

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2017/195112 A1

(43) International Publication Date
16 November 2017 (16.11.2017)

(51) International Patent Classification:

C07D 401/14 (2006.01) *C07D 513/04* (2006.01)
C07D 417/14 (2006.01) *A61K 31/444* (2006.01)
C07D 471/04 (2006.01) *A61P 31/18* (2006.01)

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(21) International Application Number:

PCT/IB2017/052700

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

(22) International Filing Date:

09 May 2017 (09.05.2017)

Published:

- with international search report (Art. 21(3))

(25) Filing Language:

English

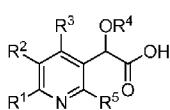
(26) Publication Language:

English

(30) Priority Data:

62/334,711 11 May 2016 (11.05.2016) US

(71) Applicant: VIIV HEALTHCARE UK (NO.5) LIMITED [GB/GB]; 980 Great West Road, Brentford Middlesex TW89GS (GB).


(72) Inventors: KADOW, John F.; 5 Research Parkway, Wallingford, Connecticut 06492 (US). NAIDU, B. Narasimhulu; 5 Research Parkway, Wallingford, Connecticut 06492 (US). WANG, Tao; 5 Research Parkway, Wallingford, Connecticut 06492 (US). YIN, Zhiwei; 5 Research Parkway, Wallingford, Connecticut 06492 (US). ZHANG, Zhongxing; 5 Research Parkway, Wallingford, Connecticut 06492 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(54) Title: PYRIDIN-3-YL ACETIC ACID DERIVATIVES AS INHIBITORS OF HUMAN IMMUNODEFICIENCY VIRUS REPLICATION

(57) Abstract: Disclosed are compounds of Formula I, including pharmaceutically acceptable salts, pharmaceutical compositions comprising the compounds, methods for making the compounds and their use in inhibiting HIV integrase and treating those infected with HIV or AIDS. (I)

I

WO 2017/195112 A1

PYRIDIN-3-YL ACETIC ACID DERIVATIVES AS INHIBITORS OF HUMAN IMMUNODEFICIENCY VIRUS REPLICATION

FIELD OF THE INVENTION

5 The invention relates to compounds, compositions, and methods for the treatment of human immunodeficiency virus (HIV) infection. More particularly, the invention provides novel inhibitors of HIV, pharmaceutical compositions containing such compounds, and methods for using these compounds in the treatment of HIV infection. The invention also relates to methods for making the compounds hereinafter described.

10

BACKGROUND OF THE INVENTION

Human immunodeficiency virus (HIV) has been identified as the etiological agent responsible for acquired immune deficiency syndrome (AIDS), a fatal disease characterized by destruction of the immune system and the inability to fight off life threatening opportunistic infections. Recent statistics indicate that an estimated 35.3 million people worldwide are infected with the virus (UNAIDS: Report on the Global HIV/AIDS Epidemic, 2013). In addition to the large number of individuals already infected, the virus continues to spread. Estimates from 2013 point to close to 3.4 million new infections in that year alone. In the same year there were approximately 1.6 million deaths associated with HIV and AIDS.

20

Current therapy for HIV-infected individuals consists of a combination of approved anti-retroviral agents. Over two dozen drugs are currently approved for HIV infection, either as single agents or as fixed dose combinations or single tablet regimens, the latter two containing 2-4 approved agents. These agents belong to a number of different classes, targeting either a viral enzyme or the function of a viral protein during the virus replication cycle. Thus, agents are classified as either nucleotide reverse transcriptase inhibitors (NRTIs), non-nucleotide reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), integrase inhibitors (INIs), or entry inhibitors (one, maraviroc, targets the host CCR5 protein, while the other, enfuvirtide, is a peptide that targets the gp41 region of the viral gp160 protein). In addition, a pharmacokinetic enhancer with no antiviral activity, i.e., cobicistat, available from Gilead Sciences, Inc. under the tradename TYBOST™ (cobicistat) tablets, has recently been approved for use in combinations with certain antiretroviral agents (ARVs) that may benefit from boosting.

In the US, where combination therapy is widely available, the number of HIV-related deaths has dramatically declined (Palella, F. J.; Delany, K. M.; Moorman, A. C.; Loveless, M. O.; Furher, J.; Satten, G. A.; Aschman, D. J.; Holmberg, S. D. *N. Engl. J. Med.* 1998, 338, 853-860).

5 Unfortunately, not all patients are responsive and a large number fail this therapy. In fact, initial studies suggest that approximately 30-50% of patients ultimately fail at least one drug in the suppressive combination. Treatment failure in most cases is caused by the emergence of viral resistance. Viral resistance in turn is caused by the replication rate of HIV-1 during the course of infection combined with the relatively high viral
10 mutation rate associated with the viral polymerase and the lack of adherence of HIV-infected individuals in taking their prescribed medications. Clearly, there is a need for new antiviral agents, preferably with activity against viruses already resistant to currently approved drugs. Other important factors include improved safety and a more convenient dosing regimen than many of the currently approved drugs.

15 Compounds which inhibit HIV replication have been disclosed. See, for example, the following patent applications: WO2007131350, WO2009062285, WO2009062288, WO2009062289, WO2009062308, WO2010130034, WO2010130842, WO2011015641, WO2011076765, WO2012033735, WO2013123148, WO2013134113, WO2014164467, WO2014159959, and WO2015126726.

20 What is now needed in the art are additional compounds which are novel and useful in the treatment of HIV. Additionally, these compounds may desireably provide advantages for pharmaceutical uses, for example, with regard to one or more of their mechanisms of action, binding, inhibition efficacy, target selectivity, solubility, safety profiles, or bioavailability. Also needed are new formulations and methods of treatment
25 which utilize these compounds.

SUMMARY OF THE INVENTION

The invention encompasses compounds of Formula I, including pharmaceutically acceptable salts thereof, as well as pharmaceutical compositions, and their use in
30 inhibiting HIV and treating those infected with HIV or AIDS.

By virtue of the present invention, it is now possible to provide compounds that are novel and are useful in the treatment of HIV. Additionally, the compounds may provide advantages for pharmaceutical uses, for example, with regard to one or more of

their mechanism of action, binding, inhibition efficacy, target selectivity, solubility, safety profiles, or bioavailability.

The invention also provides pharmaceutical compositions comprising the compounds of the invention, including pharmaceutically acceptable salts thereof, and a pharmaceutically acceptable carrier, excipient, and/or diluent.

In addition, the invention provides methods of treating HIV infection comprising administering a therapeutically effective amount of the compounds of the invention to a patient.

Also provided in accordance with the invention are methods for making the compounds of the invention.

The present invention is directed to these, as well as other important ends, hereinafter described.

DESCRIPTION OF THE INVENTION

15 Unless specified otherwise, these terms have the following meanings.

“Alkyl” means a straight or branched saturated hydrocarbon comprised of 1 to 10 carbons, and preferably 1 to 6 carbons.

“Alkenyl” means a straight or branched alkyl group comprised of 2 to 10 carbons with at least one double bond and optionally substituted with 0-3 halo or alkoxy group.

20 “Alkynyl” means a straight or branched alkyl group comprised of 2 to 10 carbons, preferably 2 to 6 carbons, containing at least one triple bond and optionally substituted with 0-3 halo or alkoxy group.

25 “Aryl” mean a carbocyclic group comprised of 1-3 rings that are fused and/or bonded and at least one or a combination of which is aromatic. The non-aromatic carbocyclic portion, where present, will be comprised of C₃ to C₇ alkyl group. Examples of aromatic groups include, but are not limited to indanyl, indenyl, naphthyl, phenyl, tetrahydronaphthyl and cyclopropylphenyl. The aryl group can be attached to the parent structure through any substitutable carbon atom in the group.

30 “Arylalkyl” is a C₁-C₅ alkyl group attached to 1 to 2 aryl groups and linked to the parent structure through the alkyl moiety. Examples include, but are not limited to, -(CH₂)_nPh with n = 1-5, -CH(CH₃)Ph, -CH(Ph)₂.

“Aryloxy” is an aryl group attached to the parent structure by oxygen.

“Cycloalkyl” means a monocyclic ring system composed of 3 to 7 carbons.

“Halo” includes fluoro, chloro, bromo, and iodo.

“Haloalkyl” and “haloalkoxy” include all halogenated isomers from monohalo to perhalo.

“Heteroaryl” is a subset of heterocyclic group as defined below and is comprised 5 of 1-3 rings where at least one or a combination of which is aromatic and that the aromatic group contains at least one atom chosen from a group of oxygen, nitrogen or sulfur.

“Heterocycl or heterocyclic” means a cyclic group of 1-3 rings comprised of 10 carbon and at least one other atom selected independently from oxygen, nitrogen and sulfur. The rings could be bridged, fused and/or bonded, through a direct or spiro attachment, with the option to have one or a combination thereof be aromatic. Examples include, but are not limited to, azaindole, azaindoline, azetidine, benzimidazole, bezodioxolyl, benzoisothiazole, benzothiazole, benzothiadiazole, benzothiophene, benzoxazole, carbazole, chroman, dihalobezodioxolyl, dihydrobenzofuran, dihydro- 15 benzo[1,4]oxazine, 1,3-dihydrobenzo[c]thiophene 2,2-dioxide, 2,3-dihydrobenzo[d]isothiazole 1,1-dioxide, 3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazine, 2,3-dihydro-1H-pyrrolo[3,4-c]pyridine and its regioisomeric variants, 6,7-dihydro-5H-pyrrolo[2,3-b]pyrazine and its regioisomeric variants, furanylphenyl, imidazole, imidazo[1,2-a]pyridine, indazole, indole, indoline, isoquinoline, isoquinolinone, 20 isothiazolidine 1,1-dioxide, morpholine, 2-oxa-5-azabicyclo[2.2.1]heptane, oxadiazole-phenyl, oxazole, phenylaztidine, phenylindazole, phenylpiperidine, phenylpiperizine, phenyloxazole, phenylpyrrolidine, piperidine, pyridine, pyridinylphenyl, pyridinylpyrrolidine, pyrimidine, pyrimidinylphenyl, pyrazole-phenyl, pyrrolidine, pyrrolidin-2-one, 1H-pyrazolo[4,3-c]pyridine and its regioisomeric variants, pyrrole, 5H-pyrrolo[2,3-b]pyrazine, 7H-pyrrolo[2,3-d]pyrimidine and its regioisomeric variants, 25 quinazoline, quinoline, quinoxaline, tetrahydroisoquinoline, 1,2,3,4-tetrahydro-1,8-naphthyridine, tetrahydroquinoline, 4,5,6,7-tetrahydrothieno[3,2-c]pyridine, 1,2,5-thiadiazolidine 1,1-dioxide, thiophene, thiophenylphenyl, triazole, or triazolone. Unless otherwise specifically set forth, the heterocyclic group can be attached to the parent 30 structure through any suitable atom in the group that results in a stable compound.

It is understood that a subset of the noted heterocyclic examples encompass regioisomers. For instance, “azaindole” refers to any of the following regioisomers: 1H-pyrrolo[2,3-b]pyridine, 1H-pyrrolo[2,3-c]pyridine, 1H-pyrrolo[3,2-c]pyridine, and 1H-

pyrrolo[3,2-b]pyridine. In addition the “regioisomer variants” notation as in, for example, “5H-pyrrolo[2,3-b]pyrazine and its regioisomeric variants” would also encompass 7H-pyrrolo[2,3-d]pyrimidine, 7H-pyrrolo[2,3-c]pyridazine, 1H-pyrrolo[2,3-d]pyridazine, 5H-pyrrolo[3,2-c]pyridazine, and 5H-pyrrolo[3,2-d]pyrimidine. Similarly, 6,7-dihydro-5H-pyrrolo[2,3-b]pyrazine and its regioisomeric variants would encompass 6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidine and 6,7-dihydro-5H-pyrrolo[2,3-c]pyridazine. It is also understood that the lack of “regioisomeric variants” notation does not in any way restrict the claim scope to the noted example only.

“Heterocyclylalkyl” is a heterocyclyl moiety attached to the parent structure through C₁-C₅ alkyl group. Examples include, but are not limited to, -(CH₂)_n-R^Z or -CH(CH₃)-(R^Z) where n = 1-5 and that R^Z is chosen from benzimidazole, imidazole, indazole, isooxazole, phenyl-pyrazole, pyridine, quinoline, thiazole, triazole, triazolone, oxadiazole.

Terms with a hydrocarbon moiety (e.g. alkoxy) include straight and branched isomers for the hydrocarbon portion with the indicated number of carbon atoms.

Bonding and positional bonding relationships are those that are stable as understood by practitioners of organic chemistry.

Parenthetical and multiparenthetical terms are intended to clarify bonding relationships to those skilled in the art. For example, a term such as ((R)alkyl) means an alkyl substituent further substituted with the substituent R.

Substituents which are illustrated by chemical drawing to bond at variable positions on a multiple ring system (for example a bicyclic ring system) are intended to bond to the ring where they are drawn to append. Parenthetical and multiparenthetical terms are intended to clarify bonding relationships to those skilled in the art. For example, a term such as ((R)alkyl) means an alkyl substituent further substituted with the substituent R.

“Combination,” “coadministration,” “concurrent” and similar terms referring to the administration of a compound of Formula I with at least one anti-HIV agent mean that the components are part of a combination antiretroviral therapy or highly active antiretroviral therapy (“HAART”) as understood by practitioners in the field of AIDS and HIV infection.

“Therapeutically effective” means the amount of agent required to provide a benefit to a patient as understood by practitioners in the field of AIDS and HIV infection.

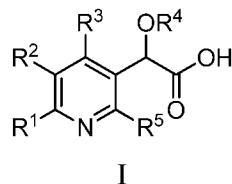
In general, the goals of treatment are suppression of viral load, restoration and preservation of immunologic function, improved quality of life, and reduction of HIV-related morbidity and mortality.

“Patient” means a person infected with the HIV virus.

5 “Treatment,” “therapy,” “regimen,” “HIV infection,” “ARC,” “AIDS” and related terms are used as understood by practitioners in the field of AIDS and HIV infection.

Those terms not specifically set forth herein shall have the meaning which is commonly understood and accepted in the art.

10 The invention includes all pharmaceutically acceptable salt forms of the compounds. Pharmaceutically acceptable salts are those in which the counter ions do not contribute significantly to the physiological activity or toxicity of the compounds and as such function as pharmacological equivalents. These salts can be made according to common organic techniques employing commercially available reagents. Some anionic salt forms include acetate, acistrate, besylate, bromide, chloride, citrate, fumarate, 15 glucuronate, hydrobromide, hydrochloride, hydroiodide, iodide, lactate, maleate, mesylate, nitrate, pamoate, phosphate, succinate, sulfate, tartrate, tosylate, and xinofoate. Some cationic salt forms include ammonium, aluminum, benzathine, bismuth, calcium, choline, diethylamine, diethanolamine, lithium, magnesium, meglumine, 4-phenylcyclohexylamine, piperazine, potassium, sodium, tromethamine, and zinc.


20 Some of the compounds of the invention exist in stereoisomeric forms. The invention includes all stereoisomeric forms of the compounds including enantiomers and diastereromers. Methods of making and separating stereoisomers are known in the art. The invention includes all tautomeric forms of the compounds. The invention includes atropisomers and rotational isomers.

25 The invention is intended to include all isotopes of atoms occurring in the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include deuterium and tritium. Isotopes of carbon include ¹³C and ¹⁴C. Isotopically-labeled compounds of the invention can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described herein, 30 using an appropriate isotopically-labeled reagent in place of the non-labeled reagent otherwise employed. Such compounds may have a variety of potential uses, for example as standards and reagents in determining biological activity. In the case of stable

isotopes, such compounds may have the potential to favorably modify biological, pharmacological, or pharmacokinetic properties.

In an aspect of the invention, there is provided a compound of Formula I:

5

wherein:

- R¹ is selected from hydrogen, alkyl, or cycloalkyl;
- R² is tetrahydroisoquinolinyl substituted with one R⁶ substituent and also with 0-3 halo or alkyl substituents;
- R³ is selected from azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, homopiperidinyl, homopiperazinyl, or homomorpholinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxy, and haloalkoxy;
- R⁴ is selected from alkyl or haloalkyl;
- R⁵ is alkyl;
- R⁶ is selected from pyrrolyl, furanyl, thienyl, pyrazolyl, isoxazolyl, isothiazolyl, imidazolyl, oxazolyl, thiazolyl, pyrazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, oxotetrahydrobenzothiazolyl, oxotetrahydrothiazolopyridinyl, dihydrocyclopentapyrimidinyl, tetrahydroquinazolinyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, naphthyridinyl, pyridopyrimidinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkylthio, dialkylamino, carboxy, (R⁷R⁸N)CO, R⁷R⁸N, phenyl, imidazolyl, and alkylimidazolyl;
- R⁷ is selected from hydrogen, alkyl, or phenyl;
- R⁸ is selected from hydrogen or alkyl;
- or R⁷R⁸N taken together is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;
- or a pharmaceutically acceptable salt thereof.
- limidazolyl.

30 For a particular compound of Formula I, the scope of any instance of a variable substituent, including R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ can be used independently with

the scope of any other instance of a variable substituent. As such, the invention includes combinations of the different aspects.

In an aspect of the invention, R² is tetrahydroisoquinoliny substituted with one R⁶ substituent. In an aspect of the invention, R³ is piperidinyl substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxy, and haloalkoxy. In an aspect of the invention, R³ is piperidinyl substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxy, and haloalkoxy. In an aspect of the invention, R⁶ is pyrrolyl, furanyl, thienyl, pyrazolyl, isoxazolyl, isothiazolyl, imidazolyl, oxazolyl, thiazolyl, pyrazolyl, oxadiazolyl, thiadiazolyl, or tetrazolyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkylthio, carboxy, (R⁷R⁸N)CO, R⁷R⁸N, phenyl, imidazolyl, and alkylimidazolyl. In an aspect of the invention, R⁶ is pyridinyl, pyridazinyl, pyrimidinyl, or pyrazinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkylthio, carboxy, (R⁷R⁸N)CO, R⁷R⁸N, phenyl, imidazolyl, and alkylimidazolyl. In an aspect of the invention, R⁶ is tetrahydroquinazolinyl, oxotetrahydrobenzothiazolyl, oxotetrahydrothiazolopyridinyl, dihydrocyclopentapyrimidinyl, or tetrahydroquinazolinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkylthio, carboxy, (R⁷R⁸N)CO, R⁷R⁸N, phenyl, imidazolyl, and alkyl.

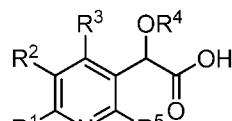
20 R⁷R⁸N, phenyl, imidazolyl, and alkyl

In an aspect of the invention, there is provided a compound of Formula I:

wherein:

25 R¹ is selected from hydrogen, alkyl, or cycloalkyl;
R² is tetrahydroisoquinoliny substituted with one R⁶ substituent and also with 0-3 halo or alkyl substituents;
R³ is selected from azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, homopiperidinyl, homopiperazinyl, or homomorpholinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxy, and haloalkoxy;
30 R⁴ is selected from alkyl or haloalkyl;

R⁵ is alkyl;


R^6 is selected from pyrrolyl, furanyl, thienyl, pyrazolyl, isoxazolyl, isothiazolyl, imidazolyl, oxazolyl, thiazolyl, pyrazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, oxotetrahydrobenzothiazolyl,

5 oxotetrahydrothiazolopyridinyl, dihydrocyclopentapyrimidinyl or tetrahydroquinazolinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkylthio, carboxy, $(R^7R^8N)CO$, R^7R^8N , phenyl, imidazolyl, and alkylimidazolyl;

R^7 is selected from hydrogen, alkyl, or phenyl;

10 R⁸ is selected from hydrogen or alkyl;
or R⁷R⁸N taken together is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;
or a pharmaceutically acceptable salt thereof.

In an aspect of the invention, there is provided a compound of Formula I:

15

wherein:

R^1 is selected from hydrogen, alkyl, or cycloalkyl;

R^2 is tetrahydroisoquinoliny1 substituted with one R^6 substituent and also with 0-3 halo or alkyl substituents;

R^3 is selected from azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, homopiperidinyl, homopiperazinyl, or homomorpholinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxy, and haloalkoxy;

R^4 is selected from alkyl or haloalkyl;

R^5 is alkyl;
 R^6 is selected from quinolinyl, isoquinolinyl, quinazolinyl, quinoxaliny, naphthyridinyl, pyridopyrimidinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, alkenyl, alkynyl, and R^7R^8N .

30 R^7 and R^8 are each independently selected from hydrogen or alkyl; or R^7R^8N taken together is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl; or a pharmaceutically acceptable salt thereof.

In an aspect of the invention, R¹ is selected from hydrogen, alkyl, or cycloalkyl; R² is tetrahydroisoquinolinyl substituted with one R⁶ substituent and also with 0-3 halo or alkyl substituents; R³ is selected from azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, homopiperidinyl, or homopiperazinyl, or homomorpholinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxy, and haloalkoxy; R⁴ is selected from alkyl or haloalkyl; R⁵ is alkyl; and R⁶ is selected from quinolinyl, isoquinolinyl, quinazolinyl, quinoxaliny, naphthyridinyl, pyridopyrimidinyl, and is substituted with 0-3 substituents selected from halo, alkyl, haloalkyl, alkoxy, and dialkylamino.

10 In an aspect of the invention, there is provided a composition useful for treating HIV infection comprising a therapeutic amount of a compound of Formula I and a pharmaceutically acceptable carrier. In an aspect of the invention, the composition further comprises a therapeutically effective amount at least one other agent used for treatment of AIDS or HIV infection selected from nucleoside HIV reverse transcriptase inhibitors, 15 non-nucleoside HIV reverse transcriptase inhibitors, HIV protease inhibitors, HIV fusion inhibitors, HIV attachment inhibitors, CCR5 inhibitors, CXCR4 inhibitors, HIV budding or maturation inhibitors, and HIV integrase inhibitors, and a pharmaceutically acceptable carrier. In an aspect of the invention, the other agent is dolutegravir.

20 In an aspect of the invention, there is provided a method for treating HIV infection comprising administering a therapeutically effective amount of a compound of Formula I, or a pharmaceutically acceptable salt thereof, to a patient in need thereof. In an aspect of the invention, the method further comprises administering a therapeutically effective amount of at least one other agent used for treatment of AIDS or HIV infection selected from nucleoside HIV reverse transcriptase inhibitors, non-nucleoside HIV reverse transcriptase inhibitors, HIV protease inhibitors, HIV fusion inhibitors, HIV attachment inhibitors, CCR5 inhibitors, CXCR4 inhibitors, HIV budding or maturation inhibitors, and HIV integrase inhibitors. In an aspect of the invention, the other agent is dolutegravir. 25 In an aspect of the invention, the other agent is administered to the patient prior to, simultaneously with, or subsequently to the compound of Formula I.

30 Preferred compounds in accordance with the present invention include the following:

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(4-phenylthiazol-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

5 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(5-phenylthiazol-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(7-oxo-4,5,6,7-tetrahydrobenzo[d]thiazol-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

10

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(4-oxo-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

15

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(1-phenyl-1H-tetrazol-5-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(5-fluoropyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

20

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(5-fluoro-6-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

25

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(6-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

30

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(5,6,7,8-tetrahydroquinazolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(5-(2-(2,6-dimethoxypyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

5 (S)-2-(tert-butoxy)-2-(5-(2-(5-chloropyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(5-(2-(5-cyanopyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

10 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(5-fluoropyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(5-methylpyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

15 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(4-phenylpyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

20 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(pyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(4-methoxypyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

25 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(4-(trifluoromethyl)pyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

30 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(4-morpholinopyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(5-(2-(4-carbamoyl-6-phenylpyridazin-3-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

5 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(4-hydroxy-6-methoxy-1,3,5-triazin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid; and

(S)-2-(6-(5-(tert-butoxy(carboxy)methyl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-3,4-dihydroisoquinolin-2(1H)-yl)nicotinic acid

10

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(6-phenylpyridazin-3-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

15

(S)-2-(tert-butoxy)-2-(5-(2-(4-cyanopyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

20

(S)-2-(tert-butoxy)-2-(5-(2-(6-chloropyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

25

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(2,6-dimethylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(4-methylpyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

30

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-methoxypyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(4-ethylpyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(5-ethylpyrimidin-2-yl)-

1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

5 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(5-methoxypyrimidin-2-yl)-
1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(6-
trifluoromethyl)pyridazin-3-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic

10 acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(2-
(methylamino)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic
acid;

15

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(4,6-dimorpholino-1,3,5-
triazin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

20

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(5-
phenylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(2-
(methylthio)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

25

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(2-methoxypyrimidin-4-yl)-
1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(2-
methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

30

(S)-2-(5-(2-(6-aminopyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-
dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid;

(S)-2-(tert-butoxy)-2-(5-(2-(6-cyclopropylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

5 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(2-isopropyl-6-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

10 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(pyrazin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

15 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(pyridin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

20 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-methoxypyridazin-3-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

25 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(6-(pyrrolidin-1-yl)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

30 (S)-2-(5-(2-(6-(1H-imidazol-1-yl)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid;

35 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-methoxy-5-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

40 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-(methoxymethyl)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

45 (S)-2-(tert-butoxy)-2-(5-(2-(6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(6-phenylamino)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

5 (S)-2-(5-(2-(5-amino-6-chloropyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid;

(S)-2-(5-(2-(6-amino-5-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid;

10 (S)-2-(5-(2-(2-amino-6-methoxypyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid;

15 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(5-methoxy-2-(methylthio)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(5-(2-(5,6-dimethyl-2-(trifluoromethyl)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

20 (S)-2-(tert-butoxy)-2-(5-(2-(2-cyclopropylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

25 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(trifluoromethyl)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

(S)-2-(5-(2-(2-amino-6-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid;

30 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-methoxy-2-(methylthio)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(methylthio)-6-(trifluoromethyl)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

5

(S)-2-(tert-butoxy)-2-(5-(2-(6-(tert-butylamino)-2-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

10 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-hydroxy-2-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

15 (S)-2-(5-(2-(2-amino-6-hydroxypyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid;

(S)-2-(5-(2-(2-aminopyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid;

20 (S)-2-(tert-butoxy)-2-(5-(2-(4-cyano-6-phenylpyridazin-3-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

25 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(6-(4-methyl-1H-imidazol-1-yl)pyridazin-3-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid; and

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(thiazol-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

30

or pharmaceutically acceptable salts thereof.

Other preferred compounds in accordance with the present invention include the following:

5 (S)-2-(5-(2-(1,6-naphthyridin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid;

10 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(quinoxalin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

15 (S)-2-(5-(2-(6-bromoquinazolin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid;

20 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(7-methoxyquinazolin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

25 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-fluoroquinazolin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

30 (S)-2-(5-(2-(1,7-naphthyridin-8-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid;

(S)-2-(tert-butoxy)-2-(5-(3',4'-dihydro-1'H-[1,2'-biisoquinolin]-6'-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(trifluoromethyl)quinolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(7-methoxyquinazolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

5 (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-methoxyquinazolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(5-(2-(4-(dimethylamino)quinazolin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

10

(S)-2-(tert-butoxy)-2-(5-(2-(4-chloro-1,8-naphthyridin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

15

(S)-2-(tert-butoxy)-2-(5-(2-(6,7-dimethoxyquinazolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-fluoroquinazolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid;

20

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(pyrido[4,3-d]pyrimidin-5-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

25

(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(3-methylquinoxalin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid;

(S)-2-(5-(2-(1,5-naphthyridin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid; and

30

(S)-2-(tert-butoxy)-2-(5-(2-(7-chloroquinazolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid

or pharmaceutically acceptable salts thereof.

The compounds of the invention herein described may typically be administered as pharmaceutical compositions. These compositions are comprised of a therapeutically effective amount of a compound of Formula I or its pharmaceutically acceptable salt, and a pharmaceutically acceptable carrier and may contain conventional excipients and/or diluents. A therapeutically effective amount is that which is needed to provide a meaningful patient benefit. Pharmaceutically acceptable carriers are those conventionally known carriers having acceptable safety profiles. Compositions encompass all common solid and liquid forms, including capsules, tablets, lozenges, and powders, as well as liquid suspensions, syrups, elixirs, and solutions. Compositions are made using available formulation techniques, and excipients (such as binding and wetting agents) and vehicles (such as water and alcohols) which are generally used for compositions. See, for example, Remington's Pharmaceutical Sciences, 17th edition, Mack Publishing Company, Easton, PA (1985).

Solid compositions which are normally formulated in dosage units and compositions providing from about 1 to 1000 milligram ("mg") of the active ingredient per dose are typical. Some examples of dosages are 1 mg, 10 mg, 100 mg, 250 mg, 500 mg, and 1000 mg. Generally, other antiretroviral agents will be present in a unit range similar to agents of that class used clinically. Typically, this is about 0.25-1000 mg/unit.

Liquid compositions are usually in dosage unit ranges. Generally, the liquid composition will be in a unit dosage range of about 1-100 milligram per milliliter ("mg/mL"). Some examples of dosages are 1 mg/mL, 10 mg/mL, 25 mg/mL, 50 mg/mL, and 100 mg/mL. Generally, other antiretroviral agents will be present in a unit range similar to agents of that class used clinically. Typically, this is about 1-100 mg/mL.

The invention encompasses all conventional modes of administration; oral and parenteral methods are preferred. Generally, the dosing regimen will be similar to other antiretroviral agents used clinically. Typically, the daily dose will be about 1-100 milligram per kilogram ("mg/kg") body weight daily. Generally, more compound is required orally and less parenterally. The specific dosing regimen, however, will be determined by a physician using sound medical judgment.

The compounds of this invention desireably have activity against HIV. Accordingly, another aspect of the invention is a method for treating HIV infection in a human patient comprising administering a therapeutically effective amount of a

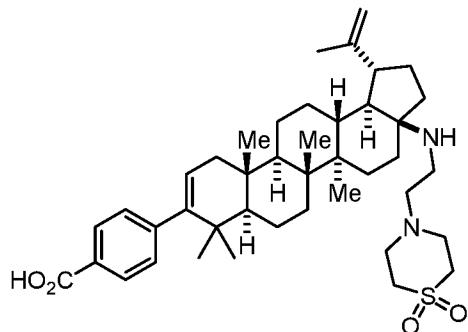
compound of Formula I, or a pharmaceutically acceptable salt thereof, with a pharmaceutically acceptable carrier, excipient and/or diluent.

The invention also encompasses methods where the compound is given in combination therapy. That is, the compound can be used in conjunction with, but 5 separately from, other agents useful in treating AIDS and HIV infection. The compound can also be used in combination therapy wherein the compound and one or more of the other agents are physically together in a fixed-dose combination (FDC). Some of these agents include HIV attachment inhibitors, CCR5 inhibitors, CXCR4 inhibitors, HIV cell fusion inhibitors, HIV integrase inhibitors, HIV nucleoside reverse transcriptase 10 inhibitors, HIV non-nucleoside reverse transcriptase inhibitors, HIV protease inhibitors, budding and maturation inhibitors, HIV capsid inhibitors, anti-infectives, and immunomodulators, such as, for example, PD-1 inhibitors, PD-L1 inhibitors, antibodies, and the like. In these combination methods, the compound of Formula I will generally be given in a daily dose of about 1-100 mg/kg body weight daily in conjunction with other 15 agents. The other agents generally will be given in the amounts used therapeutically. The specific dosing regimen, however, will be determined by a physician using sound medical judgment.

Examples of nucleoside HIV reverse transcriptase inhibitors include abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir, zalcitabine, and zidovudine.

20 Examples of non-nucleoside HIV reverse transcriptase inhibitors include delavirdine, efavirenz, etravirine, nevirapine, and rilpivirine.

Examples of HIV protease inhibitors include amprenavir, atazanavir, darunavir, fosamprenavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir and, tipranavir.


An example of an HIV fusion inhibitor is enfuvirtide or T-1249.

25 An example of an HIV entry inhibitor is maraviroc.

Examples of HIV integrase inhibitors include dolutegravir, elvitegravir, or raltegravir.

An example of an HIV attachment inhibitor is fostemsavir.

30 An example of an HIV maturation inhibitor is BMS-955176, having the following structure:

Thus, as set forth above, contemplated herein are combinations of the compounds of Formula I, together with one or more agents useful in the treatment of AIDS. For example, the compounds of the invention may be effectively administered, whether at periods of pre-exposure and/or post-exposure, in combination with effective amounts of the AIDS antivirals, immunomodulators, anti-infectives, or vaccines, such as those in the following non-limiting table:

10

ANTIVIRALS

Drug Name	Manufacturer	Indication
Rilpivirine	Tibotec	HIV infection, AIDS, ARC (non-nucleoside reverse transcriptase inhibitor)
COMPLERA®	Gilead	HIV infection, AIDS, ARC; combination with emtricitabine, rilpivirine, and tenofovir disoproxil fumarate

097	Hoechst/Bayer	HIV infection, AIDS, ARC (non-nucleoside reverse trans- criptase (RT) inhibitor)
5		
10	Amprenavir 141 W94 GW 141	Glaxo Wellcome HIV infection, AIDS, ARC (protease inhibitor)
15	Abacavir (1592U89) GW 1592	Glaxo Wellcome HIV infection, AIDS, ARC (RT inhibitor)
20	Acemannan	Carrington Labs (Irving, TX) ARC
25	Acyclovir AD-439 AD-519	Burroughs Wellcome HIV infection, AIDS, ARC HIV infection, AIDS, ARC
30	Adefovir dipivoxil AL-721 Alpha Interferon	Tanox Biosystems HIV infection, AIDS, ARC Gilead Sciences Ethigen (Los Angeles, CA) HIV positive, AIDS Glaxo Wellcome Kaposi's sarcoma, HIV in combination w/Retrovir

	Ansamycin LM 427	Adria Laboratories (Dublin, OH) Erbamont (Stamford, CT)	ARC
5	Antibody which Neutralizes pH Labile alpha aberrant	Advanced Biotherapy Concepts (Rockville, MD)	AIDS, ARC
10	Interferon		
	AR177	Aronex Pharm	HIV infection, AIDS, ARC
15	Beta-fluoro-ddA	Nat'l Cancer Institute	AIDS-associated diseases
	CI-1012	Warner-Lambert	HIV-1 infection
20	Cidofovir	Gilead Science	CMV retinitis, herpes, papillomavirus
	Curdlan sulfate	AJI Pharma USA	HIV infection
25	Cytomegalovirus Immune globin	MedImmune	CMV retinitis
	Cytovene	Syntex	Sight threatening
30	Ganciclovir		CMV peripheral CMV retinitis

	Darunavir	Tibotec- J & J	HIV infection, AIDS, ARC (protease inhibitor)
5	Delavirdine	Pharmacia-Upjohn	HIV infection, AIDS, ARC (RT inhibitor)
10	Dextran Sulfate	Ueno Fine Chem. Ind. Ltd. (Osaka, Japan)	AIDS, ARC, HIV positive asymptomatic
15	ddC Dideoxycytidine	Hoffman-La Roche	HIV infection, AIDS, ARC
20	ddI Dideoxyinosine	Bristol-Myers Squibb	HIV infection, AIDS, ARC; combination with AZT/d4T
25	DMP-450	AVID (Camden, NJ)	HIV infection, AIDS, ARC (protease inhibitor)
30	Efavirenz (DMP 266, SUSTIVA®) (-)-6-Chloro-4-(S)- cyclopropylethynyl- 4(S)-trifluoro- methyl-1,4-dihydro- 2H-3,1-benzoxazin- 2-one, STOCRINE	Bristol Myers Squibb	HIV infection, AIDS, ARC (non-nucleoside RT inhibitor)
	EL10	Elan Corp, PLC (Gainesville, GA)	HIV infection

	Etravirine	Tibotec/ J & J	HIV infection, AIDS, ARC (non-nucleoside reverse transcriptase inhibitor)
5	Famciclovir	Smith Kline	herpes zoster, herpes simplex
10	GS 840	Gilead	HIV infection, AIDS, ARC (reverse transcriptase inhibitor)
15	HBY097	Hoechst Marion Roussel	HIV infection, AIDS, ARC (non-nucleoside reverse transcriptase inhibitor)
20	Hypericin	VIMRx Pharm.	HIV infection, AIDS, ARC
25	Recombinant Human Interferon Beta	Triton Biosciences (Almeda, CA)	AIDS, Kaposi's sarcoma, ARC
	Interferon alfa-n3	Interferon Sciences	ARC, AIDS
30	Indinavir	Merck	HIV infection, AIDS, ARC, asymptomatic HIV positive, also in combination with AZT/ddI/ddC

	ISIS 2922	ISIS Pharmaceuticals	CMV retinitis
	KNI-272	Nat'l Cancer Institute	HIV-assoc. diseases
5	Lamivudine, 3TC	Glaxo Wellcome	HIV infection, AIDS, ARC (reverse transcriptase inhibitor); also with AZT
10	Lobucavir	Bristol-Myers Squibb	CMV infection
15	Nelfinavir	Agouron Pharmaceuticals	HIV infection, AIDS, ARC (protease inhibitor)
20	Nevirapine	Boehringer Ingleheim	HIV infection, AIDS, ARC (RT inhibitor)
25	Novapren	Novaferon Labs, Inc. (Akron, OH)	HIV inhibitor
	Peptide T	Peninsula Labs	AIDS
	Octapeptide	(Belmont, CA)	
	Sequence		
30	Trisodium Phosphonoformate	Astra Pharm. Products, Inc.	CMV retinitis, HIV infection, other CMV infections

	PNU-140690	Pharmacia Upjohn	HIV infection, AIDS, ARC (protease inhibitor)
5	Probucol	Vyrex	HIV infection, AIDS
	RBC-CD4	Sheffield Med. Tech (Houston, TX)	HIV infection, AIDS, ARC
10	Ritonavir	Abbott	HIV infection, AIDS, ARC (protease inhibitor)
15	Saquinavir	Hoffmann- LaRoche	HIV infection, AIDS, ARC (protease inhibitor)
20	Stavudine; d4T Didehydrodeoxy- Thymidine	Bristol-Myers Squibb	HIV infection, AIDS, ARC
	Tipranavir	Boehringer Ingelheim	HIV infection, AIDS, ARC (protease inhibitor)
25	Valaciclovir	Glaxo Wellcome	Genital HSV & CMV Infections
	Virazole	Viratek/ICN	asymptomatic HIV
	Ribavirin	(Costa Mesa, CA)	positive, LAS, ARC
30	VX-478	Vertex	HIV infection, AIDS, ARC

	Zalcitabine	Hoffmann-LaRoche	HIV infection, AIDS, ARC, with AZT
5	Zidovudine; AZT	Glaxo Wellcome	HIV infection, AIDS, ARC, Kaposi's sarcoma, in combination with other therapies
10	Tenofovir disoproxil, fumarate salt (VIREAD®)	Gilead	HIV infection, AIDS, (reverse transcriptase inhibitor)
15	EMTRIVA® (Emtricitabine) (FTC)	Gilead	HIV infection, AIDS, (reverse transcriptase inhibitor)
20	COMBIVIR®	GSK	HIV infection, AIDS, (reverse transcriptase inhibitor)
25	Abacavir succinate (or ZIAGEN®)	GSK	HIV infection, AIDS, (reverse transcriptase inhibitor)
30	REYATAZ® (or atazanavir)	Bristol-Myers Squibb	HIV infection AIDs, protease inhibitor

	FUZEON® (Enfuvirtide or T-20)	Roche / Trimeris	HIV infection AIDs, viral Fusion inhibitor
5	LEXIVA® (or Fosamprenavir calcium)	GSK/Vertex	HIV infection AIDs, viral protease inhibitor
10	SELZENTRY™ Maraviroc; (UK 427857)	Pfizer	HIV infection AIDs, (CCR5 antagonist, in development)
15	TRIZIVIR®	GSK	HIV infection AIDs, (three drug combination)
20	Sch-417690 (virciviroc)	Schering-Plough	HIV infection AIDs, (CCR5 antagonist, in development)
25	TAK-652	Takeda	HIV infection AIDs, (CCR5 antagonist, in development)
30	GSK 873140 (ONO-4128)	GSK/ONO	HIV infection AIDs, (CCR5 antagonist, in development)
	Integrase Inhibitor MK-0518 Raltegravir	Merck	HIV infection AIDs

	TRUVADA®	Gilead	Combination of Tenofovir disoproxil fumarate salt (VIREAD®) and EMTRIVA® (Emtricitabine)
5			
	Integrase Inhibitor GS917/JTK-303	Gilead/Japan Tobacco	HIV Infection AIDs
	Elvitegravir		in development
10	Triple drug combination ATRIPLA®	Gilead/Bristol-Myers Squibb	Combination of Tenofovir disoproxil fumarate salt (VIREAD®), EMTRIVA® (Emtricitabine), and SUSTIVA® (Efavirenz)
15			
	FESTINAVIR®	Oncolys BioPharma	HIV infection AIDs in development
20	CMX-157 Lipid conjugate of nucleotide tenofovir	Chimerix	HIV infection AIDs
25	GSK1349572 Integrase inhibitor TIVICAY® dolutegravir	GSK	HIV infection AIDs

IMMUNOMODULATORS

	Drug Name	Manufacturer	Indication
5	AS-101	Wyeth-Ayerst	AIDS
	Brupirimine	Pharmacia Upjohn	Advanced AIDS
10	Acemannan	Carrington Labs, Inc. (Irving, TX)	AIDS, ARC
	CL246,738	Wyeth Lederle Labs	AIDS, Kaposi's sarcoma
15	FP-21399	Fuki ImmunoPharm	Blocks HIV fusion with CD4+ cells
20	Gamma Interferon	Genentech	ARC, in combination w/TNF (tumor necrosis factor)
	Granulocyte	Genetics Institute	AIDS
25	Macrophage Colony Stimulating Factor	Sandoz	
	Granulocyte	Hoechst-Roussel	AIDS
	Macrophage Colony Stimulating Factor	Immunex	
30	Granulocyte	Schering-Plough	AIDS,
	Macrophage Colony		combination
	Stimulating Factor		w/AZT

	HIV Core Particle Immunostimulant	Rorer	Seropositive HIV
5	IL-2 Interleukin-2	Cetus	AIDS, in combination w/AZT
	IL-2 Interleukin-2	Hoffman-LaRoche Immunex	AIDS, ARC, HIV, in combination w/AZT
10	IL-2 Interleukin-2 (aldeslukin)	Chiron	AIDS, increase in CD4 cell counts
15	Immune Globulin Intravenous (human)	Cutter Biological (Berkeley, CA)	Pediatric AIDS, in combination w/AZT
20	IMREG-1	Imreg (New Orleans, LA)	AIDS, Kaposi's sarcoma, ARC, PGL
	IMREG-2	Imreg (New Orleans, LA)	AIDS, Kaposi's sarcoma, ARC, PGL
25	Imuthiol Diethyl Dithio Carbamate	Merieux Institute	AIDS, ARC
	Alpha-2 Interferon	Schering Plough	Kaposi's sarcoma w/AZT, AIDS
30	Methionine- Enkephalin	TNI Pharmaceutical (Chicago, IL)	AIDS, ARC

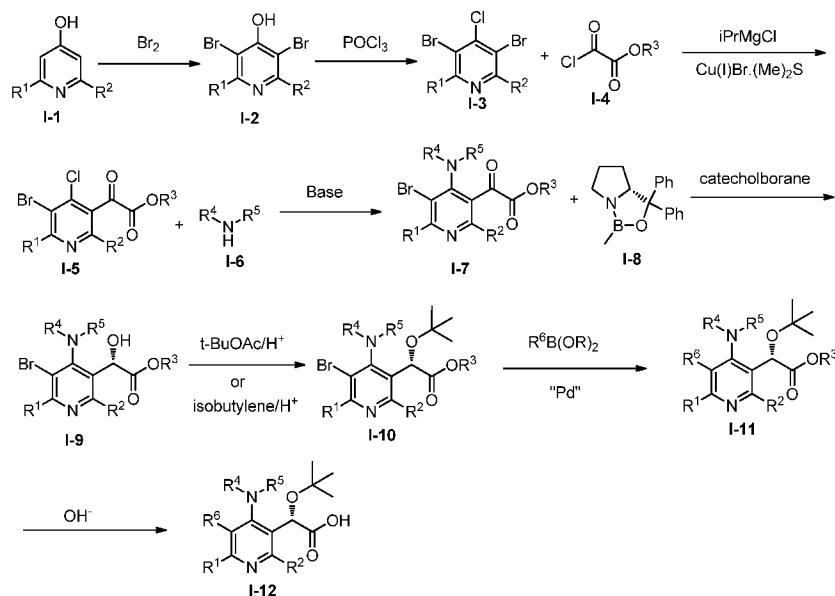
	MTP-PE	Ciba-Geigy Corp.	Kaposi's sarcoma
	Muramyl-Tripeptide		
5	Granulocyte Colony Stimulating Factor	Amgen	AIDS, in combination w/AZT
10	Remune	Immune Response Corp.	Immunotherapeutic
	rCD4	Genentech	AIDS, ARC
	Recombinant Soluble Human CD4		
15	rCD4-IgG hybrids		AIDS, ARC
20	Recombinant Soluble Human CD4	Biogen	AIDS, ARC
	Interferon Alfa 2a	Hoffman-La Roche	Kaposi's sarcoma, AIDS, ARC, in combination w/AZT
25	SK&F106528	Smith Kline	HIV infection
	Soluble T4		
30	Thymopentin	Immunobiology Research Institute (Annandale, NJ)	HIV infection
	Tumor Necrosis Factor; TNF	Genentech	ARC, in combination w/gamma Interferon

ANTI-INFECTIVES

	Drug Name	Manufacturer	Indication
5	Clindamycin with Primaquine	Pharmacia Upjohn	PCP
10	Fluconazole	Pfizer	Cryptococcal meningitis, candidiasis
15	Pastille Nystatin Pastille	Squibb Corp.	Prevention of oral candidiasis
20	Ornidyl Eflornithine	Merrell Dow	PCP
25	Pentamidine Isethionate (IM & IV)	LyphoMed (Rosemont, IL)	PCP treatment
30	Trimethoprim Trimethoprim/sulfa		Antibacterial Antibacterial
35	Piritrexim Pentamidine Isethionate for Inhalation	Burroughs Wellcome Fisons Corporation	PCP treatment PCP prophylaxis
	Spiramycin	Rhone-Poulenc	Cryptosporidial diarrhea

	Intraconazole- R51211	Janssen-Pharm.	Histoplasmosis; cryptococcal meningitis
5	Trimetrexate	Warner-Lambert	PCP
	Daunorubicin	NeXstar, Sequus	Kaposi's sarcoma
10	Recombinant Human Erythropoietin	Ortho Pharm. Corp.	Severe anemia assoc. with AZT therapy
15	Recombinant Human Growth Hormone	Serono	AIDS-related wasting, cachexia
	Megestrol Acetate	Bristol-Myers Squibb	Treatment of anorexia assoc. W/AIDS
20	Testosterone	Alza, Smith Kline	AIDS-related wasting
	Total Enteral Nutrition	Norwich Eaton Pharmaceuticals	Diarrhea and malabsorption related to AIDS
25			

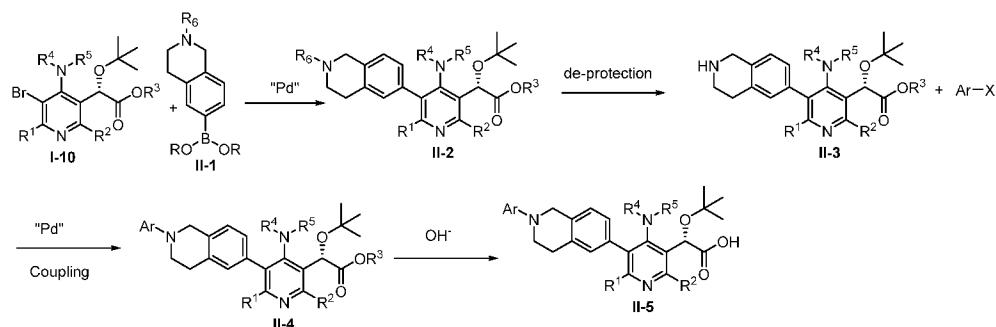
Methods of Synthesis


The compounds of this invention can be made by various methods known in the art including those of the following schemes and in the specific embodiments section.

30 The structure numbering and variable numbering shown in the synthetic schemes are distinct from, and should not be confused with, the structure or variable numbering in the claims or the rest of the specification. The variables in the schemes are meant only to illustrate how to make some of the compounds of this invention. The disclosure is not

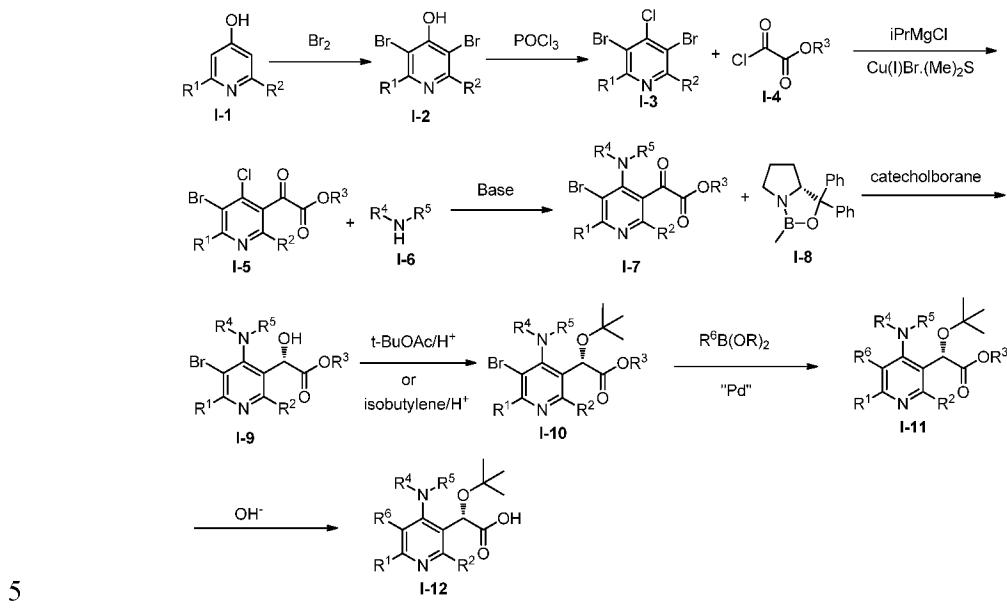
limited to the foregoing illustrative examples and the examples should be considered in all respects as illustrative and not restrictive, reference being made to the appended claims, rather than to the foregoing examples, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced.

5 Some compounds of this invention can be prepared by the methods outlined in the Scheme I


Scheme I

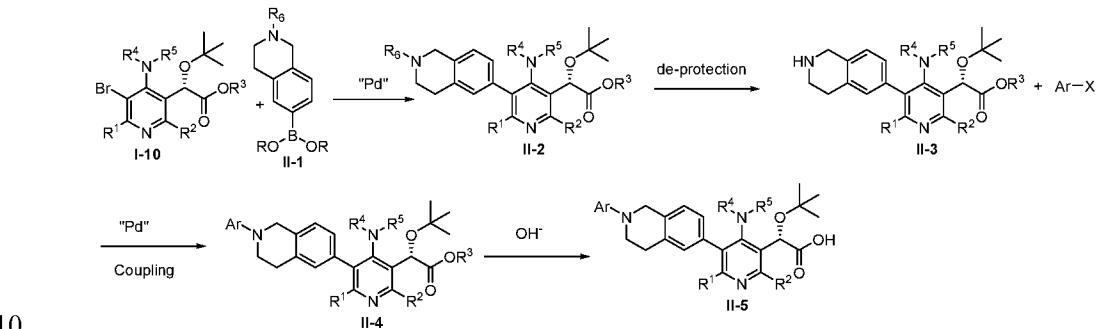
10

Some compounds of this invention can be prepared by the methods outlined in the Scheme II.


Scheme II

15

Some compounds of this invention can be prepared by the methods outlined in the Scheme III


Scheme III

5

Some compounds of this invention can be prepared by the methods outlined in the Scheme IV.

Scheme IV

10

EXAMPLES

The following examples are provided by way of illustration only, and should not be construed as limiting the scope of the invention.

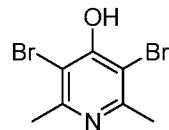
15

The compounds of the invention according to the various aspects can be made, for example, according to the specific examples which follow. The structure numbering and variable numbering shown in the examples may be distinct from, and should not be confused with, the structure or variable numbering in the claims or the rest of the specification. The variables in the examples are meant only to illustrate how to make some of the compounds of the invention.

Abbreviations used in the examples generally follow conventions used in the art. Some specific chemical abbreviations used in the examples are defined as follows:

10 "KHMDS" for potassium bis(trimethylsilyl)amide; "DMF" for N,N-dimethylformamide; "HATU" for O-(t-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate, "DMF" for N,N-dimethylformamide; "MeOH" for methanol; "Ar" for aryl; "TFA" for trifluoroacetic acid; "BOC" for t-butoxycarbonate, "DMSO" for dimethylsulfoxide; "h" for hours; "rt" for room temperature or retention time (context will dictate); "min" for minutes; "EtOAc" for ethyl acetate; "THF" for tetrahydrofuran; "Et₂O" for diethyl ether; "DMAP" for 4-dimethylaminopyridine; "DCE" for 1,2-dichloroethane; "ACN" for acetonitrile; "DME" for 1,2-dimethoxyethane; "HATU" for (1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3- oxid hexafluorophosphate) "DIEA" for diisopropylethylamine.

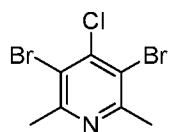
20


Certain other abbreviations as used herein, are defined as follows: "1 x" for once, "2 x" for twice, "3 x" for thrice, "°C" for degrees Celsius, "eq" for equivalent or equivalents, "g" for gram or grams, "mg" for milligram or milligrams, "L" for liter or liters, "mL" for milliliter or milliliters, "μL" for microliter or microliters, "N" for normal, "M" for molar, "mmol" for millimole or millimoles, "min" for minute or minutes, "h" for hour or hours, "rt" for room temperature, "RT" for retention time, "atm" for atmosphere, "psi" for pounds per square inch, "conc." for concentrate, "sat" or "sat'd" for saturated, "MW" for molecular weight, "mp" for melting point, "ee" for enantiomeric excess, "MS" or "Mass Spec" for mass spectrometry, "ESI" for electrospray ionization mass spectroscopy, "HR" for high resolution, "HRMS" for high resolution mass spectrometry, "LCMS" for liquid chromatography mass spectrometry, "HPLC" for high pressure liquid chromatography, "RP HPLC" for reverse phase HPLC, "TLC" or "tlc" for thin layer chromatography, "NMR" for nuclear magnetic resonance spectroscopy, "¹H" for proton,

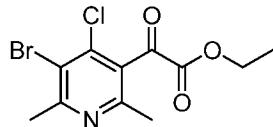
“δ” for delta, “s” for singlet, “d” for doublet, “t” for triplet, “q” for quartet, “m” for multiplet, “br” for broad, “Hz” for hertz, and “α”, “β”, “R”, “S”, “E”, and “Z” are stereochemical designations familiar to one skilled in the art.

The compounds described herein were purified by the methods well known to
5 those skilled in art by normal phase column chromatography on silica gel column using appropriate solvent system described. Preparative HPLC purifications mentioned in this experimentation section were carried out gradient elution either on Sunfire Prep C18 ODB column (5 μm; 19 or 30 X 100 mm) or Waters Xbridge C18 column (5 μM; 19 X 200 or 30 X 100 mm) or Water Atlantis (5 μm; 19 or 30 X 100 mm) using the following
10 mobile phases. Mobile phase A: 9:1 H₂O/acetonitrile with 10 mM NH₄OAc and mobile phase B: A: 9:1 acetonitrile/H₂O with 10 mM NH₄OAc; or mobile phase A: 9:1 H₂O/acetonitrile with 0.1% TFA and mobile phase B: A: 9:1 acetonitrile/H₂O with 0.1% TFA; or mobile phase A: water/MeOH (9:1) with 20 mM NH₄OAc and mobile phase B: 95:5 MeOH/H₂O with 20 mM NH₄OAc or mobile phase A: water/MeOH (9:1) with 0.1%
15 TFA and mobile phase B: 95:5 MeOH/H₂O with 0.1% TFA or mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate.

All Liquid Chromatography (LC) data were recorded on a Shimadzu LC-10AS or
20 LC-20AS liquid chromatograph using a SPD-10AV or SPD-20A UV-Vis detector and Mass Spectrometry (MS) data were determined with a Micromass Platform for LC in electrospray mode.

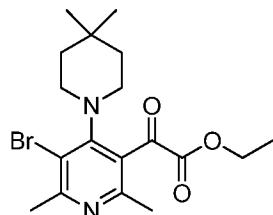

Compounds purified by preparative HPLC were diluted in methanol (1.2 mL) or
25 DMF and purified using a Shimadzu LC-8A or LC-10A automated preparative HPLC system.

3,5-Dibromo-2,6-dimethylpyridin-4-ol: A 3-neck R.B-flask equipped with mechanical stirrer, addition funnel and condenser is charged with 2,6-dimethylpyridin-4-ol (100 g, 812 mmol), CH₂Cl₂ (1000 mL) and MeOH (120 mL). To the resulting light brown or tan solution was added tert-BuNH₂ (176 mL, 1665 mmol), cooled in water bath maintained 5 between 5-10 °C (ice-water) and added drop wise Br₂ (84 mL, 1624 mmol) over 70 min. After the addition was complete cold bath was removed and stirred for 1.5 h at rt. Then, the light orange slurry was filtered and the filter cake was washed with ether (250 mL) and dried to afford 3,5-dibromo-2,6-dimethylpyridin-4-ol, hydrobromide (280.75 g, 776 mmol, 96 % yield) as white solid which was used in the next step without further 10 purification. ¹H NMR (500 MHz, DMSO-d₆) δ 12.08 (br. s., 1H), 2.41 (s, 6H). LCMS (M+H) = 281.9.


Alternative procedure: Bromine (72.8 mL, 1.4 mol) was added via addition funnel over 60 min to a mechanically stirred cold (ice-water bath) solution of 2,6-dimethylpyridin-4-15 ol (87 g, 706 mmol) and 4-methylmorpholine (156 mL, 1.4 mol) in dichloromethane (1 L) and methanol (100 mL) and then stirred for 2 h at rt. Additional bromine (~15 mL) was added based on monitoring by LCMS. The product was filtered, washed with ether, and dried under vacuum to give 3,5-dibromo-2,6-dimethylpyridin-4-ol 176.8 g (88%).

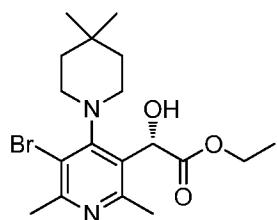
20

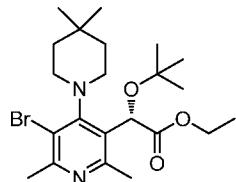
3,5-Dibromo-4-chloro-2,6-dimethylpyridine: Triethylamine (28.8 mL, 206 mmol) was added to a nitrogen purged solution of 3,5-dibromo-2,6-dimethylpyridin-4-ol (58 g, 206 mmol) and phosphorous oxychloride (57.7 mL, 619 mmol) in chloroform (450 mL) and 25 stirred for 1 h at rt, then 3 h at 80 °C. The reaction was removed from heating and immediately concentrated under house vaccum; then under high vacuum. The appearance was a cream colored solid, which was azeotroped with toluene (2x100 mL); treated with ice (200 g) for 10 min and carefully neutralized with NaHCO₃ (powder), and 1N NaOH solution, and extracted with DCM (2 X 400 mL). The combined organic layers were dried 30 (MgSO₄), concentrated, and a beige solid was obtained that was washed with hexanes and dried under high vacuum to give 3,5-dibromo-4-chloro-2,6-dimethyl-pyridine 52.74 g


(85.1%). Concentration of the hexanes gave 3.5 g of less pure product. ^1H NMR (500 MHz, CDCl_3) δ 2.59 (s, 6H). LCMS (M+H) = 300.0.

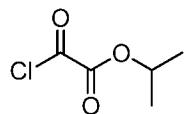
5

Ethyl 2-(5-bromo-4-chloro-2,6-dimethylpyridin-3-yl)-2-oxoacetate: To a stirred mixture of 3,5-dibromo-4-chloro-2,6-dimethylpyridine (14.94 g, 49.9 mmol) and $\text{Cu}(\text{I})\text{Br Me}_2\text{S}$ (0.513 g, 2.495 mmol) in THF (50 mL) was added drop wise 2M $\text{iPrMgCl}/\text{THF}$ (26.2 mL, 52.4 mmol) at -30 °C over 5 min. Then, the resulting slurry was warmed to -10 °C over 10 30 min and stirred for 30 min. The homogeneous brown reaction mixture was rapidly transferred via cannula to a solution of ethyl 2-chloro-2-oxoacetate (6.14 mL, 54.9 mmol, degassed for 5 min by bubbling N2 through the solution) in THF (50 mL) maintained at -30 °C. The resulting reaction mixture was stirred (1.5 h) while warming to 0 °C. Then, taken up in to Et_2O (200 mL), washed with 1:1 sat $\text{Na}_2\text{CO}_3/1\text{M NH}_4\text{Cl}$ (3 x 50 mL), dried 15 (MgSO_4), filtered and concentrated to give brown viscous oil. Flash chromatography using 2.5, 5 and 7.5% EtOAc/Hex afforded ethyl 2-(5-bromo-4-chloro-2,6-dimethylpyridin-3-yl)-2-oxoacetate (14.37 g, 44.8 mmol, 90 % yield) as white solid. ^1H NMR (400 MHz, CDCl_3) δ 4.42 (q, $J=7.0$ Hz, 2H), 2.76 (s, 3H), 2.46 (s, 3H), 1.41 (t, $J=7.2$ Hz, 3H). LCMS (M+H) = 322.1.

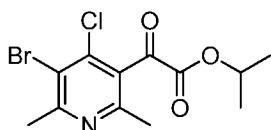

20


Ethyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-oxoacetate: To a solution of 4,4-dimethylpiperidine (1.245 g, 11.00 mmol) and DIEA (3.49 mL, 20.00 mmol) in anhydrous CH_3CN (40 mL) was added ethyl 2-(5-bromo-4-chloro-2,6-dimethylpyridin-3-yl)-2-oxoacetate (3.21 g, 10 mmol) at rt. The resulting mixture was placed in a pre-heated oil bath (80 °C). After 22 h, the reaction mixture was concentrated

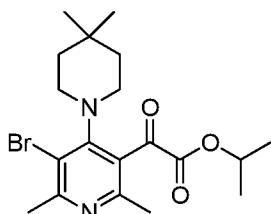
and the residue was purified by flash chromatography using 1-lit each 2.5, 5, 7.5 and 10% EtOAc/Hex to afford ethyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-oxoacetate (2.846 g, 7.16 mmol, 71.6 % yield) as yellow solid.


5 ^1H NMR (500 MHz, CDCl_3) δ 4.37 (q, $J=7.1$ Hz, 2H), 3.67-2.75 (br.s., 4H), 2.71 (s, 3H), 2.44 (s, 3H), 1.42 (t, $J=7.1$ Hz, 3H), 1.38 (t, $J=5.6$ Hz, 4H), 1.00 (s, 6H). LCMS (M+H) = 399.4.

10 *(S)-Ethyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-hydroxyacetate:* To stirred yellow solution of ethyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-oxoacetate (2.25 g, 5.66 mmol) and (R)-1-methyl-3,3-diphenylhexahydrodropyrrolo[1,2-c][1,3,2]oxazaborole (0.314 g, 1.133 mmol) in toluene (30 mL) at -35 °C was added drop wise 50% catecholborane (1.819 ml, 8.49 mmol) over 10 min. The reaction mixture was slowly warmed to -15 °C over 1 h and then left for 2 h at -15 °C. Then, diluted with EtOAc (100 mL), washed with sat Na_2CO_3 (4 x 25 mL) by vigorously stirring and separating aqueous layers. The organic layer dried (MgSO_4), filtered, concentrated and purified by flash chromatography using 10, 20 and 25% EtOAc/Hex to afford desired (S)-ethyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-hydroxyacetate (2.2596 g, 5.66 mmol, 100 % yield) contaminated with about 10% of (S)-ethyl 2-(5-bromo-4-chloro-2,6-dimethylpyridin-3-yl)-2-hydroxyacetate. Used in the next step without further purification. ^1H NMR (500MHz, CDCl_3) δ 5.71 (d, $J=7.3$ Hz, 1H), 5.54 (d, $J=7.4$ Hz, 1H), 4.29 (dq, $J=10.8, 7.1$ Hz, 1H), 4.16 (dq, $J=10.8, 7.1$ Hz, 1H), 3.94 - 3.83 (m, 2H), 2.71 (d, $J=11.9$ Hz, 1H), 2.67 (s, 3H), 2.59 (s, 3H), 2.54 (d, $J=12.0$ Hz, 1H), 1.71 (td, $J=12.7, 4.7$ Hz, 1H), 1.62 (td, $J=13.0, 4.7$ Hz, 1H), 1.42 (dd, $J=13.1, 2.2$ Hz, 1H), 1.37 (dd, $J=12.9, 2.4$ Hz, 1H), 1.25 (t, $J=7.1$ Hz, 3H), 1.09 (s, 3H), 1.04 (s, 3H). LCMS (M+H) = 401.3.

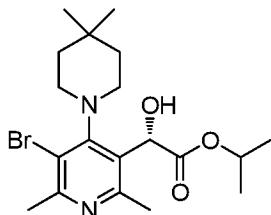


(S)-Ethyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetate: A stirred ice-cold yellow mixture of (S)-ethyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-hydroxyacetate (2.45 g, 6.14 mmol) and 70% HClO₄ (1.054 ml, 12.27 mmol) in CH₂Cl₂ (100 mL) was saturated with isobutylene gas by bubbling through the reaction mixture (10 min). After 2 h, cold bath was removed and the turbid reaction mixture stirred for 22 h at rt. LCMS at this point showed 4:1 product to sm. So, saturated with isobutylene (5 min) at rt and stirred for additional 24 h. Then, neutralized with sat. Na₂CO₃ (30 mL), organic layer separated and aqueous layer extracted with CH₂Cl₂ (25 mL). The combined organic layers dried (MgSO₄), filtered, concentrated and purified by flash chromatography using 5, 10, 15, 20 and 40% EtOAc/hex to afford (S)-ethyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetate (2.3074 g, 5.07 mmol, 83 % yield) as yellow oil: ¹H NMR (500 MHz, CDCl₃) δ 6.19 (br. s., 1H), 4.17-4.24 (m, 1H), 4.08-4.14 (m, 1H), 4.04 (dt, *J*=2.5, 12.1 Hz, 1H), 3.51 (dt, *J*=2.5, 12.1 Hz, 1H), 2.85-2.91 (m, 1H), 2.64 (s, 3H), 2.57-2.62 (m, 1H), 2.55 (s, 3H), 1.55-1.66 (m, 2H), 1.41-1.46 (m, 1H), 1.32-1.37 (m, 1H), 1.21 (s, 9H), 1.20 (t, *J*=7.2 Hz, 2H), 1.08 (s, 3H), 1.03 (s, 3H). LCMS (M+H) = 457.4. And (S)-ethyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-hydroxyacetate (0.3 g, 0.751 mmol, 12.24 % yield) as pale yellow paste: LCMS (M+H) = 401.3.

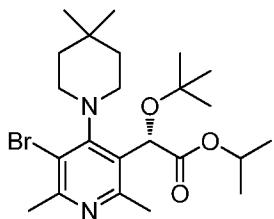


25 *Isopropyl 2-chloro-2-oxoacetate:* The propan-2-ol (38.2 mL, 499 mmol) was added drop wise over 15 min to a cold (0 °C), nitrogen purged solution of oxalyl dichloride (101 g, 799 mmol) and the reaction was stirred at room temperature for 2.5 h. Then a reflux condenser was fitted and a slight vacuum was applied for about 1 h until HCl gas was

removed (the HCl was trapped in by a sat'd solution of NaHCO₃). The reflux condenser was removed and the flask was fitted with a short path distillation head. Excess reagent was removed by distillation under house vacuum (oil bath heated to 65 °C), and then the temperature was raised to between 85 - 95 °C and the product was distilled (NOTE: The 5 1st fraction of ~5 mL was discarded) to provide isopropyl 2-chloro-2-oxoacetate 52.62 g (70 %).

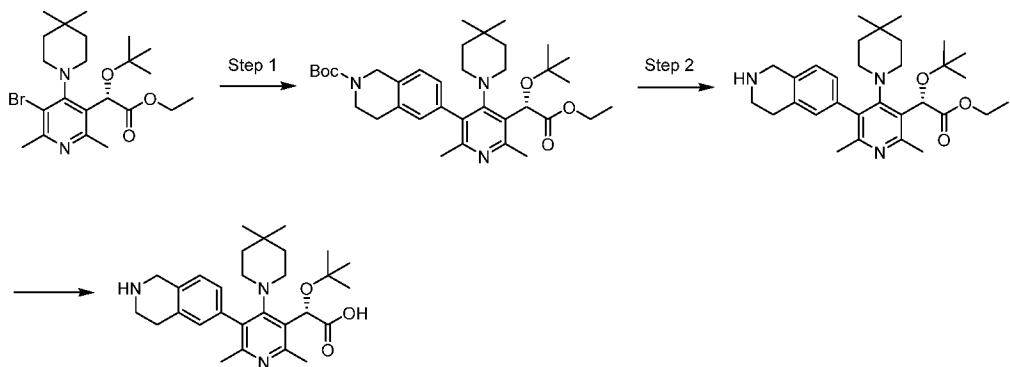


Isopropyl 2-(5-bromo-4-chloro-2,6-dimethylpyridin-3-yl)-2-oxoacetate: A solution of 2M 10 isopropyl magnesium chloride (84 mL, 168 mmol) was added drop wise over 20 min to a cold (-70 °C), nitrogen purged solution of 3,5-dibromo-4-chloro-2,6-dimethylpyridine (48 g, 160 mmol) and copper(I)bromide-dimethyl sulfide complex (1.65 g, 8.02 mmol) in THF (240 mL), which was then allowed to warm to -10 °C over 60 min. The reaction mixture was transferred via cannula into a 1 L RB-flask containing isopropyl 2-chloro-2- 15 oxoacetate (26.6 g, 176 mmol) in THF (160 mL) maintained at -60 °C, and the reaction stirred an additional 2.5 h while being allowed to warm to -10 °C. The reaction was quenched upon diluted with a mixture of 10% NH₄Cl solution (80 mL) in ether (320 mL). The organic layer was washed with 160 mL of sat'd NaHCO₃/10% NH₄Cl solution (1:1), brine, and dried (Na₂SO₄). The crude product was charged (DCM solution) to a 330 g 20 ISCO silica gel cartridge and gradient eluted (5 - 20% EtOAc/hexanes) using an Isolera chromatography station gave isopropyl 2-(5-bromo-4-chloro-2,6-dimethylpyridin-3-yl)-2-oxoacetate 40.38 g (76%). ¹H NMR (500 MHz, CDCl₃) δ 5.28–5.21 (m, 1H), 2.77 (s, 3H), 2.47 (s, 3H), 1.40 (d, J = 6.3 Hz, 6H). LCMS (M+H) = 336.04.


Isopropyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-oxoacetate: To a stirred solution of isopropyl 2-(5-bromo-4-chloro-2,6-dimethylpyridin-3-yl)-2-oxoacetate (7.2 g, 21.52 mmol) and DIEA (4.13 mL, 23.67 mmol) in anhydrous acetonitrile (15 mL) was added 4,4-dimethylpiperidine (2.68 g, 23.67 mmol) in 5 acetonitrile (15 mL). The resulting solution was placed in a pre-heated oil bath at 75 °C. After heating (75-78 °C) for 24 h and the temperature was raised to 85 °C for 24 h. Another portion of DIEA (3.5 mL, 20.04 mmol) and 4,4-dimethylpiperidine (0.27g, 2.4 mmol) in acetonitrile (3 mL) was added and heated at 85 °C for a day. The reaction mixture was diluted with ether (100mL), washed with water (100 mL), brine (50 mL), 10 dried (MgSO₄), filtered, concentrated and purified by ISCO 120 g cartridge (EtOAc/hex: 0 to 20%) to afford isopropyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-oxoacetate (6.8 g, 16.53 mmol, 77 % yield. ¹H NMR (500MHz, CDCl₃) δ 5.25 - 5.11 (m, 1H), 3.17 (br. s., 4H), 2.71 (s, 3H), 2.41 (s, 3H), 1.42 - 1.37 (m, 10H), 1.00 (s, 6H). LCMS (M+H) = 413.3.

15

(S)-Isopropyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-hydroxyacetate: To a yellow solution of isopropyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-oxoacetate (7.7 g, 18.72 mmol) and (R)-1-methyl-3,3-diphenylhexahydropyrrolo[1,2-c][1,3,2]oxazaborole (7.5 mL, 7.50 mmol) in anhydrous toluene (100 mL) was added drop wise 50% catecholborane/toluene (6 mL, 28.0 mmol) over 5 min at -50 °C. Then, the reaction mixture was slowly warmed to -30 °C over 1 h and left in refrigerator (-20 °C) for 3 days. Then, the reaction mixture was diluted with 20 EtOAc (100 mL) and 20 mL of 1M Na₂CO₃, and vigorously stirred for 30 min. Aqueous layer separated and organic layer washed with sat'd Na₂CO₃ (2 x 25 mL) by vigorously stirring for 15 each time, then dried (MgSO₄), filtered and concentrated to give crude product as light purple paste which was purified by flash chromatography using 0 to 40% EtOAc/hex to afford (S)-isopropyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-


dimethylpyridin-3-yl)-2-hydroxyacetate (6.7 g, 15.72 mmol, 84 % yield) as colorless thick paste. ¹H NMR (500MHz, CDCl₃) δ 5.85 (d, *J*=5.7 Hz, 1H), 5.59 (d, *J*=7.4 Hz, 1H), 5.08 (dt, *J*=12.5, 6.3 Hz, 1H), 3.98 - 3.88 (m, 1H), 3.88 - 3.78 (m, 1H), 2.76 - 2.68 (m, 1H), 2.67 (s, 3H), 2.64 - 2.58 (m, 1H), 2.57 (s, 3H), 1.73 (td, *J*=12.8, 4.8 Hz, 1H), 5 1.65 - 1.59 (m, 1H), 1.47 - 1.35 (m, 2H), 1.27 (d, *J*=6.3 Hz, 3H), 1.17 (d, *J*=6.1 Hz, 3H), 1.09 (s, 3H), 1.04 (s, 3H). LCMS (M+H) = 414.6.

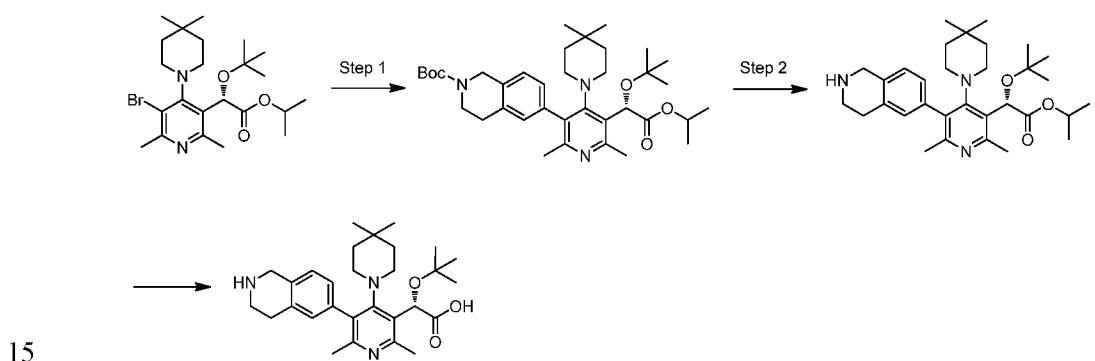
10 *(S)-Isopropyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetate:* A stirred ice-cold yellow mixture of (S)-isopropyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-hydroxyacetate (6.7 g, 16.21 mmol) and 70% HClO₄ (2.2 mL, 25.6 mmol) in dichloromethane (400 mL) was saturated with isobutylene gas by bubbling through the reaction mixture (10 min). The reaction 15 mixture was cloudy sealed in a seal tube, stirred for 24 h at rt. The reaction mixture was re-cooled in a -10 °C bath, bubbled additional isobutylene (~15 min). The reaction mixture became a clear solution at this point. The tube was sealed and stirred at rt for 16 h. LCMs at this point showed incomplete reaction. So, the reaction mixture was cooled down to -30 °C and bubbled isobutene (~15 min). After 24 h, reaction mixture was 20 neutralized with sat. Na₂CO₃ (20 mL), organic layer separated and aqueous layer was extracted with CH₂Cl₂ (25 mL). The combined organic layers were dried (MgSO₄), filtered, concentrated and purified on a ISCO 120 g column (EtOAc/hex: 0 to 40%) to afford (S)-isopropyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetate (5.43 g, 9.83 mmol, 60.7 % yield) as a viscous oil. ¹H NMR 25 (500MHz, CDCl₃) δ 6.26 (br. s., 1H), 5.09 - 4.97 (m, 1H), 4.06 (br. s., 1H), 3.51 (br. s., 1H), 2.90 (br. s., 1H), 2.65 (s, 3H), 2.56 (s, 3H), 1.72 - 1.54 (m, 3H), 1.47 (br. s., 1H), 1.37 (br. s., 1H), 1.23 - 1.20 (m, 12H), 1.15 (d, *J*=6.1 Hz, 3H), 1.09 (br. s., 3H), 1.04 (br. s., 3H). LCMS (M+H) = 471.3.

Preparation of Intermediates (S)-ethyl 2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetate and (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid from (S)-ethyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetate:

5 2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetate:

Step 1: To a mixture of (S)-ethyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetate (500 mg), (2-tert-butoxycarbonyl)-1,2,3,4-tetrahydroisoquinolin-6-ylboronic acid (365 mg) and Cs_2CO_3 (715 mg) in 1,4-dioxane (25 mL) and water (5 mL) was added $\text{Pd}(\text{PPh}_3)_4$ (127 mg). The mixture was flushed with nitrogen and then heated at 85 °C for 3 hours. The mixture was diluted with water (20 mL) and then extracted with EtOAc (2 x 20 mL). The organic layers were combined, washed with brine and concentrated under vaccum to give a crude of (S)-tert-butyl 6-(5-(1-(tert-butoxy)-2-ethoxy-2-oxoethyl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-3,4-dihydroisoquinoline-2(1H)-carboxylate which was used as was. LCMS: MS (M+H)⁺ calcd. 608.4; observ. 608.5.

10 Step 2: To a solution of (S)-tert-butyl 6-(5-(1-(tert-butoxy)-2-ethoxy-2-oxoethyl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (200 mg) in CH_2Cl_2 (20 mL) was added TFA (1 mL). The reaction was stirred at room temperature for 3 hours. All the solvents were removed under vacuum to give rude (S)-ethyl 2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetate which was used without further purification. LCMS: MS (M+H)⁺ calcd. 508.4; observ. 508.3.

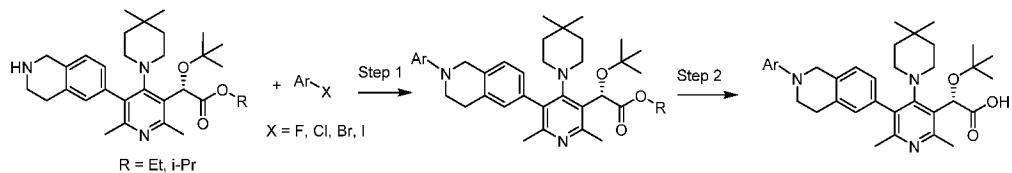

15

20

25

Step 3: To a solution of (S)-ethyl 2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetate (10 mg) in MeOH (1 mL) and THF (1 mL) was added sodium hydroxide (0.158 mL, 1N). The reaction was 5 stirred at 80°C for 2 hours. The mixture was acidified by 1N HCl to pH ~ 4. All the solvents were removed under vacuum to give a residue was prifed by preparative HPLC system. LCMS: MS (M+H)⁺ calcd. 480.3; observ. 480.3.

Preparation of Intermediates (S)-isopropyl 2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetate and (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid from (S)-isopropyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetate:


Step 1: To a mixture of (S)-isopropyl 2-(5-bromo-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetate (1.1 g), (2-(tert-butoxycarbonyl)-1,2,3,4-tetrahydroisoquinolin-6-yl)boronic acid (0.649 g) and Cs₂CO₃ (1.527 g) in 1,4-dioxane (40 mL) and water (8 mL) was added Pd(PPh₃)₄ (0.271 g). The mixture was flushed with nitrogen and then heated at 85 °C for 5 hours. The mixture was diluted with water (50 mL) and then extracted with EtOAc (2 x 50 mL). The organic layers were combined, washed with brine and concentrated under vaccum to give a residue which was purified by silica gel chromatography (hexane/EtOAc = 10:1 to 3:1) to give (S)-tert-butyl 6-(1-(tert-butoxycarbonyl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetate. 20 The product from Step 1 was treated with a reagent to yield (S)-isopropyl 2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetate. The product from Step 2 was treated with a reagent to yield (S)-isopropyl 2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)-2-(tert-butoxy)acetic acid. 25

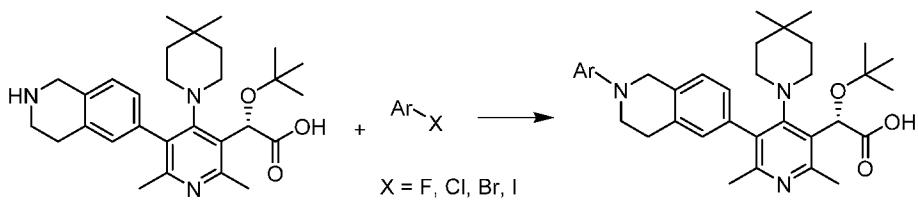
dimethylpyridin-3-yl)-3,4-dihydroisoquinoline-2(1H)-carboxylate. LCMS: MS (M+H)⁺ calcd. 622.4; observ. 622.4.

Step 2: To a solution of (S)-tert-butyl 6-(1-(tert-butoxy)-2-isopropoxy-2-oxoethyl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (420 mg) in CH₂Cl₂ (5 mL) was added TFA (1 mL). The reaction mixture was stirred at room temperature for 4 hours. All the solvents were removed under vacuum to give (S)-isopropyl 2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetate which was used without further purification. LCMS: MS (M+H)⁺ calcd. 522.4; observ. 522.3.

Step 3: To a solution of (S)-isopropyl 2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetate (50 mg) in ethanol (4 mL) was added KOH (43.0 mg) and water (0.4 mL). The reaction mixture was heated at 85°C for 6 hours. The mixture was acidified by 1N HCl to pH = 4. All the solvents were removed under vacuum. The residue was used without further purification. LCMS: MS (M+H)⁺ calcd. 480.3; observ. 480.2.

General Procedure A for the preparation of the compounds of the invention, from (S)-ethyl or (S)-isopropyl 2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetate:

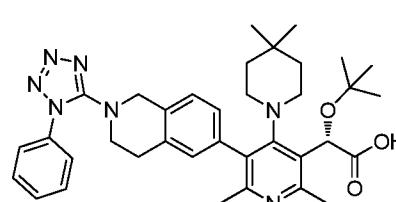
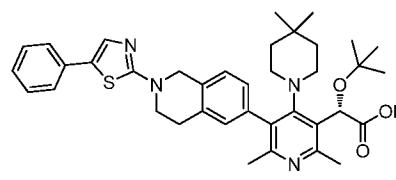
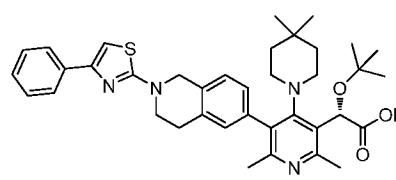
Step 1: Na₂CO₃ or K₂CO₃ or Cs₂CO₃ or NaH (1 – 20 eq.) was added into a solution of (S)-ethyl or (S)-isopropyl 2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetate (1 eq.) and an electrophile (1 – 20 eq.) in acetonitrile or THF or DMF or dioxane. The reaction was carried out at room temperature or at an increased temperature (up to 150 °C) for a period of time (10 minutes


to 72 hours). After removal of solvents under vaccum, the residue was used as is or purified by the preparative HPLC system.

Step 2: To a solution of the product from the step 1 (1 eq.) in MeOH or EtOH and THF (volume ratio 20 : 1 to 1 : 20) was added NaOH or KOH (1 to 100 eq.). The reaction was carried out at room temperature or at an increased temperature (up to 150 °C) for a period of time (10 minutes to 72 hours). The mixture was acidified by 1N HCl to pH ~ 4. Removal of the solvents under vaccum gave a residue which was purified by the preparative HPLC system.

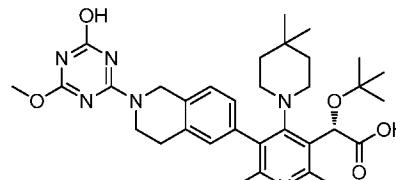
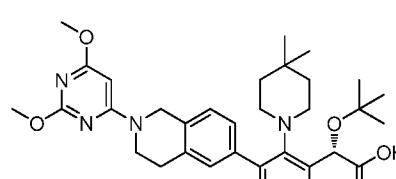
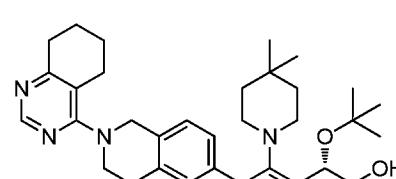
10

General Procedure B for the preparation of compounds of the invention, from (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid:

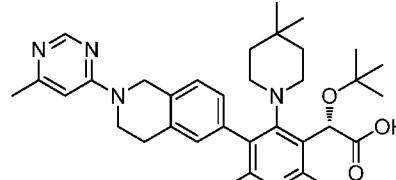
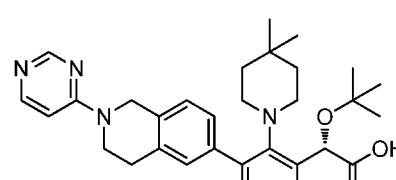
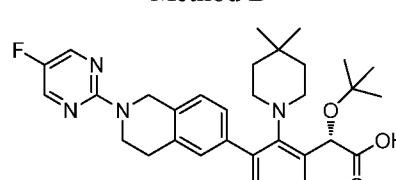



15

20

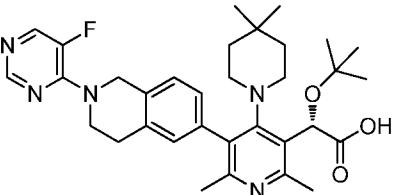
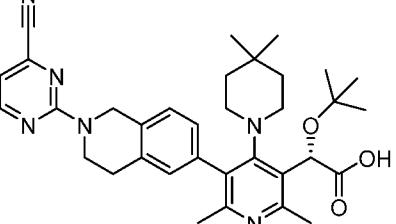
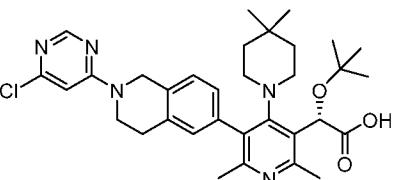
Na₂CO₃ or K₂CO₃ or Cs₂CO₃ or NaH (1 – 20 eq.) was added into a solution of (S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid (1 eq.) and an electrophile (1 - 20 eq.) in acetonitrile or THF or DMF or dioxane. The reaction was carried out at room temperature or at an increased temperature (up to 150 °C) for a period of time (10 minutes to 72 hours). The mixture was diluted with EtOAc, washed with water, and dried over MgSO₄. After removal of solvents under vaccum, the residue was used as was or purified by the preparative HPLC system.




25

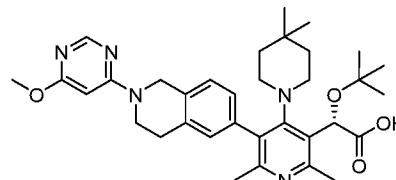
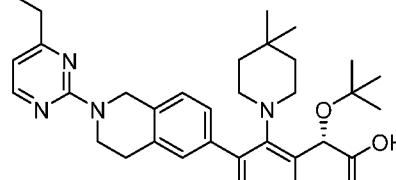
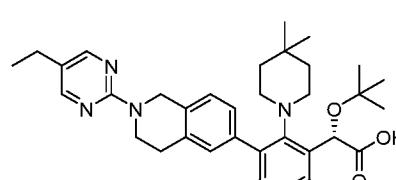
Compound	Name General Method Used Structure	LCMS (M+H) ⁺
1	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(1-phenyl-1H-tetrazol-5-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	624.3
2	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(5-phenylthiazol-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	639.3
3	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(4-phenylthiazol-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	639.3

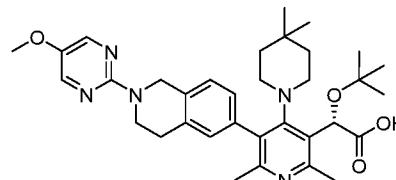
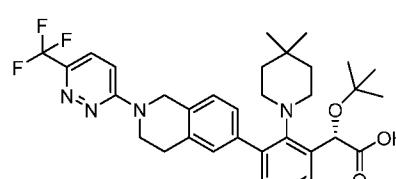



Compound	Name General Method Used Structure	LCMS (M+H) ⁺
4	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(4-oxo-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	632.1
5	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(7-oxo-4,5,6,7-tetrahydrobenzo[d]thiazol-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	631.2
6	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(thiazol-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	563.1

Compound	Name General Method Used Structure	LCMS (M+H) ⁺
7	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(6-phenylpyridazin-3-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	634.3
8	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(4-phenylpyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	634.4
9	(S)-2-(tert-butoxy)-2-(5-(2-(4-carbamoyl-6-phenylpyridazin-3-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method A 	677.1




Compound	Name General Method Used Structure	LCMS (M+H) ⁺
10	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(4-morpholinopyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	643.3
11	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(4-(trifluoromethyl)pyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	626.2
12	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(4-methoxypyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method A 	588.3

Compound	Name General Method Used Structure	LCMS (M+H) ⁺
13	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(4-hydroxy-6-methoxy-1,3,5-triazin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method A 	605.3
14	(S)-2-(tert-butoxy)-2-(5-(2-(2,6-dimethoxypyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method A 	618.3
15	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(5,6,7,8-tetrahydroquinazolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	612.3




Compound	Name General Method Used Structure	LCMS (M+H) ⁺
16	(S)-2-(6-(5-(tert-butoxy(carboxy)methyl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-3,4-dihydroisoquinolin-2(1H)-yl)nicotinic acid Method A 	601.3
17	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(5-methylpyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	572.1
18	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(pyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	558.3



Compound	Name General Method Used Structure	LCMS (M+H) ⁺
19	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(6-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	572.1
20	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	558.3
21	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(5-fluoropyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	576.1

Compound	Name General Method Used Structure	LCMS (M+H) ⁺
22	(S)-2-(tert-butoxy)-2-(5-(2-(5-cyanopyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	583.2
23	(S)-2-(tert-butoxy)-2-(5-(2-(5-chloropyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	592.0
24	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(5-fluoro-6-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	590.1

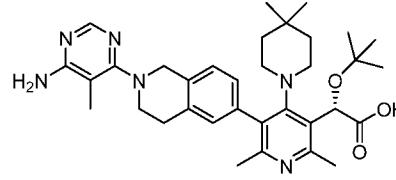
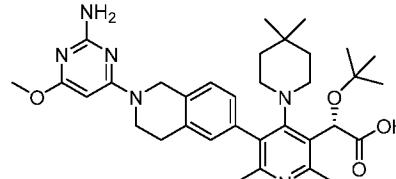
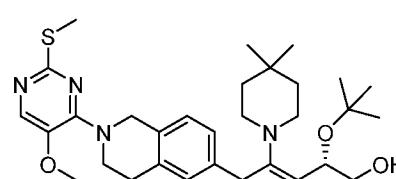
Compound	Name General Method Used Structure	LCMS (M+H) ⁺
25	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(5-fluoropyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	576.0
26	(S)-2-(tert-butoxy)-2-(5-(2-(4-cyanopyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	583.0
27	(S)-2-(tert-butoxy)-2-(5-(2-(6-chloropyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	592.0

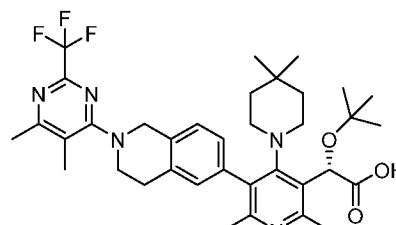
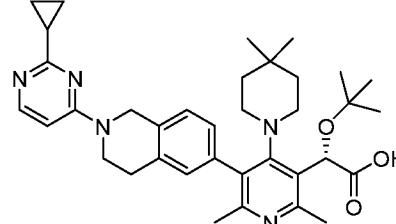
Compound	Name General Method Used Structure	LCMS (M+H) ⁺
28	(S)-2-(tert-butoxy)-2-(5-(2-(5-chloropyridazin-3-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	592.0
29	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(2,6-dimethylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	586.3
30	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(4-methylpyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	572.3

Compound	Name General Method Used Structure	LCMS (M+H) ⁺
31	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-methoxypyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	588.3
32	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(4-ethylpyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	586.3
33	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(5-ethylpyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	586.3

Compound	Name General Method Used Structure	LCMS (M+H) ⁺
34	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(5-methoxypyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method A 	588.3
35	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(6-(trifluoromethyl)pyridazin-3-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	626.0
36	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(2-(methylamino)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	587.1

Compound	Name General Method Used Structure	LCMS (M+H) ⁺
37	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(4,6-dimorpholino-1,3,5-triazin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	729.2
38	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(5-phenylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	634.1
39	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(methylthio)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	604.1

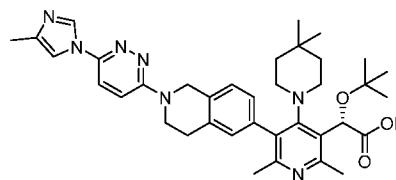
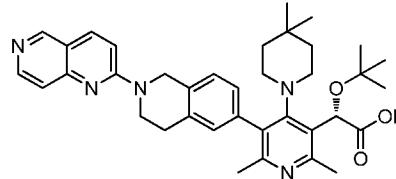



Compound	Name General Method Used Structure	LCMS (M+H) ⁺
40	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(2-methoxypyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	588.1
41	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(2-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	572.1
42	(S)-2-(5-(2-(6-aminopyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid Method B 	573.2



Compound	Name General Method Used Structure	LCMS (M+H) ⁺
43	(S)-2-(tert-butoxy)-2-(5-(2-(6-cyclopropylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	598.1
44	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(2-isopropyl-6-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	614.3
45	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(pyrazin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	588.3

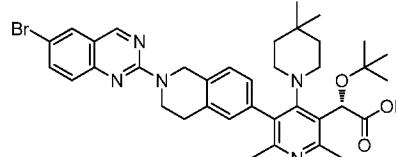
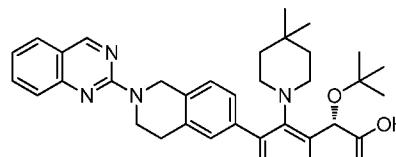
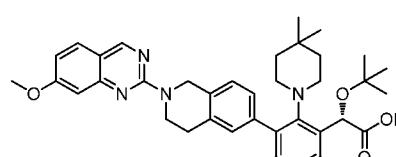
Compound	Name General Method Used Structure	LCMS (M+H) ⁺
46	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(pyridin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	557.3
47	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-methoxypyridazin-3-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method A 	588.3
48	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(6-(pyrrolidin-1-yl)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	627.2

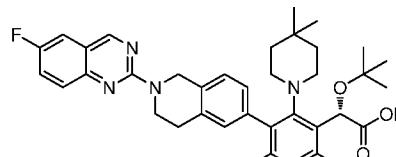
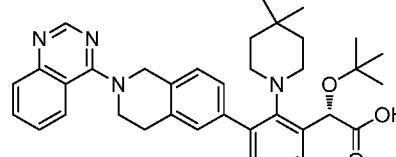
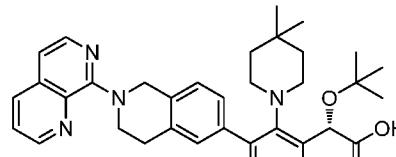
Compound	Name General Method Used Structure	LCMS (M+H) ⁺
49	(S)-2-(5-(2-(6-(1H-imidazol-1-yl)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid Method B 	624.1
50	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-methoxy-5-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	602.1
51	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-(methoxymethyl)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	602.1

Compound	Name General Method Used Structure	LCMS (M+H) ⁺
52	(S)-2-(tert-butoxy)-2-(5-(2-(6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	598.1
53	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(6-(phenylamino)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	649.2
54	(S)-2-(5-(2-(5-amino-6-chloropyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid Method B 	607.1

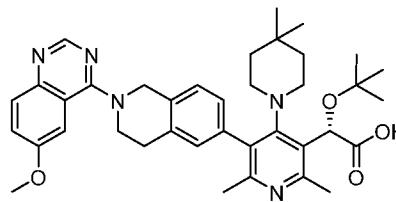
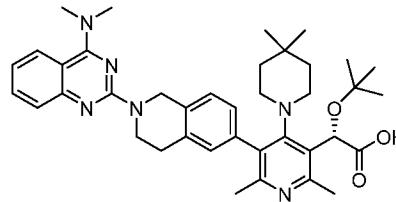
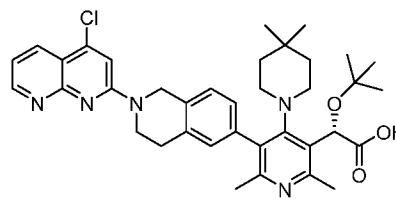



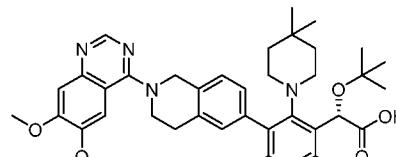
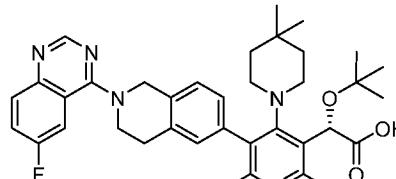
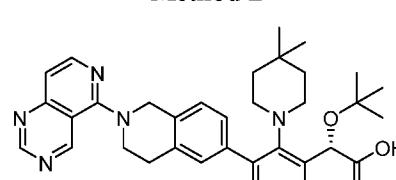
Compound	Name General Method Used Structure	LCMS (M+H) ⁺
55	(S)-2-(5-(2-(6-amino-5-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid Method B 	587.1
56	(S)-2-(5-(2-(2-amino-6-methoxypyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid Method B 	603.3
57	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(5-methoxy-2-(methylthio)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	634.3

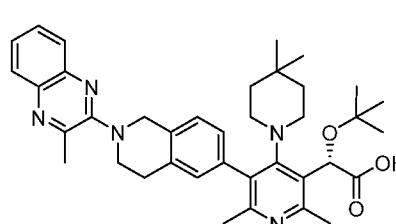
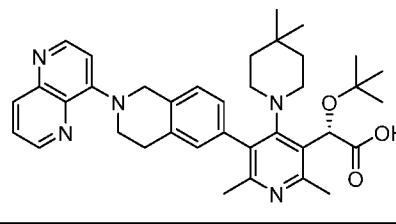
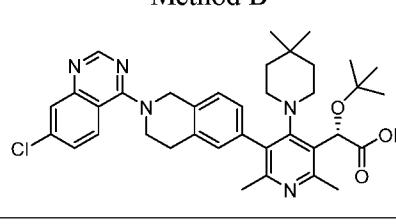



Compound	Name General Method Used Structure	LCMS (M+H) ⁺
58	<p>(S)-2-(tert-butoxy)-2-(5-(2-(5,6-dimethyl-2-(trifluoromethyl)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid</p> <p>Method B</p>	654.1
59	<p>(S)-2-(tert-butoxy)-2-(5-(2-(2-cyclopropylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid</p> <p>Method B</p>	598.3




Compound	Name General Method Used Structure	LCMS (M+H) ⁺
60	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(2-(trifluoromethyl)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	626.1
61	(S)-2-(5-(2-(2-amino-6-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid Method B 	587.1
62	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-methoxy-2-(methylthio)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	634.1

Compound	Name General Method Used Structure	LCMS (M+H) ⁺
63	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(methylthio)-6-(trifluoromethyl)pyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	672.3
64	(S)-2-(tert-butoxy)-2-(5-(2-(6-(tert-butylamino)-2-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	643.2
65	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-hydroxy-2-methylpyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	588.3




Compound	Name General Method Used Structure	LCMS (M+H) ⁺
66	(S)-2-(5-(2-(2-amino-6-hydroxypyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid Method B 	589.2
67	(S)-2-(5-(2-(2-aminopyrimidin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid Method B 	573.2
68	(S)-2-(tert-butoxy)-2-(5-(2-(4-cyano-6-phenylpyridazin-3-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	659.2




Compound	Name General Method Used Structure	LCMS (M+H) ⁺
69	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(6-(4-methyl-1H-imidazol-1-yl)pyridazin-3-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	638.1
70	(S)-2-(5-(2-(1,6-naphthyridin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid Method A 	608.3
71	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(quinoxalin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	608.2




Compound	Name General Method Used Structure	LCMS (M+H) ⁺
72	(S)-2-(5-(2-(6-bromoquinazolin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid Method A 	686.1
73	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(quinazolin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	608.1
74	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(7-methoxyquinazolin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method A 	638.3

Compound	Name General Method Used Structure	LCMS (M+H) ⁺
75	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-fluoroquinazolin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method A 	626.3
76	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(quinazolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	608.5
77	(S)-2-(5-(2-(1,7-naphthyridin-8-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid Method A 	608.4

Compound	Name General Method Used Structure	LCMS (M+H) ⁺
78	(S)-2-(tert-butoxy)-2-(5-(3',4'-dihydro-1'H-[1,2'-biisoquinolin]-6'-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method A 	607.4
79	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(2-(trifluoromethyl)quinolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method A 	675.3
80	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(7-methoxyquinazolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	638.1

Compound	Name General Method Used Structure	LCMS (M+H) ⁺
81	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-methoxyquinazolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	638.2
82	(S)-2-(tert-butoxy)-2-(5-(2-(4-(dimethylamino)quinazolin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	651.1
83	(S)-2-(tert-butoxy)-2-(5-(2-(4-chloro-1,8-naphthyridin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	642.1

Compound	Name General Method Used Structure	LCMS (M+H) ⁺
84	(S)-2-(tert-butoxy)-2-(5-(2-(6,7-dimethoxyquinazolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	668.4
85	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-5-(2-(6-fluoroquinazolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	626.4
86	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(pyrido[4,3-d]pyrimidin-5-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	609.3

Compound	Name General Method Used Structure	LCMS (M+H) ⁺
87	(S)-2-(tert-butoxy)-2-(4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethyl-5-(2-(3-methylquinoxalin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)pyridin-3-yl)acetic acid Method B 	622.2
88	(S)-2-(5-(2-(1,5-naphthyridin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)-2-(tert-butoxy)acetic acid Method B 	608.2
89	(S)-2-(tert-butoxy)-2-(5-(2-(7-chloroquinazolin-4-yl)-1,2,3,4-tetrahydroisoquinolin-6-yl)-4-(4,4-dimethylpiperidin-1-yl)-2,6-dimethylpyridin-3-yl)acetic acid Method B 	642.2

Biological Methods

5 *Inhibition of HIV replication:* A recombinant NL-RLuc proviral clone was constructed in which a section of the nef gene from NL4-3 was replaced with the *Renilla* Luciferase gene. This virus is fully infectious and can undergo multiple cycles of replication in cell culture. In addition, the luciferous reporter provides a simple and easy method for quantitating the extent of virus growth and consequently, the antiviral activity 10 of test compounds. The plasmid pNLRLuc contains the proviral NL-Rluc DNA cloned into pUC18 at the *Pvu*II site. The NL-RLuc virus was prepared by transfection of 293T cells with the plasmid pNLRLuc. Transfections were performed using the LipofectAMINE PLUS kit from Invitrogen (Carlsbad, CA) according to the manufacturer and the virus generated was titered in MT-2 cells. For susceptibility analyses, the titrated 15 virus was used to infect MT-2 cells in the presence of compound, and after 5 days of incubation, cells were processed and quantitated for virus growth by the amount of expressed luciferase. Assay media was RPMI 1640 supplemented with 10% heat inactivated fetal bovine serum (FBS), 100 units/ml penicillin G/100 units/ml streptomycin, 10 mM HEPES buffer pH 7.55 and 2 mM L-glutamine. The results from at 20 least 2 experiments were used to calculate the EC₅₀ values. Luciferase was quantitated using the Dual Luciferase kit from Promega (Madison, WI). Susceptibility of viruses to compounds was determined by incubation in the presence of serial dilutions of the compound. The 50% effective concentration (EC₅₀) was calculated by using the exponential form of the median effect equation where (Fa) = 1/[1+ (ED₅₀/drug conc.)^m] 25 (Johnson VA, Byington RT. Infectivity Assay. In *Techniques in HIV Research*. ed. Aldovini A, Walker BD. 71-76. New York: Stockton Press. 1990). Results are shown in Table 1 and Table 2. Activity equal to A refers to a compound having an EC₅₀ \leq 100 nM, while B and C denote compounds having an EC₅₀ between 100 nM and 1uM (B) or >1uM (C).

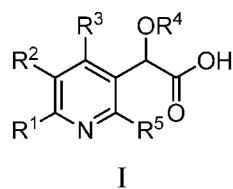
Table 1.

Compound	Activity	EC ₅₀ µM	Compound	Activity	EC ₅₀ µM
1	A	0.006	36	A	
2		Not tested	37	A	
3	A		38	A	
4	A		39	A	
5		Not tested	40	A	0.002
6	A	0.007	41	A	
7		Not tested	42	A	
8	A		43	A	
9	A		44	A	
10	A		45	A	
11	A		46	A	
12	A		47	A	
13	B	0.278	48	A	0.003
14	A		49	A	
15	A		50	A	
16	B		51	A	
17	A		52	A	
18	A		53	A	
19	A		54	A	
20	A	0.002	55	A	0.004
21	A		56	A	
22	B		57	A	
23	A		58	A	
24	A		59	A	
25	A		60	A	
26	A		61	A	
27	A		62	A	0.004
28	A		63	A	
29	A	0.004	64	A	
30	A		65	B	

Compound	Activity	EC ₅₀ µM	Compound	Activity	EC ₅₀ µM
31	A		66	B	0.320
32	A		67	A	
33	A		68	A	
34	A		69	A	
35	A	0.010			

Table 2.

Compound	EC ₅₀ µM
70	0.0005
71	0.010
72	0.004
73	0.002
74	0.006
75	0.003
76	0.002
77	0.002
78	0.003
79	0.007
80	0.001
81	0.002
82	0.001
83	Not tested
84	0.002
85	0.002
86	0.001
87	0.010
88	0.001
89	0.004


It will be evident to one skilled in the art that the present disclosure is not limited
5 to the foregoing illustrative examples, and that it can be embodied in other specific forms

without departing from the essential attributes thereof. It is therefore desired that the examples be considered in all respects as illustrative and not restrictive, reference being made to the appended claims, rather than to the foregoing examples, and all changes which come within the meaning and range of equivalency of the claims are therefore
5 intended to be embraced therein.

CLAIMS

We claim:

1. A compound of Formula I

wherein:

R¹ is selected from hydrogen, alkyl, or cycloalkyl;

R² is tetrahydroisoquinolinyl substituted with one R⁶ substituent and also with 0-3 halo or alkyl substituents;

R³ is selected from azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, homopiperidinyl, homopiperazinyl, or homomorpholinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxy, and haloalkoxy;

R⁴ is selected from alkyl or haloalkyl;

R⁵ is alkyl;

R⁶ is selected from pyrrolyl, furanyl, thienyl, pyrazolyl, isoxazolyl, isothiazolyl, imidazolyl, oxazolyl, thiazolyl, pyrazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, oxotetrahydrobenzothiazolyl, oxotetrahydrothiazolopyridinyl, dihydrocyclopentapyrimidinyl, tetrahydroquinazolinyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, naphthyridinyl, pyridopyrimidinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkylthio, dialkylamino, carboxy, (R⁷R⁸N)CO, R⁷R⁸N, phenyl, imidazolyl, and alkylimidazolyl;

R^7 is selected from hydrogen, alkyl, or phenyl;

R^8 is selected from hydrogen or alkyl;

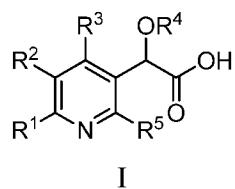
or R^7R^8N taken together is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;

or a pharmaceutically acceptable salt thereof.

2. A compound of claim 1 where R^2 is tetrahydroisoquinolinyl substituted with one R^6 substituent.

3. A compound of claim 1 where R^3 is piperidinyl substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxy, and haloalkoxy.

4. A compound of claim 1 where R^3 is piperidinyl substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxy, and haloalkoxy.


5. A compound of claim 1 where R^6 is pyrrolyl, furanyl, thienyl, pyrazolyl, isoxazolyl, isothiazolyl, imidazolyl, oxazolyl, thiazolyl, pyrazolyl, oxadiazolyl, thiadiazolyl, or tetrazolyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkylthio, carboxy, $(R^7R^8N)CO$, R^7R^8N , phenyl, imidazolyl, and alkylimidazolyl.

6. A compound of claim 1 where R^6 is pyridinyl, pyridazinyl, pyrimidinyl, or pyrazinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkylthio, carboxy, $(R^7R^8N)CO$, R^7R^8N , phenyl, imidazolyl, and alkylimidazolyl.

7. A compound of claim 1 where R^6 is tetrahydroquinazolinyl, oxotetrahydrobenzothiazolyl, oxotetrahydrothiazolopyridinyl, dihydrocyclopentapyrimidinyl, or tetrahydroquinazolinyl, and is substituted with 0-3

substituents selected from cyano, halo, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkylthio, carboxy, (R⁷R⁸N)CO, R⁷R⁸N, phenyl, imidazolyl, and alkylimidazolyl.

8. A compound of Formula I

wherein:

R¹ is selected from hydrogen, alkyl, or cycloalkyl;

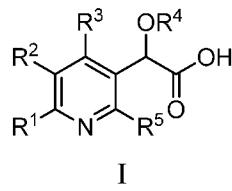
R² is tetrahydroisoquinolinyl substituted with one R⁶ substituent and also with 0-3 halo or alkyl substituents;

R³ is selected from azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, homopiperidinyl, homopiperazinyl, or homomorpholinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxy, and haloalkoxy;

R⁴ is selected from alkyl or haloalkyl;

R⁵ is alkyl;

R⁶ is selected from pyrrolyl, furanyl, thienyl, pyrazolyl, isoxazolyl, isothiazolyl, imidazolyl, oxazolyl, thiazolyl, pyrazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, oxotetrahydrobenzothiazolyl, oxotetrahydrothiazolopyridinyl, dihydrocyclopentapyrimidinyl or tetrahydroquinazolinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, hydroxy, alkoxy, haloalkoxy, alkylthio, carboxy, (R⁷R⁸N)CO, R⁷R⁸N, phenyl, imidazolyl, and alkylimidazolyl;


R^7 is selected from hydrogen, alkyl, or phenyl;

R^8 is selected from hydrogen or alkyl;

or R^7R^8N taken together is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;

or a pharmaceutically acceptable salt thereof.

9. A compound of Formula I

wherein:

R^1 is selected from hydrogen, alkyl, or cycloalkyl;

R^2 is tetrahydroisoquinolinyl substituted with one R^6 substituent and also with 0-3 halo or alkyl substituents;

R^3 is selected from azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, homopiperidinyl, homopiperazinyl, or homomorpholinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxy, and haloalkoxy;

R^4 is selected from alkyl or haloalkyl;

R^5 is alkyl;

R^6 is selected from quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, naphthyridinyl, pyridopyrimidinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxy, haloalkoxy and R^7R^8N ;

R⁷ and R⁸ are each independently selected from hydrogen or alkyl; or R⁷R⁸N taken together is azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, or morpholinyl;

or a pharmaceutically acceptable salt thereof.

10. A compound of claim 9 where:

R¹ is selected from hydrogen, alkyl, or cycloalkyl;

R² is tetrahydroisoquinolinyl substituted with one R⁶ substituent and also with 0-3 halo or alkyl substituents;

R³ is selected from azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, homopiperidinyl, or homopiperazinyl, or homomorpholinyl, and is substituted with 0-3 substituents selected from cyano, halo, alkyl, haloalkyl, alkoxy, and haloalkoxy;

R⁴ is selected from alkyl or haloalkyl;

R⁵ is alkyl;

R⁶ is selected from quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, naphthyridinyl, pyridopyrimidinyl, and is substituted with 0-3 substituents selected from halo, alkyl, haloalkyl, alkoxy, and dialkylamino.

11. A composition useful for treating HIV infection comprising a therapeutic amount of a compound of claim 1 and a pharmaceutically acceptable carrier.

12. The composition of claim 11 further comprising a therapeutically effective amount at least one other agent used for treatment of AIDS or HIV infection selected from nucleoside HIV reverse transcriptase inhibitors, non-nucleoside HIV reverse transcriptase inhibitors, HIV protease inhibitors, HIV fusion inhibitors, HIV attachment

inhibitors, CCR5 inhibitors, CXCR4 inhibitors, HIV budding or maturation inhibitors, and HIV integrase inhibitors, and a pharmaceutically acceptable carrier.

13. The composition of claim 12 wherein the other agent is dolutegravir.

14. A method for treating HIV infection comprising administering a therapeutically effective amount of a compound of claim 1, or a pharmaceutically acceptable salt thereof, to a patient in need thereof.

15. The method of claim 14 further comprising administering a therapeutically effective amount of at least one other agent used for treatment of AIDS or HIV infection selected from nucleoside HIV reverse transcriptase inhibitors, non-nucleoside HIV reverse transcriptase inhibitors, HIV protease inhibitors, HIV fusion inhibitors, HIV attachment inhibitors, CCR5 inhibitors, CXCR4 inhibitors, HIV budding or maturation inhibitors, and HIV integrase inhibitors.

15. The method of claim 15 wherein the other agent is dolutegravir.

17. The method of claim 15 wherein the other agent is administered to the patient prior to, simultaneously with, or subsequently to the compound of claim 1.

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2017/052700

A. CLASSIFICATION OF SUBJECT MATTER
 INV. C07D401/14 C07D417/14 C07D471/04 C07D513/04 A61K31/444
 A61P31/18

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 2015/126726 A1 (SQUIBB BRISTOL MYERS CO [US]) 27 August 2015 (2015-08-27) cited in the application claims 1, 12-13 ----- A WO 2010/130034 A1 (BOEHRINGER INGELHEIM INT [DE]; YOAKIM CHRISTIANE [CA]; BAILEY MURRAY D) 18 November 2010 (2010-11-18) cited in the application claims 1, 12-15 ----- X, P WO 2017/025915 A1 (VIIIV HEALTHCARE UK LTD [GB]) 16 February 2017 (2017-02-16) claims 1, 2, 5-7, 10, 13, 24-30 ----- X, P WO 2017/025916 A1 (VIIIV HEALTHCARE UK LTD [GB]) 16 February 2017 (2017-02-16) claims 1, 6-12 ----- -/-	1-17 1-17 1-8, 11-17 1-17

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
26 June 2017	04/07/2017
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Gregoire, Ariane

INTERNATIONAL SEARCH REPORTInternational application No
PCT/IB2017/052700

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X, P	WO 2017/025914 A1 (VII V HEALTHCARE UK LTD [GB]) 16 February 2017 (2017-02-16) claims 1, 6-12 -----	1-17

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/IB2017/052700

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 2015126726	A1 27-08-2015	AR 099511 A1 EP 3107908 A1 TW 201613885 A US 2015232463 A1 WO 2015126726 A1	27-07-2016 28-12-2016 16-04-2016 20-08-2015 27-08-2015
WO 2010130034	A1 18-11-2010	AP 2925 A AR 076775 A1 AU 2010246853 A1 BR PI1010644 A2 CA 2762036 A1 CN 102459183 A CO 6460772 A2 EA 201101620 A1 EC SP11011506 A EP 2429993 A1 JP 5755220 B2 JP 2012526728 A KR 20140014399 A MA 33275 B1 NZ 596236 A PE 06592012 A1 SG 175331 A1 TW 201105663 A US 2010292227 A1 US 2013203747 A1 UY 32628 A WO 2010130034 A1	31-05-2014 06-07-2011 10-11-2011 15-03-2016 18-11-2010 16-05-2012 15-06-2012 30-05-2012 30-03-2012 21-03-2012 29-07-2015 01-11-2012 06-02-2014 02-05-2012 31-01-2014 14-06-2012 28-11-2011 16-02-2011 18-11-2010 08-08-2013 31-12-2010 18-11-2010
WO 2017025915	A1 16-02-2017	NONE	
WO 2017025916	A1 16-02-2017	NONE	
WO 2017025914	A1 16-02-2017	NONE	