（54）发明名称
一种基于HCE的NFC支付系统及移动终端

（57）摘要
本发明提供了一种基于HCE的NFC支付系统及移动终端，所述NFC支付系统包括：NFC天线，用于与近场的 NFC读卡设备进行交易数据的传输；CLF芯片，与NFC天线和移动终端内的中央处理器相连，用于对NFC天线传输的交易数据进行处理；HCE应用程序模块，用于根据CLF芯片处理后的交易数据进行相应的交易操作；SIM卡，与移动终端内的SIM卡贴合并与HCE应用程序模块相连，SIM卡内集成有安全芯片，用于对交易数据和交易操作进行加密、安全存储和认证。本发明可以避开SWP的限制，无需移动终端支持SWP单线协议，也无需对移动终端进行硬件或软件层面的改动，即可以实现CLF芯片和安全芯片的连接通信。
1. 一种基于 HCE 的 NFC 支付系统，应用于配置有 SIM 卡的移动终端中，其特征在于，所述基于 HCE 的 NFC 支付系统包括：
 NFC 天线，用于与近场的 NFC 读卡设备进行交易数据的传输；
 CLF 芯片，与所述 NFC 天线和移动终端内的中央处理器相连，用于对所述 NFC 天线传输的交易数据进行处理；
 HCE 应用程序模块，与所述 CLF 芯片相连，用于根据 CLF 芯片处理后的交易数据进行相应的交易操作；
 贴膜卡，与所述移动终端内的 SIM 卡粘合并与所述 HCE 应用程序模块相连，所述贴膜卡内集成有安全芯片，用于对所述交易数据和所述交易操作进行加密、安全存储和认证。

2. 根据权利要求 1 所述的一种基于 HCE 的 NFC 支付系统，其特征在于，所述 CLF 芯片和所述 HCE 应用程序模块还与所述移动终端内的操作系统相连，所述 CLF 芯片将处理后的交易数据发送至所述移动终端内的操作系统，所述移动终端内的操作系统再将接收到的交易数据转发至所述 HCE 应用程序模块。

3. 根据权利要求 2 所述的一种基于 HCE 的 NFC 支付系统，其特征在于，所述 HCE 应用程序模块在收到 CLF 芯片处理后的交易数据时，向所述贴膜卡发送指令，以使所述贴膜卡内的安全芯片对所述交易数据和所述交易操作进行加密、安全存储和认证。

4. 根据权利要求 1 或 2 所述的一种基于 HCE 的 NFC 支付系统，其特征在于，所述 HCE 应用程序模块预先在所述移动终端内的操作系统中注册登记。

5. 根据权利要求 1 所述的一种基于 HCE 的 NFC 支付系统，其特征在于，所述安全芯片内配置有用于金融交易的若干应用，同时所述安全芯片存储有金融支付账户信息和对应的相关证书。

6. 根据权利要求 1 所述的一种基于 HCE 的 NFC 支付系统，其特征在于，所述 NFC 天线与近场的 NFC 读卡设备传输的交易数据以射频信号形式传输。

7. 根据权利要求 6 所述的一种基于 HCE 的 NFC 支付系统，其特征在于，所述射频信号的频率为 13.56MHz。

8. 一种基于 HCE 的 NFC 支付移动终端，其特征在于，所述移动终端内配置有如权利要求 1 至权利要求 7 任一权利要求所述的基于 HCE 的 NFC 支付系统。

9. 根据权利要求 8 所述的基于 HCE 的 NFC 支付移动终端，其特征在于，所述移动终端为具备 NFC 功能和 HCE 功能的移动终端。

10. 根据权利要求 8 所述的基于 HCE 的 NFC 支付移动终端，其特征在于，所述移动终端为智能手机、PAD 或掌上电脑。
一种基于 HCE 的 NFC 支付系统及移动终端

技术领域
[0001] 本发明涉及移动支付技术领域，特别是涉及 NFC 移动支付系统，具体为一种基于 HCE 的 NFC 支付系统及移动终端。

背景技术
[0002] 手机近场支付是指消费者在购买商品或服务时，通过手机向商家进行支付，支付的处理在现场进行，使用手机射频 (RFID)、红外、蓝牙等通道，实现与自动售货机以及 POS 机的本地通讯，完成支付。近场通信 (Near Field Communication, NFC) 是一种短距离高频的无线电技术，允许设备之间进行非接触式点对点数据传输交换数据，由非接触式射频识别 (RFID) 演变而来。NFC 工作频率为 13.56MHz，有效范围为 20cm 以内，其传输速度有 106Kbit/秒、212Kbit/秒或者 424Kbit/秒三种。NFC 有 3 种工作模式，读卡器模式、点对点模式、卡模拟模式。在读卡器模式下，NFC 设备产生射频场从外部采取相同标准的 NFC 标签读写数据。在点对点模式下，NFC 可以与其他的 NFC 设备通信，进行点对点的数据传输。卡模拟模式下，读卡器是主动设备，产生射频场，NFC 设备为被动设备，模拟一张符合 NFC 标准的非接触式卡片与读卡器进行交互，其中本文所讨论的 HCE 技术主要是用于卡模拟的模式。
[0003] 传统的 NFC 终端主要包括非接触性前端 CLF 芯片（也叫 NFC 控制器）、天线 (Antenna)、安全模块 (Secure Element, SE) 三个主要部件。在 CLF 中提供了识读接口、P2P 接口、卡模拟接口，分别对应上面所说的三种工作模式。
[0004] 目前主流的手机近场支付方案中，处理器、天线线圈、CLF 模块 (CLF 芯片) 一般都集成在手机内部，而根据 SE 模块 (安全芯片) 的实现方式的差异，可分为 SWP-SIM 方案、SWP-SIM 方案和全手机方案。其中 SWP-SIM 方案，即安全芯片集成在 SD 卡上（特制的 SD 卡），SE 和 CLF 模块之间通过单线协议通讯；SWP-SIM 方案，即安全芯片集成在 SIM 卡上（特制的 SIM 卡），SE 和 CLF 模块之间也是通过单线协议通讯；全手机方案，即安全芯片集成在手机内部，出厂时预置相关应用，或者通过 OTA 下载相关应用。
[0005] 可以看到，采用传统的实现模式，除了全手机方案外，SWP-SIM 和 SWP-SD 都需要手机支持 SWP 单线协议，以实现 CLF 模块和 SE 模块之间的连接，这需要手机在硬件、软件层面给予支持。

发明内容
[0006] 鉴于以上所述现有技术的缺点，本发明的目的在于提供一种基于 HCE 的 NFC 支付系统及移动终端，用于解决现有技术中手机近场支付时手机需要支持单线协议或需要在硬件、软件层面进行改动的问题。
[0007] 为实现上述目的及其他相关目的，本发明提供一种基于 HCE 的 NFC 支付系统，应用于配置有 SIM 卡的移动终端中，所述基于 HCE 的 NFC 支付系统包括 NFC 天线，用于与近场的 NFC 读卡设备进行交易数据的传输；CLF 芯片，与所述 NFC 天线和移动终端内的中央处理
器相连，用于对所述 NFC 天线传输的交易数据进行处理；HCE 应用程序模块，与所述 CLF 芯片相连，用于根据 CLF 芯片处理后的交易数据进行相应的交易操作；贴膜卡，与所述移动终端内的 SIM 卡贴合并与所述 HCE 应用程序模块相连，所述贴膜卡内集成有安全芯片，用于对所述交易数据和所述交易操作进行加密、安全存储和认证。

[0008] 进一步地，所述 CLF 芯片和所述 HCE 应用程序模块还与所述移动终端内的操作系统相连，所述 CLF 芯片将处理后的交易数据发送至所述移动终端内的操作系统，所述移动终端内的操作系统再将接收到的交易数据转发至所述 HCE 应用程序模块。

[0009] 进一步地，所述 HCE 应用程序模块在收到 CLF 芯片处理后的交易数据时，向所述贴膜卡发送指令，以使所述贴膜卡内的安全芯片对所述交易数据和所述交易操作进行加密、安全存储和认证。

[0010] 进一步地，所述 HCE 应用程序模块预先在所述移动终端内的操作系统中注册登记。

[0011] 进一步地，所述安全芯片内配置有用于金融交易的若干应用，同时所述安全芯片存储有金融支付账户信息和对应的相关证书。

[0012] 进一步地，所述 NFC 天线与近场的 NFC 读卡设备传输的交易数据以射频信号形式传输。

[0013] 进一步地，所述射频信号的频率为 13.56MHz。

[0014] 为实现上述目的，本发明还提供一种基于 HCE 的 NFC 支付移动终端，所述移动终端内配置有如上所述的基于 HCE 的 NFC 支付系统。

[0015] 进一步地，所述移动终端为具备 NFC 功能和 HCE 功能的移动终端。

[0016] 进一步地，所述移动终端为智能手机、PAD 或掌上电脑。

[0017] 如上所述，本发明的一种基于 HCE 的 NFC 支付系统及移动终端，具有以下有益效果：

[0018] 本发明通过将安全芯片集成在贴膜卡内对交易数据和交易操作进行加密、安全存储和认证，并通过 HCE 应用程序模块进行相应的交易操作，可以避开 SWP 的限制，无需移动终端支持 SWP 单线协议，也无需对移动终端进行硬件或软件层面的改动，即可实现 CLF 芯片和安全芯片 (SE 模块) 的连接通信。本发明经济实用，对一般的移动终端具有普遍适应性。

附图说明

[0019] 图 1 显示为本发明的一种基于 HCE 的 NFC 支付系统及移动终端的整体结构示意图。

[0020] 元件标号说明

[0021] 1 基于 HCE 的 NFC 支付系统
[0022] 11 NFC 天线
[0023] 12 CLF 芯片
[0024] 13 HCE 应用程序模块
[0025] 14 贴膜卡
[0026] 2 移动终端
具体实施方式
[0029] 以下由特定的具体实施例说明本发明的实施方式，熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
[0030] 请参阅图1，图1所示为本发明中所附图示的结构、比例、大小等，均仅用以配合说明书所揭示的内容，以供熟悉此技术的人士了解与阅读，并非用以限定本发明可实施的限定条件，故不具技术上的实质意义，任何结构的修飾、比例关系的改变或大小的调整，在不影响本发明所产生之功效及所达成的目的下，均应落在本发明所揭示的技术内容得能涵盖的范围内。同时，本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语，亦仅为便于叙述的明了，而非用以限定本发明可实施的范围，其相对关系的改变或调整，在无实质变更技术内容下，当然亦视为本发明可实施的范畴。
[0031] 本发明的目的在于提供一种基于 HCE 的 NFC 支付系统及移动终端，用于解决现有技术中手机近场支付时手机需支持单线协议或需在硬件、软件层面进行改动的问题。以下将详细阐述本发明的一种基于 HCE 的 NFC 支付系统及移动终端的原理及实施方式，使本领域技术人员不需要创造性劳动即可理解本发明的一种基于 HCE 的 NFC 支付系统及移动终端。
[0032] 如图1所示，本实施例提供一种基于 HCE 的 NFC 支付系统1和一种基于 HCE 的 NFC 支付移动终端2。支付方式采用 HCE-贴膜卡模式，则可以避开 SWP 的限制，只要移动终端2支持 NFC 和 HCE 技术，即可实现移动终端2近场支付功能。本实施例提供的基于 HCE 的 NFC 支付移动终端2内配置有所述基于 HCE 的 NFC 支付系统1。在此，所述移动终端2包括一种能够按照事先设定或存储的指令，自动进行数值计算和信息处理，而且具有多媒体影音功能的设备，例如但不限于智能手机、PAD 或掌上电脑等。
[0033] 以下对所述基于 HCE 的 NFC 支付系统1进行详细说明。
[0034] 如图1所示，本实施例提供一种基于 HCE 的 NFC 支付系统1，应用于配置有SIM卡22的移动终端2中，所述基于 HCE 的 NFC 支付系统1包括：NFC 天线11、CLF 芯片12、HCE 应用程序模块13以及贴膜卡14。
[0035] HCE (host-based card emulation)，即基于主机的卡模拟，在一部配备 NFC 功能的手机实现卡模拟。新的 NFC 特性 HCE (Host Card Emulation)，它为基于普通 UIM 卡和通用设备的“刷手机”应用，提供了一种可能的解决方案。由于 HCE 应用技术通过智能手机上的应用 (APP) 来实现实卡模拟的功能，因此天然存在一个多个应用 (APP) 的平台，可以为持卡人提供更多的配套服务功能，也为发行方带来更多业务拓展的可能性。都只需要通过简单的 APP 更新，即可完成应用发布和应用推送，十分方便。HCE 技术只是实现了将 NFC 卡数据送至操作系统的 HCE 服务或者将应用数据返回给 NFC 卡读卡器，而对于数据的处理和敏感信息的存储则没有具体实现细，所以说到底 HCE 技术是模拟 NFC 和 SE 通信的协议和实现。但是 HCE 并没有实现 SE，只是用 NFC 与 SE 通信的方式告诉 NFC 卡读卡器后面有 SE 的支持，从而以虚拟 SE 的方式完成 NFC 业务的安全保证。对于本地软件模拟 SE 的方案，用户敏感信息及交易数据存放于本地。交易过程和数据存储由操作系统管理，这提供了一种基本
的安全保障机制（如操作系统可以将每个程序运行在一个沙箱里，这样可以防止一个应用
程序访问其他应用的数据。
[0036] 配置本实施例中的基于 HCE 的，NFC 支付系统 1 的移动终端 2 应该配置有 SIM 卡
22，而且所述移动终端 2 为具备 NFC 功能和 HCE 功能的移动终端。
[0037] NFC 天线 11 用于与近场的 NFC 读卡设备进行交易数据的传输。具体地，在本实施
例中，所述 NFC 天线 11 与近场的 NFC 读卡设备传输的交易数据以射频信号形式传输，其中，
所述射频信号的分为 13.56MHz。
[0038] CLF 芯片 12 即非接触性前端也称为 NFC 控制器，其功能包括射频信号的调制解调，
非接触通信的协议处理。非接触前端一方面连接射频天线，实现 13.56MHz 信号的发送与接
收，另一方面与安全芯片通信。
[0039] CLF 芯片 12 与所述 NFC 天线 11 和移动终端 2 内的中央处理器 21 相连，用于对所
述 NFC 天线 11 传输的交易数据进行处理。所述中央处理器 21 实现移动终端 2 的基本功能，
如数字通信、电源、数据输入/输出等，中央处理器 21 分别连接 CLF 芯片 12 和贴膜卡 14(SE
模块)，并分别与之通信。CLF 芯片 12 与贴膜卡 14 的（即 SE 模块）连接，将射频信号传输转
换为数字信号后传送给贴膜卡 14 内的安全芯片（SE）处理，实现相应的业务功能。
[0040] HCE 技术是通过系统服务实现的（HCE 服务）。使用服务的一大优势是它可以一直
在后台运行而不需要有用户界面。这个特点使得 HCE 技术非常适合像会员卡、交通卡、门
禁卡这类的交易，当用户使用时无需打开程序，只需要将手机放到 NFC 读卡器的识别范围
内，交易就会在后台进行。当然如果有必要的话，用户也可以打开 UI 界面。这时的手机和
普通的智能卡片已经没有区别了。
[0041] HCE 应用程序模块 13 与所述 CLF 芯片 12 相连，用于根据 CLF 芯片 12 处理后的交
易数据进行相应的交易操作。HCE 应用程序模块 13 即为可定制的 APP 应用。在本实施例
中，所述 CLF 芯片 12 和所述 HCE 应用程序模块 13 还与所述移动终端 2 内的操作系统相连，
所述 CLF 芯片 12 将处理后的交易数据发送至所述移动终端 2 内的操作系统，所述移动终端
2 内的操作系统再将接收到的交易数据转发至所述 HCE 应用程序模块 13。
[0042] 更进一步地，所述 HCE 应用程序模块 13 在收到 CLF 芯片 12 处理后的交易数据时，
向所述贴膜卡 14 发送指令，以使所述贴膜卡 14 内的安全芯片对所述交易数据和所述交易
操作进行加密、安全存储和认证。
[0043] 其中，所述 HCE 应用程序模块 13 预先在所述移动终端 2 内的操作系统中注册登
记。
[0044] 贴膜卡 14 与所述移动终端 2 内的 SIM 卡 22 贴合并与所述 HCE 应用程序模块 13
相连，所述贴膜卡 14 内集成有安全芯片，用于对所述交易数据和所述交易操作进行加密、
安全存储和认证。也就是说，所述安全芯片主要负责交易关键数据的安全存储和运算功能，
例如存储金融支付账户信息，对交易过程的报文进行加解密处理。
[0045] 在本实施例中，所述安全芯片内配置有用于金融交易的若干应用，同时所述安全
芯片存储有金融支付账户信息和对应的相关证书。
[0046] 在 HCE- 贴膜卡 14 模式下，NFC 芯片接收到的数据由 CLF 模块转换后转发至操作
系统，并由操作系统转发至方付通开发的特定应用 App（预先在操作系统中注册登记）。
[0047] 具体地，安全芯片即 SE 模块集成在贴膜卡 14 中，安全芯片内写入了相关应用（比
如银联借贷记应用、银联电子钱包应用等，并存储了金融支付账户信息和相关证书，可实现和 NFC 读卡设备（NFC Reader），例如银联 POS 机，进行交互认证，并对交易过程的报文进行加密处理。SE（Secure Element）模块提供对敏感信息的安全存储和交易事务提供一个安全的执行环境。NFC 芯片作为非接触通讯前端，将从外部读写器接收到的命令转发到 SE，然后由 SE 处理，并通过 CLF 芯片 12 回复。

[0048] 所述 HCE 应用程序模块 13 接收到数据后，向贴膜卡 14 内的安全芯片（SE 模块）发送相关指令，调用贴膜卡 14 的安全芯片（SE 模块）完成近场支付相关的业务处理。

[0049] 综上所述，本发明通过将安全芯片集成在贴膜卡内对交易数据和交易操作进行加密、安全存储和认证，并通过 HCE 应用程序模块进行相应的交易操作，可以避开 SWP 的限制，无需移动终端支持 SWP 单线协议，也无需对移动终端进行硬件或软件层面的改动，较可以实现 CLF 芯片和安全芯片（SE 模块）的连接通信。本发明经济实用，对一般的移动终端具有普遍适用性。所以，本发明有效克服了现有技术中的种种缺点而具有高度产业利用价值。

[0050] 上述实施例仅例示性说明本发明的原理及其功效，而非用于限制本发明。任何熟悉此技术的该人士皆可在不违背本发明的精神及范畴下，对上述实施例进行修饰或改变。因此，举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变，仍应由本发明的权利要求所涵盖。
基于HCE的NFC支付系统

图 1