
CAPMPCM ONE AVERAGE ENTERPRISE MONTH
CAPMPCM SEVERAL AVERAGE MONTHS
CAPMPCM ONE AVERAGE YEAR
CAPMPCM ONE AVERAGE ENTERPRISE YEAR
CAPMPCM SEVERAL AVERAGE YEARS
CAPMPCM ONE AVERAGE DAY
CAPMPCM ONE AVERAGE ENTERPRISE DAY
CAPMPCM SEVERAL AVERAGE DAYS

0076. The default behavior can be modified by the speci
fication of a number of option flags. If no optional behavior
is required then a 0 value should be passed in. Otherwise, the
value passed in should be the bit-wise OR of the individual
option flags required.
0077. The options include:

0078 CAPMPCM COMPACT AS NECESSARY
0079 Preferably this means that if the best match
ing available Cube has a Smaller time-band size
than requested then a virtual Cube (a Cube that
does not exist in permanent Store) which has the
requested time-band size will be opened and popu
lated by averaging the available Cube.

0080 CAPMPCM MATCH DATE OR NEAR
EST PRIOR
0081. If a Cube cannot be found containing a
plane for the requested date then the nearest earlier
date that can be matched will be used.

0082 CAPMPCM MATCH DATE OR NEAR
EST POST

US 2003/0172247 A1

0083) If a Cube cannot be found containing a
plane for the requested date then the nearest later
date that can be matched will be used.

0084) CAPMPCM MATCH ANY RESOURCE
0085. In order to be a match any one or more of
the requested resources must be found in the
Cube.

0.086 What has been described above includes several
examples. It is, of course, not possible to describe every
conceivable combination of components or methodologies
for purposes of describing the Systems, methods, and com
puter readable media associated with busineSS proceSS
policy data. However, one of ordinary skill in the art may
recognize that further combinations and permutations are
possible. Accordingly, this application is intended to
embrace Such alterations, modifications, and variations that
fall within the Scope of the appended claims. Furthermore,
to the extent that the term “includes” is employed in the
detailed description or the claims, Such term is intended to
be inclusive in a manner Similar to the term “comprising” as
that term is interpreted when employed as a transitional
word in a claim.

What is claimed is:
1. A method for providing performance metrics Stored in

an array of at least three-dimensions, comprising:

receiving at least one metric criteria associated with a
performance metric,

determining a list of array elements, the list representing
a portion of the array including the at least one metric
criteria; and

Sorting the list of array elements according to predeter
mined ordering criteria to identify a best match of the
at least one metric criteria.

2. A method for providing performance metrics Stored in
an array of at least three-dimensions, comprising:

receiving at least one metric criteria associated with a
performance metric,

determining a list of array elements, the list representing
a portion of the array including the at least one metric
criteria;

Sorting the list of array elements according to predeter
mined ordering criteria; and

analyzing each array element of the list to determine
whether it best matches the at least one metric criteria.

3. The method of claim 2, wherein the at least one basic
metric requirement is Selected from a group including date,
machine identifier, resource Set, Cube type and user descrip
tion.

4. The method of claim 2, further including receiving an
option flag, and wherein analyzing each listed array element
includes filtering each listed array element according to the
option flag.

5. The method of claim 4, wherein the option flag indi
cates that a best matching array element may represent a
time span less than a time Span defined as a basic metric
requirement.

Sep. 11, 2003

6. The method of claim 4, wherein the option flag indi
cates that a best matching array element may represent a
nearest earlier time span compared to a time Span defined as
a basic metric requirement.

7. The method of claim 4, wherein the option flag indi
cates that a best matching array element may represent a
nearest later time span compared to a time span defined as
a basic metric requirement.

8. The method of claim 4, wherein the option flag indi
cates that a best matching array element must represent an
exact match of at least one of the at least one basic metric
requirements.

9 The method of claim 2, further comprising returning a
reference to an array element that best matches the perfor
mance metric based on the Step of analyzing.
10 The method of claim 2, further comprising returning an

error code if no best match performance metric is deter
mined.

11. A System for providing performance metrics Stored in
an array of at least three dimensions, comprising:

means for receiving at least one metric criteria associated
with a performance metric,

means for determining a list of array elements, the list
representing a portion of the array including at least one
metric criteria;

means for Sorting the list of array elements according to
predetermined ordering criteria; and

means for analyzing each array element of the list to
determine whether it best matches the at least one
metric criteria.

12. The system of claim 11, wherein the at least one basic
metric requirement is Selected from a group including date,
machine identifier, resource Set, cube type and user descrip
tion.

13. The system of claim 1, further including means for
receiving an option flag, and wherein the means for analyZ
ing each listed array element filters each listed array element
according to the option flag.

14. The system of claim 13, wherein the option flag
indicates that a best matching array element may represent
a time span less than a time Span defined as a basic metric
requirement.

15. The system of claim 13, wherein the option flag
indicates that a best matching array element may represent
a nearest earlier time span compared to a time span defined
as a basic metric requirement.

16. The system of claim 13, wherein the option flag
indicates that a best matching array element may represent
a nearest later time Span compared to a time Span defined as
a basic metric requirement.

17. The system of claim 13, wherein the option flag
indicates that a best matching array element must represent
an exact match of at least one of the at least one basic metric
requirements.

18. The system of claim 11, further comprising means for
returning a reference to an array element that best matches
performance metric based on the Step of analyzing.

19. The system of claim 11, further comprising means for
returning an error code if no best match performance metric
is determined.

US 2003/0172247 A1

20. A computer-readable Storage medium encoded with
processing instructions for providing performance metrics
Stored in an array of at least three dimensions, comprising:

computer readable instructions for receiving at least one
metric criteria associated with a performance metric,

computer readable instructions for determining a list of
array elements, the list representing a portion of the
array including at least one metric criteria;

computer readable instructions for Sorting the list of array
elements according to predetermined ordering criteria;

Sep. 11, 2003

computer readable instructions for analyzing each ele
ment of the array element to determine whether it best
matches the at least one metric criteria;

computer readable instructions for returning a reference to
an array element that best matches the performance
metric based on the Step of analyzing, and

computer readable instructions for returning an error code
if no best match performance metric is determined.

