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FAULT DETECTION SYSTEM AND METHOD
USING MULTIWAY PRINCIPAL
COMPONENT ANALYSIS

FIELD OF THE INVENTION

This invention generally relates to diagnostic systems,
and more specifically relates to fault detection in turbine
engines.

BACKGROUND OF THE INVENTION

Modern aircraft are increasingly complex. The complexi-
ties of these aircraft have led to an increasing need for
automated fault detection systems. These fault detection
systems are designed to monitor the various systems of the
aircraft to detect potential faults. These systems are designed
to detect these potential faults such that the potential faults
can be addressed before the potential faults lead to serious
system failure and possible in-flight shutdowns, take-off
aborts, and delays or cancellations.

Engines are, of course, a particularly critical part of the
aircraft. As such, fault detection for aircraft engines are an
important part of an aircrafts fault detection system. Some
traditional engine fault detection has been limited to meth-
ods that use engine data taken over a relatively small period
of time. While these methods have been effective in detect-
ing some faults, they are less effective in detecting faults
where symptoms arise over a relatively larger time period. In
particular, those faults which show symptoms over multiple
phases of operation. For these types of faults some tradi-
tional fault detection methods have been unable to unable to
consistently detect all potential faults that can effect the
operation of the engine.

BRIEF SUMMARY OF THE INVENTION

The present invention provides an improved fault detec-
tion system and method. The fault detection system provides
the ability to detect faults that are manifest over a plurality
of different operational phases. For example, the fault detec-
tion system provides the ability to detect faults that are
manifest over transitions from takeoff to cruise to landing.
The fault detection system and method use multiway prin-
cipal component analysis (MPCA) to detect fault from
turbine engine sensor data, where the turbine engine sensor
covers multiple different operational phases in the turbine
engine.

Specifically, the fault detection system uses a plurality of
load vectors, each of the plurality of load vectors represent-
ing a principal component in the turbine engine sensor data
from the multiple operational phases. The load vectors are
preferably developed using sets of historical sensor data.
Each load vector includes a plurality of elements, with each
element capturing a corresponding direction of variation in
the historical sensor data. When developed using historical
data covering multiple operational phases, the load vectors
can be used to detect likely faults in turbine engines.
Specifically, new sensor data from the multiple operational
phases is projected on to the load vectors, generating a
plurality of statistical measures that can be classified to
determine if a fault is manifest in the new sensor data.

A variety of different statistical measures can be created
and classified for fault detection. For example, the statistical
measures can include a plurality of scores and/or residual
error estimates. In general, scores comprise a lower dimen-
sion representation of the new sensor data. The residual error
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estimates comprise a measurement of variation that doesn’t
match the load vector model. The scores and/or residual
error estimates are then classified to determine if a fault
manifest in the new sensor data. Detected faults can then be
passed to a diagnostic system where they can be passed as
appropriate to maintenance personnel.

In one embodiment, the scores are classified by compar-
ing the scores to historical scores generated from historical
sensor data, and the residual error estimates are compared to
the actual sensor data to determine the likelihood of a fault
in the turbine engine. The present invention thus provides a
fault detection system and method that provides improved
performance by providing the ability to detect faults that are
manifest over a plurality of different operational phases.

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular description of a preferred embodiment of the
invention, as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The preferred exemplary embodiment of the present
invention will hereinafter be described in conjunction with
the appended drawings, where like designations denote like
elements, and:

FIG. 1 is a schematic view of a multiway PCA fault
detection system;

FIGS. 2-7 are exemplary graphs of statistical measures
used for fault detection in one exemplary embodiment;

FIG. 8 is a schematic view of a computer system that
includes a multiway PCA fault detection program in accor-
dance with one embodiment of the invention; and

FIG. 9 is a flow diagram of a multiway PCA fault
detection method in accordance with one embodiment of the
invention.

DETAILED DESCRIPTION OF THE
INVENTION

An improved fault detection system and method is pro-
vided. The fault detection system provides the ability to
detect faults that are manifest over a plurality of different
operational phases. For example, the fault detection system
provides the ability to detect faults that are manifest over
transitions from takeoff to cruise to landing. The fault
detection system and method use multiway principal com-
ponent analysis (PCA) to detect fault from turbine engine
sensor data, where the turbine engine sensor covers multiple
different operational phases in the turbine engine. Specifi-
cally, mulitway PCA provides a mechanism for modeling the
many interdependent variables in a turbine engine as a
function of time for repeated cycles, and is used to extract
information from the relationships between these variables
and use that information for fault detection.

Turning now to FIG. 1, a fault detection system 100 is
illustrated schematically. The fault detection system 100
includes a multiway principal component analysis (PCA)
mechanism 102 and a classifier 104. The fault detection
system 100 receives sensor data from engine sensors 108 in
a turbine engine, and provides a likelihood of fault to a
diagnostic system. The multiway PCA mechanism 102
includes a plurality of load vectors, each of the plurality of
load vectors representing a principal component in the
turbine engine sensor data from the multiple operational
phases. The load vectors are preferably developed using sets
of historical sensor data. Each load vector in the multiway
PCA mechanism 102 includes a plurality of elements, with
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each element capturing a corresponding direction of varia-
tion in the historical sensor data. When developed using
historical data covering multiple operational phases, the load
vectors in the multiway PCA mechanism 102 can be used to
detect likely faults in turbine engines as deviations from
normal operational behavior.

Specifically, new sensor data from the engine sensors 108
is taken from the operational phases of the turbine engine. A
variety of different types of sensor data can be used, includ-
ing engine speed (e.g, compressor speed and/or main shaft
speed), temperature (e.g., exhaust gas temperature) and
pressure (e.g., combustor pressure). The type of sensor data
used, and the rate at which it is collected would typically
depend on the type of turbine engine being monitored and
the particular types of faults that are being detected. This
new sensor data is collected, formatted and then projected on
to the load vectors, generating a plurality of statistical
measures that can be evaluated by the classifier 104 to
determine if a fault is manifest in the new sensor data.

A variety of different statistical measures can be created
by multiway PCA mechanism 102 and used for fault detec-
tion. For example, the statistical measures can include a
plurality of scores and/or residual error estimates. In general,
scores comprise a lower dimension representation of the
new sensor data. The magnitude of the scores represents
variation in the new sensor data that is consistent with the
training data. Thus, increasing scores indicate movement
away from the training data set, which may indicate a
precursor to or symptom of a fault. The residual error
estimates are constructed by using the lower dimension
representation to reconstruct sensor values, and comparing
the actual sensor values to the reconstructed values. The
residual error provides a measurement of variation that
shows inconsistency with the underlying set of load vectors.
Large residual error may also be a precursor or symptom of
a fault. The scores and/or residual error estimates are then
passed to the classifier 104, where they are classified to
determine if faults are manifest in the new sensor data.
Detected faults can then be passed to a diagnostic system
106 where they can be passed as appropriate to maintenance
personnel.

In one embodiment, the classifier 104 classifies the scores
by comparing the scores to historical scores generated from
historical sensor data, and comparing the residual error
estimates to the actual sensor data to determine the likeli-
hood of a fault in the turbine engine. For example, the
classifier 104 can use statistical confidence limits. In this
application the historical sensor data is used to define
confidence intervals for the scores and residual error esti-
mates. The scores and residual data estimates from new
sensor data are then compared against these confidence
intervals. This provides a theoretically sound technique for
classifying the scores and residual error estimates. Of
course, this is just one example of how the classifier 104 can
be implemented. Other classification techniques can be used,
such as analysis of the patterns generated in the residual
error.

A general description of PCA will now be given, followed
by an explanation of how multiway PCA is a variation of
PCA procedures. In general, PCA is a feature extraction
method that linearly transforms an original set of variables
into a substantially smaller set of uncorrelated variables. The
substantially smaller set of uncorrelated variables represents
the information in the original set of variables. The general
goal of the dimension reduction is to achieve a more efficient
combination of the original features.
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As one detailed example of a PCA, it can be shown that
the optimal linear solution for representing n-dimensional
vectors X in an m-dimensional space, where m<n, is to
project X onto the surface spanned by the m largest eigen-
vectors of the covariance matrix. The projection to the
principal subspace captures key directions of variance in the
data, which can be used to separate data clusters.

In a particular example, let X denote an n-dimensional
vector having zero mean. The linear feature extraction can
be written as:

Y=F'X Equation 1.

In which Y is an m-dimensional feature vector and F is an
nxm matrix built from m orthogonal n-dimensional vectors.
If the original n-dimensional feature space is linearly recon-
structed from the extracted m-dimensional feature vectors,
the approximation of the vector X can be written as:

X=FY=FFX Equation 2.

The information lost in this projection, which is the
measure of the performance of the feature extraction, can be
written as:

MSE=E(X-XP) Equation 3.

In which E is the expectation operator. Since the vectors
in F are orthogonal, it can be rewritten as:

MSE=EX"X-XTFFTX) Equation 4.

Minimizing the reconstruction error means rotating the
orthogonal vectors in F to the successive directions of the
largest variance. Therefore, PCA finds a projection onto a
subspace spanned by the m largest eigenvectors of the
covariance matrix. Geometrically, the first principal compo-
nent is the axis of maximum variance in the observations.
Projecting the observations on this axis generates a new
variable, and its variance is the maximum among all possible
choices of this axis. The second principal component is
another axis, perpendicular to the first axis. Projecting the
observations on the second axis generates another new
variable whose variance is the maximum among all possible
choices of this second axis.

It should be noted that a principal component analysis
results in one or more extracted principal components
derived from a specific sensor data set. For example, a PCA
analysis can extract five principal components from a first
sensor data set, and five principal components from a second
sensor data set. For fault detection, we seek a consistent set
of vectors that describe the behavior of multiple sets of
normal operational data.

Multiway PCA (MPCA) expands the concept of PCA to
include relationships between observations over a finite time
sequence. Thus, MPCA can be used to understand the
variations between batches of data over similar sequences,
and locate the source of that variation. For fault detection in
a turbine engine, MPCA can thus be used to analyze data
from a plurality of turbine engines over a plurality of
different operational phases. Each flight will have a repeated
sequence of operational phases, and MPCA applied to
turbine engine data compares behavior across this repeated
sequence of operational phases. To facilitate this, the input
data to the MPCA mechanism is typically formatted into a
three dimensional matrix with I batches of data, where each
batch i includes data from j sensors for k samples. Thus, a
set of batches is represented by a matrix of dimension ixjxk.
As one specific implementation, each batch i of data
includes sensor data from a plurality of turbine engines
operating over a repeated sequence of a plurality of different
operational phases.
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Because eigenvector decomposition typically requires a
two dimensional matrix, the three dimensional matrix of
batch data is typically unfolded into a two dimensional
representation. Several different methods can be used to
unfold a three dimensional matrix of sensor data. However,
to facilitate analysis of variation between batches it is
generally desirable to use a method that facilitates calcula-
tion and removal of nominal batch trajectory, where the
nominal batch trajectory is defined as the average trajectory
for each sensor in the normal operational data. Thus, each
batch of data can be unfolded in the manner ix(j*k), where
the columns can either be organized by time sample or by
variable. Thus, an entire data set for one batch can thus be
handled as one observation for PCA analysis.

To implement a multiway PCA mechanism 102 for fault
detection in a turbine engine historical data is formatted and
unfolded into a two dimensional matrices and used develop
load vectors. Flight phase information as well as time
warping based on alignment variable is used to crate con-
sistent unfolding. FEach load vector in the multiway PCA
mechanism 102 includes a plurality of elements, with each
element capturing a corresponding direction of variation in
the historical sensor data. Once the unfolding is done, the
development of load vectors is straightforward. When
unfolded, a standard two dimensional data matrix is gener-
ated. Then the covariance matrix can be calculated, and
eigenvalues and eigenvectors extracted from the covariance
matrix. The eigenvectors can then be used as the load
vectors. When developed using historical data covering
multiple operational phases, the load vectors in the multiway
PCA mechanism 102 can be used to detect likely faults in
turbine engines by taking new sensor data. The new sensor
data is formatted into a three dimensional matrix, which is
then unfolded into a two dimensional matrix representation.
The same flight phase information and alignment data used
on the training data is used in the unfolding process. The
two-dimensional representation of the new sensor data is
then projected on to the load vectors, generating a plurality
of statistical measures that can be classified by the classifier
104 to determine if a fault is manifest in the new sensor data.
For example, scores and residual error for the new sensor
data can be compared against the confidence limits gener-
ated from the training data.

As stated above, each batch of data preferably includes
sensor data from several different phases of operation in the
turbine engine. This allows the fault detection system to find
variations between different operational phases. In one
example, these phases include ground acceleration, ascent to
cruising altitude, and leveling off at cruising altitude. Of
course this is just one example. As another example, the
phases can include cruising altitude, descent and landing.
Thus, sensor data is collected over all of these different
phases and formatted for input to the multiway PCA mecha-
nism 102. This allows the multiway PCA mechanism to
monitor changes as the turbine engines go from one phase to
another, and to take into account to the correlation relation-
ships between engines and within each engine over the
whole multi-phase trajectory at once. Specifically, the load
vectors of the multiway PCA mechanism 102 represent the
relationships between elements of sensor data as a function
of time or their position in the sensor data. Stated another
way, each element of the load vector indicates how much
variance is captured by the corresponding point in the data.
Thus, the correlation relationships between data points in the
sensor data are represented. The multiway PCA mechanism
102 thus allows batches of sensor data to be examined to
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6

determine if they have a consistent correlation the historical
sensor data used to create the load vectors.

Specifically, when new sensor data is projected on the
load vectors of the multiway PCA mechanism 102 the
mechanism creates statistical measures that can be classified
for fault detection. For example, the statistical measures can
include a plurality of scores and/or residual error estimates.
The scores and/or residual error estimates are then passed to
the classifier 104, where they are classified to determine if
faults are manifest in the new sensor data.

In one embodiment, a score is generated by the multiway
PCA mechanism 102 for each batch of data and is then be
compared to a distribution of historical scores. This facili-
tates determination of how the new scores compare to the
historical data scores. Thus, the scores indicate how consis-
tent the new sensor data is with the old historical data, in
terms of distances from the historical data scores that is
indicative of inconsistent correlation behavior.

In one embodiment a score is generated for each batch of
data, and the scores are then used to generate Hotelling’s T>
statistics. Hotelling’s T?statistic is a multivariate counterpart
of Student’s-t test, and are calculated for principal compo-
nent models as a scaled summation of the first m scores.
Thus, T? is the distance of the observation within the plane
defined by the principal components. Each batch of data will
have a single T? value. The T>statistic for a new observation
measures the multivariate distance of the current observation
from the hyperplane defined by the training data set. In this
embodiment, the T? statistic for a new flight is compared to
the limits defined by the flights in the training set.

In another embodiment the multiway PCA mechanism
102 generates a plurality of residual error estimates. In
general, the residual error estimates provide a mechanism
for evaluating variations that are not explained by the load
vectors, or stated another way, for variations that do not
match the model represented by the load vectors. In one
specific implementation the residual error estimates are used
to generate a measure known as the Q statistic. The Q
statistic comprises a summation of prediction error. For
example, the Q statistic can be generated as a sum of the
squares of the distances of a single observation from the
space defined by the multiway PCA model. For multiway
PCA, this single observation is an entire batch. Specifically,
for turbine engine monitoring the single observation is a
multivariate trajectory over multiple flight phases. Each
observation will thus have a single Q statistic, with the Q
statistic being a measure of the distance of each observation
from the hyperplane defined by the principal components.
Again, using training data statistical confidence limits of the
Q statistic can be developed and used for subsequent batches
of data to compare to the distribution of historical Q statis-
tics.

In further variations, both TZ and Q statistics are classified
by the classifier 104 to determine the likelihood of fault in
the turbine engines. An abnormal condition will be indicated
by unusually high Q or T? statistics, where “unusually” can
be defined as values outside statistical confidence limits. It
is also possible to further investigate the Q and T? excur-
sions, to understand which element of the observation vector
is contributing to the excursion. Individual contributions to
both the Q and T statistics can be calculated. For example,
contributions to the Q statistic are the individual residual
error for each sensor at each time point in the batch flight
data. This provides a mechanism to identify the source of the
excursion.

As stated above, a variety of different techniques can be
used for classification to determine the likelihood of fault in
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the turbine engines. In one example, a cluster analysis of the
patterns generated in the residual error is used. In this
embodiment load vectors are used to generate residual
errors, and the residual errors from multiple events are
combined to crate clusters. A spatial clustering analysis can
then be used to determine which patterns resemble one
another. Temporal sequences of clusters are then associated
with different types of fault events, such as a signature
pattern associated with bleed band failures. For example, the
cluster or clusters are then found that are nearest to known
clusters, and a sequence of cluster labels is generated. The
sequence of cluster matches is then used to determine what
type of fault is closest.

In another embodiment, the clusters can be formed from
the combination of temporal or other ordered sequences of
statistical outputs. In this example clustering is performed
across an ordered set of the statistical outputs, where the
sequences can include multiple flights, altitudes, locations,
or other ordered groups. For example, contributions to the Q
residual and Hotelling’s T> may be used over a plurality of
sequential flights as inputs to the clustering algorithm.

In some cases, a match to a cluster may not be found. If
no cluster match is found, a check can be made to determine
if two clusters might provide a good match, such as the two
closest clusters. A goodness of fit algorithm can then be
applied to determine which might be the closest pair of
clusters. If a pair is found, the cluster can be split. If the
closest two clusters are not a good match, then a new cluster
can be created using a fitness metric that considers all the
potential faults. For more information on one example of
how a cluster analysis of the patterns generated in the
residual error can be used, see U.S. Patent Application
Publication 2005/0149297 to Guralnik and Foslien.

So implemented, the multiway PCA mechanism can be
used to detect a variety of different types of faults in a
turbine engine. Furthermore, when the mechanism detects
excursions from normal behavior, the details of the excur-
sion can then be used to identify the fault.

A detailed example focusing on detecting bleed band
failures in a turbine engine will now be discussed. In this
example, four types of sensor data are used for fault detec-
tion. The sensor data includes EGT (Exhaust Gas Tempera-
ture), N1 (Fan Speed), N2 (Compressor Speed) and FF (Fuel
Flow). The sensor data is collected for three different phases
of operation, specifically from just before takeoft, take-off to
climb and just after cruise. Thus, three different zones of
transient behavior are used along with a steady state segment
at the end of the cruise data. In this example there are 4
engines on each aircraft, and hence 16 sensor data observa-
tions are used at each time point, and the data is measured
at a sampling rate of 4 Hz. To facilitate multiway PCA
analysis, the batch length is made uniform and altitude is
used as indicator variable for batch synchronization as it is
a monotonically increasing parameter between take-off and
cruise.

Turning now to FIGS. 2-4, exemplary data representing
normal operating conditions is illustrated. Specifically, in
FIG. 2, a graph 200 illustrates scores generated from normal
turbine engines. Likewise, in FIG. 3 a graph 300 illustrates
Q statistics, and in FIG. 4 a graph 400 illustrates Hotelling’s
T? statistics from normal turbine engines. In each graph
several control limits are illustrated. As can be seen FIGS.
2-4, each of the flights are within the control limits.

Turning now to FIGS. 5-7, exemplary data representing a
faulty turbine engine is illustrated. Specifically, in FIG. 5, a
graph 500 illustrates scores generated from a faulty engine.
Likewise, in FIG. 6 a graph 600 illustrates Q statistics, and
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in FIG. 7 a graph 700 illustrates Hotelling’s T> statistics
from a faulty turbine engine. As can be seen FIGS. 5-7,
several flights are outside of the control limits and are
operating away from the defined normal operating condi-
tions.

The multiway PCA fault detection system and method can
be implemented in wide variety of platforms. Turning now
to FIG. 8, an exemplary computer system 50 is illustrated.
Computer system 50 illustrates the general features of a
computer system that can be used to implement the inven-
tion. Of course, these features are merely exemplary, and it
should be understood that the invention can be implemented
using different types of hardware that can include more or
different features. It should be noted that the computer
system can be implemented in many different environments,
such as onboard an aircraft to provide onboard diagnostics,
or on the ground to provide remote diagnostics. The exem-
plary computer system 50 includes a processor 110, an
interface 130, a storage device 190, a bus 170 and a memory
180. In accordance with the preferred embodiments of the
invention, the memory system 50 includes a multiway PCA
fault detection program.

The processor 110 performs the computation and control
functions of the system 50. The processor 110 may comprise
any type of processor, include single integrated circuits such
as a microprocessor, or may comprise any suitable number
of integrated circuit devices and/or circuit boards working in
cooperation to accomplish the functions of a processing unit.
In addition, processor 110 may comprise multiple processors
implemented on separate systems. In addition, the processor
110 may be part of an overall vehicle control, navigation,
avionics, communication or diagnostic system. During
operation, the processor 110 executes the programs con-
tained within memory 180 and as such, controls the general
operation of the computer system 50.

Memory 180 can be any type of suitable memory. This
would include the various types of dynamic random access
memory (DRAM) such as SDRAM, the various types of
static RAM (SRAM), and the various types of non-volatile
memory (PROM, EPROM, and flash). It should be under-
stood that memory 180 may be a single type of memory
component, or it may be composed of many different types
of memory components. In addition, the memory 180 and
the processor 110 may be distributed across several different
computers that collectively comprise system 50. For
example, a portion of memory 180 may reside on the vehicle
system computer, and another portion may reside on a
ground based diagnostic computer.

The bus 170 serves to transmit programs, data, status and
other information or signals between the various compo-
nents of system 100. The bus 170 can be any suitable
physical or logical means of connecting computer systems
and components. This includes, but is not limited to, direct
hard-wired connections, fiber optics, infrared and wireless
bus technologies.

The interface 130 allows communication to the system
50, and can be implemented using any suitable method and
apparatus. It can include a network interfaces to communi-
cate to other systems, terminal interfaces to communicate
with technicians, and storage interfaces to connect to storage
apparatuses such as storage device 190. Storage device 190
can be any suitable type of storage apparatus, including
direct access storage devices such as hard disk drives, flash
systems, floppy disk drives and optical disk drives. As
shown in FIG. 8, storage device 190 can comprise a disc
drive device that uses discs 195 to store data.
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In accordance with the preferred embodiments of the
invention, the computer system 50 includes the multiway
PCA fault detection program. Specifically during operation,
the multiway PCA fault detection program is stored in
memory 180 and executed by processor 110. When being
executed by the processor 110, the multiway PCA fault
detection system monitors vehicle operation parameters to
identify potential faults in the turbine engine.

It should be understood that while the present invention is
described here in the context of a fully functioning computer
system, those skilled in the art will recognize that the
mechanisms of the present invention are capable of being
distributed as a program product in a variety of forms, and
that the present invention applies equally regardless of the
particular type of signal bearing media used to carry out the
distribution. Examples of signal bearing media include:
recordable media such as flash memory, floppy disks, hard
drives, memory cards and optical disks (e.g., disk 195), and
transmission media such as digital and analog communica-
tion links, including wireless communication links.

Turning now to FIG. 9, a flow diagram of a multiway PCA
fault detection method is illustrated. The first step 902 is to
receive a batch of turbine engine sensor data from a plurality
of turbine engines, where the batch of turbine engine sensor
data includes sensor data from the plurality of turbine
engines operating over a plurality of different operational
phases. Because each batch includes sensor data from sev-
eral different operational phases, the changes from one phase
to another are represented in the data. Additionally, because
the batch of sensor data includes data from a plurality of
engines the correlation of relationships between engines is
represented in the data. The next step 904 is to project the
batch of turbine engine sensor data onto a plurality of
multiway principal component analysis (MPCA) load vec-
tors. This generates a plurality of statistical measures. A
variety of different types of statistical measures can be
created using these techniques, including Hotelling’s T>
statistics and residual error estimates. The next step 906 is to
classify the plurality of statistical measures to determine if
a fault occurred in the plurality of turbine engines during the
plurality of different operational phases. In one embodiment,
the step of classifying is performed using a clustering
analysis. The next step 908 is to generate an output indica-
tive of the determined fault. For example, the output can be
generated and passed to an onboard diagnostics system, or
to a ground based system providing remote diagnostics.

The present invention thus provides an improved fault
detection system and method. The fault detection system
provides the ability to detect faults that are manifest over a
plurality of different operational phases. For example, the
fault detection system provides the ability to detect faults
that are manifest over transitions from takeoff to cruise to
landing. The fault detection system and method use multi-
way principal component analysis (PCA) to detect fault
from turbine engine sensor data, where the turbine engine
sensor covers multiple different operational phases in the
turbine engine. Specifically, mulitway PCA provides a
mechanism for modeling the many interdependent variables
in a turbine engine, and is used to extract information from
the relationships between these variables and use that infor-
mation for fault detection.

The embodiments and examples set forth herein were
presented in order to best explain the present invention and
its particular application and to thereby enable those skilled
in the art to make and use the invention. However, those
skilled in the art will recognize that the foregoing descrip-
tion and examples have been presented for the purposes of
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illustration and example only. The description as set forth is
not intended to be exhaustive or to limit the invention to the
precise form disclosed. Many modifications and variations
are possible in light of the above teaching without departing
from the spirit of the forthcoming claims.

The invention claimed is:

1. A fault detection system for detecting faults in a
plurality of turbine engines, the fault detection system
comprising:

a multiway principal component analysis (MPCA)

mechanism, the MPCA mechanism adapted to receive
a batch of turbine sensor data from the plurality of
turbine engines, the batch of turbine sensor data includ-
ing sensor data from the plurality of turbine engines
operating over a plurality of different operational
phases, the MPCA mechanism including a plurality of
load vectors, each of the plurality of load vectors
representing a principal component in the turbine sen-
sor data, the MPCA mechanism further adapted to
project the batch of turbine sensor data onto the plu-
rality of load vectors to generate a plurality of statistical
measures; and

a classifier, the classifier adapted to receive the plurality

of statistical measures and analyze the plurality of
statistical measures to determine if a fault occurred in
the plurality of turbine engines during the plurality of
different operational phases, the classifier further gen-
erating an output indicating the fault responsive to the
classifier determining that the fault occurred in the
plurality of turbine engines during the plurality of
different operational phases.

2. The system of claim 1 wherein the plurality of statis-
tical measures comprise a plurality of scores.

3. The system of claim 1 wherein the plurality of statis-
tical measures comprise a plurality of residual error esti-
mates.

4. The system of claim 1 wherein the classifier is adapted
to analyze the plurality of statistical measures by determin-
ing a distance between the plurality of statistical measures
and statistical measures obtained from historical sensor data.

5. The system of claim 1 wherein the classifier is adapted
to analyze the plurality of statistical measures by determin-
ing if the plurality of statistical measures lie within statistical
confidence intervals obtained from historical sensor data.

6. The system of claim 1 wherein the classifier is adapted
to analyze the plurality of statistical measures by determin-
ing clusters in which the plurality of statistical measures
reside.

7. The system of claim 6 wherein the classifier is adapted
to determine a temporal sequence of the clusters.

8. The system of claim 1 wherein the classifier is adapted
to analyze the plurality of statistical measures by generating
Q statistics from the plurality of statistical measures and
determining if the Q statistics lie within statistical confi-
dence intervals obtained from historical sensor data.

9. The system of claim 1 wherein the classifier is adapted
to analyze the plurality of statistical measures by generating
T? statistics from the plurality of statistical measures and
determining if the T? statistics lie within statistical confi-
dence intervals obtained from historical sensor data.

10. The system of claim 1 wherein the plurality of
different operational phases includes ground acceleration,
ascent to cruising altitude, and leveling off at cruising
altitude.

11. The system of claim 1 wherein the batch of turbine
sensor data is formatted into a three-dimensional matrix and
wherein the MPCA mechanism is adapted to unfold the
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three-dimensional matrix into a two dimensional represen-
tation to facilitate projecting of the batch of turbine sensor
data onto the plurality of load vectors.

12. A method of detecting faults in a turbine engine, the
method comprising the steps of:

receiving a batch of turbine engine sensor data from a

plurality of turbine engines, the batch of turbine engine
sensor data including sensor data from the plurality of
turbine engines operating over a plurality of different
operational phases;

projecting the batch of turbine engine sensor data onto a

plurality of multiway principal component analysis
(MPCA) load vectors to generate a plurality of statis-
tical measures;

classifying the plurality of statistical measures to deter-

mine if a fault occurred in the plurality of turbine
engines during the plurality of different operational
phases; and

generating an output indicating the fault responsive to

determining the fault occurred in the plurality of tur-
bine engines during the plurality of different opera-
tional phases.

13. The method of claim 12 wherein the plurality of
statistical measures comprise a plurality of scores.

14. The method of claim 12 wherein the plurality of
statistical measures comprise a plurality of residual error
estimates.

15. The method of claim 12 wherein the step of classi-
fying comprises determining a distance between the plural-
ity of statistical measures and statistical measures obtained
from historical sensor data.

16. The method of claim 12 wherein the step of classi-
fying comprises determining if the plurality of statistical
measures lie within statistical confidence intervals obtained
from historical sensor data.

17. The method of claim 12 wherein the step of classi-
fying comprises determining if the plurality of statistical
measures create a cluster.

18. The method of claim 12 wherein the step of classi-
fying comprises generating Q statistics from the plurality of
statistical measures and determining if the Q statistics lie
within statistical confidence intervals obtained from histori-
cal sensor data.

19. The method of claim 12 wherein the step of classi-
fying comprises generating T2 statistics from the plurality of
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statistical measures and determining if the T? statistics lie
within statistical confidence intervals obtained from histori-
cal sensor data.

20. The method of claim 12 wherein the plurality of
different operational phases includes ground acceleration,
ascent to cruising altitude, and leveling off at cruising
altitude.

21. The method of claim 12 further comprising the step of
formatting the batch of turbine engine sensor data into a
three-dimensional matrix and unfolding the three-dimen-
sional matrix into a two dimensional representation prior to
the step of projecting the batch of turbine engine sensor data
onto a plurality of multiway principal component analysis
(MPCA) load vectors to generate a plurality of statistical
measures.

22. A program product comprising:

a) a fault detection program for detecting faults in a
plurality of turbine engines, the fault detection program
including:

a multiway principal component analysis (MPCA)
mechanism, the MPCA mechanism adapted to
receive a batch of turbine sensor data from the
plurality of turbine engines, the batch of turbine
sensor data including sensor data from the plurality
of turbine engines operating over a plurality of
different operational phases, the MPCA mechanism
including a plurality of load vectors, each of the
plurality of load vectors representing a principal
component in the turbine sensor data, the MPCA
mechanism adapted to project the batch of turbine
sensor data onto the plurality of load vectors to
generate a plurality of statistical measures; and

a classifier, the classifier adapted to receive the plurality
of statistical measures and analyze the plurality of
statistical measures to determine if a fault occurred
in the plurality of turbine engines during the plurality
of different operational phases, the classifier further
generating an output indicating the fault responsive
to the classifier determining that the fault occurred in
the plurality of turbine engines during the plurality of
different operational phases; and

b) computer-readable signal-bearing recordable media
bearing said fault detection program.
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