(12) STANDARD PATENT (11) Application No. AU 2005223960 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

Title
High data rate interface apparatus and method

International Patent Classification(s)

HO4L 12/28 (2006.01) HO4L 29/06 (2006.01)
HO4L 12/56 (2006.01) HO04M 1/725 (2006.01)
Application No: 2005223960 (22) Date of Filing: 2005.03.17

WIPO No: WO05/091593

Priority Data

Number (32) Date (33) Country
60/556,345 2004.03.24 us
60/554,309 2004.03.17 us
Publication Date: 2005.09.29

Accepted Journal Date: 2009.04.09

Applicant(s)
Qualcomm Incorporated

Inventor(s)
Anderson, Jon James;Steele, Brian;Wiley, George A.;Shekhar, Shashank

Agent / Attorney
Madderns, Level 1 64 Hindmarsh Sq, Adelaide, SA, 5000

Related Art
WO 2003/023587 A2 (QUALCOMM, INCORPORATED) 20 March 2003

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

29 September 2005 (29.09.2005) PCT WO 2005/091593 Al
(51) International Patent Classification’: HO04L 29/06, 80301 (US). STEELE, Brian [US/US]; 1074 Iliad Way,
12/28, 12/56 Lafayette, Colorado 80026 (US). WILEY, George A.
[US/US]; 5740 Brittany Forrest Lane, San Diego, Califor-
(21) International Application Number: nia 92130 (US). SHEKHAR, Shashank [IN/US]; 1597
PCT/US2005/008832 Holeman Drive, Erie, Indiana 80516 (US).
(22) International Filing Date: 17 March 2005 (17.03.2005) (74) Agents: WADSWORTH, Philip R. et al.; 5775 More-
house Drive, San Dicgo, California 92121 (US).

(25) Filing Language: English (81) Designated States (unless otherwise indicated, for every
. Lo . kind of national protection available): AE, AG, Al., AM,
(26) Publication Language: English AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
‘ L CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
(30) Priority Data: , , GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
AT MO0 (8 G LR S 0
A = S . MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
‘ PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ,
(71) Applicant (for all designated States except US): QUAL- TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,

COMM Incorporated [US/US]; 5775 Morehouse Drive, ZM, ZW.

San Diego, California 92121 (US).

(84) Designated States (unless otherwise indicated, for every
(72) Inventors; and kind of regional protection available): ARIPO (BW, GH,

(75)

Inventors/Applicants (for US only): ANDERSON, Jon
James [US/US]; 7436 Augusta Drive, Boulder, Colorado

GM, KL, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next puge]

(54) Title: HIGH DATA RATT INTERI'ACE APPARATUS AND METIIOD

206
202 N 204
- "\ FORWARD DIRECTION /7208 -
HOST | 210 CLIENT
REVERSE DIRECTION
PORTABLE / SMALL
| COMPUTER | SOREEN
WIRELESS PROJECTION
TELEPHONE - DISPLAY
T T T MICRO-
PDA DISPLAY
. .
| WIRELESS SURROUND
MODEM SOUND
APPLIANCE DESK/CAR KIT
DVD/CD DOCKING
STATION

(57) Abstract: A data interface for transferring digital data between a host and a client over a communication path using packet
structures linked together to form a communication protocol for communicating a pre-selected set of digital control and presentation
data. The signal protocol is used by link controllers configured to generate, transmit, and receive packets forming the communi-
& cations protocol, and to form digital data into one or more types of data packets, with at least one residing in the host device and
being coupled to the client through the communications path. The interface provides a cost-effective, low power, bi-directional,
high-speed data transfer mechanism over a short-range "serial” type data link, which lends itself to implementation with miniature
connectors and thin flexible cables which are especially useful in connecting display elements such as wearable micro-displays to
portable computers and wireless communication devices.

05/091593 A1 | I 01100 0 O 0

WO 2005/091593 A1l

Buropean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, 1,
IR, GB, GR,HU, IL, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI,CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH. CN, CO, CR, CU, C7, DE, DK, DM, D7, EC, EFE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP. KE, KG, KP KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, S},
TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA,
ZM, ZW, ARIPO patent (BW, GII, GM, KE, LS, MW, MZ,
NA, SD, SL, §Z, TZ, UG, ZM, ZW), Euvrasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ], TM), European patent (AT,

BE, BG, CH, CY, CZ, DE, DK, EE, ES, Fl, FR, GB. GR,
HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, Si, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG)

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

[0001]

[0002]

[0003]

WO 2005/091593 PCT/US2005/008832

HIGH DATA RATE INTERFACE APPARATUS AND METHOD

Claim of Priority under 35 U.S.C. §119

The present Application for Patent claims priority to Provisional Application
No. 60/554,309 entitled “Switchable Threshold Differential Interface” filed March 17,
2004, and No. 60/556,345 entitled “Switchable Threshold Differential Interface” filed
March 24, 2004, both applications of which are assigned to the assignee hereof and

hereby expressly incorporated by reference herein.

BACKGROUND

Field

Embodiments of the invention in this disclosure relate to a digital signal
protocol, process, and apparatus including integrated circuits and components for
communicating or transferring signals between a host device and a client device at high
data rates. More specifically, the disclosure relates to a technique for transferring
multimedia and other types of digital signals from a host or controller device to a client
device for presentation or display to an end user using a low power high data rate

transfer mechanism having internal and external device applications.

Background

Computers, electronic game related products, and various video technologies
(for example Digital Versatile Disks (DVD's) and High Definition VCRs) have
advanced significantly over the last few years to provide for presentation of increasingly
higher resolution still, video, video-on-demand, and graphics images, even when
including some types of text, to end users of such equipment. These advances in turn
mandated the use of higher resolution electronic viewing devices such as high definition
video monitors, High Definition Television (HDTV) monitors, or specialized image
projection elements. Combining such visual images with high-definition or -quality
audio data, such as when using Compact Disc (CD) type sound reproduction, DVDs,
surround-sound, and other devices also having associated audio signal outputs, is used
to create a more realistic, content rich, or true multimedia experience for an end user. In

addition, highly mobile, high quality sound systems and music transport mechanisms,

[0004]

[0005]

[0006]

WO 2005/091593 PCT/US2005/008832
2

such as MP3 players, have been developed for audio only presentations to end users.
This has resulted in increased expectations for typical users of commercial electronics
devices, from computers to televisions and even telephones, now being accustomed to
and expecting high or premium quality output.

In a typical video presentation scenario, involving an electronics product, video
data is typically transferred using current techniques at a rate that could be best termed
as slow or medium, being on the order of one to tens of kilobits per second. This data is
then either buffered or stored in transient or longer-term memory devices, for delayed
(later) play out on a desired viewing device. For example, images may be transferred
“across” or using the Intemet using a program resident on a computer having a modem
or other type of Internet connection device, to receive or transmit data useful in digitally
representing an image. A similar transfer can take place using wireless devices such as
portable computers equipped with wireless modems, or wireless Personal Data
Assistants (PDAs), or wircless telephones.

Once received, the data is stored locally in memory elements, circuits, or
devices, such as Random Access Memory (RAM) or flash memory, including internal
or external storage devices such as small size hard drives, for playback. Depending on
the amount of data and the image resolution, the playback might begin relatively
quickly, or be presented with longer-term delay. That is, in some instances, image
presentation allows for a certain degree of real time playback for very small or low
resolution images not requiring much data, or using some type of buffering, so that after
a small delay, some material is presented while more material is being transferred.
Provided there are no interruptions in the transfer link, or interference from other
systems or users relative to the transfer channel being used, once the presentation begins
the transfer is reasonably transparent to the end user of the viewing device. Naturally,
where multiple users share a single communication path, such as a wired Internet
connection, transfers can be interrupted or slower than desired.

The data used to create either still images or motion video are often compressed
using one of several well known techniques such as those specified by the Joint
Photographic Experts Group (JPEG), the Motion Picture Experts Group (MPEG), and
other well known standards organizations or companies in the media, computer, and

communications industries to speed the transfer of data over a communication link.

[0007]

[0008]

[0009]

WO 2005/091593 PCT/US2005/008832
3

This allows transferring images or data faster by using a smaller number of bits to
transfer a given amount of information.

Once the data is transferred to a “local” device such as a computer having a
storage mechanism such as memory, or magnetic or optical storage elements, or to other
recipient devices, the resulting information is un-compressed (or played using special
decoding players), and decoded if needed, and prepared for appropriate presentation
based on the corresponding available presentation resolution and control elements. For
example, a typical computer video resolution in terms of a screen resolution of X by Y
pixels typically ranges from as low as 480x640 pixels, through 600x800 to 1024x1024,
although a variety of other resolutions are generally possible, either as desired or
needed.

Tmage presentation is also affected by the image content and the ability of given
video controllers to manipulate the image in terms of certain predefined color levels or
color depth (bits per pixel used to generate colors) and intensities, and any additional
overhead bits being employed. For example, a typical computer presentation would
anticipate anywhere from around 8 to 32, or more, bits per pixel to represent various
colors (shades and hues), although other values are encountered.

From the above values, one can see that a given screen image is going to require
the transfer of anywhere from 2.45 Megabits (Mb) to around 33.55 Mb of data over the
range from the lowest to highest typical resolutions and depth, respectively. When
viewing video or motion type images at a rate of 30 frames per second, the amount of
data required is around 73.7 to 1,006 Megabits of data per second (Mbps), or around
9.21 to 125.75 Megabytes per second (MBps). In addition, one may desire to present
audio data in conjunction with images, such as for a multimedia presentation, or as a
separate high resolution audio presentation, such as CD quality music. Additional
signals dealing with interactive commands, controls, or signals may also be employed.
Each of these options adding even more data to be transferred. Furthermore, newer
transmission techniques involving HDTV and movie recordings may add even more
data and control information. In any case, when one desires to transfer high quality or
high resolution image data and high quality audio information or data signals to an end
user to create a content rich experience, a high data transfer rate link is required between
presentation elements and the source or host device that is configured to provide such

types of data.

[0010]

[0011]

[0012]

[0013]

WO 2005/091593 PCT/US2005/008832

4

Data ratcs of around 115 Kilobytes (KBps) or 920 Kilobits per second (Kbps)
can be routinely handled by some modern serial interfaces. Other interfaces such as
USB serial interfaces can accommodate data transfers at rates as high as 12 MBps, and
specialized high speed transfers such as those configured using the Institute of Electrical
and Electronics Engineers (IEEE) 1394 standard, can occur at rates on the order of 100
to 400 MBps. Unfortunately, these rates fall short of the desired high data rates
discussed above which are contemplated for use with future wireless data devices and
other services for providing high resolution, content rich, output signals for driving
portable video displays or audio devices. This includes computers for business and
other presentations, gaming devices, and so forth. In addition, these interfaces require
the use of a significant amount of host or system and client software to operate. Their
software protocol stacks also create an undesirably large amount of overhead, especially
where mobile wireless devices or telephone applications are contemplated. Such
devices have severe memory and power consumption limitations, as well as already
taxed computational capacity. Furthermore, some of these interfaces utilize bulky
cables which are too heavy and unsatisfactory for highly aesthetic oriented mobile
applications, complex connectors which add cost, or simply consume too much power.

There are other known interfaces such as the Analog Video Graphics Adapter
(AVGA), Digital Video Interactive (DVT) or Gigabit Video Interface (GVIF) interfaces.
The first two of these are parallel type interfaces which process data at higher transfer
rates, but also employ heavy cables and consume large amounts of power, on the order

of several watts. Neither of these characteristics are amenable to use with portable

" consumer electronic devices. Even the third interface consumes too much power and

uses expensive or bulky connectors.

For some of the above interfaces, and other very high rate data systems/protocols
or transfer mechanisms associated with data transfers for fixed installation computer
equipment, there is another major drawback. To accommodate the desired data transfer
rates also requires substantial amounts of power and/or operation at high current levels.
This greatly reduces the usefulness of such techniques for highly mobile consumer
oriented products.

Generally, to accommodate such data transfer rates using alternatives such as
say optical fiber type connections and transfer elements, also requires a number of

additional converters and elements that introduce much more complexity and cost, than

[0014]

[0015]

[0016]

WO 2005/091593 PCT/US2005/008832

5

desired for a truly commercial consumer oriented product. Aside from the generally
expensive nature of optical systems as yet, their power requirements and complexity
prevents general use for lightweight, low power, portable applications.

What has been lacking in the industry for portable, wireless, or mobile
applications is a technique to provide a high quality presentation experience, whether it
be audio, video, or multimedia based, for highly mobile end users. That is, when using
portable computers, wireless phones, PDAs, or other highly mobile communication
devices or equipment, the current video and audio presentation systems or devices being
used simply cannot deliver output at the desired high quality level. Often, the perceived
quality that is lacking is the result of unobtainable high data rates needed to transfer the
high quality presentation data. This can include both transfer to more efficient,
advanced or feature laden external devices for presentation to an end user, or transfer
between hosts and clients internal to portable devices such as computers, gaming
machines, and wireless devices such as mobile telephones.

In this latter case, there have heen great strides made in adding higher and higher
resolution internal video screens, and other specialty input and/or output devices and
connections to wireless devices like so called third generation telephones, and to so
called laptop computers. However, internal data busses and connections which may
include bridging across rotating or sliding hinge or hinge-like structures which mount or
connect video screens or other elements to the main housing where the host and/or
various other control elements and output components reside. These are generally hi gh-
bandwidth or high throughput interfaces. It is very difficult to construct high
throughput data transfers interfaces using prior techniques which can require up to 90
conductors, or more, to achieve the desired throughput, on say a wireless telephone, as
one example. Current solutions typically involve employing parallel type interfaces
with relatively high signal levels which can cause the interconnection to be more costly,
less reliable and potentially generate radiated emissions which could interfere wwith
device functions. This presents many manufacturing, cost, and reliability challenging
issues to overcome.

Such issues and requirements are also being seen on fixed location installati ons
where communication or computing type devices, as one example, are added to
appliances and other consumer devices to provide advanced data capabilities, Internet

and data transfer connections, or built in entertainment. Another example would be

2005223960 27 May 2008

wn

o

15

25

30

35

airplanes and buses where individual video and audio presentation screen are mounted in seat-backs.
However, in these situations it is often more convenient, efficient, and easily serviceable to have the
main storage, processing, or communication control elements located a distance from visible screens
or audio outputs with an interconnecting link or channel for the presentation of information. This link
will need to handle a significant amount of data to achieve the desired throughput, as discussed above.
Therefore, a new transfer mechanism is needed to increase data throughput between host
devices providing the data and client display devices or elements presenting an output to end users.
Applicants have proposed such new transfer mechanisms in U. S. Patent Application Serial
No. 10/020,520, filed December 14, 2001, now U. S. Patent No 6,760,772, issued July 6, 2004 to Zou
et al., and U. S. Patent Application Serial No. 10/236, 657, filed September 6, 2002, both entitled
"Generating And Implementing A Communication Protocol And Interface For High Data Rate Signal
Transfer," both of which are assigned to the assignee of the present invention and incorporated herein
by reference. Also, U.S. Application Serial No. 10/860, 116, filed on June 2, 2004, entitled
"Generating and Implementing a Signal Protocol and Interface for Higher Data Rates." The
techniques discussed in those applications can greatly improve the transfer rate for large quantities of
data in high speed data signals. However, the demands for ever increasing data rates, especially as
related to video presentations, continue to grow. Even with other ongoing developments in data signal
technology, there is still a need to strive for even faster transfer rates, improved communication link
efficiencies, and more powerful communication links. Therefore, there is a continuing need to develop
a new or improved transfer mechanism which is needed to increase data throughput between host and

client devices.

SUMMARY

In a first aspect of the present invention, there is provided a method for communicating a
specific client supported power state to a host in a digital transmission link, the method including the
steps of providing a client capability packet including a client power state capability field, the client
power state capability field including at least one client supported power state; sending the client
capability packet by a client to the host after a request by the host; choosing the specific client
supported power state from the at least one client supported power state by the host; and sending a
power state packet from the host to the client, the power state packet including the chosen specific
client supported power state.

In a second aspect of the present invention, there is provided a system for communicating a
specific client supported power state to a host in a digita! transmission link, the system including
means for providing a client capability packet including a client power state capability field, the client
power capability field including at least one client supported power state; means for sending the client
capability packet by a client to the host after a request by the host; means for choosing the specific

client supported power state from the at least one client supported power state by the host; and means

h

2005223960 27 May 2008

15

20

25

30

35

for sending a power state packet from the host to the client, the power state packet including the
chosen specific client supported power state.

In a third aspect of the present invention, there is provided a computer program product,
including computer readable medium including code for causing a communication of a specific
content supported power state to a host in a digital transmission link, the computer code including
code for causing a client capability packet to be provided, the client packet including a client power
state capability field, the client power state capability field comprising at least one client supported
power state; code for causing the client capability packet to be sent by a client to the host after a
request by the host; code for causing the specific client supported power state to be chosen from the at
least one client supported power state by the host; and code for causing a power state packet to be sent
from the host to the client, the power state packet including the chosen specific client supported power

State.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages, as well as the structure and operation of various
embodiments of the invention, are described in detail below with reference to the accompanying
drawings. In the drawings, like reference numbers generally indicate identical, functionally similar,
and/or structurally similar elements or processing steps.

FIG. 1A illustrates a basic environment in which embodiments of the invention might operate
including the use of a micro-display device, or a projector, in conjunction with a portable computer or
other data processing device.

FIG. 1B illustrates a basic environment in which embodiments of the invention might operate
including the use of a micro-display device or a projector, and audio presentation elements used in
conjunction with a wireless transceiver.

FIG. 2A illustrates a basic environment in which embodiments of the invention might operate
including the use of internal display or audio presentation devices used in a portable computer.

FIG. 2B illustrates a basic environment in which embodiments of the invention might operate
including the use of internal display or audio presentation elements used in a wireless transceiver.

FIG. 3 illustrates the overall concept of a MDDI with a host and client interconnection.

FIG. 4 illustrates the structure of a packet useful for realizing data transfers from a client
device to a host device.

FIG. § illustrates the use of an MDDI link controller and the types of signals passed between a
host and a client over the physical data link conductors for a Type 1 interface.

FIG. 6 illustrates the use of an MDDI link controller and the types of signals passed between a

host and a client over the physical data link conductors for Types 2, 3, and 4 interfaces.

2005223960 27 May 2008

THIS PAGE HAS INTENTIONALLY BEEN LEFT BLANK

2005223960 27 May 2008

THIS PAGE HAS INTENTIONALLY BEEN LEFT BLANK

2005223960 27 May 2008

THIS PAGE HAS INTENTIONALLY BEEN LEFT BLANK

WO 2005/091593 PCT/US2005/008832

11

[0041] FIG. 7 illustrates the structure of frames and sub-frames used to implement the
interface protocol.

[0042] FIG. 8 illustrates the general structure of packets used to implement the interface
protocol.

[0043] FIG. 9 illustrates the format of a Sub-frame Header Packet.

[0044] FIG. 10 illustrates the format and contents of a Filler Packet.

[0045] FIG. 11 illustrates the format of a Video Stream Packet.

[0046] FIGs. 12A-12E illustrate the format and contents for the ‘Videq Data Format
Descriptor used in FIG. 11.

[0047] FIG. 13 illustrates the use of packed and unpacked formats for date.

[0048] FIG. 14 illustrates the format of an Audio Stream Packet.

[0049] FIG. 15 illustrates the use of byte-aligned and packed PCM formats for data.

[0050] FIG. 16 illustrates the format of a User-Defined Stream Packet.

[0051] FIG. 17 illustrates the format of a Color Map Packet.

[0052] FIG. 18 illustrates the format of a Reverse Link Encapsulation Packet.

[0053] FIG. 19 illustrates the format of a Client Capability Packet.

[0054] FIG. 20 illustrates the format of a Keyboard Data Packet.

[0055] FIG. 21 illustrates the format of a Pointing Device Data Packet.

[0056] FIG. 22 illustrates the format of a Link Shutdown Packet.

[0057] FIG. 23 illustrates the format of a Client Request and Status Packet.

[0058] FIG. 24 illustrates the format of a Bit Block Transfer Packet.

[0059] FIG. 25 illustrates the format of a Bitmap Area Fill Packet.

[0060] FIG. 26 illustrates the format of a Bitmap Pattern Fill Packet.

[0061] FIG. 27 illustrates the format of a Communication Link Data Channel Packet.

[0062] FIG. 28 illustrates the format of a Display Power State Packet.

[0063] FIG. 29 illustrates the format of a Perform Type Handoff Packet.

[0064] FIG. 30 illustrates the format of a Forward Audio Channel Enable Packet.

[0065] FIG. 31 illustrates the format of a Reverse Audio Sample Rate Packet.

[0066] FIG. 32 illustrates the format of a Digital Content Protection Overhead Packet.

[0067] FIG. 33 illustrates the format of a Transparent Color Enable Packet.

[0068] FIG. 34 illustrates the format of a Round Trip Delay Measurement Packet.

[0069] FIG. 35 illustrates the timing of events during the Round Trip Delay

Measurement Packet.

WO 2005/091593 PCT/US2005/008832

12

[0070] FIG. 36 illustrates a sample implementation of a CRC generator and checker
useful for implementing the invention.

[0071] FIG. 37A illustrates the timing of CRC signals for the apparatus of FIG. 36
when sending data packets.

[0072] FIG. 37B illustrates the timing of CRC signals for the apparatus of FIG. 36 when
receiving data packets.

[0073] FIG. 38 illustrates processing steps for a typical service request with no
contention.

[0074] FIG. 39 illustrates processing steps for a typical service request asserted after the
link restart sequence has begun, contending with link start.

[0075] FIG. 40 illustrates how a data sequence can be transmitted using DATA-STB
encoding.

[0076] FIG. 41 illustrates circuitry useful for generating the DATA and STB signals
from input data at the host, and then recovering the data at the client.

[0077] FIG. 42 illustrates drivers and terminating resistors useful for implementing one
embodiment.

[0078] FIGs. 43A-43C illustrate steps and signal levels employed by a client to secure
service from the host and by the host to provide such service.

[0079] FIG. 44 illustrates relative spacing between transitions on the Data0, other Data
lines (DataX), and the Strobe lines (Stb).

[0080] FIG. 45 illustrates the presence of a delay in response that can occur when a host

disables the host driver after transferring a packet.

[0081] FIG. 46 illustrates the presence of a delay in response that can occur when a host
enables the host driver to transfer a packet.

[0082] FIG. 47 illustrates leakage current analysis.

[0083] FIG. 48 illustrates switching characteristics and relative timing relationships for
host and client output enabled and disable time.

[0084] FIG. 49 illustrates a high level diagram of signal processing steps and conditions
by which synchronization can be implemented using a state machine.

[0085] FIG. 50 illustrates typical amounts of delay encountered for signal processing on
the forward and reverse paths in a system employing the MDDI.

[0086] FIG. 51 illustrates marginal round trip delay measurement.

[0087] FIG. 52A illustrates Reverse Link data rate changes.

WO 2005/091593 PCT/US2005/008832

13

[0088] FIG. 52B illustrates an example of advanced reverse data sampling.

[0089] FIG. 53 illustrates a graphical representation of values of the Reverse Rate
Divisor versus forward link data rate.

[0090] FIGs. 54A and 54B illustrate steps undertaken in the operation of an interface.

[0091] FIG. 55 illustrates an overview of the interface apparatus processing packets.

[0092] FIG. 56 illustrates the format of a Forward Link Packet.

[0093] FIG. 57 illustrates typical values for propagation delay and skew in an Type 1
Link interface. ‘

[0094] FIG. 58 illustrates Data, Stb, and Clock Recovery Timing on a Type 1 Link for
exemplary signal processing through the interface.

[0095] FIG. 59 illustrates typical values for propagation delay and skew in Type 2,
Type 3 or Type 4 Link interfaces.

[0096] FIGs. 60A, 60B, and 60C illustrate different possibilities for the timing of two
data signals and MDDI Stb with respect to each other, being ideal, early, and late,
respectively.

[0097] FIG. 61 illustrates interface pin assignments exemplary connectors used with a
Type-I/Type 2 interfaces.

[0098] FIGs. 62A and 62B illustrate possible MDDI_Data and MDDI_Stb waveforms
for both Type 1 and Type 2 Interfaces, respectively.

[0099] FIG. 63 illustrates a high level diagram of alternative signal processing steps and
conditions by which synchronization can be implemented using a state machine.

[00100] FIG. 64 illustrates exemplary relative timing between a series of clock cycles
and the timing of a various reverse link packets bits and divisor values.

[00101] FIG. 65 illustrates exemplary error code transfer processing.

[00102] FIG. 66 illustrates apparatus useful for error code transfer processing.

[00103] FIG. 67A illustrates error code transfer processing for code overloading.

[00104] FIG. 67B illustrates error code transfer processing for code reception.

[00105] FIG. 68A illustrates processing steps for a host initiated wake-up.

[00106] FIG. 68B illustrates processing steps for a client initiated wake-up.

[00107] FIG. 68C illustrates processing steps for host and client initiated wake-up with
contention.

[00108] FIG. 69 illustrates the format of a Request Virtual Control Panel (VCP) Feature

Packet.

WO 2005/091593 PCT/US2005/008832

14

[00109] FIG. 70 illustrates the format of a VCP Feature Reply Packet.

[00110] FIG. 71 illustrates the format of a VCP Feature Reply List.

[00111] FIG. 72 illustrates the format of a Set VCP Feature Packet.

[00112] FIG. 73 illustrates the format of a Request Valid Parameter Packet.

[00113] FIG. 74 illustrates the format of a Valid Parameter Reply Packet.

[00114] FIG. 75 illustrates the format of a Scaled Video Stream Capability Packet.

[00115] FIG. 76 illustrates the format of a Scaled Video Stream Setup Packet.

[00116] FIG. 77 illustrates the format of a Scaled Video Stream Acknowledgement
Packet.

[00117] FIG. 78 illustrates the format of a Scaled Video Stream Packet.

[00118] FIG. 79 illustrates the format of a Request Specific Status Packet.

[00119] FIG. 80 illustrates the format of a Valid Status Reply List Packet.

[00120] FIG. 81 illustrates the format of a Personal Display Capability Packet.

[00121] FIG. 82 illustrates elements in the Points of Field Curvature List.

[00122] FIG. 83 illustrates the format of a Client Exror Report Packet.

[00123] FIG. 84 illustrates the format of an Error Report List item.

[00124] FIG. 85 illustrates the format of a Client Identification Packet.

[00125] FIG. 86 illustrates the format of an Alternate Display Capability Packet.

[00126] FIG. 87 illustrates the format of a Register Access Packet.

[00127] FIG. 88 A-88C illustrate use of two display buffers to reduce visible artifacts.

[00128] FIG. 89 illustrates two buffers with display refresh faster than image transfer.

[00129] FIG. 90 illustrates two buffers with display refresh slower than image transfer.

[00130] FIG. 91 illustrates two buffers with display refresh much faster than image
transfer.

[00131] FIG. 92 illustrates three buffers with display refresh faster than image transfer.

[00132] FIG. 93 illustrates three buffers with display refresh slower than image transfer.

[00133] FIG. 94 illustrates one buffer with display refresh faster than image transfer.

[00134] FIG. 95 illustrates host-client connection via daisy —chain and hub.

[00135] FIG. 96 illustrates client devices connected via a combination of hubs and daisy
chains.

[00136] FIG. 97 illustrates a color map.

DETAILED DESCRIPTION

[00137]

[00138]

[00139]

WO 2005/091593 PCT/US2005/008832

15

| Overview

A general intent of the invention is to provide a MDDI, as discussed below,
which results in or provides a cost-cffective, low power consumption, transfer
mechanism that enables high- or very-high- speed data transfer over a short-range
communication link between a host device and a client device, such as a display
element, using a "serial” type of data link or channel. This mechanism lends itself to
implementation with miniature connectors and thin flexible cables which are especially
useful in connecting internal (interior to a housing or support frame) display or output
elements or devices, or input devices to a central controller or communication element
or device. In addition, this connection mechanism is very useful for connecting external
display elements or devices such as wearable micro-displays (goggles or projectors) or
other types of visual, audible, tactile information presentation devices to portable
computers, wireless communication devices, or entertainment devices.

Although the terms Mobile and Display are associated with the naming of the
protocol, it is to be understood that this is for convenience only in terms of having a
standard name easily understood by those skilled in the art working with the interface
and protocol. As it will relate to a Video Electronics Standards Association (VESA)
standard and various applications of that standard. However, it will be readily
understood after a review of the embodiments presented below that many non-mobile
and non-display related applications will benefit from application of this protocol,
resulting interface structure, or transfer mechanism, and the MDDI label is not intended
to imply any limitations to the nature or usefulness of the invention or its various
embodiments.

An advantage of embodiments of the invention is that a technique is provided
for data transfer that is low in complexity, low cost, has high reliability, fits well within

the environment of use, and is very robust, while remaining very flexible.

[00140] Embodiments of the invention can be used in a varicty of situations to

commumicate or transfer large quantities of data, generally for audio, video, or
multimedia -applications from a host or source device where such data is generated,
manipulated, such as for transfer to specific deices, or otherwise processed, or stored; to

a client or receiving device, such as a video display or projection element, audio

WO 2005/091593 PCT/US2005/008832

16

speakers, or other presentation device at a high rate. A typical application, which is
discussed below, is the transfer of data from either a portable computer or a wireless
telephone or modem to a visual display device such as a small video screen or a
wearable micro-display appliance, such as in the form of goggles or helmets containing
small projection lenses and screens, or from a host to client device within such
components. That is, from a processor or controller to an internal screen or other
presentation element, as well as from various internal, or external input devices
employing a client to an internally located (collocated within same device housing or
support structure) host, or connected thereto by a cable or conductors.

[00141] The characteristics or attributes of the MDDI are such that they are independent
of specific display or presentation technology. This is a highly flexible mechanism for
transferring data at a high rate without regards to the internal structure of that data nor
the functional aspects of the data or commands it implements. This allows the timing of
data packets being transferred to be adjusted to adapt to the idiosyncrasies of particular
client devices, such as for unique display desires for certain devices, or to meet the
requirements of combined andio and video for some Audio Visual (A-V) systems, or for
certain input devices such as joysticks, touch pads, and so forth. The interface is very
display element or client device agnostic, as long as the selected protocol is followed.
In addition, the aggregate serial link data, or data rate, can vary over several orders of
magnitude which allows a communication system or host device designer to optimize
the cost, power requirements, client device complexity, and client device update rates.

[00142] The data interface is presented primarily for use in transferring large amounts of
high rate data over a "wired" signal link or small cable. However, some applications
may take advantage of a wireless link as well, including optical based links, provided it
is configured to use the same packet and data structures developed for the interface
protocol, and can sustain the desired level of transfer at low enough power consumption

or complexity to remain practical.
1I. Environment
[00143] A typical application can be seen in FIGs. 1A and 1B where a portable or laptop

computer 100 and wireless telephone or PDA device 102 are shown communicating

data with display devices 104 and 106, respectively, along with audio reproduction

WO 2005/091593 PCT/US2005/008832

17

systems 108 and 112. In addition, FIG. 1A shows potential connections to a larger
display or screen 114 or an image projector 116, which are only shown in one figure for
clarity, but are connectable to wireless device 102 as well. The wireless device can be
currently receiving data or have previously stored a certain amount of multimedia type
data in a memory element or device for later presentation for viewing and/or hearing by
an end user of the wircless device. Since a typical wireless device is used for voice and
simple text communications most of the time, it has a rather small display screen and
simple audio system (speakers) for communicating information to the device 102 user.

[00144] Computer 100 has a much larger screen, but still inadequate external sound
system, and still falls short of other multimedia presentation devices such as a high
definition television, or movie screens. Computer 100 is used for purposes of
illustration and other types of processors, interactive video games, or consumer
electronics devices can also be used with the invention. Computer 100 can employ, but
is not limited to or by, a wireless modem or other built in device for wireless
communications, or be connected to such devices using a cable or wireless link, as
desired.

[00145] This makes presentation of more complex or “rich” data a less than a useful or
enjoyable experience. Therefore, the industry is developing other mechanisms and
devices to present the information to end users and provide a minimum level of desired
enjoyment or positive experience.

[00146] As previously discussed above, several types of display devices have or are
currently being developed for presenting information to end users of device 100. For
example, one or more companies have developed sets of wearable goggles that project
an image in front of the eyes of a device user to present a visual display. When
correctly positioned such devices effectively "project” a virtual image, as perceived by a
user’s eyes, which is much larger than the element providing the visual output. That is,
a very small projection element allows the eye(s) of the user to "see" images on a much
larger scale than possible with typical Liquid Crystal Display (LCD) screens and the
like. The use of larger virtual screen images also allows the use of much higher
resolution images than possible with more limited LCD screen displays. Other display
devices could include, but are not limited to, small LCD screens or various flat panel
display clements, projection lenses and display drivers for projecting images on a

surface, and so forth.

WO 2005/091593 PCT/US2005/008832

18

[00147] There may also be additional elements connected to or associated with the use of
wireless device 102 or computer 100 for presenting an output to another user, or to
another device which in turn transfers the signals elsewhere or stores them. For
example, data may be stored in flash memory, in optical form, for example using a
writeable CD media or on magnetic media such as in a magnetic tape recorder and
similar devices, for later use.

[00148] In addition, many wireless devices and computers now have built-in MP3 music
decoding capabilities, as well as other advanced sound decoders and systems. Portable
computers utilize CD and DVD playback capabilities as a general rule, and some have
small dedicated flash memory readers for receiving pre-recorded audio files. The issue
with having such capabilities is that digital music files promise a highly increased
feature rich experience, but only if the decoding and playback process can keep pace.
The same holds true for the digital video files.

[00149] To assist with sound reproduction, external speakers 114 are shown in FIG. 1A,
which could also be accompanied by addition elements such as sub-woofers, or
"surround-sound" speakers for front and rear sound projection. At the same time,
speakers or earphones 108 are indicated as built-in to the support frame or mechanism
of micro-display device 106 of FIG. 1B. As would be known, other audio or sound
reproduction elements can be used including power amplification or sound shaping
devices.

[00150] In any case, as discussed above, when one desires to transfer high quality or high
resolution image data and high quality audio information or data signals from a data
source to an end user over one or more communication links 110, a high data rate is
required. That is, transfer link 110 is clearly a potential bottleneck in the
communication of data as discussed earlier, and is limiting system performance, since
current transfer mechanisms do not achieve the high data rates typically desired. As
discussed above for example, for higher image resolutions such as 1024 by 1024 pixels,
with color depths of 24-32 bits per pixel and at data rates of 30 fps, the data rates can
approach rates in excess of 755 Mbps or more. Tn addition, such images may be
presented as part of a multimedia presentation which includes audio data and potentially
additional signals dealing with interactive gaming or communications, or various

commands, controls, or signals, further increasing the quantity or data and the data rate.

WO 2005/091593 PCT/US2005/008832

19

[00151] It is also clear that fewcr cables or interconncctions required for establishing a
data link, means that mobile devices associated with a display are easier to use, and
more likely to be adopted by a larger user base. This is especially true where multiple
devices are commonly used to establish a full audio-visual experience, and more
especially as the quality level of the displays and audio output devices increases.

[00152] Another typical application related to many of the above and other
improvements in video screens and other output or input devices can be seen in FIGs.
1C and 1D where a portable or laptop computer 130 and wireless telephone or PDA
device 140 are shown communicating data with “internal” display devices 134 and 144,
respectively, along with audio reproduction systems 136 and 146.

[00153] In FIGs. 2A and 2B, small cut-away sections of the overall electronic devices or
products are used to show the location of one or more internal hosts and controllers in
one portion of the device with a generalized communication link, here 138 and 148,
respectively, connecting them to the video display elements or screens having the
corresponding clients, across a rotating joint of some known type used throughout the
electronics industry today. One can see that the amount of data involved in these
transfers requires a large number of conductors to comprise links 138 and 148. It is
estimated that such communication links are approaching 90 or more conductors in
order to satisfy today’s growing needs for utilizing advanced color and graphical
interfaces, display elements, on such devices because of the types of parallel or other
known interface techniques available for transferring such data.

[00154] Unfortunately, the higher data rates exceed current technology available for
transferring data. Both in terms of the raw amount of data needing to be transferred per
unit time, and in terms of manufacturing reliable cost effective physical transfer
mechanisms.

[00155] What is needed is a technique, a structure, means or method, for transferring
data at higher rates for the data transfer link or communication path between
presentation elements and the data source, which allows for consistently low(er) power,
light weight, and as simple and economical a cabling structure as possible. Applicants
have developed a new technique, or method and apparatus, to achieve these and other
goals to allow an array of mobile, portable, or even fixed location devices to transfer
data to desired displays, micro-displays, or audio transfer elements, at very high data

rates, while maintaining a desired low power consumption, and complexity.

WO 2005/091593 PCT/US2005/008832

20

III. High Rate Digital Data Interface System Architecture

[00156] In order to create and efficiently utilize a new device interface, a signal protocol
and system architecture has been formulated that provides a very high data transfer rate
using low power signals. The protocol is based on a packet and common frame
structure, or structures linked together to form a protocol for communicating a pre-
selected set of data or data types along with a command or operational structure

imposed on the interface.

A. Overview

[00157] The devices comnected by or communicating over the MDDI link are called the
host and client, with the client typically being a display device of some type, although
other output and input devices are contemplated. Data from the host to the display
travels in the forward direction (referred to as forward traffic or link), and data from the
client to the host travels in the reverse direction (reverse traffic or link), as enabled by
the host. This is illustrated in the basic configuration shown in FIG. 3. In FIG. 3, a host
202 is comnected to a client 204 using a bi-directional communication channel 206
which is illustrated as comprising a forward link 208 and a reverse link 210. However,
these channels are formed by a common set of conductors whose data transfer is
effectively switched between the forward or reverse link operations. This allows for
greatly reduced numbers of conductors, immediately addressing one of the many
problems faced with current approaches to high speed data transfer in low power
environments such as for mobile electronic devices.

[00158] As discussed elsewhere, the host comprises one of several types of devices that
can benefit from using the present invention. For example, host 202 could be a portable
computer in the form of a handheld, laptop, or similar mobile computing device. It
could also be a PDA, a paging device, or one of many wireless telephones or modems.
Alternatively, host 202 could be a portable entertainment or presentation device such as
a portable DVD or CD player, or a game playing device.

[00159] Furthermore, the host can reside as 2 host device or control element in a variety
of other widely used or planmed commercial products for which a high speed

communication link is desired with a client. For example, a host could be used to

WO 2005/091593 PCT/US2005/008832

21

transfer data at high rates from a video recording device to a storage based client for
improved response, or to a high resolution larger screen for presentations. An appliance
such as a refrigerator that incorporates an onboard inventory or computing system
and/or Bluetooth connections to other household devices, can have improved display
capabilities when operating in an internet or Bluetooth connected mode, or have reduced
wiring needs for in-the-door displays (a client) and keypads or scanners (client) while
the electronic computer or control systems (host) reside elsewhere in the cabinet. In
general, those skilled in the art will appreciate the wide variety of modern electronic
devices and appliances that may benefit from the use of this interface, as well as the
ability to retrofit older devices with higher data rate transport of information utilizing
limited numbers of conductors available in either newly added or existing connectors or
cables.

[00160] At the same time, client 204 could comprise a variety of devices useful for
presenting information to an end user, or presenting information from a user to the host.
For example, a micro-display incorporated in goggles or glasses, a projection device
built into a hat or helmet, a small screen or even holographic element built into a
vehicle, such as in a window or windshield, or various speaker, headphone, or sound
systems for presenting high quality sound or music. Other presentation devices include
projectors or projection devices used to present information for meetings, or for movies
and television images. Another example would be the use of touch pads or sensitive
devices, voice recognition input devices, security scanners, and so forth that may be
called upon to transfer a significant amount of information from a device or system user
with little actual “input” other than touch or sound from the user. In addition, docking
stations for computers and car kits or desk-top kits and holders for wireless telephones
may act as interface devices to end users or to other devices and equipment, and employ
either clients (output or input devices such as mice) or hosts to assist in the transfer of
data, especially where high speed networks are involved.

[00161] However, those skilled in the art will readily recognize that the present invention
is not limited to these devices, there being many other devices on the market, and
proposed for use, that are intended to provide end users with high quality images and
sound, either in terms of storage and transport or in terms of presentation at playback.

The present invention is useful in increasing the data throughput between various

WO 2005/091593 PCT/US2005/008832

22

elements or devices to accommodate the high data rates needed for realizing the desired
user experience.

[00162] The inventive MDDI and communication signal protocol may be used to
simplify the interconnect between a host processor, controller, or circuit component (for
example), and a display within a device or device housing or structure (referred to as an
internal mode) in order to reduce the cost or complexity and associated power and
control requirements or constraints of these connections, and to improve reliability, not
just for connection to or for external elements, devices, or equipment (referred to as an
external mode).

[00163] The aggregate serial link data rate on each signal pair used by this interface
structure can vary over many orders of magnitude, which allows a system or device
designer to easily optimize cost, power, implementation complexity, and the display
update rate for a given application or purpose. The attributes of MDDI are independent
of display or other presentation device (target client) technology. The timing of data
packets transferred through the interface can be easily adjusted to adapt to
idiosyncrasies of particular clients such as display devices, sound systems, memory and
control elements, or combined timing requirements of audio-video systems. While this
makes it possible to have a system with a very small power consumption, it is not a
requirement of the various clients to have frame buffers in order to make use of the

MDDI protocol at least at some level.

B. Interface Types

[00164] The MDDI is contemplated as addressing at least fours, and potentially more,
somewhat distinct physical types of interfaces found in the communications and
computer industries. These are labeled simply as Type 1, Type 2, Type 3, and Type 4,
although other labels or designations may be applied by those skilled in the art
depending upon the specific applications they are used for or industry they are
associated with. For example, simple audio systems use fewer connections than more
complex multimedia systems, and may reference features such as “chammels”
differently, and so forth.

[00165] The Type 1 interface is configured as a 6-wire, or other type of conductor or
conductive element, interface which makes it suitable for mobile or wireless telephones,

PDAs, electronic games, and portable media players, such as CD players, or MP3

WO 2005/091593 PCT/US2005/008832

23

players, and similar devices or devices used on similar types of electronic consumer
technology. In one embodiment, a an interface can be configured as an 8-wire
(conductor) interface which is more suitable for laptop, notebook, or desktop personal
computers and similar devices or applications, not requiring rapid data updates and
which do not have a built-in MDDI link controller. This interface type is also
distinguishable by the use of an additional two-wire Universal Serial Bus (USB)
interface, which is extremely useful in accommodating existing operating systems or
software support found on most personal computers.

[00166] Type 2, Type 3, and Type 4 interfaces arc suitable for high performance clients
or devices and use larger more complex cabling with additional twisted-pair type
conductors to provide the appropriate shiclding and low loss transfers for data signals.

[00167] The Type 1 interface passes signals which can comprise display, audio, control,
and limited signaling information, and is typically used for mobile clients or client
devices that do not require high-resolution full-rate video data. A Type 1 interface can
easily support Super Video Graphics Array (SVGA) resolution at 30 fps plus 5.1
channel audio, and in a minimum configuration might use only three wire pairs total,
two pairs for data transmission and one pair for power transfer. This type of interface is
primarily intended for devices, such as mobile wireless devices, where a USB host is
typically not available within the such device for connection and transfer of signals. In
this configuration, the mobile wireless device is a MDDI host device, and acts as the
"master" that controls the communication link from the host, which generally sends data
to the client (forward traffic or link) for presentation, display or playback.

[00168] In this interface, a host enables receipt of communication data at the host from
the client (reverse traffic or link) by sending a special command or packet type to the
client that allows it to take over the bus (link) for a specified duration and send data to
the host as reverse packets. This is illustrated in FIG. 4, where a type of packet referred
to as an encapsulation packet (discussed below) is used to accommodate the transfer of
reverse packets over the transfer link, creating the reverse link. The time interval
allocated for the host to poll the client for data is pre-determined by the host, and is
based on the requirements of each specified application. This type of half-duplex bi-
directional data transfer is especially advantageous where a USB port is not available

for transfer of information or data from the client.

WO 2005/091593 PCT/US2005/008832

24

[00169] High-performance displays capable of HDTV type or similar high resolutions
require around 1.5 Gbps rate data streams in order to support full-motion video. The
Type 2 interface supports high data rates by transmitting 2 bits in parallel, the Type 3 by
transmitting 4 bits in parallel, and the Type 4 interface transfers 8 bits in parallel. Type
2 and Type 3 interfaces use the same cable and connector as Type 1 but can operate at
twice and four times the data rate to support higher-performance video applications on
portable devices. A Type 4 interface is suited for very high performance clients or
displays and requires a slightly larger cable that contains additional twisted-pair data
signals.

[00170] The protocol used by the MDDI allows each Type 1, 2, 3, or 4 host to generally
communicate with any Type 1, 2, 3, or 4 client by negotiating what is the highest data
rate possible that can be used. The capabilities or available features of what can be
referred to as the least capable device is used to set the performance of the link. As a
rule, even for systems where the host and client are both capable using Type 2, Type 3,
or Type 4 interfaces, both begin operation as a Type 1 interface. The host then
determines the capability of the target client, and mnegotiates a hand-off or
reconfiguration operation to either Type 2, Type 3, or Type 4 mode, as appropriate for
the particular application.

[00171] It is generally possible for the host to use the proper link-layer protocol
(discussed further below) and step down or again reconfigure operation at generally any
time to a slower mode to save power or to step up to a faster mode to support higher
speed transfers, such as for higher resolution display content. For example, a host may
change interface types when the system switches from a power source such as a battery
to AC power, or when the source of the display media switches to a lower or higher
resolution format, or a combination of these or other conditions or events may be
considered as a basis for changing an interface type, or transfer mode.

[00172] It is also possible for a system to communicate data using one mode in one
direction and another mode in another direction. For example, a Type 4 interface mode
could be used to transfer data to a display at a high rate, while a Type 1 mode is used
when transferring data to a host device from peripheral devices such as a keyboard or a
pointing device. It will be appreciated by one skilled in the art that hosts and clients

may communicate outgoing data at different rates.

WO 2005/091593 PCT/US2005/008832

25

[00173] Often, users of the MDDI protocol may distinguish between an “external” mode
and an “internal” mode. An external mode describes the use of the protocol and
interface to connect a host in one device to a client outside of that device that is up to
about 2 meters or so from the host. In this situation, the host may also send power to
the external client so that both devices can easily operate in a mobile environment. An
internal mode describes when the host is connected to a client contained inside the same
device, such as within a common housing or support frame or structure of some kind.
An example would be applications within a wireless phone or other wireless device, or a
portable computer or gaming device where the client is a display or display driver, or an
input device such as a keypad or touch-pad, or a sound system, and the host is a central
controller, graphics engine, or CPU element. Since a client is located much closer to the
host in internal mode applications as opposed to external mode applications, there are
generally no requirements discussed for the power connection to the client in such

configurations.

C. Physical Interface Structure

[00174] The general disposition of a device or link controller for establishing
communications between host and client devices is shown in FIGs. 5 and 6. In FIGs. 5
and 6, a MDDI link controller 402 and 502 is shown installed in a host device 202 and a
MDDI link controller 404 and 504 is shown installed in a client device 204. As before,
host 202 is connected to a client 204 using a bi-directional communication channel 406
comprising a series of conductors. As discussed below, both the host and client link
controllers can be manufactured as an integrated circuit using a single circuit design that
can be set, adjusted, or programmed to respond as either a host controller (driver) or a
client controller (receiver). This provides for lower costs due to larger scale
manufacturing of a single circuit device.

[00175] In FIG. 6, a MDDI link controller 502 is shown installed in a host device 202
and a MDDI link coniroller 504 is shown installed in a client device 204'. As before,
host 202" is connected to a client 204" using a bi-directional communication channel 506
comprising a series of conductors. As discussed before, both the host and client link
controllers can be manufactured using a single circuit design.

[00176] Signals passed between a host and a client, such as a display device, over the
MDDI link, or the physical conductors used, are also illustrated in FIGs. 5 and 6. As

WO 2005/091593 PCT/US2005/008832
26

seen in FIGs. 5 and 6, the primary path or mechanism for transferring data through the
MDDI uses data signals labeled as MDDI_Data0+/- and MDDI_Stb+/-. Each of these is
low voltage data signals that are transferred over a differential pair of wires in a cable.
There is only one transition on either the MDDI Data0 pair or the MDDI_Stb pair for
cach bit sent over the interface. This is a voltage based transfer mechanism not current
based, so static current consumption is nearly zero. The host drives the MDDI_Stb
signals to the client display.

[00177] While data can flow in both the forward and reverse directions over the
MDDI_Data pairs, that is, it is a bi-dircctional transfer path, the host is the master or
controller of the data link. The MDDI_Data0 and MDDI-Stb signal paths are operated
in a differential mode to maximize noise immunity. The data rate for signals on these
lines is determined by the rate of the clock sent by the host, and is variable over a range
of about 1 kbps up to 400 Mbps or more.

[00178] The Type 2 interface contains one additional data pair or conductors or paths
beyond that of the Type 1, referred to as MDDI Datal+/~. The Type 3 interface
contains two additional data pairs or signal paths beyond that of the Type 2 interface
referred to as MDDI_Data2+/-, and MDDI Data3+/-. The Type 4 interface contains
four more data pairs or signal paths beyond that of the Type 3 interface referred to as:
MDDI_datad+/-, MDDI_Data5+/-, MDDI_Data6+/-, and MDDI_Data7+/-,
respectively. In each of the above interface configurations, a host can send power to the
client or display using the wire-pair or signals designated as HOST_Pwr and
HOST Gnd. As discussed further below, power transfer can also be accommodated, if
desired, in some configurations on the MDDI_datad+/-, MDDI_Data5+/-,
MDDI_Data6+/-, or MDDI_Data7+/- conductors when an interface “Type” is being
used that employs fewer conductors than arc available or present for the other modes.
This Power transfer is generally employed for external modes, there generally being no
need for internal modes, although some applications may differ.

[00179] A summary of the signals passed between the host and client (display) over the
MDDI link for various modes are illustrated in Table I, below, in accordance with the

interface type.

[00180]

[00181]

WO 2005/091593

PCT/US2005/008832
27
Table 1
Type 1 Type 2 Type 3 Type 4
HOST Pwr/Gnd | HOST Pwi/Gnd | HOST_Pwr/Gnd HOST _Pwr/Gnd
MDDI_Stb+/- MDDI Stb+/- MDDI_Stb+/- MDDI_Stb+/-

MDDI Data0+/-

MDDI._Data0~/-
MDDI_Datal+/-

MDDI Data0+/-
MDDI_Datal+/-
MDDI_Data2+/-
MDDI_Data3-+/-

MDDI_Data0+/-
MDDI Datal+/-
MDDI_Data2+/-
MDDI_Data3+/-

Optional Pwr Optional Pwr Optional Pwr MDDI_Datad+/-
Optional Pwr Optional Pwr Optional Pwr MDDI_Data5+/-
Optional Pwr Optional Pwr Optional Pwr MDDI_Data6+/-
Optional Pwr Optional Pwr Optional Pwr MDDI Data7+/-

Also note that the HOST Pwr/Gnd connections for transfer from the host are

provided generally for external modes. Internal applications or modes of operation
generally have clients that draw power directly from other internal resources, and do not
use MDDI to control power distribution, as would be apparent to one skilled in the art,
so such distribution is not discussed in further detail here. However, it is certainly
possible to allow power to be distributed through the MDDI to allow for certain kinds of
power control, synchronization, or interconnection convenience, for example, as would
be understood by one skilled in the art.
Cabling generally used to implement the above structure and operation is nominally on
the order of 1.5 meters in length, generally 2 meters or less, and contains three twisted
pairs of conductors, each in turn being multi-strand wire, nominally between 32
American Wire Gange (AWG) to 28 AWG. Although, the wire size is not constrained
to this range, as those skilled in the art will appreciate, electrical specifications or
constraints should be met for maximum total end-to-end resistance, maximum
capacitance per foot, impedance of each pair, and crosstalk.

A foil shield covering is wrapped or otherwise formed above the entire, here
three, set or group of twisted pairs, and a drain wire as an additional drain wire. The
twisted pairs and shield drain conductor terminate in the client cormector with the shield
connected to the shield for the client, and there is an insulating layer, covering the entire
cable, as would be well known in the art. The wires are paired as: HOST_Gnd with
IIOST Pwr; MDDI Stb+ with MDDI Stb-; MDDI Data0+ with MDDI Data0-;
MDDI_Datal+ with MDDI Datal-; and so forth. However, a variety of conductors and

WO 2005/091593 PCT/US2005/008832

28

cabling can be used, as would be understood in the art, to implement the embodiments
of the invention, depending upon specific applications. For example, heavier outside
coatings or even metallic layers may be used to protect the cable in some applications,
while thinner, flatter conductive ribbon type structures may be well suited to other

applications.

D. Data Types and Rates
[00182] To achieve a useful interface for a full range of user experiences and
applications, the MDDI provides support for a variety of clients and display
information, audio transducers, keyboards, pointing devices, and many other input or
output devices that might be integrated into or working in concert with a mobile
communication, computation, or display device, along with control information, and
combinations thereof. The MDDI is designed to be able to accommodate a variety of
potential types of streams of data traversing between the host and client in either the
forward or reverse link directions using a minimum number of cables or conductors.
Both isochronous streams and asynchronous stream (updates) are supported. Many
combinations of data types are possible as long as the aggregate data rate is less than or
equal to the maximum desired MDDI link rate, which is limited by the maximum serial
rate and number of data pairs employed. These could include, but are not limited to,

those items listed in Tables II and TH below.

Table IT
Transferring from Host to Client
isochronous video data 720%480,12bit, 30f/s ~124.5 Mbps
isochronous stereo audio data | 44.1kHz, 16bit, stereo ~ 1.4 Mbps
asynchronous graphics data | 800x600, 12bit, 10f7s, stereo | ~115.2 Mbps
asynchronous control Minimum << 1.0 Mbps
Table IT1
Transferring from Client to Host
isochronous voice data 8 kHz, 8bit << 1.0 Mbps
isochronous video data 640x480, 12bit, 24f/s | ~ 88.5 Mbps

asynchronous status, user input, etc. | minimum << 1.0 Mbps

WO 2005/091593 PCT/US2005/008832

29

[00183] The interface is not fixed but extensiblc so that it can support the transfer of a
variety of information "types" which includes user-defined data, for future system
flexibility. Specific examples of data to be accommodated are: full-motion video,
either in the form of full or partial screen bitmap fields or compressed video; static
bitmaps at low rates to conserve power and reduce implementation costs; PCM or
compressed audio data at a variety of resolutions or rates; pointing device position and
selection, and user-definable data for capabilitics yet to be defined. Such data may also
be transferred along with control or status information to detect device capability or set
operating parameters.

[00184] Embodiments of the invention advance the art for use in data transfers that
include, but are not limited to: watching a movie (video display and audio); using a
personal computer with limited personal viewing (graphics display, sometimes
combined with video and audio); playing a video game on a PC, console, or personal
device (motion graphics display, or synthetic video and audio); "surfing" the Internet,
using devices in the form of a video phone (bi-directional low-rate video and audio), a
camera for still digital pictures, or a camcorder for capturing digital video images; using
a phone, computer, or PDA docked with a projector to give a presentation or docked
with a desktop docking station connected to a video monitor, keyboard, and mouse; and
for productivity enhancement or entertainment use with cell phones, smart phones, or
PDAs, including wireless pointing devices and keyboard data.

[00185] The high speed data interface as discussed below is presented in terms of
providing large amounts of A-V type data over a communication or transfer link which
is generally configured as a wire-line or cable type link. However, it will be readily
apparent that the signal structure, protocols, timing, or transfer mechanism could be
adjusted to provide a link in the form of an optical or wireless media, if it can sustain
the desired level of data transfer.

[00186] The MDDI signals use a concept known as the Common Frame Rate (CFR) for
the basic signal protocol or structure. The idea behind using of a Common Frame Rate
is to provide a synchronization pulse for simultaneous isochronous data streams by
sending Sub-frame Header Packets at a rate that can be used to derive clocks or frame
timing for multiple streams. The rate at which Sub-frame Header Packets are sent is the
Common Frame Rate. A client device can use this Common Frame Rate as a time

reference. A low CFR increases channel efficiency by decreasing overhead to transmit

WO 2005/091593 PCT/US2005/008832

30

the sub-frame header. On the other hand, a high CFR decreases the latency, and allows
a smaller elastic data buffer for audio samples. The CFR of the present inventive
interface is dynamically programmable and may be set at one of many values that are
appropriate for the isochronous streams used in a particular application. That is, the CF
value is selected to best suit the given client and host configuration, as desired.

[00187] The number of bytes generally required per sub-frame, which is adjustable or
programmable, for isochronous data steams that are most likely to be used with an

application, such as for a video or micro-display are shown in Table IV.

Table IV
Common Frame Rate (CFR) =300 Hz
X Y | Bit | Frame Channel Rate Bytes/
Rate (Mbps) Sub-
frame
Computer Game | 720 | 480 | 24 30 1 248.832 | 103680
Computer 800 | 600 | 24 10 1 115.200 48000
Graphics
Video 640 | 480 | 12 | 29.97 or 1 221.184 92160
30
CD Audio 1 1 16 | 44100 2 1.4112 588
Voice 1 1 8 8000 1 0.064 26-2/3
[00188] Fractional counts of bytes per sub-frame are easily obtained using a simple

programmable M/N counter structure. For example, a count of 26-2/3 bytes per sub-
frame is implemented by transferring 2 sub-frames containing 27 bytes each followed

: by one sub-frame containing 26 bytes. A smaller CFR may be selected to produce an
integer number of bytes per sub-frame. However, generally speaking, to implement a
simple M/N counter in hardware should require less area within an integrated circuit
chip or electronic module used to implement part or all of embodiments of the invention
than the area needed for a larger audio sample FIFO buffer.

[00189] An exemplary application that illustrates the impact of different data transfer
rates and data types is a Karaoke system. For Karaoke, a system where an end user, or
users, sings along with a music video program. Lyrics of the song are displayed
somewhere on, typically at the bottom of, a screen so the user knows the words to be

sung, and roughly the timing of the song. This application requires a video display with

WO 2005/091593 PCT/US2005/008832

31

infrequent graphics updates, and mixing of the user’s voice, or voices, with a stereo
audio stream.

[00190] If one assumes a common frame rate of 300 Hz, then each sub-frame will consist
of: 92,160 bytes of video content and 588 bytes of audio content (based on 147 16-bit
samples, in stereo) over the forward link to the client, and an average of 26.67 (26-2/3)
bytes of voice are sent back from a microphone to the mobile Karaoke machine.
Asynchronous packets are sent between the host and the client, possibly 2 head mounted
display. This includes the bottorn quarter-screen height being updated with lyric text at
1/30™ of second intervals or periods, and other miscellaneous control and status
commands sent in sub-frames when lyric text is not being updated.

[00191] Table V, shows how data is allocated within a sub-frame for the Karaoke
example. The total rate being used is selected to be about 279 Mbps. A slightly higher
rate of 280 Mbps allows about another 400 bytes of data per sub-frame to be transferred

which allows the use of occasional control and status messages.

Table V
Element Rate Overhead Bytes Media Bytes
per sub-frame per sub-frame

Music Video at 640 x 480 pixels and 30 fps 2*28=56 92160
Lyric Text at 640 x 120 pixels and 1 fps 8 23040
Updated in 10 sub-frames, 1/30 sec.
CD Audio at 44,100 sps, stereo, 1 6-bit 2*16=32 588
Voice at 8,000 sps, mono, 8-bit 28188 HA*16)H3*27) = 125 (27?;?15)
Sub-frame Header 22
Total Bytes/CF 263 115815
Total Rate (Mbps) (263+115815)*8*300 = 278.5872

IIL(Continued) High Rate Digital Data Interface System Architecture

E. Link Layer
[00192] Data transferred using the MDDI high-speed serial data signals consists of a
stream of time-multiplexed packets that are linked one after the other. Even when a
transmitting device has no data to send, a MDDI link controller generally automatically

sends filler packets, thus, maintaining a stream of packets. The use of a simple packet

WO 2005/091593 PCT/US2005/008832

32

structure ensures reliable isochronous timing for video and audio signals or data
streams.

[00193] Groups of packets are contained within signal elements or structures referred to
as sub-frames, and groups of sub-frames are contained within signal elements or
structures referred to as a media-frame. A sub-frame contains one or more packets,
depending on their respective size and data transfer uses, and a media-frame contains
one more sub-frames. The largest sub-frame provided by the protocol employed by the
embodiments presented here is on the order of 2%2.1 or 4,294,967,295 bytes, and the
largest media-frame size then becomes on the order of 2%-1 or 65,535 sub-frames.

[00194] A special sub-frame header packet contains a unique identifier that appears at
the beginning of each sub-frame, as is discussed below. That identifier is also used for
acquiring the frame timing at the client device when communication between the host
and client is initiated. Link timing acquisition is discussed in more detail below.

[00195] Typically, a display screen is updated once per media-frame when full-motion
video is being displayed. The display frame rate is the same as the media-frame rate.
The link protocol supports full-motion video over an entire display, or just a small
region of full-motion video content surrounded by a static image, depending on the
desired application. In some low-power mobile applications, such as viewing web
pages or email, the display screen may only need to be updated occasionally. In those
situations, it is advantageous to transmit a single sub-frame and then shut down or
inactivate the link to minimize power consumption. The interface also supports effects
such as stereo vision, and handles graphics primitives.

[00196] Sub-frames allow a system to enable the transmission of high-priority packets on
a periodic basis. This allows simultaneous isochronous streams to co-exist with a
minimal amount of data buffering. This is one advantage embodiments provide to the
display process, allowing multiple data streams (high speed communication of video,
voice, control, status, pointing device data, etc.) to essentially share a common channel.
It transfers information using relatively few signals. It also enables display-technology-
specific actions to exist, such as horizontal sync pulses and blanking intervals for a CRT

monitor, or for other client-technology-specific actions.

WO 2005/091593 PCT/US2005/008832

33

F. Link Controller
[00197] The MDDI link controller shown in FIGs. 5 and 6 is manufactured or assembled
to be a completely digital implementation with the exception of the differential line
receivers which are used to receive MDDI data and strobe signals. However, even the
differential line drivers and receivers can be implemented in the same digital integrated
circuits with the link controller, such as when making a CMOS type IC. No analog
functions or Phase Lock Loops (PLLs) are required for bit recovery or to implement the
hardware for the link controller. The host and client link controllers contain very
similar functions, with the exception of the client interface which contains a state
machine for link synchronization. Therefore, the embodiments of the invention allow
the practical advantage of being able to create a single controller design or circuit that
can be configured as either a host or client, which can reduce manufacturing costs for

the link controllers, as a whole.
IV. Interface Link Protocol

A. Frame structure

[00198] The signal protocol or frame structure used to implement the forward link
communication for packet transfer is illustrated in FIG. 7. As shown in FIG. 7,
information or digital data is grouped into elements known as packets. Multiple packets
are in turn grouped together to form what are referred to as a "sub-frame," and multiple
sub-frames are in turn grouped together to form a "media" frame. To control the
formation of frames and transfer of sub-frames, each sub-frame begins with a specially
predefined packet referred to as a Sub-frame Header Packet (SHP).

[00199] The host device selects the data rate to be used for a given transfer. This rate

| can be changed dynamically by the host device based on both the maximum transfer
capability of the host, or the data being retrieved fiom a source by the host, and the
maximum capability of the client, or other device the data is being transferred to.

[00200] A recipient client device designed for, or capable of, working with the MDDI or
inventive signal protocol is able to be queried by the host to determine the maximum, or
current maximum, data transfer rate it can use, or a default slower minimum rate may be
used, as well as useable data types and features supported. This information could be

transferred using a Client Capability Packet (CCP), as discussed further below. The

WO 2005/091593 PCT/US2005/008832

34

client display device is capable of tramsferring data or communicating with other
devices using the interface at a pre-selected minimum data rate or within a minimum
data rate range, and the host will perform a query using a data rate within this range to
determine the full capabilities of the client devices.

[00201] Other status information defining the nature of the bitmap and video frame-rate
capabilities of the client can be transferred in a status packet to the host so that the host
can configure the interface to be as efficient or optimal as practical, or desired within
any system constraints.

[00202] The host sends filler packets when there are no (more) data packets to be
transferred in the present sub-frame, or when the host cannot transfer at a rate sufficient
to keep pace with the data transmission rate chosen for the forward link. Since each
sub-frame begins with a sub-frame header packet, the end of the previous sub-frame
contains a packet (most likely a filler packet) the exactly fills the previous sub-frame.
In the case of a lack of room for data bearing packets per se, a filler packet will most
likely be the last packet in a sub-frame, or at the end of a next previous sub-frame and
before a sub-frame header packet. It is the task of the control operations in a host
device to ensure that there is sufficient space remaining in a sub-frame for each packet
to be transmitted within that sub-frame. At the same time, once a host device initiates
the sending of a data packet, the host must be able to successfully complete a packet of
that size within a frame without incurring a data under-run condition.

[00203] In one aspect of embodiments, sub-frame transmission has two modes. One
mode is a periodic sub-frame mode, or periodic timing epochs, used to transmit live
video and audio streams. In this mode, the Sub-frame length is defined as being non-
zero. The second mode is an asynchronous or non-periodic mode in which frames are
used to provide bitmap data to a client when new information is available. This mode is
defined by setting the sub-frame length to zero in the Sub-frame Header Packet. When
using the periodic mode, sub-frame packet reception may commence when the client
has synchronized to the forward link frame structure. This corresponds to the "in sync”
states defined according to the state diagram discussed below with respect to FIG. 49 or
FIG. 63. In the asynchronous non-periodic sub-frame mode, reception commences after

the first Sub-frame Header packet is received.

WO 2005/091593 PCT/US2005/008832

35

B. Overall Packet Structure

[00204] The format or structure of packets used to formulate the communication or
signal protocol, or method or means for transferring data, implemented by the
embodiments are presented below, keeping in mind that the interface is extensible and
additional packet structures can be added as desired. The packets are labeled as, or
divided into, different "packet types" in terms of their function in the interface, that is,
commands, information, value, or data they transfer or are associated with. Therefore,
each packet type denotes a pre-defined packet structure for a given packet which is used
in manipulating the packets and data being transferred. As will be readily apparent, the
packets may have pre-selected lengths or have variable or dynamically changeable
lengths depending on their respective functions. The packets could also bear differing
names, although the same function is still realized, as can occur when protocols are
changed during acceptance into a standard. The bytes or byte values used in the various
packets are configured as multi-bit (8- or 16-bit) unsigned integers. A summary of the
packets being employed along with their "type" designations, listed in type order, is
shown in Tables VI-1 through VI-4.

[00205] Each table represents a general “type” of packet within the overall packet
structure for ease in illustration and understanding. There is no limitation or other
impact implied or being expressed for the invention by these groupings, and the packets
can be organized in many other fashions as desired. The direction in which transfer of a

packet is considered valid is also noted.

Table VI -1
Link Control Packets
Packet | Valid in | Valid in
Packet Name Type |Forward| Reverse
Sub-frame Header Packet 15359 X
Filler Packet 0 X X
Reverse Link Encapsulation Packet 65 X
Link Shutdown Packet 69 X
Display Power State Packet 75 X
Forward Audio Channel Enable Packet 78 X
Perform Type Handoff Packet 77 X
Round Trip Delay Measurement Packet| 82 X
Forward Link Skew Calibration Packet 83 X

WO 2005/091593 PCT/US2005/008832

36
Table VI -2
Basic Media Stream Packets
Packet | Valid in |Valid in
Packet Name Type |Forward |Reverse
Video Stream Packet 16 X X
Audio Stream Packet 32 X X
1-—15,
Reserved Stream Packets 18 —31, X X
33—55
User-Defined Stream Packets 56 - 63 X X
Color Map Packet 64 X X
Reverse Audio Sample Rate Packet 79 X
Transparent Color Enable Packet 81 X
Table VI -3

Client Status and Control Packets

Packet| Valid in | Valid in
Packet Name Type |Forward | Reverse

Client Capability Packet 66 X
Keyboard Data Packet 67 X X
Pointing Device Data Packet 68 X X
Client Request and Status Packet 70 X
Digital Content Protection Overhead 80 X X
Packet

Request VCP Feature Packet 128 X

VCP Feature Reply Packet 129 X
Set VCP Feature Packet 130 X

Request Valid Parameter Packet 131 X

Valid Parameter Reply Packet 132 X
Request Specific Status Packet 138 X

Valid Status Reply List Packet 139 X
Personal Display Capability Packet 141 X
Client Error Report Packet 142 X
Scaled Video Stream Capability Packet 143 X
Client Identification Packet 144 X
Alternate Display Capability Packet 145 X
Register Access Packet 146 X X

WO 2005/091593 PCT/US2005/008832

37
Table VI -4
Advanced Graphic and Display Packets
Packet} Valid in | Valid in

Packet Name Type | Forward | Reverse
Bitmap Block Transfer Packet 71 X
Bitmap Area Fill Packet 72 X
Bitmap Pattern Fill Packet 73 X
Read Frame Buffer Packet 74 X
Scaled Video Stream Capability Packet 143 X
Scaled Video Stream Setup Packet 136 X
Scaled Video Stream Acknowledgement | 137 X
Packet
Scaled Video Stream Packet 18 X

[00206] Something that is clear from other discussions within this text is that the Sub-

frame Header, Filler, Reverse Encapsulation, Link Shutdown, Client Capability, and
Client Request and Status Packets are each considered very important to, or even
required in many embodiments of communication interfaces for External Mode
operation. However Reverse Encapsulation, Link Shutdown, Client Capability, and
Client Request and Status Packets, can be or are more likely to be considered optional
for Internal Mode operation. This creates yet another type of MDDI protocol which
allows communication of data at very high speeds with a reduced set of communications
packets, and corresponding simplification of control and timing.

[00207] Packets have a common basic structure or overall set of minimum fields
comprising a Packet Length field, a Packet Type field, Data Bytes field(s), and a CRC
field, which is illustrated in FIG.8. As shown in FIG. 8, the Packet Length field

- contains information, in the form of a multi-bit or -byte value, that specifies the total
number of bits in the packet, or its length between the packet length field and the CRC
field. In one embodiment, the packet length field contains a 16-bit or 2-byte wide,
unsigned integer, that specifies the packet length. The Packet Type field is another
multi-bit field which designates the type of information that is contained within the
packet. In an exemplary embodiment, this is an 16-bit or 2-byte wide value, in the form
of an 16-bit unsigned integer, and specifies such data types as display capabilities,
handoff, video or audio streams, status, and so forth.

[00208] A third field is the Data Bytes field, which comtains the bits or data being

transferred or sent between the host and client devices as part of that packet. The format

WO 2005/091593 PCT/US2005/008832

38

of the data is defined specifically for each packet typc according to the specific type of
data being transferred, and may be separated into a series of additional fields, each with
its own format requirements. That is, each packet type will have a defined format for
this portion or field. The last field is the CRC field which contains the results of a 16-
bit cyclic redundancy check calculated over the Data Bytes, Packet Type, and Packet
Length fields, which is used to confirm the integrity of the information in the packet. In
other words, calculated over the entire packet except for the CRC field itsel£. The client
generally keeps a total count of the CRC errors detected, and reports this count back to
the host in the Client Request and Status Packet (see further below).

[00209] Generally, these field widths and organization are designed to keep 2-byte fields
aligned on an even byte boundary, and 4-byte fields aligned on 4-byte boundaries. This
allows packet structures to be easily built in a main memory space of, Or associated
with, a host and a client without violating the data-type alignment rules encountered for
most or typically used processors or control circuits.

[00210] During transfer of the packets, fields are transmitted starting with the Least
Significant Bit (LSB) first and ending with the Most Significant Bit (MSB) transmitted
last. Parameters that are more than one byte in length are transmitted using the least
significant byte first, which results in the same bit transmission pattern being used for a
parameter greater than 8 bits in length, as is used for a shorter parameter where the LSB
is transmitted first. The data fields of each packet are generally transmitted in the order
that they are defined in the subsequent sections below, with the first field listed being
transmitted first, and the last field described being transmitted last. The data on the
MDDI_Data0 signal path is aligned with bit '0' of bytes transmitted on the interface in
any of the modes, Type 1, Type 2, Type 3, or Type-4.

[00211] When manipulating data for displays, the data for arrays of pixels are transmitted
by rows first, then columns, as is traditionally done in the electronics arts. In other
words, all pixels that appear in the same row in a bit map are transmitted in order with
the left-most pixel transmitted first and the right-most pixel transmitted last. After the
right-most pixel of a row is transmitted then the next pixel in the sequence is the left-
most pixel of the following row. Rows of pixels are generally transmitted in order from
top to bottom for most displays, although other configurations can be accormmodated as
needed. Furthermore, in handling bitmaps, the conventional approach, which is

followed here, is to define a reference point by labeling the upper-left corner of a bitmap

WO 2005/091593 PCT/US2005/008832

39

as location or offset "0,0." The X and Y coordinates used to define or determine a
position in the bitmap increase in value as one approaches the right and bottom of the
bitmap, respectively. The first row and first column (upper left corner of an image) start
with an index value of zero. The magnitude of the X coordinate increases toward the
right side of the image, and the magnitude of the Y coordinate increases towaxd the
bottom of the image as viewed by the user of the display.

[00212] A display window is the visible portion of a bitmap, the portion of the pixels in
the bitmap that can be seen by the user on the physical display medium. It is often the
case that the display window and the bitmap are the same size. The upper-left corner of
a display window always displays bitmap pixel location ‘0,0’. The width of the display
window corresponds to the X axis of the bitmap, and the display window width for this
embodiment is less than or equal to the width of the corresponding bitmap. The height
of the window corresponds to the Y axis of the bitmap, and the display window height
for this embodiment is less than or equal to the height of the corresponding bitmap. The
display window itself is not addressable in the protocol because it is only defined as the
visible portion of a bitmap.

[00213] The relationship between a bitmaps and display windows is well known in the
computer, electronic art, Internet communication, and other electronics related arts.

Therefore, no further discussion or illustration of these principles is provided here.

C. Packet Definitions
1 Sub-Frame Header Packet
[00214) The Sub-Frame Header packet is the first packet of every sub-frame, and has a
basic structure as illustrated in FIG. 9. The Sub-Frame Header Packet is used fox host-
client synchronization, every host should be able to generate this packet, while every
client should be able to receive and interpret this packet. As can be seen in one
embodiment in FIG. 9, this type of packet is structured to have Packet Length, Packet
Type, Unique Word, Reserved 1, Sub-Frame Length, Protocol Version, Sub-Frame
Count, and Media-frame Count fields, generally in that order. In one embodiment, this
type of packet is generally identified as a Type 15359 (0x3bff hexadecimal) packet and
uses a pre-selected fixed length of 20 bytes, not including the packet length field.
[00215] The Packet Type field and the Unique Word field each use a 2 byte value (16-bit
unsigned integer). The 4-byte combination of these two fields together forms a 32-bit

WO 2005/091593 PCT/US2005/008832

40

unique word with good autocorrelation. In one embodiment, the actual unique word is
0x005a3bff, where the lower 16 bits are transmitted first as the Packet Type, and the
most significant 16 bits are transmitted afterward.

[00216] The Reserved 1 field contains 2 bytes that are reserved space for future use, and
is generally configured at this point with all bits set to zero. One purpose of this field is
to cause subsequent 2-byte fields to align to a 16-bit word address and cause 4-byte
fields to align to a 32-bit word address. The least significant byte is reserved to indicate
whether or not a host is capable of addressing multiple client devices. A value of zero
for this byte is reserved to indicate that the host is capable of operating only with a
single client device.

(002171 The Sub-frame Length field contains 4 bytes of information, or values, that
specifies the number of bytes per sub-frame. In one embodiment, the length of this field
may be set equal to zero to indicate that only one sub-frame will be transmitted by the
host before the link is shut down into an idle state. The value in this field can be
dynamically changed "on-the-fly" when transitioning from one sub-frame to the next.
This capability is useful in order to make minor timing adjustments in the sync pulses
for accommodating isochronous data streams. If the CRC of the Sub-frame Header
packet is not valid then the link controller should use the Sub-frame Length of the
previous known-good Sub-frame Header packet to estimate the length of the current
sub-frame.

[00218] The Protocol Version field contains 2 bytes that specify the protocol version
used by the host. The Protocol Version field may be set to '0' to specify the first or
current version of the protocol as being used. This value will change over time as new
versions are created, and is already being upgraded to a value of ‘1’ for some version
fields. Version values will probably or generally follow a current version number for an
approved standards document which covers interfaces such as MDDI, as would be
known.

[00219] The Sub-frame Count field contains 2 bytes that specify a sequence number that
indicates the number of sub-frames that have been transmitted since the beginning of the
media-frame. The first sub-frame of the media-frame has a Sub-frame Count of zero.
The last sub-frame of the media-frame has a value of n-1, where n is the number of sub-
frames per media-frame. The value of the Sub-frame Count field is equal to the Sub-

frame Count sent in the previous Sub-Frame packet plus 1, except for a first sub-frame

WO 2005/091593 PCT/US2005/008832

41

of a media-frame which will have a count of zero. Note that if the Sub-frame Length is
set equal to zero (indicating a non-periodic sub-frame) then the Stab-frame count is also
set equal to zero.

[00220] The Media-frame Count field contains 4 bytes (32-bit wmnsigned integer) that
specify a sequence number that indicates the number of media-firames that have been
transmitted since the beginning of the present media item or data breing transferred. The
first media-frame of a media item has a Media-frame Count of zero. The Media-frame
Count increments just prior to the first sub-frame of each media-fFrame and wraps back
to zero after the maximum Media-frame Count (for example, media-frame number
2%1 = 4,294,967,295) is used. The Media-frame Count value may be reset generally at

any time by the Host to suit the needs of an end application.

2. Filler Packet

[00221] A filler packet is a packet that is transferred to, or from, a client device when no
other information is available to be sent on either the forward or reverse link. It is
recommended that filler packets have a minimum length in order to allow maximum
flexibility in sending other packets when required. At the very erad of a sub-frame or a
reverse link encapsulation packet (see below), a link controller sets the size of the filler
packet to fill the remaining space to maintain packet integrity. The Filler Packet is
useful to maintain timing on the link when the host or client have mo information to send
or exchange. Every host and client needs to be able to send and receive this packet to
make effective use of the interface.

[00222] An exemplary embodiment of the format and contents ©f a Filler Packet are
shown in FIG. 10. As shown in FIG. 10, this type of packet is streactured to have Packet
Length, Packet Type, Filler Bytes, and CRC fields. In one embodiment, this type of
packet is generally identified as a Type 0, which is indicated in the 2-byte Type field.
The bits or bytes in the Filler Bytes field comprise a variable mumber of all zero bit
values to allow the filler packet to be the desired length. The smallest filler packet
contains no bytes in this field. That is, the packet consists of omly the packet length,
packet type, and CRC, and in one embodiment uses a pre-selected fixed length of 6
bytes or a Packet Length value of 4. The CRC value is determiraed for all bytes in the
packet including the Packet Length, which may be excluded in sorme other packet types.

WO 2005/091593 PCT/US2005/008832

42

3. Video Stream Packet

[00223] Video Stream Packets carry video data to update typically rectangular regions of
a display device. The size of this region may be as small as a single pixel or as large as
the entire display. There may be an almost unlimited number of streams displayed
simultaneously, limited by system resources, because all context required to display a
stream is contained within the Video Stream Packet. The format of one embodiment of
a Video Stream Packet (Video Data Format Descriptor) is shown in FIG. 11. As seen in
FIG. 11, in one embodiment, this type of packet is structured to have Packet Length (2
bytes), Packet Type, bClient ID, Video Data Descriptor, Pixel Display Attributes, X
Left Edge, Y Top Edge, X Right Edge, Y Bottom Edge, X and Y Start, Pixel Count,
Parameter CRC, Pixel Data, and Pixel Data CRC fields. This type of packet is generally
identified as a Type 16, which is indicated in the 2-byte Type field. In one embodiment,
a client indicates an ability to receive a Video Stream Packet using Red-Green-Blue
(RGB), Monochrome, and Y Cr Cb Capability fields of the Client Capability Packet.

[00224] In one embodiment, the bClient ID field contains 2 bytes of information that are
reserved for a Client ID. Since this is a newly developed communications protocol
actual client IDs are not yet known or sufficiently communicable. Therefore, the bits in
this field are generally set equal to zero until such ID values are known, at which time
the ID values can be inserted or used, as would be apparent to those skilled in the art.
The same process will generally be true for the client ID fields discussed below.

[00225] The format and contents employed for realizing the operation of an exemplary
Video Data Descriptor field, as mentioned above, are shown in FIGs. 12A-12E. In FIGs.
12A-12E, the Video Data Format Descriptor field contains 2 bytes in the form of a 16-
bit unsigned integer that specifies the format of each pixel in the Pixel Data in the
present stream in the present packet. It is possible that different Video Stream packets
may use different pixel data formats, that is, use a different value in the Video Data
Format Descriptor, and similarly, a stream (region of the display) may change its data
format on-the-fly. The pixel data format should comply with at least one of the valid
formats for the client as defined in the Client Capability Packet. The Video Data
Format Descriptor defines the pixel format for the present packet only which does not
imply that a constant format will continue to be used for the lifetime of a particular

video stream.

WO 2005/091593 PCT/US2005/008832

43

[00226] FIGs. 12A through 12D illustrate how the Video Data Format Descriptor is
coded. As used in these figures, and in this embodiment, when bits [15:13] are equal to
'000', as shown in FIG. 12A, then the video data consists of an atray of monochrome
pixels where the number of bits per pixel is defined by bits 3 through 0 of the Video
Data Format Descriptor word. Bits 11 through 4 are generally reserved for future use or
applications and are set to zero in this situation. When bits [15:13] are instead equal to
the values '001", as shown in FIG. 12B, then the video data consists of an array of color
pixels that each specify a color through a color map (palette). In this situation, bits 5
through 0 of the Video Data Format Descriptor word define the number of bits per
pixel, and bits 11 through 6 are generally reserved for future use or applications and set
equal to zero. When bits [15:13] are instead equal to the values '010), as shown in
FIG. 12C, then the video data consists of an array of color pixels where the number of
bits per pixel of red is defined by bits 11 through 8, the number of bits per pixel of green
is defined by bits 7 through 4, and the number of bits per pixel of blue is defined by bits
3 through 0. In this situation, the total number of bits in each pixel is the sum of the
number of bits used for red, green, and blue.

[00227] ' However, when bits [15:13] are instead equal to the values or string '011', as
shown in FIG. 12D, then the video data consists of an array of video data in 4:2:2
YCbCr format with luminance and chrominance information, where the number of bits
per pixel of luminance (Y) is defined by bits 11 through 8, the number of bits of the Cb
component is defined by bits 7 through 4, and the number of bits of the Cr component is
defined by bits 3 through 0. The total number of bits in each pixel is the sum of the
number of bits used for red, green, and blue. The Cb and Cr components are sent at half
the rate as Y. In addition, the video samples in the Pixel Data portion of this packet are
organized as follows: Cbn, Yn, Crn, Yo+1, Cbnt2, Ynt+2, Cm+2, Yn+t3, ... where Cbn
and Crn are associated with Yn and Yn+1, and Cbn+2 and Crn+2 are associated with
Yn+2 and Yn+3, and so on.

[00228) Yn, Yo+1, Yn+2 and Yn+3 are luminance values of four consecutive pixels in a
single row from left to right. If there are an odd number of pixels in a row (X Right
Edge — X Left Bdge + 1) in the window referenced by the Video Stream Packet then the
Y value corresponding to the last pixel in each row will be followed by the Cb value of
the first pixel of the next row, and a Cr value is not sent for the last pixel in the row. It

is recommended that windows using Y Cb Cr format have a width that is an even

WO 2005/091593 PCT/US2005/008832

44

number of pixels. The Pixel Data in a packet should contain an even number of pixels.
Tt may contain an odd or even number of pixels in the case where the last pixel of the
Pixel Data corresponds to the last pixel of a row in the window specified in the Video
Stream Packet header, i.e. when the X Iocation of the last pixel in the Pixel Data is equal
to X Right Edge.

[00229] When bits [15:13] are instead equal to the values ‘100’ then the video data
consists of an array of Bayer pixels where the number of bits per pixel is defined by bits
3 through 0 of the Video Data Format Descriptor word. The Pixel Group Pattern is
defined by bits 5 and 4 as shown in FIG. 12E. The order of pixel data may be
horizontal or vertical, and the pixels in rows or columns may be sent in forward or
backward order and is defined by bits 8 through 6. Bits 11 through 9 should be set to
zero. The group of four pixels in the pixel group in the Bayer format resembles what is
often referred to as a single pixel in some display technologies. However, one pixel in
the Bayer format is only one of the four colored pixels of the pixel group mosaic
pattern.

[00230] Tor all five formats shown in the figures, Bit 12, which is designated as “P,”
specifies whether or not the Pixel Data samples are packed, or byte-aligned pixel data.
A value of '0' in this field indicates that each pixel in the Pixel Data field is byte-aligned
with an MDDI byte boundary. A value of '1' indicates that each pixel and each color
within each pixel in the Pixel Data is packed up against the previous pixel or color
within a pixel leaving no unused bits. The difference between Byte-Aligned and Packed
Pixel data format is shown in more detail in FIG. 13, where one can clearly see that
byte-aligned data may leave unused portions of the data sub-frame, as opposed to

packed pixel format which does not.

4 Audio Stream Packet

[00231] The audio stream packets carry audio data to be played through the audio system
of the client, or for a stand alone audio presentation device. Different audio data
streams may be allocated for separate audio channels in a sound system, for example:
left-front, right-front, center, lefi-rear, and right-rear, depending on the type of audio
system being used. A full complement of audio channels is provided for headsets that
contain enhanced spatial-acoustic signal processing. A client indicates an ability to

receive an Audio Stream Packet using the Audio Channe] Capability and Audio Sample

WO 2005/091593 PCT/US2005/008832

45

Rate fields of the Client Capability Packet. The format of Audio Stream Packets is
llustrated in FIG. 14.

[00232] As shown in FIG. 14, this type of packet is structured in one embodiment to
have Packet Length, Packet Type, bClient ID, Audio Channel ID, Reserved 1, Audio
Sample Count, Bits Per Sample and Packing, Audio Sample Rate, Parameter CRC,
Digital Audio Data, and Audio Data CRC fields. In one embodiment, this type of
packet is generally identified as a Type 32 packet.

[00233] The bClient ID field contains 2 bytes of information that are reserved for a
Client ID, as used previously. The Reserved 1 field contains 2 bytes that is reserved for
future use, and is generally configured at this point with all bits set to zero.

[00234] The Bits Per Sample and Packing field contains 1 byte in the form of an 8-bit
unsigned integer that specifies the packing format of audio data. The format generally
employed is for Bits 4 through 0 to define the number of bits per PCM audio sample.
Bit 5 then specifies whether or not the Digital Audio Data samples are packed. The
difference between packed and byte-aligned audio samples, here using 10-bit samples,
is illustrated in FIG. 15. A value of '0' indicates that each PCM audio sample in the
Digital Audio Data field is byte-aligned with an MDDI byte boundary, and a value of '’
indicates that each successive PCM audio sample is packed up against the previous
audio sample. This bit is generally effective only when the value defined in bits 4
through 0 (the number of bits per PCM audio sample) is not a multiple of eight. Bits 7

through 6 are reserved for future use and are generally set at a value of zero.

5. Reserved Stream Packets

[00235] In one embodiment, packet types 1 to 15, 18 to 31, and 33 through 55 are
reserved for stream packets to be defined for use in future versions or variations of the
packet protocols, as desired for various applications encountered. Again, this is part of
making the MDDI more flexible and useful in the face of ever changing technology and

system designs as compared to other techniques.

6. User-Defined Stream Packets

[00236] Eight data stream types, known as Types 56 through 63, are reserved for use in
proprietary applications that may be defined by equipment manufacturers for use with a
MDDI link. These are known as User-defined Stream Packets. Such packets may be

WO 2005/091593 PCT/US2005/008832

46

used for any purposc, but the host and client should only employ such packets in
situations where the result of such use is very well understood or known. The specific
definition of the stream parameters and data for these packet types is left to the specific
equipment manufacturers or interface designers implementing such packet types or
secking their use. Some exemplary uses of the User-defined Stream Packets are to
convey test parameters and test results, factory calibration data, and proprietary special
use data. The format of the user-defined stream packets as used in one embodiment is
illustrated in FIG. 16. As shown in FIG. 16, this type of packet is structured to have
Packet Length (2 bytes), Packet Type, bClient ID number, Stream Parameters,
Parameter CRC, Stream Data, and Stream Data CRC fields.

7 Color Map Packets

[00237] The color map packets specify the contents of a color map look-up table used to
present colors for a client. Some applications may require a color map that is lafger
than the amount of data that can be transmitted in a single packet. In these cases,
multiple Color Map packets may be transferred, each with a different subset of the color
map by using the offset and length fields described below. The format of the Color
Map Packet in one embodiment is illustrated in FIG. 17. As shown in FIG. 17, this type
of packet is structured to have Packet Length, Packet Type, hClient ID, Color Map Item
Count, Color Map Offset, Parameter CRC, Color Map Data, and Data CRC ficlds. In
one embodiment, this type of packet is generally identified as a Type 64 packet (Video
Data Format and Color Map Packet) as specified in the Packet Type Field (2 bytes). A
client indicates an ability to receive Color Map Packets using the Color Map Size and
Color Map Width fields of the Client Capability Packet.

8. Reverse Link Encapsulation Packets

[00238] In an exemplary embodiment, data is transferred in the reverse direction using a
Reverse Link Encapsulation Packet. A forward link packet is sent and the MDDI link
operation (transfer direction) is changed or turned around in the middle of this packet so
that packets can be sent in the reverse direction. The format of the Reverse Link
Encapsulation packet in one embodiment is illustrated in FIG. 18. As shown in FIG.
187, this type of packet is structured to have Packet Length, Packet Type, hCLient ID,
Reverse Link Flags, Reverse Rate Divisor, Turn-Around 1 Length, Turn-Around 2

WO 2005/091593 PCT/US2005/008832

47

Length, Parameter CRC, All Zero 1, Tum-Around 1, Reverse Data Packets, Turn-
Around 2, and All Zero 2 fields. In one embodiment, this type of packet is generally
identified as a Type 65 packet. For External Mode every host must be able to generate
this packet and receive data, and every client must be able to receive and send data to
the host in order to efficiently make use of the desired protocol and resulting speed.
Implementation of this packet is optional for Internal Mode, but the Reverse Link
Encapsulation Packet is used for the host to receive data from the client.

[00239] The MDDI link controller behaves in a special manner while sending a Reverse
Link Encapsulation Packet. The MDDI has a strobe signal that is generally always
driven by the host as controller of the link. The host behaves as if it were transmitting a
zero for each bit of the Turn-Around and Reverse Data Packets portions of the Reverse
Link Encapsulation packet. The host toggles a MDDI_Strobe signal at each bit
boundary during the two turn-around times and during the time allocated for reverse
data packets. That is, the host toggles MDDI_Stb from the beginning of the All Zero 1
field to the end of the All Zero 2 field. (This is the same behavior as if it were
transmitting all-zero data.)

[00240] The host disables its MDDI data signal line drivers and generally assures they
have been completely disabled prior to the last bit of the Turn-Around 1 field, and then
re-enables its line drivers during the Tum-Around 2 field, and generally assure that the
drivers have been completely re-enabled prior to the last bit of the Turn-Around 2 field.
The client reads the Turn-Around Length parameter and drives the data signals toward
the host immediately after the last bit in the Turn-Around 1 field. That is, the client
clocks new data into the link on certain rising edges of the MDDI strobe as specified in
the packet contents description below, and elsewhere. The client uses the Packet Length
and Turn-Around Length parameters to know the length of time it has available to send
packets to the host. The client may send filler packets or drive the data lines to a zero
state when it has no data to send to the host. If the data lines are driven to zero, the host
interprets this as a packet with a zero length (not a valid length) and the host does not
accept any more packets from the client for the duration of the current Reverse Link
Encapsulation Packet.

[00241] In one embodiment, the Reverse Link Request field of the Client Request and
Status Packet may be used to inform the host of the number of bytes the client needs in
the Reverse Link Encapsulation Packet to send data back to the host. The host attempts

WO 2005/091593 PCT/US2005/008832

48

to grant the request by allocating at least that number of bytes in the Reverse Link
Encapsulation Packet. The host may send more than one Reverse Link Encapsulation
Packet in a sub-frame. The client may send a Client Request and Status Packet at
almost any time, and the host will interpret the Reverse Link Request parameter as the

total number of bytes requested in one sub-frame.

9. Client Capability Packets

[00242] A host needs to know the capability of the client (display) it is communicating
with in order to configure the host-to-client link in an generally optimum or desired
manner. It is recommended that a display send a Client Capability Packet to the host
after forward link synchronization is acquired. The transmission of such a packet is
considered required when requested by the host using the Reverse Link Flags in the
Reverse Link Encapsulation Packet. The Client Capability Packet is used to inform the
host of the capabilities of a client. For External Mode every host should be able to
receive this packet, and every client should be able to send this packet to fully utilize
this interface and protocol. Implementation of this packet is optional for Internal Mode,
since the capabilities of the client, such as a display, keyboard or other input/output
device, in this situation should already be well defined and known to the host at the time
of manufacture or assembly into a single component or unit of some type.

[00243] The format of the Client Capability packet in one embodiment is illustrated in
FIG. 19. As shown in FIG. 19, for this embodiment, this type of packet 1s structured to
have Packet Length, Packet Type, cClientID, Protocol Version, Min Protocol Version,
Data Rate Capability, Interface Type Capability, Number of Alt Displays, Reserved 1,
Bitmap Width, Bitmap Height, Display Window Width, Display Window Height, Color
Map Size, Color Map RGB Width, RGB Capability, Monochrome Capability, Reserved
2, Y Cr Cb Capability, Bayer Capability, Reserved 3, Client Feature Capability, Max
Video Frame Rate, Min Video Frame Rate, Min Sub-frame rate, Audio Buffer Depth,
Audio Channel Capability, Audio Sample Rate Capability, Audio Sample Resolution,
Mic Sample Resolution, Mic Sample Rate Capability, Keyboard Data Format, Pointing
Device Data Format, Content Protection Type, Mfr. Name, Product Code, Reserved 4,
Serial Number, Week of Mfr., Year of Mfr., and CRC fields. In an exemplary
embodiment, this type of packet is generally identified as a Type 66 packet.

WO 2005/091593 PCT/US2005/008832

49

10. Keyboard Data Packets

[00244] A keyboard data packet is used to send keyboard data from the client device to
the host. A wireless (or wired) keyboard may be used in conjunction with various
displays or audio devices, including, but not limited to, a head mounted video
display/audio presentation device. The Keyboard Data Packet relays keyboard data
received from one of several known keyboard-like devices to the host. This packet can
also be used on the forward link to send data to the keyboard. A client indicates an
ability to send and receive Keyboard Data Packets using the Keyboard Data Field in the
Client Capability Packet.

[00245] The format of a Keyboard Data Packet is shown in FIG. 20, and contains a
variable number of bytes of information from or for a keyboard. As shown in FIG. 20,
this type of packet is structured to have Packet Length, Packet Type, bClient ID,
Keyboard Data Format, Keyboard Data, and CRC fields. Here, this type of packet is
generally identified as a Type 67 packet.

[00246] The bClient ID is a reserved field, as before, and the CRC is performed over all
bytes of the packet. The Keyboard Data Format field contains a 2 bytes value that
describes the keyboard data format. Bits 6 through O should be identical to the
Keyboard Data Format field in the Client Capability Packet. This value is not to equal
127. Bits 15 through 7 are reserved for future use and are, therefore, currently set to

ZLro.

11. Pointing Device Data Packets

[00247] A pointing device data packet is used as a method, structure, or means to send
position information from a wireless mouse or other pointing device from the client to
the host. Data can also be sent to the pointing device on the forward link using this
packet. An exemplary format of a Pointing Device Data Packet is shown in FIG. 21,
and contains a variable number of bytes of information from or for a pointing device.
As shown in FIG. 21, this type of packet is structured to have Packet Length, Packet
Type, bClient ID, Pointing Device Format, Pointing Device Data, and CRC fields. In
an exemplary embodiment, this type of packet is generally identified as a Type 68
packet in the 1-byte type field.

WO 2005/091593 PCT/US2005/008832

50

12, Link Shutdown Packets

[00248] A Link Shutdown Packet is sent from the host to the client as a method or means
to indicate that the MDDI data and strobe will be shut down and go into a low-power
consumption "hibernation" state. This packet is useful to shut down the link and
conserve power after static bitmaps are sent from a mobile communication device to the
display, or when there is no further information to transfer from a host to a client for the
time being. Normal operation is resumed when the host sends packets again. The first
packet sent after hibernation is a sub-frame header packet. The format of a Client Status
Packet for one embodiment is shown in FIG. 22. As shown in FIG. 22, this type of
packet is structured to have Packet Length, Packet Type, CRC and All Zeros fields. In
one embodiment, this type of packet is generally identified as a Type 69 packet in the 1-
byte type field.

[00249] The packet length field uses 2 bytes to specify the total number of bytes in the
packet not including the packet length field. In one embodiment, the Packet Length of
this packet is dependent on the Interface Type or link mode in effect at the time when
the Link Shutdown Packet is sent. Therefore, the typical packet length becomes 20
bytes for Type 1 mode (22 bytes total in the packet), 36 bytes for a Type 2 mode (38
bytes total in the packet), 68 bytes for a Type 3 mode link (70 bytes total in the packet),
and 132 bytes for a Type 4 mode (with 134 bytes total in the packet).

[00250] The All Zeros field uses a variable number of bytes to ensure that MDDI_Data
signals are at a logic-zero level for a sufficient time to allow the client to begin
recovering clock using only MDDI_Stb prior to disabling a host’s line drivers. The

- length of the All Zeros field is dependent on the Interface Type or link operating mode
in effect at the time when the Link Shutdown Packet is sent. The length of the All
Zeros field is intended to produce 64 pulses on MDDI_Stb for any Interface Type
setting. Therefore, the All Zeros length for each interface type becomes 16 bytes for
Type 1, 32 bytes for Type 2, 64 bytes for Type 3, and 128 bytes for Type 4.

[00251] The CRC field uses 2 bytes that contain a 16-bit CRC of bytes from the Packet
Length to the Packet Type.
[00252] In the low-power hibernation state, the MDDI_Data(driver is disabled into a

high-impedance state starting after the 16th to 48th MDDI_Stb cycle or pulse after the
last bit of the All Zeros field. For Type-2, Type-3, or Type-4 links the MDDI Datal
through MDDI DataPwr7 signals are also placed in a high-impedance state at the same

WO 2005/091593 PCT/US2005/008832

51

time that the MDDI_Data0 driver is disabled Either the host or client may cause the
MDDI link to "wake up" from the hibernation state as described elsewhere, which is a
key advance for and advantage of the present invention.

[00253] As described in the definition of the All Zeros field, MDDI_Stb toggles for 64
cycles following the MSB of the CRC field of the Link Shutdown Packet to facilitate an
orderly shutdown in the client controller. One cycle is a low-to-high transition followed
by a high-to-low transition, or a high-to-low transition followed by a low-to-high
transition. After the All Zeros field is sent, the MDDI_Stb driver in the host is disabled.

13. Client Request and Status Packets

[00254] The host needs a small amount of information from the client so it can configure
the host-to-client link in a generally optimum manner. It is recommended that the client
send one Client Request and Status Packet to the host each sub-frame. The client
should send this packet as the first packet in the Reverse Link Encapsulation Packet to
ensure that it is delivered reliably to the host. The forwarding of this packet is also
accomplished when requested by a host using the Reverse Link Flags in the Reverse
Link Bncapsulation Packet. The Client Request and Status Packet is used to report
errors and status to the host. For external mode operation, every host should be able to
receive this packet, and every client should be able to send this packet in order to
properly or optimally employ the MDDI protocol. While it is also recommended that
for internal operations, that is internal hosts and internal clients, there should be support
for this packet, it is not required.

[00255] The format of a Client Request and Status Packet is shown in FIG. 23. As
shown in FIG. 23, this type of packet is structured to have Packet Length, Packet Type,
cClient ID, Reverse Link Request, Capability Change, Client Busy, CRC Error Count,
and CRC fields. This type of packet is generally identified as a Type 70 packet in the 1-
byte type field, and typically uses a pre-selected fixed length of 12 bytes.

[00256] The Reverse Link Request field may be used to inform the host of the number of
bytes the client needs in the Reverse Link Encapsulation Packet to send data back to the
host. The host should attempt to grant the request by allocating at least that number of
bytes in the Reverse Link Encapsulation Packet. The host may send more than one
Reverse Link Encapsulation Packet in a sub-frame in order to accommodate data. The

client may send a Client Request and Status Packet at any time and the host will

WO 2005/091593 PCT/US2005/008832

52

interpret the Reverse Link Request parameter as the total number of bytes requested in
one sub-frame. Additional details and specific examples of how reverse link data is sent

back to the host are shown below.

14. Bit Block Transfer Packets

[00257] The Bit Block Transfer Packet provides a means, structure, or method to scroll
regions of the displayy in any direction, generally by copying a block of pixels from one
rectangular region to another. Clients that have this capability will report the capability
in bit 0 of the Display Feature Capability Indicators field of the Client Capability
Packet. The format for one embodiment of a Bit Block Transfer Packet is shown in
FIG. 24. As shown in FIG. 24, this type of packet is structured to have Packet Length,
Packet Type, hClient ID, Pixel Data Attributes, Raster Operation, Upper Left X Value,
Upper Left Y Value, Window Width, Window Height, Window X Movement, Window
Y Movement, and CRC fields. This type of packet is generally identified as a Type 71
packet, and in one ermbodiment uses a pre-selected fixed length of 15 bytes. The 2-byte
hClient ID field contains information or values that are reserved for a Client ID, as
discussed elsewhere. Since this field is generally reserved for future use, the current
value is typically set to zero, by setting the bits to a logic-zero level, although it can be
set to other values or used by one skilled in the art to transfer desired information.

[00258] In one embodiment, the 2-byte Pixel Data Attributes field has values that specify
where the pixel data is going to be updated, with Bits 1 and O selecting the display
where the pixel data is going to be updated. If a primary display in the client does not
support stereo images then the client can affect the pixel data in the primary display for
one of the bit combinations 01, 10, or 11. It is recommended that the value 11 be used
to address the primary display in clients that do not support stereo display capability.
When Bits [1:0] have the values 11, the pixel data is updated in the frame buffer of both
the left and right eye, if Bits [1:0] have the values 10, the pixel data is updated in the
frame buffer of the left eye only. When Bits [1:0] have the values 01, the pixel data is
updated in the frame buffer of the right eye only. When Bits [1:0] have the values 00,
the pixel data is updated in the frame buffer of the alternate display specified by bits 8
through 11 below.

[00259] Bits 7 and 6 act as Display Update Bits that specify the frame buffer where the
pixel data is to be updated or written. The effects of the Frame Update Bits are

WO 2005/091593 PCT/US2005/008832

53

described in more detail later. When Bits [7:6] are ‘017, the Pixel data is written to an
offline image buffer. When Bits [7:6] are ‘00’, the Pixel data is written to an image
buffer used to refresh the display. When Bits [7:6] are *11°, the Pixel data is written to
all image buffers. If Bits [7:6] are “10°, this is treated as an invalid value. These bits
are currently reserved for future use. In this situation, the entire command is ignored
and no frame buffers are updated.

[00260] Bits 11 through 8 form a 4-bit unsigned integer that specifies an alternate display
or alternative client location where the pixel data is to be updated. Bits 0 and 1 are set
equal to 00 in order for a client to interpret bits 11 through 8 as an alternate display
number. Ifbits 1 and O are not equal to 00 then bits 8 through 11 are generally set equal
to a logic-zero value or level. Bits 2 through 5 and 12 through 15 are reserved for future
use and are generally be set to logic-zcro level or values.

[00261] In one embodiment, the 2 byte Raster Operation field specifies how to combine
pixels in source and destination locations to form new pixel values to be written to a
destination image location. Raster operations define how two different rectangular
regions of equal size in a frame buffer are merged together. The destination image area
is also one of the two images that are merged together. The second of the two images is
called the source image. If the client does not support the Raster Operation field as
specified in the Client Capability Packet then the host generally sends this packet with
bits 3 through 0 equal to 3, and the client ignores bits 3 to 0.

[00262] In one embodiment, Bits 3 to 0 are used to specify an actual raster operation by
using or setting them equal to one of the values shown in Table VII below to select the
corresponding operation shown next to that value. That is, each specified Bits [3:0]
value listed in the first column results in the operation specified in the second column,

and further defined here for clarification in the third column.

WO 2005/091593 PCT/US2005/008832
54
Table VII
Bits [3:0] Value stored in Destination Definition
Value Location
0 0
1 source & destination logic AND operation
2 source & ~destination source AND (not dest)
3 source
4 ~gource & destination (not source) AND dest
5 destination 10 operation
6 source ” destination logic XOR operation
7 source | destination logic OR operation
8 ~(source | destination) not (source OR dest)
9 ~(source ” destination) not (source XOR dest)
10 ~(destination) not (dest)
11 source | ~destination source OR (not dest)
12 ~source not source
13 ~source | destination (not source) OR dest
14 ~(source & destination) not (source AND dest)
15 All ones
[00263] Bits 5 through 4 are used to specify whether or not the destination pixels are

written to the destination locations as they relate to the transparent color. The operation
specified by bits 5 to 4 apply whether or not the raster operations is supported by the
client device. If the client does mot support raster operations then the resulting
destination pixel value to be considered for the operation defined by bits 5 through 4 is
equal to the source pixel value only.

[00264] ‘When the value of Bits [5:4] is equal to 00, then transparent color is not used. A
resulting destination pixel is written to the destination pixel location without
considering the value of the transparent color defined by the Transparent Color Enable
Packet. The value of Bits [5:4] being equal to 01 is currently reserved for future use and
typically not used, although available for one skilled in the art to establish a related use
for. When the value of Bits [5:4] is equal to 10, the resulting pixel is not written to the
destination pixel location if the resulting destination pixel computed by the raster
operation is equal to the transparent color. Otherwise it is written to the destination
pixel location. When the value of Bits [5:4] is equal to 11 the resulting pixel is not

written to the destination pixel location if the resulting destination pixel computed by

WO 2005/091593 PCT/US2005/008832

55

the raster operation is equal to the transparent color.. Otherwise the resulting pixel is
not written to the destination pixel location.

[00265] Bits 15 to 6 are reserved for future use and are, therefore, generally set equal to a
logic-zero value or level.

[00266] The remaining fields are used to specify the X and Y values of the coordinate of
the upper left corner of the window to be moved, the width and height of the window to
be moved, and the number of pixels that the window is to be moved horizontally, and
vertically, respectively. Positive values for the latter two fields cause the window to be
moved to the right, and down, and negative values cause movement to the left and up,
respectively. The CRC filed (here 2 bytes) contains a 16-bit CRC of all bytes in the
packet including the Packet Length.

15. Bitmap Area Fill Packets

[00267] The Bitmap Area Fill Packet provides a means, structure, or method to easily
initialize a region of the display to a single colox. Displays that have this capability will
report the capability in bit 1 of the Client Feature Capability Indicators field of the
Client Capability Packet. One embodiment for the format of a Bitmap Area Fill Packet
is shown in FIG. 25. As shown in FIG. 25, in this case this type of packet is structured
to have Packet Length, Packet Type, hClient ID, Upper Left X Value, Upper Left Y
Value, Window Width, Window Height, Data Format Descriptor, Pixel Area Fill Value,
and CRC fields. This type of packet is generally identified as a Type 72 packet in the 2-
byte type field, and uses a pre-selected fixed lenngth of 20 bytes.

[00268] The 2-byte hClient ID field contains information or values that are reserved for a
Client ID, as discussed elsewhere. Since this field is generally reserved for future use,
the current value is typically set to zero, by setting the bits to a logic-zero level,
although it can be set to other values or used by one skilled in the art to transfer desired

information.

16. Bitmap Pattern Fill Packets

[00269] The Bitmap Pattern Fill Packet provides a means or structure to easily initialize
a region of the display to a pre-selected pattern. Clients that have this capability will
report the capability in bit 2 of the Client Feature Capability field of the Client
Capability Packet. The upper left corner of the fill pattern is aligned with the upper left

WO 2005/091593 PCT/US2005/008832

36

corner of the window to be filled, unless the horizontal or vertical pattern offset is non-
zero. If the window to be filled is wider or taller than the fill pattern, then the pattern
may repeated horizontally or vertically a number of times to fill the window. The right
or bottom of the last repeated pattern is truncated as necessary. If the window is smaller
than the fill pattern, then the right side or bottom of the fill pattern may be truncated to
fit the window.

[00270] If a horizontal pattern offset is non-zero, then the pixels between the left side of
the window and the left side plus the horizontal pattern offset are filled with the right-
most pixels of the pattern. The horizontal pattern offset is to be less than the pattern
width. Similarly, if a vertical pattern offset is non-zero, then the pixels between the top
side of the window and the top of the side plus vertical pattern offset are filled with the
lower-most pixels of the pattern. The vertical pattern offset is to be less than the pattern
height.

[00271] One embodiment for the format of a Bitmap Pattern Fill Packet is shown in
FIG. 26. As shown in FIG. 26, this type of packet is structured to have Packet Length,
Packet Type, hClient ID, Upper Left X Value, Upper Left Y Value, Window Width,
Window Height, Pattern Width, Pattern Height, Horizontal Pattern Offset, Vertical
Pattern Offset, Data Format Descriptor, Parameter CRC, Pattern Pixel Data, and Pixel
Data CRC fields. In some embodiments, this type of packet is generally identified as a
Type 73 packet in the 1-byte type field.

17. Communication Link Data Channel Packets

[00272] The Communication Link Data Chammel Packet provides a structure, means, or
method for a client with high-level computing capability, such as a PDA, to
communicate with a wireless transceiver such as a cell phone or wireless data port
device. In this situation, the MDDI link is acting as a convenient high-speed interface
between the communication device and the computing device with the mobile display,
where this packet transports data at a Data Link Layer of an operating system for the
device. For example, this packet could be used if a web browser, email client, or an
entire PDA were built into a mobile display. Displays that have this capability will
report the capability in bit 3 of the Client Feature Capability field of the Client
Capability Packet.

WO 2005/091593 PCT/US2005/008832

57

[00273] The format of an embodiment for 2 Communication Link Data Channel Packet
is shown in FIG. 27. As shown in FIG. 27, this type of packet is structured to have
Packet Length, Packet Type, hClient ID, Parameter CRC, Communication Link Data,
and Communication Data CRC fields. In one embodiment, this type of packet is
generally identified as a Type 74 packet in the type field.

18. Display Power State Packets

[00274] The Display Power State Packet provides a structure, means, or method for
placing specific client controlled or client related, connected, or controller hardware into
a low power state when a client such as a display is not being used or in current active
use, in order to minimize the system power consumption or drain on system resources.
A packet of this type is the most useful for applications of the interface or interface
structure and protocol to external mode configurations or operations. In such
applications, it is more likely that the external device is operating on limited power
resources such as batteries, or has other power constraints and concerns, for example
overheating in limited spaces, and so forth, such that a minimal operating condition is
desired for periods or inactivity or non-use. In one embodiment, a client indicates an
ability to respond to Display Power State Packets using bit 9 of the Client Feature
Capability Indicators field of the Client Capability Packet.

[00275] The format of one embodiment for a Display Power State Packet is shown in
FIG. 28. As shown in FIG. 28, in one embodiment, this type of packet is structured to
have Packet Length, Packet Type, hClient ID, Power State, and CRC fields. This type
of packet is generally identified as a Type 75 packet in the 2-byte type field. The 2-byte
hClient ID field contains information or values that are reserved for a Client ID, as used
previously. Since this field is generally reserved for future use, the current value is set
to zero, by setting the bits to ‘0, although it can be used by one skilled in the art to
transfer desired information.

[00276] The Power State field, here 2 bytes, specifies the inforimation used to place a
specific device, piece of hardware, or equipment associated with the client such as a
display into the specified power state. When used for displays, Bit 0 of this field
specifies whether or not the packet applies to the main display or to an alternate display.

If bit 0 is equal to 1 then the packet applies to the main display. If bit 0 is equal to 0

WO 2005/091593 PCT/US2005/008832

58

then the packet applies to the alternate display specified by bits 11 through 8. Bit 1 is
reserved for future use and is generally set to zero.

[00277] Bits 3 through 2 of the Power State field specify the power state of the display
selected by bits 11 through 8 and bit 0. When Bits[3:2] have a value of ‘00’, the
selected display is not illuminated and should be consuming a minimum amount of
power, and the contents of the frame buffer are not guaranteed to be retained during this
state. When Bits[3:2] have a value of ‘01°, the selected display is not illuminated and is
consuming a relative minimum amount of power and the contents of the frame buffer
are guaranteed to be retained during this state. The display may consume mmore power
in this state than in state 00. The client can indicate an ability to support state 01 using
bit 10 of the Client Feature Capability Indicators field of the Client Capability Packet.
When Bits[3:2] of the Power State field have a value of ‘10°, the selected display is
illuminated and is displaying an image from its associated frame buffer. The value of
“11” for Bits[3:2] is a reserved value or state for future use and is not used.

{00278] Those skilled in the art will recognize that while most useful for display
applications, use of this packet is not limited by this invention to only displayys and there
may be other applications, configurations, or situations in which power control may
needed or desired in relation to other hardware elements with which the MDDI is being
used, or for which a client is controlling or communicating. In these situations, the Bits
disclosed above may have similar functions but could be activating main and secondary
ones of such elements, or setting power levels and so forth, as would be understood.

[00279] In one embodiment, Bits 11 through 8 of the Power State field form a 4-bit
unsigned integer that specifies the alternate display to which the power state is applied.
Bit 0 is set to a logic-zero value in order for the client to interpret bits 11 through 8 as an
alternate display number. Ifbit 0 is equal to 1 then bits 11 through 8 are zero.

[00280] Bits 7 through 4 and Bits 15 through 12 are reserved for future use, and are
generally be set to logic-zero level or values for current applications or desigms.

[00281] The 2 byte CRC field specifies or contains the CRC of all bytes i the packet
including the Packet Length.

[00282] A summary of which display power states are generally supported by the
interface structure or protocol is presented in Table VIII below. As can be seen, various
combinations of Client Feature Capability Bits 10 and 9 are used to establish, setup, or

trigger various ones of the desired power states. A mark present in given row and

WO 2005/091593 PCT/US2005/008832

59

column position indicates that the display power state specified at the top of that colummn

is supported for the stated combination of Client Feature Capability Indicator bits.

TABLLE VIII
Client Feature Capability Power Power Power Power
Indicator Bits 9 and 10 values State =00 | State=01 | State=10 | State=11
Bit9=0andBit 10=0 X
Bit9=1and Bit 10=0). 4 X X
Bit9=0and Bit10=1 X
Bit9=1andBit10=1 X X X X
19. Perform Type Handoff Packets
[00283] The Perform Type Handoff Packet is a means, structure, or method for the host

to use in order to command a client to lnandoff to the mode specified in this packet.
This is to be the one of the interface type settings supported by the client as described in
the Client Capability Packet. The host and client should switch to the specified forward
and reverse link interface type right after this packet is sent. The format of one
embodiment for a Perform Type Handoff Packet is shown in FIG. 29. Hosts and clients
that support an interface type other than L'ype 1 should provide support for this packet.
It is typically recommended that a host reads the Client Request and Status Packet
immediately before it sends the Perform T ype Handoff Packet to confirm that the client
is in sync with the

host.

[00284] As shown in FIG. 29, in one embodiment, this type of packet is structured to
have Packet Length, Packet Type, Interfaace Type, Reserve 1, Delay Filler, and CRC
fields. This type of packet is generally identified as a Type 77 packet in the 2-byte type
field, and uses a pre-selected fixed length. of 6 bytes, outside of the Packet Length and
Delay Filler fields.

[00285] In one embodiment, the Interface Type ficld uses a 1 bytc value to confirm a
new interface type to be used or employecd for the link. The value in this field specifies
or represents the interface type in the following manner. Bits 2 through 0 define the
interface Type to be used on the forward dink with a value of 1 signifying or specifying
a handoff to a Type 1 mode; a value of 2 a handoff to Type 2 mode, a value of 3 a
handoff to Type 3 mode, and a value of 4 a handoff to Type 4 mode. Bits 5 through 3

WO 2005/091593 PCT/US2005/008832

60

define the interface Type to be used on the revexse link with a value of 1 signifying or
specifying a handoff to a Type 1 mode, value of 2 a handoff to Type 2 mode, a value of
3 a handoff to Type 3 mode, and a value of 4 a handoff to Type 4 mode. Bits 0, 6, and 7
are currently reserved for future use, and as such are typically, but not necessarily, set to
a logic-zero level.

[00286] The Delay Filler field has been created as a means, structure, or method for
allowing sufficient time on the part of the sy/stem for the client to prepare or be
configured to switch over to use or set up for using a new interface type setting at the
beginning of the packet that immediately follovws the Perform Interface Type Handoff
Packet. This field contains a group of bytes or &-bit values that are all set at or equal to
a logic-zero level or value. The number of bytes used in this field is selected such that it
results in this field being a length equivalent to 64 MDDI_Stb cycles. The length of the
Delay Filer field is based on the interface type setting of the forward link which will be
16 bytes for a Type 1 forward link interface typ e, 32 bytes for a Type 2 interface type,
64 bytes for a Type 3 interface type, and 128 bxytes when specifying or using a Type 4
forward link interface type.

[00287] The Reserved 1 field (here 1 byte) is reserved for future use in imparting
information. All bits in this field are generally s et to a logic-zero level. The purpose of
such fields is currently to cause all subsequent 2 byte fields to align to a 16-bit word
address and cause 4-byte fields to align to a 32-bit word address. The CRC field (here 2
bytes) contains a 16-bit CRC of all bytes in the pracket including the Packet Length.

20. Forward Audio Channel Enable Packets

[00288] This packet provides a structure, method, or means that allows a host to enable
or disable audio channels in a client. This capabdility is useful so that a client (a display
for example) can power off audio amplifiers or similar circuit elements to save power
when there is no audio to be output by the host. This is significantly more difficult to
implement implicitly simply using the presence or absence of audio streams as an
indicator. The default state when the client system is powered-up is that all andio
channels are enabled. The format of one embodiment of a Forward Audio Channel
Enable Packet is shown in FIG. 30. As showwn in FIG. 30, this type of packet is
structured to have Packet Length, Packet Typre, hClient ID, Audio Channel Enable

WO 2005/091593 PCT/US2005/008832

61

Mask, and CRC fields. This type of packet is generally identified as a Type 78 packet
in the 1-byte type field, and uses a pre-selected fixed length of 4 bytes.

21. Reverse Audio Sample Rate Packets

[00289] This type of packet provides a structure, method, or means that allows a host to
enable or disable audio channels in a client. This capability is useful so the client can
power off audio amplifiers to save power when there is no audio to be output by the
host. This is significantly more difficult to implement implicitly using the presence or
absence of audio streams. The default state when a client system is powered-up or
connected to the host is that all audio channels are enabled. An audio system comnected
to a host and a client should be ready or able to output audio signals in an intended or
desired manner within about 100 msec. or less after the client receives a Forward Audio
Channel Enable packet having a least one of the bits in the Audio Channel Enable Mask
field having made a transition from a zero to a one state or value. The client indicates
an ability to respond to a Forward Audio Channel Enable Packet using the value set for
bit 15 of the Audio Channel Capability field of the Client Capability Packet.

[00290] This packet allows the host to enable or disable the reverse-link audio channel,
and to set the audio data sample rate of this stream. The host selects a sample rate that
is defined to be valid in the Client Capability Packet. If the host selects an invalid
sample rate then the client will not send an audio stream to the host, and an appropriate
error, error value, or error signal, may be sent to the host in the Client Error Report
Packet. The host may disable the reverse-link audio stream by setting the sample rate to
a value of 255. The default state assumed when the client system is initially powered-
up or connected is with the reverse-link audio stream disabled. The format of one
embodiment for a Reverse Audio Sample Rate Packet is shown in FIG. 31. As shown
in FIG. 31, this type of packet is structured to have Packet Length, Packet Type, hClient
1D, Audio Sample Rate, Reserved 1, and CRC fields. This type of packet is generally
identified as a Type 79 packet, and uses a pre-selected fixed length of 4 bytes.

22, Digital Content Protection Overhead Packets
[00291] This packet provides a structure, method, or means that allows a host and a
client to exchange messages related to the digital content protection method being used.

Presently two types of content protection are contemplated, Digital Transmission

WO 2005/091593 PCT/US2005/008832

62

Content Protection (DTCP), or High-bandwidth Digital Content Protection (HDCP)
system, with room reserved for future alternative protection scheme designations. The
method being used is specified by a Content Protection Type parameter in thi s packet.
The format of an embodiment of a Digital Content Protection Overhead Packet is shown
in FIG. 32. As shown in FIG. 32, this type of packet is structured to hav-e Packet
Length, Packet Type, bClient ID, Content Protection Type, Content PProtection
Overhead Messages, and CRC fields. This type of packet is generally identx fied as a
Type 80 packet.

23. Transparent Color Enable Packets

[00292] The Transparent Color Enable Packet is a structure, method, or means that used
to specify which color is transparent in a display and to enable or disable the use of a
transparent color for displaying images. Displays that have this capability w-ill report
that capability in bit 4 of the Client Feature Capability field of the Client Capability
Packet. When a pixel with the value for transparent color is written to the bigmap, the
color does not change from the previous value. The format of a Transparent Color
Enable Packet is shown in FIG. 33. As shown in FIG. 33, in one embodiment this type
of packet is structured to have Packet Length, Packet Type, hClient ID, Transparent
Color Enable, Reserved 1, Alpha-Cursor Identifier, Data Format Deescriptor,
Transparent Pixel Value, and CRC fields. This type of packet is generally idemtified as
a Type 81 packet in the 1-byte type field, and uses a pre-selected fixed lengsth of 10
bytes.

24. Round Trip Delay Measurement Packets

[00293] The Round Trip Delay Measurement Packet provides a structure, m<ethod, or
means that is used to measure the propagation delay from the host to a client (display)
plus the delay from the client (display) back to the host. This measurement imherently
includes the delays that exist in the line drivers and receivers, and an interconmect sub-
system. This measurement is used to set the turn around delay and reverse link rate
divisor parameters in the Reverse Link Encapsulation Packet, described generally
above. This packet is most useful when the MDDI link is running at the rmaximum
speed intended for a particular application. The packet may be sent in Type 1 rmode and

at a lower data rate in order to increase the range of the round trip delay measurement.

WO 2005/091593 PCT/US2005/008832

63

The MDDI_Stb signal behaves as though all zero data is being sent during the following
flelds: both Guard Times, All Zero, and the Measurement Period. This causes
MDDI_Stb to toggle at half the data rate so it can be used as periodic clock in the client
during the Measurement Period.

[00294] In one embodiment, a client generally indicates an ability to support the Round
Trip Delay Measurement Packet through use of bit 18 of the Client Feature Capability
Indicators field of the Client Capability Packet. It is recommended that all clients
support round trip delay measurement, but it is possible for the host to know the worst-
case round trip delay based on a maximum cable delay, and on maximum driver and
receiver delays. The host may also know the round-trip delay in advance for an MDDI
link used in internal mode, since this is an aspect of known design elements (conductor
lengths, circuitry type, and features, and so forth) of the device in which the interface is
being used.

[00295] The format of a Round Trip Delay Measurement Packet is shown in FIG. 34. As
shown in FIG. 34, in one embodiment this type of packet is structured to have Packet
Length, Packet Type, hClient ID, Parameter CRC, Guard Time 1, Measurement Period,
All Zero, and Guard Time 2 fields. This type of packet is generally identified as a Type
82 packet, and uses a pre-selected fixed length of 159 bits.

[00296] The timing of events that take place during the Round Trip Delay Measurement
Packet is illustrated in FIG. 35. In FIG. 35, the host transmits the Round Trip Delay
Measurement Packet, shown by the presence of the Parameter CRC and Strobe
Alignment fields followed by the All Zero 1 and Guard Time 1 fields. A delay 3502
occurs before the packet reaches the client display device or processing circuitry. As
the client receives the packet, it transmits the 0xff, 0xff, and 30 bytes of 0x00 pattern as
precisely as practical at the beginning of the Measurement Period as determined by the
client. The actual time the client begins to transmit this sequence is delayed from the
beginning of the Measurement Period from the point of view of the host. The amount
of this delay is substantially the time it takes for the packet to propagate through the line
drivers and receivers and the interconnect subsystem (cables, conductors). A similar
amount of delay 3504 is incurred for the pattern to propagate from the client back to the
host.

[00297] In order to accurately determine the round trip delay time for signals traversing

to and from the client, the host counts the number of forward link bit time periods

WO 2005/091593 PCT/US2005/008832

64

occurring after the start of the Measurement Period until the beginning of the Oxff, Ox{f,
and 30 bytes of 0x00 sequence is detected upon arrival. This information is used to
determine the amount of time for a round trip signal to pass from the host to the client
and back again. Then, about one half of this amount is attributed to a delay created for
the one way passage of a signal to the client.

[00298] The host and client both drive the line to a logic-zero level during both guard
times to keep the MDDI DATA lines in a defined state. The enable and disable times
of the host and client during both guard times are such that the MDDI_Data signals are

at a valid low level for any valid round-trip delay time.

25, Forward Link Skew Calibration Packet

[00299] The Forward Link Skew Calibration Packet allows a client or display to calibrate
itself for differences in the propagation delay of the MDDI Data signals with respect to
the MDDI_Stb signal. Without delay skew compensation, the maximum data rate is
generally limited to account for potential worst-case variation in these delays.
Generally, this packet is only sent when the forward link data rate is configured to a rate
of around 50 Mbps or lower. After sending this packet to calibrate the display, the data
rate may be stepped up above 50 Mbps. If the data rate is set too high during the skew
calibration process, the display might synchronize to an alias of the bit period which
could cause the delay skew compensation setting to be off by more than one bit time,
resulting in erroneous data clocking. The highest data rate type of interface or greatest
possible Interface Type is selected prior to sending the Forward Link Skew Calibration
Packet so that all existing data bits are calibrated.

[00300] One embodiment of the format of a Forward Link Skew Calibration Packet is
shown in FIG. 56. As shown in FIG. 56, this type of packet is structured to have Packet
Length (2 bytes), Packet Type, hClient ID, Parameter CRC, All Zero 1, Calibration Data
Sequence, and All Zero 2 fields. This type of packet is generally identified as a Type 83
packet in the type field, and in one embodiment has a pre-selected length of 519.

Virtual Control Panel
[00301] The use of a VCP allows a host to set certain user controls in a client. By
allowing these parameters to be adjusted by the host, the user interface in the client can

be simplified because screens that allow a user to adjust parameters such as audio

WO 2005/091593 PCT/US2005/008832

65

volume or display brighiness can be generated by host software rather than by one or
more microprocessors in the client. The host has the ability to read the parameter
settings in the client and to determine the range of valid values for each control. The
client generally has the capability to report back to the host which control parameters
can be adjusted.

[00302] The control codes (VCP Codes) and associated data values generally specified,
are utilized to specify controls and settings in the client. The VCP Codes in the MDDI
specification are expanded to 16 bits to preserve proper data field alignment in the
packet definitions, and in the future to support supplementary values that are unique to

this interface or future enhancements.

26. Request VCP Feature Packet

[00303] The Request VCP Feature Packet provides a means, mechanism, or method for
the host to request the current setting of a specific control parameter or all valid control
parameters. Generally, a client responds to a VCP Packet with the appropriate
information in a VCP Feature Reply Packet. In one embodiment, the client indicates an
ability to support the Request VCP Feature Packet using bit 13 of the Client Feature
Capability Indicators field of the Client Capability Packet.

[00304] The format of the Request VCP Feature Packet in one embodiment is shown in
FIG. 69. As seen in FIG. 69, this type of packet is structured to have Packet Length,
Packet Type, hClient ID, Monitor Control Command Set (MCCS) VCP code, and CRC
fields. This type of packet is generally identified in one embodiment as a Type 128,
which is indicated in the 2 byte type field. The packet length, which specifies the total
number of bytes in the packet not including the packet length field, is typically fixed for
this type of packet at a length of & bytes.

[00305] The hClient ID field is reserved for use as a Client ID in future implementations
and is typically set to zero. The MCCS VCP Code field comprises 2 bytes of
information that specifies the MCCS VCP Control Code Parameter. A value in the
range of 0 to 255 causes a VCP Feature Reply Packet to be returned with a single item
in the VCP Feature Reply List corresponding to the specified MCCS code. An MCCS
VCP Code of 65535 (0xffff) requests a VCP Feature Reply Packet with a VCP Feature
Reply List containing a Feature Reply List Item for each control supported by the client.

WO 2005/091593 PCT/US2005/008832

66

The values of 256 through 65534, for this field are reserved for future use and presently

not in use.

27. VCP Feature Reply Packet

[00306] The VCP Feature Reply Packet provides a means, mechanism, or method for a
client to respond to a host request with the current setting of a specific control parameter
or all valid control parameters. Generally, a client sends the VCP Feature Reply Packet
in response to a Request VCP Feature Packet. This packet is useful to determine the
current setting of a specific parameter, to determine the valid range for a specific
control, to determine if a specific control is supported by the client, or to determine the
set of controls that are supported by the client. If a Request VCP Feature is sent that
references a specific control that is not implemented in the client then a VCP Feature
Reply Packet is returned with a single VCP Feature Reply List item corresponding to
the unimplemented control that contains the appropriate error code. In one
embodiment, the client indicates an ability to support the VCP Feature Reply Packet
using bit 13 of the Client Feature Capability field of the Client Capability Packet.

[00307] The format of the VCP Feature Reply Packet in one embodiment is shown in
FIG. 70. As seen in FIG. 70, this type of packet is structured to have Packet Length,
Packet Type, cClient ID, MCCS Version, Reply Sequence Number, VCP Feature Reply
List, and CRC fields. This type of packet is generally identified in one embodiment as a
Type 129, as indicated in the 2 byte type field.

[00308] The cClient ID field contains information reserved for a Client ID. This field is
reserved for future use and is generally set to zero. MCCS Version field contains 2
bytes of information that specifies the Version of the VESA MCCS Specification
implemented by the client.

[00309] The 2 byte Reply Sequence Number field contains information or data that
specifies the sequence number of the VCP Feature Reply Packets returned by the client.
The client returns one or more VCP Feature Reply Packets in response to a Request
VCP Feature Packet with an MCCS Control Code value of 65535. The client may
spread or transfer the feature reply list over multiple VCP Feature Reply Packets. In
this case, the client should assign a sequence number or identifier to each successive
packet, and the sequence numbers of the VCP Feature Reply Packets sent in response to
a single Request VCP Feature Packet typically starts at zero and increments by one.

WO 2005/091593 PCT/US2005/008832

67

The last VCP Feature Reply List Item in the last VCP Feature Reply Packet should
contain an MCCS VCP Control Code value equal to OxffEf to identify that the packet is
the last one and contains the highest sequence number of the group of packets returned.
If only one VCP Feature Reply Packet is sent in response to a Request VCP Feature
Packet then the Reply Sequence Number in that single packet is generally set at zero
and the VCP Feature Reply List contains a list item having an MCCS VCP Code in the
VCP Feature Reply List Item equal to Oxffff. The Maximum Value and Present Value
fields (FIG. 71) in the VCP Feature Reply List Item packet are set to zero when the
" MCCS VCP Control Code is equal to OxfFfF.

{00310] The Number of Features in List field contains 2 bytes that specify the number of
VCP Feature Reply List Items that are in the VCP Feature Reply List in this packet,
while the VCP Feature Reply List field is a group of bytes that contain one or more
VCP Feature Reply List Items. The format of a single VCP Feature Reply List Item in
one embodiment is shown in FIG. 71.

[00311] As shown in FIG. 71, each VCP Feature Reply List Item is 12 bytes in length,
and comprises the MCCS VCP Code, Result Code, Maximum Value, and Present Value
fields. The 2-byte MCCS VCP Code field contains data or information that specifies
the MCCS VCP Control Code Parameter associated with this list item. Only the
Control Code values defined in the VESA MCCS Specification version 2 and later are
considered as valid for this embodiment. The 2-byte Result Code field contains
information that specifies an error code related to the request for information regarding
the specified MCCS VCP Control. A value of “0° in this field means there is no error,
while a value of ‘1’ means the specified control is not implemented in the client.
Further values for this field of 2 through 65535 are currently reserved for future use and
implementation of other application contemplated by the art, but are not to be used for
now.

[00312] The 4-byte Maximum Value field specifies the largest possible value to which
the specified MCCS Control can be set. If the requested control is not implemented in
the client this value is set to zero. If the value returned is less than 32 bits (4 bytes) in
length, then the value is cast into a 32-bit integer leaving the most significant (unused)
bytes set to zero. The 4-byte Present Value field contains information that specifies the
present value of the specified MCCS VCP Continuous (C) or Non-Continuous NC)

control. If the requested control is not implemented in the client or if the control is

WO 2005/091593 PCT/US2005/008832

68

implemented but is a Table (T) data type, then this value is set to zero. If the value
returned is less than 32 bits (4 bytes) in length per the VESA MCCS specification then
the value is cast into a 32-bit integer leaving the most significant (unused) bytes set to
zero. If the specified MCCS VCP code corresponds to a non-continuous control or

table data type, then the Maximum Value field is set or selected to be zero.

28. Set VCP Feature Packet

[00313] The Set VCP Feature Packet provides a means, mechanism, or method for a host
to set VCP control values for both continuous and non-continuous controls in a client.
In one embodiment, the client indicates the ability to support the Set VCP Feature
Packet using bit 13 of the Client Feature Capability field of the Client Capability
Packet.

[00314] The format of the Set VCP Feature Packet in one embodiment is shown in
FIG. 72. As seen in FIG. 72, this type of packet is structured to have Packet Length,
Packet Type, hClient ID, MCCS VCP Code, Number of Values in List, Control Value
List, and CRC fields. This type of packet is generally identified as a Type 130, as
indicated in the 2 byte type field, is 20 bytes long exclusive of the Packet Length field.

[00315] The hClient ID field again uses a 2-byte value to specify or act as a Client ID.
This field is reserved for future use and is currently set to zero. The MCCS VCP Code
field uses 2 bytes of information or values to specify the MCCS VCP Control Code
Parameter to be adjusted. The 2-byte Number of Values in List Field contains
information or values that specify the number of 16-bit values that exist in the Control
Value List. The Control Value List will usually contain one item unless the MCCS
Control Code relates to a table in the client. In the case of non-table-related controls,
The Control Value List will contain a value that specifies the new value to be written to
the control parameter specified by the MCCS VCP Code field. For table-related
controls the format of the data in the Control Value List is specified by the parameter
description of the specified MCCS VCP Code. If the list contains values that are larger
than one byte, then the least-significant byte is transmitted first, consistent with the
method defined elsewhere. Finally, the 2-byte CRC field contains a 16-bit CRC of all
bytes in the packet including the Packet Length.

WO 2005/091593 PCT/US2005/008832

69

29. Request Valid Parameter Packet

[00316] The Request Valid Parameter Packet is used as a means or structure useful to
request that a client retun a Valid Parameter Reply Packet containing a list of
parameters supported by the specified NC or Table (T) control. This packet should oniy
specify non-continuous controls or controls that relate to a table in the client, and not
specify a MCCS VCP Code value of 65535 (Oxffff) to specify all controls. If a non-
supported or invalid MCCS VCP Code is specified then an appropriate error value is
returned in the Valid Parameter Reply Packet. In one embodiment, the client indicates
an ability to support the Request Valid Parameter Packet using bit 13 of the Client
Feature Capability field of the Display Capability Packet.

[00317] The format of the Request Valid Parameter Packet in one embodiment is shown
in FIG. 73. As seen in FIG. 73, this type of packet is structured to have Packet Length,
Packet Type, hClient ID, MCCS VCP Code, and CRC fields. This type of packet is
generally identified in one embodiment as a Type 131, as indicated in the 2 byte type
field.

[003 18] The packet length, as indicated in the 2-bytes Packet Length Field is generally
set to have a total number of bytes in the packet, not including the packet length field of
8. The hClient ID again specifies the Client ID, but is currently reserved for future use,
as would be apparent to one skilled in the art, and is set to zero. The 2-byte MCCS
VCP Code Filed contains a value that specifies the non-continuous MCCS VCP Control
Code Parameter to be queried. The value in this field should correspond to a non-
continuous control that is implemented in the client. The values 256 through 65535
(Oxffff) are typically reserved or considered as invalid, and are considered as an

unimplemented control in the error response.

30. Valid Parameter Reply Packet

[00319] A Valid Parameter Reply Packet is sent in response to a Request Valid
Parameter Packet. It is used as a means, method, or structure to identify the valid
settings for a non-continuous MCCS VCP control or a control that returns the contents
of a table. If the control relates to a table in the client, then the VCP Parameter Reply
List simply contains the specific list of sequential table values that were requested. If
the contents of the table cannot fit into a single Valid Parameter Reply Packet then
multiple packets with sequential Reply Sequence Numbers can be sent by the client. In

WO 2005/091593 PCT/US2005/008832

70

one embodiment, a client indicates an ability to support a Valid Parameter Reply Packet
using bit 13 of the Client Feature Capability field of the Client Capability Packet.

[00320] A host may request the contents of a table in the following manner: the host
sends a Set VCP Feature Packet containing the necessary or desired parameters such as
read/write parameter, Look-Up Table (LUT) offset, and RGB selection; then a Request
Valid Parameter Packet that specifies the desired control is sent by the host; then the
client returns one or more Valid Parameter Reply Packets containing the table data.
This sequence of operations performs a similar function as the table reading functions
described in the MCCS operation model.

[00321] If a specific client parameter is not supported by the client then in one
embodiment the corresponding field of this packet will contain a value of 255. For
parameters that are used in the client, the corresponding field should contain a value of
the parameter in the client.

[00322] The format of the Valid Parameter Reply Packet for one embodiment is shown
in FIG. 74. As seen in FIG. 74, this type of packet is structured to have Packet Length,
Packet Type, cClient ID, MCCS VCP Code, Response Code, Reply Sequence Number,
Number Values in List, VCP Parameter Reply List, and CRC fields. This type of packet
is generally identified for one embodiment as a Type 132, as indicated in the 2 byte type
field.

[00323] The cClient ID field is reserved for the future Client ID, as is known from the
above discussions, while the 3-byte MCCS VCP Code Packet contains a value that
specifies a non-continuous MCCS VCP Control Code Parameter that is described by
this packet. If an invalid MCCS VCP Control Code is specified by a Request Valid
Parameter Packet, then the same invalid parameter value will be specified in this field
with the appropriate value in the Response Code field. If the MCCS Control Code is
invalid then the VCP Parameter Reply List will have zero length.

[00324] The Response Code field contains 2 bytes of information or values that specify
the nature of the response related to the request for information regarding the specified
MCCS VCP Control. If the value in this field is equal to 0, then no error is considered
as being present for this data type, and the last Valid Parameter Reply Packet in the
sequence is sent, it having the highest Reply Sequence Number. If the value in this field
is equal to 1, then no error is considered as being present, but other Valid Parameter

Reply Packets will be sent that have higher sequence numbers. If the value in this field

WO 2005/091593 PCT/US2005/008832

71

is equal to 2, then the specified control is not considered as being implemented in the
client. If the value in this field id equal to 3, then the specified control is not a non-
continuous control (it is a continuous control that always has a valid set of all values
from zero to its maximum value). Values for this field equal to 4 through 65535 are
reserved for future use and generally not to be used.

[00325] The 2-byte Reply Sequence Number field specifies the sequence number of the
Valid Parameter Reply Packets returned by the client. The client returns one or more
Valid Parameter Reply Packets in response to a Request Valid Parameter Packet. The
client may spread the VCP Parameter Reply List over multiple Valid Parameter Reply
Packets. In this latter case, the client will assign a sequence number to each successive
packet, and set the Response Code to 1 in all but the last packet in the sequence. The
last Valid Parameter Reply Packet in the sequence will have the highest Reply Sequence
Number and the Response Code contains a value of 0.

[00326] The 2-byte Number of Values in List field specifies the number of 16-bit values
that exist in the VCP Parameter Reply List. If the Response Code is not equal to zero
then the Number of Values in List parameter is zero. The VCP Parameter Reply List
field contains a list of 0 to 32760 2-byte values that indicate the set of valid values for
the non-continuous control specified by the MCCS Control Code field. The definitions
of the non-continuous control codes are specified in the VESA MCCS Specification.
Finally, in this embodiment, the CRC field contains a 16-bit CRC of all bytes in the
packet including the Packet Length.

Scaled Video Stream Images

[00327] The MDDI or protocol mechanism, structure, means, or method provides
support for scaled video stream images that allow the host to send an image to the client
that is scaled larger or smaller than the original image, and the scaled image is copied to
a main image buffer. An overview of the Scaled Video Stream functionality and
associated protocol support is provided elsewhere. An ability to support scaled video
streams is defined by or within the Scaled Video Stream Capability Packet, which is
sent in response to a Request Specific Status Packet.

[00328] - The header of the Scaled Video Stream packet discussed below is slightly
different from the simpler Video Stream Packet whose header contains the entire

context necessary to display the image. The Scaled Video Stream packet uses a setup

WO 2005/091593 PCT/US2005/008832

72

packet to define the parameters of the source and destination window size and position,
and a separate Scaled Video Stream Packet to transmit the pixel data. A client allocates
internal storage associated with each stream to store the stream parameters from the
setup packet and part of the pixel data associated with each stream. The amount of
storage required for each stream will vary depending on the size of the source and
destination images and the values specified in the setup packet. For this reason the
protocol is designed to allow the client to implement dynamic memory allocation for the
assignment of storage associated with each scaled video stream.

{00329] It is useful to send a video stream to a display having a size native to the
program source and have the display scale and position the image in a manner
appropriate for the specific end application. The implementation for real-time scaling of
multiple video images is sufficiently complex to make support of this feature optional in

the client.

31. Scaled Video Stream Capability Packet

[00330] The Scaled Video Stream Capability Packet defines the characteristics of the
scaled video stream source image in or used by a client. The format of the Scaled Video
Stream Capability Packet is shown generally in FIG. 75. As seen in FIG. 75, in one
embodiment, a Scaled Video Stream Capability Packet is structured to have Packet
Length, Packet Type, cClient ID, Max Number of Streams, Source Max X Size, Source
Max Y size, RGB Capability, Monochrome Capability, Reserved 1, Y Cr Cb Capability,
Reserved 2, and CRC fields. The packet length, in one embodiment, is selected to be a
fixed 20 bytes, as shown in the length field, including the 2-byte cClient ID field, which
is reserved for use for a Client ID, otherwise set to zero, and the CRC field. In one
embodiment, the client indicates an ability to support the Scaled Video Stream
Capability Packet using a parameter value of 143 in the Valid Parameter Reply List of
the Valid Status Reply List Packet.

[00331] The 2-byte Maximum Number of Streams field contains a value to identify the
maximum number of simultaneous scaled video streams that may be allocated at one
time. In one embodiment, a client should deny a request to allocate a scaled video
stream if the maximum number of scaled video streams is already allocated. If less than
the maximum number of scaled video streams are allocated the client may also deny an

allocation request based on other resource limitations in the client.

WO 2005/091593 PCT/US2005/008832

73

[00332] The Source Maximum X Size and Y size fields (2 bytes) specify values for the
maximum width and height, respectively, of the scaled video stream source image
expressed as a number of pixels.

[00333] The RGB Capability field uses values to specify the number of bits of resolution
that can be displayed in RGB format. If the scaled video stream cannot use the RGB
format then this value is set equal to zero. The RGB Capability word is composed of
three separate unsigned values with: Bits 3 through 0 defining a maximum number of
bits of blue (the blue intensity) in each pixel, Bits 7 through 4 defining the maximum
number of bits of green (the green intensity) in each pixel, and Bits 11 through 8
defining the maximum number of bits of red (the red intensity) in each pixel, while Bits
15 through 12 are reserved for future use in future capability definitions, and are
generally set to zero.

[00334] The 1-byte Monochrome Capability field contains a value that specifies the
number of bits of resolution that can be displayed in monochrome format. If the scaled
video stream cannot use the monochrome format then this value is set to zero. Bits 7
through 4 are reserved for future use and should, therefore, be set to zero (‘0°) for
current applications, although this may change over time, as will be appreciated by
those skilled in the art. Bits 3 through 0 define the maximum number of bits of
grayscale that can exist in each pixel. These four bits make it possible to specify that
each pixel consists of 1 to 15 bits. If the value is zero, then the monochrome format is
not supported by the scaled video streamm.

[00335] The Reserved 1 field (here 1 byte) is reserved for future use in providing values
related to the Scaled Video Stream Packet information or data. Therefore, currently, all
bits in this field are set to a logic “0’. One purpose of this field is to cause all
subsequent 2-byte fields to align to a 16-bit word address and cause 4-byte fields to
align to a 32-bit word address.

[00336] The 2-byte Y Cb Cr Capability field contains values that specify the number of
bits of resolution that can be displayed in Y Cb Cr format. If the scaled video stream
cannot use the Y Cb Cr format then this value is zero. The Y Cb Cr Capability word is
composed of three separate unsigned values with: Bits 3 through 0 defining the
maximum number of bits that specify the Cr sample; Bits 7 through 4 defining the
maximum number of bits that specify the Cb sample; Bits 11 through 8 defining the

WO 2005/091593 PCT/US2005/008832
74

maximum number of bits specify the Y sample; and with Bits 15 through 12 being
reserved for future use and is generally set to zero.

[00337] The 1-byte Capability Bits field contains a set of flags that specify capabilities
associated with the scaled video stream. The flags are defined as follows: Bit 0 covers
Pixel data in the Scaled Video Stream Packet can be in a packed format. An example of
packed and byte-aligned pixel data is shown earlier in FIG. 13. Bit 1 is reserved for
future use and is generally set to zero; Bit 2 is also reserved for future use and is set to
zero; Bit 3 covers scaled video streams that can be specified in the color map data
format. The same color map table is used for the scaled video streams as is used for the
main image buffer and the alpha-cursor image planes. The color map is configured
using the Color Map Packet described elsewhere; and Bits 7 through 4 are reserved for
future use and are generally set to be zero.

[00338] The Reserved 2 field (here 1 byte) is reserved for future use in providing values
related to the Scaled Video Stream Packet information or data. Therefore, currently, all
bits in this field are set to a logic ‘0’. Omne purpose of this field is to cause all
subsequent 2-byte fields to align to a 16-bit word address and cause 4-byte fields to
align to a 32-bit word address.

32. Scaled Video Stream Setup Packet

[00339] The Scaled Video Stream Setup Packet provides a means, structure, or method
used to define the parameters of the scaled video stream and the client uses the
information to allocate internal storage for buffering and scaling of the image. A stream
may be de-allocated by sending this packet with the X Image Size and Y Image Size
fields equal to zero. Scaled video streamis that have been de-allocated may be
reallocated later with the same or different stream parameters. In one embodiment a
client indicates an ability to support the Scaled Video Stream Setup Packet using a
parameter value of 143 in the Valid Parameter Reply List of the Valid Status Reply List
Packet, and by using a non-zero value in the Maximum Number of Streams field of the
Scaled Video Stream Capability Packet. ‘

[00340] The format of the Scaled Video Stream Setup Packet is shown generally in
FIG. 76. As seen in FIG. 76, in one embodiment, a Scaled Video Stream Setup Packet
is structured to have Packet Length, Packet Type, hClient, Stream ID, Video Data

WO 2005/091593 PCT/US2005/008832

75

Format Descriptor, Pixel Data Attributes, X Left Edge, Y Top Edge, X Right Edge, Y
Bottom Edge, X Image Size, Y Image Size, and CRC fields.

[00341] The 2-byte Packet Length field specifies the total number of bytes in the packet
not including the packet length field. In one embodiment, this packet length is fixed at
24. The 2-byte Packet Type ficld employs a value of 136 to identify the packet as a
Scaled Video Stream Setup Packet. The 2-byte hClient ID field is reserved for future
use as a Client ID, and is generally set to an all bits at logic-zero value for the moment,
or until a protocol user determines what ID values are to be used, as would be known.

[00342] The Stream ID ficld uses 2 bytes to specify a unique identifier for the Stream ID.
This value is assigned by the host and ranges in value from zero to the maximum
Stream ID value specified in the Client Capability Packet. The host must manage the
use of Stream TD values carefully to ensure that each active stream is assigned a unique
value, and that streams that are no longer active are de-allocated or reassigned.

[00343] In one embodiment, the Video Data Format Descriptor field uses 2 bytes to
specify the format of each pixel in the Pixel Data in the present stream in the present
packet. The pixel data format should comply with at least one of the valid formats for a
alpha-cursor image plane as might be defined in an Alpha-Cursor Image Capability
Packet, or other pre-defined image pattern, as will generally be defined within the other
packets discussed above. The Video Data Format Descriptor defines the pixel format
for the current packet only and does not imply that a constant format will continue to be
used for the lifetime of a particular video stream. Fig. 12 illustrates an embodiment of
how the Video Data Format Descriptor is coded, and as discussed above for other
packets.

[00344] For example, as seen in FIGs. 12A through 12D, and for use in one embodiment,
when bits [15:13] are equal to '000", then the video data consists of an array of
monochrome pixels where the number of bits per pixel is defined by bits 3 through 0 of
the Video Data Format Descriptor word. Bits 11 through 4 are generally reserved for
future use or applications and are set to zero in this situation. When bits [15:13] are
instead equal to the values '001', then the video data consists of an array of color pixels
that each specify a color through a color map (palette). In this sitnation, bits 5 through 0
of the Video Data Format Descriptor word define the number of bits per pixel, and bits
11 through 6 are generally reserved for future use or applications and set equal to zero.

When bits [15:13] are instead equal to the values '010', then the video data consists of an

WO 2005/091593 PCT/US2005/008832

76

array of color pixels where the number of bits per pixel of red is defined by bits 11
through 8, the number of bits per pixel of green is defined by bits 7 through 4, and the
number of bits per pixel of blue is defined by bits 3 through 0. In this situation, the total
number of bits in each pixel is the sum of the number of bits used for red, green, and
blue.

[00345] However, when bits [15:13] are instead equal to the values or siring '011', as
shown in FIG. 12D, then the video data consists of an array of video data in 4:2:2
YCbCr format with luminance and chrominance information, where the number of bits
per pixel of luminance (Y) is defined by bits 11 through 8, the number of bits of the Cb
component is defined by bits 7 through 4, and the number of bits of the Cr component is
defined by bits 3 through 0. The total number of bits in each pixel is the sum of the
number of bits used for red, green, and blue. The Cb and Cr components are sent at half
the rate as Y. In addition, the video samples in the Pixel Data portion. of this packet are
organized as follows: Cbn, Yn, Cm, Yn+1, Cont+2, Yn+2, Cm+2, Yn+3, ... where Cbn
and Cm are associated with Yn and Yn+1, and Cbnt+2 and Cmi2 are associated with
Yn+2 and Yo+3, and so on. Yn, Ynt+l, Yn+2 and Yn+3 are luminance values of four
consecutive pixels in a single row from lefi to right

[00346] For all four formats discussed above. Bit 12, which is designated as “P” in the
figures, specifies whether or not the Pixel Data samples are packed, or byte-aligned
pixel data. A value of '0' in this field indicates that each pixel in the Pixel Data field is
byte-aligned with an MDDI byte boundary. A value of '1' indicates that each pixel and
each color within each pixel in the Pixel Data is packed up against the previous pixel or
color within a pixel leaving no unused bits.

[00347] In one embodiment, a 2-byte Pixel Data Attributes field has values that are
interpreted as follows with Bits 1 and 0 being reserved for future use, generally set to
logic-zero for now, and Bit 2 indicates whether or not the Pixel Data is in interlace
format. When Bit 2 is 0, then the Pixel Data is in the standard progressive format. The
row number (pixel Y coordinate) is incremented by 1 when advancing from one row to
the next. When Bit 2 is 1, then the Pixel Data is in interlace format. The row number
(pixel Y coordinate) is incremented by 2 when advancing from one row to the next.

[00348] In one embodiment, Bit 3 indicates whether or not the Pixel Data is in alternate
pixel format. This is similar to the standard interlace mode enabled by bit 2, but with

the interlacing being vertical rather than horizontal. When Bit 3 is 0, the Pixel Data is

WO 2005/091593 PCT/US2005/008832

77

generated or placed in the standard progressive format. The column number (pixel X
coordinate) is incremented by 1 as each successive pixel is received. When Bit 3 is 1,
then the Pixel Data is generated or placed in alternate pixel format. The column number
(pixel X coordinate) is incremented by 2 as cach pixel is received.

[00349] Bits 4 through 15 are also reserved for future use, and are generally be set to

logic-zero level or values for current applications or designs.

33. Scaled Video Stream Acknowledgement Packet

[00350] The Scaled Video Stream Acknowledgement Packet allows a client to
acknowledge the receipt of a Scaled Video Stream Setup Packet. The client can indicate
an ability to support the Scaled Video Stream Acknowledgement Packet via a parameter
value of 143 in the Valid Parameter Reply List of the Valid Status Reply List Packet
and via a non-zero value in the Maximum Number of Streams field of the Scaled Video
Stream Capability Packet.

[00351] The format of the Scaled Video Stream Acknowledgement Packet is shown
generally in FIG. 77. As seen in FIG. 77, in one embodiment, a Scaled Video Stream
Acknowledgement Packet is structured to have Packet Length, Packet Type, cClient,
Stream ID, ACK Code, and CRC fields. The 2-byte Packet Length field is used to
specify the total number of bytes, excluding the packet length field, with a value of 10
for this packet type, while a Packet Type of 137 identifies a packet as a Scaled Video
Stream Acknowledgement Packet.

[00352] The 2-byte cClient ID field is reserved for future use for the Client ID, and is
generally set to zero. The 2-byte Stream ID field specifies a unique identifier for the
Stream ID. This is the same value assigned by the host in the Scaled Video Stream
Setup Packet.

[00353] The 2-byte Ack Code field provides values containing a code that describes the
outcome of an attempt to update the specified scaled video stream. In one embodiment,
the codes are defined as follows:

0 — The stream allocation attempt was successfil.

1 — the stream de-allocation attempt was successful.

2 — invalid attempt to allocate a stream ID that has already been allocated.
3 — invalid attempt to de-allocate a stream ID that is already de-allocated -

4 — the client does not support scaled video streams

[00354]

[00355]

[00356]

[00357]

[00358]

WO 2005/091593 PCT/US2005/008832

78

5 — the stream parameters are inconsisterat with the capability of the client.

6 — stream ID value larger than the maxiznum value allowed by the client.

7 — insufficient resources available in thes client to allocate the specified stream.

The 2-byte CRC field contains the CRC® of all bytes in the packet including the
Packet Length.

34. Scaled Video Stream Packet

The Scaled Video Stream Packet is used to transmit the pixel data associated
with a specific scaled video stream. The size Of the region reference by this packet is
defined by the Scaled Video Stream Setup Packset. The client can indicate an ability to
support the Scaled Video Stream Packet using a parameter value of 143 in the Valid
Parameter Reply List of the Valid Status Reply List Packet and using a successful
scaled video stream allocation response in the Ack Code field of the Scaled Video
Stream Acknowledgement Packet.

The format of onec embodiment of the Scaled Video Stream Packet is shown
generally in FIG. 78. As seen in FIG. 78, a Scaled Video Stream Packet is structured to
have Packet Length, Packet Type, hClient ID, Stream ID, Pixel data Attributes, Pixel
Count, Parameter CRC, Pixel Data, and Pixel D ata CRC fields. The 2-byte Packet Type
field uses a value of 18 to identify a packet &as a Scaled Video Stream Packet. The
hClient ID field is reserved for the Client ID, amd generally set to zero. As before, the
2-byte Stream ID field specifies a unique idemtifier for the Stream ID. This value is
specified by the host in the Scaled Video Streram Sctup Packet and confirmed in the
Scaled Video Stream Acknowledgement Packet. In one embodiment, the 2-byte Pixel
Data Attributes field has values that specify pi=el data routing and display updating or
buffer locations. These values are, in one embo diment,

In one embodiment, the 2-byte Pixel Data Attributes field has values that
specify pixel data routing and display updating or buffer locations. These values are, in
one embodiment, interpreted as follows: with Bits 1 and 0 selecting the display where
the pixel data is to be routed. For bit values of '11' or “00” pixel data is displayed to or
for both eyes, for bit values '10', pixel data is routed only to the left eye, and for bit
values '01', and pixel data is routed only to the raght eye.

Bits 7 and 6 are the Display Update Bitss that specify the frame buffer where the

pixel data is to be written. The effects of the F'rame Update Bits are described in more

WO 2005/091593 PCT/US2005/008832

79

detail elsewhere. When Bits [7:6] are ¢01°, the Pixcl data is written to the offline image
buffer. When Bits [7:6] are ‘00, the Pixel data is written to the image buffer used to
refresh the display. When Bits [7:6] are 11°, the Pixel data is written to all image
buffers. If Bits [7:6] are ‘107, this is treated as an invalid value. These bits are currently
reserved for future use. In this situation, Pixel data would be ignored and not written to
any of the image buffers. Bits 2 through 5 and 8 through 15 are reserved for future use
and are generally be set to logic-zero level or values.

[00359] The 2-byte Pixel Count field specifies the number of pixels in the Pixel Data
field below. The 2-byte Parameter CRC field has the CRC of all bytes from the Packet
Length to the Pixel Count. If this CRC fails to check then the entire packet is discarded.
The 2-byte Pixel Data field contains the raw video information that is to be scaled and
then displayed. Data is formatted in the manner described by the Video Data Format
Descriptor field. The data is transmitted a row at a time as defined previously.

[00360] The 2-byte Pixel Data CRC field contains a CRC of only the Pixel Data. If this
CRC fails to check then the Pixel Data can still be used but the CRC error count is

incremented.
35. Request Specific Status Packet
[00361] The Request Specific Status Packet provides a means, mechanism, or method for

a host to request that the client send a capability or status packet back to the host as
specified in this packet. The client returns the packet of the specified type in the next
Reverse Link Encapsulation Packet. The client will generally set bit 17 in the Client
Feature Capability field of the Client Capability Packet if the client has the capability to
respond to the Request Specific Status Packet. A convenient method for the host to use
to determine all of the types of status packets that a client can return or transfer is to use
the Valid Status Reply List Packet described elsewhere. The client can indicate an
ability to respond with the Valid Status Reply List Packet using bit 21 of Client Feature
Capability field of the Client Capability Packet.

[00362] The format of one embodiment of a Request Specific Status Packet is shown
generally in FIG. 79. As seen in FIG. 79, a Request Specific Status Packet is structured
to have Packet Length, Packet Type, hClient ID, Status Packet ID, and CRC fields.
Packet Length field specifies the total number of bytes in the packet not including the
packet length field, and is generally fixed at a value of 10 for this packet type. A Packet

WO 2005/091593 PCT/US2005/008832

80

Type of 138 identifies the packet as a Request Specific Status Packet. The hClient ID
field (2 bytes) is reserved for firture use for a Client ID, and is set to zero for now, while
a 2-byte Status Packet ID field specifies the type of capability or status packet that the
client is going to send to the host. Typical packets types are:
66 — Client Capability Packet is sent by the client.
133 — Alpha-Cursor Image Capability Packet is sent by the client.
139 — Valid Status Reply List Packet is sent that identifies the exact types of
capability and status packets that the client can send.
141 — Personal Client Capability Packet is sent by the client.
142 — Client Error Report Packet is sent by the client.
143 — Scaled Video Stream Capability Packet is sent by the client.
144 — Client Identification Packet is sent by the client.
[00363] Packet Types 56 through 63 can be used for manufacturer-specific capability and
status identifiers.
[00364] The CRC field again contains a CRC of all bytes in the packet including the
Packet Length.

36. Valid Status Reply List Packet

[00365] The Valid Status Reply List Packet provides the host with a structure, means, or
method to have a list of status and capability packets that the client has the capability to
return. A client can indicate an ability to support the Valid Status Reply List Packet
using bit 21 of Client Feature Capability field of the Client Capability Packet.

[00366] The format of one embodiment of a Valid Status Reply List Packet is shown
generally in FIG. 80. As seen in FIG. 80, a Valid Status Reply List Packet is structured
to have Packet Length, Packet Type, cClient ID, Number of Values in List, Valid
Parameter Reply List, and CRC fields. The packet length for this type of packet is
generally fixed at a value of 10, and a type value of 139 identifies the packet as a Valid
Status Reply Packet. The cClient ID field is reserved for future use as the Client ID,
and is generally be set to zero. The 2- byte Number of Values in List field specifies the
number of items in the following Valid Parameter Reply List.

[00367] The Valid Parameter Reply List field contains a list of 2-byte parameters that
specify the types of capability or status packets that the client can send to the bost. If
the client has indicated that it can respond to the Request Specific Status Packet (using

WO 2005/091593 PCT/US2005/008832

81

bit 21 of the Client Feature Capability field the in the Client Capability Packet) then it is
capable of sending at least the Client Capability Packet (Packet Type = 66) and. the
Valid Status Reply List Packet (Packet Type = 139). The Packet Types that can be sent
by the client and may be included in this list, along with their respective assignmentss for
purposes of the one embodiment, are:

66 — Client Capability Packet.

133 — Alpha-Cursor Image Capability Packet.

139 — Valid Status Reply List Packet, that identifies the exact types of

capability and status packets that the client can send.

141 — Personal Display Capability Packet.

142 — Client Error Report Packet.

143 — Scaled Video Stream Capability Packet.

144 — Client Identification Packet.

145 — Aliernate Display Capability Packet.

[00368] Packet Types 56 through 63 can be used for manufacturer-specific capability” and

status identifiers.

[00369] The CRC field contains a CRC of all bytes in the packet including the Paxcket
Length.

37. Personal Display Capability Packet

[00370] The Personal Display Capability Packet provides a set of parameters that
describe the capabilities of a personal display device, such as a head-mounted display or
display glasses. This enables the host to customize the display information accordimg to
the specific capabilities of a client. A client, on the other hand, indicates an ability to
send the Personal Display Capability Packet by using a corresponding parameter im the
Valid Parameter Reply List of the Valid Status Reply List Packet.

[00371] The format of one embodiment of a Personal Display Capability Packet is shhown
generally in FIG. 81. As seen in FIG. 81, a Personal Display Capability Packcet is
structured to have Packet Length, Packet Type, cClient ID, Sub-Pixel Layout, Pixel
Shape, Horizontal Field of View, Vertical Field of View, Visual Axis Crossing, LEt./Rt.
Image, See Through, Maximum Brightness, Optical Capability, Minimum IPD,
Maximum IPD, Points of IFeld of Curvature List and CRC fields. In one embodixment,
the Packet Length field value is fixed at 68. A Packet Type value of 141 identifies a

WO 2005/091593 PCT/US2005/008832

82

packet as a Personal Display Capability Packet. The cClient ID field is reserved for
future use and is generally set to zero for now.

[00372] The Sub-Pixel Layout field specifies the physical layout of a sub-pixel from top
to bottom and left to right, using values of: 0 to indicate that a sub-pixel layout is not
defined; 1 to indicate red, green, blue stripe; 2 to indicate blue, green, red stripe; 3 to
indicate a quad-pixel, having a 2-by-2 sub-pixel arrangement of red at the top left, blue
at the bottom right, and two green sub-pixels, one at the bottom left and the other at the
top right; 4 to indicate a quad-pixel, with a 2-by-2 sub-pixel arrangement of red at the
bottom lefi, blue at the top right, and two green sub-pixels, one at the top left and the
other at the bottom right; 5 to indicate a Delta (Triad); 6 to indicate a mosaic with red,
green, and blue overlayed (e.g. LCOS display with field-sequential color); and with
values 7 through 255 being generally reserved for future use.

[00373] The Pixel Shape field specifies the shape of each pixel that is composed of a
specific configuration sub-pixels, using a value of: 0 to indicate that a sub-pixel shape
is not defined; 1 to indicate round; 2 to indicate square; 3 to indicate rectangular; 4 to
indicate oval; 5 to indicate elliptical; and with the values 6 through 255 being reserved
for future use in indicating desired shapes, as can be appreciated by one skilled in the
art.

[00374] A 1-byte Horizontal Field of View (HFOV) field specifies the horizontal field of
view in 0.5 degree increments (e.g. if the HFOV is 30 degrees, this value is 60). If this
value is zero then the HFOV is not specified.

[00375] A 1-byte Vertical Field of View (VFOV) field specifies the vertical field of view
in 0.5 degree increments (e.g. if the VFOV is 30 degrees, this value is 60). If this value
is zero then the VFOV is not specified.

[00376] A 1-byte Visual Axis Crossing field specifies the visual axis crossing in 0.01
diopter (1/m) increments (e.g. if the visual axis crossing is 2.22 meters, this value is 45).
If this value is zero then the Visnal Axis Crossing is not specified.

[00377] A 1-byte Left/Right Image Overlap field specifies the percentage of overlap of
the left and right image. The allowable range of the image overlap in percent is 1 to
100. Values of 101 to 255 are invalid and are generally not to be used. If this value is
zero then the image overlap is not specified.

[00378] A 1-byte See Through field specifies the see-through percentage of image. The
allowable range of see-through in percent is 0 to 100. Values of 101 to 254 are invalid

WO 2005/091593 PCT/US2005/008832

83

and are not to be used. If this value is 255 then the see-through percentage is not
specified. Al-byte Maximum Brightness field specifies the maximum brightness in
increments of 20 nits (e.g. if the maximum brightness is 100 nits, this value is 5). If this

value is zero then the maximum brightness is not specified.

[00379] A 2-byte Optical Capability Flags field contains various fields that specify
optical capabilities of the display. These bit values are generally assigned according to:

[00380] Bits 15 through 5 are reserved for future use and are generally set to a logic-zero
state.

[00381] Bit 4 selects Eye Glass Focus Adjustment, with a value of ‘0’ meaning the

display has no eye glass focus adjustment, and a value of ‘1* meaning the display has an
cye glass focus adjustment.

[00382] Bits 3 through 2 select a Binocular Function according to: a value of 0 means the
display is binocular and can display 2-dimensional (2D) images only; 1 means the
display is binocular and can display 3-dimensional (3D) images; 2 means the display is
monocular, and 3 is reserved for future use.

[00383] Bits 1 through 0 select Left-Right Field Curvature Symmetry, with a value of 0
meaning Field curvature not defined. If this field is zero then all field curvature values
from Al through ES5 are set to zero except for point C3, which specifies a focal distance
of the display or is to be set to zero to indicate the focal distance is not specified. A
value of 1 means Left and Right displays have the same symmetry; 2 means Left and
right displays are mirrored on the vertical axis (column C); and 3 is reserved for future
use.

[00384] The 1-byte Inter-Pupillary Distance (IPD) Minimum field specifies the
minimum inter-pupillary distance in millimeters (mm). If this value is zero then the
minimum inter-pupillary distance is not specified. The 1-byte Inter-Pupillary Distance
(IPD) Maximum field specifies the maximum inter-pupillary distance in millimeters
(mm). If this value is zero then the maximum inter-pupillary distance is not specified.

[00385] The Points of Field Curvature List field contains a list of 25 2-byte parameters
that specify the focal distance in thousandths of a diopter (1/m) with a range of 1 to
65535 (e.g. 1 is 0.001 diopters and 65535 is 65.535 diopters). The 25 elements in the
Points of Field Curvature List are labeled Al through E5 as shown in FIG. 82. The
points are to be evenly distributed over the active area of the display. Column C

corresponds to the vertical axis of the display and row 3 corresponds to the horizontal

WO 2005/091593 PCT/US2005/008832

84

axis of the display. Columns A and E correspond to the left and right edges of the
display, respectively. And rows 1 and 5 correspond to the top and bottom edges of the
display, respectively. The order of the 25 points in the list is: Al, B1, C1, D1, El, A2,
B2, C2, D2, E2, A3, B3, C3, D3, E3, A4, B4, C4, D4, E4, A5, B5, C5, D5, ES.

[00386] The CRC field contains a CRC of all bytes in the packet including the Packet
Length,

38. Client Error Report Packet

[00387] The Client Error Report Packet acts as a mechanism or means for allowing a
client to provide a list of operating errors to the host. The client may detect a wide
range of ‘errors in the course of its normal operation as a result of receiving certain
commands from the host. Examples of these errors include: the client may have been
commanded to operate in a mode that it does not support, the client may have received a
packet containing certain parameters that are out of range or are beyond the capability
of the client, the client may have been commanded to enter a mode in an improper
sequence. The Client Error Report Packet may be used to detect errors during normal
operation, but is most useful to the system designer and integrator to diagnose problems
in development and integration of host and client systems. A client indicates its ability
to send a Client Error Report Packet using a parameter value of 142 in the Valid
Parameter Reply List of the Valid Status Reply List Packet.

[00388] The format of one embodiment of a Client Error Report Packet is shown
generally in FIG. 83. As seen in FIG. 83, a Client Error Report Packet is structured to
have Packet Length, Packet Type, cClient ID, Number of List Items, Error Code List,
and CRC fields. A Packet Type value of 142 identifies a packet as a Client Error Report
Packet. The cClient ID field is reserved for future use and is generally set to zero for
now. The Number of List Items field (2 bytes) specifies the number of items in the
following Error Code List. The Error Code List field (here 8 bytes) is a list containing
one or more Error Report List items. The format of a single Error Report List item is
shown in FIG. 84,

[00389] In one embodiment, as shown in FIG. 84, each Error Report List Item is exactly
4 bytes in length, and has a structure in one embodiment comprising: a 2-byte Display
Error Code field that specifies the type of error being reported, a 2-byte Error Sub-code
field specifies a greater level of detail regarding the error defined by the Client Error

WO 2005/091593 PCT/US2005/008832

85

Code packet. The specific definition of each Client Error Code is defined by the
manufacturer of the client. An Error Sub-code does not have to be defined for every
Display Error Code, and in those cases where the Error Sub-code is not defined the
value is set to zero. The specific definition of each BError Sub-code is defined by the

manufacturer of the client.

39, Client Identification Packet

[00390] The Client Identification Packet allows a client to return identifying data in
response to a Request Specific Status Packet. In one embodiment, a client indicates an
ability to send the Client Identification Packet using a parameter value of 144 in the
Valid Parameter Reply List of the Valid Status Reply List Packet. It is useful for the
host to be able to determine the client device manufacturer name and model number by
reading this data from the client. The information may be used to determine if the client
has special capabilities that cannot described in the Client Capability Packet. There are
potentially two methods, means, or mechanisms for reading identification information
from the client. One is through use of the Client Capability Packet, which contains
fields similar to those in the base EDID structure. The other method is through use of
the Client Identification Packet that contains a richer set of information compared to the
similar fields in the Client Capability Packet. This allows a host to identify
manufacturers that have not been assigned a 3-character EISA code, and allows serial
numbers to contain alphanumeric characters.

[00391] The format of one embodiment of a Client Identification Packet is shown
generally in FIG. 85. As seen in FIG. 85, a Client Identification Packet is structured to
have Packet Length, Packet Type, cClient ID, Week of Mfr, Year of Mft., Length of
Mfr Name, Length of Product Name, Length of Serial Number, Manufacturer Name
String, Product Name String, Serial Number String, and CRC fields.

[00392] The 2 byte Packet Type field contains a value that identifies the packet as a
Client Identification Packet. This value is selected to be 144 in one embodiment. The
cClient ID field (2 bytes) again is reserved for future use for the Client ID, and is
generally set to zero. The CRC field (2 bytes) contains a 16-bit CRC of all bytes in the
packet including the Packet Length.

[00393] A 1-byte Week of Manufacture field contains a value that defines the week of

manufacture of the display. In at least one embodiment, this value is in the range of 1 to

WO 2005/091593 PCT/US2005/008832

86

53 if it is supported by the client. If this field is not supported by the client, then it is
generally set to zero. A 1-byte Year of Manufacture field contains a value that defines
the year of manufacture of the client (display). This value is an offset from the year
1990 as a starting point, although other base years could be used. Years in the range of
1991 to 2245 can be expressed by this field. Example: the year 2003 corresponds to a
Year of Manufacture value of 13. If this field is not supported by the client it should be
set to a value of zero.

[00394] The Length of Mfr Name, Length of Product Name, and Length of Serial
Number fields each contain 2-byte values that specify the length of the Manufacturer
Name String field including any null termination or null pad characters, the length of the
Product Name String field including any null termination or null pad characters, and the
length of the Serial Number String field including any null termination or null pad
characters, respectively.

[00395] The Manufacturer Name String, Product Name String, and Serial Number String
fields each contain a variable number of bytes specified by the Length Mfr Name,
Product Name, and Serial Number fields, respectively, that contain an ASCII string that
specifies the manufacturer, product name, and alphanumeric serial number of the
display, respectively. Each of these strings is terminated by at least one null character.
40. Alternate Display Capability Packet

[00396] The Alternate Display Capability Packet is used as a means, structure, or method
to indicate the capability of alternate displays attached to the MDDI client controller. It
is sent in response to a Request Specific Status Packet. When prompted, a client device
sends an Alternate Display Capability Packet for each altemate display that is
supported. If a client has more than one alternate display, then the client should send,
generate, or provide multiple Alternate Display Capability Packets, one for each
display, in response to a single Request Specific Status Packet, although some
configurations can use multiple Request Specific Status Packets as desired, although
this is less efficient. The client may send Alternate Display Capability Packets in what
can be referred to as a “non-sequential order” based on the value of the Alt Display
Number field. The client can’ indicate an ability to send the Alternate Display
Capability Packet via a parameter value of 145 in the Valid Parameter Reply List of the
Valid Status Reply List Packet.

WO 2005/091593 PCT/US2005/008832

87

[00397] For MDDI systems operated in internal mode it may be common to have more
than one display connected to an MDDI client controller. An example application is a
mobile phone with a large display on the inside of the flip and a smaller display on the
outside. It is not necessary for an internal mode client to return an Alternate Display
Capability Packet for two potential reasons. First, the host may already be programmed
or otherwise informed of the capabilities during manufacture since they are used in a
common device or housing. Second, due to assembly of the two, the client cannot
easily be disconnected or separated from a connection to the host, and the host may
contain a hard-coded copy of the client capabilities, or at least know they do not change
with a change in client, as otherwise might occur.

[00398] The Number of Alt Displays field of the Client Capability Packet is used to
report that more than one display is attached and the Alternate Display Capability
Packet reports the capability of each alternate display. The video stream packet
contains 4 bits in the Pixel Data Attributes field to address each alternate display in the
client device.

[00399] The format of one embodiment of a Alternate Display Capability Packet is
shown generally in FIG. 89. As seen in FIG. 86, an Alternate Display Capability Packet
is structured to have Packet Length, Packet Type, cClient ID, Alt Display Number,
Reserved 1, Bitmap Width, Bitmap Height, Display Window Width, Display Window
Height, Color Map RGB Width, RGB Capability, Monochrome Capability, Reserved 2,
Y Cb Cr Capability, Display Feature Capability, Reserved 3, and CRC fields. A Packet
Type value of 145 identifies a packet as a Alternate Display Capability Packet. The
¢Client ID field is reserved for a Client ID for future use and generally set to zero.

[00400] The Alt Display Number field uses 1 byte to indicate the identity of the alternate
display with an integer in the range of O to 15. The first alternate display is typically
designated as number O and the other alternate displays are identified with unique Alt
Display Number values with the largest value used being the total number of alternate
displays minus 1. Values larger than the total number of alternate displays minus 1 are
not used. Example: a mobile phone having a primary display and a caller-ID display
connected to an MDDI client has one alternate display, so the Alt Display Number of
the caller-ID display is zero and the Number of Alt Displays field of the Client
Capability Packet has a value of 1.

WO 2005/091593 PCT/US2005/008832

88

[00401] The Reserved 1 field (1 byte) is reserved for futurc use. All bits in this field are
set to zero. One purpose of this field is to cause all subsequent 2 byte fields to align to a
16-bit word address and cause 4-byte fields to align to a 32-bit word address.

[00402] The Bitmap Width field uses 2 bytes that specify the width of the bitmap
expressed as a number of pixels. The Bitmap Height field uses 2 bytes that specify the
height of the bitmap expressed as a number of pixels. The Display Window Width field
uses 2 bytes that specify the width of the display window expressed as a number of
pixels. The Display Window Height field uses 2 bytes that specify the height of the
display window expressed as a number of pixels.

[00403] The Color Map RGB Width field uses 2 bytes that specify the number of bits of
the red, green, and blue color components that can be displayed in the color map
(palette) display mode. A maximum of 8 bits for each color component (red, green, and
blue) can be used. Even though 8 bits of each color component are sent in the Color
Map Packet, only the number of least significant bits of each color component defined
in this field are used. If the display client cannot use the color map (palette) format then
this value is zero. The color map RGB Width word is composed of three separate
unsigned values:

[00404] Bits 3 through 0 define the maximum number of bits of blue in each pixel with
values of 0 to 8 being considered valid. Bits 7 through 4 define the maximum number
of bits of green in each pixel with values of 0 to 8 being considered valid. Bits 11
through 8 define the maximum number of bits of red in each pixel with values of 0 to 8
being considered valid. Bits 14 through 12 are reserved for future use and are generally
set to zero. Bit 15 is used to indicate the ability of a client to accept Color Map pixel
data in packed or unpacked format. When Bit 15 is set to a logic-one level, this
indicates that the client can accept Color Map pixel data in either packed or unpacked
format. Ifbit 15 is set to a logic-zero, this indicates that the client can accept Color Map
pixel data only in unpacked format.

[00405] RGB Capability field uses 2 bytes to specify the number of bits of resolution that
can be displayed in RGB format. In one embodiment, if the client cannot use the RGB
format then this value is set equal to zero. The RGB Capability word is composed of
three separate unsigned values: Bits 3 through 0 define the maximum number of bits of
blue (the blue intensity) in each pixel, Bits 7 through 4 define the maximum number of
bits of green (the green intensity) in each pixel, and Bits 11 through 8 define the

WO 2005/091593 PCT/US2005/008832

89

maximum number of bits of red (the red intensity) in each pixel. Bits 14 through 12 arc
reserved for future use and are set to zero. Bit 15 is used to indicate the ability of a
client to accept RGB pixel data in packed or unpacked format. When Bit 15 is set to a
logic-one level, this indicates that the client can accept RGB pixel data in either packed
or unpacked format. If bit 15 is set to a logic-zero, this indicates that the client can
accept RGB pixel data only in unpacked format.

[00406] The 1 byte Monochrome Capability field contains a value or information to
specify the nummber of bits of resolution that can be displayed in monochrome format. If
the client cannot use the monochrome format then this value is set equal to zero. Bits 6
through 4 are reserved for future use and are generally set to zero. Bits 3 through 0
define the maximum number of bits of grayscale that can exist in each pixel. These four
bits make it possible to specify that each pixel consists of 1 to 15 bits. If the value is
zero then the monochrome format is not supported by the client. Bit 7 when set to one
indicates that the client can accept monochrome pixel data in either packed or unpacked
format. Ifbit 7 is set to zero this indicates that the client can accept monochrome pixel
data only in unpacked format.

[00407] The Reserved 2 field is a 1 byte wide field reserved for future use and generally
has all bits in this field set to logic-zero level. In one embodiment, one purpose of this
field is to cause all subsequent 2 byte fields to align to a 16-bit word address and cause
4-byte fields to align to a 32-bit word address.

[00408] A 2-byte Y Cb Cr Capability field specifies the number of bits of resolution that
can be displayed in Y Cb Cr format. If the client cannot use the Y Cb Cr format then
this value is zero. The Y Cb Cr Capability word is composed of three separate unsigned
values: Bits 3 through O define the maximum number of bits that specify the Cb
sample, Bits 7 through 4 define the maximum number of bits that specify the Cr sample,
Bits 11 through 8 define the maximum number of bits that specify the Y sample, and
Bits 14 through 12 are reserved for future use and are set to zero. Bit 15 when set to one
indicates that the client can accept Y Cb Cr pixel data in either packed or unpacked
format. Ifbit 15 is set to zero this indicates that the client can accept Y Cb Cr pixel data
only in inpacked format.

[00409] A 2 byte Bayer Capability field specifies the number of bits of resolution, pixel
group, and pixel order that can be transferred in Bayer format. If the client cannot use

the Bayer format then this value is set at zero. The Bayer Capability field is composed

WO 2005/091593 PCT/US2005/008832

90

of the following values: Bits 3 through 0 define the maximum number of bits of
intensity that exist in each pixel, Bits 5 through 4 define the pixel group pattern that
may be required. Bits 8 through 6 define a pixel order that is required, and Bits 14
through 9 are reserved for future use and are set to zero. Bit 15 when set to one
indicates that the client can accept Bayer pixel data in either packed or unpacked format.
If bit 15 is set to zero, this indicates that the client can accept Bayer pixel data only in
unpacked format.

[00410] The 2-byte CRC field contains a 16-bit CRC of all bytes in the packet including
the Packet Length.

41. Register Access Packet

[00411] The Register Access Packet provides either a host or a client with a means,
mechanism, or method to access configuration and status registers in the opposite end of
the MDDI link. The registers are likely to be unique for each display or device
controller. These registers already exist in many displays that require setting
configurations, modes of operation, and have other useful and necessary settings. The
Register Access Packet allows the MDDI host or client to both write to a register and
request to read a register using the MDDI link. When the host or client requests to read
a register the opposite end should respond by sending the register data in the same
packet type, but also by indicating that this is the data read from a particular register
with the use of the Read/Write Info field. The Register Access Packet may be used to
read or write multiple registers by specifying a register count greater than 1. A client
indicates an ability to support the Register Access Packet using bit 22 of Client Feature
Capability ficld of the Client Capability Packet. The client will use the encapsulation
packet to send the Register Access Packet, therefore presenting what appears as a packet
within a packet configuration or structure.

[00412] The format of one embodiment of a Register Access Packet is shown generally
in FIG. 87. As seen in FIG. 87, a Register Access Packet is structured to have Packet
Length, Packet Type, bClient ID, Read/Write Flags, Register Address, Parameter CRC,
Register Data List and Register Data CRC fields. A Packet Type value of 146 identifies
a packet as Register Access Packet. The bClient ID field is reserved for future use and

is generally set to zero for now.

WO 2005/091593 PCT/US2005/008832

91

[00413] The 2-byte Read/Write Flags ficld specifies the specific packet as either a write,
or a read, or a response to a read, and provides a count of the data values.

[00414] Bits 15 through 14 act as Read/Write Flags. If Bits[15:14] are ‘00’ then this
packet contains data to be written to a register addressed by the Register Address field.
The data to be written to the specified registers is contained in the Register Data List
field. If Bits[15:14] are ‘10’ then this is a request for data from one or more registers
addressed by the Register Address field. If Bits[15:14] are ‘11° then that packet
contains data that was requested in response to a Register Access Packet having bits
15:14 of the Read/Write Flags set to “10°. The Register Address ficld contains the
address of the register corresponding to the first Register Data List item, and the
Register Data List field contains data that was read from the address or addresses. If
Bits[15:14] are ‘01’ this is treated as an invalid value, this value is reserved for future
use and is not used at this time, but those skilled in the art will understand how to
employ it for future applications.

[00415] Bits 13:0 use a 14-bit unsigned integer to specify the number of 32-bit Register
Data items to be transferred in the Register Data List field. If bits 15:14 equal ‘00’ then
bits 13:0 specify the number of 32-bit register data items that arc contained in the
Register Data List field to be written to registers starting at the register specified by the
Register Address field. Ifbits 15:14 equal ‘10’ then bits 13:0 specify the number of 32~
bit register data items that the receiving device sends to a device requesting that the
registers be read. The Register Data List field in this packet contains no items and is of
zero length. Ifbits 15:14 equal €11’ then bits 13:0 specify the number of 32-bit register
data items that have been read from registers that are contained in the Register Data List
field. Bits 15:14 are not currently set equal to ‘01°, which is considered an invalid
value, and otherwise reserved for future designations or use.

[00416] The Register Address field uses 4 bytes to indicate the register address that is to
be written to or read from. For addressing registers whose addressing is less than 32
bits, the upper bits are set to zero.

[00417] The 2-byte Parameter CRC field contains a CRC of all bytes form the Packet
Length to the Register Address. If this CRC fails to check then the entire packet is
discarded.

[00418] The Register Data List field contains a list of 4-byte register data values to be

written to client registers or values that were read from client device registers.

WO 2005/091593 PCT/US2005/008832

o2

[00419] The 2-byte Register Data CRC field contains a CRC of only the Register Data
List. If this CRC fails to check then the Register Data may still be used, but the CRC

¢rror count is incremented.

D. Packet CRC

[00420] The CRC fields appear at the end of the packets and sometimes after certain
more critical parameters in packets that may have a significantly large data field, and
thus, an increased likelihood of errors during transfer. In packets that have two CRC
fields, the CRC generator, when only one is used, is re-initialized after the first CRC so
that the CRC computations following a long data field are not affected by the
parameters at the beginning of the packet.

[00421] There is a remote possibility for packets containing multiple bit errors to
produce a good CRC. The probability of detecting a good CRC on a packet with errors
approaches 7.6 x 10 on very long packets containing many errors. By design, the
MDDI link will have a very low or zero erxor rate. The CRC is intended to be used to
monitor the health of the link, and is not intended to detect errors on specific packets to
determine whether packets should be retransmitted.

[00422] In an exemplary embodiment, the polynomial used for the CRC calculation is
known as the CRC-16, or X16 + X15 + X2 + X0. A sample implementation of 2 CRC
generator and checker 3600 useful for implementing the invention is shown in FIG. 36.
In FIG. 36, a CRC register 3602 is initialized to a value of 0x0001 just prior to transfer
of the first bit of a packet which is input on the Tx_MDDI Data B efore CRC line, then
the bytes of the packet are shifted into the register starting with the I.SB first. Note that
the register bit numbers in this figure correspond to the order of the polynomial being
used, and not the bit positions used by the MDDI. It is more efficient to shift the CRC
register in a single direction, and this results in having CRC bit 15 appear in bit position
0 of the MDDI CRC field, and CRC register bit 14 in MDDI CRC field bit position 1,
and so forth until MDDI bit position 14 is reached.

[00423] As an example, if the packet contents for the Client Request and Status Packets
are: 0x000c, 0x0046, 0x000, 0x0400, 0x00, 0x00, 0x0000 (or represented as a sequence
of bytes as: 0x0c, 0x00, 0x46, 0x00, 0x00, 0Ox00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00),
and are submitted using the inputs of the multiplexors 3604 and 3606, and AND gate

WO 2005/091593 PCT/US2005/008832

93

3608, the resulting CRC output on the Tx_MDDI_Data_With CRC line is 0xd9aa (or
represented as a sequence as Oxaa, 0xd9).

[00424] When CRC generator and checker 3600 is configured as a CRC checker, the
CRC that is received on the Rx_ MDDI Data line is input to multiplexor 3604 and
exclusive-OR (XOR) gate 3612, and is compared bit by bit with the value found in the
CRC register using NOR gate 3610, AND gate 3608, and AND gate 3614. If there are
any errors, as output by AND gate 3614, the CRC is incremented once for every packet
that contains a CRC error by connecting the output of gate 3614 to the input of register
3602. Note that the example circuit shown in the diagram of FIG. 36 can output more
than one CRC error signal within a given CHECK._CRC_NOW window (see FIG. 37B).
Therefore, the CRC error counter generally only counts the first CRC error instance
within each interval where CHECK_CRC NOW is active. If configured as a CRC
generator the CRC is clocked out of the CRC register at the time coinciding with the
end of the packet.

[00425] The timing for the input and output signals, and the enabling signals, is
illustrated graphically in FIGs. 37A and 37B. The generation of a CRC and
transmission of a packet of data are shown in FIG. 37A with the state (0 or 1) of the
Gen_Reset, Check CRC_Now, Generate CRC Now, and Sending MDDI Data
signals, along with the Tx_MDDI Data Before CRC and Tx_MDDI_Data With CRC
signals. The reception of a packet of data and checking of the CRC value are shown in
FIG. 37B, with the state of the Gen Reset, Check_ CRC_Now, Generate CRC_Now,
and Sending MDDI Data signals, along with the Rx MDDI Data and CRC error
signals.

E. Error Code Overload for Packet CRC

[00426] Whenever only data packets and CRC are being transferred between the host and
client, there are no error codes being accommodated. The only error is a loss of
synchronization. Otherwise, one has to wait for the link to timeout from a lack of a
good data transfer path or pipeline and then reset the link and proceed. Unfortunately,
this is time consuming and somewhat inefficient.

[00427] For use in one embodiment, a new technique has been developed in which the
CRC portion of packets is used to transfer error code information. This is generally

shown in FIG. 65. That is, one or more error codes are generated by the processors or

WO 2005/091593 PCT/US2005/008832

94

devices handling the data transfer which indicate specific predefined errors or flaws that
might occur within the communication processing or link. When an error is
encountered, that the appropriate error code is generated and transferred using the bits
for the CRC of a packet. That is, the CRC value is overloaded, or overwritten, with the
desired error code, which can be detected on the receiving end by an error monitor or
checker that monitors the values of the CRC field. For those cases in which the error
code matches the CRC value for some reason, the compliment of the error is transferred
to prevent confusion.

[00428] In one embodiment, to provide a robust error warning and detection system, the
error code may be transferred several times, using a series.of packets, generélly all, that
are transferred or sent after the error has been detected. This occurs until the point at
which the condition creating the error is cleared from the system, at which point the
regular CRC bits are transferred without overloading by another value.

[00429] This technique of overloading the CRC value provides a much quicker response
to system errors while using a minimal amount of extra bits or fields.

[00430] As shown in FIG. 66, a CRC overwriting mechanism or apparatus 6600 is
shown using an error detector or detections means 6602, which can form part of other
circuitry previously described or known, detects the presence or existence of errors
within the communication link or process. An error code generator or means 6604,
which can be formed as part of other circuitry or use techniques such as look up tables
to store pre-selected error messages, generates one or more error codes to indicate
specific predefined errors or flaws that have been detected as occurring. It is readily
understood that devices 6602 and 6604 can be formed as a single circuit or device as
desired, or as part of a programmed sequence of steps for other known processors and
elements.

[00431] A CRC value comparator or comparison means 6606 is shown for checking to
see if the selected error code or codes are the same as the CRC value being transferred.
If that is the case then a code compliment generator or generation means or device is
used to provide the compliment of the error codes as to not be mistaken as the original
CRC pattern or value and confuse or complicate the detection scheme. An error code
selector or selection means element or device 6610 then selects the error code or value it
is desired to insert or overwrite, or their respective compliments as appropriate. An

error code CRC over-writer or over writing mechanism or means 6612 is a device that

WO 2005/091593 PCT/US2005/008832

95

receives the data stream, packets, and the desired codes to be inserted and owerwrites the
corresponding or appropriate CRC values, in order to transfer the desired exror codes to
areceiving device.

[00432] As mentioned, the error code may be transferred several times, using a series of
packets, so the over-writer 6612 may utilize memory storage elements in order to
maintain copies of the codes during processing or recall these codes from previous
elements or other known storage locations which can be used to store or hold their
values as needed, or as desired.

[00433] The general processing the overwriting mechanism of FIG. 66 is implementing
is shown in additional detail in FIGs. 67A and 67B. In 67A, an error, one or more, is
detected in step 6702 in the communication data or process and an error code is selected
in step 6704 to indicate this condition. At the same time, or at an appropriate point, the
CRC value to be replaced is checked in a step 6706, and compared to the desired error
code in step 6708. The result of this comparison, as discussed earlier, is a determination
as to whether or not the desired code, or other representative values, will be the same as
the CRC value present. If this is the case, then processing proceeds to a step 6712
where the compliment, or in some cases another representative value, as desired, is
selected as the code to insert. One it has been determined what error codes or values are
to be inserted in steps 6710 and 6714, that appropriate code is selected for insertion.
These steps are illustrated as separate for purposes of clarity but generally represent a
single choice based on the output of the step 6708 decision. Finally, in step 6716 the
appropriate values are overwritten in the CRC location for transfer with the packets
being targeted by the process.

[00434] On the packet reception side, as shown in FIG. 67B, the packet CRC values are
being monitored in a step 6722. Generally, the CRC values are being monitored by one
or more processes within the system to determine if an error in data transfer has
occurred and whether or not to request a retransmission of the packet or packets, or to
inhibit further operations and so forth, some of which is discussed above. As part of
such monitoring the information can also be used to compare values to known or pre-
selected error codes, or representative values and detect the presence of errors.
Alternatively, a separate error detection process and monitor can be implermented. If a
code appears to be present it is extracted or otherwise noted in step 6724 for further

processing. A determination can be made in step 6726 as to whether or not this is the

WO 2005/091593 PCT/US2005/008832

96

actual code or a compliment, in which case an additional step 6728 is used to translate
the value to the desired code value. In either case the resulting extracted code,
compliment, or other recovered values are then used to detect what error has occurred

form the transmitted code i step 6730.

V. Link Hibernation

[00435] The MDDI link can enter the hibernation state quickly and wake up from
hibernation quickly. This responsiveness allows a communicating system or device to
force the MDDI link into hibernation frequently to reduce power consumption, since it
can wake up again for use very quickly. Tn one embodiment, as an external mode client
wakes up from hibernation for the first time it does so at a data rate and with strobe
pulse timing that is consistent with a 1 Mbps rate, that is, the MDDI_Stb pair should
toggle at a 500 kHz rate. Once characteristics of the client have been discovered by or
communicated to the host, then the host may wake up the link at generally any rate from
1 Mbps to the maximum rate at which the client can operate. Internal mode clients may
wake up at any rate at which both the host and client can operate. This is also generally
applicable to the first time an internal mode client wakes up.

[00436] In one embodiment, when the link wakes up from hibernation the host and client
exchange a sequence of pulses. These pulses can be detected using low-speed line
receivers that consume only a fraction of the current as the differential receivers
required to receive the signals at the maximum link operating speed. Either the host or
client can wake up the link, so the wake-up protocol is designed to handle possible
contention that can occur if both host and client attempt to wake up simultaneously.

[00437] During the hibernation state the MDDI_Data and MDDI_Stb differential drivers
are disabled in the high-impedance state and the differential voltage across all
differential pairs is zero volts. The differential line receivers used to detect the sequence
of pulses during the wake-up from hibernation have an intentional voltage offset. In one
embodiment, the threshold between a logic-one and logic-zero level in these receivers is
approximately 125 mV. This causes an un-driven differential pair to be seen as a logic-
zero level during the link wake-up sequence.

[00438] In order to enter a Hibernation State, the host sends 64 MDDI_Stb cycles after
the CRC of the Link Shutdown Packet. The host disables the MDDI_Data0 output of

WO 2005/091593 PCT/US2005/008832

97

the host in the range of 16 to 56 MDDI Stb cycles (imcluding output disable
propagation delays) after the CRC. The host finishes sending the 64 MDDI_Stb cycles
after the CRC of the Link Shutdown packet before it initiates the wake-up sequence. In
one embodiment, the host-initiated wake-up is defined as the host having to wait at least
100 nsec after MDDI_Data0 reaches a valid logic-one level before driving pulses on
MDDI_Stb. In one embodiment, the client waits at least 60 MIDDI_Stb cycles after the
CRC of the Link Shutdown Packet before it drives MDDI_Data0 to a logic-one level to
attempt to wake-up the host.

[00439] In order to “wake-up” from a Hibernation State, several actions or processes are
undertaken. When the client, here a display, needs data or communication, service,
from the host it generates a request pulse by driving the MDIDI_Data0 line to a logic-
one state for around 70 to 1000 psec, while MDDI St is inactive and keeps
MDDI Data0 driven to a logic-one level for about 70 MDDI _Stb cycles (over a range
of 60 to 80) after MDDI _Stb becomes active, although other periods can be used as
desired. The client then disables the MDDI Data0 driver bvy placing it into a high-
impedance state.

[00440] If MDDI Stb is active during hibernation, although unlikely, then the client
might only drive MDDI_Data0 to a logic-one state for about 70 MDDI_Stb cycles (over
a range of 60 to 80). This action causes the host to start or restart data traffic on the
forward link (208) and to poll the client for its status.

[00441] The host must detect the presence of the request pulse and begins the startup
sequence of first driving the MDDI_Stb to logic-zero level and MDDI_Data0 to a logic-
high level for at least around 200 nsec. And then while togglimg MDDI Stb continue to
drive MDDI_Data0 to a logic-one level for about 150 MDDI_Stb cycles (a range of 140
to 160) and to logic-zero for about 50 MDDI_Stb cycles. The client should not send a
service request pulse if it detects MDDI_Data0 in the logic-ome state for more than 80
MDDI_Stb cycles. When the client has detected MDDI_Datz0 at a logic-one level for
60 to 80 MDDI_Stb cycles it begins to search for the interval where the host drives
MDDI_Data0 to a logic-zero level for 50 MDDI Stb cycles. After the host drives
MDDI_Data0 to a logic-zero level for a duration of 50 MDDL_Stb cycles, then the host
starts sending packets on the link. The first packet sent is a Sub-frame Header Packet.
The client begins to look for the Sub-frame Header Packet after MDDI Data0 is at a
logic-zero level for 40 MDDI_Stb cycles of the 50 cycle interval. The nature of

WO 2005/091593 PCT/US2005/008832

98

selection of the times and tolerances of time intervals related to the hibernation
processing and start up sequence are discussed further below. (See FIGs. 68A-C
below.)

[00442] The host may initiate the wake-up by first enabling MDDI_Stb and
simultaneously drive it to a logic-zero level. MDDI_Stb should not be driven to a logic-
one level until pulses are output as described below. After MDDI_Stb reaches a logic-
zero level the host enables MDDI Data0 and simultaneously drives it to a logic-one
level. MDDI Data0 should not be driven to a logic-zero level during the wake-up
process_until the interval where it is driven to a logic-zero level for an interval of 50
MDDI_Stb pulses as described below. The host should wait at least 200 nsec after
MDDI_Data0 reaches a valid logic-one level before driving pulses on MDDI_Stb. This
timing relationship occurs while considering the worst-case output enable delays. This
substantially guarantees that a client has sufficient time to fully enable its MDDI_Stb
receiver after being awakened by a logic-one level on MDDI_Data0 that was driven by
the host.

[00443] An example of the processing steps for a typical client service request event
3800 with no contention is illustrated in FIG. 38, where the events are labeled for
convenience in illustration using the letters A, B, C, D, E, F, and G. The process
commences at point A when the host sends a Link Shutdown Packet to the client device
to inform it that the link will transition to a low-power hibernation state. In a next step,
the host enters the low-power hibernation state by disabling the MDDI_Data0 driver
and setting the MDDI_Stb driver to a logic zero, as shown at point B. MDDI_Data0 is
driven to a logic-zero level by a high-impedance bias network. After some period of
time, the client sends a service request pulse to the host by driving MDDI_Data0 to a
logic one level as seen at point C. The host still asserts the logic-zero level using the
high-impedance bias network, but the driver in the client forces the line to a logic one
level. Within 50 psec, the host recognizes the service request pulse, and asserts a logic
one level on MDDI Data0 by enabling its driver, as seen at point D. The client then
ceases from attempting to assert the service request pulse, and the client places its driver
into a high-impedance state, as seen at point E. The host drives MDDI Data0 to a
logic-zero level for 50 usec, as shown at point F, and also begins to generate MDDI_Stb
in a manner consistent with the logic-zero level on MDDI Data0. The client begins to
look for the Sub-frame Header Packet after MDDI_Data0 is at a logic-zero level for 40

WO 2005/091593 PCT/US2005/008832

99

MDDI Stb cycles. After asserting MDDI_Data0 to a logic-zero level and driving
MDDI_Stb for 50 psec, the host begins to transmit data on the forward link by sending
a Sub-frame Header Packet, as shown at point G.

[00444] A similar example is illustrated in FIG. 39 where a service request is asserted
after the link restart sequence has begun, and the events are again labeled using the
letters A, B, C, D, E, F, and G. This represents a worst case scenario where a request
pulse or signal from the client comes closest to corrupting the Sub-frame Header Packet.
The process commences at point A when the host again sends a Link Shutdown Packet
to the client device to inform it that the link will transition to a low-power hibernation
state. In a next step, the host enters the low-power hibernation state by disabling the
MDDI_Data0 driver and setting the MDDI_Stb driver to a logic-zero level, as shown at
point B. As before, MDDI Data0 is driven to a logic-zero level by a high-impedance
bias network. After a period of time, the host begins the link restart sequence by driving
MDDI_Data0 to a logic-one level for 150 psec as seen at point C. Prior to 50 psec
passing after the link rostart sequence begins the display also asserts MDDI_Data0 for a
duration of 70 psec, as seen at point D. This happens because the display has a need to
request service from the host and does not recognize that the host has already begun the
link restart sequence. The client then ceases attempting to assert the service request
pulse, and the client places its driver into a high-impedance state, as seen at point E.
The host continues to drive MDDI_Data0 to a logic-one level. The host drives
MDDI_Data0 to a logic-zero level for 50 psec, as shown at point F, and also begins to
generate MDDI_Stb in a manner consistent with the logic zero level on MDDI Data0.
After asserting MDDI_Data0 to a logic-zero level, and driving MDDI Stb for 50 usec,
the host begins to transmit data on the forward link by sending a Sub-frame Header
Packet, as shown at point G.

[00445] From the above discussion, one sees that the prior solution involved having the
host go through two states as part of a wakeup sequence. For the first state, the host
drives the MDDI_Data0 signal high for 150 us, and then drives the MDDI_Data0 signal
low for 50 us while activating the MDDI_Stb linc, and then begins to transmit MDDI
packets. This process works well to advance the state of the art in terms of data rates
achievable using the MDDI apparatus and methods. However, as stated earlier, more

speed in terms of reduced response time to conditions or being able to more quickly

WO 2005/091593 PCT/US2005/008832

100

scloct the next step or process, are the ability to simplify processing or elements, are
always in demand.

[00446] Applicants have discovered a new inventive approach fo wake-up processing
and timing in which the host uses a clock cycle based timing for the signal toggling. In
this configuration, the host starts toggling MDDI_Stb from 0 to 10 psec after the host
drives the MDDI_Data(signal high at the beginning of the wake-up sequence, and does
not wait until the signal is driven low. During a wake-up sequence, the host toggles
MDDI_Stb as though the MDDI_DataO signal were always at a logic-zero level. This
effectively removes the concept of time from the client side, and the host changes from
the prior 150 ps and 50 ps periods for the first two states, to 150 clock cycles and 50
clock cycles, for these periods.

[00447] The host now becomes responsible for driving that data line high, and within 10
clock cycles starting to transmit a strobe signal as if the data line was zero. After the
host has driven the data line high for 150 clock cycles, the host drives the data line low
for 50 clock cycles while continuing to transmit the strobe signal. Afier it has
completed both of these processes, the host can begin to transmit the first sub-frame
header packet.

[00448] On the client side, the client implementation can now use the generated clock to
calculate the number of clock cycles that the data line is first high, and then low. The
number of clock cycles that need to occur in both the data line driven high state is 150
and data line driven low state is 50. This means that for a proper wakeup sequence, the
client should be able to count at least 150 continuous clock cycles of the data line being
high, followed by at least 50 continuous clock cycles of the data line being low. Once
these two conditions are met, the client can begin to search for the unique word of the
first sub-frame. A break in this pattern is used as a basis to return the counters to an
initial state in which the client again looks for the first 150 continuous clock cycles of
the data line being high.

[00449] A client implementation of the invention for host based wakeup from
hibernation is very similar to the initial start-up case except that the clock rate is not
forced to start at 1Mbps, as discussed earlier. Instead the clock rate can be set to resume
at whatever previous rate was active when the communication link went into
hibernation. If the host begins transmission of a strobe signal as described above, the

client should be able to again count at least 150 continuous clock cycles of the data line

WO 2005/091593 PCT/US2005/008832

101

being high, followed by at least 50 continuous clock cycles of the data line being low.
Once these two conditions have been met, the client can begin the search for the unique
word.

[00450] A client implementation of the invention for client based wakeup from
hibernation is similar to the host based wakeup except that it starts by having the client
driving the data line. The client can asynchronously drive the data line without a clock
to wake up the host device. Once the host recognizes that the data line is being driven
high by the client, it can begin its wakeup sequence. The client can count the number of
clock cycles generated by the host starting or during its wakeup process. Once the
client counts 70 continuous clock cycles of the data being high, it can stop driving the
data line high. At this point, the host should already be driving the data line high as
well. The client can then count another 80 continuous clock cycles of the data line
being high to reach the 150 clock cycles of the data line being high, and can then look
for 50 clock cycles of the data line being low. Once these three conditions have been
met the client can begin to look for the unique word.

[00451] An advantage of this new implementation of wake-up processing is that it
removes the need for a time measuring device. Whether this is an oscillator, or
capacitor discharge circuit, or other such known devices, the client no longer needs such
external devices to determine the start up conditions. This saves money and circuit area
when implementing controllers, counters, and so forth on a client device board. While
this may not be as advantageous to the client, for the host, this technique should also
potentially simplify the host in terms of Very High Density Logic (VHDL) being used
for core circuitry. The power consumption of using the data and strobe lines as the
wakeup noftification and measurement source will also be lower since no external
circuitry will need to be running for the core elements to be waiting for a host based
wakeup. The number of cycles or clock periods used is exemplary and other periods
can be used as will be apparent to one skilled in the art.

[00452] An advantage of this new implementation of wake-up processing is that it
removes the nced for a time measuring device. Whether this is an oscillator, or
capacitor discharge circuit, or other such known devices, the client no longer needs such
external devices to determine the start up conditions. This saves money and circuit area
when implementing controllers, counters, and so forth on a client device board. While

this may not be as advantageous to the client, for the host, this technique should also

WO 2005/091593 PCT/US2005/008832

102

potentially simplify the host in terms of VHDL being used for core circuitry. The
power consumption of using the data and strobe lines as the wakeup notification and
measurement source will also be lower since no external circuitry will need to be
running for the core elements to be waiting for a host based wakeup.

[00453] To clarify and illustrate the operation of this new technique, the timing of
MDDI_Data0, MDDI_Stb, and various operations relative to the clock cycles are shown
in FIGs. 68A, 68B, and 68C.

[00454] An example of the processing steps for a typical Host-initiated Wake-up with no
contention is illustrated in FIG. 68A, where the events are again labeled for convenience
in illustration using the letters A, B, C, D, E, F, and G. The process commences at point
A when the host sends a Link Shutdown Packet to the client device to inform it that the
link will transition to a low-power hibernation state. In a next step, point B, the host
toggles MDDI_Stb for about 64 cycles (or as desired for system design) to allow
processing by the client to be completed prior to stopping MDDI Stb from toggling,
which stops the recovered clock in the client device. The host also initially sets
MDDI Data0 to logic-zero level and then disables the MDDI_Data0 output in the range
of 16 to 48 cycles (generally including output disable propagation delays) after the
CRC. It may be desirable to place high-speed receivers for MDDI Data0 and
MDDI_Stb in the client in a low power state some time after the 48 cycles after the
CRC and prior to the next stage (C). The client places its high-speed receivers for
MDDI Data0 and MDDI_Stb into hibernation any time after the rising edge of the 48
MDDI Stb cycle after the CRC of the Link Shutdown Packet. It is recommended that
the client place its high-speed receivers for MDDI Data0 and MDDI_Stb into
hibernation before the rising edge of the 64™ MDDI_Stb cycle after the CRC of the Link
Shutdown Packet.

[00455] The host enters the low-power hibernation state at point or step C, by disabling
the MDDI Data0 and MDDI Stb drivers and placing a host controller in a low power
hibernation state. One can also set the MDDI_Stb driver to a logic-zero level (using a
high-impedance bias network) or to continue toggling during hibernation, as desired.
The client is also in a low power level hibernation state.

[00456] After some period of time, the host commences the link restart sequence at point
D, by enabling the MDDI Data0 and MDDI_Stb driver output. The host drives
MDDI_Data0 to a logic-one level and MDDI_Stb to a logic-zero level for as long as it

WO 2005/091593 PCT/US2005/008832

103

should take for the drivers to fully enable their respective outputs. The host typically
waits around 200 nanoseconds after these outputs reach desired logic levels before
driving pulses on MMDI_Stb. This allows the client time to prepare to receive.

[00457] With the host drivers enabled and MDDI Data0 being driven to a logic-one
level, the host begins to toggle MDDI Stb for a duration of 150 MDDI_Stb cycles, as
seen at point E. The host drives MDDI Data0 to a logic zero level for 50 cycles, as
shown at point F, and the client begins to look for the Sub-frame Header Packet after
MDDI Data0 is at a logic-zero level for 40 MDDI Stb cycles. The host begins to
transmit data on the forward link by sending a Sub-frame Header Packet, as shown at
point G.

[00458] An example of the processing steps for a typical Client-initiated Wake-up with
no contention is illustrated in FIG. 68B, where the events are again labeled for
convenience in illustration using the letters A, B, C, D, E, F, G, H, and I. As before, the
process commences at point A when the host sends a Link Shutdown Packet to inform
the client that the link will transition to the low power state.

[00459] At point B, the host toggles MDDI_Stb for about 64 cycles (or as desired for
system design) to allow processing by the client to be completed prior to stopping
MDDI Stb from toggling, which stops the recovered clock in the client device. The
host also initially sets MDDI Data0 to a logic-zero level and then disables the
MDDI_Data0 output in the range of 16 to 48 cycles (generally including output disable
propagation delays) after the CRC. It may be desiréble to place high-speed receivers for
MDDI Data0 and MDDI Stb in the client in a low power state some time after the 48
cycles after the CRC and prior to the next stage (C).

[00460] The host enters the low-power hibernation state at point or step C, by disabling
the MDDI Data0 and MDDI_Stb drivers and placing a host controller in a low power
hibernation state. One can also set the MDDI_Stb driver to a logic-zero level (using a
high-impedance bias network) or to continue toggling during hibernation, as desired.
The client is also in a low power level hibernation state.

[00461] After some period of time, the client commences the link restart sequence at
point D, by enabling the MDDI_Stb receiver, and also enabling an offset in the
MDDI_Stb receiver to guarantee the state of the received version of MDDI Stb is a
logic-zero level in the client before the host enables its MDDI Stb driver. It may be
desirable for the client to enable the offset slightly ahead of enabling the receiver to

WO 2005/091593 PCT/US2005/008832

104

ensure the reception of a valid differential signal and inhibit crroncous signals, as
desired. The Client enables the MDDI Data0 driver while driving the MDDI Data0
line to a logic one level. Tt is allowed for MDDI_Data0 and MDDI_Stb to be enabled
simultaneously if the time to enable the offset and enable the standard MDDI_Stb
differential receiver is less than 200 nsec.

[00462] Within about 1 msec., point E, the host recognizes the service request pulse from
the client, and the host begins the link restart sequence by enabling the MDDI_Data0
and MDDI_Stb driver outputs. The host drives MDDI_Data0 to a logic-one level and
MDDI_Stb to a logic-zero level for as long as it should take for the drivers to enable
their respective outputs. The host typically waits around 200 nanoseconds after these
outputs reach desired logic levels before driving pulses on MDDI_Stb. This allows the
client time to prepare to receive.

[00463] With the host drivers enabled and MDDI Data0 being driven to a logic-one
level, the host begins outputting pulses on MDDI_Stb for a duration of 150 MDDI_Stb
cycles, as seen at point F. When the client recognizes the first pulse on MDDI_Stb it
disables the offset in its MDDI Stb receiver. The client continues to drive
MDDI Data0 to a logic-one level for 70 MDDI_Stb cycles, and disables its
MDDI_Data0 driver at point G. The host continues to drive MDDI_Data0 to a logic-
one level for a duration of 80 additional MDDI_Stb pulses, and at point H drives
MDDI Data0 to a logic-zero level.

[00464] As seen at points G and H, the host drives MDDI_Data0 to a logic-zero level for
50 cycles, and the client begins to look for the Sub-frame Header Packet after
MDDI Data0 is at a logic-zero level for 40 MDDI Stb cycles. After driving
MDDI_Stb for a duration of 50 cycles, the host begins to transmit data on the forward
link by sending a Sub-frame Header Packet, as shown at point 1.

[00465] An example of the processing steps for a typical Host-initiated Wake-up with
contention from the client, that is the client also wants to wake up the link, is illustrated
in FIG. 68C. The events are again labeled for convenience in illustration using the
letters A, B, C, D, E, F, G, H, and I. As before, the process commences at point A when
the host sends a Link Shutdown Packet to inform the client that the link will transition
to the low power state, proceeds to point B where MDDI_Stb is toggled for about 64
cycles (or as desired for system design) to allow processing by the client to be

completed, and then to point C, where the host enters the low-power hibernation state,

WO 2005/091593 PCT/US2005/008832

105

by disabling the MDDI_Data0 and MDDI_Stb drivers and placing a host controller in a
low power hibernation state. After some period of time, the host commences the link
restart sequence at point D, by enabling the MDDI_Data0 and MDDI_Stb driver output,
and begins to toggle MDDI_Stb for a duration of 150 MDDI_Stb cycles, as seen at
point E.

[00466] At up to 70 MDDI Stb cycles after point E, here point F, the client has not yet
recognized that the host is driving MDDI_Data0 to a logic-one level so the client also
drives MDDI_Data0 to a logic-one level. This occurs here because the client has a
desire to request service but does not recognize that the host it is trying to communicate
with has already begun the link restart sequence. At point G, the client ceases to drive
MDDI Data0, and places its driver into a high impedance state by disabling its output.
The host continues to drive MDDI_Data0 to a logic-one level for 80 additional cycles.

[00467] The host drives MDDI_Data0 to a logic zero level for 50 cycles, as shown at
point H, and the client begins to look for the Sub-frame Header Packet after
MDDI_Data0 is at a logic-zero level for 40 MDDI_Stb cycles. The host begins to
transmit data on the forward link by sending a Sub-frame Header Packet, as shown at

point I

VI. Interface Electrical Specifications

[00468] In the example embodiments, Data in a Non-Return-to-Zero (NRZ) format is
encoded using a data-strobe signal or DATA-STB format, which allows clock
information to be embedded in the data and strobe signals. The clock can be recovered
without complex phase lock loop circuitry. Data is carried over a bi-directional
differential link, generally implemented using a wire-line cable, although other
conductors, printed wires, or transfer elements can be used, as stated earlier. The Strobe
signal (STB) is carried over a uni-directional link which is driven only by the host. The
strobe signal toggles value (0 or 1) whenever there is a back-to-back state, 0 or 1, that
remains the same on the Data line or signal.

[00469] An example of how a data sequence such as bits "1110001011" can be
transmitted using DATA-STB encoding is shown in graphical form in FIG.40. In
FIG. 40, a DATA signal 4002 is shown on the top line of a signal timing chart and a

STB signal 4004 is shown on a second line, each time aligned as appropriate (common

WO 2005/091593 PCT/US2005/008832

106

starting point). As time passes, when there is a change of state occurring on the DATA
line 4002 (signal), then the STB line 4004 (signal) maintains a previous state, thus, the
first '1' state of the DATA signal correlates with the first '0’ state for the STB signal, its
starting value. However, if or when the state, level, of the DATA signal does not
change then the STB signal toggles to the opposite state or '1' in the present example, as
is the case in FIG. 40 where the DATA is providing another '1' value. That is, there is
one and only one transition per bit cycle between DATA and STB. Therefore, the STB
signal transitions again, this time to '0' as the DATA signal stays at 'l' and holds this
level or value as the DATA signal changes level to '0'. When the DATA signal stays at
'1', the STB signal toggles to the opposite state or '1' in the present example, and so
forth, as the DATA signal changes or holds levels or values.

[00470] Upon receiving these signals, an exclusive-OR (XOR) operation is performed on
the DATA and STB signals to produce a clock signal 4006, which is shown on the
bottom of the timing chart for relative comparison with the desired data and strobe
signals. An example of circuitry useful for generating the DATA and STB outputs or
signals from input data at the host, and then recovering or recapturing the data from the
DATA and STB signals at the client, is shown in FIG. 41.

[00471] In FIG. 41, a transmission portion 4100 is used to generate and transmit the
original DATA and STB signals over an intermediary signal path 4102, while a
reception portion 4120 is used to receive the signals and recover the data. As shown in
FIG. 41, in order to transfer data from a host to a client, the DATA signal is input to two
D-type flip-flop circuit elements 4104 and 4106 along with a clock signal for triggering

- the circuits. The two flip-flop circuit outputs (Q) are then split into a differential pair of
signals MDDI Data0+, MDDI Data0- and MDDI_Stb+, MDDI_Stb-, respectively,
using two differential line drivers 4108 and 4110 (voltage mode). A three-input
exclusive-NOR (XNOR) gate, circuit, or logic element 4112 is connected to receive the
DATA and outputs of both flip-flops, and generates an output that provides the data
input for the second flip-flop, which in turn generates the MDDI_Stb+, MDDI Stb-
signals. For convenience, the XNOR gate has the inversion bubble placed to indicate
that it is effectively inverting the Q output of the flip-flop that generates the Strobe.

[00472] In reception portion 4120 of FIG. 41, the MDDI Data0+, MDDI Data0- and
MDDI_Stb+, MDDI_Stb- signals are received by each of two differential line receivers
4122 and 4124, which generate single outputs from the differential signals. The outputs

WO 2005/091593 PCT/US2005/008832

107

of the amplifiers are then input to each of the inputs of a two-input XOR gate, circuit, or
logic element 4126 which produces the clock signal. The clock signal is used to trigger
each of two D-type flip-flop circuits 4128 and 4130 which receive a delayed version of
the DATA signal, through delay element 4132, one of which (4128) generates data '0'
values and the other (4130) data '1' values. The clock has an independent output from
the XOR logic as well. Since the clock information is distributed between the DATA
and STB lines, neither signal transitions between states faster than half of the clock rate.
Since the clock is reproduced using the exclusive-OR processing of the DATA and STB
signals, the system effectively tolerates twice the amount of skew between the input
data and clock compared to the situation when a clock signal is sent directly over a
single dedicated data line.

[00473] The MDDI Data pairs, MDDI_Stb+, and MDDI_Stb- signals are operated in 2
differential mode to maximize immunity from the negative affects of noise. Each
differential pair is parallel-terminated with the characteristic impedance of the cable or
conductor being used to transfer signals. Generally, all parallel-terminations reside in
the client device. This is near the differential receiver for forward traffic (data sent from
the host to the client), but it is at the driving end of the cable or other conductors or
transfer elements for reverse traffic (data sent from the client to the host). For reverse
traffic, the signal is driven by the client, reflected by the high impedance receiver at the
host, and is terminated at the client. As described elsewhere, reverse data or data over
the reverse link can be transferred or sent at data rates greater than the reciprocal of the
round-trip delay in the cable. The MDDI Stb+ and MDDI_Stb- conductors or signals
are only driven by the host. ‘

[00474] An exemplary configuration of elements useful for achieving the drivers,
receivers, and terminations for transferring signals as part of the inventive MDDI are
shown in FIG. 42. This exemplary interface uses low voltage sensing, here 200 mV,
with less than 1 volt power swings and low power drain. The driver of each signal pair
has a differential current output. While receiving MDDI packets, the MDDI_Data and
MDDI_Stb pairs use a conventional differential receiver with a differential voltage
threshold of zero volts. In the hibernation state the driver outputs are disabled and the
parallel-termination resistors pull the differential voltage on each signal pair to zero

volts. During hibernation, a special receiver on the MDDI_Data0 pair has an offset

WO 2005/091593 PCT/US2005/008832

108

input differential voltage threshold of positive 125 mV, which causes the hibernation
line receiver to interpret the un-driven signal pair as a logic-zero level.

[00475] The differential voltage of a differential pair is defined as the difference of the
voltage on the positive () signal minus the voltage on the negative (-) signal. The
names of differential pair signals end with either ““+” or “-”, which indicates the positive
or negative signal of the pair, respectively. The output current of the driver of a
differential pair is defined as the current flowing out of the positive (+) output. The
current passing through the negative (-) output of a differential driver is always equal in
magnitude but opposite in direction compared to the current passing through the
positive (+) output of the same differential driver.

[00476] Sometimes the host or client simultaneously drives the differential pair to a
logic-one level or a logic-zero level to guarantee a valid logic-level on the pair when the
direction of data flow changes (from host-to-client or client-to-host). The output
voltage range and output specifications are still met with simultaneously driven outputs
driven to the same logic level. In some systems it may be necessary to drive a small
current into the terminated differential pair to create a small offset voltage at certain
times during hibernation and when the link is waking up from the hibernation state. In
those situations, the enabled offset-current bias circuits drive the current levels referred
to as: Igsp-and-rx— internal ESD diode and differential receiver input with Isp.angrx <1
uA typically; Iry.miz— differential driver output in the high-impedance state, with Irx.m-
z <1 pA typically; and Texemarzsp — the leakage through the external ESD protection
diodes, with Texemazsp < 3 MA typically.

[00477] Each of these leakage currents is illustrated in FIG. 47. The pull-up and pull-
down circuits must achieve the minimum differential voltage under the worst-case
leakage conditions described above when all occur simultaneously. The total leakage is
< 4 pA for internal mode without external ESD protection diodes and < 10 pA for
external mode with external ESD protection.

[00478] The electrical parameters and characteristics of the differential line drivers and
line reccivers are described for one exemplary cmbodiment in Tables IXa-IXd.
Functionally, the driver transfers the logic level on the input directly to a positive
output, and the inverse of the input to a negative output. The delay from input to

outputs is well-matched to the differential line which is driven differentially. In most

WO 2005/091593 PCT/US2005/008832

109

implementations, the voltage swing on the outputs is less than the swing on the input to
minimize power consumption and electromagnetic emissions. In one embodiment,
there is a minimum voltage swing of around 0.5V. However, other values can be used,
as would be known by those skilled in the art, and the inventors contemplate a smaller
value in some embodiments, depending on design constraints.

[00479] The differential line receivers have the same characteristic as a high-speed
voltage comparator. In FIG. 41, the input without the bubble is the positive input and
the input with the bubble is the negative input. The output is a logic one if: (Vinput+) -
(Vinput-) is greater than zero. Another way to describe this is a differential amplifier
with very large (virtually infinite) gain with the output clipped at logic 0 and 1 voltage
levels.

[00480] The delay skew between different pairs should be minimized to operate the

differential transmission system at the highest potential speed.

Table IXa

Host Transmitter Flectrical Specifications

Parameter | Description | Min | Max | Unit

Voutput-Range Allowable host driver output voltage range with 0.35 1.60 A%
respect to host ground

Iop+ Driver differential output high current 2.5 4.5 mA
corresponding to a logic-one level (while driving
the terminated transmission line)

Iop. Driver differential output low current -4.5 2.5 mA
corresponding to a logic-zero level (while driving
the terminated transmission line)

TRise-Fall Rise and fall time (between 20% and 80% 425 Notel psec
amplitude) of driver output, measured in
differential mode

Tskew-pair Skew between positive and negative outputs of 125 Psec
the same differential pair (intra-pair skew)

T Differential- Peak delay skew between one differential pair See Psec

Skew and any other differential pair. above

Ta Jitter, bit boundary to center crossing 0 Tg-283 Psec

Ts.reoprvr Jitter, bit boundary to minimum output level 0 See Psec

above

Note 1: The maximum rise and fall time is either 30% of the interval to transmit one bit
on one differential pair or 100 nsec, whichever is smaller.

WO 2005/091593 PCT/US2005/008832
110
Table IXb
Client Transmitter Electrical Specifications
Parameter Description Min | Max | Unit
Vouput-Range- | Allowable client driver output voltage range with 0 1.25 A%
Ext respect to client ground (External Mode)
Voutput-Range- | Allowable client driver output voltage range with | 0.35 | 1.60 v
Int respect to client ground (Internal Mode)
Iop+ Driver differential output high current 2.5 4.5 mA
corresponding to a logic-one level (while driving
the equivalent of the pull-up and pull-down
circuits that exist at the host and client)
Top- Driver differential output low current -4.5 2.5 | mA
corresponding t a logic-zero level (while driving
the equivalent of the pull-up and pull-down
circuits that exist at the host and client)
TRrise-Fall Rise and fall time (between 20% and 80% 425 | Note 1 | psec
amplitude) of driver output, measured in
differential mode
Tskew-pair Skew between positive and negative outputs of 125 | psec
the same differential pair (intra-pair skew)
Toiferentia- | Peak delay skew between one differential pair See | psec
Skew and any other differential pair. above
Ta Titter, bit boundary to center crossing Tg- | psec
283
Te.tea-prvr | Jitter, bit boundary to minimum output level See | psec
above

Note 1: The maximum rise and fall time is 30% of the interval to transmit one bit on one
differential pair or 100 nsec, whichever is smaller.

Table IXc

Client Receiver Electrical Specifications

Parameter

Description Min

Max

Unit

Vir+

Receiver differential input high
threshold voltage. Above this
differential voltage the input signal is
interpreted as a logic-one level.

50

mVv

VIT..

Receiver differential input low
threshold voltage. Below this
differential voltage the input signal is
interpreted as a logic-zero level.

mV

Virs

Receiver differential input high
threshold voltage (offset for
hibernation wake-up). Above this
differential voltage the input signal is
interpreted as a logic-one level.

125

175

mv

Vir-

75

Receiver differential input low

125

mV

WO 2005/091593 PCT/US2005/008832
111
threshold voliage (offset for
hibernation wake-up). Below this
differential voltage the input signal is
interpreted as a logic-zero level.
Viput-ange | Allowable receiver input voltage 0 1.65 v
range with respect to client ground.
Rierm Parallel termination resistance value 98 100 102 Q
I; Input leakage current -10 10 pA
Cpad Capacitance of pad to client ground 5 pF
(note 1)
Caisr Capacitance between the two signals 1 PF
of a differential pair (note 1)
Tskew-paie-NT | Skew caused by the differential 250 psec
receiver between positive and negative
inputs of the differential receiver of
the same differential pair (intra-pair
skew). Internal Mode
Terew-pair-ext | Intra-pair skew, External Mode 50 psec
Tbitferential- Peak delay skew between one See psec
Skew differential pair and any other above
differential pair.
Ta Jitter, bit boundary to center crossing Tp— | psec
38.5
Tg-tpa-rCVR- | Jitter, bit boundary to minimum input 0 See | psec
INT level above
(Internal Mode)
Terarcvr | Jitter, bit boundary to minimum input 0 See | psec
_EXT level above
(External Mode)
Table IXd
Host Receiver Electrical Specifications
Parameter Description Min | Typ | Max | Unit
Vi Receiver differential input high 0 50 mV
threshold voltage (non-offset). Above
this differential voltage the input signal
is interpreted as a logic-one level.
Vir- Receiver differential input low threshold | -50 0 mV
voltage (non-offset). Below this
differential voltage the input signal is
interpreted as a logic-zero level.
Vit Receiver differential input high 125 175 mV
threshold voltage (offset for hibernation
wake-up). Above this differential
voltage the input signal is interpreted as
a logic-one level.
Vir. Receiver differential input low threshold 75 125 mV

WO 2005/091593 PCT/US2005/008832
112
voltage (offset for hibernation wake-up).
Below this differential voltage the input
signal is interpreted as a logic-zero level
VhputRange | Allowable receiver input voltage range 0 1.65 A
with respect to host ground.
Iin Input leakage current (excluding -10 10 LA
hibernate bias)
Crad Capacitance of pad to host ground 5 pF
Caigr Capacitance between the two signals of 1 pF
a differential pair.
Tskew-pair Skew caused by the differential receiver 250 | psec
between positive and negative inputs of
the differential receiver of the same
differential pair (intra-pair skew).
Tekew-peir-exr | Intra-pair skew, External Mode 50 | psec
Ta Jitter, bit boundary to center crossing Tp— | psec
38.5
Taro-rCVR- | Jitter, bit boundary to minimum output See | psec
INT level above
(External Mode)
Tp-rpo-rcvR- | Jitter, bit boundary to minimum output See | psec
EXT level above
(External Mode)
[00481] In FIG. 42, a host controller 4202 and a client or display controller 4204 are

shown transferring packets over the communication link 4206. The host controller
employs a series of three drivers 4210, 4212, and 4214 to receive the host DATA and
STB signals to be transferred, as well as to receive the client Data signals to be
transferred, while the client employs the three drivers 4230, 4232, and 4234. The driver
responsible for passage of the host DATA (4212) employs an enable signal input to
allow activation of the communication link generally only when transfer from the host
to the client is desired. Since the STB signal is formed as part of the transfer of data, no
additional enable signal is employed for that driver (4212). The inputs of each of the
client DATA and STB receivers (4132, 4230) have termination impedances or resistors
4218 and 4220, respectively paced across them. Driver 4234 in the client controller is
used to prepare the data signals being transferred from the client to the host, where
driver 4214 on the input side, processes the data.

[00482] The special receivers (drivers) 4216 and 4236 are coupled or connected to the

DATA lines, and generate or use the 125 mV voltage offset previously discussed, as

WO 2005/091593 PCT/US2005/008832

113

part of the hibernation control discussed elsewhere. The offsets cause the hibernation
line receivers to interpret un-driven signal pairs as a logic-zero level.

[00483] The above drivers and irmpedances can be formed as discrete components or as
part of a circuit module, or an Appplication Specific Integrated Circuit (ASICY) which acts
as amore cost effective encoder or decoder solution.

[00484] It can be easily seen that power is transferred to the client device, or display,
from the host device using the signals labeled HOST Pwr and HOST Gnd over a pair
of conductors. The HOST_Gnd portion of the signal acts as the reference ground and
the power supply return path or signal for the client device. The HOST Pwr signal acts
as the client device power supply which is driven by the host device. In an exemplary
contfiguration, for low power applications, the client device is allowed to draw up to 500
mA. The HOST Pwr signal can be provided from portable power sources, such as but
not limited to, a lithium-ion type battery or battery pack residing at the host device, and
may range from 3.2 to 4.3 volts wvith respect to HOST Gnd.

VII. Timing Characteristics

A, Overview
[00485] The steps and signal levels employed to enter a hibernation state (no service
requested, desired, or required), and to secure service for a client from the host, either
by host- or client initiation, are illustrated in FIGs. 43A, 43B, and 43C, respectively. In
FIGs. 43A, 43B, and 43C, the first part of signals being illustrated shows a Link
Shutdown Packet being transferred from the host and the data line is then driven to a
logic zero state using the high-impedance bias circuit. No data is being transmitted by
the client, or host, which has its driver disabled. A series of strobe pulses for the
MDDI_Stb signal line can be seen at the bottom, since MDDI_Stb is active during the
Link Shutdown Packet. Once this packet ends, the logic level changes to zero as the
host drives the bias circuit and lo gic to zero. This represents the termination of the last
signal transfer or service from the host, and could have occurred at any time in the past,
and is included to show the prior cessation of service, and the state of the signals prior

to service commencement, If clesired, such as signal can be sent just to reset the

WO 2005/091593 PCT/US2005/008832

114

communication link to the proper statc without a 'known' prior communication having
been undertaken by this host device.

[00486] As shown in FIG. 43A, and discussed for the Link Shutdown Packet above, in
the low-power hibernation state, the MDDI Data0 driver is disabled into a high-
impedance state starting after the 16th to 48th MDDI_Stb cycles or pulses after the last
bit of the All Zeros field in the Link Shutdown Packet. For Type-2, Type-3, or Type-4
links the MDDI Datal through MDDI_DataPwr7 signals are also placed in a high-
impedance state at the same time that the MDDI_Data0 driver is disabled. As described
in the definition of the All Zeros field, MDDI_Stb toggles for 64 cycles (or as desired
for system design) following the MSB of the CRC field of the Link Shutdown Packet to
allow processing by the client to be completed and facilitate an orderly shutdown in a
client controller. One cycle is a low-to-high transition followed by a high-to-low
transition, or a high-to-low transition followed by a low-to-high transition. After the All
Zeros field is sent, the MDDI Stb and MDDI Data0 drivers in the host are disabled,
and the host enters the low-power hibernation state. After some period of time, the host
commences the link restart sequence as shown in FIGs. 43b and 43c, by enabling the
MDDI_Data0 and MDDI_Stb lines or driver outputs, and begins to toggle MDDI_Stb,
as part of either at a host or client initiated wake-up request.

[00487] As shown in FIG. 43B, after some time passes with the signal output from
drivers for MDDI_Data0 and MDDI_Stb disabled, a host initiates service or wake-up
from hibernation by enabling its MDDI_Stb driver for a period of time designated tgy.
dagia-enbl, during which the line is driven to a logic zero level, until it is completely
enabled and then enabling its MDDI_Data0 driver. The host holds MDDI_Stb at logic-
zero level after MDDI Data0 reaches a high or a logic one level which occurs over a
period of time designated totient.stariup- At the end of the toient.starnp period the host then
toggles the MDDI_Stb signal or line. The host drives the MDDI_Data0 line high, a
logic-one level, while the client does not drive MDDI_Data0, for a period designated
trestart-high, and then drives the MDDI_Data0 line low, or to logic-zero level, for a period
designated tresiart1ow- After this, the first forward traffic begins with a Sub-Frame Header
Packet, and the forward traffic packets are then transferred. The MDDI_Stb signal is
active during the trestar-1ow period and the subsequent Sub-Frame Header Packet.

[00488] As shown in FIG. 43C, after some time passes with the signal output from
drivers for MDDI_Data0 and MDDI_Stb disabled, a client initiates a service request or

WO 2005/091593 PCT/US2005/008832

115

wake-up from hiberation by enabling an offset in thee MDDI_Stb receiver or output
signal for a period of time designated ts, dagte-entt, s Cliscussed above, before the host
enables its MDDI_Stb driver. The client then enables its MDDI_Data0 driver for a
period of time designated tyost-detect, during which the lime is driven to a logic zero level,
before the host begins MDDI_Stb toggling.

[00489] A certain amount of time passes or may be nezeded before the host detects the
request during tpost-dotect, after which the host responds by holding MDDI_Stb at logic-
zero level for the period designated top-siarmup efore the host begins toggling MDDI_Stb
with a link startup sequence by driving the MDDI Dzta0 to a logic-one or high level
during the trestart-nish period. When the client recognize s the first pulse on MDDI_Stb it
disables the offset in its MDDI Stb receiver. "The client continues to drive
MDDI _Data0 to a logic-one level or a period designated tegient-deieet until it detects the
host driving the line. At this point, the client de-asserts the request, and disables its
MDDI_Data0 driver so that the output from the client goes to a logic-zero level again,
and the host is driving MDDI Data0. As before, the host continues to drive
MDDI Data0 to a logic-one level for the twstarttien period, and then drives the
MDDI Data0 line low for the tesart-low period, after whi ch the first forward traffic begins
with a Sub-Frame Header Packet. The MDDI_Stb signal is active during the trestart-low
period and the subsequent Sub-Frame Header Packet.

[00490] Table X shows representative times or processing periods for the length of the
various periods discussed above, and the relationshxip to exemplary minimum and

maximum data rates, where:

1
i =77
Link Data Rate

, where Link Data Rate is the bit rate of a single data

pair.

WO 2005/091593 PCT/US2005/008832

116
Table X
Parameter | Description Min. Lyp. | Max. | Units
1/tpiT-minpert | Link data rate for a minimum 0.001 1.1 Mbps
performance device
1/tprrmax-perr | Maximum link data rate 0.001 400 | Mbps
range for a device, external
1/terrmaxperr | Maximum link data rate 0.001 550 | Mbps
range for a device, internal
Reverse Link data rate 0.0005 50 | Mbps
taIT Period of one forward link 2.5 10° | nsec
data bit, external mode
tor Period of one forward link 1.8 10° | nsec
data bit, internal mode
trostart-high Duration of host link restart 140 150 160 | Stb-
high pulse clks
trestartlow Duration of host link restart 50 50 50 Stb
low pulse clks
tstb-data-enabi MDDI_Stb completely 0 pisec

enabled to MDDI_Data0

enabled link restart sequence
Lolient-startup Time for host to hold 200 nsec
MDDI _Stb at logic-zero
level afier MDDI_Data0

reaches logic-high level

thost-detect Time from MDDI_Data0 0 1000 | psec
high to MDDI Stb toggling

tetient-detect Time for client to detect 60 80 Stb
MDDI_Data0 at logic-high clks
level performance device

Tstb-startup Time for host to hold 200 nsec

MDDI_Stb at logic-zero
level before host begins
toggling MDDI Stb

[00491] Those skilled in the art will readily understand that the functions of the
individual elements illustrated in FIGs. 41 and 42, are well known, and the function of
the elements in FIG. 42 is confirmed by the timing diagram in IFIGS 43a, 43b, and 43c.
Details about the series terminations and hibernation resistors th.at are shown in FIG. 42
were omitted from FIG. 41 because that information is unnecessary for a description of

how to perform the Data-Strobe encoding and recover the clock from it.

WO 2005/091593 PCT/US2005/008832

117

B. Data-Strobe Timing Forward Link

[00492] The switching characteristics for the transfer of data on the forward link from the
host driver output is shown in Table XI-1. Table XI presents a tabular form of the
minimum and maximum desired, versus typical times for certain signal transitions to
occur. For example, the typical length of time for a transition to occur from the start to
the end of a data value (output of a '0' or '1"), a Data0 to Data0 transition, termed tiq-
(host-output), is twx While the minimum time is about ttbit-0.5 nsec., and the maximum
is about t+0.5 nsec. The relative spacing between transitions on the Data0, other data
lines (DataX), and the strobe lines (Stb), is illustrated in FIG. 44 where the Data0 to
Strobe, Strobe to Strobe, Strobe to Data0, Data0 to non-Data0, non-Data0 to non-Data0,
non-Data0 to Strobe, and Strobe to non-Data0 transitions are shown, which are referred
t0 as tigs-(host-output)> tiss-(host-output)s Lisd-(host-output) ftddx-(host-output)s Tidxdx-(host-output)s ttdxs-(host-output)s

and tisdx-(ost-output), T€Spectively.

Table XI-1

Parameter Description Min. Typ. Max. Units

tidd-(host-output) Data0 to Data0 transition | tgpi— 0.5 Libit it + 0.5 nsec

ttds-(host—output) Datal to Strobe transition tivit — 0.8 fibit fipir + 0.8 nsec

ttss-(host-output) Strobe to Strobe tivit — 0.5 tibit tnit + 0.5 nsec
transition

Ttsd-(host-output) Strobe to Data0 transition | twpi— 0.8 Cibit tipie T 0.8 nsec

tddx-(host-outputy | Data0 to non-Datal tivit nsec
transition

tidxdx-(host-outputy | nON-Data0 to non-Data0 tiit — 0.5 tinit tipit + 0.5 nsec
transition

tiaxs-(host-outputy | 10N-Data0 to Strobe tinit nsec
transition

tisdx-(host-output) | Strobe to non-Data0 tivit nsec
transition

[00493] The typical MDDI timing requirements for the client receiver input for the same

signals transferring data on the forward link is shown in Table XI-2. Since the same
signals are being discussed but time delayed, no new figure is needed fo illustrate the
signal characteristics or meaning of the respective labels, as would be understood by
those skilled in the art.

WO 2005/091593 PCT/US2005/008832

118
Table XI-2
Parameter Description Min. Typ. Max. Units
ttad-(clientinputy | Data0 to Datal transition twit— 1.0 twir | twit 1.0 | nsec
tids-(client-inpy | 1ata0 1o Strobe transition twii— 1.5 tivit tpit + 1.5 nsec
ttss-(elient-input) Strobe to Strobe transition t— 1.0 tibit tpig+ 1.0 nsec
Tisd-(client-input) Strobe to Data0 transition twis— 1.5 it twig+ 1.5 nsec
ftddx-rost-output) | Datal to non-Data0 transition Libit nsec
tidxdx-(host-output) | NON-Datal to non-Data0 timit nsec
fransition
traxs-(hostoupuy | DON-Data0 to Strobe tiit nsec
transition
tsdx-(host-output) | Strobe to non-Data0 Libit nsec
transition
[00494] FIGs. 45 and 46 illustrate the presence of a delay in response that can occur

when the host disables or enables the host driver, respectively. In the case of a host
forwarding certain packets, such as the Reverse Link Encapsulation Packet or the Round
Trip Delay Measurement Packet, the host disables the line driver after the desired
packets are forwarded, such as the Parameter CRC, Strobe Alignment, and All Zero
packets illustrated in FIG. 45 as having been transferrced. However, as shown in
FIG. 45, the state of the line does not necessarily switch from '0' to a desired higher
value instantaneously, although this is potentially achievable with certain control or
circuit elements present, but takes a period of time termed the host Driver Disable Delay
period to respond. While it could occur virtually instantly such that this time period is 0
nanoseconds (nsec.) in length, it could more readily extend over some longer period
with 10 nsec. being a desired maximum period length, which occurs during the Guard
Time 1 or Turn Around 1 packet periods.

[00495] Looking in FIG. 46, one sees the signal level change undergone when the host
Driver is enabled for transferring a packet such as the Reverse Link Encapsulation
Packet or the Round Trip Delay Measurement Packet. Here, after the Guard Time 2 or
Turn Around 2 packet periods, the host driver is enabled and begins to drive a level,
here '0', which value is approached or reached over a period of time termed the Host
Driver Enable Delay period, which occurs during the Driver Re-enable period, prior to

the first packet being sent.

WO 2005/091593 PCT/US2005/008832

119

[00496] A similar process occurs for the drivers and signal transfers for the client device,
bere a display. The general guidelines for the length of these periods, and their

respective relationships are shown in XII, below.

Table XII
Description Min. | Max. | Units
Host Driver Disable Delay 0 10 nsec
Host Driver Enable Delay 0 2.0 nsec
Display Driver Disable Delay 0 10 nsec
Display Driver Enable Delay 0 2.0 nsec

C. Host And Client Output Enable And Disable Times

[00497] The switching characteristics and relative timing relationships for Host and
Client output enabled and disable time or operations relative to the Reverse Link
Encapsulation Packet structure and period, is shown in FIG. 48. The driver output
functions or operations are labeled as: thost-enabie for the Host output enable time, thost-disatle
for the Host output disable time, toentenabie f0r the Client output enable time, and tejient-
gisable for the Client output disable time. Typical times for certain signal fransitions are
discussed below. The minimum period for these operations would be zero nanoseconds,
with typical or maximum values determined from the system design employing the
interface, possibly on the order of 8 nanoseconds, or more.

[00498] The general guidelines for the length of these periods, (host and client

enable/disable times) and their respective relationships are shown in XIII, below.

Table XIII
Parameter | Description Min. | Typ. | Max. | Units
thost-enable Host output enable time 0 24-tpT nsec
thost-disable Host output disable time, entire 0 24-tpr7 nsec
length of the Turn-Around 1 field
telient-cnable Client output enable time, entire 0 24ty nsec
length of the Turn-Around 1 field
telient-disable Client output disable time, 0 24-tpr nsec
measured from the end of the last
bit of the Turn-Around 2 field

WO 2005/091593 PCT/US2005/008832

120

VIII. Implementation of Link Control (Link Controller Operation)

A. State Machine Packet Processor

[00499] Packets being transferred over a MDDI link are dispatched very rapidly,
typically at a rate on the order of 300 Mbps or more, such as 400 Mbps, although lower
rates are certainly accommodated, as desired. This type of bus or transfer link speed is
too great for currently commercially available (economical) general-purpose
microprocessors or the like to control. Therefore, a practical implementation to
accomplish this type of signal transfer is to utilize a programmable state machine to
parse the input packet stream to produce packets that are transferred or redirected to the
appropriate audio-visual subsystem for which they are intended. Such devices are well
known and use circuits generally dedicated to a limited number of operations, functions,
or states to achieve a desired high speed or very high speed operation.

[00500] General purpose controllers, processors, or processing elements, can be used to
more appropriately act upon or manipulate some information such as control or status
packets, which have lower speed demands. When those packets (control, status, or
other pre-defined packets) are received, the state machine should pass them through a
data buffer or similar processing element to the general-purpose processor so the
packets can be acted upon to provide a desired result (effect) while the audio and visual
packets are transferred to their appropriate destination for action. If future,
microprocessors or other general purpose controllers, processors, or processing elements
are manufactured to achieve higher data rate processing capabilities, then the states or
state machine discussed below might also be implemented using software control of
such devices, typically as programs stored on a storage element or media.

[00501] The general purpose processor function can be realized in some embodiments by
taking advantage of the processing power, or excess cycles available for,
microprocessors (CPUs) in computer applications, or controllers, processors, digital
signal processors (DSPs), specialized circuits, or ASICs found in wireless devices, in
much the same manner as some modems or graphics processors utilize the processing
power of CPUs found in computers to perform some functions and reduce hardware
complexity and costs. However, this cycle sharing or usage can negatively impact the
processing speed, timing, or overall operation of such elements, so in many

applications, dedicated circuits or elements are preferred for this general processing.

WO 2005/091593 PCT/US2005/008832

121

[00502] In order for image data to be viewed on a display (micro-display), or to reliably
receive all packets sent by the host device, the client signal processing is synchronized
with the forward link channel timing. That is, signals arriving at the client and the client
circuits need to be substantially time synchronized for proper signal processing to occur.
A high level diagram of states achieved by signal for one embodiment is presented in
the illustration of FIG.49. In FIG. 49, the possible forward link synchronization
"states" for a state machine 4900 are shown being categorized as one ASYNC FRAMES
STATE 4904, two ACQUIRING SYNC STATES 4902 and 4906, and three IN-SYNC
STATES 4908, 4910, and 4912.

[00503] As shown by starting step or state 4902, the display or client, such as a
presentation device, starts in a pre-selected "no sync" state, and searches for a unique
word in the first sub-frame header packet that is detected. It is to be noted that this no
sync state represents the minimum communication setting or "fall-back" setting in
which a Type 1 interface is selected. When the unique word is found during the search,
the client saves the sub-frame length field. There is no checking of the CRC hits for
processing on this first frame, or until synchronization is obtained. If this sub-frame
length is zero, then sync state processing proceeds accordingly to a state 4904 labeled
here as the "async frames" state, which indicates that synchronization has not yet been
achieved. This step in the processing is labeled as having encountered cond 3, or
condition 3, in FIG. 49. Otherwise, if the frame length is greater than zero, then the
sync state processing proceeds to a state 4906 where the interface state is set as "found
one sync frame." This step in the processing is labeled as encountering cond 5, or
condition 5, in FIG. 49. In addition, if the state machine sees a frame header packet and
good CRC determination for a frame length greater than zero, processing proceeds to
the "found one sync frame" state. This is labeled as meeting cond 6, or condition 6, in
FIG. 49.

[00504] In each situation in which the system is in a state other than "no sync,” if a
packet with a good CRC result is detected, then the interface state is changed to the "in-
sync" state 4908. This step in the processing is labeled as having encountered cond 1,
or condition 1, in FIG. 49. On the other hand, if the CRC in any packet is not correct,
then the sync state processing proceeds or returns to the interface state 4902 of "NO
SYNC FRAME" state. This portion of the processing is labeled as encountering cond 2,
or condition 2, in the state diagram of FIG. 49.

WO 2005/091593 PCT/US2005/008832

122

B. Acquisition Time for Syne

[00505] The interface can be configured to accommodate a certain number of "sync
errors" prior to deciding that synchronization is lost and returning to the "NO SYNC
FRAME" state. In FIG. 49, once the state machine has reached the "IN-SYNC STATE"
and no errors are found, it is continuously encountering a cond 1 result, and remains in
the "IN-SYNC" state. However once one cond 2 result is detected, processing changes
the state to a "one-sync-error" state 4910. At this point, if processing results in
detecting another cond 1 result, then the state machine returns to the "m-sync" state,
otherwise it encounters another cond 2 result, and moves to a "TWO-SYNC-ERRORS"
state 4912. Again, if a cond 1 occurs, processing returns the state machine to the "IN-
SYNC" state. Otherwise, another cond 2 is encountered and the state machine returns to
the "no-sync" state. It is also understandable that should the interface encounter a "link
shutdown packet,” then this will cause the link to terminate data transfers and return to
the "no-sync frame" state as there is nothing to synchronize with, which is referred to as
meeting cond 4, or condition 4, in the state diagram of FIG. 49.

[00506] It is understood that it is possible for there to be a repeating “false copy” of the
unique word which may appear at some fixed location within the sub-frame. In that
situation, it is highly unlikely that the state machine will synchronize to the sub-frame
because the CRC on the sub-frame Header Packet must also be valid when processed in
order for the MDDI processing to proceed to the “IN SYNC” state.

[00507] The sub-frame length in the sub-frame Header Packet may be set to zero to
indicate that the host will transmit only one sub-frame before the link is shut down, and
the MDDI is placed in or configured into an idle hibernation state. In this case, the
client must immediately receive packets over the forward link after detecting the sub-
frame Header Packet because only a single sub-frame is sent before the link transitions
to the idle state. In normal or typical operations, the sub-frame length is non-zero and
the client only processes forward link packets while the interface is in those states
collectively shown as “IN-SYNC” states in FIG. 49.

[00508] An external mode client device may be attached to the host while the host is
already transmitting a forward link data sequence. In this situation, the client must
synchronize to the host. The time required for a client to synchronize to the forward

link signal is variable depending on the sub-frame size and the forward link data rate.

WO 2005/091593 PCT/US2005/008832

123

The likelihood of detecting a “[alse copy” of the unique word as part of the random, or
more random, data in the forward link is greater when the sub-frame size is larger. At
the same time, the ability to recover from a false detection is lower, and the time taken
to do so is longer, when a forward link data rate is slower.

[00509] For one or more embodiments, it recommended or understood that a MDDI host
should perform certain additional steps to ensure that the MDDI reverse link is stable
before it stops forward link transmission to go to a low power mode or to shut down the
link completely.

[00510] One problem that can occur is that if a host uses an incorrect measurement of the
round-trip delay value this can cause all subsequently received reverse data transmission
from the client to fail even though the forward link appears to be fine. This could
happen if the host tries to send a Round Trip Delay Measurement Packet when the client
is not in sync with the forward link, or due to an extreme ambient temperature change
that causes a corresponding large change in the propagation delay of the differential
drivers and receivers which affects the round trip delay. An intermittent cable or
connector contact failure could also cause the client to temporarily lose synchronization
and then regain sync, during which time, it may miss receiving a Round Trip Delay
Measurement Packet. Subsequent reverse link packets would not be able to be decoded
properly by the host.

[00511] Another type of problem that can occur is that if the client temporarily loses
sync and the host sends a Link Shutdown Packet before the client is able to regain sync.
The host will be in hibernation while the client is unable to enter the hibernation state
because it did not receive the Link Shutdown Packet and does not have a clock because
the link is in hibernation.

[00512] One technique or embodiment useful for overcoming such problems is to have
the host ensure that the client is in sync with the forward link before putting the link into
the hibernation state. If the MDDI host is unable to do this or does not have such an
opportunity, such as when it loses power or the link is abruptly broken or fails due to a
cable, conductor, or connector separation, break, or disconnection occurring during
operation, then the host should first try to ensure that the client is in sync before starting
a round-trip delay measurement process or sending a Reverse Link Encapsulation

packet.

WO 2005/091593 PCT/US2005/008832

124

[00513] A host can observe the CRC Error Count ficld in a Client Request and Status
packet sent by the client to determine the forward link integrity. This packet is
requested by the host from the client. However, in the event of a major link failure or
disruption, this request will most likely go unanswered since a client will not be able to
properly decode the packet, or maybe even receive it altogether. The request for the
CRC Error Count using the Client Request and Status Packet sent in a Reverse Link
Encapsulation Packet acts as a first integrity check, a sort of first line of defense. In
addition,, a host can send a Round Trip Delay Measurement Packet to confirm whether
or not the assumption about the client having fallen out of sync is a valid one or not. If
the client does not respond to a Round Trip Delay Measurement Packet, the host will
conclude that the client is out of sync and can then start the process of getting it back in
syne.

[00514] Once the host concludes that the client has more than likely lost synchronization
with the forward link, it waits until the next subframe header before attempting to send
any packets other than filler packets. This is done in order to allow a client enough time
to detect or look for one unique word contained in the subframe header packet.
Following this, the host may assume that the client would have reset itself since it would
not have found the unique word at the correct location. At this point, the host may
follow the subframe header packet with a Round Trip Delay Measurement Packet. If the
client still does not respond correctly to the Round Trip Delay Measurement Packet, the
host may repeat the resynchronization process. A correct response is one in which the
client sends the specified sequence back to the host in the Measurement Period of the
Round Trip Delay Measurement Packet. If this sequence is not received, then attempts
to receive reverse data in a Reverse Link Encapsulation Packet will fail. Continued
failure of this nature may indicate some other system error which will have to be
addressed in some other manner, and is not part of the link synchronization at this point.

[00515] However, if after a successful Round Trip Delay Measurement Packet the host
still sees corrupted data or no response in the Reverse Link Encapsulation Packets, it
should confirm the reverse data sampling is correct by re-sending a Round Trip Delay
Measurement Packet. If this is not successful after a number of attempts it is
recommended for one embodiment that the host reduce the reverse data rate by

increasing the reverse rate divisor value.

WO 2005/091593 PCT/US2005/008832

125

[00516] The host should perform the Link Failure Detection and possibly the Link
Resynchronization steps described above before placing the MDDI link into the
hibernation state. This will generally ensure that the Round Trip Delay Measurement
Packet performed when the link is restarted later on is successful. If the host has no
reason to suspect a link failure, and a correct response to a Reverse Link Encapsulation
Packet and zero forward link CRC errors is being reported by the client, a host may
assume that everything is operating or functioning accordingly or appropriately (no link
failure for example) and proceed with the power down/hibernation process.

[00517] Another manner in which a host can test for synchronization is for the host to
send the Round Trip Delay Measurement Packet and confirm the proper response from
the client. If the proper response is received by the host, it can reasonably he assumed

that the client is successfully interpreting forward link packets.

C. Imitialization

[00518] As stated earlier, at the time of "start-up,” the host configures the forward link to
operate at or below a minimum required, or desired, data rate of 1 Mbps, and configures
the sub-frame length and media-frame rate appropriately for a given application. That
is, both the forward and reverse links begin operation using the Type 1 interface. These
parameters are generally only going to be used temporarily while the host determines
the capability or desired configuration for the client display (or other type of client
device). The host sends or transfers a sub-frame Header Packet over the forward link
followed by a Reverse Link Encapsulation Packet which has bit '0' of the Request Flags
set to a value of one (1), in order to request that the display or client responds with a
- Client Capability Packet. Once the display acquires synchronization on (or with) the
forward link, it sends a Client Capability Packet and a Client Request and Status Packet

over the reverse link or channel.
[00519] The host examines the contents of the Client Capability Packet in order to
determine how to reconfigure the link for optimal or a desired level of performance.
The host examines the Protocol Version and Minimum Protocol Version fields to
confirm that the host and client use versions of the protocol that are compatible with
cach other. The protocol versions generally remain as the first two parameters of the

client capability Packet so that compatibility can be determined even when other

WO 2005/091593 PCT/US2005/008832

126

elements of the protocol might not be compatible or completely understood as being
compatible.

[00520] In internal mode the host can know the parameters of the client in advance
without having to receive a Client Capability Packet. The link may start up at any data
rate at which the host and client can both operate. In many embodiments, a system
designer will most likely choose to start the link at the maximum achievable data rate to
hasten data transfer, however, this is not required and may not be used in many
situations. For internal mode operation, the frequency of the strobe pulses used during
the link restart from hibernation sequence will usually be consistent with this desired

Tate.

D. CRC Processing
[00521] For all packet types, the packet processor state machine ensures that the CRC
checker is controlled appropriately or properly. It also increments a CRC etrror counter
when a CRC comparison results in one or more errors being detected, and it resets the

CRC counter at the beginning of each sub-frame being processed.

E. Alternative Loss Of Synchronization Check
[00522] While the above series of steps or states work to produce higher data rates or
throughput speed, Applicants have discovered that an alternative arrangement or change
in the conditions the client uses to declare that there is a loss of synchronization with the
host, can be used effectively to achieve even higher data rates or throughput. The new
inventive embodiment has the same basic structure, but with the conditions for changing
states changed. Additionally a new counter is implemented to aid in making checks for
sub-frame synchronization. These steps and conditions are presented relative to FIG.
63, which illustrates a series of states and conditions useful in establishing the
operations of the method or state machine. Only the "ACQUIRING-SYNC STATES"
and "IN-SYNC STATES" portions are shown for clarity. In addition, since the resulting
states are substantially the same, as is the state machine itself, they use the same
numbering. However, the conditions for changing states (and the state machine
operation) vary somewhat, so that all are renumbered for clarity between the two figures

1, 2,3, 4, 5, and 6, versus 61, 62, 63, 64, and 65), as a convenience in identifying

WO 2005/091593 PCT/US2005/008832

127

differences. Since the ASYNC FRAME state is not considered in this discussion, one
state (4904) and condition (6) are no longer used in the figure.

[00523] In FIG. 63, the system or client (for display or presentation) starts with state
machine 5000 in the pre-selected "no sync" state 4902, as in FIG. 49. The first state
change for changing states from the no-sync condition 4902 is in condition 64 which is
the discovery of the sync pattern. Assuming that the CRC of the sub-frame header also
passes on this packet (meets condition 61), the state of the packet processor state
machine can be changed to the in-sync state 4908. A sync error, condition 62, will
cause the state machine to shift to state 4910, and a second occurrence to state 4912.
However, it has been discovered that any CRC failure of an MDDI packet will cause the
state machine to move out of in-sync state 4908, to the one sync error state 4910.
Another CRC failure of any MDDI packet will cause a move to the two sync failure
state 4912. A packet decoded with a correct CRC value will cause the state machine to
return to the in-sync state 4908.

[00524] What has been changed is to utilize the CRC value or determination for 'every'
packet. That is, to have the state machine look at the CRC value for every packet to
determine a loss of synchronization instead of just observing sub-frame header packets.
In this configuration or process, a loss of synchronization is not determined using the
unique word and just sub-frame header CRC values.

[00525] This new interface implementation allows the MDDI link to recognize
synchronization failures much more quickly, and therefore, to recover from them more
quickly, as well.

[00526] To make this system more robust, the client should also add or utilize a sub-
frame counter. The client then checks for the presence of the unique word at the time it
is expected to arrive or occur in a signal. If the unique word does not occur at the
correct time, the client can recognize that a synchronization failure has occurred much
more quickly than if it had to wait several (here three) packet times or periods that were
greater than a sub-frame length. If the test for the unique word indicates it is not
present, in other words that the timing is incorrect, then the client can immediately
declare a link loss of synchronization and move to the no-sync state. The process of
checking for the proper unique word presence, adds a condition 65 (cond 65) to the state
machine saying that the unique word is incorrect. If a sub-frame packet is expected to

be received on the client and doesn’t match up, the client can immediately go to the no-

WO 2005/091593 PCT/US2005/008832

128

sync state 4902, saving additional time waiting for multiple sync errors (condition 62)
normally encountered traversing through states 4910 and 4912.

[00527] This change uses an additional counter or counting function in the client core to
count sub-frame length. In one embodiment, a count down function is used and the
transfer of any packet that was currently being processed is interrupted to check for the
sub-frame unique word if the counter has expired. Alternatively, the counter can count
up, with the count being compared to a desired maximum or particular desired value, at
which point the current packet is checked. This process protects the client from
decoding packets that are incorrectly received on the client with extraordinarily long
packet lengths. If the sub-frame length counter needed to interrupt some other packet
that was being decoded, a loss of synchronization can be determined since no packet

should cross a sub-frame boundary.

IX. Packet Processing

[00528] For each type of packet discussed above that the state machine receives, it
undertakes a particular processing step or series of steps to implement operation of the
interface. Forward link packets are generally processed according to the exemplary

processing listed in Table XIV below.

Table XIV
Packet type Packet processor state machine
response
Sub-Frame Header (SH) Confirms good packet, captures sub-

frame length field, and sends packet
parameters to a general purpose

Processor.
Filler (F) Ignores data.
Video Stream (VS) Interprets the Video Data Format

Descriptor and other parameters,
unpacks packed pixel data when
necessary, translates pixels through the
color map if necessary, and writes pixel
data to appropriate locations in the
bitmap.

Audio Stream (AS) Sends audio sample rate setting to

WO 2005/091593

129

PCT/US2005/008832

Packet type

Packet processor state machine
response

audio sample clock generator, separates
audio samples of specified size,
unpacks andio sample data when
necessary, and routes audio samples to
appropriate audio sample FIFO

Color Map (CM)

Reads color map size and offset
parameters, and writes the color map
data to a color map memory or storage
location.

Reverse Link Encapsulation (REL)

Facilitates sending packets in reverse
direction at the appropriate time.
Reverse link flags are examined, and
Client Cap ability packets are sent as
necessary. Client Request and Status
packets are also sent as appropriate.

Client Capability (CC)

Sends this type of packet when
requested by a host using the reverse
link flags field of the Reverse Link
Encapsulation Packet.

Keyboard (K)

Passes these packets to and from a
general purpose processor that
communicates with a keyboard type
device, if one is present, and use is
desired. '

Pointing Device (PD)

Passes these packets to and from a
general purpose processor that
communicates with a pointing type
device, if one is present, and use is
desired.

Link Shutdown (LS)

Records fact link is shut down and
informs 2 general-purpose processor.

Client Service Request and Status
(CSRS)

Sends this packet as the first packet in
the Reverse Link Encapsulation packet.

Bit Block Transfer (BPT) Interprets packet parameters, such as
Video Data Format Descriptor,
determines which pixels to move first,
and moves pixels in bitmap as required.

Bitmap Area Fill (BAF) Interprets packet parameters, translates

pixels through color map if necessary,
and writes pixel data to appropriate
locations in bitmap,

WO 2005/091593 PCT/US2005/008832

130
Packet type Packet processor state machine
response
Bitmap Pattern Fill (BPF) Interprets packet parameters, unpacks

packed pixel data if necessary,
translates pixels through color map if
necessary, and writes pixel data to
appropriate locations in bitmap.

Communication Link Channel Sends this data directly to a general-

(CLC) ' pUIPOSE ProCessor.

Client Service Request (CSR) General-purpose processor controls the

during hibernation low-level functions of sending request and
detects contention with link restarting on
its own.

Interface Type Handoff Request May pass these packets to and from the

(ITHR) and Interface Type general-purpose processor. The logic to

Acknowledge (ITA) receive this type of packet and formulate a

response with an acknowledgment is
substantially minimal. Therefore, this
operation could also be implemented
within the packet processor state machine.
The resulting handoff occurs as a low-level
physical layer action and 1s not likely to
affect the functionality or functioning of
the general-purpose processor.

Perform Type Handoff (PTH) May act on such packets either directly or
by transferring them to the general-purpose
processor, also commanding hardware to
undergo a mode change.

X. Reducing the Reverse Link Data Rate

[00529] It has been observed by the inventors that certain parameters used for the host
link controller can be adjusted or configured in a certain manner in order to achieve a
maximum or more optimized (scale) reverse link data rate, which is very desirable. For
example, during the time used to transfer the Reverse Data Packets field of the Reverse
Link Encapsulation Packet, the MDDI Stb signal pair toggles to create a periodic data
clock at half the forward link data rate. This occurs because the host link controller
generates the MDDI_Stb signal that corresponds to the MDDI Data0 signal as if it were
sending all zeroes. The MDDI _Stb signal is transferred from the host to a client where
it is used to generate a clock signal for transferring reverse link data from the client,

with which reverse data is sent back to the host. An illustration of typical amounts of

WO 2005/091593 PCT/US2005/008832

131

delay encountered for the signal transfer and processing on the forward and reversc
paths in a system employing the MDD], is shown in FIG. 50. In FIG. 50, a series of
delay values 1.5 nsec., 8.0 nsec., 2.5 nsec., 2.0 nsec., 1.0 nsec., 1.5 nsec., 8.0 nsec., and
2.5 nsec., are shown near processing portions for the Stb+/- generation, cable tramsfer-
to-client, client receiver, clock generation, signal clocking, Data0+/- generation, cable
transfer-to-host, and host receiver stages, respectively.

[00530] Depending on the forward link data rate and signal processing delays
encountered, it may require more time than one cycle on the MDDI_Stb signal for this
"round trip" effect or set of events to be completed, which results in the consumption
undesirable amounts of time or cycles. To circumvent this problem, the Reverse Rate
Divisor makes it possible for one bit time on the reverse link to span multiple cycles of
the MDDI_Stb signal. This means that the reverse link data rate is less than the forward
link rate.

[00531] Tt should be noted that the actual length of signal delays through the interface
may differ depending on each specific host-client system or hardware being used.
Although not required, each system can generally be made to perform better by using
the Round Trip Delay Measurement Packst to measure the actual delay in a system so
that the Reverse Rate Divisor can be set to an optimum value. The host may support
either basic data sampling which is simper but operates at a slower speed or advanced
data sampling that is more complex but supports higher reverse data rates. The client
capability to support both methods is considered the same

[00532] A round-irip delay is measured by having the host send a Round Trip Delay
Measurement Packet to the client. The client responds to this packet by sending a
sequence of ones back to the host inside of, or during, a pre-selected measurement
window in that packet called the Measurement Period field. The detailed timing of this
measurement was described previously. The round-trip delay is used to determine the
rate at which the reverse link data can be safely sampled.

[00533] The round-trip delay measurement consists of determining, detectmng, or
counting the number of forward link data clock intervals occurring between the
beginning of the Measurement Period field and the beginning of the time period when
the 0xff, Oxff, 0x00 response sequence is received back at the host from the client. Note
that it is possible that the response from the client could be received a small fraction of a

forward link clock period before the measurement count was about to increment. If this

WO 2005/091593 PCT/US2005/008832

132

unmodified value is used to calculate the Reverse Rate Divisor it could cause bit errors
on the reverse link due to unreliable data sampling. An example of this situation is
illustrated in FIG. 51, where signals representing M_DDI Data at host, MDDI_Stb at
host, forward link data clock inside the host, and a Delay Count are then do write the
resulting pixel to the destination pixel location illustra-ted in graphical form. In FIG. 51,
the response sequence was received from the client & fraction of a forward link clock
period before the Delay Count was about to increment from 6 to 7. If the delay is
assumed to be 6, then the host will sample the reverse data just after a bit transition or
possibly in the middle of a bit transition. This could result in erroneous sampling at the
host. For this reason, the measured delay should typic ally be incremented by one before
it is used to calculate the Reverse Rate Divisor.

[00534] The Reverse Rate Divisor is the number of MDDI_Stb cycles the host should
wait before sampling the reverse link data. Since MIDDI_Stb is cycled at a rate that is
one half of the forward link rate, the corrected round—trip delay measurement needs to
be divided by 2 and then rounded up to the next integger. Expressed as a formula, this

relationship 1s:

round _trip _delay + lj
2

reverse _rate _divisor = RoundUp ToNextInteger(

For the example given, this becomes:

6+1
reverse _rate_ divisor = RoundUpT oNextInteger(——z—) =4

[00535] If the round trip delay measurement used in this example were 7 as opposed to 6,
then the Reverse Rate Divisor would also be equal to 4.

[00536] The reverse link data is sampled by the host on the rising edge of the Reverse
Link Clock. There is a counter or similar known circuit or device present in both the
host and client (display) to generate the Reverse Link Clock. The counters are
initialized so that the first rising edge of the Reverse Link Clock occurs at the beginning
of the first bit in the Reverse Link Packets field of the Reverse Link Encapsulation
packet. This is illustrated, for the example given below, in FIG. 52A. The counters

WO 2005/091593 PCT/US2005/008832

133

increment at each rising edge of thc MDDI_Stb signal, and the number of counts
occurring until they wrap around is set by the Reverse Rate Divisor parameter in the
Reverse Link Encapsulation Packet. Since the MDDI Stb signal toggles at one half of
the forward link rate, then the reverse link rate is one half of the forward link rate
divided by the Reverse Rate Divisor. For example, if the forward link rate is 200 Mbps

and the Reverse Rate Divisor is 4 then the reverse link data rate is expressed as:

1 200Mbps

= 25Mbps
2 4 P

[00537] An example showing the timing of the MDDI_Data0 and MDDI_Stb signal lines
in a Reverse Link Encapsulation Packet is shown in FIG. 52, where the packet

parameters used for illustration have the values:

Packet Length = 1024 (0x0400) Turn Around 1 Length =1

Packet Type = 65 (0x41) Turm Around 2 Length =1
Reverse Link Flags=0 Reverse Rate Divisor =2
Parameter CRC = 0xdb43 All Zero is 0x00

Packet data between the Packet Length and Parameter CRC fields is:

0x00, 0x04, 0x41, 0x00, 0x02, 0x01, 0x01, 0x43, 0xdb, 0x00, ...

[00538] The first reverse link packet teturned from the client is the Client Request and
Status Packet having a Packet Length of 7 and a packet type of 70. This packet begins
with the byte values 0x07, 0x00, 0x46, ... and so forth. However, only the first byte

* (0x07) is visible in FIG. 52. This first reverse link packet is time-shifted by nearly one
reverse link clock period in the figure to illustrate an actual reverse link delay. An ideal
waveform with zero host to client round-trip delay is shown as a dotted-line trace.

[00539] The MS byte of the Parameter CRC field is transferred, preceded by packet type,
then the all zero field. The strobe from the host is switching from one to zero and back
to one as the data from the host changes level, forming wider pulses. As the data goes
to zero, the strobe switches at the higher rate, only the change in data on the data line
causes a change near the end of the alignment field. The strobe switches at the higher
rate for the remainder of the figure due to the fixed O or 1 levels of the data signal for

extended periods of time, and the transitions falling on the pulse pattern (edge).

WO 2005/091593 PCT/US2005/008832

134

[00540] The reverse link clock for the host is at zero until the end of the Tumn Around 1
period, when the clock is started to accommodate the reverse link packets. The arrows
in the lower portion of the figure indicate when the data is sampled, as would be
apparent from the remainder of the disclosure. The first byte of the packet field being
transferred (here 11000000) is shown commencing after Turn Around 1, and the line
level has stabilized from the host driver being disabled. The delay in the passage of the
first bit, and as seen for bit three, can bee seen in the dotted lines for the IData signal.

[00541] In FIG. 53, one can observe typical values of the Reverse Rate Drivisor based on
the forward link data rate. The actual Reverse Rate Divisor is determined as a result of
a round-trip link measurement to guarantee proper reverse link operation.. A first region
5302 corresponds to an area of safe operation, a second region 5304 coxresponds to an
area of marginal performance, while a third region 5306 indicates settings that are
untikely to function properly.

[00542] The rdund—tn'p delay measurement and Reverse Rate Divisor setting are the
same while operating with any of the Interface Type settings on either the forward or
reverse link because they are expressed and operated on in terms of units of actual clock
periods rather than numbers of bits transmitted or received.

[00543] Typically, the largest possible Reverse Rate Divisor is half the number of bits
that can be sent in the measurement window of the Round Trip Delayy Measurement

Packet using a Type-I interface, or for this example:

(512bytes - 8bits | byte)
2

=2048

[00544] An advanced reverse data sampling method can also be emmployed as an
alternative that allows the reverse bit time to be smaller than the round—trip delay. For
this technique a host not only measures the round-trip delay, but can also determine the
phase of the response from the client with respect to an ‘ideal’ bit bouradary of a client
and link with zero delay. By knowing the phase of the client device response, a host can
determine a relatively safe time to sample the reverse data bits from the client. The
round-trip delay measurement indicates to a host the location of the first bit of reverse

data with respect to the beginning of the Reverse Data Packets field.

WO 2005/091593 PCT/US2005/008832

135

[00545] One embodiment of an example of advanced reverse data sampling is illustrate
in graphical form in FIG. 52B. An ideal reverse data signal with zero round-trip delay
is shown as a dotted-line waveform. The actual round-trip delay, between 3.5 and 4
MDDI_Stb cycles, can be observed as the difference in delay between solid waveform
and the ideal. This is the same delay that would be measured using the Round Trip
Delay Measurement Packet, and would be a measured round-trip delay value equal to 7
forward-link bit times. In this embodiment, reverse data bits are 2 MDDI_Stb pulses
long, which is 4 forward-link bit times, which corresponds to a reverse rate divisor
equal to 2. For advanced reverse data sampling it is convenient to use a pre-selected
reverse rate divisor of 2 instead of computing it as described elsewhere. This appears to
be a substantially optimum choice for advanced reverse data sampling because the ideal
sampling point can ecasily be determined using the conventional measurements
described above.

[00546] The ideal sampling point for reverse data can be easily computed by taking the
reminder of the total round-trip delay divided by the number of forward link clocks per
reverse bit, or round-trip delay modulo forward link clocks per reverse bit. Then
subtract either 1 or 2 to get to a safe point away from the data transition. In this
example, 7mod 4 =3, then 3 —1=2, or 3 -2 = 1. The safe sampling point is either 1
or 2 forward link bit times from the edge of the “ideal” bit boundary for zero round-trip
delay. The figure shows the sampling point at 2 forward link bit times from the ideal bit
boundary, as indicated by the series of vertical arrows at the bottom of the timing
diagram. The first sampling point is the first ideal bit boundary after the measured
round-trip delay, plus the offset for safe sampling. In this example, the round trip delay
measurement is 7, so the next ideal bit boundary is at the 8™ bit time, then add either 1
or 2 for the safe sampling point, so the first bit shall be sampled at either 9 or 10
forward link bit times after the beginning of the Reverse Data Packets Field.

XI. Turn-Around and Guard Times

[00547] The Turn-Around 1 field in the Reverse Link Encapsulation Packet allows time
for the host drivers to disable and the client drivers to enable simultaneously. The
Guard Time 1 field in the Round Trip Delay Measurement Packet allows overlap of the

host and client, so the client drivers can enable before the host interface drivers are

WO 2005/091593 PCT/US2005/008832

136

disabled. The Turn Around 2 field in the Reverse Link Encapsulation Packet allows
data in the previous field from the client to be fully transmitted before the host drivers
are enabled. The Guard Time 2 field provides a time value or period which allows the
client and host drivers to drive simultaneously at a logic-zero level. The Guard Time 1
and Guard Time 2 fields are gencrally filled with pre-set or pre-selected values for
Iengths that are not meant to be adjusted. Depending on the interface hardware being
used, these values may be developed using empirical data and adjusted in some

instances to improve operation.

Turn-Around 1

[00548] Several factors contribute to a determination of the length of Turn-Around 1 and
these are the forward link data rate, the maximum disable time of the MDDI Data
drivers in the host, and the enable time of the client driver which is which is generally
the same as the host disable time. The length of the Turn-Around 1 field is selected to
be 24-tgir.(Table XIII) The length in the number of forward link bytes of the Turn-
Around 1 field is determined using the Interface Type Factor, and is computed using the

relationship:

24

———— InterfaceTypeFactory,;, = 3-InterfaceTypeFactory,,
8bits / byte

Ler 18] th Turndroundl —

where the Interface Type Factor is 1 for Type 1, 2 for Type 2, 4 for Type 3, and 8 for
Type-4.

Turn-Around 2
[00549] The factors that determine the length of time generally used for Turn Around 2
are, the round-trip delay of the communication link, the maximum disable time of the
MDDI Data drivers in the client, and the enable time of the host driver which is
specified to be the same as the client driver disable time. The maximum host driver
enable time and client driver disable time is specified elsewhere. The round-trip delay
is measured in units of tgrr. The minimum length specified in the number of forward

link bytes of the Turn-Around 2 field is computed according to the relationship:

WO 2005/091593 PCT/US2005/008832

137

RoundTripDelay +24
8bits / byte

Lengthy,,, sromis Z RoundUpToNextIntege{ - InterfacelypeF actorFWD)

[00550] For example, a Type 3 forward link with a round-trip delay of 10 forward link
clocks typically uses a Turn Around 2 delay on the order of:

Lengthy,, proumar = RoundUpT oNexr,‘Im‘eger(1 1+24 4) = 18bytes
XII. Alternative Reverse Link Timing
[00551] While the use of timing and guard bands discussed above work to achieve a high

data transfer rate interface, the inventors have discovered a technique to allow for
reverse bit lengths that are shorter than the round trip time, by changing the reverse
timing discovery.

[00552] As presented above, the previous approach to the timing of the reverse link is
configured such that the number of clock cycles is counted from the last bit of the Guard
Time 1 of a reverse timing packet until the first bit is sampled on the rising edge of an
IO clock. That is the clock signal(s) used to time the inputs and outputs for the MDDIL

The calculation for the reverse rate divisor is then given by:

round _trip _delay + l)
2

reverse _rate _ divisor = RoundUpT oNextInteger(

[00553] This provides a bit width equal to the round trip delay which results in a very
reliable reverse link. However, the reverse link has been shown to be capable of
running faster, or at a higher data transfer rate, which the inventors want to take
advantage of. A new inventive technique allows utilizing additional capabilities of the
interface to reach higher speeds.

[00554] This is accomplished by having the host count the number of clock cycles until a
one is sampled, but with the host sampling the data line on both the rising and falling
edges during the reverse timing packet. This allows the host to pick the most useful or

even optimal sampling point within the reverse bit to ensure that the bit is stable. That

WO 2005/091593 PCT/US2005/008832

138

is, to find the most useful or optimal rising edge to sample data on for reverse traffic
reverse encapsulation packets. The optimal sampling point depends on both the reverse
link divisor and whether the first one was detected on a rising edge or a falling edge.
The new timing method allows the host to just look for the first edge of the OxFF OxFF
0x00 pattern sent by the client for reverse link timing to determine where to sample in a
reverse encapsulation packet.

[00555] Examples of the arriving reverse bit and how that bit would look for various
reverse rate divisors, is illustrated in FIG. 64, along with a number of clock cycles that
have occurred since the last bit of Guard Time 1. In Fig. 64, onc can see that if the first
edge occurs between a rising and falling edge (labeled as rise/fall), the optimal sampling
point for a reverse rate divisor of one, the optimal sample point is a clock cycle edge
labeled "', as that is the only rising edge occurring within the period of the reverse bit.
For a reverse rate divisor of two, the optimal sampling point is probably still clock cycle
leading edge 'b" as cycle edge 'c' is closer to a bit edge than 'b". For a reverse rate divisor
of four, the optimal sampling point is probably clock cycle edge 'd’, as it is closer to the
back edge of the reverse bit where the value has probably stabilized.

[00556] Returning to FIG. 64, if, however, the first edge occurs between a falling and
rising edge (labeled as fall/rise), the optimal sampling point for a reverse rate divisor of
one is sampling point clock cycle edge 'a', as that is the only rising edge within the
reverse bit time period. For a reverse rate divisor of two. the optimal sampling point is
edge 'b', and for a reverse rate divisor of four the optimal sampling point is edge 'c'.

[00557] One can see that as the reverse rate divisors get larger and larger, the optimal
sampling point becomes easier to ascertain or select, as it should be the rising edge that
is closest to the middle.

[00558] The host can use this technique to find the number of rising clock edges before
the rising data edge of the timing packet data is observed on the data line. It can then
decide, based on whether the edge occurs between a rising and falling edge or between a
falling and rising edge, and what the reverse rate divisor is, how many additional clock
cycles to add to a number counter, to reasonably ensure that the bit is always sampled as
close to the middle as possible.

[00559] Once the host has selected or determined the number of clock cycles, it can
“gxplore” various reverse rate divisors with the client to determine if a particular reverse

rate divisor will work. The host (and client) can start with a divisor of one and check

WO 2005/091593 PCT/US2005/008832

139

the CRC of the reverse status packet received from the client to determine if this reverse
rate functions appropriately to transfer data. If the CRC is corrupt, there is probably a
sampling etror, and the host can increase the reverse rate divisor and try to request a
status packet again. If the second requested packet is corrupt, the divisor can be
increased again and the request made again. If this packet is decoded correctly, this
reverse rate divisor can be used for all future reverse packets.

[00560] This method is effective and useful because the reverse timing should not
change from the initial round trip timing estimate. If the forward link is stable, the
client should continue to decode forward link packets even if there are reverse link
failures. Of course, it is still the responsibility of the host to set a reverse link divisor
for the link, since this method does not guarantee a perfect reverse link. In addition, the
divisor will depend primarily on the quality of the clock that is used to generate an IO
clock. If that clock has a significant amount of jitter, there is a greater possibility of a
sampling error. This error probability increases with the amount of clock cycles in the
round trip delay.

[00561] This implementation appears to work best for Type 1 reverse data, but may
present problems for Type 2 through Type 4 reverse data due to the skew between data
lines potentially being too great to run the link at the rate that works best for just one
data pair. However, the data rate probably does not need to be reduced to the previous
method even with Type 2 through Type 4 for operation. This method may also work
best if duplicated on each data line to select the ideal or an optimal clock sample
location. If they are at the same sample time for each data pair, this method would
continue to work. If they are at different sample periods, two different approaches may
be used. The first is to select an desired or more optimized sample location for each
data point, even if it is not the same for each data pair. The host can then reconstruct the
data stream after sampling all of the bits from the set of data pairs: two bits for Type 2,
four bits for Type 3, and eight bits for Type 4. The other option is for the host to
increase the reverse rate divisor such that the data bits for every data pair can be

sampled at the same clock edge.

WO 2005/091593 PCT/US2005/008832

140

XIrl. Effects of Link Delay and Skew

[00562] Delay skew on the forward link between the MDDI_Data pairs and MDDI_Stb
can limit the maximum possible data rate unless delay skew compensation is used. The
differences in delay that cause timing skew are due to the controller logic, the line

drivers and receivers, and the cable and connectors as outlined below.

A. Link Timing Analysis Limited by Skew (MDDI Type-1)

1. Delay and Skew Example of a Type 1 Link

[00563] A typical interface circuit similar to that shown in FIG. 41, is shown in FIG. 57
for accommodating a Type 1 interface link. In FIG. 57, exemplary or typical values for
propagation delay and skew are shown for each of several processing or interface stages
of an MDDI Type 1 forward link. Skew in the delay between MDDI_Stb and
MDDI_Data0 causes the duty-cycle of the output clock to be distorted. Data at the D
input of the receiver flip-flop (RXFF) stage using flip-flops 5728, 5732, changes
slightly after the clock edge so that it can be sampled reliably. The figure shows two
cascaded delay lines 5732a and 5732b being used to solve two different problems with
creating this timing relationship. In the actual implementation these may be combined
into a single delay element.

[00564] Data, Stb, and Clock Recovery Timing on a Type 1 Link for exemplary signal
processing through the interface are illustrated in FIG. 58.

[00565] The total delay skew that is significant generally arises or comes from the sum
of the skew in the following stages: transmitter flip-flop (TXFF) with flip-flops 5704,
5706; transmitter driver (TXDRVR) with drivers 5708, 5710; the CABLE 5702;
receiver line receiver (RXRCVR) with receivers 5722, 5724; and receiver XOR logic
(RXXOR). Delayl 5732a should match or exceed the delay of the XOR gate 5736 in
the RXXOR stage which is determined by the relationship:

tPD —min(Delay 1) 2 tPD—max(XOR)

[00566] It is desirable to meet this requirement so that the D input of receiver flip-flop
5728, 5732 does not change before its clock input. This is valid if the hold-time of
RXEFF is zero.

WO 2005/091593 PCT/US2005/008832

141

[00567] The purpose or function of Delay?2 is to compensate for the hold-time of the
RXEFF flip-flop according to the relationship:

¢ PD-min(Delay2) — tH(RXFF)

[00568] In many systems this will be zero because the hold time is zero, and of course in
that case the maximum delay of Delay2 can also be zero.

[00569] The worst-case contribution to skew in the receiver XOR stage is in the data-
late/strobe-early case where Delayl is at a maximum value and the clock output from

the XOR gate comes as early as possible according to the relationship:

L SKEW —max(RXXOR) = PD-max(Delayt) ~ L PD-min(XOR)

[005770] In this sitnation, the data may change between two bit periods, n and n+1, very
close to the time where bit n+1 is clocked into the receiver flip-flop.

[00571] The maximum data rate (minimum bit period) of an MDDI Type 1 link is a
function of the maximum skew encountered through all the drivers, cable, and receivers
in the MDDI link plus the total data setup into the RXFF stage. The total delay skew in
the link up to the output of the RXRCVR stage can be expressed as:

tSKEW—max(LINK) = tSKEW—max(TXFF) + tSKEW—max(TXDRVR) + tSKEW—max(CABLE) +1 SKEW-max(RXRCVR)

>

with the “cable” representing a variety of conductors or interconnections or wires and

corresponding delay, and the minimum bit period is given by:

tBIT—min =1 SKEW-max(LINK) +2- tB—TP4 + tAsymmeﬂy + lLSKEW—max(RXXOR) +e Jitter—host + tPD—max(DeIuyZ) +i SU(RXFF)

[00572] In the example shown in FIG. 57 for extemnal mode, tskpw-maxamx) = 1000 psec

and the minimum bit period can be expressed as:

WO 2005/091593 PCT/US2005/008832

142

Lpirmin =1000+2-125 + 625 +125 + 200+ 0+100 = 2300 psec,

or stated as approximately 434 Mbps. In the example shown in FIG. 57 for internal

mode, tskEw-maxqunx) = 500 psec and the minimum bit period can be expressed as:
torromin =3500+2-125+ 625 +125+ 200+ 0+100 =1800psec,
or stated as approximately 555 Mbps.

B. Link Timing Analysis for MDDI Type 2, 3, and 4

[00573] A typical interface circuit similar to that shown in FIGs. 41 and 57, is shown in
FIG. 59 for accommodating Type 2, 3, and 4 interface links. Additional elements are
used in the TXFF (5904), TXDRVR (5908), RXRCVCR (5922), and RXFF (5932,
5928, 5930) stages to accommodate the additional signal processing. In FIG. 59,
exemplary or typical values for propagation delay and skew are shown for each of
several processing or interface stages of an MDDI Type 2 forward link. In addition to
skew in the delay between MDDI Stb and MDDI Data0 affecting the duty-cycle of the
output clock, there is also skew between both of these two signals and the other
MDDI Data signals. Data at the D input of the receiver flip-flop B (RXFFB) stage
consisting of flip-flops 5928 and 5930, is changed slightly after the clock edge so it can
be sampled reliably. If MDDI Datal arrives earlier than MDDI_Stb or MDDI_ Data0
then MDDI_Datal should be delayed to be sampled by at least the amount of the delay
skew. To accomplish this, data is delayed using the Delay3 delay line. If MDDI_Datal
arrives later than MDDI_Stb and MDDI Data0 and it is also delayed by Delay3 then the
point where MDDI_Datal changes is moved closer to the next clock cdge. This process
determines an upper limit of the data rate of an MDDI Type 2, 3, or 4 link. Some
exemplary different possibilities for the timing or skew relationship of two data signals
and MDDI_Stb with respect to each other is illustrated in FIGs. 60A, 60B, and 60C.

[00574] In order to sample data reliably in RXFFB when MDDI_DataX arrives as carly

as possible, Delay3 is set according to the relationship:

4 PD—min(Delay3) 2t SKEW —max(LINK) + tH (RXFFB) + ZLPD—maX(XOR)

WO 2005/091593 PCT/US2005/008832

143

[00575] The maximum link speed is determined by the minimum allowable bit period.
This is most affected when MDDI_DataX arrives as late as possible. In that case, the

minirnum allowable cycle time is given by:

L prr—min = LSkEW -mex(Livk) + E PD-max(Dalay3) T tsu rxFrB)y ~ T PD-min(XOR)

[00576] The upper bound of link speed is then:

tPD—max(DelayS) = tPD—min(Delay3)

and given that assumption:

tBIT—min(lower—bound) = 2 ‘ tSKEW—max(LINK) + lPD—max(XOR) + Z‘SU(RXTFB) + tH(R}:FFB)

[00577] In the example given above, the lower bound of the minimum bit period is given

by the relationship:

 prr—minciower oy = 2+ (1000 + 2 0125+ 625 -+ 200) +1500 + 100+ 0 = 5750 psec,

which is approximately 174 Mbps.

[00578] This is much slower than the maximum data rate that can be used with a Type 1
link. The automatic delay skew compensation capability of MDDI significantly reduces
the affect that delay skew has on the maximum link rate factor is just on-the-edge of

valid data setup. The calibrated skew between MDDI_Data0 and MDDI_Stb is:

! skEw —max(Catibraied) = 2 L yp-spacmiG-max *
and the minimum bit period is:

tBIT—min—Calibraled = tSKEW—max(Calibrated) +2- tB—TP4 + tAsymmelry +1 Jitter—host -+ tSKEW ~max(RXAND+RXXOR) + tSU (RXFF)

WO 2005/091593 PCT/US2005/008832

144

[00579] Where “TB” or tg represents signal jitter from a bit boundary to minimum output
level. Asymmetry simply refers to the asymmetrical nature of internal delay through or
of the differential receivers. “TP4” is associated with or is effectively defined for
electrical characterization and testing purposes as the connection or interface (pins of
the MDD controller device in the client) for the differential line drivers and receivers
for the client. It represents a convenient or predetermined point from which signal delay
is measured and characterized for the link throughout the rest of a system. In one

embodiment, a maximum value of the parameter tg at TP4 is defined by the relationship

! pierential—Skew-1pa-Dive—pxr = 0-3 *Lgir for the external mode and
! pigerential-kew-tpa-prve—mvz = 0-6 -2y for the internal mode for the client transmitters; and

ty rpa-rcvrpxr = 0-051-25, +175ps for the external mode for the client receivers.

[00580] The label TP4 being simply useful in numbering various test points (TP) in the
interface and links. In one embodiment, this test point location is defined to be the same
for both internal and external modes. There is a corresponding “TP0” test point for, or
associated with, the connection or interface pins of the MDDI controller device in the
host that contains the differential line drivers and receivers. In this embodiment, a

maximum value of the parameter Tg at TPO is defined by the

relationship?,_ypo_pcrgmr = 005125 +50ps, for the internal mode, and
2y po-rcrremxr = 0-051-15, +175ps for the external mode for the host receivers; and

Iy gpo = 0.102 .1, for the host transmitters.

[00581] In the example shown in FIG. 59, tskgwmax(Data0-st>-Catibrated) = 300 psec and the

minimum bit period:

Lo cottraea = 300+2 125+ 625 + 200 +175 +100 = 1650 p sec,

approximatcly 606 Mbps.

[00582] In order to sample data reliably in RXFFB when MDDI Datal arrives as early
as possible, the associated programmable delay is adjusted to the optimal setting with an
accuracy of one tap, and an additional tap delay is added for safety. The maximum link

speed is determined by the minimum allowable bit period. This is most affected when

WO 2005/091593 PCT/US2005/008832

145

MDDI _Datal arrives as late as possible. In that case the minimum allowable cycle time
is:

tBIT—min—Daral—-Calibrated =2 tTAP—Spacing—max +2- tTA~TP4 4

where “TA” or ta represents signal jitter from a bit boundary to center crossing.

[00583] In the example given in FIG. 59, the lower bound of the minimum bit period

based on sampling MDDI Datal is:

? g7 —min—Datai—Catibrared = 2 *130+2-125 =550psec

[00584] In one embodiment, a typical total delay time for delay skew, delay asymmetry,

and Clock Jitter in the host transmitter for Internal Mode would be defined as:
tAsymmerty—T)ﬂ?F + tAsymmehy—TXDRVR +1 Skew—IXFF + tSkew—T)@RWQ +1 Jitter—host = 0'467 i (t BIT — 150p S) 2
and for the external mode as:

L tsymmerty—1xpr T8 asymmenry-TxDRVR T shew-1xFr T Estew-riorRrR T jitter—host = 0.7BD - (tBIT —1507. BDPS)

while a typical total delay time for delay skew, delay asymmetry, and setup time in the

client device (tg-rp4) for internal mode is:

L gsymmery—-rarevR " dsymmeny-rxxor + Esien-rircvr Lskew-rxor T+ Lsenp-rxer = 0.307 - (t mr —150ps)

2

and for the external mode:
t Asymmerty—RXRCVR +1 Asymmetry—RXXOR +1 Skew-RXRCIR t skew-rxxor T ¢ setup~RXFF — 0.7BD- (t BIT — Y BDPS);
where the term TBD is a flexible place keeping label for future to be determined values

which will depend on a variety of well understood characteristics and operational

requirements for the external mode connections.

WO 2005/091593 PCT/US2005/008832

146

XIV. Physical Layer Interconnection Description

[00585] Physical connections useful for implementing an interface according to the
present invention can be realized using commercially available parts such as part
number 3260-8S2(01) as manufactured by Hirose Electric Company Ltd. on the host
side, and part number 3240-8P-C as manufactured by Hirose Electric Company Ltd. on
the client device side. An exemplary interface pin assignment or "pinout" for such

connectors used with a Type-1/Type 2 interfaces is listed in Table XV, and illustrated in

FIG. 61.
Table XV
Signal Name Pin Signal Name Pin
Number Number
MDDI Pwr 1 MDDI Gnd 11
MDDI Stbh+ 2 MDDI Stb- 12
MDDI Data0—+ 4 MDDI Data0- 14
MDDI Datal + 6 MDDI Datal- 16
MDDI Data2—+ 8 MDDI Data2- 18
MDDI Data3—+ 10 MDDI Data3- 20
MDDI Datad—+ 9 MDDI Datad- 19
MDDI Data5+ 7 MDDI Data5- 17
MDDI Datab-+- 5 MDDI Data6- 15
MDDI Data7-+ 3 MDDI Data7- 13
Shield
[00586] The shield is connected to the HOST Gnd in the host interface, and a shield

drain wire in the cable is connected to the shield of the client connector. However, the

shield and drain wire are not conmnected to the circuit ground inside of a client.
[00587] Interconnection elements or devices are chosen or designed in order to be small
enough for use with mobile communication and computing devices, such as PDAs and
wireless telephones, or portable game devices, without being obtrusive or unaesthetic in
comparison to relative device size. Any connectors and cabling should be durable
enough for use in the typical consumer environment and allow for small size, especially
for the cabling, and relatively low cost. The transfer elements should accommodate data

and strobe signals that are differential NRZ data having a transfer rate up to around 450
Mbps for Type 1 and Type 2 and up to 3.6 Gbps for the 8-bit parallel Type 4 version.

WO 2005/091593 PCT/US2005/008832

147

[0058¢8] For internal mode applications there are either no connectors in the same sense
for the conductors being used or such conmection elements tend to be very miniaturized.
One example is zero insertion force “sockets” for receiving integrated circuits or
elements housing either the host or client device. Another example is where the host
and client reside on printed circuit boards with various interconnecting conductors, and
have “pins” or contacts extending from housings which are soldered to contacts on the

conductors for interconnection of integrated circuits.

XV. Operation

[00589] A summary of the general steps undertaken in processing data and packets
during operation of an interface using embodiments of the invention is shown in FIGs.
54A and 54B, along with an overview of the interface apparatus processing the packets
in FIG. 55. In these figures, the process starts in a step 5402 with a determination as to
whether or not the client and host are connected using a communication path, here a
cable. This can occur through the use of periodic polling by the host, using software or
hardware that detects the presence of connectors or cables or signals at the inputs to the
host (such as is seen for USB interfaces), or other known techniques. If there is no
client connected to the host, then it can simmply enter a wait state of some predetermined
length, depending upon the application, go into a hibernation mode, or be inactivated to
await future use which might require a user to take action to reactivate the host. For
example, when a host resides on a computer type device, a user might have to click on a
screen icon or request a program that actiwvates the host processing to look for the client.
Again, simple plug in of a USB type connection could activate host processing,
depending on the capabilities and configuration of the host or resident host software.

[00590] Once a client is connected to the host, or visa versa, or detected as being present,
either the client or the host sends appropriate packets requesting service in steps 5404
and 5406. The client could send either Client Service Request or Status packets in step
5404. It is noted that the link, as discussed above, could have been previously shut
down or be in hibernation mode so this may not be a complete initialization of the
communication link that follows. Once the communication link is synchronized and the

host is trying to communicate with the client, the client also provides a Client

WO 2005/091593 PCT/US2005/008832

148

Capabilities packet to the host, as in step 5408. The host can now begin to determine
the type of support, including transfer rates, the client can accommodate.

[00591] Generally, the host and client also negotiate the type (rate/speed) of service
mode to be used, for example Type 1, Type 2, and so forth, in a step 5410. Once the
service type is established the host can begin to transfer information. In addition, the
host may use Round Trip Delay Measurement Packets to optimize the timing of the
communication links in parallel with other signal processing, as shown in step 5411.

[00592] As stated earlier, all transfers begin with a Sub-Frame Header Packet, shown
being transferred in step 5412, followed by the type of data, here video and audio stream
packets, and filler packets, shown being transferred in step 5414. The audio and video
data will have been previously prepared or mapped into packets, and filler packets are
inserted as needed or desired to fill out a required number of bits for the media frames.
The host can send packets such as the Forward Audio Channel Enable Packets to
activate sound devices. In addition, the host can transfer commands and information
using other packet types discussed above, here shown as the transfer of Color Map, Bit
Block Transfer or other packets in step 5416. Furtherimore, the host and client can
exchange data relating to a keyboard or pointing devices sing the appropriate packets.

[00593] During operation, one of several different events can occur which lead to the
host or client desiring a different data rate or type of interface mode. For example, a
computer or other device communicating data could encounter loading conditions in
processing data that causes a slow down in the preparation or presentation of packets. A
client device receiving the data could change from a dedicated AC power source to a
more limited battery power source, and either not be able to transfer in data as quickly,
process commands as readily, or not be able to use the same degree of resolution or
color depth under the more limited power settings. Altematively, a restrictive condition
could be abated or disappear allowing either device to transfer data at higher rates. This
being more desirable, a request can be made to change to a higher transfer rate mode.

[00594] If these or other types of known conditions occux or change, either the host or
client may detect them and try to renegotiate the interface mode. This is shown in step
5420, where the host sends Interface Type Handoff Request Packets to the client
requesting a handoff to another mode, the client sends Interface Type Acknowledge
Packets confirming a change is sought, and the host sends Perform Type Handoff
Packets to make the change to the specified mode.

WO 2005/091593 PCT/US2005/008832

149

[00595] Although, not requiring a particular order of processing, the clicnt and host can
also exchange packets relating to data intended for or received from pointing devices,
keyboards, or other user type input devices associated primarily with the client,
although such elements may also be present on the host side. These packets are
typically processed using a general processor type element and not the state machine
(5502). In addition, some of the commands discussed above will also be processed by
the general processor. (5504, 5508)

[00596] Afier data and commands have been exchanged between the host and client, at
some point a decision is made as to whether or not additional data is to be transferred or
the host or client is going to cease servicing the transfer. This is shown in step 5422. If
the link is to enter either a hibernation state or be shut down completely, the host sends
a Link Shutdown packet to the client, and both sides terminate the transfer of data.

[00597] The packets being transferred in the above operations processing will be
transferred using the drivers and receivers previously discussed in relation to the host
and client controllers. These line drivers and other logic elements are connected to the
state machine and general processors discussed above, as 1llustrated in the overview of
FIG. 55. In Fig. 55, a state machine 5502 and general processors 5504 and 5508 may
further be cormected to other elements not shown such as a dedicated USB interface,
memory elements, or other components residing outside of the link controller with
which they interact, including, but not limited to, the data source, and video control
chips for view display devices.

[00598] The processors, and state machine provide control over the enabling and
disabling of the drivers as discussed above in relation to guard times, and so forth, to
assure efficient establishment or termination of communication link, and transfer of

packets.

XVI. Display Frame Buffers

[00599] Video data buffering requirements are different for moving video images
compared to computer graphics. Pixel data is most often stored in a local frame buffer
in the client so the image on the client can be refreshed locally.

[00600] When full-motion video is being displayed (nearly every pixel in the display

changes each Media Frame) it is usually preferred to store the incoming pixel data in

WO 2005/091593 PCT/US2005/008832

150

one frame buffer while the image on the display is being refreshed from a second frame
buffer. More than two display buffers may be used to eliminate visible artifacts as
described below. When an entire image has been received in one frame buffer then the
roles of the buffers can be swapped, and the newly received image is then used to
refresh the display and the other buffer is filled with the next frame of the image. This
concept is illustrated in FIG. 88A, where pixel data is written to the offline image buffer
by setting the Display Update bits to “01.”

[00601] In other applications the host needs to update only a small portion of the image
without having to repaint the entire image. In this situation it is desired to write the new
pixels directly to the buffer being used to refresh the display, as illustrated in detail FIG.
88B.

[00602] In applications that have a fixed image with a small video window it is easiest to
write the fixed image to both buffers (display update bits equal to “11”) as shown in
FIG. 88C, and subsequently write the pixels of the moving image to the offline buffer
by setting the display update bits to “01.”

[00603] The following rules describe the useful manipulation of buffer pointers while
simultaneously writing new information to the client and refreshing the display. Three
buffer pointers exist: current fill points to the buffer currently being filled from data
over the MDDI link. Just filled points to the buffer that was most recently filled.
being_displayed points to the buffer currently being used to refresh the display. All
three buffer pointers may contain values from 0 to N-1 where N is the number of
display buffers, and N > 2. Arithmetic on buffer pointers is mod N, e.g. when N=3 and
current_fill=2, incrementing current_fill causes current_fill to be set to 0. In the simple
case where N=2, just_filled is always the complement of current fill. On every MDDI
Media Frame boundary (Sub-frame Header Packet with the Sub-frame Count field equal
so zero) perform the following operations in the order specified: set just_filled equal to
curreﬂt_ﬁll, and set current_fill equal to current fill + 1.

[00604] MDDI Video Stream Packets update the buffers according to the structure or
methodology of: when Display Update Bits equal to ‘01’, pixel data is written to the
buffer specified by current_fill; when Display Update Bits equal to ‘00°, pixel data is
written to the buffer specified by just_filled; and when Display Update Bits equal to
“11,” pixel data is written to all buffers. The display is refreshed from the buffer
specified by the being displayed pointer. After the display refreshes the last pixel in

WO 2005/091593 PCT/US2005/008832

151

one frame refresh epoch and before it begins to refresh the first pixel in the next frame
refresh epoch the display update process performs the operation of setting
being_refreshed equal to just_filled.

[00605] The Packets with a Pixel Data Attribute field contain a pair of Display Update
Bits that specify the frame buffer where the pixel data is to be written. The Client
Capability Packet has three additional bits that indicate which combinations of the
Display Update Bits are supported in the client In many cases, computer-generated
images need to be incrementally updated based on user input or derived from
information received from a computer network. Display Update Bit combinations “00”
and “11” support this mode of operation by causing the pixel data to be written to the
frame buffer being displayed or to both frame buffers.

[00606] When accommodating video images, FIG. 89 illustrates how video images are
displayed using a pair of frame buffers when video data is transmitted over the MDDI
link with the Display Update Bits equal to “01.” After a media-frame boundary is
detected on the MDDI link, the display refresh process will begin refreshimg from the
next frame buffer when the refresh process for the frame currently being refreshed is
completed.

[00607) An important assumption related to FIG. 89 is that the image is received from
the host as a continuous stream of pixels that are transmitted in the same order that the
client uses to read the pixels from the frame buffer to refresh the display (usually upper-
left, reading row by row, to the bottom-right corer of the screen. This is an important
detail in the cases where the Display Refresh and Image Transfer operatioms reference
the same frame buffer.

[00608] It is necessary for the display refresh frame rate to be greater tham the image
transfer frame rate to avoid displaying partial images. FIG. 90 shows how image
fragmentation can occur with a slow display refresh rate that is the display refresh is
slower than the image transfer.

[00609] In an image that contains a combination of computer graphic images and moving
video pictures the video pixel data might occupy a small portion of a media-frame. This
could be significant in situations where the display refresh operation and the image
transfer reference the same frame buffer. These situations are shown by a cross-hatched

shading in FIG. 91, where the pixels read from the buffer to refresh the display might be

WO 2005/091593 PCT/US2005/008832

152

the pixels written to the buffer two frames ago, or they may correspond to the frame
immediately being written to the same frame buffer.

[00610] The use of three frame buffers in the client will resolve the problem of the simall
window of contention for access to a frame buffer as shown in FIG. 92.

[00611] However, there is still a problem if the display refresh rate is less than the
media-frame rate over the MDDI link as shown in FIG. 93.

[00612] The use of a single buffer for moving video images is somewhat problematic as
shown FIG. 94. With the display refresh faster than the image transfer into the buffer,
the image being refreshed sometimes will show the upper portion of the frame being
written and the lower portion of the image will be the frame previously transferred.
With the display refresh faster than the image transfer (the preferred mode of operation)

there will be more frequent instances of frames showing a similar split image.

XVII. Multiple Client Support

[00613] The current protocol version does not appear to directly support multiple client
devices. However, most packets contain a reserved Client ID field that can be used to
address specific client devices in a system with multiple clients. Currently, for many
applications this client ID or these client IDs are set to be zero. The sub-frame header
packet also contains a field to indicate whether or not the host supports a multiple client
system. Therefore, there is a manner in which multiple client devices would likely be
connected and addressed in future applications of the MDDI or protocol to aid system
designers to plan for future compatibility with multiple client hosts and clients.

[00614] In systems having multiple clients it is useful for clients to be connected to the
host using a daisy-chain of clients, or using hubs, as shown in Fig. 95, or using a
combination of these techniques as shown in FIG. 96. It also may be useful for a host to
display certain error messages to manage the connected clients, such as an error
message when one or more clients desiring address 0 are connected, which should not
be the case for multi-client systems, as such displays expect to be or are set to operate as

the only client.

WO 2005/091593 PCT/US2005/008832

153

XIII. Addendum

[00615] In addition to the formats, structures, and contents discussed above for the
various packets used to implement the architecture and protocol for embodiments of the
invention, more detailed field contents or operations are presented here for some of the
packet types. These are presented here to further clarify their respective use or
operations to enable those skilled in the art to more readily twnderstand and make use of
the invention for a variety of applications. Only a few of the fields not already
discussed are discussed further here. In addition, these fields are presented with
exemplary definitions and values in relation to the embodiments presented above.
However, such values are not to be taken as limitations of the invention, but represent
one or more embodiments useful for implementing the intex-face and protocol, and not
all embodiments need be practiced together or at the same time. Other values can be
used in other embodiments to achieve the desired presentation of data or data rate

transfer results, as will be understood by those skilled in the art.

WO 2005/091593 PCT/US2005/008832

154

A. For Video Stream Packets

[00616] In one embodiment, the Pixel Data Attributes field (2 byte) has a series of bit
values that are interpreted as follows. Bits 1 and O select how the display pixel data is
routed. For bit values of '11' pixel data is displayed to or for both eyes, for bit values
'10, pixel data is routed only to the left eye, and for bit values '01", pixel data is routed
only to the right eye, and for bit values of '00' the pixel data is routed to an alternate
display as may be specified by bits 8 through 11 discussed below. If the primary
display in or being used or operated by a client does not support stereo images or
imaging in some form, then these commands cannot effectively be implanted to have an
impact as desired by the display. In this situation or configuration the client should
route pixel data to a primary display regardless of the bit valucs or for any of the bit
combinations ‘01,” “10,” or ‘11,” since the resulting commands or control won’t be
implemented by the display. It is recommended, but not required by the embodiments,
that the value ‘11° be used to address the primary display in those clients that do not
support stereo display capability.

[00617] Bit 2 indicates whether or not the Pixel Data is presented in an interlace format,
with a value of '0' meaning the pixel data is in the standard progressive format, and that
the row number (pixel Y coordinate) is incremented by 1 when advancing from one row
to the next. When this bit has a value of '1", the pixel data is in interlace format, and the
row number is incremented by 2 when advancing from one row to the next. Bit 3
indicates that the Pixel Data is in alternate pixel format. This is similar to the standard
interlace mode enabled by bit 2, but the interlacing is vertical instead of horizontal.
When Bit 3 is “0* the Pixel Data is in the standard progressive format, and the column
number (pixel X coordinate) is incremented by 1 as each successive pixel is received.
When Bit 3 is ‘1” the Pixel Data is in alternate pixel format, and the column number is
incremented by 2 as each pixel is received.

[00618] Bit 4 indicates whether or not the Pixel data is related to a display or a camera,
as where data is being transferred to or from an intemal display for a wireless phone or
similar device or even a portable computer, or such other devices as discussed above, or
the data is being transferred to or from a camera built into or directly coupled to the
device. When Bit 4 is ‘0” the Pixel data is being transferred to or from a display frame
buffer. When Bit 4 is ‘1" Pixel data is being transferred to or from a camera or video

device of some type, such devices being well known in the art.

WO 2005/091593 PCT/US2005/008832

155

[00619] Bit 5 is uscd to indicatc when the pixel data contains the next consecutive: row of
pixels in the display. This is considered the case when Bit 5 is set equal to °1°. When
bit 5 is set to ‘1” then the X Left Edge, Y Top Edge, X Right Edge, Y Bottom Edge, X
Start, and Y Start parameters are not defined and are ignored by the client. Whera Bit 15
is set at a logic-one level, this indicates that the pixel data in this packet is the 1 ast row
of pixels in the image. Bit 8 of the Client Feature Capability Indicators field of the
Client Capability Packet indicates whether this feature is supported.

[00620] Bits 7 and 6 are Display Update Bits that specify a frame buffer where thhe pixel
data is to be written. The more specific effects are discussed elsewhere. For bit values
of ‘01’ Pixel data is written to the offline image buffer. For bit values of ‘00" Pi=el data
is written to the image buffer used to refresh the display. For bit values of ‘11’ Pixel
data is written to all image buffers. The bit values or combination of ‘10’ is treated as
an invalid value or designation and Pixel data is ignored and not written to any’ of the
image buffers. This value may have use for future applications of the interface.

[00621] Bits 8 through 11 form a 4-bit unsigned integer that specifies an alternate display
or display location where pixel data is to be routed. Bits 0 and 1 are set equal to ‘00’ in
order for the display client to interpret bits 8 through 11 as an alternate display mumber.
If bits 0 and 1 are not equal to ‘00 then bits 8 through 11 are set to logic-zero lev-els.

[00622] Bits 12 through 14 are reserved for future use and are generally set to logic-zero
levels. Bit 15, as discussed, is used in conjunction with bit 5, and setting bit 15 to logic-
one indicates that the row of pixels in the Pixel Data field is the last row of pixelsina
frame of data. The next Video Stream Packet having bit 5 set to logic-ome will
correspond to the first row of pixels of the next video frame.

[00623] The 2-byte X Start and Y Start fields specify the absolute X and Y coox-dinates
of the point (X Start, Y Start) for the first pixel in the Pixel Data field. The 2—byte X
Left Edge and Y Top Edge fields specify the X coordinate of the left edge and Y
coordinate of the top edge of the screen window filled by the Pixel Data field, while the
X Right Edge and Y Bottom Edge fields specify the X coordinate of the right ed ge, and
the Y coordinate of the bottom edge of the window being updated.

[00624] The Pixel Count field (2 bytes) specifies the number of pixels in.the Pixzel Data
field below.
[00625] The Parameter CRC field (2 bytes) contains a CRC of all bytes from thes Packet

Length to the Pixel Count. If this CRC fails to check then the entire packet is dis carded.

WO 2005/091593 PCT/US2005/008832

156

[00626] The Pixel Data field contains the raw video information that is to be dis-played,
and which is formatted in the manner described by the Video Data Format Descriptor
field. The data is transmitted one "row" at a time as discussed elsewhere. When Bit 5
of the Pixel Data Attributes field is set at logic level one, then the Pixel Data field
contains exactly one row of pixels, with the first pixel being transmitted corresponding
to the left-most pixel and the last pixel transmitted corresponding to the right-most
pixel.

[00627] The Pixel Data CRC field (2 bytes) contains a 16-bit CRC of only thee Pixel
Data. If a CRC verification of this value fails then the Pixel Data can still be used, but

the CRC error count is incremented.

B. For Audio Stream Packets

[00628] In one embodiment, the Audio Channel ID field (1 byte) uses an 8 bit umsigned
integer value to identify a particular audio channel to which audio data is sent by the
client device. Thc physical audio channels are specified in or mapped to physical
channels by this field as values of 0, 1, 2, 3, 4, 5, 6, or 7 which indicate the left front,
right front, left rear, right rear, front center, sub-woofer, surround left, and sarround
right channels, respectively. An audio channel ID value of 254 indicates that th e single
stream of digital audio samples is scnt to both the left front and right front ckhhannels.
This simplifies communications for applications such as where a stereo headset is used
for voice communication, productivity enhancement apps are used on a PDA, ©r other
applications where a simple User Interface generates warning tones. Values fox the ID
field ranging from 8 through 253, and 255 are currently reserved for use where new
designs desire additional designations, as anticipated by those skilled in the art.

[00629] The Reserved 1 field (1 byte) is generally reserved for future use, and has all bits
in this field set to zero. One function of this field is to cause all subsequent 2 by te fields
to align to a 16-bit word address and cause 4-byte fields to align to a 32-bit word
address.

[00630] The Audio Sample Count field (2 bytes) specifies the number of audio samples
in this packet.

[00631] The Bits Per Sample and Packing field contains 1 byte that specifies the packing
format of andio data. In one embodiment, the format generally employed is for Bits 4

through 0 to define the number of bits per PCM audio sample. Bit 5 then specifies

WO 2005/091593 PCT/US2005/008832

157

whether or not the Digital Audio Dala samples are packed. As mentioned above,
FIG. 12 illustrates the difference between packed and byte-aligned andio samples. A
value of '0' for Bit 5 indicates that each PCM audio sample in the Digital Audio Data
field is byte-aligned with the interface byte boundary, and a value of '1' indicates that
each successive PCM audio sample is packed up against the previous audio sample.
This bit is effective only when the value defined in bits 4 through 0 (the number of bits
per PCM audio sample) is not a multiple of eight. Bits 7 through 6 are reserved for use
where system designs desire additional designations and are generally set at a value of
ZETo0.

[00632] The Audio Sample Rate field (1 byte) specifies the audio PCM sample rate. The
format employed is for a value of 0 to indicate a rate of 8,000 samples per second (sps),
a value of 1 indicates 16,000 sps., value of 2 for 24,000 sps, value of 3 for 32,000 sps,
value of 4 for 40,000 sps, value of 5 for 48,000 sps, value of 6 for 11,025 sps, value of 7
for 22,050 sps, and value of 8 for 44,100 sps, respectively, with values of 9 through 255
being reserved for future use, so they are currently set to zero.

[00633] The Parameter CRC field (2 bytes) contains a 16-bit CRC of all bytes from the
Packet Length to the Audio Sample Rate. If this CRC fails to check appropriately, then
the entire packet is discarded. The Digital Audio Data field contains the raw audio
samples to be played, and is usually in the form of a linear format as unsigned integers.
The Audio Data CRC field (2 bytes) contains a 16-bit CRC of only the Audio Data. If
this CRC fails to check, then the Audio Data can still be used, but the CRC error count

is incremented.

C. For User-Defined Stream Packets
[00634] In one embodiment, the 2-byte Stream ID Number field is used to identify a
particular user defined stream. The contents of the Stream Parameters and Stream Data
fields, are typically defined by the MDDI equipment manufacturer. The 2-byte Stream
Parameter CRC field contains a 16-bit CRC of all bytes of the siream parameters
starting from the Packet Length to the Audio Coding byte. If this CRC fails to check,
then the entire packet is discarded. Both the Stream Parameters and Stream Parameter
CRC fields may be discarded if not needed by an end application of the MDD], that is,
they are considered optional. The 2-byte Stream Data CRC field contains a CRC of
only the Stream Data. If this CRC fails to check appropriately, then use of the Stream

WO 2005/091593 PCT/US2005/008832

158

Data is optional, depending on the requirements of the application. Use of the stream
data contingent on the CRC being good, generally requires that the stream data be
buffered until the CRC is confirmed as being good. The CRC error count is
incremented if the CRC does not check.

D. For Color Map Packets

[00635] The 2-byte hClient ID field contains information or values that are reserved for a
Client ID, as used previously. Since this field is generally reserved for future use, the
current value is set to zero, by setting the bits to °0°,

[00636] The 2-byte Color Map Item Count field uses values to specify the total number
of 3-byte color map items that are contained in the Color Map Data field, or the color
map table entries that exist in the Color Map Data in this packet. In this embodiment,
the number of bytes in the Color Map Data is 3 times the Color Map Item Count. The
Color Map Item Count is set equal to zero to send no color map data. If the Color Map
Size is zero then a Color Map Offset value is generally still sent but it is ignored by the
display. The Color Map Offset field (4 bytes) specifies the offset of the Color Map
Data in this packet from the beginning of the color map table in the client device.

[00637] A 2-byte Parameter CRC field contains a CRC of all bytes from the Packet
Length to the Audio Coding byte. If this CRC fails to check then the entire packet is
discarded.

[00638] For the Color Map Data field, the width of each color map location is a specified
by the Color Map Item Size field, where in one embodiment the first part specifies the
magnitude of blue, the second part specifies the magnitude of green, and the third part
specifies the magnitude of red. The Color Map Size field specifies the number of 3-byte
color map table items that exist in the Color Map Data field. If a single color map
cannot fit into one Video Data Format and Color Map Packet, then the entire color map
may be specified by sending multiple packets with different Color Map Data and Color
Map Offsets in each packet. The number of bits of blue, green, and red in each color
map data item is generally the same as specified in the Color Map RGB Width field of
the Display Capability Packet.

[00639] A 2-byte Color Map Data CRC field contains a CRC of only the Color Map
Data. If this CRC fails to check then the Color Map Data can still be used but the CRC

error count is incremented.

WO 2005/091593 PCT/US2005/008832

159

[00640] Each color map data item is to be iransmitted in the order: blue, green, red, with
the least significant bit of each component transmitted first. The individual red, green,
and blue components of each color map item are packed, but each color map item (the
least significant bit of the blue component) should be byte-aligned. Fig. 97 illustrates an
example of color map data items with 6 bits of blue, 8 bits of green, and 7 bits of red.
For this example, the Color Map Item Size in the Color Map Packet is equal to 21, and
the Color Map RGB Width field of the Client Capability Packet is equal to 0x07836.

E. For Reverse Link Encapsulation Packets

[00641] The Parameter CRC field (2 bytes) contains a 16-bit CRC of all bytes from the
Packet Length to the Turn-Around Length. If this CRC fails to check, then the entire
packet is discarded.

[00642] In one embodiment, the Reverse Link Flags field (1 byte) contains a set of flags
to request information from the client and specify a reverse link type. If a bit (for
example, Bit 0) is set to a logic-one level, then the host requests the specified
information from the client, but if the bit is set to a logic-zero level then the host does
not need the information from the client. Bit 0 is used to indicate when the host desires
the Client Capability Packet, which is generally sent by the client to the host in the
Reverse Data Packets field. Bit 1 is used to indicate when the host desires the Client
Request and Status Packet which is sent by the client to the host in the Reverse Data
Packets field. The remaining bits (here Bits 2 through 7) are reserved for future use and
are set to zero. However, more bits can be used as desired to set flags for the reverse
link.

[00643] The Reverse Rate Divisor field (1 byte) specifies the number of MDDI Stb
cycles that occur in relation to the reverse link data clock. The reverse link data clock is
equal to the forward link data clock divided by two times the Reverse Rate Divisor. The
reverse link data rate is related to the reverse link data clock and the Interface Type on
the reverse link. In this embodiment, for a Type 1 interface the reverse data rate equals
the reverse link data clock, for Type 2, Type 3, and Type 4 interfaces the reverse data
rates equal two times, four times, and eight times the reverse link data clock,
‘respectively.

[00644] The All Zero 1 field contains a group of bytes, here 8, that is set equal to zero in

value by setting the bits at a logic-zero level, and is used to ensure that all MDDI Data

WO 2005/091593 PCT/US2005/008832

160

signals are at a logic-zero level for a sufficient time to allow the client to begin
recovering clock using only MDDL Stb prior to disabling the host’s line drivers during
the Turn-Around 1 field. In one embodiment, the length of the All Zero 1 field is
greater than or equal to the number of forward link byte transmission times in the
round-trip delay of the cable.

[00645] The Turn-Around 1 Length field (1 byte) specifies the total number of bytes that
are allocated for Turn-Around 1, establishing the first turn-around period. The Turn-
Around 1 field employs the number of bytes specified by the Turn-Around 1 Length
parameter are allocated to allow the MDDI_Data line drivers in the client to enable,
before the line drivers in the host are disabled. The client enables its MDDI_Data line
drivers during bit 0 of Turn-Around 1 and the host disables its outputs so as to be
completely disabled prior to the last bit of Turn-Around 1. The MDDI Stb signal
behaves as though MDDI Data0 were at a logic-zero level during the entire Turn
Around 1 period. A more complete description of the setting of Turn-Around 1 is given
above.

[00646] The Reverse Data Packets field contains a series of data packets transferred from
the client to host. The client may send filler packets or drive the MDDI_Data lines to a
logic-zero state or level when it has no data to send to the host. In this embodiment, if
the MDDI Data lines are driven to zero, the host will interpret this as a packet with a
zero length (not a valid length) and the host will accept no additional packets from the
client for the duration of the current Reverse Link Encapsulation Packet.

[00647] The Turn-Around 2 Length field (1 byte) specifies the total number of bytes that
are allocated for Turn-Around 2, for establishing a second turn-around period. The
recommended length of Turn-Around 2 is the number of bytes required for the round-
trip delay plus the time required for the host to enable its MDDI_Data drivers. Turn-
Around 2 Length may be also be a value larger than the minimum required or calculated
value to allow sufficient time to process reverse link packets in the host.

[00648] The Turn Around 2 field consists of the number of bytes as specified by the
Turn-Around Length parameter. The host waits for at least the round trip delay time
before it enables its MDDI Data line drivers during Turn-Around 2. The host enables
its MDDI_Data line drivers so that they are generally completely enabled prior to the
last bit of Turn-Around 2, and the client disables its outputs so that they are generally
completely disabled prior to the last bit of Turn-Around 2. The purpose of the Turn-

WO 2005/091593 PCT/US2005/008832

161

Arxound 2 field is to allow the remaining amount of data from the Reverse Data Packets
field to be transmitted or transferred from the client. Variations in different systems
implementing the interface and the amount of safety margin allocated, it is possible that
neither the host nor client will be driving the MDDI Data signals to a logic-zero level
during some parts of the Turn Around 2 field period, as seen by the line receivers in or
at the host. The MDDI_Stb signal behaves as though the MDDI Data0 wete at a logic-
zero level during substantially the entire Turn Around 2 period. A description of the
setting of Turn-Around 2 is given above.

[00649] The Reverse Data Packets field contains a series of data packets being
transferred from the client to a host. As stated earlier, Filler packets are sent to fill the
remaining space that is not used by other packet types.

[00650] The All Zero 2 field contains a group of bytes (8 in this embodiment) that is set
equal to zero in value by setting the bits at a logic-zero level, and is used to ensure that
all MDDI_Data signals are at a logic-zero level for a sufficient time to allow the client
to begin recovering clock using both MDDI Data0 and MDDI_Stb after enabling the
host’s line drivers following the Turn-Around 2 field.

F. For Client Capability Packets
[00651] As illustrated for one embodiment, the Protocol Version field uses 2 bytes to
specify a protocol version used by the client. The initial version is currently set equal to
one, and will be changed over time as new versions are generated as would be known,
while the Minimum Protocol Version field uses 2 bytes to specify the mimimum
protocol version that the client can employ or interpret. In this case, a zero value is also
a valid value. The Data Rate Capability field (2 bytes) specifies the maximum data rate
the client can receive on each data pair on the forward link of the interface, and is
specified in the form of megabits per second (Mbps). The Interface Type Capability
field (1 byte) specifies the interface types that are supported on the forward and reverse
links. A bit set to ‘1” indicates that a specified interface type is supported, and a bit set
to °0’ indicates that the specified type is not supported. Hosts and clients should support
at least Type 1 on the forward and reverse links. There is no requirement to support a
contiguous range of interface types. For example, it would be perfectly valid to support
only Type 1 and Type 3, but not Type 3 and Type 4 in an interface. It is also not

necessary for the forward and reverse links to operate with the same interface type.

WO 2005/091593 PCT/US2005/008832

162

However, when a link comes out of hibernation both forward and reverse links should
commence operating in Type 1 mode, until other modes may be negotiated, selected, or
otherwise approved for use by both the host and client.

[00652] The supported interfaces are indicated in one embodiment by selecting Bit 0, Bit
1, or Bit 2 to select either a Type 2 (2 bit), Type 3 (4 bit), or Type 4 (8 bit) mode on the
forward link, respectively; and Bit 3, Bit 4, or Bit 5 to select either a Type 2, Type 3, or
Type 4 mode on the reverse link, respectively; with Bits 6 and 7 being reserved and
generally set to zero at this time. The Bitmap Width and Height fields, here each being
2 bytes, specify the width and height of the bitmap, respectively, in pixels.

[00653] The Monochrome Capability field (1 byte) is used in one embodiment to specify
the number of bits of resolution that can be displayed in a monochrome format. If a
display cannot use a monochrome format then this value is set at zero. Bits 7 through 4
are reserved for future use and are, thus, set as zero. Bits 3 through 0 define the
maximum nurber of bits of grayscale that can exist for each pixel. These four bits
make it possible to specify values of 1 to 15 for each pixel. If the value is zero then
monochrome format is not supported by the display.

[00654] The Bayer Capability field uses 1 byte to specify the number of bits of
resolution, pixel group, and pixel order that can be transferred in Bayer format. If the
client cannot use the Bayer format then this value is zero. The Bayer Capability field is
composed of the following values: Bits 3 through 0 define the maximum number of bits
of intensity thiat exist in each pixel, while Bits 5 through 4 define the pixel group pattern
that is required, while Bits 8 through 6 define the pixel order that is required; with Bits
14 through 9 being reserved for future use and generally set to zero in the meantime.
Bit 15, when set to a logic-one level indicates that the client can accept Bayer pixel data
in either packed or unpacked format. If bit 15 is set to zero this indicates that the client
can accept Bayer pixel data only in unpacked format.

[00655] The Color Map Capability field (3 bytes) in one embodiment specifies the
maximum nurnber of table items that exist in the color map table in the display. If the
display canmot use the color map format then this value is set at zero.

[00656] The RGB Capability field (2 bytes) specifies the number of bits of resolution
that can be displayed in RGB format. If the display cannot use the RGB format then
this value is equal to zero. The RGB Capability word is composed of three separate

unsigned values where: Bits 3 through 0 define the maximum number of bits of blue,

WO 2005/091593 PCT/US2005/008832

163

Bits 7 through 4 define the maximum number of bits of green, and Bits 11 through 8
define the maximum number of bits of red in each pixel. Currently, Bits 14 through 12
are reserved for future use and are generally set to zero. Bits 14 through 12 are reserved
for future use and generally set to zero. Bit 15, when set to a logic-one level indicates
that the client can accept RGB pixel data in either packed or unpacked format. If bit 15
is set to a logic-zero level, this indicates that the client can accept RGB pixel data only
in unpacked format.

[00657] The Y Cr Cb Capability field (2 bytes) specifies the number of bits of resolution
that can be displayed in Y Cr Cb format. If the display cannot use the Y Cr Cb format
then this value is set equal to zero. The Y Cr Cb Capability word is composed of three
separate unsigned values where: Bits 3 through 0 define the maximum number of bits in
the Cb sample, Bits 7 through 4 define the maximum number of bits in the Cr sample,
Bits 11 through 8 define the maximum number of bits in the Y sample, and Bits 15
through 12 are currently reserved for future use and are set to zero.

[00658] The Client Feature Capabhility field uses 4 bytes in one embodiment that contain
a set of flags that indicate specific features in the client that are supported. A bit set to a
logic-one level indicates the capability is supported, while a bit set to a logic-zero level
indicates the capability is not supported. In one embodiment, the value for Bit 0
indicates whether or not Bitmap Block Transfer Packet (packet type 71) is supported.
The value for Bits 1, 2, and 3 indicate whether or not Bitmap Area Fill Packet (packet
type 72), Bitmap Pattern Fill Packet (packet type 73), or Read Frame Buffer Packet
(packet type 74), respectively, are supported. The value for Bit 4 indicates whether or
not the client has the capability to make one color transparent using the Transparent
Color Enable Packet, while values for Bits 5 and 6 indicate if the client can accept audio
data in unpacked or packed format, respectively, and the value for Bit 7 indicates
whether or not the client can send a reverse-link video stream from a camera. The value
for Bit 8 indicates whether or not the client has the ability to receive a full line of pixel
data and ignore display addressing as specified by bit 5 of the Pixel Data Attributes field
of the Video Stream Packet, and the client can also detect frame sync or end of video
frame data using bit 15 of the Pixel Data Attributes Field.

[00659] The value of Bit 9 indicates whether or not the client has the ability to interpret
the Request Specific Status Packet and respond with the Valid Status Reply List Packet.

The client can indicate an ability to return additional status in the Valid Parameter Reply

WO 2005/091593 PCT/US2005/008832

164

List field of the Valid Status Reply List Packet as described above. The value of Bit 10
indicates whether or not the client has the ability to support display power state 01. The
display power state is set using bits [3:2] of the Power State field of the Display Power
State Packet described above. Display power state 01 is a state where the selected
display is not illuminated and is consuming a minimum amount of power, if any, and
the contents of the frame buffer are generally guaranteed to be retained during this state

[00660] The value for Bits 11 and 12 indicate when the client is communicating either
with a pointing device and can send and receive Pointing Device Data Packets, or with a
keyboard and can send and receive Keyboard Data Packets, respectively. The value for
Bit 13 indicates whether or not the client has the ability to set one or more audio or
video parameters by supporting the VCP Feature packets: Request VCP Feature Packet,
VCP Feature Reply Packet, Set VCP Feature Packet, Request Valid Parameter Packet,
and Valid Parameter Reply Packet. The value for Bit 14 indicates whether or not the
client has the ability to write pixel data into the offline display frame buffer, which is
illustrated in FIG. 88A. If this bit is set to a logic-one level then the Display Update
Bits (bits 7 and 6 of the Pixel Data Attributes field of the Video Stream Packet) may be
set to the values ‘01°.

[00661] The value for Bit 15 indicates when the client has the ability to write pixel data
into only the display frame buffer currently being used to refresh the display image ,
which is illustrated in FIG. 88B. If this bit is set to a logic-one then the Display Update
Bits (bits 7 and 6 of the Pixel Data Attributes field of the Video Stream Packet) may be
set to the values ‘00°. The value for Bit 16 indicates when the client has the ability to
write pixel data from a single Video Stream Packet into all display frame buffers, which
is illustrated in FIG. 88C. If this bit is set equal to a logic-one level then the Display
Update Bits (bits 7 and 6 of the Pixel Data Attributes field of the Video Stream Packet)
may be set to the value ‘11°.

[00662] In one embodiment, the value for Bit 17 indicates when a client has the ability to
respond to the Request Specific Status Packet, the value for Bit 18 indicates when the
client has the ability to respond to the Round Trip Delay Measurement Packet, and the
value for Bit 19 indicates when the client has the ability to the Forward Link Skew
Calibration Packet. In one embodiment, the value for Bit 20 indicates when the client

has the ability to respond to the Display Power State Packet.

WO 2005/091593 PCT/US2005/008832

165

[00663] In one embodiment, the value for Bit 21 indicates when the client has the ability
to use the Raster Operation field of the Block Transfer Packet (packet type 71) , the
Bitmap Area Fill Packet (packet type 72), and the Bitmap Pattern Fill Packet (packet
type 73) if those packets are supported by the client as specified by bits 0, 1, and 2 or
this field. In one embodiment, if bit 21 has a logic-zero level or value, and the packets
are supported, then the client does not have the ability to use the Raster Operation field
and the client only has the ability to copy or write to pixel locations specified by these
packets.

[00664] The value for Bit 22 indicates whether or not the client has the ability to respond
to the Register Access Packet. Bits 23 through 31 are currently reserved for future use
or alternative designations useful for system designers, and are generally set equal to a
zero value or a logic-zero level.

[00665] The Display Video Frame Rate Capability field (1 byte) specifies the maximum
video frame update capability of the display in frames per second. A host may choose
to update the image at a slower rate than the value specified in this field.

[00666] The Audio Buffer Depth field (2 bytes) specifies the depth of the elastic buffer
in a Display which is dedicated to each audio stream.

[00667] The Audio Channel Capability field (2 bytes) contains a group of flags that
indicate which audio channels are supporied by the client or client connected device. A
bit set to one indicates the channel is supported, and a bit set to zero indicates that
channel is not supported. The Bit positions are assigned to the different channels, for
example Bit positions 0, 1, 2, 3, 4, 5, 6, and 7 in one embodiment, indicate the left front,
right front, left rear, right rear, front center, sub-woofer, surround left, and surround

* right channels, respectively. Bits 8 through 14 are currently reserved for future use, and
are generally set to zero. In one embodiment Bit 15 is used to indicate if the client
provides support for the Forward Audio Channel Enable Packet. If this is the case, Bit
15 set to a logic-one level. If, however, the client is not capable of disabling audio
channels as a result of the Forward Audio Channel Enable Packet or if the client does
not support any audio capability, then this bit is set to a logic-zero level or value.

[00668] A 2-byte Audio Sample Rate Capability field, for the forward link, contains a set
of flags to indicate the audio sample rate capability of the client device. Bit positions
are assigned to the different rates accordingly, such as Bits 0, 1,2, 3,4, 5,6, 7, and 8
being assigned to 8,000, 16,000, 24,000, 32,000, 40,000, 48,000, 11,025, 22,050, and

WO 2005/091593 PCT/US2005/008832

166

44,100 samples per second (SPS), respectively, with Bits 9 through 15 being reserved
for future or alternative rate uses, as desired, so they are currently set to '0". Setting a bit
value for one of these bits to '1' indicates that that particular sample rate 1s supported,
and setting the bit to '0' indicates that that sample rate is not supported.

[00669] The Minimum Sub-frame Rate field (2 bytes) specifies the minimum sub-frame
rate in frames per second. The minimum sub-frame rate keeps the client status update
rate sufficient to read certain sensors or pointing devices in the client.

[00670] A 2-byte Mic Sample Rate Capability field, for the reverse link, contains a set of
flags that indicate the audio sample rate capability of a microphone in the client device.
For purposes of the MDDI, a client device microphone is configured to minimally
support at least an 8,000 sample per second rate. Bit positions for this field are assigned
to the different rates with bit positions 0, 1, 2, 3, 4, 5, 6, 7, and 8, for example, being
used to represent 8,000, 16,000, 24,000, 32,000, 40,000, 48,000, 11,025, 22,050, and
44,100 samples per second (SPS), respectively, with Bits 9 through 15 being reserved
for future or alternative rate uses, as desired, so they are currently set to '0'. Setting a bit
value for one of these bits to '1' indicates that that particular sample rate is supported,
and setting the bit to '0' indicates that that sample rate is not supported. If no
microphone is connected then each of the Mic Sample Rate Capability bits are set equal
to zero.

[00671] The Keyboard Data Format field (here 1 byte) specifies whether or not a
keyboard is connected to the client system and the type of keyboard that is connected.
In one embodiment, the value established by Bits 6 through 0 is used to define the type
of keyboard that is connected. If the value is zero (0) then the keyboard type is
considered as unknown. For a value of 1, the keyboard data format is considered to be a
standard PS-2 style. Currently values in the range of 2 through 125 are not in use, being
reserved for use of system designers and interface incorporators or product developers
to define specific keyboard or input devices for use with the MDDI and corresponding
clients or hosts. A value of 126 is used to indicate that the keyboard data format is user-
defined, while a value of 127 is used to indicate that a keyboard cannot be connected to
this client. In addition, Bit 7 can be used to indicate whether or not the keyboard can
communicate with the client. The intended use of this bit is to indicate when the
keyboard can communicate with the client using a wireless link. Bit 7 would be set to a

zero level if bits 6 through 0 indicate that a keyboard cannot be connected to the client.

WO 2005/091593 PCT/US2005/008832

167

Therefore, for one embodiment, when the value of Bit 7 is 0, the keyboard and client
cannot communicate, while if the value of Bit 7 is 1, the keyboard and client have
acknowledged that they can communicate with each other.

[00672] The Pointing Device Data Format field (here 1 byte) specifies whether or not a
pointing device is connected to the client system and the type of pointing dovice that is
connected. In one embodiment, the value established by Bits 6 through 0 is used to
define the type of pointing device that is connected. If the value is zero (0) then the
pointing device type is considered as unknown. For a value of 1, the pointing device
data format is considered to be a standard PS-2 style. Currently values in the range of 2
through 125 are not in use, being reserved for use of system designers and interface
incorporators or product developers to define specific pointing device or input devices
for use with the MDDI and corresponding clients or hosts. A value of 126 is used to
indicate that the pointing device data format is user-defined, while a value of 127 is
used to indicate that a pointing device cannot be connected to this client. In addition,
Bit 7 can be used to indicate whether or not the pointing device can communicate with
the client. The intended use of this bit is to indicate when the keyboard can
communicate with the client using a wireless link. Bit 7 would be set to a zero level if
bits 6 through 0 indicate that a pointing device cannot be conmected to the client.
Therefore, for one embodiment, when the value of Bit 7 is 0, the pointing device and
client cannot communicate, while if the value of Bit 7 is 1, the pointing device and
client have acknowledged that they can communicate with each other.

[00673] The Content Protection Type field (2 bytes) contains a set of flags that indicate
the type of digital content protection that is supported by the Display. Currently, bit
position 0 is used to indicate when DTCP is supported and bit position 1 is used to
indicate when HDCP is supported, with bit positions 2 through 15 being reserved for
use with other protection schemes as desired or available, so they are currently set to
Zero.

[00674] The Mfr Name field (here 2 bytes) contains the EISA 3-character ID of the
manufacturer, packed into three 5-bit characters in the same manner as in the VESA
EDID specification. The character ‘A’ is represented as 00001 binary, the character ‘Z’
is represented as 11010 binary, and all letters between ‘A’ and “Z’ are represented as
sequential binary values that correspond to the alphabetic sequence between ‘A’ and

“Z’. The most significant bit of the Mfr Name field is unused and is generally set to

WO 2005/091593 PCT/US2005/008832

168

logic-zero for now until a use is made in the future implementations. For example, a
manufacturer represented by the string “XYZ” would have a Mfr Name value of
0x633a. If this field is not supported by the client it is generally set to zero. Product
Code field uses 2 bytes to contain a product code assigned by the display manufacturer.
If this field is not supported by the client it is generally set to zero.

[00675] Reserved 1, Reserved 2, and Reserved 3 fields (here 2 bytes each) are reserved
for future use in imparting information. All bits in these field arc generally be set to a
logic-zero level. The purpose of such fields is currently to cause all subsequent 2 byte
fields to align to a 16-bit word address and cause 4-byte fields to align to a 32-bit word
address.

[00676] The Serial Number field uses 4 bytes in this embodiment to specify the serial
number of the display in numeric form. If this field is not supported by the client it is
generally set to zero. The Week of Manufacture field uses 1 byte to define the week of
manufacture of the display. This value is typically in the range of 1 to 53 if it is
supported by the client. If this field is not supported by the client it is set to zero. The
Year of Manufacture field is 1 byte that defines the year of manufacture of the display.
This value is an offset from the year 1990. Years in the range of 1991 to 2245 can be
expressed by this field. Example: the year 2003 corresponds to a Year of Manufacture
value of 13. If this field is not supported by the client it is set to zero.

[00677] The CRC field (here 2 bytes) contains a 16-bit CRC of all bytes in the packet
including the Packet Length.

G. For Client Request and Status Packets

[00678] The Reverse Link Request field (3 byte) specifies the number of bytes the client
needs in the reverse link in the next sub-frame to send information to the host.

[00679] The CRC Error Count field (1 byte) indicates how many CRC errors have
occurred since the beginning of the media-frame. The CRC count is reset when a sub-
frame header packet with a Sub-frame Count of zero is sent. If the actual number of
CRC errors exceeds 255 then this value generally saturates at 253.

[00680] The Capability Change field uses 1 byte to indicate a change in the capability of
the client. This could occur if a user connects a peripheral device such as a microphone,
keyboard, or display, or for some other reason. When Bits[7:0] are equal to 0, then the

capability has not changed since the last Client Capability Packet was sent. However,

WO 2005/091593 PCT/US2005/008832

169

when Bits[7:0] arc equal to 1 to 255, the capability h as changed. The Client Capability
Packet is examined to determine the new display char-acteristics.

[00681] The Client Busy Flags field uses 2 bytes to imdicate that the client is performing
a specific function and is not ready to yet accept another packet related to that function.
A bit set to a logic-one level or value indicates that the particular function is currently
being performed by the client and that the related fumnction in the client is busy. If the
related function in the client is ready, the bit is set t a logic-zero. The client should
return a busy status (bit set to one) for all functions th at are not supported in the client.

[00682] In one embodiment, these bytes are interpreted according to the following
relationships. If Bit 0 is a ‘1” then the bitmap block= transfer function is busy, while if
Bit 1 is a 1, then a bitmap area fill function is busy, and if Bit 2 is a ‘1°, then a bitmap
pattern fill function is busy. At the same time, if Bit 3 is a ‘1’ then the graphics
subsystem is busy performing an operation that requeires use of the frame buffer in the
client. dther graphics functions that require use of fhae frame buffer may not begin until
this bit is set to logic-one.

[00683] Currently, Bits 4 through 15 remain reserved for future use and are generally set
to a logic-one level or state to indicate a busy status ix1 case these bits are assigned in the

future.

H. For Bit Block Transfer Packets
[00684] The Window Upper Left Coordinate X Valte and Y Value fields use 2 bytes
each to specify the X and Y value of the coordinates of the upper left comer of the
window to be moved. The Window Width and Heiglat fields use 2 bytes each to specify
the width and height of the window to be moved. The Window X Movement and Y
Movement fields use 2 bytes each to specify the numaber of pixels that the window is to
be moved horizontally and vertically, respectively. Typically, these coordinates are
configured such that positive values for X cause the window to be moved to the right,
and negative values cause movement to the left, while positive values for Y cause the

window to be moved down, and negative values cause upward movement.

L For Bitmap Area Fill Packets
[00685] Window Upper Left Coordinate X Value and Y Value fields use 2 bytes each to

specify the X and Y value of the coordinates of the wipper left comer of the window to

WO 2005/091593 PCT/US2005/008832

170

be filled. The Window Width and Height fields (2 bytes each) specify the width and
height of the window to be filled. The Video Data Format Descriptor field (2 bytes)
specifies the format of the Pixel Area Fill Value. The format is the same as the same
field in the Video Stream Packet. The Pixel Area Fill Value field (4 bytes) contains the
pixel value to be filled into the window specified by the fields discussed above. The
format of this pixel is specified in the Video Data Format Descriptor field.

J. For Bitmap Pattern Fill Packets

[00686] Window Upper Left Coordinate X Value and Y Value fields use 2 bytes each to
specify the X and Y value of the coordinates of the upper left corner of the window to
be filled. The Window Width and Height fields (2 bytes each) specify the width and
height of the window to be filled. The Pattern Width and Pattern Height fields (2 bytes
each) specify the width and height, respectively, of the fill patten. The Horizontal
Pattern Offset field (2 bytes) specifies a horizontal offset of the pixel data pattem from
the left edge of the specified window to be filled. The value being specified is to be less
than the value in the Pattern Width Field. The Vertical Pattern Offset field (2 bytes)
specifies a vertical offset of the pixel data pattern from the top edge of the specified
window to be filled. The value being specified is to be less than the value in the Pattern
Height field.

[00687] The 2-byte Video Data Format Descriptor field specifies the format of the Pixel
Area Fill Value. FIG. 11 illustrates how the Video Data Format Descriptor is coded.
The format is the same as the same field in the Video Stream Packet.

[00688] The Parameter CRC field (2 bytes) contains a CRC of all bytes from the Packet
Length to the Video Format Descriptor. If this CRC fails to check then the entire packet
is discarded. The Pattern Pixel Data field contains raw video information that specifies
the fill pattern in the format specified by the Video Data Format Descriptor. Data is
packed into bytes, and the first pixel of each row is to be byte-aligned. The fill pattern
data is transmitted a row at a time. The Pattern Pixel Data CRC field (2 bytes) contains
a CRC of only the Pattern Pixel Data. If this CRC fails to check then the Pattem Pixel

Data can still be used but the CRC error count is incremented.

WO 2005/091593 PCT/US2005/008832

171

K. Communication Link Data Channel Packets

[00689] The Parameter CRC field (2 bytes) contain a 16-bit CRC of all bytes from the
Packet Length to the Packet Type. If this CRC fails to check then the entire packet is
discarded.

[00690] The Communication Link Data field contains the raw data from the
communication channel. This data is simply passed on to the computing device in the
display.

[00691] The Communication Link Data CRC field (2 bytes) contains a 16-bit CRC of
only the Communication Link Data. If this CRC fails to check then the Communication

Link Data is still used or useful, but the CRC error count is incremented.

L. For Forward Audio Channel Enable Packets
[00692] The Audio Channel Enable Mask field (1 byte) contains a group of flags that
indicate which audio channels are to be enabled in a client. A bit set to one enables the
corresponding channel, and a bit set to zero disables the corresponding channel Bits 0
through 5 designate channels 0 through 5 which address left front, right front, left rear,
right rear, front center, and sub-woofer channels, respectively. Bits 6 and 7 are reserved

for future use, and in the mean time are generally set equal to zero.

M. For Reverse Audio Sample Rate Packets

[00693] The Audio Sample Rate field(1 byte) specifies the digital audio sample rate.
The values for this field are assigned to the different rates with values of 0, 1, 2, 3, 4, 5,
6, 7, and 8 being used to designate 8,000, 16,000, 24,000, 32,000, 40,000, 48,000,
11,025, 22,050, and 44,100 samples per second (SPS), respectiv-ely, with values of 9
through 254 being reserved for use with alternative rates, as desired, so they are
currently set to '0'. A value of 255 is used to disable the reverse-link audio stream.

[00694] The Sample Format field (1 byte) specifies the format of the digital audio
samples. When Bits[1:0] are equal to '0', the digital audio samples are in linear format,
when they are equal to 1, the digital audio samples are in p-Law format, and when they
are equal to 2, the digital andio samples are in A-Law format. Biks[7:2] are reserved for
alternate use in designating audio formats, as desired, and are generally set equal to

ZEro.

WO 2005/091593 PCT/US2005/008832

172

N. For The Digital Content Protection Overhead Packets
[00695] The Content Protection Type field (1 byte) specifies the digital content
protection method that is used. A value of '0' indicates Digital Transmission €ontent
Protection (DTCP) while a value of 1 indicates High-bandwidth Digital €Content
Protection System (HDCP). The value range of 2 through 255 is not currently specified
but is reserved for use with alternative protection schemes as desired. The Content
Protection Overhead Messages field is a variable length field containing content

protection messages sent between the host and client.

0. For The Transparent Color Enable Packets

[00696] The Transparent Color Enable field (1 byte) specifies when transparerat color
mode is enébled or disabled. If Bit O is equal to O then transparent color rmode is
disabled, if it is equal to 1 then transparent color mode is enabled and the trarmsparent
color is specified by the following two parameters. Bits 1 through 7 of this byte are
reserved for future use and are typically set equal to zero.

[00697] The Video Data Format Descriptor field (2 bytes) specifies the forma€ of the
Pixel Area Fill Value. FIG. 11 illustrates how the Video Data Format Descriptor is
coded. The format is generally the same as the same field in the Video Stream Packet.

[00698] The Pixel Area Fill Value field uses 4 bytes allocated for the pixel valiae to be
filled into the window specified above. The format of this pixel is specified in the
Video Data Format Descriptor field.

P. For The Round Trip Delay Measurement Packets

[006991 The 2-byte Packet Length field specifies the total number of bytes in thes packet
not including the packet length field, and in one embodiment is selected to have a fixed
length of 159. The 2-byte Packet Type field that identifies this packet type with a value
of 82, identifying a packet as a Round Trip Delay Measurement Packet. The hClient ID
field, as before is reserved for future use as a Client ID, and is generally set to zexo.

[00700] In one embodiment, the Parameter CRC field (2 bytes) contains a 16-bit €€RC of
all bytes from the Packet Length to the Packet Type. If this CRC fails to check tthen the
entire packet is discarded.

[00701] The Guard Time 1 field (here 64 bytes) is used to allow the MDDI D=ata line

drivers in the client to enable before the line drivers in the host are disabled. Th.e client

WO 2005/091593 PCT/US2005/008832

173

enables its MDDI Data line drivers during bit 0 of Guard Time 1 and the host
disenables its line drivers so as to be completely disabled prior to the last bit of Guard
Time 1. The host and client both drive a logic-zero level during Guard Time 1 when
they are not disabled. Another purpose of this field is to ensure that all MDDI Data
signals are at a logic-zero level for a sufficient time to allow the client to begin
recovering a clock or clock signal using only MDDI_Stb prior to disabling the host’s
line drivers.

[00702] The Measurement Period field is a 64 byte window used to allow the client to
respond with two bytes of 0xff, and 30 bytes of 0x00 at half the data rate used on the
forward link. This data rate corresponds to a Reverse Link Rate Divisor of 1. The
client returns this response immediately at the time it perceives as being the beginning
of the Measurement Period. This response from the client will be received at a host at
precisely the round trip delay of the link plus logic delay in the client after the beginning
of the first bit of the Measurement Period at the host.

[00703] The All Zero 1 field (2 bytes) contains zeroes to allow the MDDI Data line
drivers in the host and client to overlap so that MDDI_Data is always driven. The host
enables MDDI Data line drivers during bit 0 of the All Zero 1 field, and the client also
continues to drive the signal to a logic-zero level as it did at the end of the Measurement
Period.

[00704] The value in the Guard Time 2 field (64 bytes) allows overlap of the
Measurement Period driven by the client when the round trip delay is at the maximum
amount that can be measured in the Measurement Period. The Client disables its line
drivers during bit O of Guard Time 2 and the Host enables its line drivers immediately
after the last bit of Guard Time 2. The host and client both drive a logic-zero level
during Guard Time 2 when they are not disabled. Another purpose of this field is to
ensure that all MDDI Data signals are at a logic-zero level for a sufficient time to allow
the client to begin recovering a clock signal using both MDDI Data0 and MDDI_Stb

after enabling the line drivers for a host.

Q. For The Forward Link Skew Calibration Packets
[00705] In one embodiment, the Parameter CRC field (2 bytes) contains a 16-bit CRC of
all bytes from the Packet Length to the Packet Type. If this CRC fails to check then the

entire packet is discarded.

WO 2005/091593 PCT/US2005/008832

[00706]

[00707]

[00708]

[00709]

[00710]

174

The All Zero 1 field uses 8 bytes to ensure that there will be an transitions on the
MDDI_Stb at the beginning of the Calibration Data Sequence field. Generally, these
bytes employ 8-bit unsigned integers equal to zero. It also provides for sufficient time
for the client core logic to change the mode of the clock recovery circuit from using the
XOR of MDDI_0 and MDDI_Stb, to simply using MDDI_Stb or the MDDI_Sib signal
as the recovered clock.

The Calibration Data Sequence field contains a data sequence that causes the
MDDI_Data signals to toggle at every data period. The length of the Calibration Data
Scquence field is determined by the interface being used on the forward link. During
the processing of the Calibration Data Sequence, the MDDI host controller sets all
MDDI_Data signals equal to the strobe signal. The client clock recovery circuit should
use only MDDI_Stb rather than MDDI_Stb XOR MDDI_Data0 to recover the data
clock while the Calibration Data Sequence field is being received by the client.
Depending on the exact phase of the MDDI_Stb signal at the beginning of the
Calibration Data Sequence field, the Calibration Data Sequence will generally be one of
the following based on the interface Type being used when this packet is sent:

Type 1 — (64 byte data sequence) Oxaa, Oxaa ... or 0x55, 0x55...

Type 2 — (128 byte data sequence) Oxcc, Oxce ... or 0x33, 0x33...

Type 3 —(256 byte data sequence) 0xf0, 0xf0 ... or 0xOf, 0x0f ...

Type 4 — (512 byte data sequence) 0xff, 0x00, 0xff, 0x00 ... or 0x00, 0xff, 0x00, -

Oxff ...

The All Zero 2 field uses 8 bytes to provide sufficient time for the client core
logic to change the mode of the clock recovery circuit back to an original state, from
using the MDDI_Stb signal as the recovered clock to using the XOR of MDDI 0 and
MDDI_Stb. Generally, these bytes employ 8-bit unsigned integers equal to zero.

An example of the possible MDDI_Data and MDDI_Stb waveforms for both the
Type 1 and Type 2 Interfaces are shown in FIGs. 62A and 62B, respectively.

XIX. Conclusion
While various embodiments of the present invention have been described above,

it should be understood that they have been presented by way of example only, and not

limitation. Thus, the breadth and scope of the present invention should not be limited

wn

2005223960 27 May 2008

175

by any of the above-described exemplary embodiments, but should be defined only in accordance with
the following claims and their equivalents.

Throughout the specification and the claims that follow, unless the context requires otherwise,
the words “comprise” and “include” and variations such as “comprising” and “including” will be
understood to imply the inclusion of a stated integer or group of integers, but not the exclusion of any
other integer or group of integers.

The reference to any prior art in this specification is not, and should not be taken as, an
acknowledgement of any form of suggestion that such prior art forms part of the common general

knowledge.

W

2005223960 27 May 2008

30

35

176

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for communicating a specific client supported power state to a host in a digital
transmission link, the method including the steps of:

providing a client capability packet including a client power state capability field, the client
power state capability field including at least one client supported power state;

sending the client capability packet by a client to the host after a request by the host;

choosing the specific client supported power state from the at least one client supported power
state by the host; and

sending a power state packet from the host to the client, the power state packet including the

chosen specific client supported power state.

2. The method of claim 1 wherein the at least one client support power state includes a low

power state.

3. The method of claim 2 further including the step of not illuminating a display and not

retaining a content of a frame buffer.

4. The method of claim 3 wherein the display is an alternate display.

5. The method of claim 2 further including the step of not illuminating a display and retaining a

content of a frame buffer.

6. The method of claim S wherein the display is an alternate display.

7. The method of claim 1 wherein the at least one client supported power state includes a high

power state.

8. The method of claim 7 further including the step of illuminating a display and refreshing the

display from a frame buffer.

9. The method of claim 8 wherein the display is an alternate display.

10. A system for communicating a specific client supported power state to a host in a digital
transmission link, the system including:
means for providing a client capability packet including a client power state capability field,

the client power capability field including at least one client supported power state;

wh

2005223960 27 May 2008

15

20

25

30

35

177

means for sending the client capability packet by a client to the host after a request by the
host;

means for choosing the specific client supported power state from the at least one client
supported power state by the host; and

means for sending a power state packet from the host to the client, the power state packet

including the chosen specific client supported power state.

11. The system of claim 10 where the at least one client supported power state includes a low

power state.

12. The system of claim 11 further including a means for not illuminating a display and a means

for not retaining a content of a frame buffer.
13. The system of claim 12 wherein the display is an alternate display.

14. The system of claim 11 further including a means for not illuminating a display and a means

for retaining a content of a frame buffer.
15. The system of claim 14 wherein the display is an alternate display.

16. The system of claim 10 where the at least one client supported power state includes a high

power state.

17. The system of claim 16 further including a means for illuminating a display and a means for

refreshing the display from a frame buffer.
18. The system of claim 17 wherein the display is an alternate display.

19. A computer program product, including:
computer readable medium including:
code for causing a communication of a specific client supported power state to a host
in a digital transmission link, the computer code including:
code for causing a client capability packet to be provided, the client packet
including a client power state capability field, the client power state capability field
comprising at least one client supported power state;
code for causing the client capability packet to be sent by a client to the host

after a request by the host;

2005223960 27 May 2008

(%)

(=]

20

25

30

178

code for causing the specific client supported power state to be chosen from
the at least one client supported power state by the host; and
code for causing a power state packet to be sent from the host to the client, the

power state packet including the chosen specific client supported power state.

20. The computer program product of claim 19 where the at least one client supported power state

includes a low power state.

21. The computer program product of claim 20 further including code for causing a display not to

be illuminated and code for causing a content of a frame buffer to not be retained.

22. The computer program product of claim 21 wherein the display is an alternate display.

23. The computer program product of claim 20 further including code for causing a display to not

be illuminated and code for causing a content of a frame buffer to be retained.

24, The computer program product of claim 23 wherein the display is an alternate display.

25. The computer program product of claim 19 wherein the at least one client support power state

includes a high power state.

26. The computer program product of claim 25 further including code for causing a display to be

illuminated and code for causing the display from a frame buffer to be refreshed.

27. The computer program product of claim 26 wherein the display is an alternate display.

28. A method substantially as herein described with reference to any one of the embodiments of

the invention illustrated in the accompanying drawings.

29. A system substantially as herein described with reference to any one of the embodiments of

the invention illustrated in the accompanying drawings.

30. A computer program product substantially as herein described with reference to any one of the

embodiments of the invention illustrated in the accompanying drawings.

112

WO 2005/091593 PCT/US2005/008832

1/86

[s¢]
o
- O
—
\ \ \
-
/
{4
’
I
1
1
[}
\
» /
i //
1
1 7
! ’
/ ’
4 /
4 7
4 ’
4 ¥4
’
,/
f”

}‘ ’*:: ety u?'

“}'w- i
*ng i‘)l Y :
T Qe i E'x’n
‘j ! !" be -.n"

LAPTOP COMPUTER

28l et [BAEm Y C)/-
L4 .i""‘_ﬁ'u-l Ty 5;' 5
B, "l"‘i': K o
[t g By ¥ ',iv,g -
A B LRI A N
3 i l.
'

FIG. 1A

WO 2005/091593

2/86

PCT/US2005/008832

FIG. 1B

WO 2005/091593 PCT/US2005/008832

3/86

FIG. 2B

FIG. 2A

=134

£65160/5007 OM

98/v

208
202 \ 204
- "\ FORWARD DIRECTION 4208 -
HOST < /-210 CLIENT
REVERSE DIRECTION
PORTABLE _/ SMALL
| COMPUTER _ SCREEN
WIRELESS PROJECTION
TELEPHONE | DISPLAY
- - MICRO-
PDA DISPLAY
| WIRELESS SURROUND
MODEM SOUND
APPLIANCE DESK/CAR KIT
DVD/CD DOCKING
STATION
FIG. 3
REVERSE REVERSE
PACKET PACKET
Fg;ﬁg\}l(AEBI_D FSARC\./:\}/(AI\EI?_D FORWARD FORWARD
E
ENCAPSULATION PACKET PACKET PACKET

FIG. 4

7€8800/S007SN/1Dd

(202
/402
_ |MDDI_Data0+
- MDDI_DataO><
MDDI LINK
CONTROLLER MDDI_Stb+
MDDI_Stb- ><
HOST_Pwr
HOST HOST_Gnd :::><::

406

/204

<

MDDI_Data0+

404

MDDI_Data0-

F<

MDDI_Stb+

A\

MDDI_Stb-

X

A

HOST_Pwr

HOST_Gnd

4

MDDI LINK
CONTROLLER

CLIENT

FIG. 5

98/9

£65160/5007 OM

7€8800/S007SN/1Dd

204
/

202"
-~
HOST CLIENT
506
MDDI_Data0+ /Q All Types MDDI_Data0+
) — o
| MDDl Data0- < =>—<""" MDD Date0- | |
« MDDI_Datat+ Types 2,3 & 4 MDDI_Datai+ |
—_— >
< MDDI_Datal- <] MDDI_Data1l- -
< MDDI_Data2+ Types 3 & 4 MDDI_Data2+ |
— >
> MDDI_Data2- <l MDDI_Data2- -
| MDDI_Data3+ Types 3 & 4 MDDI_Data3+ |
i T —
| MDDI_Data3- <] MDDI_Data3- q
woor . (a0 custe | | Toetan _—vom best 1 oo
Controller | Datad ___— —28% || Controller
< MDDI_Datab5+ Type-4 only MDDI Datab5+ >
| MDDI_Datas5- << MDDI_Data5- | |
| MDDI_Data+ Types4 only MODI_Daieot | |
| MDDI_Datas- << MDDI_Data6- |
< MDDI_Data7+ Type-4 only MDDI _Data7+ | _
—_— >
| MDDI_Data7- <] MDDI_Data7- |
| MDDI_Stb+ All MDDI_Stb+ |
[MDDIStb- <" TS MDDLSt- |
\.502 HOST_Pwr External HOST_Pwr \-504
HOST Gnd ___I>< HOST_Gnd |

FIG. 6

98/9

£65160/5007 OM

7€8800/S007SN/1Dd

Sub-frame Header Packet

Packet
Length

Packet Unique
Type Word

Sub-frame Header
Parameters

CRC

Audio, Video, Status, and Command Packets

Sub-frame >
n>0
Sub-Frame 0 Sub-Frame 1 Sub-Frame n-1

Media-frame »

(also one video frame)
FIG. 7

Packet Length | Packet Type Data Bytes CRC

FIG. 8

98/.

£65160/5007 OM

7€8800/S007SN/1Dd

Packet |Packet Type |Unique word Sub-frame | Protocol | Sub-frame |Media-frame
Length | =0x3bff | =ox005a |FeSeVed T " ongth | Version | Gount | Gount CRC
2 bytes/,’ 2bytes / 2bytes \\2 bytes 4 bytes 2 bytes 2 bytes 4 bytes 2 bytes
’, ,’
l,"—‘ /”
; ,’l
| F F l B
| [I NN
(1 T O Y T O I
N O O I I
Packet Packet filler bytes (all zero CRC
Length Type=0 recommended)
2 bytes 2 bytes (Packet_Length - 4) bytes 2 bytes

FIG. 10

98/8

£65160/5007 OM

7€8800/S007SN/1Dd

Video Data

Packet Packet : Pixel Data| X Left Y Top X Right | Y Bottom
Length |Type = 16| PCNeMtID | oormetr | Atributes | Edge | Edge | Edge | Edge
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes. 2 bytes
Pixel |Parameter . Pixel Data
FIG. 11 X Start Y Start Count CRC Pixel Data CRG
] 2bytes 2bytes 2bytes 2bytes PacketLength-26 bytes 2 bytes
Video Data Format Descriptor - Monochrome
FIG.12A(o0lolo | P not used =0 numbe;ic))(feﬁ)lts per
15 14 13 12 11 4 3 0
Video Data Format Descriptor - Color Using Color Map
FIG.12B oo |1]| P not used = 0 number of bits per pixel
15 14 13 12 11 6 b5 0
Video Data Format Descriptor - Color, Raw RGB
number of bits of | number of bits of | number of bits of
FIG. 12C | o | | O|FP red per pixel green per pixel blue per pixel
15 14 13 12 11 8 7 4 3 0
Video Data Format Descriptor - Color Component Video, Y &b Cr
number of bits of Y | number of bits of | number of bits of
FIG.12D jo |1 |1 |P per pixel Cb per pixel Cr per pixel
15 14 13 12 11 8 7 4 3 0
Video Data Format Descriptor - Bayer
_ . Pixel | number of bits per
FIG.12E| 1| 0o | 0| P | notused=0 | Pixel order Patarn el
15 14 18 12 11 98 6 5 4 3 0

98/6

£65160/5007 OM

7€8800/S007SN/1Dd

WO 2005/091593 PCT/US2005/008832

10/86

~ ~ o KX ~lo_ | A~))
—n . o ct. i O} —— Pr.u . wnmd T ke - Q.
© ok oo ©|<r ol D oz
+--1 T +-=-1 &b + . £ - +1 4t £ o
cw| 2 = 10D cwjo = 0 [Ny cw g C 0 X
pgoid . — . . el . .
2x| 2 2] ;nwv,.4 1) A < 2«lo
i Sol-% Sole| 255 Sofw Cofw
a--- a---1 o} Q= ™}- ~Ne-- m . o1 o} A== 1.
awN Ace Q Njog WZO QNG WZZH
M15 M4|5 nw..ln/_.m N16 = _|—-x nw.qIJlm
- . =1 ol S B Y —— . -t O} -
o3 o3 v ol oo v ©olo Yole
73% 73% rNo 74w.o M~ 5 Ao
$2INg). 32Vl bt gl yiesd i) R o I p i R
cwl—x cw§F n55.nmlV HSZW cw| 2 cw =%
- - - - - - CL Ll - - u - — .
2xlo 2<lo Sxlee 2l < £xlo
M35n M35 MS&M MSO e Dol
- - - - - - - DIII 5 . DIII 9
oNgl oyvsl aueef gofe | adfegl gdfeg
ol @02.& ole ol +volo ole
H71%. H71.Dwm .H? - . H73oow. A~ -) H73
. . . . — . 1 ol-
@
X i N S I 4 N - N X1 7 I X1 o)
cC o el ot cw| & cw|—§& cwl = n54|.n”.lA
. . -5l . 2051 -]l
S 2|3 S S<lo 2< 2<lo
2] |] . . .
WBSM L o leacs Lanko] Lenlon —
a1 o a1 a1 | ol I a1 <} o1 I~
aqlvgl aypeg e [gale [ogdfegl guagl
M...I‘..lm M..I...l.m hw._l4V| hw.__|4V| :M...I .25 nu14|.m
- . -~{ 0} [N . N 0 fe=wd O f— .
oo . QI . (03m. (O3d. A = . v Ol
~ ;—75 A :72_u.w.A m ~l o N
SN g . . — . -0l
A e ol qor [o L sqeld] _qllvg
h and
cw| g & 10w cwlo cwlo S fwl 2 | o=
o135t =" (o} 1 o . @ . O o1} o= ot.
| e < NG <[<[C o< o exlo
gl byl EP | Sl S&LL =g
i Some | — N
m.am MMN1P. m.n..w 001, m.nw ol 2 m.mm.SS. m.m.w 35.
awN ace O N[N O NN L Qoo DD22-m.v
M15 M._|5 -nw..lno&. hw4|3&. mlw1]m. IWMIA-I-AIVM.
. . A e B e SR Al R T Al
o|«g h04d olNg olng gJole g lolo
ol . \ 4 ef. \ 4 of. =R) P
73m %73m nm:TLH A~ St~ m.ﬁ73
- . - . o . - . cl|l—-—-{1otk O |=-1 <}
- ©NG —OlNG o ~o©le —©lo o,©|Z & - ON—
==t X +-1 X} .+ . + T =N S R IR &
o COlF col§ = cwlo cwlo = cw| 2 S cio|—x
- LI - elll - - - - . O - u LI "
=E€xlo gxlo | £e3o Exlo | g S 2xlo
o o : a : g e : atr T 20 o)
22%mho Lolo < Dol - 2ol E ool 5= M
& Dlul m - Dll.. m » - Dlu.. L d B3 = D...l.. L ond X3 |n|a Dlll. o \./Dl.l ol
Soflfel. —QSMNol 2Qdi0gl) O0"F. LoNVgl. Loyl
/n.u\hOZW a,hOQM .%901 M@01 2lole m.ah.OO
byl - — - - . p S
2 71.m.|A S 71W W ~lo s Ihle nMa>7 - o IN®
L l'olo o | ole O | oo P %) ~ | o] @ 2 [ol
gyl . 2 & . nwn-.. . o L. . ot % wnu-... m
%655 o ol Y955n.w %955% SeXls s o %
- - - . - L] - . LY u - [l
R mw.miq4n_uv o 2| nru.m,442 - B 5 2o
gazMal 22 pal . o . £ o4&
tate) an et an e 5ol o S5 oo QE®m
SR |- Bl - gm... +~|. Ym... —]. gm.:. I CW.... —
= o P _ =
=By alloug =0 o) NG =0 - o) —
<sJgl. 231Vl <3JVol g3V <sS0fVg. BEN[Vgl.
2=l §|=i=l e|=f=l o=l e|zi& =4
My olo o yolo @ olo o =) oy ole a ol

FIG. 13

Audio Stream Packet

£65160/5007 OM

Packet Packet . Audio Audio
Length Type = 32 bClient ID Channel ID Reserved 1 Sample Count
2 bytes 2 bytes 2 byies 1 byte 1 byte 2 bytes
Bits per Sample Audio Parameter - . Audio Data
and Packing | Sample Rate CRC Digital Audio Data CRC
1 byte 1 byte 2 bytes Packet Length - 14 bytes 2 bytes
FIG. 14
Packet Stream
E:,?kﬁ: Type =56 | bClient ID Pasr;rr?gtgrs Pag;ng ter Stream Data Data
g to 63 CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
FIG. 16
Packet . Color Color Color
Eear?kter;(Type = hClllljent Map ltem Map Map ltem Res?rved Parg;ngter Color Map Data Data CRC
g 64 Count Offset Size
2bytes 2bytes 2bytes 2bytes 4 bytes 1 byte 1 byte 2 pytes (Packet_Length- 16) bytes 2 bytes

FIG. 17

98/LL

7€8800/S007SN/1Dd

Byte-Aligned (not packed) PCM Audio Samples

011121314151617

f«—MDDI byte n—>«—MDDI byie n+1~—>

011121314151617

<«—MDDI byte n+2—>
011121314151617

«—MDDI byte n+3—>
011121314151617

011121314151617

«—MDDI byte n+4—»«—MDDI byte n+5—»

011121314151617

T T T T T T U O T T T T A A O A

0111218141581 71819110 1ynused! [C11121314151817819110 1unusedl [C11121314151817{8191"0 junused!
VIS N O ST T T T T S T S A T T I M
Audio Sample 0 Audio Sample 1 Audio Sample 2

Packed PCM Audio Samples

<«—MDDI byte n—>;
0l11213814151617
T Y T I

«—MDDI byte n+1—»
011121314151617
[L1 11

«—MDDI byte n+2—»

011121314151617
[|

«—MDDI byte n+3—»
011121314151617
I T Y T T Y

«—MDDI byte n+4—)
011121314151617

«—MDDI byte n+5—
0111213141518617
11 11

01231456

8,910 Ol1|2|3|

2|3|4|5|6|7|8|9

]

e s s I
100,123,496

78,9110

041,23

Audio Sample

0 Audio Sample 1

Audio Sample 2

FIG. 15

Audio Sample 3

Audio

98/21

£65160/5007 OM

7€8800/S007SN/1Dd

Reverse Link Encapsulation Packet

Packet
Length

=65

Packet Type

hClient ID

Reverse Link
flags

Reverse Rate
Divisor

Turn-Around 1
Length

Turn-Around 2

Length

2 bytes 2 bytes

2 bytes

1 byte

1 byte

1 byte

1 byte

Parameter
CRC

All Zero 1

Tum-Around 1

reverse daia
packets

Turn-Around 2

All Zero 2

2 bytes

Client Capability Packet

8 bytes

x bytes

FIG.

(Packet_Length - x -y - 26) bytes

18

y bytes

Packet
Length

= 66

Packet Type

cClient ID

Protocol
Version

Min Protocol
Version

Data Rate
Capability

Interface Type
Capability

2 bytes 2 bytes

2 bytes

2 bytes

2 bytes

2 bytes

1 byte

8 bytes

Number of
Alt Displays

Reserved 1

Bitmap
Width

Bitmap
Height

Display
Window Width

Display Window
Height

Color Map Size

1 byte

2 bytes

2 bytes

2 bytes

2 bytes

2 bytes

4 bytes

Color Map
RGB Width

Capability

RGB

Monochrome
Capability

Reserved 2

Y Cb Cr
Capability

Capability

Bayer

Reserved 3

2 bytes

2 bytes

1 byte

1 byte

2 bytes

2 bytes

2 bytes

Client Feature
Capability

Max Video
Frame Rate

Min Video
Frame Rate

Min Sub-Frame
rate

Audio Buffer

Depth

Audio Channel
Capability

Audio Sample
Rate Capability

4 bytes

1 byte

1 byie

2 bytes

2 bytes

2 bytes

2 bytes

Audio Sample
Resolution

Mic Sample
Resolution

Capability

‘Mic Sample Rate

Keyboard Data
Format

Poining Device
Data Format

Content

Protection Type Mir Name

1 byte 1 byte

2 bytes

1 byte

1 byte

2 bytes 2 bytes

Product
Code

Reserved 4

Serial Number

Week of
Mir

Year of Mir

CRC

2 bytes

2 bytes

4 bytes

1 byte

1 byte

2 bytes

FIG. 19

98/€1

£65160/5007 OM

7€8800/S007SN/1Dd

Packet Type =

Keyboard Data

Packet Length 67 bClient ID Format Keyboard Data CRC
2 bytes 2 bytes 2 bytes 2 bytes (Packet_Length - 8) bytes 2 bytes
FIG. 20
Packet Length | T2CKeLTYPE = | prjignp | POInting Device Pointing Device Data CRC
68 Format
2 bytes 2 bytes 2 bytes 2 bytes (Packet_Length - 8) bytes 2 bytes
FIG. 21

98/vl

£65160/5007 OM

7€8800/S007SN/1Dd

Packet Lengih Packet Type =69 CRC All Zeros
2 bytes 2 byte 2 bytes 16 bytes
FIG. 22
Packet Packet Type . Reverse Link [CRC Error Capability Graphics
Length =70 cClient ID Request Count Change Busy flags CRC
2 bytes 2 bytes 2 bytes 2 bytes 1 byte 1 byte 2 bytes 2 bytes
FIG. 23
Bitmap Block Transfer Packet
Packet _ . Pixel Data Raster Upper Left X
Length Packet Type =71 hClient ID Attributes Operation Value
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
UpperLeftY' | \vindow Width | Window Height | Mindow X Window Y CRC
Value Movement Movement
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

FIG. 24

98/G1

£65160/5007 OM

7€8800/S007SN/1Dd

Bitmap Area Fill Packet

Packet Packet Type hClient 1D | Video Data Format Pixel Data Pixel Area Fill
Length =72 len Descriptor Attributes Value
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 4 bytes
Upper Left Upper Left Window . .
X Value Y Value Width Window Height CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
FIG. 25 -
(2]
N
(o)
(o]
Bitmap Pattern Fill Packet
Packet Packet Type hClient ID Video Data Format Pixel Data Upper Left Upper Left Window Window
Length =73 en Descriptor Attributes X Value Y Value Width Height
2 hytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
Pattern Pattern Horizontal Vertical . ,
Width Height Pattern Offset | Pattern Offset Parameter CRC Pattern Pixel Data Pixel Data CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes length -22 bytes 2 bytes
FIG. 26

£65160/5007 OM

7€8800/S007SN/1Dd

E:rfg;f Pa"';e;lype hClientID | X Left Edge | Y TopEdge | X RightEdge | Y Egtgtgm CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
FIG. 27

Display Power State Packet
Packet Length _Pacl;e;;' ype hClient ID Power State CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

FIG. 28

98/.1

£65160/5007 OM

7€8800/S007SN/1Dd

Perform Type Handoff Packet

Packet Length Pacte;YT ype Interface Type Reserved 1 Delay Filler CRC
2 bytes 2 bytes 1 byte 1 byte Packet Length - 6 bytes 2 bytes
FIG. 29
Packet Packet . Audio Channel
Length Type =78 hClient ID Enable Mask CRC ;
S
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 8
FIG. 30
Packet Packet . Audio
Length Type = 79 hClient ID Sample Rate Reserved 1 CRC
2 bytes 2 bytes . 2 bytes 1 byte 1 byte 2 bytes

FIG. 31

£65160/5007 OM

7€8800/S007SN/1Dd

Packet Packet bClient ID Content Protection| Content Protection Overhead CRC
Length Type =80 Type Messages
2 bytes 2 bytes 2 bytes 2 bytes Packet Length - 8 bytes 2 bytes
FIG. 32
Packet Packet . Transparent
Length Type = 81 hClient ID Color Enable
2 bytes 2 bytes 2 bytes 1 byte
Alpha-Cursor | Data Format Transparent
Reserved 1 Identifier Descriptor Pixel Value CRC
1 byte 2 bytes 2 bytes 4 bytes 2 bytes
FIG. 33
Packet Packet Type . Parameter
Length =82 hClient ID CRC
2 bytes 2 bytes 2 bytes 2 bytes
Guard Time 1 Measurement Period All Zero Guard Time 2
64 bytes 84 bytes 2 bytes 84 bytes

FIG. 34

98/61

£65160/5007 OM

7€8800/S007SN/1Dd

All Zero 1\

Guard Time 2

Data from |~ Packet| Parameter] Guard Time 1 Measurement Period 53 Packet
Host | Type CRC s (¢ \ >y Length
(4.8 tC
2 bytes 64 bytes Host to 64 bytes 64 bytes (next packet)
<« Client —{ Oxff, Oxff, & 30 bytes
Data from 1~ Delay |_| ?jzomdsrea léence at .
i T{(
Client 0— _e p) !) f
| Client
10 Hosi-
Aggrggate 1 Packet| Parameter ' Delay Packet
Data viewed Type CRC 'y . ys Length
atHost O ¢ (¢ ¢
Round-Trip
<
Delay
FIG. 35

£65160/5007 OM

98/0¢

7€8800/S007SN/1Dd

e
! [
! 1
3602 11 10 9 8 7 6 5 4 3 :
I —
: RITRITRIMIRITRIIRITRITRITRIT] i
iGen_Reset 2 1 2 1 2 2 2 Iy 1 :
]
1 1
I i
1
16 14 13 12 | 2 1 0 !
i B 4—<;>4— R ras B) 5 € & 4—(%)4— R — S — :
: 1 1 2 2 2 2 3 H
I
1 1
! 1
! o) I
sy AU ,))- :
e e e = - gl !
3610
7
Check_CRC_Now j— CRC_Error
Rx_MDDI_Data o MuX}. 3606
Y
Tx_MDDI_Data_Before_CRC 1
- = S 3604
Sending_MDDI_Data ! renux
0
Generate_CRC_Now Y}— Tx_MDDI_Data_With_CRC
1
S

FIG. 36

3600

98/1¢

£65160/5007 OM

7€8800/S007SN/1Dd

Gen_Reset

Check _CRC_Now

Generate_CRC_Now
Tx_MDDI_Data_Before_ CRC

Sending_MDDI_Data

TX_MDDI_Data_With_CRC

Gen_Reset

Check_CRGC_Now
Generate_ CRC_Now
Rx_MDDI_Data
Sending_MDD!_Data

CRC_Error

| L
Packet Packet Type | Unique word Sub-frame Header _
Length = Ox3bff = 0x005a Parameters
Packet Packet Type | Unique word Sub-frame Header GRG
Length = Ox3bff = 0x005a Parameters
FIG. 37A
Packet Packet Type | Unique word Sub-frame Header CRC
Length = Ox3bff = 0x005a Parameters

Q- O =0

YT

e -
H

FIG. 37B

£65160/5007 OM

98/cZ

7€8800/S007SN/1Dd

O © 06

® ©

Link Shutdown — > R 50usec | Frame Header
Packet 50 usec 20 130 usec Packet
last forward host drives client host responds with link host drives first forward
iraffic high- drives startup sequence by logic zero traffic
impedance service driving a logic one level, level and
logic zero request client de-asserts request activates Clk
FIG. 38
Link Shutdown P P - e 50 use Frame Header
Packet ~ 49.99 usec 70 usec 7 780.0171 Packet
last forward host drives host begins ~ host begins link host drives first forward
traffic _ high- link restart restart logic zero traffic
impedance level and
logic zero activates Clk
FIG. 39

98/€¢

£65160/5007 OM

7€8800/S007SN/1Dd

WO 2005/091593 PCT/US2005/008832

24/86

}
9
4004
4006

FIG. 40

4002
P
1

DATA
STB
CLK

4102

4108
4104 4128
(.\ MDDI_DataO+ () Output Data(1:0)
Input Data (
P D Q D Q¥
Input Clock 3 MDDI_Data0- N
MDDI_Stb+
:525 D Q b qpV
MDDI_Stb- —
4112 C 4110
4106 4130 Output Clock / 2
“w A‘/ \ _J
Y Y
4100 4120

FIG. 41

98/9¢

£65160/5007 OM

7€8800/S007SN/1Dd

4206

inside Host controller chip

219 MDDI_Stb+)

net /? ><>< Rterm %»421 8

¢ O
H_Enable MDDI_Stb-

4212 MDDI_Data0+)

NG DATA /} ><>< Rterm %«4220

4214
H_C-H_DATA ‘ C_C-H_DATA
' 4234
4236
C_H-C_Wake-up

£65160/5007 OM

98/9¢

FIG. 42

7€8800/S007SN/1Dd

1-

logic- zero level

: | I
MDDI Data0 Link Shutdown .
- 0 Packet 8 T 48" strobe oul
- strobe pulse
last forward traffic | 16" strobe pulse | i —B4"
MDDI_Sto, U
Link Entering Hibernation Timing FIG. 43A
Link Shutdown| | s trestartlow | Sub-frame
MDDI_DataO Packet 1 pr— I I I trestart—hig h T "| Header Packet
| host begins link restart with MDDI_Data0 high, | ~host drives
last forward traffic da?rﬁ/ggssm : : : ! b?;l?ent does not drive MDDI_Data0 logic- zero levely first forward traffic

MDDI_Stb 1 ~
tstb-data-enbl] l< 09

gﬂlssetts) =] [tclient-startup FIG. 43B ©

Host-Initiated Wake-up Sequence
client begins link
, restart, drives
PUSes " oo MDD Data0 high
last forward traffic drivers - ' ;‘ trestart-high————1 t
Link Shutdown | i - X | Yrestart-low | Sub-frame
MDDI_Data0 acxe d : K AT ’:‘ telient-detect | ___| Header Packet
! : l host-detect | hostdrives Iﬁrs’t forward traffic
|

Client-Initiated Wake-up Sequence

=i

- —i
tsto-data-enbl

= f—tsto-startup
host reponds by driving a logic-one level,

Jll

then client stops driving MDDI_Data0

FIG. 43C

£65160/5007 OM

7€8800/S007SN/1Dd

J tigs P liss J tisd
MDDI_Stb X X
- tdd
MDDI_Data0 X X
t t t
tiddx sl tdxdx | “tdxs tsdx
MDDI_DataX
(X=1..7)
I i [
FIG. 44
Guard Time 1
or
—_ Turn Around 1
MDDI{_Data Parameter Strobe Alignment All
from Host CRC 9 Zero
Host Driver
Disable Delay

FIG. 45

98/8¢

£65160/5007 OM

7€8800/S007SN/1Dd

MDDI_Data
from Host

Guard Time 2
or
Turn Around 2

I
! Driver

Re-enable

\!

Packet Length
(next packet)

Host Driver |
Enable
Delay

FIG. 46

98/6¢

£65160/5007 OM

7€8800/S007SN/1Dd

H_Enable

lTx-Hi-z
e

MDDI_Data0+

H_H-D_Data [\L
h y ..

H_D-H_Data

|ESD-and_Rx
—

|external—ESD
VDD

1 MDDI_Data0- l

IESD-and_Rx
_ et
Rterm %
8 , ———>
X 1
T [Tx-Hi-z
|external-ESD

D_H-D_Data

D Enable

D

D D-H_Data

98/0¢

£65160/5007 OM

7€8800/S007SN/1Dd

Reverse Link Encapsulation Packet

Host Output Data 1
observed at Host 0

Client Output Data 1 =

observed at Client 0 -

Aggregate Data 1
observed at Host

Parameter Turmn- reverse data Next
CRC All Zero 1 Around 1 packets Turn-Around 2 All Zero 2 Packet
2 bytes 8 bytes xbytes (Packet_Length-x-y- : y bytes 8 bytes
. 26) bytes |
i |
1 I
| oneway :
i delay [Tum- reverse data
1
. Around 1 packets Turn-Around 2
host :
disable | >le—>
- > Round Trip Delay 1 Host |
host dat : ! }enable: host dat
! | enable 1 disable 1 i
N T =
N client data | ;
: 1 [1 :
host data o~ client data i host data
1
]

- Round Trip Delay

S A

FIG. 48

98/1€

£65160/5007 OM

7€8800/S007SN/1Dd

4900

ASYNC FRAMES
4904 STATE
cond 3 (from -
any state) PR
-~
P
_- ACQUIRING-
cond 6 4906 SYNC STATES

cond 4 found _-
one sync g
P frame IN-SYNC
- STATES
cond

no sync
fall back

to
Type-l)

cond 1

cond 4 4908
(from any
state) -~ - two sync one sync cond 2
P cond 2 errors error
-~

4

4912 cond 2 4910

cond 1 = Sub-frame header packet & good CRC at frame boundary, Frame Length > 0
cond 2 = no sync pattem or bad CRC at frame boundary

cond 3 = found sync pattern, Frame Length =0

cond 4 = received link shutdown packet

cond 5 = found sync pattern, Frame Length > 0

cond 6 = frame header packet & good CRC, Frame Length > 0

FIG. 49

98/¢¢

£65160/5007 OM

7€8800/S007SN/1Dd

(T — — — —— — S
| HOST |
I |
! I
| 1.5 I 8.0
I I nsec I nsec
I |
| Input Data ﬁ’D_D 9 MDDI_Stb+ |
| Input Clock ~ MDDI_Stb-
| p Q
|
| Display_Data
I N P
I
Reverse |= <
: Link |Q <70ut Enbl :
Clock, /| Programmable 25 80
: 05 Divider 1 to 32 nsec I nsec
nsec i
| (setup) ﬁ Initialize |
| Reverse I
| Rate |
I Divisor |
N o o o o — —— - — — — e — — —— — — — - — — —
FIG. 50

2.5
nsec

DISPLAY

Reverse
Rate
Divisor

Initiilize ﬂ

>

Programmable
Divider 1 to 32

2.0
nsec

Data_to_Host

o o
o
|

98/€€

£65160/5007 OM

7€8800/S007SN/1Dd

MEASUREMENT PERIOD

ROUND TRIP DELAY
>~

1—
MDDI_DATA
AT HOST

1
MDDI_STB
AT HOST

O fa—

1.—
FORWARD LINK DATA
CLOCK INSIDE HOST

0—

et B

:
-

DELAY COUNT 2 3 45

o
—

[¢2]

FIG. 51

98/v€

£65160/5007 OM

7€8800/S007SN/1Dd

MDDI_Data
from Host

MDDI_Strobe
from Host

Reverse Link
Clock
inside Host

Reverse Link

Packets
MS byte of All Turn 0x07. u ,

, upper byte of Packet Length field,
fcaé%r?;eet%r ﬁg[g Ar%gPdd 1 of Reverse Link Request and Status Packet
< »ie »i€ >

1—
1 1i{130)0i0;0{0i0
" “oxdb | ox00 A 4

L

{=—

0—

=

LS

Host Driver
Disabled

; I

A A

Reverse Data sampled

at these times

FIG. 52A

T

|

98/G¢€

£65160/5007 OM

7€8800/S007SN/1Dd

Reverse Link Packets

Zélrlo Ar&‘f,ﬂ% 1 0x07, upper byte of Packet Length field,

field field of Reverse Link Request and Status Packet
' > - |-

1_ o eeeeees -
MDDI_Data as o olt1 1060 o io o
seenatHost o ______ b—arrmemeregd 0 Nl
0x00 A
MDDI_Stb '~
from Host 0— [
Host Driver
Reverse Link Clock 1~ Disabled 1 rrr
inside Host 0 5 N [O I N O
' A ATA A TR A A
Reverse Data sampled
at these times
FIG. 52B

98/9¢

£65160/5007 OM

7€8800/S007SN/1Dd

10 T
/T
e L
Reverse [r/I/
Rate 1)
Divisor //J
L /
—0—0.2m
——0.5m
—0O—1m
14 T T T T T T T T T T T T T —A—2m
0 100 200 300 400

Forward Link Bit Rate per Data Pair (Mbps)

FIG. 53

98/.¢€

£65160/5007 OM

7€8800/S007SN/1Dd

WO 2005/091593 PCT/US2005/008832

38/86

START

Wait/Hibernate/
Off

Client
Connected
?

Requests Service by:
Display Service Request And Status Packet
OR
Display Service Request Packet (Hibernation)
through Reverse Link Encapsulation
Packet ?

Requests
Client

f5408

Client Sends
Host receives -
Display Capability Packet

5410~ y y 541
Host/Client Round Trip
Negotiate Service Delay
Mode/Type Measurement

FIG. 54A

WO 2005/091593

P>

39/86

5411

Host Sends:
Sub-Frame Header Packet

{ 5414

Host Sends:
Video Stream and/or

Filler Packets As Needed
+ 5416

PCT/US2005/008832

Audio Stream Packets]

Prepare
Data For
Packets

Send Color Map; Bit Block Transfer;
Bit Area Fill; and Bit Pattern Fill
Packets As Desired

v 5418

Transfer Keyboard
and
Pointing Device Packets

* 5420

Interface Type Handoff Request and
Interface Type Acknowledge; And
Perform Type Handoff
Packets

NO Host or

Client Done

Send Link
Shutdown
Packet

STOP

FIG. 54B

WO 2005/091593 PCT/US2005/008832
- o A --@.--------------------------,"
S 5[=3 _
Al o) [CIRY] o !
[y =]
¢ 8 2 I
O] X w “
1
< < !
a ke < i
g b () <t |
» M_ sl & “
A 1
1 c !
& & xT) uwl _O “
o Al _
<t <]
m
QO Q |
"
1
1
E> E “
s @ |
< !
]
llllllllllllllllllllll N S |
1 + : 5
3| 4 gl & 10
S_ S_ m_ D_ .
3l 3 == o
o Q) [a) L
| I IS R A i
1 QN E> E E> E !
“%_7 e 8 8 g 1
P (2 o o o “
i 1
I 1
i 1
I 1
1 1
“ 1
1
i @ o i
1 T ..nw. ...nu.w 1
1 o £ £ i I
1 ~— [D fny o 1
] (aV] fe] Q m N !
" ¥ £9 £9 £ §
<t 1
! / i = “
“ m m N < < v + 1 4
i 2 sl | ¥ B & i
i c
| n i D_ Q D_ < !
i Q T S i
“ X - = 18 i
| 10 o J= & !
1 Lo o .£E rnm % aqvu "
! N ® 5 «—p» 20 O lgee—1p
“ % g 881 & :
1 o @
i
1

I
I
I
I
{
1
|
|
I
|
i
1
|
|
|
I
1
I
I
|
1
1
1
I
1
1
I
I
1
1
1
I
1
|
1
1
I
I
1
I
|
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
I
L----

Forward Link Skew Calibration Packet

Packet Packet Type . Parameter Calibration Data
Length _ 83 hClient ID CRC All Zero 1 Sequence All Zero 2
2 bytes 2 bytes 2 bytes 2 bytes 8 bytes Packet Length — 22 bytes 8 bytes

FIG. 56

98/LY

£65160/5007 OM

7€8800/S007SN/1Dd

SKEW ———— 100ps 300 ps 600 ps 400 ps 300 ps
1.0nstyp 1.0nstyp 77nstyp 24nstyp 1.0nstyp 0.1nsmin
DELAY ———— {5nsmax 2.0ns max 10.0nsmax 3.3nsmax 1.5ns max 0.2ns max
CABLE
TXF5F7081TXDRVR MDDI_Data0+ RXRCVR RXXOR 5730h
Input Data0 5704~ s
D Q Delay 1)}—(Delay 2)
Input Clock S MDDI_Data0-

MDDI_Stb+

5702

MDDI_Stb-

5724

FIG. 57

tSU

TOTAL=2.4ns

=0.5ns

tH=0.1ns

RXFF

Output Data0(1:0)

X5732a
5722 D

D Q
D

5736

0
5728

1

5730

Output Clock / 2

98/¢v

£65160/5007 OM

7€8800/S007SN/1Dd

WO 2005/091593

MDDI_Data0

MDDI_Stb
(ideal)

CLOCK
(ideal)

MDDI_Stb
(early)

CLOCK
(early)

MDDI_Stb
(late)

CLOCK
(late)

43/86

PCT/US2005/008832

FIG. 568

SKEW —-——— 100ps 300 ps
10nstyp 1.0nstyp
DELAY -——— 4 5nsmax 2.0nsmax
TXF5F708 TXDRVR
5704 4
Input Data0 s
npu D Q
Input Clock >
T
f D
5712 1 5710
5706
Input Data1
D Q
t‘ 5908
5904

600 ps 400 ps 300 ps TOTAL =2.4 ns
77nstyp 24nstyp 1.0nstyp O.1nsmin {SU=0.5ns
10.0nsmax 3.3nsmax 1.5nsmax 0.2nsmax tH=0.1ns
CABLE
MDDI_Data0+ RXRCVR RXXOR ;573213 RXFFA Output Data0(1:0)
Delay 1)}—(Delay 2+D Q 0
MDDI_Data0- ‘5732a S 5728
MDDI_Stb+ pn 2722
5736 _p oM
MDDI_Stb- 5730
5724 —%
Qutput Clock / 2
5702
MDDI_Data1+ RXFFB Output Data0(1:0)
p Q2
MDDI_Data1- b 5928
5024
D QM
> ~-5930

FIG.

59

98/vy

£65160/5007 OM

7€8800/S007SN/1Dd

1-

MDDI_Data0

0-
MDDI_stb 1-
(ideal) 0
cLock -
(ideal) 0-
Delayed T-
MDDI_DataX , _
MDDI_Datax 1 -
(early) 0-
MDDI_DataX -
(late) 0-

n+1

n+2 n+3

L

n+4

n+5

n+6

|

ﬂ

1

| N

n+1 x

n+2 X

n X n+1

x n+2

FIG. 60A

98/SY

£65160/5007 OM

7€8800/S007SN/1Dd

MDDI_Sth
(early) 0-
cLock -
(early) 0-
Delayed)
MDDI_DataX 0
1-
MDDI_DataX
1
(early) 0.
1-
MDDI_DataX
(ideal) 0.

n+

n+1 X

' E

X n+1

n+2

n+3

n+4

n+5

n+6

FIG. 60B

98/9t

£65160/5007 OM

7€8800/S007SN/1Dd

MDDI_Stb
(late) 0-
cLock -
(late) 0-
Delayed
MDDI_DataX 0
1-
MDDI_DataxX
(ideal) 0.
1-
MDDI_DataX
(late)

0-

-

2

n+3X X

1]

n+5 x

—

n+2

n+4

n+5

n+6

X n+2

x n+4

x n+5

X n+6

FIG. 60C

98/.Lvy

£65160/5007 OM

7€8800/S007SN/1Dd

MDDI_ Pwr

Host Connector

MDDI_Stb+

A

MDDI_Stb-

MDDI_Data0+]|5 |

MDDI_Data0- |6,

MDDI|_Datal+

MDDI_Datal-

0 I

A A A A A A A

Q
Q
7]
I(D

T

]
Display Connector Twisted-Pair i Display

Red Cable : MDDI_Pwr
Blackwith Red ><__ ><_ ><__ >+t
Green MDDI_Stb+
Black with Green > > ><__ ><_ MDDI_Stb-
Blue MDDI_Data0+
Black with Blue _><__ > > ><__ MDDI_Data0-
White ! MDDI_Datal+
Black with White ><_ ><_ > ><_| MDDI_Data1-
Shield and Drain Wire i n.c.in

i Display

NV

FIG. 61

98/8Y
£65160/5007 OM

7€8800/S007SN/1Dd

Type-l Data Example

Calibration Data

hClient ID = 0x0000 Parameter CRC = Oxac1c All Zero 1 Sequence A Zero 2
1- i t =0x00 ! P00
! acket Len
MDDI_Data0] | l | l l 3 | | l)J I i o | nex packel)
0 i : 1 FCCT
! I 1 I
high-byte i 2 bytes | 8 bytes | B4bytes !8bytesi 2 bytes
MDDI_Stb i
(one phase) 0- ! ——

hClient ID 0x0000
1-
MDDI_Data0

Parameter CRC = Oxacic

0

high-byte

1
I
I
1 i 1
MDDI_Stb ' ~ i
(opposite phase) 0- i

FIG. 62A

MDDI_Stb behaves as it would with
all zero data during Calibration Data,
always an MDDI_Stb transition here
because the all zero field precedes
the Calibration Data Sequence

Packet Length
(next packet)

I
64 bytes 58 bytes i 2 bytes

AT

If the LSB of the next
Packet Length is a one
then MDDI_Stb toggles

98/6V

£65160/5007 OM

7€8800/S007SN/1Dd

Type-ll Data Example

1-
MDDI_Data1

0-
MDDI_Data0
0-

MDDI_Stb 1~
(one phase) 5

MDDI_Data1
0-

MDDI_Data0
O_

MDDI_Stb 1-
(opposite phase) g

FIG. 62B

hClient ID‘ = 0x0000 Parameter CRC
= Oxac0d

-

o L b

3

low-byte E high-byte

2 bytes

2 U b

8bytes ! 128 bytes

UL

; = Parameter CRC
hClient ID_ 0x0000 < Oxacod = 0x00

LU

equence

T

low-byte i high-byte

128 bytes

i mmr‘ft

MDDI_Stb behaves as it would with
all zero data during Calibration Data,
always an MDDI_Stb transition here
because the all zero field precedes
the Calibration Data Sequence

o

=
I

L}l;

I

 All Zero 1 ,Calibration Data, All Zero 2
= 0x00 : Sequence I = 0x00

Packet Length
(next packet)

¢

Packet Length
(next packet)

¢

1 8 bytes

2 bytes

o

All Zero 1 Calibration Data All Zero 2
. = 0x00

Packet Length
(next packet)

E 8 bytes

Packet Length
(next packet)

2 bytes

¢

If the LSB of the next

Packet Length on
MDDI_DataC is a one

then MDDI_Stb toggles

98/0G

£65160/5007 OM

7€8800/S007SN/1Dd

6300

ACQUIRING-
4906 SYNC STATES

found J R
one sync cond 61 - .
cond &2 frame o IN-SYNC
| STATES

cond 62 cond 61

no sync
(fall back

to
Type-)

cond 63
(from any

state) ..~
‘/
l'/.

one sync cond 62

error

4912 cond 62 4910

cond 61 = sub-frame header packet & good CRC at sub-frame boundary
cond 62 = no sync pattern or bad CRC at sub-frame boundary

cond 63 = received link shutdown packet

cond 64 = found sync pattern

cond 65 = Unique word incorrect

FIG. 63

98/19

£65160/5007 OM

7€8800/S007SN/1Dd

PCT/US2005/008832

WO 2005/091593

52/86

9 "Old

p

a2

q

‘ | swi] piens
In— 10 11g 15E7 90UIS S8J0AD

| = JOSIAIQ

aley eslensy osid/ired

me %H,_,mm lred/esiy
oros osionoy PHE
mm.m %N,_,mm Ired/esiy
ovr osenoy S

= 108IAIg o

eley esiensy

M30|D JO JaquinN 2wog

DETECT ERROR

OVERLOAD CRC
VALUE W/CODE

CRC

CRC

RESPOND TO
ERROR CODE

DETECT ERROR
CODE IN CRC FIELD

CRC

CRC

98/€S

£65160/5007 OM

7€8800/S007SN/1Dd

WO 2005/091593

54/86

PCT/US2005/008832

6600
f6602
ERROR DETECTOR
l 6604
ERROR CODE
GENERATOR
l 6606 6608
CRC VALUE CODE COMPLIMENT
COMPARATOR GENERATOR
6610
ERROR CODE
SELECTOR
1 8612
ERROR CODE
DATA/FRAMES — CRC <«+—— DATA/FRAMES
OVERWRITER

FIG. 66

WO 2005/091593 PCT/US2005/008832

55/86

/6702

DETECT ERROR

l /6704
SELECT ERROR CODE

l /6706

CHECK CURRENT
CRC VALUE

6708 6712

GENERATE
COMPLIMENT
OF ERROR CODE

ERROR CODE

SAME AS CRC

VALUE
?

NO
r6710 /-6714
SELECT SELECT
ERROR CODE COMPLIMENT
AS DESIRED CODE AS DESIRED CODE
/6716

OVER-WRITE CRC
— WITH SELECTED |e——
ERROR CODE

FIG. 67A

WO 2005/091593 PCT/US2005/008832

56/86
6722
MONITOR CRC FOR
ERROR CODES
6724
EXTRACT
ERROR CODE
6726 6728
EXTRACTED YES GENERATE ERROR
CODE A CODE FROM
COMPLIMENT COMPLIMENT
6730
,.| DETECT ERROR
FROM CODE

FIG. 67B

MDDI_Data0

MDDI_Stb
FIG. 68A

®

®Ee 06

Link
Shutdown
Packet

_Hibernation

® ©

(host disables

last forward
traffic

I

T

data and Stb
drivers

©0,

64 Stb pulses

client begins link restart,
drives MDDI_Data0 high

7|

O®

S@

1150
,~buises Sub-frame
) 1 >:50 pulses’ Header
host begins link restart with Packet
MDDI_Data0 for 150 Stb pulses, first forward
client does not drive MDDI_Data0 “ traffic
|

host drives logic-

zero level

host responds by driving a logic-one level,
then client stops driving MDDI_Data0

3@ O

70 80
Link Hibernation _pulses pulses Sub-frame
MDDI_Data0 | Shutdown < > \ T e < T 50 pulses | Header
< N > r g
lasl??gr};\?;rd 4 ggf; gﬁg%?g S msec ™ &4 & < firslt:’?:)crl\fveatrd
traffic A drivers . traffic
i 1T
FIG. 68B 64 Stb pulses % 100 nsec host begins link restart, h“;g{f;’ ?j\,ﬁgic'
drives MDDI_Data0 high
WEO O©6 O ,® O
69 n 80
Link Hibernation _pulses pulses Sub-frame
MDDI_Data0 | Shutdown < T —— = .| Header
Packet (T host D S g ”|___Packet
last forward disables i client stops first forward
traffic Sctigtg and i driving traffic
’ 1] L [

FIG. 68C

64 Stb pulses

host drives
logic-zero level

98/1G

£65160/5007 OM

7€8800/S007SN/1Dd

Request VCP Feature Packet

Packet Packet Type = . MCCS VCP
Length 128 hClient ID Code CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

FIG. 69

98/89

£65160/5007 OM

7€8800/S007SN/1Dd

VCP Feature Reply Packet

Packet | Packet Typa . MCCS |Raply Sequanca| Number of .
Length =129 cClient ID Version Number Features in List VCP Feature Reply List CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes (Packet_Length - 12 bytes) 2 bytes

FIG. 70

98/6S

£65160/5007 OM

7€8800/S007SN/1Dd

VCP Feature Reply List ltem

MCCS VCP
code

Result Gode

Maximum
Value

Present Value

2 bytes

2 bytes

4 bytes

4 bytes

FIG. 71

98/09

£65160/5007 OM

7€8800/S007SN/1Dd

Set VCP Feature Packet

Packet | Packet Type . MCCS Number of .
Length = 130 hClient ID VCP Code | Values in List Control Value List CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes (Packet_Length - 10 bytes) 2 bytes

FIG. 72

98/19

£65160/5007 OM

7€8800/S007SN/1Dd

Request Valid Parameter Packet

Packet
Length

Packet Type =
131

hClient ID

MCCS VCP
Code

CRC

2 bytes

2 bytes

2 bytes

2 bytes

2 bytes

FIG. 73

98/29

£65160/5007 OM

7€8800/S007SN/1Dd

Valid Parameter Reply Packet

Packet Packet . MCCS Response | Reply Sequence| Number of .

Length |Type =132 cClient ID VCP Code Code Number Values in List VCP Parameter Reply List| CRC

2bytes 2bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes (Packet_Length - 14 bytes) 2 bytes
FIG. 74

98/€9

£65160/5007 OM

7€8800/S007SN/1Dd

Scaled Video Stream Capability Packet

Packet | Packet Type Client ID Max Number Source_ Max Sourcg Max
Length =143 of Streams X Size Y Size
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
Calzggnty MSQBSETT?{V" ® | Reserved 1 C\;ga:b(i:li?y o | Reservedz | cRe
2 bytes 1 byte 1 byte 2 bytes 1 byte 1 byte 2 bytes
FIG. 75

98/¥9

£65160/5007 OM

7€8800/S007SN/1Dd

Scaled Video Stream Setup Packet
Packet | Packet Type . Video Data Pixel Data
Length =136 hClient ID Stream D Format Descriptor| Attributes
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
X Left Edge | Y Top Edge |X Right Edge| ¥ Egggm X Image Size | Y Image Size| CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

FIG. 76

98/99

£65160/5007 OM

7€8800/S007SN/1Dd

Scaled Video Stream Acknowledgement Packet

Packet | Packet Type | ciientiD | StreamID | AckCode | CRC

Length =137

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
FIG. 77

98/99

£65160/5007 OM

7€8800/S007SN/1Dd

Scaled Video Stream Packet

Packet Packet Type , Pixel Data Pixel Parameter . Pixel Data

Length = 18 hClient ID_| Stream ID i es | Gount GRC Pixel Data CRC

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes Packet Length - 12 bytes 2 bytes
FIG. 78

98/19

£65160/5007 OM

7€8800/S007SN/1Dd

Request Specific Status Packet

Packet | Packet Type . Status

Length — 138 hClientID | &2 oket ID CRC

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes
FIG. 79

98/89

£65160/5007 OM

7€8800/S007SN/1Dd

Valid Status Reply List Packet

Packet Packet Type . Number of . .

Length — 139 cClient ID Values in List Valid Parameter Reply List CRC

2 bytes 2 bytes 2 bytes 2 bytes Packet Length - 8 bytes 2 bytes
FIG. 80

98/69

£65160/5007 OM

7€8800/S007SN/1Dd

Personal Display Capability Packet

Packet | Packet Type cClient ID Sub-Pixel Pixel Horizontal {Vertical Field| Visual Axis
Length =141 Layout Shape |[Field of View| of View Crossing
2 bytes 2 bytes 2 bytes 1 byte 1 byte 1 byte 1 byte 1 byte
Lft./Rt. Image See Maximum | Optical | Minimum | Maximum | Points of Field Curvature CRC
Overlap Through |Brightness | Capability IPD IPD list (25 2-Byte Values)
1 byte 1 byte 1 byte 2 bytes 1 byte 1 byte 50 bytes 2 bytes
FIG. 81

98/0.

£65160/5007 OM

7€8800/S007SN/1Dd

0 2005/091593 PCT/US2005/008832

71/86

D E

1 O O-O-0-0

2 O~ Q=-0—0=0)
8 OO0
+ OO 0O-0O
5 O--O—O-0~0

FIG. 82

Client Error Report Packet

Packet Packet Type . Number of .

Length _ 149 cClient ID List ltems Error Code List CRC

2 bytes 2 bytes 2 bytes 2 bytes Packet Length - 8 bytes 2 bytes
FIG. 83

98/¢.

£65160/5007 OM

7€8800/S007SN/1Dd

Error Report List ltem

Display Error
Error Code | Sub-Code
2 bytes 2 bytes

FIG. 84

98/€L

£65160/5007 OM

7€8800/S007SN/1Dd

Client Identification Packet

Packet | Packet Type cClient ID Week of Year of Length of Length of Length of
Length =144 Mir Mfr Mfr Name |Product Name|Serial Number
2 bytes 2 bytes 2 bytes 1 byte 1 byte 2 bytes 2 bytes 2 bytes
Manufacturer Name String Product Name String Serial Number String CRC
Length of Mfr Name bytes Length of Mfr Name bytes Length of Mfr Name bytes 2 bytes
FIG. 85

98/v.

£65160/5007 OM

7€8800/S007SN/1Dd

Alternate Display Capability Packet

Packet Packet oClient ID Alt Display | Reserved Bitmap Bitmap Display Display
Length Type = 145 Number 1 Width Height | Window Width | Window Height
2 bytes 2 bytes 2 bytes 1 byte 1 byte 2 bytes 2 bytes 2 bytes 2 bytes
Color Map RGB Monochrome Y Cb Cr [Display Feature
RGB Width | Capabilty | Capabiity | "%°™e42 | cacobiity | Capabiity | ocorved3f CRC
2 bytes 2 bytes 1 byte 1 byte 2 bytes 1 byte 1 byte 2 bytes
FIG. 86

98/G9.

£65160/5007 OM

7€8800/S007SN/1Dd

Register Access Packet

Packet Packet Type . Read/Write Register Parameter . .

Length 148 bClient ID Flags Addrass CRC Register Data List CRC

2 bytes 2 bytes 2 bytes 2 bytes 4 bytes 2 bytes Packet Length - 14 bytes 2 bytes
FIG. 87

98/9.

£65160/5007 OM

7€8800/S007SN/1Dd

WO 2005/091593

77186

Display Update Bits equal to "01"

Pixel Data
from MDDI

Swap when a complete
frame is received

PCT/US2005/008832

Swap a fter begining of a

new media-frame and

(:D Frame Buffer A

Frame Buffer B

display refresh begins at
> upper left

o

FIG. 88A

Display Update Bits equal to "00"

Pixel Data
from MDDI

Frame Buffer A

Iljna.?e updates and
display refresh from
the s ame frame buffer

<

| Frame Buifer B

SN

FIG. 86B

Display Update Bits equal to "11"

Pixel Data
from MDD

Frame Buffer A

Frame Buffer B

Pixel Data is written F|G . 88C

to both buffers

Swap after begining of a
new media-frame and
display refresh begins at

> upper left

Image Transfer

Two Bulffers, display refresh faster than Image transfer

frame 1, buffer A frame 2, buffer B frame 3, buffer A frame 4, buffer B frame 5, buffer A frame 6, buffer B
20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%
Display Refresh
frame O, buf B frame 0, buf B frame 1, buf A frame2,bufB frame 2, bufB frame 3,buf A frame 4, buf B frame 4, buf B frame 5, buf A

20% 40% 60% 80%]| 20% 40% 60% 80%} 20% 40% 60% 80%

20% 40% 60% 80%)| 20% 40% 607% 80%

20% 40% 60% 80%| 20% 40% 60% 80%

20% 40% 60% 80%) 20% 40% 60% 80%

Image Transfer

Two Buffers, display refresh much faster than image transfer

frame 1, buffer A frame 2, buffer B frame 3, buifer A frame 4, buffer B framme 5, buffer A frame 6, buffer B

20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%
Display Refresh
imQ,b=B | im0,b=B | iMm0,b=B | fm1,b=A| m1,b=A] m2,b=B| m2,b=B| M2,b=B| m3,b=A| im3,b=A| im4,b=B | im4,b=B | fm4,b=B | im5,b=A | fm5,b=A
20 40 60 80120 40 50 80120 40 60 80(20 40 60 8020 40 60 80120 40 60 8020 40 60 80120 40 60 80120 40 60 8020 40 60 804120 40 60 80j20 40 60 81120 4060 8020 4060 8020 4060
%%%°/

98/81

£65160/5007 OM

7€8800/S007SN/1Dd

Image Transfer

Two Buffers, display refresh slower than Image transfer

frame 1, buffer A frame 2, buffer B frame 3, buffer A frame 4, buffer B frame 5, buffer A frame 6, buffer B
20% 40% 60% 80% 20% 40% 60% 80% 20% 40°% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%
Display Refresh
frame 0, buffer B frame 1 & 3, buifer A frame 3, buffer A frame 4 & 6, buifer B
20% 40% 60% 80% 20% 40% 60% 80% 20% 0% 60% 80% 20% 140% 60% 80%
FIG. 90

98/6.L

£65160/5007 OM

7€8800/S007SN/1Dd

Two Buffers, display refresh much faster than Image transfer, small video window
Image Transfer -

frame 1, buffer A frame 2, buifer B frame 3, buffer A frame 4, buffer B frame 5, buffer A frame 6, buffer B
20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20%40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%
Display Refresh
mQ,b=B | imO0,b=B} M fm1,b=A| fm1,b=A] im2,b=B | fm2,b=B | m2,b=B | M 3,b=A | im3,b=A | fm4,b=B | fim4,b=B | fm & fm5,b=A| fim5,b=A
204060 802040608020 20 40 60 80120 40 60 80120 40 60 80120 40 60 8020 40 60 8020 40 60 8020 4060 80320 40 60 8020 4060 8020 2040608020406080
Yo Yo Yo Y% Yo Yo V4% % % % % Y% Yo Yo W% % % Y% Yo Y% W% Y% Y% Y% Y% % Yd% % % W% Y% % V4% Yo % Y% % % Y% Yo Y% % % %

98/08

£65160/5007 OM

7€8800/S007SN/1Dd

Three Buffers, display refresh much faster than Image transfer, any-size video window

Image Transfer

frame 1, buffer A frame 2, buffer B frame 3, buffer C frame 4, buffer A frame 5, buifer B frame 6, buffer C
20% 40% 60% 80% 20%40% 60% 80% 20% 40% 60% 80% 20% 40%60% 80% 20% 40% 60% 80% 20% 407 607 80%
Display Refresh
fm0,b=C | im0,b=C| imOQ,b=C| fim1,b=A{ im1,b=A| im2,b=B| M2,b=B | m2,b=B | Mm3,b=C | iM3,b=C| fm4,b=A| im4,b=A| fm4,b=A| im5,b=B | fm5,b=B

204060 802040608020 40860872040 608020406080
% % % W% % Y% WY Y% Y% W% Y% % W % % %

2040 60 8020 40 60 80120 40 60 8020 40 60 8020 4060 80
% % % W% % Y% H% % % Y% % % V4% Yo Yo %

204060 8020 40 60 80120 40 60 80120 4060 8020 4060 8
% % %o A% Yo % W% % Yo Y% Yo Yo X% Y% %o A

FIG. 92

98/18

£65160/5007 OM

7€8800/S007SN/1Dd

Image Transfer

Three Buffers, display refresh slower than Image transfer

frarme 1, buffer A frame 2, buifer B frame 3, buffer C frame 4, buffer A frame 5, buffer B frame 6, buffer C frame 7
20%40% 60% 80% 20% 40% 60% 80% 20% 40% 80% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20%
Display Refresh
frame O, bufferC frame 1 &4, buffer A frame 3, buffer C frame 4 & 7, buffer A
% W W% W% W W . An Wn WK . A Wn
FIG. 93

98/28

£65160/5007 OM

7€8800/S007SN/1Dd

One Buffer, display refresh faster than Image transfer

Image Transfer
frame 1 frame2 frame 3 frame 4 frame 5 frame 6
20% 40% 60% 80% 20% 40% 80% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%
Display Refresh
frame0 frame 1 frame 2 frame3&2 frame 3 frame 4 frame 584 frame 5 frame 6
20% 40% 60% 80%)| 20% 40% 60% 80%| 20% 40% 60% 80%| 20% 40% 60% 80%| 20% 40% 60% 80%)| 20% 40% B0% 80%| 20% 40% 60% 80%| 20% 40% 60% 80%| 20% 40% 60% 80%
One Buffer, display refresh much faster than image transfer
Image Transfer
frame 1 frame2 frame 3 frame 4 frame 5 frame 6
20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%
Display Refresh
m0 | m1&0| fm1 |m2&1|m2&1| m2 |m2&1|] m3 | m3 |m4&3| im4 | m5&4|m5&4| m5 | m6&5| M6 | mé
20406080{ 20406080 204060801 20406080{ 20406080{ 20406060{ 20406080| 20406080} 20406080} 204060801 20406080 20406080} 20406080| 20406080| 204060801 20406080{ 20406080
% % %o Yl % % Yo Y% %o % Yl % Yo %o Yot Yo Yo Yo Yl %o %o Yo Vel %o Yo Yo Yl %o % %o Y %o %o Yo Y %o %o % Yol Yo Yo Yo Yol % %o %o Vel % %o Yo Yol %o %o Yo Yl %o %o %o Yol Yo %o %o Yol %o %o Yo %o

98/€8

£65160/5007 OM

7€8800/S007SN/1Dd

DAISY-CHAINED CONFIGURATION

MDDI
HOST

MDDI

<}:{> CLIENT

—=

MDDI
CLIENT

—=

MDDI
CLIENT

EACH CLIENT REPEATS DATA AFTERIT
HAS BEEN ASSIGNED AN ADDRESS

CLIENTS CONNECTED VIA A HUB

MDDI
HOST

<}:{> HUB

FIG. 95

<::{> CLIENT

MDDI
CLIENT

MDDI

MDDI
CLIENT

98/v8

£65160/5007 OM

7€8800/S007SN/1Dd

COMBINATIONS OF HUB AND DAISY-CHAIN

MDDI
HOST

MDDI
CLIENT

=

HUB

MDDI
CLIENT

=

MDDI
CLIENT

-

4

HUB

MDDI
CLIENT

N

MDDI
CLIENT

MDDI

CLIENT ®

MDDI
CLIENT

FIG. 96

98/98

£65160/5007 OM

7€8800/S007SN/1Dd

Color Map Data Formatting

<«—MDDI byte m—>»

oi1izisiais

6i7

oi1izislais

«—MDDI byte m+1-—»]

6i7

oitizisia

«—NDDI byte m+2—»,

5i6i7

Example: 6 bits of Blue, 8 bits of Green, 7 bits of Red

oi1i2isiais

<«<—MDDI byte m+3—»

<«—MDDI byte m+4—»|

6}7

oj1izisiais

6i7[oi1izisia

<«—MDDI byte m+5—>

5i6i7

0

012345

item n Blue

01234567

item n Green

0123456

item n Red

unused

012345

item n+1 Blue

01234567

item n+1 Green

0123456
item n+1 Red

unused

FIG. 97

98/98

£65160/5007 OM

7€8800/S007SN/1Dd

	Abstract
	Description
	Claims
	Drawings

