
(19) United States
US 20030208548A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0208548A1
Wydra et al. (43) Pub. Date: Nov. 6, 2003

(54) APPLICATION SERVER FRAMEWORK

(75) Inventors: Paul Wydra, Bristow, VA (US);
Brendan Haggerty, Arlington, VA (US)

Correspondence Address:
STAAS & HALSEY LLP
SUTE 700
1201 NEW YORKAVENUE, N.W.
WASHINGTON, DC 20005 (US)

(73) Assignee: AMERICAN MANAGEMENT SYS
TEMS, INC., Fairfax, VA (US)

(21) Appl. No.: 10/460,221

(22) Filed: Jun. 13, 2003

Related U.S. Application Data

(63) Continuation of application No. 09/359,773, filed on
Jul. 26, 1999, now Pat. No. 6,598,067.

Publication Classification

(51) Int. Cl. ... G06F 15/16
(52) U.S. Cl. .. 709/206; 709/201

(57) ABSTRACT

An application Server framework is integrated with a three
tiered computer System including an application Server. The
application Server framework includes a job Scheduler, a
connection controller, a listener, and a Service broker. The
jobs Scheduler is integrated with the application Server and
independently requesting execution of Services. The con
nection controller establishes connections with Services
based upon the requested execution of Services. The listener
receives requests for execution of Services and transmitting
the requested execution of Services to the connection con
troller. The Service broker transmits the requests for execu
tion of Services to the listener.

Patent Application Publication Nov. 6, 2003 Sheet 1 of 12 US 2003/0208548A1

CO

an 2

< g
Up Of
Lod l
St a.

2

;

s

Patent Application Publication Nov. 6, 2003 Sheet 2 of 12 US 2003/0208548A1

US 2003/0208548A1 Nov. 6, 2003 Sheet 4 of 12 Patent Application Publication

79

US 2003/0208548A1 Nov. 6, 2003 Sheet 5 of 12 Patent Application Publication

)

<!=========)

US 2003/0208548A1 Nov. 6, 2003 Sheet 6 of 12 Patent Application Publication

|

09

|

) TOEGEREST?
09

Patent Application Publication Nov. 6, 2003 Sheet 7 of 12 US 2003/0208548 A1

O CN -
CN r
YY CN

t
r
CN

CO
CY)

6.
O
SY

6S6
C Co
CNCNN

-
CN
H

SN
-
CO

wr w N
COO st N-1
CNCNCN CN

y CN 2
CN CN CN
CN CN CN

Patent Application Publication Nov. 6, 2003 Sheet 8 of 12 US 2003/0208548A1

&

g
S.

s

3

3

Patent Application Publication Nov. 6, 2003 Sheet 9 of 12 US 2003/0208548A1

s

US 2003/0208548A1 Nov. 6, 2003 Sheet 10 of 12 Patent Application Publication

US 2003/0208548A1 Nov. 6, 2003 Sheet 11 of 12 Patent Application Publication

'(s)?ep EIL] KIBAE

| | '50IH

US 2003/0208548A1 Nov. 6, 2003 Sheet 12 of 12 Patent Application Publication

US 2003/0208548 A1

APPLICATION SERVER FRAMEWORK

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The present invention is directed to computer sys
tems including application Servers generally, and, more
particularly, to providing a computer Software framework on
an application Server accommodating transparent porting of
application Software from a client computer to the applica
tion Server and transparent execution by the application
Server rather than by the client computer of the application
Software.

0003 2. Description of the Related Art
0004 Computer systems having distributed architectures
are known in the art. More particularly, client-Server archi
tectures are known in the art. In Such computer Systems,
processing occurs either on the clients or on the Server,
typically referred to as a data base Server. With processing
occurring on either the clients or the Server, the processing
Speed of whichever of the clients or the Server executing the
processing is hampered and therefore degrades. The degra
dation of processing Speed makes the potential for adding
additional processing intensive modules or functionality
infeasible for Some applications, Such as the Standard Desk
top Procurement System (SPS), thereby preventing full
utilization of the particular application, such as the SPS. For
example, the foregoing limitations of the related art do not
allow Some users, Such as the U.S. Government, to realize
the full capabilities of the SPS. More particularly, a U.S.
Department of Defense (DoD) desktop procurement system
needs to maintain a balance between a robust System to
accommodate 80% of the procurement users and provide
processing efficiencies for intensive processing, which needs
are not fulfilled by computer systems of the related art.
0005. An application server is a computer Software appli
cation that runs in a client-Server environment, but that is
distinct from both the client and Server applications. Typi
cally, this application performs busineSS rule or other pro
cessing that is computationally intensive at the request of the
client.

0006. Application servers, generally, are well known in
the art. An example of an application server is IBM Web
Sphere Application Server'TM, disclosed in About IBM Web
Sphere Application Server T.M. Another example of an appli
cation server is disclosed in U.S. Pat. No. 5,893,106 to
Brobst, et al., entitled Object Oriented Server Process
Framework with Interdependent-Object Creation.
0007 Computer systems having application servers pro
Vided logically between a data base Server and clients are
referred to as three tiered architectures, which are known in
the art. FIG. 1 shows an example of a computer system 10
of the related art having a three-tiered architecture and
including an application Server 12. AS shown in the com
puter system 10 of FIG. 1, the application server 12 is
Separate and distinct from clients 14-1 through 14-n and
from data base server 16, but is provided logically between
the clients 14 and the data base server 16. The application
Server 12 alleviates processing load from the data base
Server 16, and, further, provides additional functions Such as
load balancing and process Scheduling within the computer
system 10.

Nov. 6, 2003

0008. As shown in the computer system 10 of FIG.1, one
of the clients 14 transmits a request to the application Server
12, which, in turn, reformats the request and transmits it in
the form of an OB (outbound) request to the database server
16. The data base server 16 returns data to the application
Server 12, which reformats the data into an answer trans
mitted to the requesting client 14.
0009 Commercially-available software programs, such
as native PowerBuilderTM facilities, extend the function of
the application server 12. Through the use of native Pow
erBuilderTM facilities, application software written to be
executed by the clients 14 (hereafter also referred to as client
code) can be migrated to the application server 12 for
execution thereby. Thus, instead of an architecture in which
client computerS 14 interface directly to database Server 16,
as in a traditional client-Server environment, client comput
erS 14 interface to application Server 12, which in turn
interfaces to data base server 16 (as shown in FIG. 1).
0010) A problem, though, with the use of native Power
BuilderTM facilities is that the client code must be rewritten
before the client code can be successfully ported from the
client computerS 14 to the application Server 12.
0011 Although native PowerBuilderTM facilities insulate
the client code from the architecture of the computer System
to Some degree, these facilities fail to make the architecture
completely transparent to the client. The primary issue that
prevents complete client transparency is that the client Still
must explicitly connect to an application Server and ask the
Server to create a remote object. In addition, if a Site wishes
to install more than one application Server in order to spread
demand acroSS multiple machines, the client would then
need to be able to pick the appropriate application Server.
Thus, the client code must be rewritten before it can be
Successfully ported to and executed by the application
servers of the related art.

0012 Neither porting of client code from the clients to
the application Server nor execution of the client code by the
application Server rather than the client is transparent in the
computer Systems of the related art.
0013 Also known in the art is a job scheduler, which
Stores a list of jobs with asSociated Schedules, and ensures
that the jobs are run according to that Schedule.
0014 Throughout the following paragraphs, terms such
as job, process, and Service are used interchangeably.

SUMMARY OF THE INVENTION

0015. It is therefore an object of the present invention to
provide an application Server framework which overcomes
the above-mentioned problems of the related art.
0016. It is another object of the present invention to
provide an interface to manage the Standard Desktop Pro
curement System (SPS) servers.
0017. A further object of the present invention is to allow
installation of the SPS client software to be independent of
whether an application Server is running.
0018 Yet another object of the present invention is to
accommodate job management initiated from a client.
0019. Still another object of the present invention is to
provide connection Security, remote object creation, Sched
uling and batch processing, and remote Server management
functions.

US 2003/0208548 A1

0020. A still further object of the present invention is to
alleviate processing load from the clients and from the data
base Server.

0021. Yet a further object of the present invention is to
allow an application Server to be installed and operational
without altering client code.
0022. A yet additional object of the present invention is
to allow additional application Software modules to be
installed without degrading the performance of either the
clients or the data base Server.

0023. A further object of the present invention is to
provide a desktop procurement System maintaining a bal
ance between a robust system to accommodate 80% of the
procurement users and providing processing efficiencies for
intensive processing.
0024. The Application Server Framework (ASF) of the
present invention provides SPS the efficiencies that the
computer Systems of the related art would not allow.
0025) The Application Server Framework (ASF) elimi
nates the problems discussed above and also provides an
interface to manage the SPS application Servers by taking
advantage of PowerBuilderTM 6.0 functionality and tailoring
it to the Department of Defense's (DoD) needs. The ASF of
the present invention allows installation of the SPS client
Software independently of whether an application Server is
running. Further, with the ASF of the present invention, a
site can install the latest version of the SPS Software without
choosing to install an application server and then add the
application Server executing the ASF later, without making
changes to the client code. In addition, the plug in capability
of the ASF allows additional modules to be added to the
Standard Procurement System (SPS) without degrading the
performance of the client computers or the database Server
of the computer system in which the ASF is installed.
0026. The ASF of the present invention accommodates
job management initiated from the client computers. Using
the job management option, authorized users create batch,
on-demand or Scheduled services. These services will be
performed on any module that is “plugged into” the ASF of
the present invention.
0027. The ASF of the present invention is a software
System which, when installed on an application Server,
provides the above-mentioned features and functions to the
computer System in which the application Server is provided.
The ASF of the present invention insulates client code in the
form of, for example, computer modules implementing
busineSS processes, from communication with a data base
Server So that the client code can be ported from the client
computer to the application Server and execute without
being altered. Accordingly, through the ASF of the present
invention, the client code formerly isolated to being
executed by the client computer on which it was installed is
made available to all of the client computers interfacing to
the application Server to which the client code is ported.
0028. With the ASF of the present invention, the com
puter System includes an application Server and a job Sched
uler integrated with the application Server that independently
requests execution of Services.
0029. These together with other objects and advantages
which will be Subsequently apparent, reside in the details of

Nov. 6, 2003

construction and operation as more fully hereinafter
described and claimed, reference being had to the accom
panying drawings forming a part hereof, wherein like
numerals refer to like parts throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

0030 FIG. 1 shows a three tiered architecture, including
an application Server, of the related art;
0031 FIG.2 shows an overview of a computer system 20
including the Application Server Framework (ASF) of the
present invention;
0032 FIG. 3 is a flowchart showing an overview of the
functions provided by the ASF of the present invention;
0033 FIG. 4 is a diagram of the software architecture of
the ASF startup function;
0034 FIG. 5 is a diagram of the software architecture of
the flow of the ASF for a service requested by an application
Server,

0035 FIG. 6 is a diagram of the software architecture of
the flow of the ASF for a service requested by a client
computer,

0036 FIG. 7 is a detailed architecture diagram of a
computer System including the ASF of the present invention;

0037 FIG. 8 shows an example of a service created by
the ASF as a service inherited from the services object, in
relation to other Services also inherited from the Services
object;
0038 FIG. 9 is a diagram showing a relationship
between an application Server, including the listener, the
Schedule controller, and the connection controller of the ASF
of the present invention, and a process created by the
connection controller;
0039 FIG. 10 shows an example of a job management
screen of the ASF displayed to the users by the ASF of the
present invention;
0040 FIG. 11 shows a jobs list screen of the jobs
Scheduled to be executed by the application Server, and
0041 FIG. 12 shows a log viewer screen of the ASF of
the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0042. The Application Server Framework (ASF) of the
present invention includes the following high level respon
Sibilities:

0043 A. Connection security- When a client attempts to
connect to an application Server, the ASF controls the Server
to Verify the client's username and password and either
grants or disallows the connection request. Users that are
allowed to connect are provided with either normal user
privileges or administrative privileges, based on the log-in
name and other information.

0044 B. Remote object creation-When a client requests
a remote object (via the client-side component of the ASF),
the ASF responds by creating the object and returning an
object handle to the client.

US 2003/0208548 A1

0.045 C. Scheduling and batch processing-In addition
to providing a three-tier application framework, the ASF
provides the ability to create and Schedule batch Services.
These Services do not respond to client requests, but run on
a scheduled basis under the control of the ASF itself.

0.046 D. Remote server management-Users with
administrative privileges are able to View a list of users who
are connected to an application Server as well as detailed
information about each client and disconnect users from the
application Server. Administrative users are also able to
remotely stop the application Server.
0047 The Application Server Framework (ASF) of the
present invention, which is written in PowerBuilder'TM,
accommodates on-demand and batch processing, is capable
of Scheduling and queuing, and can perform load balancing
functions. A site can install this application Server at the time
of installation of the client Software or at a later time without
having to make changes to the client Software. An applica
tion Server is installed, in a separate installation, directly to
the machine (typically a server) where it is desired to reside.
A site can install more than one application Server on a
Single machine. The application Servers may be established
to provide the same or different services. Since the ASF of
the present invention provides job Scheduling acroSS a Single
or multiple application Servers, allowing multiple applica
tion servers to work together, the ASF differs from a typical
three tiered architecture application or a distributed archi
tecture.

0.048 FIG.2 shows an overview of a computer system 20
including the Application Server Framework (ASF) of the
present invention. AS shown in FIG. 2, the computer System
20 includes client computers 22-1 through 22-N, interfacing
to an application Server 24, which, in turn, interfaces to a
data base server 26. Included within database server 26 is
a data base 28, such as a Sybase TM data base.
0049. Also included in computer system 20 is the ASF of
the present invention. The ASF of the present invention
includes Several Software modules residing on and executed
by an application Server, a Software module residing on and
executed by each client computer coupled to the application
server, and 2 files stored on the data base server 26. More
particularly, the ASF of the present invention includes
service brokers 30-1 through 30-N, provided on and
executed by the client computers 22-1 through 22-N, respec
tively. The ASF of the present invention also includes a
listener 32, a connection controller (which is also referred to
as a connection manager) 34, and a Schedule controller (or
job scheduler) 36, each provided on and executed by the
application server 24. In addition, the ASF of the present
invention includes, Stored on database Server 26, a Schedule
27 of services to be executed and a list 29 of application
servers and the jobs that are executable thereon. The ASF
also includes a conventional load balancer (not shown in
FIG. 2, but shown and discussed with reference to FIG.9)
running on the application Server 24.
0050 Preferably, each of the service broker 30, the
listener 32, the connection controller 34, the Schedule con
troller 36, and the load balancer are Software modules
written in a conventional computer language, Such as Pow
erBuilderTM.

0051. For the purposes of explanation, only one applica
tion server 24 is shown in the computer system 20 of FIG.

Nov. 6, 2003

2. However, with the ASF of the present invention, multiple
application ServerS 24, each executing the ASF of the present
invention, may be provided in the Same computer System 20,
with the client computerS 22 interfacing to each or multiple
application servers 24. The ASF of the present invention
then determines between the multiple application Servers
which will execute the Service requested by the client.
Alternatively, more than one application Server 24 may be
installed on a Single machine. The application Servers 24
may be established to provide the same or different services.

0052. In addition to services provided by the ASF of the
present invention, the client computers 22, the application
server 24, and the data base server 26 provide services
typically provided by conventional client computers, appli
cation Servers, and database Servers, respectively. The ASF
of the present invention can be installed directly to the
application Server 24 without impacting the client computers
22 or the database server 26.

0053 A brief explanation of functions provided by the
Service brokers 30, the listener 32, the connection controller
34, and the schedule controller 36 of the ASF of the present
invention is now provided.

0054. In the computer system 20 of the present invention,
the client computerS 22 request a Service to be performed.
The service broker 30 section of the ASF determines
whether the application server 24 to which the client com
puter 22 is coupled can execute the requested Service. If So,
then the service broker 30 interfaces with the listener 32
Section of the ASF residing on the application Server 24, and
transmits the Service request to the listener 32. Accordingly,
through the use of the service broker 30, the client computer
22 is otherwise relieved of the burden of having to be aware
of which application server 24 (particularly, if there are
Several application Servers 24 included in the computer
System 20, as explained herein below) is executing the
requested Service.

0055. The listener 32 then interfaces to the connection
controller 34 section of the ASF, which either creates the
Service or proceSS requested, then executes the Service or
process, or, if the requested Service or process had been
created previously, establishes a connection to the Service or
process. The requested Service may require the application
server 24 to interface with the data base server 26 or with
other application servers (not shown in FIG. 2). The con
nection controller 34 also interfaces to the schedule control
ler 36 section of the ASF, which establishes and maintains a
Schedule for the execution of each requested Service, and
notifies the client computer 22 requesting the Service upon
completion of the service. Through the use of the schedule
controller 36, the client computer 22 may request that a
Service be executed at Some future time, and the client
computer need not be logged onto the computer System 20
at the requested Service execution time for the Service to be
Successfully executed.

0056. If the application server 24 to which the client
computer 22 making the request for Service cannot execute
the requested service, then the service broker 30 section of
the ASF determines whether the client computer 22 making
the request can also execute the Service (i.e., whether the
client code required to Successfully fulfill the Service request
resides on the client computer making the Service request).

US 2003/0208548 A1

If So, then the service broker 30 interfaces with the client
code residing on the client computer 22 to fulfill the Service
request

0057. A more detailed explanation of the functionality of,
and the interfacing between, the service broker 30, the
listener 32, the connection controller 34, and the schedule
controller 36 of the ASF of the present invention is provided
herein below, after an explanation of Service execution by
the ASF of the present invention.
0.058 Using the ASF of the present invention, services
may be requested by either the application Server 24 or the
clients 22. FIG. 3 is a flowchart 100 showing an overview
of the functions provided by the ASF of the present inven
tion, including ASF startup in operation 110, flow 112
(executed when a Service request is made by an application
server 24) and flow 114 (executed when a service request is
made by a client computer for immediate execution).
0059) As shown in FIG. 3, in operation 110, the ASF of
the present invention is started up. Startup of the ASF of the
present invention includes building a Schedule of Services to
be executed using the Schedule controller 36, establishing
connections using the connection controller 34, and gener
ally ensuring that the data base 28 is accessible by the ASF
of the present invention. Operation 110 is typically executed
once, upon system startup, whereas flow 112 and flow 114
are each typically executed whenever a Service is requested
by the application server (for flow 112) or by the client
computer (for flow 114).
0060 Referring again to FIG. 3, next, in flow 112, in
operation 116, for Service requests made by the application
Server 24, a timer is Set, preferably in one-minute intervals.
The ASF then sleeps and wakes up in 118 upon prompting
by the timer at each one-minute interval. The ASF, in
operation 120, then determines whether an unexecuted pro
ceSS has been requested for execution at or before the current
time. If not, then control returns to operation 118 and the
ASF continues to sleep/wakeup during the one-minute time
intervals.

0061. If a process has been requested for execution, then
in operation 122, the ASF of the present invention estab
lishes a connection to the process, if needed. A connection
would not need to be established if Such a connection had
been established previously. After the connection is estab
lished, the requested Service is executed in operation 124,
and the application Server 24 making the request is notified
of completion of the proceSS in operation 126.
0062) The foregoing operations 116 through 124 are
typically followed when a proceSS is requested, either by a
client computer 22 or an application Server 24, to be
executed at a future time. Even though the process may be
requested by a client computer 22, Since the proceSS is
requested for execution at a future time, the request appears
as though it is being initiated by the application Server 24.
0.063 Alternatively, if a service request is made by a
client computer 22, for example for immediate execution,
the ASF of the present invention executes flow 114. In flow
114, the service broker 30 determines whether the requested
Service is executable by the application Server 24, in opera
tion 128. If so, then operations 122, 124, and 126 are
executed as in flow 112, as explained herein above, with one
exception: in operation 126, the client computer 22 (not the

Nov. 6, 2003

application server 24) making the Service request is notified
of the completion of the requested Service.
0064. If the service request made by the client computer
22 is not executable by the application Server 24, then the
client computer 22 making the request for the process
executes in operation 130 the requested Service.
0065. Each of operation 110, flow 112, and flow 114 of
the ASF of the present invention are explained in further
detail with reference to Software architectures of the ASF
shown in FIGS. 4-6.

0066. The software architecture 40 of the ASF shown in
FIG. 4 corresponds to function of the ASF shown in
operation 110 of FIG. 3. In the software architecture 40
shown in FIG.4, the start up ASF functions of operation 110
shown are provided in the ASF on the application server 24.
Referring now to FIG. 4, a server function 42 initiates
building of a Schedule of Services to be executed, principally
by the application Server 24, and, accordingly, the establish
ment of the Schedule controller 36 in communication with
the connection controller 34. Also as part of the startup ASF
operation 110, the schedule controller 36 initiates processes
Such as establishing communication with Servers and with
jobs, using as? Sq1 module 44.
0067. Once the ASF of the present invention has been
started, in accordance with FIG. 4, then the process of the
ASF shown in operation 112 is executed for a Service request
initiated by the application server 24. FIG. 5 shows the
Software architecture 45 of the ASF of the present invention
implementing operation 112 of FIG. 3. The functions of the
ASF disclosed in FIG. 5 are executed on the application
server 24.

0068. As shown in FIG. 5, the server function 42, in
response to a timer, initiates a function of the Schedule
controller 36 to check jobs (or services) to be executed. If a
Service is Scheduled to be executed at this time, then the
Schedule controller instructs the connection controller 34 to
create an instance of the process, and provides to the
connection controller the name of the application Server 24
making the request for the process (the handle), along with
the object name of the process. The connection controller 34
then establishes a connection 46 (for example, to the data
base server 26). Establishment of a connection 46 includes
providing to the connection 46 process an instruction to
connection to the Server 26, along with instruction to create
an instance of the process of the object name to execute the
Service 48.

0069. Also as shown in FIG. 5, the schedule controller 36
provides to the service 48 being executed a handle to call
back to the Schedule controller 36 creating the instance, and
instructions to execute the service 48. The service 48 then
notifies the schedule controller 36 of the completion, by
name, of the service 48.

0070 FIG. 6 shows the software architecture 49 of the
ASF of the present invention implementing operation 114 of
FIG. 3. The functions of the ASF disclosed in FIG. 6 are
executed on the application Server 24 and on client computer
22. As shown in FIG. 6, a client application 50 running on
a client computer 22 requests of the service broker 30 of the
client computer 22 to generate a Service to be provided to the
client application 50. The service broker 30 of the client
computer 22 then creates an instance of the Service, by

US 2003/0208548 A1

providing to the connection controller 34 of the application
server 24 the server name of the server to execute the
Service, along with the Service name of the Service to be
provided. The connection controller 34 then connects to the
Server having the Server name provided by the Service
broker, and creates an instance of the Service to be provided,
identified by the object name. Accordingly, a connection 46
is established to the service 48 requested.
0071 Also as shown in FIG. 6, the connection controller
34 sets the location (which is remote) of the service 48 to be
provided to the client application 50. After the service 48 is
established, the service 48 receives from the service broker
30 requesting the service 48 a callback instruction to notify
the service broker 30 upon completion of the service 48. The
Service is executed, as shown in FIG. 6, in accordance with
instructions and parameters provided to the Service by the
client application 50.
0072 FIG. 7 is a detailed architecture diagram of the
computer system 20 including the ASF of the present
invention, shown in FIG. 2. The computer system 20 is
executing, for example, the U. S. Department of Defense
(DoD) Standard Desktop Procurement System (SPS).
0073) Referring now to FIG. 7, the operations executed
or directed by the ASF of the present invention are now
explained. In the computer system 20 of FIG. 7, multiple
client computers 22-1 through 22-N are shown, as are
multiple application servers 24-1 through 24-M. Client
computers 22-1 through 22-N each include the service
broker component of the ASF, shown as service brokers 30-1
through 30-N, respectively. Additionally, each application
server 24-1 through 24-M includes a listener 32, a connec
tion controller 34, and a schedule controller 36 of the ASF
of the present invention. Further, each client computer 22-1
through 22-N is logically coupled to each application Server
24-1 through 24-M, either through the listener 32 of a
primary application server 24-1 (which listener 32 of 24-1 is
then coupled to each listener 32 of each remaining applica
tion server 24-2 through 24-M) or directly to the listener 32
of each application Server 24-1 through 24-M. Each appli
cation Server 24-1 through 24-M is also logically coupled to
data base server 26.

0.074 Referring again to FIG.7, communication between
the client computerS 22 and the application Servers 24 occurs
between the respective service brokers 30 of the client
computers and the respective listenerS 32 of the application
Servers. Likewise, communication among the application
Servers 24 occurs through respective listenerS 32. Commu
nication between the application Servers 24 and the database
Server 26 occurs through both the respective connection
controllers 34 and the respective schedule controllers 36.
0075) When the ASF is installed on more than one
application Server 24 within a computer System 20, one of
the application servers 24-1 (for example) is designated as
the primary application 24. The primary application Server
24-1 communicates with the client computers 22-1 through
22-N, and with the other application servers 24-2 through
24-M included in the computer system 20. Further, the
primary application Server 24-1 determines which of the
application servers 24-1 through 24-M will perform a
requested Service.
0076) The operations and the functions of the ASF of the
present invention are now described in further detail with

Nov. 6, 2003

reference to FIG. 7. It will be appreciated by those of
ordinary skill in the art that, in addition to the ASF functions
of the present invention disclosed herein, the client comput
erS 22, the application ServerS 24, and the data base Server
26 also provide conventional functions associated therewith.
0077. The ASF of the present invention is installed (200)
on each of the application servers 24-1 through 24-M of
FIG. 7, using the operation disclosed herein above with
reference to FIG. 4. The ASF installation operation, as
disclosed with reference to FIG. 4, creates (200) on each of
the application Servers 24 a Schedule controller 36 and a
connection controller 34. At startup of the ASF of the present
invention, the schedule controller 36 reads (202) the sched
ule of services to be provided 27 from the data base server
26, through a relational data base management System 25
(RDMS). If there are services to be executed by the appli
cation server 24-1 reading the schedule 27, then the services
are provided in accordance with the flow 112 shown in FIG.
3, using the Software architecture 45 of the ASF shown in
FIG 5.

0078. Additionally, the primary application server 24-1
monitors through listener 32 each of the client computers
22-1 through 22-N for requests for service. Preferably, the
listener 32 of the primary application Server 24-1 is coupled
to each of the client computerS 22 and to the other applica
tion servers 24 through a TCP/IP connection. Requests for
Service received from client computerS 22 are executed in
accordance with flow 114 shown in FIG. 3, using the
Software architecture 49 of the ASF shown in FIG. 6.

0079 Upon receipt (204) of a request for service, such as
a refresh, from the service brokers 30-1 through 30-N, the
listener 32 transmits (205) the request for service to the
schedule controller 36, which also reads (202) the schedule
27 of services to be performed.
0080) Therefore, the schedule 27 is read (202) by the
Schedule controller during either of 2 events: Startup or
refresh.

0081 Further, the schedule controller 36 receives (206)
from the operating system 37, such as WINDOWS, a
message of time each minute, based upon the monitoring
(208) by the operating system 37 of the system clock 39.
0082) If the schedule controller 36 determines that there
are no Services requested in the Schedule to be performed at
the current time, then the schedule controller 36 awaits
notification (206) by the operating system 37 of the passage
of another minute, and, upon receipt thereof, the Schedule
controller 36 again determines whether there are Services to
be provided during the Subsequent minute.
0083. On the other hand, if there are services scheduled
to be provided during at the current time, based upon the
schedule 27, the schedule controller 36 notifies (210) the
connection controller 34 of Such. The connection controller
34 then creates (212), if needed, the service 214 to be
provided. The service 214 most likely involves interaction
(216) with the data base 28, through the RDMS 25. How
ever, the Service 214 may also involve a process wholly
contained within the primary application Server 24-1, or
interaction (218) with another application server 24-M,
through the listener 32 of the application server 24-M.
0084. If the requested service includes a task to be
performed by another application server(s) 24-2 through

US 2003/0208548 A1

24-M, the connection controller 34 of the primary applica
tion server 24-1 determines which of the application servers
24-2 through 24-M will perform the task by reading (220)
through the RDMS 25 the list 29 of application servers 24-1
through 24-M, and the jobS each of the application Servers
24-1 through 24-M is capable of executing. The application
server 24-M (for example) selected for executing the
requested Service would do So consistent with the descrip
tion of the execution of a service provided herein with
respect to application Server 24-1.
0085 Each service, when created, includes a connection
and a handle (pointer to or address of the service). When the
connection controller 34 has created the service to be
executed, the connection controller 34 maintains and trans
mits (222) to the schedule controller the handle.
0086) The schedule controller 36 then instructs (224) the
Service 214 to execute asynchronously, in a fire-and-forget
mode. At the completion of the service 214, the schedule
controller 36 is notified (226) of such. The objects created
and used during in the Service 214 are destroyed, but the
shell of the connection is maintained, for possible future
re-execution, eliminating the need to repeatedly create the
Same Service if requested again at a later time.
0087. The service broker 30 of the ASF of the present
invention resides on the client computer 22, alleviating the
client computer 22 of having to be aware of where the
requested Service is running, interfaces with the application
server 24 through the listener 32 of the ASF to get the
requested Service performed, and provides the handle of the
Service being performed to the client computer 22. If the
application Server 24 cannot perform the requested Service,
and if none of the application Servers 24 in the computer
System 20 can perform the requested Service, the Service
broker 30 creates the service on the client computer 22 and
still provides the handle of the service being executed to the
client computer 22.
0088. Examples of services provided in an application
Server 24 include electronic document access (EDA), elec
tronic document interfacing (EDI), Solicitation Services, etc.
EDA and EDI are known. Solicitation services are also
known and include statements by the U.S. Government of
what the U.S. Government wants to buy, and which are sent
to industry. The Statements, or Solicitations, are marked as
ready for release to the public at a future date/time, and
cannot be released before that date/time. Conventionally, a
Solicitation is released by the client computer at the desig
nated date/time, but the client computer must be booted up
and running to release the Solicitation.
0089. On the other hand, by using the ASF of the present
invention, the Solicitation Services could be moved from a
client computer 22 to an application Server 24 executing the
ASF So that a user working at a client computer 22 could
mark a Solicitation for release at a future date/time, which
would make a request to the application Server 24 executing
the ASF of the present invention to execute the solicitation
Service at the designated date/time. Execution of the
requested Solicitation Service would then be the responsi
bility of the application server 24 running the ASF, and the
client computer 22 could then be turned off. The application
server 24 executing the ASF of the present invention would
then add the requested service to the schedule of services 27,
by Setting flags in the data base 26 (which flags indicate that

Nov. 6, 2003

the requested service should be added to the schedule of
Services 27). The flags include a flag indicating that a
Solicitation is ready for release at a particular date/time, that
an EDI should be transmitted in 10 minutes, etc. When the
appointed hour arrives, the ASF, using the Schedule control
ler 36, would execute the requested Service, as explained
herein above.

0090. In accordance with the above-mentioned pro
cesses, client code, or components thereof, can be ported to
and executed by application servers 24-1 through 24-M. To
be ported to application servers in the ASF of the present
invention, client code must fulfill the following require
mentS.

0091 A. the ported objects must be non-visual objects
only;

0092 B. the component of the client code residing on the
client computerS 22 must be addressable by the application
ServerS 24; and
0093 C. the component of the client code being ported
must be extricable from the client code, and, more particu
larly, the component must be inherited from an existing
model of a business proceSS and must be able to be inte
grated Seamlessly into the application Server 24.
0094) For example, in an object-oriented system, the
Services object may itself point to Services Such as an EDA
Service, an EDI Service, a Solicitation Service, etc., each of
which is itself an object. The service to be executed by the
application server 24 must itself be an object inherited from
the Services object So that the application Server 24 can
communicate with the Service to be executed through the
Same interface as used for all of the Services related to the
Services object.
0.095 FIG. 8 shows an example of a service 132 created
by the ASF as a service inherited from the services object
134, in relation to other services 136, 138,140 also inherited
from the services object 134. More particularly, at startup
110 (FIG. 3) of the ASF, a service (for example, 132) is
created which is inherited from a primary Service object
(such as 134). Within the created service 132, the ASF issues
calls to objects that are part of the component being moved
from the client computer 22 to the application Server 24 to
accomplish the service 132. The inherited service 132 then
knows how to connect back to the application Server 24.
0096. In the ASF of the present invention, the entire
component need not be inherited; only one object of the
component needs to be inherited, and the inherited object of
the component initiates the rest of the component.
0097. By providing a framework under which services
are ported from client computerS 22 to application Servers
24, the ASF of the present invention relieves the client
computerS 22 of the burden of having to run a process or
execute a Service at a specific time. The application Servers
24, using the ASF of the present invention, then execute the
requested Service at the Specified time, based upon the
schedule of jobs 27 established to be executed by the ASF.
Therefore, the client computerS 22 can Schedule processes to
be executed at Some future time, without requiring the client
computer 22 requesting the Service to remain active.
0098 FIG. 9 is a diagram showing a relationship
between an application Server 24-1, including the listener

US 2003/0208548 A1

32, the Schedule controller 36, and the connection controller
34 of the ASF of the present invention, and a process created
by the connection controller 34. As shown in FIG. 9, the
connection controller 34 creates (146) a process 12 to
accomplish a requested Service, Such as EDA. The proceSS
142 may be executed on another application server 24 (not
shown in FIG. 9), on a client computer 22-1 requesting the
service, or on a data base server 26 (not shown in FIG. 9).
In addition to creating the proceSS 142 to be executed, the
connection controller 34 also creates a temporary shell 144
(which is maintained for future use) Surrounding the created
process 142. The connection controller 34 maintains the
handle of (i.e., pointer to) the requested process 142.
0099 Further, using the ASF of the present invention,
each application server 24 (for example, of the application
servers 24-1 through 24-M shown in FIG. 7) could be
designated by the Systems administrator for an installation or
a site as Specific to processes, which are installed only on the
designated machines. For example, one of the application
Servers could be designated for providing EDA only Ser
vices, while another of the application Services could be
designated as providing EDI and EDA Services.

0100 AS discussed herein above, one of the application
Servers 24 is designated as the primary application Server,
and the listener 32 of the primary application Server acts as
a clearinghouse. In its role as a clearinghouse, the listener 32
of the primary application Server determines which of the
other applications Servers or the primary application Server
should execute the Service requested by a client computer
22, based upon which application server(s) is/are designated
to execute the requested Service, and the load each of the
application server(s) designated to execute the requested
Service is carrying.

0101 To determine which of the application servers is
designated to execute the requested Service, the listener 32
maintains and refers to a file Storing that information to
identify the candidate application Servers. Once the listener
32 has determined the candidate application server(s) des
ignated to execute the requested Service, the listener 32
refers to the conventional load balancer 148, included as part
of the ASF of the present invention, to determine which of
the candidate application ServerS is most ideally Suited
from an overall System load perspective-as a preferred
application Server to execute the requested Service. Based on
the load balancer 148, the listener 32 advises the connection
controller 34 of the preferred application server 24. The
connection controller 34 then establishes the needed con
nections there with, as explained herein above.
0102) When the ASF of the present invention is installed
on an application Server, the ASF functions without requir
ing alteration of client computer Software.
0103). With the ASF of the present invention, the appli
cation Server console provides the ability to allow a user to
Start and Stop the application Server, and also displays the
Status of that particular application Server. Through the ASF,
users manage requests from client computers accessing the
application Server and manage the jobs the application
Server performs.

0104 FIG. 10 shows an example of a job management
screen 150 of the ASF displayed to the users by the ASF of
the present invention. The job management screen 150

Nov. 6, 2003

provides real-time Status information on each Scheduled
Service. The job management Screen 150 displays on a
console of the application Server to authorized users a list of
the batch Services that are currently provided through the
application server. As shown in FIG. 10, the job manage
ment screen 150 displays the last time the service was
performed, the next scheduled time the service will be
performed, and the current Status of each Service that is
available. The job management screen 150 includes buttons
Such as Run Now . . . 152, Disable Job . . . 154, Schedule
... 156. Through the Run Now . . . 152 button, the user can
instruct the ASF to execute the selected service(s) on
demand. Through the Disable Job . . . 154 button, the user
can instruct the ASF to temporarily Stop the Selected Ser
vice(s) from running. The ASF reads the schedule of jobs 27
to populate the job management Screen 150.

0105 FIG. 11 shows a jobs list screen 158 of the jobs
scheduled to be executed by the application server. The jobs
list Screen provides the ability to Schedule and manage
routine services. The jobs list screen 158 is also populated
from data read by the ASF from the schedule of jobs 27.
Using the jobs list screen 158, authorized users are able to
establish the schedule 27 that a service should be performed
on through the ASF. The schedule 27 can be set to perform
in daily, weekly, and monthly increments. Users may also
enter a time when the Service should start or a range of times
over which it should execute. In the latter case, the range of
time must be within the same day.
0106 FIG. 12 shows a log viewer screen 160 of the ASF.
The log viewer screen of the ASF provides a complete log
of all operations performed by the application Server.

0107 The ASF of the present invention removes data
intensive processing from the client computers and the
database Server, and also allows the client computers to
Schedule processing. Consequently, through the ASF, batch
and on demand processing are available to the client com
puters. Further, any processing intensive work required by
the procurement System can be accommodated by the ASF
using plug in module functionality.

0108). The flexibility of the ASF allows the SPS to meet
the requirements of the Department of Defense, without
degrading performance of the client computers or the data
base Server.

0109) The ASF’s capabilities extend beyond the conven
tional application server in order to meet the DoD's future
needs. The additional capabilities that extend beyond a
conventional industry application Server are unique. Further,
the ASF approach in solving DoD Standard Procurement
needs is a unique approach for a DoD wide procurement
System and readily accommodates future DoD electronic
procurement needs.

0110. The many features and advantages of the invention
are apparent from the detailed Specification and, thus, it is
intended by the appended claims to cover all Such features
and advantages of the invention which fall within the true
Spirit and Scope of the invention. Further, Since numerous
modifications and changes will readily occur to those skilled
in the art, it is not desired to limit the invention to the exact
construction and operation illustrated and described, and
accordingly all Suitable modifications and equivalents may
be resorted to, falling within the Scope of the invention.

US 2003/0208548 A1

What is claimed is:
1. An apparatus comprising:
an application Server, and
a job Scheduler integrated with the application Server and

independently requesting execution of Services.
2. The apparatus according to claim 1, further comprising:
a connection controller, integrated with the application

Server and coupled to the job Scheduler, establishing
connections with Services based upon the requested
execution of Services.

3. The apparatus according to claim 2, further comprising:
a listener, integrated with the application Server and

coupled to the connection controller, receiving requests
for execution of Services and transmitting the requested
execution of Services to the connection controller.

4. The apparatus according to claim 3, further comprising:
a Service broker, coupled to the listener, transmitting the

requests for execution of Services to the listener.
5. The apparatus according to claim 2, further comprising:
a Schedule, coupled to the job Scheduler, Storing a list of

the requested execution of a Service.
6. The apparatus according to claim 2, further comprising

a list of Services executable corresponding to locations at
which the Services are executable.

7. The apparatus according to claim 1, wherein the
apparatus further comprises a Department of Defense Stan
dard Desktop Procurement System.

8. A method comprising:
independently requesting execution of Services by a job

Scheduler integrated with an application Server.
9. A method comprising:
independently requesting by a job Scheduler execution of

Services by application Servers coupled to the job
Scheduler, Said job Scheduler controlling the applica
tion Servers to work in concert with each other.

10. The method according to claim 8, further comprising:
establishing by a connection controller a connection to a

Service requested to be executed, Said connection con
troller integrated with the application Server and
coupled to the job Scheduler.

11. The method of claim 10, further comprising:
receiving by a listener the request for the Service, Said

listener integrated with the application Server and
coupled to the job Scheduler.

12. The method of claim 10, further comprising:
transmitting by a Service broker the request for Service,

Said Service broker being provided in a client computer
coupled to the application Server, and Said Service
broker coupled to the listener.

13. A method comprising:
Starting up an application Server framework installed on

the computer System;
determining by the application Server framework whether

a Service is requested by an application Server, based
upon a job Scheduler of the application Server of the
computer System, or by a client computer of the com
puter System;

Nov. 6, 2003

determining by the application Server framework whether
the requested Service is executable by the application
Server, if the request for Service is made by the client
computer,

establishing a connection to the Service by the application
Server and executing the Service, if the requested Ser
Vice is executable by the application Server or if the
Service is requested by the application Server;

executing the requested Service by the client computer if
the client computer requested the Service and if the
Service is not executable by the application Server; and

notifying the application Server of the completion of the
Service if the application Server requested the Service,
and notifying the client computer of the completion of
the Service if the client computer requested the Service.

14. The method according to claim 13, wherein the
application Server framework transmits to the application
Server the handle of the Service if the application Server
requested the Service, and transmits to the client computer
the handle of the Service if the client computer requested the
Service.

15. A computer-readable device embodying a computer
program, Said computer program, when executed by a
computer, directing the computer to perform the operation
comprising:

independently requesting execution of Services by a job
Scheduler integrated with an application Server.

16. A computer-readable device embodying a computer
program, said computer program, when executed by a
computer, directing the computer to perform the operation
comprising:

independently requesting execution of Services by an
application Server framework comprising a job Sched
uler, Said application Server framework being inte
grated with an application Server.

17. The computer-readable device according to claim 16,
further comprising:

establishing by a connection controller of the application
Server framework a connection to a Service requested to
be executed.

18. The computer-readable device according to claim 16,
further comprising:

transmitting a handle of the connection to the Service to
the job Scheduler after establishing the connection.

19. The computer-readable device according to claim 17,
further comprising:

receiving by a listener of the application Server frame
work the request for the Service.

20. A computer-readable device embodying a computer
program, Said computer program, when executed by a
computer, directing the computer to perform the operation
comprising:

Starting up an application Server framework installed on
the computer System;

determining by the application Server framework whether
a Service is requested by an application Server, based
upon a job Scheduler of the application Server of the
computer System, or by a client computer of the com
puter System;

US 2003/0208548 A1

determining by the application Server framework whether
the requested Service is executable by the application
Server, if the request for Service is made by the client
computer,

establishing a connection to the Service by the application
Server and executing the Service, if the requested Ser
Vice is executable by the application Server or if the
Service is requested by the application Server;

executing the requested Service by the client computer if
the client computer requested the Service and if the
Service is not executable by the application Server; and

notifying the application Server of the completion of the
Service if the application Server requested the Service,
and notifying the client computer of the completion of
the Service if the client computer requested the Service.

21. The computer-readable device according to claim 20,
wherein the computer program further directs the computer
to transmit to the application Server the handle of the Service
if the application Server requested the Service, and transmit
to the client computer the handle of the service if the client
computer requested the Service.

22. An apparatus comprising:
application Servers working in concert with each other;

and

a job Scheduler controlling the application Servers to work
in concert with each other.

23. The apparatus according to claim 22, wherein Said job
Scheduler is integrated with one of the application servers
and independently requests execution of Services, said appa
ratus further comprising a connection controller, coupled to
the job Scheduler, establishing connections with Services
based upon the requested execution of Services.

24. The apparatus according to claim 22, wherein Said job
Scheduler is integrated with one of the application Servers

Nov. 6, 2003

and independently requests execution of Services, said appa
ratus further comprising a listener, coupled to the connection
controller, receiving requests for execution of Services and
transmitting the requested execution of Services to the
connection controller.

25. The apparatus according to claim 24, wherein Said job
Scheduler is integrated with one of the application Servers
and independently requests execution of Services, said appa
ratus further comprising a Service broker, coupled to the
listener, transmitting the requests for execution of Services to
the listener.

26. The apparatus according to claim 22, further com
prising:

a Schedule, coupled to the job Scheduler, Storing a list of
the requested execution for a Service; and

a list of Services executable corresponding to locations at
which the Services are executable.

27. The apparatus according to claim 22, further com
prising a Department of Defense Standard Desktop Procure
ment System.

28. The apparatus according to claim 22, wherein the
application Servers comprises at least two application Serv
ers, and the job Scheduler is integrated with the at least two
application Servers.

29. The apparatus according to claim 28, wherein one of
the at least two application Servers is designated as a primary
application Server, Said apparatus further comprising client
computers coupled to the primary application Server.

30. The apparatus according to claim 28, further com
prising a load balancer determining which one of the at least
two application Servers able to execute the requested Service
will execute the requested Service, based upon the load on
each of the at least two application Servers.

