DEMANDE DE BREVET D’INVENTION

Date de dépôt : 4 octobre 1985.

Priorité : CH, 16 octobre 1984, n° 4 945/84-1.

Date de la mise à disposition du public de la demande : BOPI « Brevets » n° 16 du 18 avril 1986.

Références à d’autres documents nationaux apparentés :

Dispositif en vue de contrôler la tension des fils de chaîne par déplacement de position d’un rouleau porte-fils dans une machine à tisser.

L’invention concerne un dispositif en vue de contrôler la tension des fils de chaîne par déplacement de position d’un rouleau porte-fils dans une machine à tisser.

Ce dispositif comporte un mécanisme à leviers pivots 101 commandé par une came 1 et comportant un levier pivotant supportant l’arbre du rouleau porte-fils 9, ainsi que des moyens assurant, au démarrage de la machine à tisser, une tension supplémentaire des fils de chaîne moyennant un déplacement de position supplémentaire du rouleau porte-fils 9.

Le dispositif de l’invention est utilisé pour éviter les marques de démarrage lors de la mise en marche d’une machine à tisser.
La présente invention concerne un dispositif en vue de contrôler la tension des fils de chaîne par déplacement de position d'un rouleau porte-fils dans une machine à tisser, ce dispositif comportant un mécanisme commandé par une came et comprenant un levier pivotant supportant l'arbre du rouleau porte-fils, ainsi que des moyens assurant, lors du démarrage de la machine à tisser, une tension supplémentaire des fils de chaîne moyennant un déplacement de position supplémentaire du rouleau porte-fils.

Un dispositif du type indiqué ci-dessus a pour but de provoquer, au démarrage de la machine à tisser, une tension supplémentaire des fils de chaîne afin d'éviter les marques de démarrage survenant habituellement dans d'autres conditions lors de la mise en marche des machines à tisser et altérant de manière visible la qualité du tissu.

A cet effet, dans un système connu (brevet de la République Fédérale d'Allemagne 29 27 533), sur l'arbre du rouleau porte-fils, on fixe un bras réglable par un premier levier pivotant, tandis que l'arbre du rouleau porte-fils est supporté par des bras en porte-à-faux montés de manière pivotante et dont les points de pivotement se trouvent sur des leviers pivotant autour d'un axe fixe et qui, à l'intervention de bielles, sont articulés à un autre levier fixé sur un arbre sollicité par un ressort dans son sens de rotation. En l'occurrence, le levier pivotant complémentaire de ce dispositif auxiliaire de la machine à tisser est assemblé à un bras pivotant monté de façon à pouvoir tourner sur l'arbre sollicité par un ressort et qui,
à son tour, est assemblé activement, à l'intervention d'un dispositif d'accrochage, à un levier supplémentaire fixé sur l'arbre. Ce dispositif d'accrochage peut être commandé à l'intervention d'un électro-aimant de telle sorte qu'au démarrage, par suite de l'entraînement du levier supplémentaire et au moyen du bras pivotant monté de manière rotative, on puisse modifier la position de l'arbre du rouleau porte-fils.

En fait, tout en évitant un rouleau porte-fils auxiliaire séparé utilisé actuellement, un tel système permet de superposer, au mouvement régulateur de tension du rouleau porte-fils lors d'un fonctionnement normal, un changement de position supplémentaire du rouleau porte-fils au démarrage de la machine à tisser afin d'éviter ainsi les marques de démarrage, ce qui a toutefois été réalisé dans ce cas au prix d'importantes dépenses techniques.

En conséquence, la présente invention a pour objet de simplifier considérablement un dispositif du type décrit ci-dessus et de le rendre ainsi plus favorable du point de vue économique et plus fiable au point de vue fonctionnement.

A cet effet, selon l'invention, le mécanisme à levier pivotant comporte un élément de liaison servant à régler la distance relative entre la came et le levier pivotant supportant l'arbre du rouleau porte-fils et dont la longueur relative peut être modifiée par des éléments de commande agissant momentanément.

Ces dispositions adoptées selon l'invention fournissent une conception très simple et fonctionnellement plus fiable du dispositif auxiliaire concerné, en particulier, lorsque, selon une autre forme de réalisation, les moyens de commande comportent une
tête articulée reliant les tringles d'articulation et faisant ressortir angulairement ces tringles d'articulation de la position dans laquelle elles s'étendent dans le sens longitudinal afin d'en raccourcir la longueur relative commune.

En l'occurrence, l'élément de liaison peut être un câble pouvant être dévié de la position dans laquelle il s'étend, les éléments de commande comportant alors avantageusement une poulie sollicitant ce câble et par laquelle ce dernier peut être dévié, en vue de son raccourcissement relatif, dans n'importe quel plan sans pour autant empêcher le mouvement de pivotement du rouleau porte-fils, lequel est commandé par la machine. Toutefois, en règle générale, la déviation a lieu vers le haut ou vers le bas, dans un plan vertical.

Toutefois, l'élément de liaison peut également être formé par un système de tringles articulées pouvant être dévié de la position dans laquelle il s'étend dans le sens longitudinal, auquel cas, les moyens de commande comportent avantageusement une tête articulée assemblant les tringles d'articulation.

Afin d'actionner la poulie ou la tête articulée, on peut, en l'occurrence, utiliser, de manière simple et avec un fonctionnement fiable, un système pneumatique ou hydraulique à piston/cylindre ou un système à noyau plongeur dont le piston ou le noyau actif supporte la poulie ou la tête articulée, la course active du piston étant avantageusement réglable.

Dans les deux cas, les moyens de commande peuvent être avantageusement activés par un signal de démarrage de la machine et ils peuvent être désactivés par un générateur de signaux de temps ou par un capteur de
déplacement d'un angle prédéterminé de la machine.

Des formes de réalisation de l'objet de l'invention seront illustrées ci-après plus en détail à titre d'exemple en se référant aux dessins annexés dans lesquels :

la figure 1 est une illustration schématique du principe de fonctionnement du dispositif selon l'invention en vue de régler la tension des fils de chaîne par déplacement de position d'un rouleau porte-fils dans une machine à tisser ;

la figure 2 illustre, par une vue latérale schématique, une forme de réalisation pratique du système illustré en figure 1 ; et

la figure 3 représente également, par une vue latérale schématique, une deuxième forme de réalisation pratique du système illustré en figure 1.

Le dispositif destiné à régler la tension des fils de chaîne par un déplacement de position d'un rouleau porte-fils 9 sur une machine à tisser 100 illustrée plus en détail uniquement en figure 2 comprend tout d'abord, de façon connue, des mécanismes de pivotement 101 généralement situés des deux côtés de la machine, se terminant chacun en un levier pivotant 8 supportant l'arbre 9 de rouleau porte-fils 9 et commandés par au moins une came 1 située sur l'arbre principal 102 de la machine à tisser. En l'occurrence, lors du fonctionnement continu de la machine à tisser, la came 1 permet de régler les mouvements de pivotement des leviers 8 autour de leurs points de rotation 8, ce qui exerce un effet de régulation sur la tension des fils de chaîne 103 entourant partiellement le rouleau porte-fils 9.

A cet effet, outre le levier pivotant mentionné 8, chaque mécanisme à leviers pivotants 101 comporte, du côté de la commande, un système de
leviers avec des organes de transmission 3-6, ainsi qu'un rouleau de commande 2 coopérant avec la came 1.

Afin que, lors du démarrage de la machine à tisser, on puisse assurer une tension supplémentaire des fils de chaîne moyennant un déplacement supplémentaire de position du rouleau porte-fils 9, selon l'invention, entre le levier pivotant mentionné 8 et la came 1 ou les organes de transmission 3-6 situés du côté de la commande et faisant partie du mécanisme à leviers pivotants 101, on prévoit un élément de liaison 7 pouvant être dévié et permettant de raccourcir momentanément la distance relative entre la came 1 et le levier pivotant 8 pour assurer ainsi le déplacement supplémentaire de position du rouleau porte-fils 9 comme représenté en figure 1 par les lignes en traits discontinus. A cet effet, sur l'élément de liaison 7, viennent s'engager des éléments de commande agissant momentanément et réalisés sous forme d'un système pneumatique ou hydraulique à piston/cylindre dont le piston actif 10' est en liaison active, à l'intervention de sa tige 10", avec l'élément de liaison 7. La course active du piston 10' est avantageusement réglable.

La commande de ce système 10 à piston/cylindre ou de sa soupape d'inversion 16 a avantageusement lieu au moyen d'un signal de démarrage 20 de la machine et elle peut être annulée notamment par un générateur de signaux de temps 21 ou par un capteur de déplacement tributaire d'un angle pré-déterminé de la machine, comme représenté par les traits discontinus en figure 1.

Toutefois, bien entendu, on peut également envisager d'autres moyens de commande pour l'élément de liaison 7, par exemple, un système électromagné-
tique à noyau plongeur ou analogue (non représenté).

Suivant une forme de réalisation pratique du dispositif supplémentaire décrit ci-dessus, suivant l'illustration de la figure 2, l'élément de liaison 7 peut être un câble qui, dans le cas présent, peut être dévié vers le haut à partir de la position dans laquelle il s'étend, comme indiqué par les lignes en traits discontinus. Pour cette déviation, la tige 10" du piston 10' du système à piston/cylindre 10 comporte, à son extrémité libre, une poulie 11 qui, même lors de la déviation du câble 7, assure une transmission non entravée, au rouleau porte-fils 9, du mouvement oscillant déclenché par la came 1 (non représentée dans cette figure). Dans ce cas, on peut effectuer un réglage de la course à l'intervention d'une plaque de réglage 12.

Dans la variante supplémentaire selon la figure 3, l'élément de liaison est constitué d'un système de tringles articulées 7, 7', les extrémités internes des tringles étant articulées à une tête d'articulation 13 qui, à son tour, est placée de façon à pouvoir basculer sur l'extrémité libre de la tige de piston 10" du système piston/cylindre concerné 10. En l'occurrence, comme limitation de course, on utilise une plaque de butée réglable 14. Selon les lignes en traits discontinus, la déviation du système de tringles articulées 7, 7' afin d'en raccourcir la longueur relative, a lieu ici vers le bas.

Afin d'assurer, dans ce système, le mouvement oscillant du système en fonction de la came (non représentée ici), à son extrémité inférieure, le système piston/cylindre 10 prend appui sur le châssis 100 de la machine au moyen d'un axe oscil-
lant 15.

Dès lors, d'après la description ci-dessus, on obtient un dispositif supplémentaire adapté à une machine à tisser, ce dispositif permettant, de manière très simple et avec un fonctionnement très fiable, de superposer, au mouvement régulateur de tension du rouleau porte-fils et lors du fonctionnement normal de la machine à tisser, un déplacement de position supplémentaire au démarrage afin d'empêcher ainsi ce que l'on appelle les marques de démarrage.
REVENDICATIONS

1. Dispositif en vue de contrôler la tension des fils de chaîne par déplacement de position d'un rouleau porte-fils dans une machine à tisser, ce dispositif comportant un mécanisme commandé par une came et comprenant un levier pivotant supportant l'arbre du rouleau porte-fils, ainsi que des moyens assurant, lors du démarrage de la machine à tisser, une tension supplémentaire des fils de chaîne moyennant un déplacement de position supplémentaire du rouleau porte-fils, caractérisé en ce que le mécanisme à levier pivotant (2-8) comporte un élément de liaison (7) servant à régler la distance relative entre la came (1) et le levier pivotant (8) supportant l'arbre (9') du rouleau porte-fils (9) et dont la longueur relative peut être modifiée par des éléments de commande (10, 11) agissant momentanément.

2. Dispositif selon la revendication 1, caractérisé en ce que l'élément de liaison (7) est un câble pouvant être dévié de la position dans laquelle il s'étend.

3. Dispositif selon les revendications 1 et 2, caractérisé en ce que les moyens de commande (10, 11) comportent une poulie (11) sollicitant l'élément de liaison (7) sous forme d'un câble.

4. Dispositif selon la revendication 1, caractérisé en ce que l'élément de liaison (7) est formé par un système de tringles articulées (7, 7') pouvant être dévié de la position dans laquelle il s'étend longitudinalement.

5. Dispositif selon les revendications 1 et 4, caractérisé en ce que les moyens de commande (10, 11') comportent une tête articulée (13) assemblant les tringles articulées (7, 7').
6. Dispositif selon une des revendications 1 à 5, caractérisé en ce que les moyens de commande (10, 11) sont formés par un système pneumatique ou hydraulique à piston/cylindres ou par un système à noyau plongeur dont le piston (10') ou le noyau actif supporte la poulie (11) ou la tête articulée (13).

7. Dispositif selon la revendication 6, caractérisé en ce que la course active du piston (10') est réglable.

8. Dispositif selon une des revendications 1 à 7, caractérisé en ce que les moyens de commande (10, 11) peuvent être activés par un signal (20) de démarrage de la machine, tandis qu'ils peuvent être désactivés par un générateur de signaux de temps (21) ou par un capteur de déplacement (22) dépendant d'un angle prédéterminé de la machine.