
(12) STANDARD PATENT (11) Application No. AU 2005223960 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
High data rate interface apparatus and method

(51) International Patent Classification(s)
HO4L 12/28 (2006.01) H04L 29/06 (2006.01)
HO4L 12/56 (2006.01) HO4M 1/725 (2006.01)

(21) Application No: 2005223960 (22) Date of Filing: 2005.03.17

(87) WIPO No: WO05/091593

Priority Data

(31) Number (32) Date (33) Country
60/556,345 2004.03.24 US
60/554,309 2004.03.17 US

(43) Publication Date: 2005.09.29
(44) Accepted Journal Date: 2009.04.09

(71) Applicant(s)
Qualcomm Incorporated

(72) Inventor(s)
Anderson, Jon James;Steele, Brian;Wiley, George A.;Shekhar, Shashank

(74) Agent Attorney
Madderns, Level 1 64 Hindmarsh Sq, Adelaide, SA, 5000

(56) Related Art
WO 2003/023587 A2 (QUALCOMM, INCORPORATED) 20 March 2003

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau

(43) International Publication Date
29 September 2005 (29.09.2005)

1111111111111 111111111111111111 11111111 1111111111111111 1111111111111111111 111111111111111 1111111111111111111

PCT
(10) International Publication Number

WO 2005/091593 Al

(51) International Patent Classification7 H04L 29/06,
12/28, 12/56

(21) International Application Nmnber:
PCT/US2005/008832

(22) International Filing Date: 17 March 2005 (17.03.2005)

Filing Language:

(26) Publication Language:

English

Priority Data:
60/554,309
60/556,345

80301 STEELE, Brian [US/US]; 1074 Iliad Way,
Lafayette, Colorado 80026 WILEY, George A.
[US/US]; 5740 Brittany Forrest Lane, San Diego, Califor-
nia 92130 SHEKHAR, Shashank [IN/US]; 1597
Holeman Drive, Erie, Indiana 80516 (US).

(74) Agents: WADSWORTH, Philip R. et al.; 5775 More-
house Drive, San Diego, California 92121 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, ALT, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,
ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

17 March 2004 (17.03.2004) US
24 March 2004 (24.03.2004) US

(71) Applicant (for all designated States except US): QUAL-
COMM Incorporated [US/US]; 5775 Morehouse Drive,
San Diego, California 92121 (US).

(72) Inventors; and
Inventors/Applicants (for US only): ANDERSON, Jon
James [US/US]; 7436 Augusta Drive, Boulder, Colorado

(54) Title: HIGH DATA RATE INTERFACE APPARATUS AND METIOD

202 206

J fl FORWARD DIRECTION

HOST

PORTABLE
COMPUTER

WIRELESS
TELEPHONE

PDA

WIRELESS
MODEM

APPLIANCE

DVD/CD

1 ,210

ULREVERSE DIRECTION

204208

CLIENT

SMALL
SCREEN

PROJECTION
DISPLAY

MICRO-
DISPLAY

SURROUND
SOUND

DESK/CAR KIT

DOCKING
STATION

(57) Abstract: A data interface for transferring digital data between a host and a client over a communication path using packet
structures linked together to form a communication protocol for communicating a pre-selected set of digital control and presentation
data. The signal protocol is used by link controllers configured to generate, transmit, and receive packets forming the communi-
cations protocol, and to form digital data into one or more types of data packets, with at least one residing in the host device and
being coupled to the client through the communications path. The interface provides a cost-effective, low power, bi-directional,
high-speed data transfer mechanism over a short-range "serial" type data link, which lends itself to implementation with miniature
connectors and thin flexible cables which are especially useful in connecting display elements such as wearable micro-displays to
portable computers and wireless communication devices.

W O 2005/091593 A l 111111111111111 1111111111111111 111111111111111 111111111111111 1111111 1111111111111

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
S as to applicants entitlement to apply for and be granted

a patent (Rule 4.17(ii)) for the following designations AE,

AG, AL, AM, AT AU, AZ, BA, BB, BG, BR, BW BY BZ,
CA, CH. CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,

EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,

JP KE. KG, KP KR, KZ, LC, LK, LR, LS, LT LU, LV MA,
MD, MG, MK, MN, MW MX, MZ, NA, NI, NO, NZ, OM,

PG, PH, PL, PT RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,

TJ, TM, TN, TR, TT TZ, UA, UG, UZ, VC, VN, YU, ZA,
ZM, ZW, ARIPO patent (BW GII, GM, KE, LS, MW, MZ,
NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM,

AZ, BY KG, KZ, MD, RU, TJ TM), European patent (AT,

BE, BG, CH, CY CZ, DE, DK, EE, ES. FI, FR, GB GR,

IIU, IE, I, IT LT LU, MC, NL, PL, PT RO, SE, Sl, SK,

TR), OAPI patent (BF BJ, CF CG, Cl, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG)

as to the applicant's entitlement to claim the priority of the

earlier application (Rule 4.17(iii))for all designations
as to the applicant's entitlement to claim the priority of the

earlier application (Rule 4.17(iii))for all designations

Published:
with international search report

before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of

amendments

For two-letter codes and other abbreviations, refer to the "Guid-

ance Notes on Codes and Abbreviations" appearing at the begin-

ning of each regular issue of the PCT Gazette.

WO 2005/091593 PCT/US2005/008832

1

HIGH DATA RATE INTERFACE APPARATUS AND METHOD

Claim of Priority under 35 U.S.C. §119

[0001] The present Application for Patent claims priority to Provisional Application

No. 60/554,309 entitled "Switchable Threshold Differential Interface" filed March 17,

2004, and No. 60/556,345 entitled "Switchable Threshold Differential Interface" filed

March 24, 2004, both applications of which are assigned to the assignee hereof and

hereby expressly incorporated by reference herein.

BACKGROUND

Field

[0002] Embodiments of the invention in this disclosure relate to a digital signal

protocol, process, and apparatus including integrated circuits and components for

communicating or transferring signals between a host device and a client device at high

data rates. More specifically, the disclosure relates to a technique for transferring

multimedia and other types of digital signals from a host or controller device to a client

device for presentation or display to an end user using a low power high data rate

transfer mechanism having internal and external device applications.

Background

[0003] Computers, electronic game related products, and various video technologies

(for example Digital Versatile Disks (DVD's) and High Definition VCRs) have

advanced significantly over the last few years to provide for presentation of increasingly

higher resolution still, video, video-on-demand, and graphics images, even when

including some types of text, to end users of such equipment. These advances in turn

mandated the use of higher resolution electronic viewing devices such as high definition

video monitors, High Definition Television (HDTV) monitors, or specialized image

projection elements. Combining such visual images with high-definition or -quality

audio data, such as when using Compact Disc (CD) type sound reproduction, DVDs,

surround-sound, and other devices also having associated audio signal outputs, is used

to create a more realistic, content rich, or true multimedia experience for an end user. In

addition, highly mobile, high quality sound systems and music transport mechanisms,

WO 2005/091593 PCTIUS2005/008832

2

such as MP3 players, have been developed for audio only presentations to end users.

This has resulted in increased expectations for typical users of commercial electronics

devices, from computers to televisions and even telephones, now being accustomed to

and expecting high or premium quality output.

[0004] In a typical video presentation scenario, involving an electronics product, video

data is typically transferred using current techniques at a rate that could be best termed

as slow or medium, being on the order of one to tens of kilobits per second. This data is

then either buffered or stored in transient or longer-term memory devices, for delayed

(later) play out on a desired viewing device. For example, images may be transferred

"across" or using the Internet using a program resident on a computer having a modem

or other type of Internet connection device, to receive or transmit data useful in digitally

representing an image. A similar transfer can take place using wireless devices such as

portable computers equipped with wireless modems, or wireless Personal Data

Assistants (PDAs), or wireless telephones.

[0005] Once received, the data is stored locally in memory elements, circuits, or

devices, such as Random Access Memory (RAM) or flash memory, including internal

or external storage devices such as small size hard drives, for playback. Depending on

the amount of data and the image resolution, the playback might begin relatively

quickly, or be presented with longer-term delay. That is, in some instances, image

presentation allows for a certain degree of real time playback for very small or low

resolution images not requiring much data, or using some type of buffering, so that after

a small delay, some material is presented while more material is being transferred.

Provided there are no interruptions in the transfer link, or interference from other

systems or users relative to the transfer channel being used, once the presentation begins

the transfer is reasonably transparent to the end user of the viewing device. Naturally,

where multiple users share a single communication path, such as a wired Internet

connection, transfers can be interrupted or slower than desired.

[0006] The data used to create either still images or motion video are often compressed

using one of several well known techniques such as those specified by the Joint

Photographic Experts Group (JPEG), the Motion Picture Experts Group (MPEG), and

other well known standards organizations or companies in the media, computer, and

communications industries to speed the transfer of data over a conmmunication link.

WO 2005/091593 PCTIUS2005/008832

3

This allows transferring images or data faster by using a smaller number of bits to

transfer a given amount of information.

[0007] Once the data is transferred to a "local" device such as a computer having a

storage mechanism such as memory, or magnetic or optical storage elements, or to other

recipient devices, the resulting information is un-compressed (or played using special

decoding players), and decoded if needed, and prepared for appropriate presentation

based on the corresponding available presentation resolution and control elements. For

example, a typical computer video resolution in terms of a screen resolution of X by Y

pixels typically ranges from as low as 480x640 pixels, through 600x800 to 1024x1024,

although a variety of other resolutions are generally possible, either as desired or

needed.

[0008] Image presentation is also affected by the image content and the ability of given

video controllers to manipulate the image in terms of certain predefined color levels or

color depth (bits per pixel used to generate colors) and intensities, and any additional

overhead bits being employed. For example, a typical computer presentation would

anticipate anywhere from around 8 to 32, or more, bits per pixel to represent various

colors (shades and hues), although other values are encountered.

[0009] From the above values, one can see that a given screen image is going to require

the transfer of anywhere from 2.45 Megabits (Mb) to around 33.55 Mb of data over the

range from the lowest to highest typical resolutions and depth, respectively. When

viewing video or motion type images at a rate of 30 frames per second, the amount of

data required is around 73.7 to 1,006 Megabits of data per second (Mbps), or around

9.21 to 125.75 Megabytes per second (MBps). In addition, one may desire to present

audio data in conjunction with images, such as for a multimedia presentation, or as a

separate high resolution audio presentation, such as CD quality music. Additional

signals dealing with interactive commands, controls, or signals may also be employed.

Each of these options adding even more data to be transferred. Furthermore, newer

transmission techniques involving HDTV and movie recordings may add even more

data and control information. In any case, when one desires to transfer high quality or

high resolution image data and high quality audio information or data signals to an end

user to create a content rich experience, a high data transfer rate link is required between

presentation elements and the source or host device that is configured to provide such

types of data.

WO 2005/091593 PCTIUS2005/008832

4

[0010] Data rates of around 115 Kilobytes (KBps) or 920 Kilobits per second (Kbps)

can be routinely handled by some modem serial interfaces. Other interfaces such as

USB serial interfaces can accommodate data transfers at rates as high as 12 MBps, and

specialized high speed transfers such as those configured using the Institute of Electrical

and Electronics Engineers (IEEE) 1394 standard, can occur at rates on the order of 100

to 400 MBps. Unfortunately, these rates fall short of the desired high data rates

discussed above which are contemplated for use with future wireless data devices and

other services for providing high resolution, content rich, output signals for driving

portable video displays or audio devices. This includes computers for business and

other presentations, gaming devices, and so forth. In addition, these interfaces require

the use of a significant amount of host or system and client software to operate. Their

software protocol stacks also create an undesirably large amount of overhead, especially

where mobile wireless devices or telephone applications are contemplated. Such

devices have severe memory and power consumption limitations, as well as already

taxed computational capacity. Furthermore, some of these interfaces utilize bulky

cables which are too heavy and unsatisfactory for highly aesthetic oriented mobile

applications, complex connectors which add cost, or simply consume too much power.

[0011] There are other known interfaces such as the Analog Video Graphics Adapter

(AVGA), Digital Video Interactive (DV) or Gigabit Video Interface (GVIF) interfaces.

The first two of these are parallel type interfaces which process data at higher transfer

rates, but also employ heavy cables and consume large amounts of power, on the order

of several watts. Neither of these characteristics are amenable to use with portable

consumer electronic devices. Even the third interface consumes too much power and

uses expensive or bulky connectors.

[0012] For some of the above interfaces, and other very high rate data systems/protocols

or transfer mechanisms associated with data transfers for fixed installation computer

equipment, there is another major drawback. To accommodate the desired data transfer

rates also requires substantial amounts of power and/or operation at high current levels.

This greatly reduces the usefulness of such techniques for highly mobile consumer

oriented products.

[0013] Generally, to accommodate such data transfer rates using alternatives such as

say optical fiber type connections and transfer elements, also requires a number of

additional converters and elements that introduce much more complexity and cost, than

WO 2005/091593 PCTIUS2005/008832

desired for a truly commercial consumer oriented product. Aside from the generally

expensive nature of optical systems as yet, their power requirements and complexity

prevents general use for lightweight, low power, portable applications.

[0014] What has been lacking in the industry for portable, wireless, or mobile

applications is a technique to provide a high quality presentation experience, whether it

be audio, video, or multimedia based, for highly mobile end users. That is, when using

portable computers, wireless phones, PDAs, or other highly mobile communication

devices or equipment, the current video and audio presentation systems or devices being

used simply cannot deliver output at the desired high quality level. Often, the perceived

quality that is lacking is the result of unobtainable high data rates needed to transfer the

high quality presentation data. This can include both transfer to more efficient,

advanced or feature laden external devices for presentation to an end user, or transfer

between hosts and clients internal to portable devices such as computers, ganxing

machines, and wireless devices such as mobile telephones.

[0015] In this latter case, there have been great strides made in adding higher and higher

resolution internal video screens, and other specialty input and/or output devices and

connections to wireless devices like so called third generation telephones, and to so

called laptop computers. However, internal data busses and connections which may

include bridging across rotating or sliding hinge or hinge-like structures which mount or

connect video screens or other elements to the main housing where the host and/or

various other control elements and output components reside. These are generally high-

bandwidth or high throughput interfaces. It is very difficult to construct high

throughput data transfers interfaces using prior techniques which can require up to

conductors, or more, to achieve the desired throughput, on say a wireless telephone, as

one example. Current solutions typically involve employing parallel type interfaces

with relatively high signal levels which can cause the interconnection to be more costly,

less reliable and potentially generate radiated emissions which could interfere with

device functions. This presents many manufacturing, cost, and reliability challenging

issues to overcome.

[0016] Such issues and requirements are also being seen on fixed location installations

where communication or computing type devices, as one example, are addedL to

appliances and other consumer devices to provide advanced data capabilities, Internet

and data transfer connections, or built in entertainment. Another example would be

airplanes and buses where individual video and audio presentation screen are mounted in seat-backs.

O However, in these situations it is often more convenient, efficient, and easily serviceable to have the

c"1 main storage, processing, or communication control elements located a distance from visible screens

or audio outputs with an interconnecting link or channel for the presentation of information. This link

will need to handle a significant amount of data to achieve the desired throughput, as discussed above.

Therefore, a new transfer mechanism is needed to increase data throughput between host

devices providing the data and client display devices or elements presenting an output to end users.

Applicants have proposed such new transfer mechanisms in U. S. Patent Application Serial

No. 10/020,520, filed December 14, 2001, now U. S. Patent No 6,760,772, issued July 6, 2004 to Zou

10 et al., and U. S. Patent Application Serial No. 10/236, 657, filed September 6, 2002, both entitled

"Generating And Implementing A Communication Protocol And Interface For High Data Rate Signal

Transfer," both of which are assigned to the assignee of the present invention and incorporated herein

by reference. Also, U.S. Application Serial No. 10/860, 116, filed on June 2, 2004, entitled

"Generating and Implementing a Signal Protocol and Interface for Higher Data Rates." The

techniques discussed in those applications can greatly improve the transfer rate for large quantities of

data in high speed data signals. However, the demands for ever increasing data rates, especially as

related to video presentations, continue to grow. Even with other ongoing developments in data signal

technology, there is still a need to strive for even faster transfer rates, improved communication link

efficiencies, and more powerful communication links. Therefore, there is a continuing need to develop

a new or improved transfer mechanism which is needed to increase data throughput between host and

client devices.

SUMMARY

In a first aspect of the present invention, there is provided a method for communicating a

specific client supported power state to a host in a digital transmission link, the method including the

steps of providing a client capability packet including a client power state capability field, the client

power state capability field including at least one client supported power state; sending the client

capability packet by a client to the host after a request by the host; choosing the specific client

supported power state from the at least one client supported power state by the host; and sending a

power state packet from the host to the client, the power state packet including the chosen specific

client supported power state.

In a second aspect of the present invention, there is provided a system for communicating a

specific client supported power state to a host in a digital transmission link, the system including

means for providing a client capability packet including a client power state capability field, the client

power capability field including at least one client supported power state; means for sending the client

capability packet by a client to the host after a request by the host; means for choosing the specific

client supported power state from the at least one client supported power state by the host; and means

for sending a power state packet from the host to the client, the power state packet including the
00

0 chosen specific client supported power state.

,i In a third aspect of the present invention, there is provided a computer program product,

including computer readable medium including code for causing a communication of a specific

content supported power state to a host in a digital transmission link, the computer code including

code for causing a client capability packet to be provided, the client packet including a client power

state capability field, the client power state capability field comprising at least one client supported

power state; code for causing the client capability packet to be sent by a client to the host after a

Nrequest by the host; code for causing the specific client supported power state to be chosen from the at

MO 10 least one client supported power state by the host; and code for causing a power state packet to be sent

(Ni from the host to the client, the power state packet including the chosen specific client supported power

Sstate.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages, as well as the structure and operation of various

embodiments of the invention, are described in detail below with reference to the accompanying

drawings. In the drawings, like reference numbers generally indicate identical, functionally similar,

and/or structurally similar elements or processing steps.

FIG. IA illustrates a basic environment in which embodiments of the invention might operate

including the use of a micro-display device, or a projector, in conjunction with a portable computer or

other data processing device.

FIG. I B illustrates a basic environment in which embodiments of the invention might operate

including the use of a micro-display device or a projector, and audio presentation elements used in

conjunction with a wireless transceiver.

FIG. 2A illustrates a basic environment in which embodiments of the invention might operate

including the use of internal display or audio presentation devices used in a portable computer.

FIG. 2B illustrates a basic environment in which embodiments of the invention might operate

including the use of internal display or audio presentation elements used in a wireless transceiver.

FIG. 3 illustrates the overall concept of a MDDI with a host and client interconnection.

FIG. 4 illustrates the structure of a packet useful for realizing data transfers from a client

device to a host device.

FIG. 5 illustrates the use of an MDDI link controller and the types of signals passed between a

host and a client over the physical data link conductors for a Type 1 interface.

FIG. 6 illustrates the use of an MDDI link controller and the types of signals passed between a

host and a client over the physical data link conductors for Types 2, 3, and 4 interfaces.

THIS PAGE HAS INTENTIONALLY BEEN LEFT BLANK
00

9

THIS PAGE HAS INTENTIONALLY BEEN LEFT BLANK
00
O

00
THIS PAGE HAS INTENTIONALLY BEEN LEFT BLANK

WO 2005/091593 PCTIUS2005/008832

11

[0041] FIG. 7 illustrates the structure of frames and sub-frames used to implement the

interface protocol.

[0042] FIG. 8 illustrates the general structure of packets used to implement the interface

protocol.

[0043] FIG. 9 illustrates the format of a Sub-frame Header Packet.

[0044] FIG. 10 illustrates the format and contents of a Filler Packet.

[0045] FIG. 11 illustrates the format of a Video Stream Packet.

[0046] FIGs. 12A-12E illustrate the format and contents for the Video Data Format

Descriptor used in FIG. 11.

[0047] FIG. 13 illustrates the use of packed and unpacked formats for data.

[0048] FIG. 14 illustrates the format of an Audio Stream Packet.

[0049] FIG. 15 illustrates the use of byte-aligned and packed PCM formats for data.

[0050] FIG. 16 illustrates the format of a User-Defined Stream Packet.

[0051] FIG. 17 illustrates the format of a Color Map Packet.

[0052] FIG. 18 illustrates the format of a Reverse Link Encapsulation Packet.

[0053] FIG. 19 illustrates the format of a Client Capability Packet.

[0054] FIG. 20 illustrates the format of a Keyboard Data Packet.

[0055] FIG. 21 illustrates the format of a Pointing Device Data Packet.

[0056] FIG. 22 illustrates the format of a Link Shutdown Packet.

[0057] FIG. 23 illustrates the format of a Client Request and Status Packet.

[0058] FIG. 24 illustrates the format of a Bit Block Transfer Packet.

[0059] FIG. 25 illustrates the format of a Bitmap Area Fill Packet.

[0060] FIG. 26 illustrates the format of a Bitmap Pattern Fill Packet.

[0061] FIG. 27 illustrates the format of a Communication Link Data Channel Packet.

[0062] FIG. 28 illustrates the format of a Display Power State Packet.

[0063] FIG. 29 illustrates the format of a Perform Type Handoff Packet.

[0064] FIG. 30 illustrates the format of a Forward Audio Channel Enable Packet.

[0065] FIG. 31 illustrates the format of a Reverse Audio Sample Rate Packet.

[0066] FIG. 32 illustrates the format of a Digital Content Protection Overhead Packet.

[0067] FIG. 33 illustrates the format of a Transparent Color Enable Packet.

[0068] FIG. 34 illustrates the format of a Round Trip Delay Measurement Packet.

[0069] FIG. 35 illustrates the timing of events during the Round Trip Delay

Measurement Packet.

WO 2005/091593 PCTIUS2005/008832

12

[0070] FIG. 36 illustrates a sample implementation of a CRC generator and checker

useful for implementing the invention.

[0071] FIG. 37A illustrates the timing of CRC signals for the apparatus of FIG. 36

when sending data packets.

[0072] FIG. 37B illustrates the timing of CRC signals for the apparatus of FIG. 36 when

receiving data packets.

[0073] FIG. 38 illustrates processing steps for a typical service request with no

contention.

[0074] FIG. 39 illustrates processing steps for a typical service request asserted after the

link restart sequence has begun, contending with link start.

[0075] FIG. 40 illustrates how a data sequence can be transmitted using DATA-STB

encoding.

[0076] FIG. 41 illustrates circuitry useful for generating the DATA and STB signals

from input data at the host, and then recovering the data at the client.

[0077] FIG. 42 illustrates drivers and terminating resistors useful for implementing one

embodiment.

[0078] FIGs. 43A-43C illustrate steps and signal levels employed by a client to secure

service from the host and by the host to provide such service.

[0079] FIG. 44 illustrates relative spacing between transitions on the DataO, other Data

lines (DataX), and the Strobe lines (Stb).

[0080] FIG. 45 illustrates the presence of a delay in response that can occur when a host

disables the host driver after transferring a packet.

[0081] FIG. 46 illustrates the presence of a delay in response that can occur when a host

enables the host driver to transfer a packet.

[0082] FIG. 47 illustrates leakage current analysis.

[0083] FIG. 48 illustrates switching characteristics and relative timing relationships for

host and client output enabled and disable time.

[0084] FIG. 49 illustrates a high level diagram of signal processing steps and conditions

by which synchronization can be implemented using a state machine.

[0085] FIG. 50 illustrates typical amounts of delay encountered for signal processing on

the forward and reverse paths in a system employing the MDDI.

[0086] FIG. 51 illustrates marginal round trip delay measurement.

[0087] FIG. 52A illustrates Reverse Link data rate changes.

WO 2005/091593 PCTIUS2005/008832

13

[0088] FIG. 52B illustrates an example of advanced reverse data sampling.

[0089] FIG. 53 illustrates a graphical representation of values of the Reverse Rate

Divisor versus forward link data rate.

[0090] FIGs. 54A and 54B illustrate steps undertaken in the operation of an interface.

[0091] FIG. 55 illustrates an overview of the interface apparatus processing packets.

[0092] FIG. 56 illustrates the format of a Forward Link Packet.

[0093] FIG. 57 illustrates typical values for propagation delay and skew in an Type 1

Link interface.

[0094] FIG. 58 illustrates Data, Stb, and Clock Recovery Timing on a Type 1 Link for

exemplary signal processing through the interface.

[0095] FIG. 59 illustrates typical values for propagation delay and skew in Type 2,

Type 3 or Type 4 Link interfaces.

[0096] FIGs. 60A, 60B, and 60C illustrate different possibilities for the timing of two

data signals and MDDI_Stb with respect to each other, being ideal, early, and late,

respectively.

[0097] FIG. 61 illustrates interface pin assignments exemplary connectors used with a

Type-I/Type 2 interfaces.

[0098] FIGs. 62A and 62B illustrate possible MDDI_Data and MDDI_Stb waveforms

for both Type 1 and Type 2 Interfaces, respectively.

[0099] FIG. 63 illustrates a high level diagram of alternative signal processing steps and

conditions by which synchronization can be implemented using a state machine.

[00100] FIG. 64 illustrates exemplary relative timing between a series of clock cycles

and the timing of a various reverse link packets bits and divisor values.

[00101] FIG. 65 illustrates exemplary error code transfer processing.

[00102] FIG. 66 illustrates apparatus useful for error code transfer processing.

[00103] FIG. 67A illustrates error code transfer processing for code overloading.

[00104] FIG. 67B illustrates error code transfer processing for code reception.

[00105] FIG. 68A illustrates processing steps for a host initiated wake-up.

[00106] FIG. 68B illustrates processing steps for a client initiated wake-up.

[00107] FIG. 68C illustrates processing steps for host and client initiated wake-up with

contention.

[00108] FIG. 69 illustrates the format of a Request Virtual Control Panel (VCP) Feature

Packet.

WO 2005/091593 PCTIUS2005/008832

14

[00109] FIG. 70 illustrates the format of a VCP Feature Reply Packet.

[00110] FIG. 71 illustrates the format of a VCP Feature Reply List.

[00111] FIG. 72 illustrates the format of a Set VCP Feature Packet.

[00112] FIG. 73 illustrates the format of a Request Valid Parameter Packet.

[00113] FIG. 74 illustrates the format of a Valid Parameter Reply Packet.

[00114] FIG. 75 illustrates the format of a Scaled Video Stream Capability Packet.

[00115] FIG. 76 illustrates the format of a Scaled Video Stream Setup Packet.

[00116] FIG. 77 illustrates the format of a Scaled Video Stream Acknowledgement

Packet.

[00117] FIG. 78 illustrates the format of a Scaled Video Stream Packet.

[00118] FIG. 79 illustrates the format of a Request Specific Status Packet.

[00119] FIG. 80 illustrates the format of a Valid Status Reply List Packet.

[00120] FIG. 81 illustrates the format of a Personal Display Capability Packet.

[00121] FIG. 82 illustrates elements in the Points of Field Curvature List.

[00122] FIG. 83 illustrates the format of a Client Error Report Packet.

[00123] FIG. 84 illustrates the format of an Error Report List item.

[00124] FIG. 85 illustrates the format of a Client Identification Packet.

[00125] FIG. 86 illustrates the format of an Alternate Display Capability Packet.

[00126] FIG. 87 illustrates the format of a Register Access Packet.

[00127] FIG. 88A-88C illustrate use of two display buffers to reduce visible artifacts.

[00128] FIG. 89 illustrates two buffers with display refresh faster than image transfer.

[00129] FIG. 90 illustrates two buffers with display refresh slower than image transfer.

[00130] FIG. 91 illustrates two buffers with display refresh much faster than image

transfer.

[00131] FIG. 92 illustrates three buffers with display refresh faster than image transfer.

[00132] FIG. 93 illustrates three buffers with display refresh slower than image transfer.

[00133] FIG. 94 illustrates one buffer with display refresh faster than image transfer.

[00134] FIG. 95 illustrates host-client connection via daisy -chain and hub.

[00135] FIG. 96 illustrates client devices connected via a combination of hubs and daisy

chains.

[00136] FIG. 97 illustrates a color map.

DETAILED DESCRIPTION

WO 2005/091593 PCTIUS2005/008832

I. Overview

[00137] A general intent of the invention is to provide a MDDI, as discussed below,

which results in or provides a cost-effective, low power consumption, transfer

mechanism that enables high- or very-high- speed data transfer over a short-range

communication link between a host device and a client device, such as a display

element, using a "serial" type of data link or channel. This mechanism lends itself to

implementation with miniature connectors and thin flexible cables which are especially

useful in connecting internal (interior to a housing or support frame) display or output

elements or devices, or input devices to a central controller or communication element

or device. In addition, this connection mechanism is very useful for connecting external

display elements or devices such as wearable micro-displays (goggles or projectors) or

other types of visual, audible, tactile information presentation devices to portable

computers, wireless communication devices, or entertainment devices.

[00138] Although the terms Mobile and Display are associated with the naming of the

protocol, it is to be understood that this is for convenience only in terms of having a

standard name easily understood by those skilled in the art working with the interface

and protocol. As it will relate to a Video Electronics Standards Association (VESA)

standard and various applications of that standard. However, it will be readily

understood after a review of the embodiments presented below that many non-mobile

and non-display related applications will benefit from application of this protocol,

resulting interface structure, or transfer mechanism, and the MDDI label is not intended

to imply any limitations to the nature or usefulness of the invention or its various

embodiments.

[00139] An advantage of embodiments of the invention is that a technique is provided

for data transfer that is low in complexity, low cost, has high reliability, fits well within

the environment of use, and is very robust, while remaining very flexible.

[00140] Embodiments of the invention can be used in a variety of situations to

communicate or transfer large quantities of data, generally for audio, video, or

multimedia applications from a host or source device where such data is generated,

manipulated, such as for transfer to specific deices, or otherwise processed, or stored; to

a client or receiving device, such as a video display or projection element, audio

WO 2005/091593 PCTIUS2005/008832

16

speakers, or other presentation device at a high rate. A typical application, which is

discussed below, is the transfer of data from either a portable computer or a wireless

telephone or modem to a visual display device such as a small video screen or a

wearable micro-display appliance, such as in the form of goggles or helmets containing

small projection lenses and screens, or from a host to client device within such

components. That is, from a processor or controller to an internal screen or other

presentation element, as well as from various internal, or external input devices

employing a client to an internally located (collocated within same device housing or

support structure) host, or connected thereto by a cable or conductors.

[00141] The characteristics or attributes of the MDDI are such that they are independent

of specific display or presentation technology. This is a highly flexible mechanism for

transferring data at a high rate without regards to the internal structure of that data nor

the functional aspects of the data or commands it implements. This allows the timing of

data packets being transferred to be adjusted to adapt to the idiosyncrasies of particular

client devices, such as for unique display desires for certain devices, or to meet the

requirements of combined audio and video for some Audio Visual systems, or for

certain input devices such as joysticks, touch pads, and so forth. The interface is very

display element or client device agnostic, as long as the selected protocol is followed.

In addition, the aggregate serial link data, or data rate, can vary over several orders of

magnitude which allows a communication system or host device designer to optimize

the cost, power requirements, client device complexity, and client device update rates.

[00142] The data interface is presented primarily for use in transferring large amounts of

high rate data over a "wired" signal link or small cable. However, some applications

may take advantage of a wireless link as well, including optical based links, provided it

is configured to use the same packet and data structures developed for the interface

protocol, and can sustain the desired level of transfer at low enough power consumption

or complexity to remain practical.

II. Environment

[00143] A typical application can be seen in FIGs. 1A and 1B where a portable or laptop

computer 100 and wireless telephone or PDA device 102 are shown communicating

data with display devices 104 and 106, respectively, along with audio reproduction

WO 2005/091593 PCTIUS2005/008832

17

systems 108 and 112. In addition, FIG. 1A shows potential connections to a larger

display or screen 114 or an image projector 116, which are only shown in one figure for

clarity, but are connectable to wireless device 102 as well. The wireless device can be

currently receiving data or have previously stored a certain amount of multimedia type

data in a memory element or device for later presentation for viewing and/or hearing by

an end user of the wireless device. Since a typical wireless device is used for voice and

simple text communications most of the time, it has a rather small display screen and

simple audio system (speakers) for communicating information to the device 102 user.

[00144] Computer 100 has a much larger screen, but still inadequate external sound

system, and still falls short of other multimedia presentation devices such as a high

definition television, or movie screens. Computer 100 is used for purposes of

illustration and other types of processors, interactive video games, or consumer

electronics devices can also be used with the invention. Computer 100 can employ, but

is not limited to or by, a wireless modem or other built in device for wireless

communications, or be connected to such devices using a cable or wireless link, as

desired.

[00145] This makes presentation of more complex or "rich" data a less than a useful or

enjoyable experience. Therefore, the industry is developing other mechanisms and

devices to present the information to end users and provide a minimum level of desired

enjoyment or positive experience.

[00146] As previously discussed above, several types of display devices have or are

currently being developed for presenting information to end users of device 100. For

example, one or more companies have developed sets of wearable goggles that project

an image in front of the eyes of a device user to present a visual display. When

correctly positioned such devices effectively "project" a virtual image, as perceived by a

user's eyes, which is much larger than the element providing the visual output. That is,

a very small projection element allows the eye(s) of the user to "see" images on a much

larger scale than possible with typical Liquid Crystal Display (LCD) screens and the

like. The use of larger virtual screen images also allows the use of much higher

resolution images than possible with more limited LCD screen displays. Other display

devices could include, but are not limited to, small LCD screens or various flat panel

display elements, projection lenses and display drivers for projecting images on a

surface, and so forth.

WO 2005/091593 PCTIUS2005/008832

18

[00147] There may also be additional elements connected to or associated with the use of

wireless device 102 or computer 100 for presenting an output to another user, or to

another device which in turn transfers the signals elsewhere or stores them. For

example, data may be stored in flash memory, in optical form, for example using a

writeable CD media or on magnetic media such as in a magnetic tape recorder and

similar devices, for later use.

[00148] In addition, many wireless devices and computers now have built-in MP3 music

decoding capabilities, as well as other advanced sound decoders and systems. Portable

computers utilize CD and DVD playback capabilities as a general rule, and some have

small dedicated flash memory readers for receiving pre-recorded audio files. The issue

with having such capabilities is that digital music files promise a highly increased

feature rich experience, but only if the decoding and playback process can keep pace.

The same holds true for the digital video files.

[00149] To assist with sound reproduction, external speakers 114 are shown in FIG. 1A,

which could also be accompanied by addition elements such as sub-woofers, or

"surround-sound" speakers for front and rear sound projection. At the same time,

speakers or earphones 108 are indicated as built-in to the support frame or mechanism

of micro-display device 106 of FIG. lB. As would be known, other audio or sound

reproduction elements can be used including power amplification or sound shaping

devices.

[00150] In any case, as discussed above, when one desires to transfer high quality or high

resolution image data and high quality audio information or data signals from a data

source to an end user over one or more communication links 110, a high data rate is

required. That is, transfer link 110 is clearly a potential bottleneck in the

communication of data as discussed earlier, and is limiting system performance, since

current transfer mechanisms do not achieve the high data rates typically desired. As

discussed above for example, for higher image resolutions such as 1024 by 1024 pixels,

with color depths of 24-32 bits per pixel and at data rates of 30 fps, the data rates can

approach rates in excess of 755 Mbps or more. In addition, such images may be

presented as part of a multimedia presentation which includes audio data and potentially

additional signals dealing with interactive gaming or communications, or various

commands, controls, or signals, further increasing the quantity or data and the data rate.

WO 2005/091593 PCTIUS2005/008832

19

[00151] It is also clear that fewer cables or interconnections required for establishing a

data link, means that mobile devices associated with a display are easier to use, and

more likely to be adopted by a larger user base. This is especially true where multiple

devices are commonly used to establish a full audio-visual experience, and more

especially as the quality level of the displays and audio output devices increases.

[00152] Another typical application related to many of the above and other

improvements in video screens and other output or input devices can be seen in FIGs.

1C and 1D where a portable or laptop computer 130 and wireless telephone or PDA

device 140 are shown communicating data with "internal" display devices 134 and 144,

respectively, along with audio reproduction systems 136 and 146.

[00153] In FIGs. 2A and 2B, small cut-away sections of the overall electronic devices or

products are used to show the location of one or more internal hosts and controllers in

one portion of the device with a generalized communication link, here 138 and 148,

respectively, connecting them to the video display elements or screens having the

corresponding clients, across a rotating joint of some known type used throughout the

electronics industry today. One can see that the amount of data involved in these

transfers requires a large number of conductors to comprise links 138 and 148. It is

estimated that such communication links are approaching 90 or more conductors in

order to satisfy today's growing needs for utilizing advanced color and graphical

interfaces, display elements, on such devices because of the types of parallel or other

known interface techniques available for transferring such data.

[00154] Unfortunately, the higher data rates exceed current technology available for

transferring data. Both in terms of the raw amount of data needing to be transferred per

unit time, and in terms of manufacturing reliable cost effective physical transfer

mechanisms.

[00155] What is needed is a technique, a structure, means or method, for transferring

data at higher rates for the data transfer link or communication path between

presentation elements and the data source, which allows for consistently low(er) power,

light weight, and as simple and economical a cabling structure as possible. Applicants

have developed a new technique, or method and apparatus, to achieve these and other

goals to allow an array of mobile, portable, or even fixed location devices to transfer

data to desired displays, micro-displays, or audio transfer elements, at very high data

rates, while maintaining a desired low power consumption, and complexity.

WO 2005/091593 PCTIUS2005/008832

III. High Rate Digital Data Interface System Architecture

[00156] In order to create and efficiently utilize a new device interface, a signal protocol

and system architecture has been formulated that provides a very high data transfer rate

using low power signals. The protocol is based on a packet and common frame

structure, or structures linked together to form a protocol for communicating a pre-

selected set of data or data types along with a command or operational structure

imposed on the interface.

A. Overview

[00157] The devices connected by or communicating over the MDDI link are called the

host and client, with the client typically being a display device of some type, although

other output and input devices are contemplated. Data from the host to the display

travels in the forward direction (referred to as forward traffic or link), and data from the

client to the host travels in the reverse direction (reverse traffic or link), as enabled by

the host. This is illustrated in the basic configuration shown in FIG. 3. In FIG. 3, a host

202 is connected to a client 204 using a bi-directional communication channel 206

which is illustrated as comprising a forward link 208 and a reverse link 210. However,

these channels are formed by a common set of conductors whose data transfer is

effectively switched between the forward or reverse link operations. This allows for

greatly reduced numbers of conductors, immediately addressing one of the many

problems faced with current approaches to high speed data transfer in low power

environments such as for mobile electronic devices.

[00158] As discussed elsewhere, the host comprises one of several types of devices that

can benefit from using the present invention. For example, host 202 could be a portable

computer in the form of a handheld, laptop, or similar mobile computing device. It

could also be a PDA, a paging device, or one of many wireless telephones or modems.

Alternatively, host 202 could be a portable entertainment or presentation device such as

a portable DVD or CD player, or a game playing device.

[00159] Furthermore, the host can reside as a host device or control element in a variety

of other widely used or planned commercial products for which a high speed

communication link is desired with a client. For example, a host could be used to

WO 2005/091593 PCTIUS2005/008832

21

transfer data at high rates from a video recording device to a storage based client for

improved response, or to a high resolution larger screen for presentations. An appliance

such as a refrigerator that incorporates an onboard inventory or computing system

and/or Bluetooth connections to other household devices, can have improved display

capabilities when operating in an internet or Bluetooth connected mode, or have reduced

wiring needs for in-the-door displays (a client) and keypads or scanners (client) while

the electronic computer or control systems (host) reside elsewhere in the cabinet. In

general, those skilled in the art will appreciate the wide variety of modem electronic

devices and appliances that may benefit from the use of this interface, as well as the

ability to retrofit older devices with higher data rate transport of information utilizing

limited numbers of conductors available in either newly added or existing connectors or

cables.

[00160] At the same time, client 204 could comprise a variety of devices useful for

presenting information to an end user, or presenting information from a user to the host.

For example, a micro-display incorporated in goggles or glasses, a projection device

built into a hat or helmet, a small screen or even holographic element built into a

vehicle, such as in a window or windshield, or various speaker, headphone, or sound

systems for presenting high quality sound or music. Other presentation devices include

projectors or projection devices used to present information for meetings, or for movies

and television images. Another example would be the use of touch pads or sensitive

devices, voice recognition input devices, security scanners, and so forth that may be

called upon to transfer a significant amount of information from a device or system user

with little actual "input" other than touch or sound from the user. In addition, docking

stations for computers and car kits or desk-top kits and holders for wireless telephones

may act as interface devices to end users or to other devices and equipment, and employ

either clients (output or input devices such as mice) or hosts to assist in the transfer of

data, especially where high speed networks are involved.

[00161] However, those skilled in the art will readily recognize that the present invention

is not limited to these devices, there being many other devices on the market, and

proposed for use, that are intended to provide end users with high quality images and

sound, either in terms of storage and transport or in terms of presentation at playback.

The present invention is useful in increasing the data throughput between various

WO 2005/091593 PCTIUS2005/008832

22

elements or devices to accommodate the high data rates needed for realizing the desired

user experience.

[00162] The inventive MDDI and communication signal protocol may be used to

simplify the interconnect between a host processor, controller, or circuit component (for

example), and a display within a device or device housing or structure (referred to as an

internal mode) in order to reduce the cost or complexity and associated power and

control requirements or constraints of these connections, and to improve reliability, not

just for connection to or for external elements, devices, or equipment (referred to as an

external mode).

[00163] The aggregate serial link data rate on each signal pair used by this interface

stnructure can vary over many orders of magnitude, which allows a system or device

designer to easily optimize cost, power, implementation complexity, and the display

update rate for a given application or purpose. The attributes of MDDI are independent

of display or other presentation device (target client) technology. The timing of data

packets transferred through the interface can be easily adjusted to adapt to

idiosyncrasies of particular clients such as display devices, sound systems, memory and

control elements, or combined timing requirements of audio-video systems. While this

makes it possible to have a system with a very small power consumption, it is not a

requirement of the various clients to have frame buffers in order to make use of the

MDDI protocol at least at some level.

B. Interface Types

[00164] The MDDI is contemplated as addressing at least fours, and potentially more,

somewhat distinct physical types of interfaces found in the communications and

computer industries. These are labeled simply as Type 1, Type 2, Type 3, and Type 4,

although other labels or designations may be applied by those skilled in the art

depending upon the specific applications they are used for or industry they are

associated with. For example, simple audio systems use fewer connections than more

complex multimedia systems, and may reference features such as "channels"

differently, and so forth.

[00165] The Type 1 interface is configured as a 6-wire, or other type of conductor or

conductive element, interface which makes it suitable for mobile or wireless telephones,

PDAs, electronic games, and portable media players, such as CD players, or MP3

WO 2005/091593 PCTIUS2005/008832

23

players, and similar devices or devices used on similar types of electronic consumer

technology. In one embodiment, a an interface can be configured as an 8-wire

(conductor) interface which is more suitable for laptop, notebook, or desktop personal

computers and similar devices or applications, not requiring rapid data updates and

which do not have a built-in MDDI link controller. This interface type is also

distinguishable by the use of an additional two-wire Universal Serial Bus (USB)

interface, which is extremely useful in accommodating existing operating systems or

software support found on most personal computers.

[00166] Type 2, Type 3, and Type 4 interfaces are suitable for high performance clients

or devices and use larger more complex cabling with additional twisted-pair type

conductors to provide the appropriate shielding and low loss transfers for data signals.

[00167] The Type 1 interface passes signals which can comprise display, audio, control,

and limited signaling information, and is typically used for mobile clients or client

devices that do not require high-resolution full-rate video data. A Type 1 interface can

easily support Super Video Graphics Array (SVGA) resolution at 30 fps plus 5.1

channel audio, and in a minimum configuration might use only three wire pairs total,

two pairs for data transmission and one pair for power transfer. This type of interface is

primarily intended for devices, such as mobile wireless devices, where a USB host is

typically not available within the such device for connection and transfer of signals. In

this configuration, the mobile wireless device is a MDDI host device, and acts as the

"master" that controls the communication link from the host, which generally sends data

to the client (forward traffic or link) for presentation, display or playback.

[00168] In this interface, a host enables receipt of communication data at the host from

the client (reverse traffic or link) by sending a special command or packet type to the

client that allows it to take over the bus (link) for a specified duration and send data to

the host as reverse packets. This is illustrated in FIG. 4, where a type of packet referred

to as an encapsulation packet (discussed below) is used to accommodate the transfer of

reverse packets over the transfer link, creating the reverse link. The time interval

allocated for the host to poll the client for data is pre-determined by the host, and is

based on the requirements of each specified application. This type of half-duplex bi-

directional data transfer is especially advantageous where a USB port is not available

for transfer of information or data from the client.

WO 2005/091593 PCTIUS2005/008832

24

[00169] High-performance displays capable of IHDTV type or similar high resolutions

require around 1.5 Gbps rate data streams in order to support full-motion video. The

Type 2 interface supports high data rates by transmitting 2 bits in parallel, the Type 3 by

transmitting 4 bits in parallel, and the Type 4 interface transfers 8 bits in parallel. Type

2 and Type 3 interfaces use the same cable and connector as Type 1 but can operate at

twice and four times the data rate to support higher-performance video applications on

portable devices. A Type 4 interface is suited for very high performance clients or

displays and requires a slightly larger cable that contains additional twisted-pair data

signals.

[00170] The protocol used by the MDDI allows each Type 1, 2, 3, or 4 host to generally

communicate with any Type 1, 2, 3, or 4 client by negotiating what is the highest data

rate possible that can be used. The capabilities or available features of what can be

referred to as the least capable device is used to set the performance of the link. As a

rule, even for systems where the host and client are both capable using Type 2, Type 3,

or Type 4 interfaces, both begin operation as a Type 1 interface. The host then

determines the capability of the target client, and negotiates a hand-off or

reconfiguration operation to either Type 2, Type 3, or Type 4 mode, as appropriate for

the particular application.

[00171] It is generally possible for the host to use the proper link-layer protocol

(discussed further below) and step down or again reconfigure operation at generally any

time to a slower mode to save power or to step up to a faster mode to support higher

speed transfers, such as for higher resolution display content. For example, a host may

change interface types when the system switches from a power source such as a battery

to AC power, or when the source of the display media switches to a lower or higher

resolution format, or a combination of these or other conditions or events may be

considered as a basis for changing an interface type, or transfer mode.

[00172] It is also possible for a system to communicate data using one mode in one

direction and another mode in another direction. For example, a Type 4 interface mode

could be used to transfer data to a display at a high rate, while a Type 1 mode is used

when transferring data to a host device from peripheral devices such as a keyboard or a

pointing device. It will be appreciated by one skilled in the art that hosts and clients

may communicate outgoing data at different rates.

WO 2005/091593 PCTIUS2005/008832

[00173] Often, users of the MDDI protocol may distinguish between an "external" mode

and an "internal" mode. An external mode describes the use of the protocol and

interface to connect a host in one device to a client outside of that device that is up to

about 2 meters or so from the host. In this situation, the host may also send power to

the external client so that both devices can easily operate in a mobile environment. An

internal mode describes when the host is connected to a client contained inside the same

device, such as within a common housing or support frame or structure of some kind.

An example would be applications within a wireless phone or other wireless device, or a

portable computer or gaming device where the client is a display or display driver, or an

input device such as a keypad or touch-pad, or a sound system, and the host is a central

controller, graphics engine, or CPU element. Since a client is located much closer to the

host in internal mode applications as opposed to external mode applications, there are

generally no requirements discussed for the power connection to the client in such

configurations.

C. Physical Interface Structure

[00174] The general disposition of a device or link controller for establishing

communications between host and client devices is shown in FIGs. 5 and 6. In FIGs.

and 6, a MDDI link controller 402 and 502 is shown installed in a host device 202 and a

MDDI link controller 404 and 504 is shown installed in a client device 204. As before,

host 202 is connected to a client 204 using a bi-directional communication channel 406

comprising a series of conductors. As discussed below, both the host and client link

controllers can be manufactured as an integrated circuit using a single circuit design that

can be set, adjusted, or programmed to respond as either a host controller (driver) or a

client controller (receiver). This provides for lower costs due to larger scale

manufacturing of a single circuit device.

[00175] In FIG. 6, a MDDI link controller 502 is shown installed in a host device 202'

and a MDDI link controller 504 is shown installed in a client device 204'. As before,

host 202' is connected to a client 204' using a bi-directional communication channel 506

comprising a series of conductors. As discussed before, both the host and client link

controllers can be manufactured using a single circuit design.

[00176] Signals passed between a host and a client, such as a display device, over the

MDDI link, or the physical conductors used, are also illustrated in FIGs. 5 and 6. As

WO 2005/091593 PCT/US2005/008832

26

seen in FIGs. 5 and 6, the primary path or mechanism for transferring data through the

MDDI uses data signals labeled as MDDI_Data0+/- and MDDI_Stb+/-. Each of these is

low voltage data signals that are transferred over a differential pair of wires in a cable.

There is only one transition on either the MDDI_Data0 pair or the MDDIStb pair for

each bit sent over the interface. This is a voltage based transfer mechanism not current

based, so static current consumption is nearly zero. The host drives the MDDI_Stb

signals to the client display.

[00177] While data can flow in both the forward and reverse directions over the

MDDI_Data pairs, that is, it is a bi-directional transfer path, the host is the master or

controller of the data link. The MDDI_DataO and MDDI-Stb signal paths are operated

in a differential mode to maximize noise immunity. The data rate for signals on these

lines is determined by the rate of the clock sent by the host, and is variable over a range

of about 1 kbps up to 400 Mbps or more.

[00178] The Type 2 interface contains one additional data pair or conductors or paths

beyond that of the Type 1, referred to as MDDI_Datal+/-. The Type 3 interface

contains two additional data pairs or signal paths beyond that of the Type 2 interface

referred to as MDDI_Data2+/-, and MDDI_Data3+/-. The Type 4 interface contains

four more data pairs or signal paths beyond that of the Type 3 interface referred to as:

MDDIdata4+/-, MDDI_Data5+/-, MDDI_Data6+/-, and MDDI_Data7+/-,

respectively. In each of the above interface configurations, a host can send power to the

client or display using the wire-pair or signals designated as HOST_Pwr and

HOST Gnd. As discussed further below, power transfer can also be accommodated, if

desired, in some configurations on the MDDI_data4+/-,

MDDI_Data6+/-, or MDDIData7+/- conductors when an interface "Type" is being

used that employs fewer conductors than are available or present for the other modes.

This Power transfer is generally employed for external modes, there generally being no

need for internal modes, although some applications may differ.

[00179] A summary of the signals passed between the host and client (display) over the

MDDI link for various modes are illustrated in Table I, below, in accordance with the

interface type.

WO 2005/091593 PCT/US2005/008832

27

Table I

Type 1 Type 2 Type 3 Type 4

HOST Pwr/Gnd HOST Pwr/Gnd HOST Pwr/Gnd HOST_Pwr/Gnd
MDDI Stb+/- MDDI Stb+/- MDDIStb+/- MDDIStb+/-

MDDI DataO+/- MDDI Data0+/- MDDI Data0+/- MDDI_DataO+/-
MDDI Datal+/- MDDI Datal+/- MDDIDatal+/-

MDDI Data2+/- MDDI_Data2+/-
MDDI_Data3+/- MDDI_Data3+/-

Optional Pwr Optional Pwr Optional Pwr MDDI_Data4+/-

Optional Pwr Optional Pwr Optional Pwr

Optional Pwr Optional Pwr Optional Pwr MDDI_Data6+/-

Optional Pwr Optional Pwr Optional Pwr MDDIData7+/-

[00180] Also note that the HOST_Pwr/Gnd connections for transfer from the host are

provided generally for external modes. Internal applications or modes of operation

generally have clients that draw power directly from other internal resources, and do not

use MDDI to control power distribution, as would be apparent to one skilled in the art,

so such distribution is not discussed in further detail here. However, it is certainly

possible to allow power to be distributed through the MDDI to allow for certain kinds of

power control, synchronization, or interconnection convenience, for example, as would

be understood by one skilled in the art.

Cabling generally used to implement the above structure and operation is nominally on

the order of 1.5 meters in length, generally 2 meters or less, and contains three twisted

pairs of conductors, each in turn being multi-strand wire, nominally between 32

American Wire Gauge (AWG) to 28 AWG. Although, the wire size is not constrained

to this range, as those skilled in the art will appreciate, electrical specifications or

constraints should be met for maximum total end-to-end resistance, maximum

capacitance per foot, impedance of each pair, and crosstalk.

[00181] A foil shield covering is wrapped or otherwise formed above the entire, here

three, set or group of twisted pairs, and a drain wire as an additional drain wire. The

twisted pairs and shield drain conductor terminate in the client connector with the shield

connected to the shield for the client, and there is an insulating layer, covering the entire

cable, as would be well known in the art. The wires are paired as: HOST_Gnd with

HOSTPwr; MDDI_Stb+ with MDDI_Stb-; MDDI_DataO+ with MDDI_DataO-;

MDDIDatal+ with MDDIDatal-; and so forth. However, a variety of conductors and

WO 2005/091593 PCT/US2005/008832

28

cabling can be used, as would be understood in the art, to implement the embodiments

of the invention, depending upon specific applications. For example, heavier outside

coatings or even metallic layers may be used to protect the cable in some applications,

while thinner, flatter conductive ribbon type structures may be well suited to other

applications.

D. Data Types and Rates

[00182] To achieve a useful interface for a full range of user experiences and

applications, the MDDI provides support for a variety of clients and display

information, audio transducers, keyboards, pointing devices, and many other input or

output devices that might be integrated into or working in concert with a mobile

communication, computation, or display device, along with control information, and

combinations thereof. The MDDI is designed to be able to accommodate a variety of

potential types of streams of data traversing between the host and client in either the

forward or reverse link directions using a minimum number of cables or conductors.

Both isochronous streams and asynchronous stream (updates) are supported. Many

combinations of data types are possible as long as the aggregate data rate is less than or

equal to the maximum desired MDDI link rate, which is limited by the maximum serial

rate and number of data pairs employed. These could include, but are not limited to,

those items listed in Tables II and III below.

Table H

Transferring from Host to Client
isochronous video data 720x480,12bit, 30f/s -124.5 Mbps
isochronous stereo audio data 44.1kHz, 16bit, stereo 1.4 Mbps

asynchronous graphics data 800x600, 12bit, 10f/s, stereo ~115.2 Mbps

asynchronous control Minimum 1.0 Mbps

Table III

Transferring from Client to Host
isochronous voice data 8 kHz, 8bit 1.0 Mbps
isochronous video data 640x480, 12bit, 24f/s 88.5 Mbps

asynchronous status, user input, etc. minimum 1.0 Mbps

WO 2005/091593 PCTIUS2005/008832

29

[00183] The interface is not fixed but extensible so that it can support the transfer of a

variety of information "types" which includes user-defined data, for future system

flexibility. Specific examples of data to be accommodated are: full-motion video,

either in the fornt of full or partial screen bitmap fields or compressed video; static

bitmaps at low rates to conserve power and reduce implementation costs; PCM or

compressed audio data at a variety of resolutions or rates; pointing device position and

selection, and user-definable data for capabilities yet to be defined. Such data may also

be transferred along with control or status information to detect device capability or set

operating parameters.

[00184] Embodiments of the invention advance the art for use in data transfers that

include, but are not limited to: watching a movie (video display and audio); using a

personal computer with limited personal viewing (graphics display, sometimes

combined with video and audio); playing a video game on a PC, console, or personal

device (motion graphics display, or synthetic video and audio); "surfing" the Internet,

using devices in the form of a video phone (bi-directional low-rate video and audio), a

camera for still digital pictures, or a camcorder for capturing digital video images; using

a phone, computer, or PDA docked with a projector to give a presentation or docked

with a desktop docking station connected to a video monitor, keyboard, and mouse; and

for productivity enhancement or entertainment use with cell phones, smart phones, or

PDAs, including wireless pointing devices and keyboard data.

[00185] The high speed data interface as discussed below is presented in terms of

providing large amounts of A-V type data over a communication or transfer link which

is generally configured as a wire-line or cable type link. However, it will be readily

apparent that the signal structure, protocols, timing, or transfer mechanism could be

adjusted to provide a link in the form of an optical or wireless media, if it can sustain

the desired level of data transfer.

[00186] The MDDI signals use a concept known as the Common Frame Rate (CFR) for

the basic signal protocol or structure. The idea behind using of a Common Frame Rate

is to provide a synchronization pulse for simultaneous isochronous data streams by

sending Sub-frame Header Packets at a rate that can be used to derive clocks or frame

timing for multiple streams. The rate at which Sub-frame Header Packets are sent is the

Common Frame Rate. A client device can use this Common Frame Rate as a time

reference. A low CFR increases channel efficiency by decreasing overhead to transmit

WO 2005/091593 PCTIUS2005/008832

the sub-frame header. On the other hand, a high CFR decreases the latency, and allows

a smaller elastic data buffer for audio samples. The CFR of the present inventive

interface is dynamically programmable and may be set at one of many values that are

appropriate for the isochronous streams used in a particular application. That is, the CF

value is selected to best suit the given client and host configuration, as desired.

[00187] The number of bytes generally required per sub-frame, which is adjustable or

programmable, for isochronous data steams that are most likely to be used with an

application, such as for a video or micro-display are shown in Table IV.

Table IV

Common Frame Rate (CFR)= 300 Hz

X Y Bit Frame Channel Rate Bytes/
Rate (Mbps) Sub-

frame

Computer Game 720 480 24 30 1 248.832 103680

Computer 800 600 24 10 1 115.200 48000
Graphics
Video 640 480 12 29.97 or 1 221.184 92160

CD Audio 1 1 16 44100 2 1.4112 588

Voice 1 1 8 8000 1 0.064 26-2/3

[00188] Fractional counts of bytes per sub-frame are easily obtained using a simple

programmable M/N counter structure. For example, a count of 26-2/3 bytes per sub-

frame is implemented by transferring 2 sub-frames containing 27 bytes each followed

by one sub-frame containing 26 bytes. A smaller CFR may be selected to produce an

integer number of bytes per sub-frame. However, generally speaking, to implement a

simple M/N counter in hardware should require less area within an integrated circuit

chip or electronic module used to implement part or all of embodiments of the invention

than the area needed for a larger audio sample FIFO buffer.

[00189] An exemplary application that illustrates the impact of different data transfer

rates and data types is a Karaoke system. For Karaoke, a system where an end user, or

users, sings along with a music video program. Lyrics of the song are displayed

somewhere on, typically at the bottom of, a screen so the user knows the words to be

sung, and roughly the timing of the song. This application requires a video display with

WO 2005/091593 PCT/US2005/008832

31

infrequent graphics updates, and mixing of the user's voice, or voices, with a stereo

audio stream.

[00190] If one assumes a common frame rate of 300 Hz, then each sub-frame will consist

of: 92,160 bytes of video content and 588 bytes of audio content (based on 147 16-bit

samples, in stereo) over the forward link to the client, and an average of 26.67 (26-2/3)

bytes of voice are sent back from a microphone to the mobile Karaoke machine.

Asynchronous packets are sent between the host and the client, possibly a head mounted

display. This includes the bottom quarter-screen height being updated with lyric text at

1/30 th of second intervals or periods, and other miscellaneous control and status

commands sent in sub-frames when lyric text is not being updated.

[00191] Table V, shows how data is allocated within a sub-frame for the Karaoke

example. The total rate being used is selected to be about 279 Mbps. A slightly higher

rate of 280 Mbps allows about another 400 bytes of data per sub-frame to be transferred

which allows the use of occasional control and status messages.

Table V

Overhead Bytes Media Bytes
Element Rateper sub-frame per sub-frame

Music Video at 640 x 480 pixels and 30 fps 2 28 56 92160
Lyric Text at 640 x 120 pixels and 1 fps 28 23040
Updated in 10 sub-frames, 1/30 sec.
CD Audio at 44,100 sps, stereo, 16-bit 2 16 32 588

26.67
Voice at 8,000 sps, mono, 8-bit 125 27 max)
Sub-frame Header 22
Total Bytes/CF 263 115815
Total Rate (Mbps) (263+115815)*8*300 278.5872

III.(Continued) High Rate Digital Data Interface System Architecture

E. Link Layer

[00192] Data transferred using the MDDI high-speed serial data signals consists of a

stream of time-multiplexed packets that are linked one after the other. Even when a

transmitting device has no data to send, a MDDI link controller generally automatically

sends filler packets, thus, maintaining a stream of packets. The use of a simple packet

WO 2005/091593 PCTIUS2005/008832

32

structure ensures reliable isochronous timing for video and audio signals or data

streams.

[00193] Groups of packets are contained within signal elements or structures referred to

as sub-frames, and groups of sub-frames are contained within signal elements or

structures referred to as a media-frame. A sub-frame contains one or more packets,

depending on their respective size and data transfer uses, and a media-frame contains

one more sub-frames. The largest sub-frame provided by the protocol employed by the

embodiments presented here is on the order of 232_1 or 4,294,967,295 bytes, and the

largest media-frame size then becomes on the order of 216-1 or 65,535 sub-frames.

[00194] A special sub-frame header packet contains a unique identifier that appears at

the beginning of each sub-frame, as is discussed below. That identifier is also used for

acquiring the frame timing at the client device when communication between the host

and client is initiated. Link timing acquisition is discussed in more detail below.

[00195] Typically, a display screen is updated once per media-frame when full-motion

video is being displayed. The display frame rate is the same as the media-frame rate.

The link protocol supports full-motion video over an entire display, or just a small

region of full-motion video content surrounded by a static image, depending on the

desired application. In some low-power mobile applications, such as viewing web

pages or email, the display screen may only need to be updated occasionally. In those

situations, it is advantageous to transmit a single sub-frame and then shut down or

inactivate the link to minimize power consumption. The interface also supports effects

such as stereo vision, and handles graphics primitives.

[00196] Sub-frames allow a system to enable the transmission of high-priority packets on

a periodic basis. This allows simultaneous isochronous streams to co-exist with a

minimal amount of data buffering. This is one advantage embodiments provide to the

display process, allowing multiple data streams (high speed communication of video,

voice, control, status, pointing device data, etc.) to essentially share a common channel.

It transfers information using relatively few signals. It also enables display-technology-

specific actions to exist, such as horizontal sync pulses and blanking intervals for a CRT

monitor, or for other client-technology-specific actions.

WO 2005/091593 PCTIUS2005/008832

33

F. Link Controller

[00197] The MDDI link controller shown in FIGs. 5 and 6 is manufactured or assembled

to be a completely digital implementation with the exception of the differential line

receivers which are used to receive MDDI data and strobe signals. However, even the

differential line drivers and receivers can be implemented in the same digital integrated

circuits with the link controller, such as when making a CMOS type IC. No analog

functions or Phase Lock Loops (PLLs) are required for bit recovery or to implement the

hardware for the link controller. The host and client link controllers contain very

similar functions, with the exception of the client interface which contains a state

machine for link synchronization. Therefore, the embodiments of the invention allow

the practical advantage of being able to create a single controller design or circuit that

can be configured as either a host or client, which can reduce manufacturing costs for

the link controllers, as a whole.

IV. Interface Link Protocol

A. Frame structure

[00198] The signal protocol or frame structure used to implement the forward link

communication for packet transfer is illustrated in FIG. 7. As shown in FIG. 7,

information or digital data is grouped into elements known as packets. Multiple packets

are in turn grouped together to form what are referred to as a "sub-frame," and multiple

sub-frames are in turn grouped together to form a "media" frame. To control the

formation of frames and transfer of sub-frames, each sub-frame begins with a specially

predefined packet referred to as a Sub-frame Header Packet (SHP).

[00199] The host device selects the data rate to be used for a given transfer. This rate

can be changed dynamically by the host device based on both the maximum transfer

capability of the host, or the data being retrieved from a source by the host, and the

maximum capability of the client, or other device the data is being transferred to.

[00200] A recipient client device designed for, or capable of, working with the MDDI or

inventive signal protocol is able to be queried by the host to determine the maximum, or

current maximum, data transfer rate it can use, or a default slower minimum rate may be

used, as well as useable data types and features supported. This information could be

transferred using a Client Capability Packet (CCP), as discussed further below. The

WO 2005/091593 PCTIUS2005/008832

34

client display device is capable of transferring data or communicating with other

devices using the interface at a pre-selected minimum data rate or within a minimum

data rate range, and the host will perform a query using a data rate within this range to

determine the full capabilities of the client devices.

[00201] Other status information defining the nature of the bitmap and video frame-rate

capabilities of the client can be transferred in a status packet to the host so that the host

can configure the interface to be as efficient or optimal as practical, or desired within

any system constraints.

[00202] The host sends filler packets when there are no (more) data packets to be

transferred in the present sub-frame, or when the., host cannot transfer at a rate sufficient

to keep pace with the data transmission rate chosen for the forward link. Since each

sub-frame begins with a sub-frame header packet, the end of the previous sub-frame

contains a packet (most likely a filler packet) the exactly fills the previous sub-frame.

In the case of a lack of room for data bearing packets per se, a filler packet will most

likely be the last packet in a sub-frame, or at the end of a next previous sub-frame and

before a sub-frame header packet. It is the task of the control operations in a host

device to ensure that there is sufficient space remaining in a sub-frame for each packet

to be transmitted within that sub-frame. At the same time, once a host device initiates

the sending of a data packet, the host must be able to successfully complete a packet of

that size within a frame without incurring a data under-run condition.

[00203] In one aspect of embodiments, sub-frame transmission has two modes. One

mode is a periodic sub-frame mode, or periodic timing epochs, used to transmit live

video and audio streams. In this mode, the Sub-frame length is defined as being non-

zero. The second mode is an asynchronous or non-periodic mode in which frames are

used to provide bitmap data to a client when new information is available. This mode is

defined by setting the sub-frame length to zero in the Sub-frame Header Packet. When

using the periodic mode, sub-frame packet reception may commence when the client

has synchronized to the forward link frame structure. This corresponds to the "in sync"

states defined according to the state diagram discussed below with respect to FIG. 49 or

FIG. 63. In the asynchronous non-periodic sub-frame mode, reception commences after

the first Sub-frame Header packet is received.

WO 2005/091593 PCTIUS2005/008832

B. Overall Packet Structure

[00204] The format or structure of packets used to formulate the communication or

signal protocol, or method or means for transferring data, implemented by the

embodiments are presented below, keeping in mind that the interface is extensible and

additional packet structures can be added as desired. The packets are labeled as, or

divided into, different "packet types" in terms of their function in the interface, that is,

commands, information, value, or data they transfer or are associated with. Therefore,

each packet type denotes a pre-defined packet structure for a given packet which is used

in manipulating the packets and data being transferred. As will be readily apparent, the

packets may have pre-selected lengths or have variable or dynamically changeable

lengths depending on their respective functions. The packets could also bear differing

names, although the same function is still realized, as can occur when protocols are

changed during acceptance into a standard. The bytes or byte values used in the various

packets are configured as multi-bit or 16-bit) unsigned integers. A summary of the

packets being employed along with their "type" designations, listed in type order, is

shown in Tables VI-1 through VI-4.

[00205] Each table represents a general "type" of packet within the overall packet

structure for ease in illustration and understanding. There is no limitation or other

impact implied or being expressed for the invention by these groupings, and the packets

can be organized in many other fashions as desired. The direction in which transfer of a

packet is considered valid is also noted.

Table VI -1
Link Control Packets

Packet Valid in Valid in
Packet Name Type Forward Reverse

Sub-frame Header Packet 15359 x
Filler Packet 0 x x

Reverse Link Encapsulation Packet 65 x

Link Shutdown Packet 69 x

Display Power State Packet 75 x

Forward Audio Channel Enable Packet 78 x

Perform Type Handoff Packet 77 x
Round Trip Delay Measurement Packet 82 x
Forward Link Skew Calibration Packet 83 x

WO 2005/091593 PCT/US2005/008832

36

Table VI -2
Basic Media Stream Packets

Packet Valid in Valid in
Packet Name Type Forward Reverse

Video Stream Packet 16 x x
Audio Stream Packet 32 x x

1-
Reserved Stream Packets 18- 31, x x

33-55
User-Defined Stream Packets 56 63 x x
Color Map Packet 64 x x
Reverse Audio Sample Rate Packet 79 x
Transparent Color Enable Packet 81 x

Table VI -3
Client Status and Control Packets

Packet Valid in Valid in
Packet Name Type Forward Reverse

Client Capability Packet 66 x
Keyboard Data Packet 67 x x
Pointing Device Data Packet 68 x x
Client Request and Status Packet 70 x
Digital Content Protection Overhead 80 x x
Packet
Request VCP Feature Packet 128 x
VCP Feature Reply Packet 129 x
Set VCP Feature Packet 130 x
Request Valid Parameter Packet 131 x
Valid Parameter Reply Packet 132 x
Request Specific Status Packet 138 x
Valid Status Reply List Packet 139 x
Personal Display Capability Packet 141 x
Client Error Report Packet 142 x
Scaled Video Stream Capability Packet 143 x
Client Identification Packet 144 x
Alternate Display Capability Packet 145 x
Register Access Packet 146 x x

WO 2005/091593 PCTIUS2005/008832

37

Table VI -4
Advanced Graphic and Display Packets

Packet Valid in Valid in
Packet Name Type Forward Reverse

Bitmap Block Transfer Packet 71 x
Bitmap Area Fill Packet 72 x

Bitmap Pattern Fill Packet 73 x
Read Frame Buffer Packet 74 x
Scaled Video Stream Capability Packet 143 x

Scaled Video Stream Setup Packet 136 x
Scaled Video Stream Acknowledgement 137 x
Packet
Scaled Video Stream Packet 18 x

[00206] Something that is clear from other discussions within this text is that the Sub-

frame Header, Filler, Reverse Encapsulation, Link Shutdown, Client Capability, and

Client Request and Status Packets are each considered very important to, or even

required in many embodiments of communication interfaces for External Mode

operation. However Reverse Encapsulation, Link Shutdown, Client Capability, and

Client Request and Status Packets, can be or are more likely to be considered optional

for Internal Mode operation. This creates yet another type of MDDI protocol which

allows communication of data at very high speeds with a reduced set of communications

packets, and corresponding simplification of control and timing.

[00207] Packets have a common basic structure or overall set of minimum fields

comprising a Packet Length field, a Packet Type field, Data Bytes field(s), and a CRC

field, which is illustrated in FIG. 8. As shown in FIG. 8, the Packet Length field

contains information, in the form of a multi-bit or -byte value, that specifies the total

number of bits in the packet, or its length between the packet length field and the CRC

field. In one embodiment, the packet length field contains a 16-bit or 2-byte wide,

unsigned integer, that specifies the packet length. The Packet Type field is another

multi-bit field which designates the type of information that is contained within the

packet. In an exemplary embodiment, this is an 16-bit or 2-byte wide value, in the form

of an 16-bit unsigned integer, and specifies such data types as display capabilities,

handoff, video or audio streams, status, and so forth.

[00208] A third field is the Data Bytes field, which contains the bits or data being

transferred or sent between the host and client devices as part of that packet. The format

WO 2005/091593 PCTIUS2005/008832

38

of the data is defined specifically for each packet type according to the specific type of

data being transferred, and may be separated into a series of additional fields, each with

its own format requirements. That is, each packet type will have a defined format for

this portion or field. The last field is the CRC field which contains the results of a 16-

bit cyclic redundancy check calculated over the Data Bytes, Packet Type, and Packet

Length fields, which is used to confirm the integrity of the information in thl-e packet. In

other words, calculated over the entire packet except for the CRC field itself. The client

generally keeps a total count of the CRC errors detected, and reports this count back to

the host in the Client Request and Status Packet (see further below).

[00209] Generally, these field widths and organization are designed to keep 2-byte fields

aligned on an even byte boundary, and 4-byte fields aligned on 4-byte boundaries. This

allows packet structures to be easily built in a main memory space of, or associated

with, a host and a client without violating the data-type alignment rules encountered for

most or typically used processors or control circuits.

[00210] During transfer of the packets, fields are transmitted starting with the Least

Significant Bit (LSB) first and ending with the Most Significant Bit (MSB) transmitted

last. Parameters that are more than one byte in length are transmitted using the least

significant byte first, which results in the same bit transmission pattern being used for a

parameter greater than 8 bits in length, as is used for a shorter parameter where the LSB

is transmitted first. The data fields of each packet are generally transmitted in the order

that they are defined in the subsequent sections below, with the first field listed being

transmitted first, and the last field described being transmitted last. The data on the

MDDI_DataO signal path is aligned with bit of bytes transmitted on the interface in

any of the modes, Type 1, Type 2, Type 3, or Type-4.

[00211] When manipulating data for displays, the data for arrays of pixels are transmitted

by rows first, then columns, as is traditionally done in the electronics arts. In other

words, all pixels that appear in the same row in a bit map are transmitted in order with

the left-most pixel transmitted first and the right-most pixel transmitted last. After the

right-most pixel of a row is transmitted then the next pixel in the sequence is the left-

most pixel of the following row. Rows of pixels are generally transmitted in order from

top to bottom for most displays, although other configurations can be accommodated as

needed. Furthermore, in handling bitmaps, the conventional approach, which is

followed here, is to define a reference point by labeling the upper-left corner of a bitmap

WO 2005/091593 PCTIUS2005/008832

39

as location or offset The X and Y coordinates used to define or determine a

position in the bitmap increase in value as one approaches the right and bottom of the

bitmap, respectively. The first row and first column (upper left comer of an image) start

with an index value of zero. The magnitude of the X coordinate increases toward the

right side of the image, and the magnitude of the Y coordinate increases toward the

bottom of the image as viewed by the user of the display.

[00212] A display window is the visible portion of a bitmap, the portion of the pixels in

the bitmap that can be seen by the user on the physical display medium. It is often the

case that the display window and the bitmap are the same size. The upper-left corner of

a display window always displays bitmap pixel location The width of the display

window corresponds to the X axis of the bitmap, and the display window width for this

embodiment is less than or equal to the width of the corresponding bitmap. The height

of the window corresponds to the Y axis of the bitmap, and the display window height

for this embodiment is less than or equal to the height of the corresponding bitmap. The

display window itself is not addressable in the protocol because it is only defined as the

visible portion of a bitmap.

[00213] The relationship between a bitmaps and display windows is well known in the

computer, electronic art, Internet communication, and other electronics related arts.

Therefore, no further discussion or illustration of these principles is provided here.

C. Packet Definitions

1. Sub-Frame Header Packet

[00214] The Sub-Frame Header packet is the first packet of every sub-frame, and has a

basic structure as illustrated in FIG. 9. The Sub-Frame Header Packet is used for host-

client synchronization, every host should be able to generate this packet, while every

client should be able to receive and interpret this packet. As can be seen in one

embodiment in FIG. 9, this type of packet is structured to have Packet Length, Packet

Type, Unique Word, Reserved 1, Sub-Frame Length, Protocol Version, Sub-Frame

Count, and Media-frame Count fields, generally in that order. In one embodiment, this

type of packet is generally identified as a Type 15359 (Ox3bff hexadecimal) packet and

uses a pre-selected fixed length of 20 bytes, not including the packet length field.

[00215] The Packet Type field and the Unique Word field each use a 2 byte value (16-bit

unsigned integer). The 4-byte combination of these two fields together forms a 32-bit

WO 2005/091593 PCTIUS2005/008832

unique word with good autocorrelation. In one embodiment, the actual unique word is

0x005a3bff, where the lower 16 bits are transmitted first as the Packet Type, and the

most significant 16 bits are transmitted afterward.

[00216] The Reserved 1 field contains 2 bytes that are reserved space for future use, and

is generally configured at this point with all bits set to zero. One purpose of this field is

to cause subsequent 2-byte fields to align to a 16-bit word address and cause 4-byte

fields to align to a 32-bit word address. The least significant byte is reserved to indicate

whether or not a host is capable of addressing multiple client devices. A value of zero

for this byte is reserved to indicate that the host is capable of operating only with a

single client device.

[00217] The Sub-frame Length field contains 4 bytes of information, or values, that

specifies the number of bytes per sub-frame. In one embodiment, the length of this field

may be set equal to zero to indicate that only one sub-frame will be transmitted by the

host before the link is shut down into an idle state. The value in this field can be

dynamically changed "on-the-fly" when transitioning from one sub-frame to the next.

This capability is useful in order to make minor timing adjustments in the sync pulses

for accommodating isochronous data streams. If the CRC of the Sub-frame Header

packet is not valid then the link controller should use the Sub-frame Length of the

previous known-good Sub-frame Header packet to estimate the length of the current

sub-frame.

[00218] The Protocol Version field contains 2 bytes that specify the protocol version

used by the host. The Protocol Version field may be set to to specify the first or

current version of the protocol as being used. This value will change over time as new

versions are created, and is already being upgraded to a value of for some version

fields. Version values will probably or generally follow a current version number for an

approved standards document which covers interfaces such as MDDI, as would be

known.

[00219] The Sub-frame Count field contains 2 bytes that specify a sequence number that

indicates the number of sub-frames that have been transmitted since the beginning of the

media-frame. The first sub-frame of the media-frame has a Sub-frame Count of zero.

The last sub-frame of the media-frame has a value of n-1, where n is the number of sub-

frames per media-frame. The value of the Sub-frame Count field is equal to the Sub-

frame Count sent in the previous Sub-Frame packet plus 1, except for a first sub-frame

WO 2005/091593 PCTIUS2005/008832

41

of a media-frame which will have a count of zero. Note that if the Sub-frame Length is

set equal to zero (indicating a non-periodic sub-frame) then the Sub-frame count is also

set equal to zero.

[00220] The Media-frame Count field contains 4 bytes (32-bit tunsigned integer) that

specify a sequence number that indicates the number of media-frames that have been

transmitted since the beginning of the present media item or data b>eing transferred. The

first media-frame of a media item has a Media-frame Count of zero. The Media-frame

Count increments just prior to the first sub-frame of each media-frame and wraps back

to zero after the maximum Media-frame Count (for example, media-frame number

23'1 4,294,967,295) is used. The Media-frame Count value may be reset generally at

any time by the Host to suit the needs of an end application.

2. Filler Packet

[00221] A filler packet is a packet that is transferred to, or from, a client device when no

other information is available to be sent on either the forward or reverse link. It is

recommended that filler packets have a minimum length in order to allow maximum

flexibility in sending other packets when required. At the very end of a sub-frame or a

reverse link encapsulation packet (see below), a link controller sets the size of the filler

packet to fill the remaining space to maintain packet integrity. The Filler Packet is

useful to maintain timing on the link when the host or client have no information to send

or exchange. Every host and client needs to be able to send and receive this packet to

make effective use of the interface.

[00222] An exemplary embodiment of the format and contents of a Filler Packet are

shown in FIG. 10. As shown in FIG. 10, this type of packet is structured to have Packet

Length, Packet Type, Filler Bytes, and CRC fields. In one embodiment, this type of

packet is generally identified as a Type 0, which is indicated in the 2-byte Type field.

The bits or bytes in the Filler Bytes field comprise a variable anumber of all zero bit

values to allow the filler packet to be the desired length. The smallest filler packet

contains no bytes in this field. That is, the packet consists of cnly the packet length,

packet type, and CRC, and in one embodiment uses a pre-selected fixed length of 6

bytes or a Packet Length value of 4. The CRC value is determired for all bytes in the

packet including the Packet Length, which may be excluded in some other packet types.

WO 2005/091593 PCTIUS2005/008832

42

3. Video Stream Packet

[00223] Video Stream Packets carry video data to update typically rectangular regions of

a display device. The size of this region may be as small as a single pixel or as large as

the entire display. There may be an almost unlimited number of streams displayed

simultaneously, limited by system resources, because all context required to display a

stream is contained within the Video Stream Packet. The format of one embodiment of

a Video Stream Packet (Video Data Format Descriptor) is shown in FIG. 11. As seen in

FIG. 11, in one embodiment, this type of packet is structured to have Packet Length (2

bytes), Packet Type, bClient ID, Video Data Descriptor, Pixel Display Attributes, X

Left Edge, Y Top Edge, X Right Edge, Y Bottom Edge, X and Y Start, Pixel Count,

Parameter CRC, Pixel Data, and Pixel Data CRC fields. This type of packet is generally

identified as a Type 16, which is indicated in the 2-byte Type field. In one embodiment,

a client indicates an ability to receive a Video Stream Packet using Red-Green-Blue

(RGB), Monochrome, and Y Cr Cb Capability fields of the Client Capability Packet.

[00224] In one embodiment, the bClient ID field contains 2 bytes of information that are

reserved for a Client ID. Since this is a newly developed communications protocol

actual client IDs are not yet known or sufficiently communicable. Therefore, the bits in

this field are generally set equal to zero until such ID values are known, at which time

the ID values can be inserted or used, as would be apparent to those skilled in the art.

The same process will generally be true for the client ID fields discussed below.

[00225] The format and contents employed for realizing the operation of an exemplary

Video Data Descriptor field, as mentioned above, are shown in FIGs. 12A-12E. In FIGs.

12A-12E, the Video Data Format Descriptor field contains 2 bytes in the form of a 16-

bit unsigned integer that specifies the format of each pixel in the Pixel Data in the

present stream in the present packet. It is possible that different Video Stream packets

may use different pixel data formats, that is, use a different value in the Video Data

Format Descriptor, and similarly, a stream (region of the display) may change its data

format on-the-fly. The pixel data format should comply with at least one of the valid

formats for the client as defined in the Client Capability Packet. The Video Data

Format Descriptor defines the pixel format for the present packet only which does not

imply that a constant format will continue to be used for the lifetime of a particular

video stream.

WO 2005/091593 PCTIUS2005/008832

43

[00226] FIGs. 12A through 12D illustrate how the Video Data Format Descriptor is

coded. As used in these figures, and in this embodiment, when bits [15:13] are equal to

'000', as shown in FIG. 12A, then the video data consists of an array of monochrome

pixels where the number of bits per pixel is defined by bits 3 through 0 of the Video

Data Format Descriptor word. Bits 11 through 4 are generally reserved for future use or

applications and are set to zero in this situation. When bits [15:13] are instead equal to

the values '001', as shown in FIG. 12B, then the video data consists of an array of color

pixels that each specify a color through a color map (palette). In this situation, bits

through 0 of the Video Data Format Descriptor word define the number of bits per

pixel, and bits 11 through 6 are generally reserved for future use or applications and set

equal to zero. When bits [15:13] are instead equal to the values '010', as shown in

FIG. 12C, then the video data consists of an array of color pixels where the number of

bits per pixel of red is defined by bits 11 through 8, the number of bits per pixel of green

is defined by bits 7 through 4, and the number of bits per pixel of blue is defined by bits

3 through 0. In this situation, the total number of bits in each pixel is the sum of the

number of bits used for red, green, and blue.

[00227] However, when bits [15:13] are instead equal to the values or string '011', as

shown in FIG. 12D, then the video data consists of an array of video data in 4:2:2

YCbCr format with luminance and chrominance information, where the number of bits

per pixel of luminance is defined by bits 11 through 8, the number of bits of the Cb

component is defined by bits 7 through 4, and the number of bits of the Cr component is

defined by bits 3 through 0. The total number of bits in each pixel is the sum of the

number of bits used for red, green, and blue. The Cb and Cr components are sent at half

the rate as Y. In addition, the video samples in the Pixel Data portion of this packet are

organized as follows: Cbn, Yn, Cm, Yn+l, Cbn+2, Yn+2, Cm+2, Yn+3, where Cbn

and Cm are associated with Yn and Yn+l, and Cbn+2 and Cm+2 are associated with

Yn+2 and Yn+3, and so on.

[00228] Yn, Yn+l, Yn+2 and Yn+3 are luminance values of four consecutive pixels in a

single row from left to right. If there are an odd number of pixels in a row (X Right

Edge X Left Edge 1) in the window referenced by the Video Stream Packet then the

Y value corresponding to the last pixel in each row will be followed by the Cb value of

the first pixel of the next row, and a Cr value is not sent for the last pixel in the row. It

is recommended that windows using Y Cb Cr format have a width that is an even

WO 2005/091593 PCTIUS2005/008832

44

number of pixels. The Pixel Data in a packet should contain an even number of pixels.

It may contain an odd or even number of pixels in the case where the last pixel of the

Pixel Data corresponds to the last pixel of a row in the window specified in the Video

Stream Packet header, i.e. when the X location of the last pixel in the Pixel Data is equal

to X Right Edge.

[00229] When bits [15:13] are instead equal to the values '100' then the video data

consists of an array of Bayer pixels where the number of bits per pixel is defined by bits

3 through 0 of the Video Data Format Descriptor word. The Pixel Group Pattern is

defined by bits 5 and 4 as shown in FIG. 12E. The order of pixel data may be

horizontal or vertical, and the pixels in rows or columns may be sent in forward or

backward order and is defined by bits 8 through 6. Bits 11 through 9 should be set to

zero. The group of four pixels in the pixel group in the Bayer format resembles what is

often referred to as a single pixel in some display technologies. However, one pixel in

the Bayer format is only one of the four colored pixels of the pixel group mosaic

pattern.

[00230] For all five formats shown in the figures, Bit 12, which is designated as

specifies whether or not the Pixel Data samples are packed, or byte-aligned pixel data.

A value of in this field indicates that each pixel in the Pixel Data field is byte-aligned

with an MDDI byte boundary. A value of indicates that each pixel and each color

within each pixel in the Pixel Data is packed up against the previous pixel or color

within a pixel leaving no unused bits. The difference between Byte-Aligned and Packed

Pixel data format is shown in more detail in FIG. 13, where one can clearly see that

byte-aligned data may leave unused portions of the data sub-frame, as opposed to

packed pixel format which does not.

4. Audio Stream Packet

[00231] The audio stream packets carry audio data to be played through the audio system

of the client, or for a stand alone audio presentation device. Different audio data

streams may be allocated for separate audio channels in a sound system, for example:

left-front, right-front, center, left-rear, and right-rear, depending on the type of audio

system being used. A full complement of audio channels is provided for headsets that

contain enhanced spatial-acoustic signal processing. A client indicates an ability to

receive an Audio Stream Packet using the Audio Channel Capability and Audio Sample

WO 2005/091593 PCTIUS2005/008832

Rate fields of the Client Capability Packet. The format of Audio Stream Packets is

illustrated in FIG. 14.

[00232] As shown in FIG. 14, this type of packet is structured in one embodiment to

have Packet Length, Packet Type, bClient ID, Audio Channel ID, Reserved 1, Audio

Sample Count, Bits Per Sample and Packing, Audio Sample Rate, Parameter CRC,

Digital Audio Data, and Audio Data CRC fields. In one embodiment, this type of

packet is generally identified as a Type 32 packet.

[00233] The bClient ID field contains 2 bytes of information that are reserved for a

Client ID, as used previously. The Reserved 1 field contains 2 bytes that is reserved for

future use, and is generally configured at this point with all bits set to zero.

[00234] The Bits Per Sample and Packing field contains 1 byte in the form of an 8-bit

unsigned integer that specifies the packing format of audio data. The format generally

employed is for Bits 4 through 0 to define the number of bits per PCM audio sample.

Bit 5 then specifies whether or not the Digital Audio Data samples are packed. The

difference between packed and byte-aligned audio samples, here using 10-bit samples,

is illustrated in FIG. 15. A value of indicates that each PCM audio sample in the

Digital Audio Data field is byte-aligned with an MDDI byte boundary, and a value of'l'

indicates that each successive PCM audio sample is packed up against the previous

audio sample. This bit is generally effective only when the value defined in bits 4

through 0 (the number of bits per PCM audio sample) is not a multiple of eight. Bits 7

through 6 are reserved for future use and are generally set at a value of zero.

Reserved Stream Packets

[00235] In one embodiment, packet types 1 to 15, 18 to 31, and 33 through 55 are

reserved for stream packets to be defined for use in future versions or variations of the

packet protocols, as desired for various applications encountered. Again, this is part of

making the MDDI more flexible and useful in the face of ever changing technology and

system designs as compared to other techniques.

6. User-Defined Stream Packets

[00236] Eight data stream types, known as Types 56 through 63, are reserved for use in

proprietary applications that may be defined by equipment manufacturers for use with a

MDDI link. These are known as User-defined Stream Packets. Such packets may be

WO 2005/091593 PCTIUS2005/008832

46

used for any purpose, but the host and client should only employ such packets in

situations where the result of such use is very well understood or known. The specific

definition of the stream parameters and data for these packet types is left to the specific

equipment manufacturers or interface designers implementing such packet types or

seeking their use. Some exemplary uses of the User-defined Stream Packets are to

convey test parameters and test results, factory calibration data, and proprietary special

use data. The format of the user-defined stream packets as used in one embodiment is

illustrated in FIG. 16. As shown in FIG. 16, this type of packet is structured to have

Packet Length (2 bytes), Packet Type, bClient ID number, Stream Parameters,

Parameter CRC, Stream Data, and Stream Data CRC fields.

7. Color Map Packets

[00237] The color map packets specify the contents of a color map look-up table used to

present colors for a client. Some applications may require a color map that is larger

than the amount of data that can be transmitted in a single packet. In these cases,

multiple Color Map packets may be transferred, each with a different subset of the color

map by using the offset and length fields described below. The format of the Color

Map Packet in one embodiment is illustrated in FIG. 17. As shown in FIG. 17, this type

of packet is structured to have Packet Length, Packet Type, hClient ID, Color Map Item

Count, Color Map Offset, Parameter CRC, Color Map Data, and Data CRC fields. In

one embodiment, this type of packet is generally identified as a Type 64 packet (Video

Data Format and Color Map Packet) as specified in the Packet Type Field (2 bytes). A

client indicates an ability to receive Color Map Packets using the Color Map Size and

Color Map Width fields of the Client Capability Packet.

8. Reverse Link Encapsulation Packets

[00238] In an exemplary embodiment, data is transferred in the reverse direction using a

Reverse Link Encapsulation Packet. A forward link packet is sent and the MDDI link

operation (transfer direction) is changed or turned around in the middle of this packet so

that packets can be sent in the reverse direction. The format of the Reverse Link

Encapsulation packet in one embodiment is illustrated in FIG. 18. As shown in FIG.

187, this type of packet is structured to have Packet Length, Packet Type, hCLient ID,

Reverse Link Flags, Reverse Rate Divisor, Turn-Around 1 Length, Turn-Around 2

WO 2005/091593 PCTIUS2005/008832

47

Length, Parameter CRC, All Zero 1, Turn-Around 1, Reverse Data Packets, Turn-

Around 2, and All Zero 2 fields. In one embodiment, this type of packet is generally

identified as a Type 65 packet. For External Mode every host must be able to generate

this packet and receive data, and every client must be able to receive and send data to

the host in order to efficiently make use of the desired protocol and resulting speed.

Implementation of this packet is optional for Internal Mode, but the Reverse Link

Encapsulation Packet is used for the host to receive data from the client.

[00239] The MDDI link controller behaves in a special manner while sending a Reverse

Link Encapsulation Packet. The MDDI has a strobe signal that is generally always

driven by the host as controller of the link. The host behaves as if it were transmitting a

zero for each bit of the Turn-Around and Reverse Data Packets portions of the Reverse

Link Encapsulation packet. The host toggles a MDDI_Strobe signal at each bit

boundary during the two turn-around times and during the time allocated for reverse

data packets. That is, the host toggles MDDI_Stb from the beginning of the All Zero 1

field to the end of the All Zero 2 field. (This is the same behavior as if it were

transmitting all-zero data.)

[00240] The host disables its MDDI data signal line drivers and generally assures they

have been completely disabled prior to the last bit of the Turn-Around 1 field, and then

re-enables its line drivers during the Turm-Around 2 field, and generally assure that the

drivers have been completely re-enabled prior to the last bit of the Turn-Around 2 field.

The client reads the Turn-Around Length parameter and drives the data signals toward

the host immediately after the last bit in the Turn-Around 1 field. That is, the client

clocks new data into the link on certain rising edges of the MDDI strobe as specified in

the packet contents description below, and elsewhere. The client uses the Packet Length

and Turn-Around Length parameters to know the length of time it has available to send

packets to the host. The client may send filler packets or drive the data lines to a zero

state when it has no data to send to the host. If the data lines are driven to zero, the host

interprets this as a packet with a zero length (not a valid length) and the host does not

accept any more packets from the client for the duration of the current Reverse Link

Encapsulation Packet.

[00241] In one embodiment, the Reverse Link Request field of the Client Request and

Status Packet may be used to inform the host of the number of bytes the client needs in

the Reverse Link Encapsulation Packet to send data back to the host. The host attempts

WO 2005/091593 PCTIUS2005/008832

48

to grant the request by allocating at least that number of bytes in the Reverse Link

Encapsulation Packet. The host may send more than one Reverse Link Encapsulation

Packet in a sub-frame. The client may send a Client Request and Status Packet at

almost any time, and the host will interpret the Reverse Link Request parameter as the

total number of bytes requested in one sub-frame.

9. Client Capability Packets

[002421 A host needs to know the capability of the client (display) it is communicating

with in order to configure the host-to-client link in an generally optimum or desired

manner. It is recommended that a display send a Client Capability Packet to the host

after forward link synchronization is acquired. The transmission of such a packet is

considered required when requested by the host using the Reverse Link Flags in the

Reverse Link Encapsulation Packet. The Client Capability Packet is used to inform the

host of the capabilities of a client. For External Mode every host should be able to

receive this packet, and every client should be able to send this packet to fully utilize

this interface and protocol. Implementation of this packet is optional for Internal Mode,

since the capabilities of the client, such as a display, keyboard or other input/output

device, in this situation should already be well defined and known to the host at the time

of manufacture or assembly into a single component or unit of some type.

[00243] The format of the Client Capability packet in one embodiment is illustrated in

FIG. 19. As shown in FIG. 19, for this embodiment, this type of packet is structured to

have Packet Length, Packet Type, eClientID, Protocol Version, Min Protocol Version,

Data Rate Capability, Interface Type Capability, Number of Alt Displays, Reserved 1,

Bitmap Width, Bitmap Height, Display Window Width, Display Window Height, Color

Map Size, Color Map RGB Width, RGB Capability, Monochrome Capability, Reserved

2, Y Cr Cb Capability, Bayer Capability, Reserved 3, Client Feature Capability, Max

Video Frame Rate, Min Video Frame Rate, Min Sub-frame rate, Audio Buffer Depth,

Audio Channel Capability, Audio Sample Rate Capability, Audio Sample Resolution,

Mic Sample Resolution, Mic Sample Rate Capability, Keyboard Data Format, Pointing

Device Data Format, Content Protection Type, Mfr. Name, Product Code, Reserved 4,

Serial Number, Week of Mfr., Year of Mfr., and CRC fields. In an exemplary

embodiment, this type of packet is generally identified as a Type 66 packet.

WO 2005/091593 PCTIUS2005/008832

49

Keyboard Data Packets

[00244] A keyboard data packet is used to send keyboard data from the client device to

the host. A wireless (or wired) keyboard may be used in conjunction with various

displays or audio devices, including, but not limited to, a head mounted video

display/audio presentation device. The Keyboard Data Packet relays keyboard data

received from one of several known keyboard-like devices to the host. This packet can

also be used on the forward link to send data to the keyboard. A client indicates an

ability to send and receive Keyboard Data Packets using the Keyboard Data Field in the

Client Capability Packet.

[00245] The format of a Keyboard Data Packet is shown in FIG. 20, and contains a

variable number of bytes of information from or for a keyboard. As shown in FIG.

this type of packet is structured to have Packet Length, Packet Type, bClient ID,

Keyboard Data Format, Keyboard Data, and CRC fields. Here, this type of packet is

generally identified as a Type 67 packet.

[00246] The bClient ID is a reserved field, as before, and the CRC is performed over all

bytes of the packet. The Keyboard Data Format field contains a 2 bytes value that

describes the keyboard data format. Bits 6 through 0 should be identical to the

Keyboard Data Format field in the Client Capability Packet. This value is not to equal

127. Bits 15 through 7 are reserved for future use and are, therefore, currently set to

zero.

11. Pointing Device Data Packets

[00247] A pointing device data packet is used as a method, structure, or means to send

position information from a wireless mouse or other pointing device from the client to

the host. Data can also be sent to the pointing device on the forward link using this

packet. An exemplary format of a Pointing Device Data Packet is shown in FIG. 21,

and contains a variable number of bytes of information from or for a pointing device.

As shown in FIG. 21, this type of packet is structured to have Packet Length, Packet

Type, bClient ID, Pointing Device Format, Pointing Device Data, and CRC fields. In

an exemplary embodiment, this type of packet is generally identified as a Type 68

packet in the 1-byte type field.

WO 2005/091593 PCT/US2005/008832

12. Link Shutdown Packets

[00248] A Link Shutdown Packet is sent from the host to the client as a method or means

to indicate that the MDDI data and strobe will be shut down and go into a low-power

consumption "hibernation" state. This packet is useful to shut down the link and

conserve power after static bitmaps are sent from a mobile communication device to the

display, or when there is no further information to transfer from a host to a client for the

time being. Normal operation is resumed when the host sends packets again. The first

packet sent after hibernation is a sub-frame header packet. The format of a Client Status

Packet for one embodiment is shown in FIG. 22. As shown in FIG. 22, this type of

packet is structured to have Packet Length, Packet Type, CRC and All Zeros fields. In

one embodiment, this type of packet is generally identified as a Type 69 packet in the 1-

byte type field.

[00249] The packet length field uses 2 bytes to specify the total number of bytes in the

packet not including the packet length field. In one embodiment, the Packet Length of

this packet is dependent on the Interface Type or link mode in effect at the time when

the Link Shutdown Packet is sent. Therefore, the typical packet length becomes

bytes for Type 1 mode (22 bytes total in the packet), 36 bytes for a Type 2 mode (38

bytes total in the packet), 68 bytes for a Type 3 mode link (70 bytes total in the packet),

and 132 bytes for a Type 4 mode (with 134 bytes total in the packet).

[00250] The All Zeros field uses a variable number of bytes to ensure that MDDI_Data

signals are at a logic-zero level for a sufficient time to allow the client to begin

recovering clock using only MDDI_Stb prior to disabling a host's line drivers. The

length of the All Zeros field is dependent on the Interface Type or link operating mode

in effect at the time when the Link Shutdown Packet is sent. The length of the All

Zeros field is intended to produce 64 pulses on MDDI_Stb for any Interface Type

setting. Therefore, the All Zeros length for each interface type becomes 16 bytes for

Type 1, 32 bytes for Type 2, 64 bytes for Type 3, and 128 bytes for Type 4.

[00251] The CRC field uses 2 bytes that contain a 16-bit CRC of bytes from the Packet

Length to the Packet Type.

[00252] In the low-power hibernation state, the MDDI_DataO driver is disabled into a

high-impedance state starting after the 16th to 48th MDDIStb cycle or pulse after the

last bit of the All Zeros field. For Type-2, Type-3, or Type-4 links the MDDI_Datal

through MDDI_DataPwr7 signals are also placed in a high-impedance state at the same

WO 2005/091593 PCTIUS2005/008832

51

time that the MDDI_DataO driver is disabled Either the host or client may cause the

MDDI link to "wake up" from the hibernation state as described elsewhere, which is a

key advance for and advantage of the present invention.

[00253] As described in the definition of the All Zeros field, MDDI_Stb toggles for 64

cycles following the MSB of the CRC field of the Link Shutdown Packet to facilitate an

orderly shutdown in the client controller. One cycle is a low-to-high transition followed

by a high-to-low transition, or a high-to-low transition followed by a low-to-high

transition. After the All Zeros field is sent, the MDDI_Stb driver in the host is disabled.

13. Client Request and Status Packets

[00254] The host needs a small amount of information from the client so it can configure

the host-to-client link in a generally optimum manner. It is recommended that the client

send one Client Request and Status Packet to the host each sub-frame. The client

should send this packet as the first packet in the Reverse Link Encapsulation Packet to

ensure that it is delivered reliably to the host. The forwarding of this packet is also

accomplished when requested by a host using the Reverse Link Flags in the Reverse

Link Encapsulation Packet. The Client Request and Status Packet is used to report

errors and status to the host. For external mode operation, every host should be able to

receive this packet, and every client should be able to send this packet in order to

properly or optimally employ the MDDI protocol. While it is also recommended that

for internal operations, that is internal hosts and internal clients, there should be support

for this packet, it is not required.

[00255] The format of a Client Request and Status Packet is shown in FIG. 23. As

shown in FIG. 23, this type of packet is structured to have Packet Length, Packet Type,

cClient ID, Reverse Link Request, Capability Change, Client Busy, CRC Error Count,

and CRC fields. This type of packet is generally identified as a Type 70 packet in the 1-

byte type field, and typically uses a pre-selected fixed length of 12 bytes.

[00256] The Reverse Link Request field may be used to inform the host of the number of

bytes the client needs in the Reverse Link Encapsulation Packet to send data back to the

host. The host should attempt to grant the request by allocating at least that number of

bytes in the Reverse Link Encapsulation Packet. The host may send more than one

Reverse Link Encapsulation Packet in a sub-frame in order to accommodate data. The

client may send a Client Request and Status Packet at any time and the host will

WO 2005/091593 PCTIUS2005/008832

52

interpret the Reverse Link Request parameter as the total number of bytes requested in

one sub-frame. Additional details and specific examples of how reverse link data is sent

back to the host are shown below.

14. Bit Block Transfer Packets

[00257] The Bit Block Transfer Packet provides a means, structure, or method to scroll

regions of the display in any direction, generally by copying a block of pixels from one

rectangular region to another. Clients that have this capability will report the capability

in bit 0 of the Display Feature Capability Indicators field of the Client Capability

Packet. The format for one embodiment of a Bit Block Transfer Packet is shown in

FIG. 24. As shown in FIG. 24, this type of packet is structured to have Packet Length,

Packet Type, hClient ID, Pixel Data Attributes, Raster Operation, Upper Left X Value,

Upper Left Y Value, Window Width, Window Height, Window X Movement, Window

Y Movement, and CRC fields. This type of packet is generally identified as a Type 71

packet, and in one embodiment uses a pre-selected fixed length of 15 bytes. The 2-byte

hClient ID field contains information or values that are reserved for a Client ID, as

discussed elsewhere. Since this field is generally reserved for future use, the current

value is typically set to zero, by setting the bits to a logic-zero level, although it can be

set to other values or used by one skilled in the art to transfer desired information.

[00258] In one embodiment, the 2-byte Pixel Data Attributes field has values that specify

where the pixel data is going to be updated, with Bits 1 and 0 selecting the display

where the pixel data is going to be updated. If a primary display in the client does not

support stereo images then the client can affect the pixel data in the primary display for

one of the bit combinations 01, 10, or 11. It is recommended that the value 11 be used

to address the primary display in clients that do not support stereo display capability.

When Bits have the values 11, the pixel data is updated in the frame buffer of both

the left and right eye, if Bits have the values 10, the pixel data is updated in the

frame buffer of the left eye only. When Bits have the values 01, the pixel data is

updated in the frame buffer of the right eye only. When Bits have the values 00,

the pixel data is updated in the frame buffer of the alternate display specified by bits 8

through 11 below.

[00259] Bits 7 and 6 act as Display Update Bits that specify the frame buffer where the

pixel data is to be updated or written. The effects of the Frame Update Bits are

WO 2005/091593 PCTIUS2005/008832

53

described in more detail later. When Bits are the Pixel data is written to an

offline image buffer. When Bits are the Pixel data is written to an image

buffer used to refresh the display. When Bits are the Pixel data is written to

all image buffers. If Bits are this is treated as an invalid value. These bits

are currently reserved for future use. In this situation, the entire command is ignored

and no frame buffers are updated.

[00260] Bits 11 through 8 form a 4-bit unsigned integer that specifies an alternate display

or alternative client location where the pixel data is to be updated. Bits 0 and 1 are set

equal to 00 in order for a client to interpret bits 11 through 8 as an alternate display

number. If bits 1 and 0 are not equal to 00 then bits 8 through 11 are generally set equal

to a logic-zero value or level. Bits 2 through 5 and 12 through 15 are reserved for future

use and are generally be set to logic-zcro level or values.

[00261] In one embodiment, the 2 byte Raster Operation field specifies how to combine

pixels in source and destination locations to form new pixel values to be written to a

destination image location. Raster operations define how two different rectangular

regions of equal size in a frame buffer are merged together. The destination image area

is also one of the two images that are merged together. The second of the two images is

called the source image. If the client does not support the Raster Operation field as

specified in the Client Capability Packet then the host generally sends this packet with

bits 3 through 0 equal to 3, and the client ignores bits 3 to 0.

[00262] In one embodiment, Bits 3 to 0 are used to specify an actual raster operation by

using or setting them equal to one of the values shown in Table VII below to select the

corresponding operation shown next to that value. That is, each specified Bits

value listed in the first column results in the operation specified in the second column,

and further defined here for clarification in the third column.

WO 2005/091593 PCTIUS2005/008832

54

Table VII

Bits Value stored in Destination Definition
Value Location

0 0
1 source destination logic AND operation
2 source -destination source AND (not dest)
3 source
4 -source destination (not source) AND dest

destination no operation
6 source A destination logic XOR operation
7 source I destination logic OR operation
8 -(source destination) not (source OR dest)
9 -(source A destination) not (source XOR dest)

-(destination) not (dest)
11 source I -destination source OR (not dest)
12 -source not source
13 -source I destination (not source) OR dest
14 ~(source destination) not (source AND dest)

All ones

[00263] Bits 5 through 4 are used to specify whether or not the destination pixels are

written to the destination locations as they relate to the transparent color. The operation

specified by bits 5 to 4 apply whether or not the raster operations is supported by the

client device. If the client does not support raster operations then the resulting

destination pixel value to be considered for the operation defined by bits 5 through 4 is

equal to the source pixel value only.

[00264] When the value of Bits is equal to 00, then transparent color is not used. A

resulting destination pixel is written to the destination pixel location without

considering the value of the transparent color defined by the Transparent Color Enable

Packet. The value of Bits being equal to 01 is currently reserved for future use and

typically not used, although available for one skilled in the art to establish a related use

for. When the value of Bits is equal to 10, the resulting pixel is not written to the

destination pixel location if the resulting destination pixel computed by the raster

operation is equal to the transparent color. Otherwise it is written to the destination

pixel location. When the value of Bits is equal to 11 the resulting pixel is not

written to the destination pixel location if the resulting destination pixel computed by

WO 2005/091593 PCTIUS2005/008832

the raster operation is equal to the transparent color.. Otherwise the resulting pixel is

not written to the destination pixel location.

[00265] Bits 15 to 6 are reserved for future use and are, therefore, generally set equal to a

logic-zero value or level.

[00266] The remaining fields are used to specify the X and Y values of the coordinate of

the upper left comer of the window to be moved, the width and height of the window to

be moved, and the number of pixels that the window is to be moved horizontally, and

vertically, respectively. Positive values for the latter two fields cause the window to be

moved to the right, and down, and negative values cause movement to the left and up,

respectively. The CRC filed (here 2 bytes) contains a 16-bit CRC of all bytes in the

packet including the Packet Length.

Bitmap Area Fill Packets

[00267] The Bitmap Area Fill Packet provides a means, structure, or method to easily

initialize a region of the display to a single colox. Displays that have this capability will

report the capability in bit 1 of the Client Feature Capability Indicators field of the

Client Capability Packet. One embodiment for the format of a Bitmap Area Fill Packet

is shown in FIG. 25. As shown in FIG. 25, in this case this type of packet is structured

to have Packet Length, Packet Type, hClient ID, Upper Left X Value, Upper Left Y

Value, Window Width, Window Height, Data Format Descriptor, Pixel Area Fill Value,

and CRC fields. This type of packet is generally identified as a Type 72 packet in the 2-

byte type field, and uses a pre-selected fixed length of 20 bytes.

[00268] The 2-byte hClient ID field contains information or values that are reserved for a

Client ID, as discussed elsewhere. Since this field is generally reserved for future use,

the current value is typically set to zero, by setting the bits to a logic-zero level,

although it can be set to other values or used by one skilled in the art to transfer desired

information.

16. Bitmap Pattern Fill Packets

[00269] The Bitmap Pattern Fill Packet provides a means or structure to easily initialize

a region of the display to a pre-selected pattern. Clients that have this capability will

report the capability in bit 2 of the Client Feature Capability field of the Client

Capability Packet. The upper left comer of the fill pattern is aligned with the upper left

WO 2005/091593 PCTIUS2005/008832

56

corner of the window to be filled, unless the horizontal or vertical pattern offset is non-

zero. If the window to be filled is wider or taller than the fill pattern, then the pattern

may repeated horizontally or vertically a number of times to fill the window. The right

or bottom of the last repeated pattern is truncated as necessary. If the window is smaller

than the fill pattern, then the right side or bottom of the fill pattern may be truncated to

fit the window.

[00270] If a horizontal pattern offset is non-zero, then the pixels between the left side of

the window and the left side plus the horizontal pattern offset are filled with the right-

most pixels of the pattern. The horizontal pattern offset is to be less than the pattern

width. Similarly, if a vertical pattern offset is non-zero, then the pixels between the top

side of the window and the top of the side plus vertical pattern offset are filled with the

lower-most pixels of the pattern. The vertical pattern offset is to be less than the pattern

height.

[00271] One embodiment for the format of a Bitmap Pattern Fill Packet is shown in

FIG. 26. As shown in FIG. 26, this type of packet is structured to have Packet Length,

Packet Type, hClient ID, Upper Left X Value, Upper Left Y Value, Window Width,

Window Height, Pattern Width, Pattern Height, Horizontal Pattern Offset, Vertical

Pattern Offset, Data Format Descriptor, Parameter CRC, Pattern Pixel Data, and Pixel

Data CRC fields. In some embodiments, this type of packet is generally identified as a

Type 73 packet in the 1-byte type field.

17. Communication Link Data Channel Packets

[00272] The Communication Link Data Channel Packet provides a structure, means, or

method for a client with high-level computing capability, such as a PDA, to

communicate with a wireless transceiver such as a cell phone or wireless data port

device. In this situation, the MDDI link is acting as a convenient high-speed interface

between the communication device and the computing device with the mobile display,

where this packet transports data at a Data Link Layer of an operating system for the

device. For example, this packet could be used if a web browser, email client, or an

entire PDA were built into a mobile display. Displays that have this capability will

report the capability in bit 3 of the Client Feature Capability field of the Client

Capability Packet.

WO 2005/091593 PCTIUS2005/008832

57

[00273] The format of an embodiment for a Communication Link Data Channel Packet

is shown in FIG. 27. As shown in FIG. 27, this type of packet is structured to have

Packet Length, Packet Type, hClient ID, Parameter CRC, Communication Link Data,

and Communication Data CRC fields. In one embodiment, this type of packet is

generally identified as a Type 74 packet in the type field.

18. Display Power State Packets

[00274] The Display Power State Packet provides a structure, means, or method for

placing specific client controlled or client related, connected, or controller hardware into

a low power state when a client such as a display is not being used or in current active

use, in order to minimize the system power consumption or drain on system resources.

A packet of this type is the most useful for applications of the interface or interface

structure and protocol to external mode configurations or operations. In such

applications, it is more likely that the external device is operating on limited power

resources such as batteries, or has other power constraints and concerns, for example

overheating in limited spaces, and so forth, such that a minimal operating condition is

desired for periods or inactivity or non-use. In one embodiment, a client indicates an

ability to respond to Display Power State Packets using bit 9 of the Client Feature

Capability Indicators field of the Client Capability Packet.

[00275] The format of one embodiment for a Display Power State Packet is shown in

FIG. 28. As shown in FIG. 28, in one embodiment, this type of packet is structured to

have Packet Length, Packet Type, hClient ID, Power State, and CRC fields. This type

of packet is generally identified as a Type 75 packet in the 2-byte type field. The 2-byte

hClient ID field contains information or values that are reserved for a Client ID, as used

previously. Since this field is generally reserved for future use, the current value is set

to zero, by setting the bits to although it can be used by one skilled in the art to

transfer desired information.

[00276] The Power State field, here 2 bytes, specifies the information used to place a

specific device, piece of hardware, or equipment associated with the client such as a

display into the specified power state. When used for displays, Bit 0 of this field

specifies whether or not the packet applies to the main display or to an alternate display.

If bit 0 is equal to 1 then the packet applies to the main display. If bit 0 is equal to 0

WO 2005/091593 PCTIUS2005/008832

58

then the packet applies to the alternate display specified by bits 11 through 8. Bit 1 is

reserved for future use and is generally set to zero.

[00277] Bits 3 through 2 of the Power State field specify the power state of the display

selected by bits 11 through 8 and bit 0. When Bits[3:2] have a value of the

selected display is not illuminated and should be consuming a minimum amount of

power, and the contents of the frame buffer are not guaranteed to be retained during this

state. When Bits[3:2] have a value of the selected display is not illuminated and is

consuming a relative minimum amount of power and the contents of the frame buffer

are guaranteed to be retained during this state. The display may consume more power

in this state than in state 00. The client can indicate an ability to support state 01 using

bit 10 of the Client Feature Capability Indicators field of the Client Capability Packet.

When Bits[3:2] of the Power State field have a value of the selected display is

illuminated and is displaying an image from its associated frame buffer. The value of

11' for Bits[3:2] is a reserved value or state for future use and is not used.

[00278] Those skilled in the art will recognize that while most useful for display

applications, use of this packet is not limited by this invention to only displays and there

may be other applications, configurations, or situations in which power control may

needed or desired in relation to other hardware elements with which the MDDI is being

used, or for which a client is controlling or communicating. In these situations, the Bits

disclosed above may have similar functions but could be activating main and secondary

ones of such elements, or setting power levels and so forth, as would be understood.

[00279] In one embodiment, Bits 11 through 8 of the Power State field form a 4-bit

unsigned integer that specifies the alternate display to which the power state is applied.

Bit 0 is set to a logic-zero value in order for the client to interpret bits 11 through 8 as an

alternate display number. If bit 0 is equal to 1 then bits 11 through 8 are zero.

[00280] Bits 7 through 4 and Bits 15 through 12 are reserved for future use, and are

generally be set to logic-zero level or values for current applications or designs.

[00281] The 2 byte CRC field specifies or contains the CRC of all bytes in the packet

including the Packet Length.

[00282] A summary of which display power states are generally supported by the

interface structure or protocol is presented in Table VIII below. As can be seen, various

combinations of Client Feature Capability Bits 10 and 9 are used to establish, setup, or

trigger various ones of the desired power states. A mark present in given row and

WO 2005/091593 PCT/US2005/008832

59

column position indicates that the display power state specified at the top of that colunln

is supported for the stated combination of Client Feature Capability Indicator bits.

TABLE VIII

Client Feature Capability Power Power Power Power
Indicator Bits 9 and 10 values State 00 State 01 State 10 State 11

Bit 9 0 and Bit 10 0 X
Bit 9 1 and Bit 10 0 X X
Bit 9 0 and Bit 10 1 X
Bit 9 1 and Bit 10 1 X X X

19. Peform Type Handoff Packets

[00283] The Perform Type Handoff Packet is a means, structure, or method for the host

to use in order to command a client to handoff to the mode specified in this packet.

This is to be the one of the interface type settings supported by the client as described in

the Client Capability Packet. The host and client should switch to the specified forward

and reverse link interface type right after this packet is sent. The format of one

embodiment for a Perform Type Handoff]Packet is shown in FIG. 29. Hosts and clients

that support an interface type other than Type 1 should provide support for this packet.

It is typically recommended that a host reads the Client Request and Status Packet

immediately before it sends the Perform Type Handoff Packet to confirm that the client

is in sync with the

host.

[00284] As shown in FIG. 29, in one embodiment, this type of packet is structured to

have Packet Length, Packet Type, Interface Type, Reserve 1, Delay Filler, and CRC

fields. This type of packet is generally identified as a Type 77 packet in the 2-byte type

field, and uses a pre-selected fixed length- of 6 bytes, outside of the Packet Length and

Delay Filler fields.

[00285] In one embodiment, the Interface Type field uses a 1 byte value to confirm a

new interface type to be used or employed for the link. The value in this field specifies

or represents the interface type in the following manner. Bits 2 through 0 define the

interface Type to be used on the forward link with a value of 1 signifying or specifying

a handoff to a Type 1 mode; a value of 2 a handoff to Type 2 mode, a value of 3 a

handoff to Type 3 mode, and a value of 4 a handoff to Type 4 mode. Bits 5 through 3

WO 2005/091593 PCT/US2005/008832

define the interface Type to be used on the reverse link with a value of 1 signifying or

specifying a handoff to a Type 1 mode, value of 2 a handoffto Type 2 mode, a value of

3 a handoff to Type 3 mode, and a value of 4 a handoff to Type 4 mode. Bits 0, 6, and 7

are currently reserved for future use, and as such are typically, but not necessarily, set to

a logic-zero level.

[00286] The Delay Filler field has been created as a means, structure, or method for

allowing sufficient time on the part of the system for the client to prepare or be

configured to switch over to use or set up for using a new interface type setting at the

beginning of the packet that immediately follows the Perform Interface Type Handoff

Packet. This field contains a group of bytes or S-bit values that are all set at or equal to

a logic-zero level or value. The number of bytes used in this field is selected such that it

results in this field being a length equivalent to 64 MDDI_Stb cycles. The length of the

Delay Filer field is based on the interface type setting of the forward link which will be

16 bytes for a Type 1 forward link interface typ e, 32 bytes for a Type 2 interface type,

64 bytes for a Type 3 interface type, and 128 bytes when specifying or using a Type 4

forward link interface type.

[00287] The Reserved 1 field (here 1 byte) is reserved for future use in imparting

information. All bits in this field are generally s et to a logic-zero level. The purpose of

such fields is currently to cause all subsequent 2 byte fields to align to a 16-bit word

address and cause 4-byte fields to align to a 32-bit word address. The CRC field (here 2

bytes) contains a 16-bit CRC of all bytes in the placket including the Packet Length.

Forward Audio Channel Enable Packets

[00288] This packet provides a structure, method, or means that allows a host to enable

or disable audio channels in a client. This capability is useful so that a client (a display

for example) can power off audio amplifiers or similar circuit elements to save power

when there is no audio to be output by the host. This is significantly more difficult to

implement implicitly simply using the presence or absence of audio streams as an

indicator. The default state when the client system is powered-up is that all audio

channels are enabled. The format of one embodiment of a Forward Audio Channel

Enable Packet is shown in FIG. 30. As shown in FIG. 30, this type of packet is

structured to have Packet Length, Packet Type, hClient ID, Audio Channel Enable

WO 2005/091593 PCTIUS2005/008832

61

Mask, and CRC fields. This type of packet is generally identified as a Type 78 packet

in the 1-byte type field, and uses a pre-selected fixed length of 4 bytes.

21. Reverse Audio Sample Rate Packets

[00289] This type of packet provides a structure, method, or means that allows a host to

enable or disable audio channels in a client. This capability is useful so the client can

power off audio amplifiers to save power when there is no audio to be output by the

host. This is significantly more difficult to implement implicitly using the presence or

absence of audio streams. The default state when a client system is powered-up or

connected to the host is that all audio channels are enabled. An audio system connected

to a host and a client should be ready or able to output audio signals in an intended or

desired manner within about 100 msec. or less after the client receives a Forward Audio

Channel Enable packet having a least one of the bits in the Audio Channel Enable Mask

field having made a transition from a zero to a one state or value. The client indicates

an ability to respond to a Forward Audio Channel Enable Packet using the value set for

bit 15 of the Audio Channel Capability field of the Client Capability Packet.

[00290] This packet allows the host to enable or disable the reverse-link audio channel,

and to set the audio data sample rate of this stream. The host selects a sample rate that

is defined to be valid in the Client Capability Packet. If the host selects an invalid

sample rate then the client will not send an audio stream to the host, and an appropriate

error, error value, or error signal, may be sent to the host in the Client Error Report

Packet. The host may disable the reverse-link audio stream by setting the sample rate to

a value of 255. The default state assumed when the client system is initially powered-

up or connected is with the reverse-link audio stream disabled. The format of one

embodiment for a Reverse Audio Sample Rate Packet is shown in FIG. 31. As shown

in FIG. 31, this type of packet is structured to have Packet Length, Packet Type, hClient

ID, Audio Sample Rate, Reserved 1, and CRC fields. This type of packet is generally

identified as a Type 79 packet, and uses a pre-selected fixed length of 4 bytes.

22. Digital Content Protection Overhead Packets

[00291] This packet provides a structure, method, or means that allows a host and a

client to exchange messages related to the digital content protection method being used.

Presently two types of content protection are contemplated, Digital Transmission

WO 2005/091593 PCT/US2005/008832

62

Content Protection (DTCP), or High-bandwidth Digital Content Protection (HDCP)

system, with room reserved for future alternative protection scheme designations. The

method being used is specified by a Content Protection Type parameter in this packet.

The format of an embodiment of a Digital Content Protection Overhead Packet is shown

in FIG. 32. As shown in FIG. 32, this type of packet is structured to have Packet

Length, Packet Type, bClient ID, Content Protection Type, Content Protection

Overhead Messages, and CRC fields. This type of packet is generally identified as a

Type 80 packet.

23. Transparent Color Enable Packets

[00292] The Transparent Color Enable Packet is a structure, method, or means that used

to specify which color is transparent in a display and to enable or disable the use of a

transparent color for displaying images. Displays that have this capability will report

that capability in bit 4 of the Client Feature Capability field of the Client Capability

Packet. When a pixel with the value for transparent color is written to the bitmap, the

color does not change from the previous value. The format of a Transparent Color

Enable Packet is shown in FIG. 33. As shown in FIG. 33, in one embodiment this type

of packet is structured to have Packet Length, Packet Type, hClient ID, Transparent

Color Enable, Reserved 1, Alpha-Cursor Identifier, Data Format Descriptor,

Transparent Pixel Value, and CRC fields. This type of packet is generally identified as

a Type 81 packet in the 1-byte type field, and uses a pre-selected fixed length of

bytes.

24. Round Trip Delay Measurement Packets

[00293] The Round Trip Delay Measurement Packet provides a structure, method, or

means that is used to measure the propagation delay from the host to a client (display)

plus the delay from the client (display) back to the host. This measurement inherently

includes the delays that exist in the line drivers and receivers, and an interconmect sub-

system. This measurement is used to set the turn around delay and reverse link rate

divisor parameters in the Reverse Link Encapsulation Packet, described generally

above. This packet is most useful when the MDDI link is running at the maximum

speed intended for a particular application. The packet may be sent in Type 1 rmode and

at a lower data rate in order to increase the range of the round trip delay measurement.

WO 2005/091593 PCTIUS2005/008832

63

The MDDI_Stb signal behaves as though all zero data is being sent during the following

fields: both Guard Times, All Zero, and the Measurement Period. This causes

MDDIStb to toggle at half the data rate so it can be used as periodic clock in the client

during the Measurement Period.

[00294] In one embodiment, a client generally indicates an ability to support the Round

Trip Delay Measurement Packet through use of bit 18 of the Client Feature Capability

Indicators field of the Client Capability Packet. It is recommended that all clients

support round trip delay measurement, but it is possible for the host to know the worst-

case round trip delay based on a maximum cable delay, and on maximum driver and

receiver delays. The host may also know the round-trip delay in advance for an MDDI

link used in internal mode, since this is an aspect of known design elements (conductor

lengths, circuitry type, and features, and so forth) of the device in which the interface is

being used.

[00295] The format of a Round Trip Delay Measurement Packet is shown in FIG. 34. As

shown in FIG. 34, in one embodiment this type of packet is structured to have Packet

Length, Packet Type, hClient ID, Parameter CRC, Guard Time 1, Measurement Period,

All Zero, and Guard Time 2 fields. This type of packet is generally identified as a Type

82 packet, and uses a pre-selected fixed length of 159 bits.

[00296] The timing of events that take place during the Round Trip Delay Measurement

Packet is illustrated in FIG. 35. In FIG. 35, the host transmits the Round Trip Delay

Measurement Packet, shown by the presence of the Parameter CRC and Strobe

Alignment fields followed by the All Zero 1 and Guard Time 1 fields. A delay 3502

occurs before the packet reaches the client display device or processing circuitry. As

the client receives the packet, it transmits the Oxff, Oxff, and 30 bytes of 0x00 pattern as

precisely as practical at the beginning of the Measurement Period as determined by the

client. The actual time the client begins to transmit this sequence is delayed from the

beginning of the Measurement Period from the point of view of the host. The amount

of this delay is substantially the time it takes for the packet to propagate through the line

drivers and receivers and the interconnect subsystem (cables, conductors). A similar

amount of delay 3504 is incurred for the pattern to propagate from the client back to the

host.

[00297] In order to accurately determine the round trip delay time for signals traversing

to and from the client, the host counts the number of forward link bit time periods

WO 2005/091593 PCTIUS2005/008832

64

occurring after the start of the Measurement Period until the beginning of the Oxff, Oxff,

and 30 bytes of 0x00 sequence is detected upon arrival. This information is used to

determine the amount of time for a round trip signal to pass from the host to the client

and back again. Then, about one half of this amount is attributed to a delay created for

the one way passage of a signal to the client.

[00298] The host and client both drive the line to a logic-zero level during both guard

times to keep the MDDI_DATA lines in a defined state. The enable and disable times

of the host and client during both guard times are such that the MDDI_Data signals are

at a valid low level for any valid round-trip delay time.

Forward Link Skew Calibration Packet

[00299] The Forward Link Skew Calibration Packet allows a client or display to calibrate

itself for differences in the propagation delay of the MDDI_Data signals with respect to

the MDDI_Stb signal. Without delay skew compensation, the maximum data rate is

generally limited to account for potential worst-case variation in these delays.

Generally, this packet is only sent when the forward link data rate is configured to a rate

of around 50 Mbps or lower. After sending this packet to calibrate the display, the data

rate may be stepped up above 50 Mbps. If the data rate is set too high during the skew

calibration process, the display might synchronize to an alias of the bit period which

could cause the delay skew compensation setting to be off by more than one bit time,

resulting in erroneous data clocking. The highest data rate type of interface or greatest

possible Interface Type is selected prior to sending the Forward Link Skew Calibration

Packet so that all existing data bits are calibrated.

[00300] One embodiment of the format of a Forward Link Skew Calibration Packet is

shown in FIG. 56. As shown in FIG. 56, this type of packet is structured to have Packet

Length (2 bytes), Packet Type, hClient ID, Parameter CRC, All Zero 1, Calibration Data

Sequence, and All Zero 2 fields. This type of packet is generally identified as a Type 83

packet in the type field, and in one embodiment has a pre-selected length of 519.

Virtual Control Panel

[00301] The use of a VCP allows a host to set certain user controls in a client. By

allowing these parameters to be adjusted by the host, the user interface in the client can

be simplified because screens that allow a user to adjust parameters such as audio

WO 2005/091593 PCTIUS2005/008832

volume or display brightness can be generated by host software rather than by one or

more microprocessors in the client. The host has the ability to read the parameter

settings in the client and to determine the range of valid values for each control. The

client generally has the capability to report back to the host which control parameters

can be adjusted.

[00302] The control codes (VCP Codes) and associated data values generally specified,

are utilized to specify controls and settings in the client. The VCP Codes in the MDDI

specification are expanded to 16 bits to preserve proper data field alignment in the

packet definitions, and in the future to support supplementary values that are unique to

this interface or future enhancements.

26. Request VCP Feature Packet

[00303] The Request VCP Feature Packet provides a means, mechanism, or method for

the host to request the current setting of a specific control parameter or all valid control

parameters. Generally, a client responds to a VCP Packet with the appropriate

information in a VCP Feature Reply Packet. In one embodiment, the client indicates an

ability to support the Request VCP Feature Packet using bit 13 of the Client Feature

Capability Indicators field of the Client Capability Packet.

[00304] The format of the Request VCP Feature Packet in one embodiment is shown in

FIG. 69. As seen in FIG. 69, this type of packet is structured to have Packet Length,

Packet Type, hClient ID, Monitor Control Command Set (MCCS) VCP code, and CRC

fields. This type of packet is generally identified in one embodiment as a Type 128,

which is indicated in the 2 byte type field. The packet length, which specifies the total

number of bytes in the packet not including the packet length field, is typically fixed for

this type of packet at a length of 8 bytes.

[00305] The hClient ID field is reserved for use as a Client ID in future implementations

and is typically set to zero. The MCCS VCP Code field comprises 2 bytes of

information that specifies the MCCS VCP Control Code Parameter. A value in the

range of 0 to 255 causes a VCP Feature Reply Packet to be returned with a single item

in the VCP Feature Reply List corresponding to the specified MCCS code. An MCCS

VCP Code of 65535 (Oxffff) requests a VCP Feature Reply Packet with a VCP Feature

Reply List containing a Feature Reply List Item for each control supported by the client.

WO 2005/091593 PCTIUS2005/008832

66

The values of 256 through 65534, for this field are reserved for future use and presently

not in use.

27. VCP Feature Reply Packet

[00306] The VCP Feature Reply Packet provides a means, mechanism, or method for a

client to respond to a host request with the current setting of a specific control parameter

or all valid control parameters. Generally, a client sends the VCP Feature Reply Packet

in response to a Request VCP Feature Packet. This packet is useful to determine the

current setting of a specific parameter, to determine the valid range for a specific

control, to determine if a specific control is supported by the client, or to determine the

set of controls that are supported by the client. If a Request VCP Feature is sent that

references a specific control that is not implemented in the client then a VCP Feature

Reply Packet is returned with a single VCP Feature Reply List item corresponding to

the unimplemented control that 'contains the appropriate error code. In one

embodiment, the client indicates an ability to support the VCP Feature Reply Packet

using bit 13 of the Client Feature Capability field of the Client Capability Packet.

[003071 The format of the VCP Feature Reply Packet in one embodiment is shown in

FIG. 70. As seen in FIG. 70, this type of packet is structured to have Packet Length,

Packet Type, cClient ID, MCCS Version, Reply Sequence Number, VCP Feature Reply

List, and CRC fields. This type of packet is generally identified in one embodiment as a

Type 129, as indicated in the 2 byte type field.

[00308] The cClient ID field contains information reserved for a Client ID. This field is

reserved for future use and is generally set to zero. MCCS Version field contains 2

bytes of information that specifies the Version of the VESA MCCS Specification

implemented by the client.

[00309] The 2 byte Reply Sequence Number field contains information or data that

specifies the sequence number of the VCP Feature Reply Packets returned by the client.

The client returns one or more VCP Feature Reply Packets in response to a Request

VCP Feature Packet with an MCCS Control Code value of 65535. The client may

spread or transfer the feature reply list over multiple VCP Feature Reply Packets. In

this case, the client should assign a sequence number or identifier to each successive

packet, and the sequence numbers of the VCP Feature Reply Packets sent in response to

a single Request VCP Feature Packet typically starts at zero and increments by one.

WO 2005/091593 PCTIUS2005/008832

67

The last VCP Feature Reply List Item in the last VCP Feature Reply Packet should

contain an MCCS VCP Control Code value equal to Oxffff to identify that the packet is

the last one and contains the highest sequence number of the group of packets returned.

If only one VCP Feature Reply Packet is sent in response to a Request VCP Feature

Packet then the Reply Sequence Number in that single packet is generally set at zero

and the VCP Feature Reply List contains a list item having an MCCS VCP Code in the

VCP Feature Reply List Item equal to Oxffff. The Maximum Value and Present Value

fields (FIG. 71) in the VCP Feature Reply List Item packet are set to zero when the

MCCS VCP Control Code is equal to Oxffff.

[00310] The Number of Features in List field contains 2 bytes that specify the number of

VCP Feature Reply List Items that are in the VCP Feature Reply List in this packet,

while the VCP Feature Reply List field is a group of bytes that contain one or more

VCP Feature Reply List Items. The format of a single VCP Feature Reply List Item in

one embodiment is shown in FIG. 71.

[00311] As shown in FIG. 71, each VCP Feature Reply List Item is 12 bytes in length,

and comprises the MCCS VCP Code, Result Code, Maximum Value, and Present Value

fields. The 2-byte MCCS VCP Code field contains data or information that specifies

the MCCS VCP Control Code Parameter associated with this list item. Only the

Control Code values defined in the VESA MCCS Specification version 2 and later are

considered as valid for this embodiment. The 2-byte Result Code field contains

information that specifies an error code related to the request for information regarding

the specified MCCS VCP Control. A value of in this field means there is no error,

while a value of means the specified control is not implemented in the client.

Further values for this field of 2 through 65535 are currently reserved for future use and

implementation of other application contemplated by the art, but are not to be used for

now.

[00312] The 4-byte Maximum Value field specifies the largest possible value to which

the specified MCCS Control can be set. If the requested control is not implemented in

the client this value is set to zero. If the value returned is less than 32 bits (4 bytes) in

length, then the value is cast into a 32-bit integer leaving the most significant (unused)

bytes set to zero. The 4-byte Present Value field contains information that specifies the

present value of the specified MCCS VCP Continuous or Non-Continuous (NC)

control. If the requested control is not implemented in the client or if the control is

WO 2005/091593 PCTIUS2005/008832

68

implemented but is a Table data type, then this value is set to zero. If the value
returned is less than 32 bits (4 bytes) in length per the VESA MCCS specification then
the value is cast into a 32-bit integer leaving the most significant (unused) bytes set to

zero. If the specified MCCS VCP code corresponds to a non-continuous control or
table data type, then the Maximum Value field is set or selected to be zero.

28. Set VCP Feature Packet

[00313] The Set VCP Feature Packet provides a means, mechanism, or method for a host

to set VCP control values for both continuous and non-continuous controls in a client.
In one embodiment, the client indicates the ability to support the Set VCP Feature

Packet using bit 13 of the Client Feature Capability field of the Client Capability

Packet.

[00314] The format of the Set VCP Feature Packet in one embodiment is shown in
FIG. 72. As seen in FIG. 72, this type of packet is structured to have Packet Length,

Packet Type, hClient ID, MCCS VCP Code, Number of Values in List, Control Value
List, and CRC fields. This type of packet is generally identified as a Type 130, as
indicated in the 2 byte type field, is 20 bytes long exclusive of the Packet Length field.

[00315] The hClient ID field again uses a 2-byte value to specify or act as a Client ID.

This field is reserved for future use and is currently set to zero. The MCCS VCP Code

field uses 2 bytes of information or values to specify the MCCS VCP Control Code

Parameter to be adjusted. The 2-byte Number of Values in List Field contains
information or values that specify the number of 16-bit values that exist in the Control

Value List. The Control Value List will usually contain one item unless the MCCS

Control Code relates to a table in the client. In the case of non-table-related controls,

The Control Value List will contain a value that specifies the new value to be written to
the control parameter specified by the MCCS VCP Code field. For table-related

controls the format of the data in the Control Value List is specified by the parameter

description of the specified MCCS VCP Code. If the list contains values that are larger

than one byte, then the least-significant byte is transmitted first, consistent with the
method defined elsewhere. Finally, the 2-byte CRC field contains a 16-bit CRC of all
bytes in the packet including the Packet Length.

WO 2005/091593 PCTIUS2005/008832

69

29. Request Valid Parameter Packet

[00316] The Request Valid Parameter Packet is used as a means or structure useful to

request that a client return a Valid Parameter Reply Packet containing a list of

parameters supported by the specified NC or Table control. This packet should only

specify non-continuous controls or controls that relate to a table in the client, and not

specify a MCCS VCP Code value of 65535 (Oxffff) to specify all controls. If a non-

supported or invalid MCCS VCP Code is specified then an appropriate error value is

returned in the Valid Parameter Reply Packet. In one embodiment, the client indicates

an ability to support the Request Valid Parameter Packet using bit 13 of the Client

Feature Capability field of the Display Capability Packet.

[00317] The format of the Request Valid Parameter Packet in one embodiment is shown

in FIG. 73. As seen in FIG. 73, this type of packet is structured to have Packet Length,

Packet Type, hClient ID, MCCS VCP Code, and CRC fields. This type of packet is

generally identified in one embodiment as a Type 131, as indicated in the 2 byte type

field.

[00318] The packet length, as indicated in the 2-bytes Packet Length Field is generally

set to have a total number of bytes in the packet, not including the packet length field of

8. The hClient ID again specifies the Client ID, but is currently reserved for future use,

as would be apparent to one skilled in the art, and is set to zero. The 2-byte MCCS

VCP Code Filed contains a value that specifies the non-continuous MCCS VCP Control

Code Parameter to be queried. The value in this field should correspond to a non-

continuous control that is implemented in the client. The values 256 through 65535

(Oxffff) are typically reserved or considered as invalid, and are considered as an

unimplemented control in the error response.

Valid Parameter Reply Packet

[00319] A Valid Parameter Reply Packet is sent in response to a Request Valid

Parameter Packet. It is used as a means, method, or structure to identify the valid

settings for a non-continuous MCCS VCP control or a control that returns the contents

of a table. If the control relates to a table in the client, then the VCP Parameter Reply

List simply contains the specific list of sequential table values that were requested. If

the contents of the table cannot fit into a single Valid Parameter Reply Packet then

multiple packets with sequential Reply Sequence Numbers can be sent by the client. In

WO 2005/091593 PCTIUS2005/008832

one embodiment, a client indicates an ability to support a Valid Parameter Reply Packet

using bit 13 of the Client Feature Capability field of the Client Capability Packet.

[00320] A host may request the contents of a table in the following manner: the host

sends a Set VCP Feature Packet containing the necessary or desired parameters such as

read/write parameter, Look-Up Table (LUT) offset, and RGB selection; then a Request

Valid Parameter Packet that specifies the desired control is sent by the host; then the

client returns one or more Valid Parameter Reply Packets containing the table data.

This sequence of operations performs a similar function as the table reading functions

described in the MCCS operation model.

[00321] If a specific client parameter is not supported by the client then in one

embodiment the corresponding field of this packet will contain a value of 255. For

parameters that are used in the client, the corresponding field should contain a value of

the parameter in the client.

[00322] The format of the Valid Parameter Reply Packet for one embodiment is shown

in FIG. 74. As seen in FIG. 74, this type of packet is structured to have Packet Length,

Packet Type, cClient ID, MCCS VCP Code, Response Code, Reply Sequence Number,

Number Values in List, VCP Parameter Reply List, and CRC fields. This type of packet

is generally identified for one embodiment as a Type 132, as indicated in the 2 byte type

field.

[00323] The cClient ID field is reserved for the future Client ID, as is known from the

above discussions, while the 3-byte MCCS VCP Code Packet contains a value that

specifies a non-continuous MCCS VCP Control Code Parameter that is described by

this packet. If an invalid MCCS VCP Control Code is specified by a Request Valid

Parameter Packet, then the same invalid parameter value will be specified in this field

with the appropriate value in the Response Code field. If the MCCS Control Code is

invalid then the VCP Parameter Reply List will have zero length.

[00324] The Response Code field contains 2 bytes of information or values that specify

the nature of the response related to the request for information regarding the specified

MCCS VCP Control. If the value in this field is equal to 0, then no error is considered

as being present for this data type, and the last Valid Parameter Reply Packet in the

sequence is sent, it having the highest Reply Sequence Number. If the value in this field

is equal to 1, then no error is considered as being present, but other Valid Parameter

Reply Packets will be sent that have higher sequence numbers. If the value in this field

WO 2005/091593 PCTIUS2005/008832

71

is equal to 2, then the specified control is not considered as being implemented in the

client. If the value in this field id equal to 3, then the specified control is not a non-

continuous control (it is a continuous control that always has a valid set of all values

from zero to its maximum value). Values for this field equal to 4 through 65535 are

reserved for future use and generally not to be used.

[00325] The 2-byte Reply Sequence Number field specifies the sequence number of the

Valid Parameter Reply Packets returned by the client. The client returns one or more

Valid Parameter Reply Packets in response to a Request Valid Parameter Packet. The

client may spread the VCP Parameter Reply List over multiple Valid Parameter Reply

Packets. In this latter case, the client will assign a sequence number to each successive

packet, and set the Response Code to 1 in all but the last packet in the sequence. The

last Valid Parameter Reply Packet in the sequence will have the highest Reply Sequence

Number and the Response Code contains a value of 0.

[00326] The 2-byte Number of Values in List field specifies the number of 16-bit values

that exist in the VCP Parameter Reply List. If the Response Code is not equal to zero

then the Number of Values in List parameter is zero. The VCP Parameter Reply List

field contains a list of 0 to 32760 2-byte values that indicate the set of valid values for

the non-continuous control specified by the MCCS Control Code field. The definitions

of the non-continuous control codes are specified in the VESA MCCS Specification.

Finally, in this embodiment, the CRC field contains a 16-bit CRC of all bytes in the

packet including the Packet Length.

Scaled Video Stream Images

[00327] The MDDI or protocol mechanism, structure, means, or method provides

support for scaled video stream images that allow the host to send an image to the client

that is scaled larger or smaller than the original image, and the scaled image is copied to

a main image buffer. An overview of the Scaled Video Stream functionality and

associated protocol support is provided elsewhere. An ability to support scaled video

streams is defined by or within the Scaled Video Stream Capability Packet, which is

sent in response to a Request Specific Status Packet.

[00328] The header of the Scaled Video Stream packet discussed below is slightly

different from the simpler Video Stream Packet whose header contains the entire

context necessary to display the image. The Scaled Video Stream packet uses a setup

WO 2005/091593 PCTIUS2005/008832

72

packet to define the parameters of the source and destination window size and position,

and a separate Scaled Video Stream Packet to transmit the pixel data. A client allocates

internal storage associated with each stream to store the stream parameters from the

setup packet and part of the pixel data associated with each stream. The amount of

storage required for each stream will vary depending on the size of the source and

destination images and the values specified in the setup packet. For this reason the

protocol is designed to allow the client to implement dynamic memory allocation for the

assignment of storage associated with each scaled video stream.

[00329] It is useful to send a video stream to a display having a size native to the

program source and have the display scale and position the image in a manner

appropriate for the specific end application. The implementation for real-time scaling of

multiple video images is sufficiently complex to make support of this feature optional in

the client.

31. Scaled Video Stream Capability Packet

[00330] The Scaled Video Stream Capability Packet defines the characteristics of the

scaled video stream source image in or used by a client. The format of the Scaled Video

Stream Capability Packet is shown generally in FIG. 75. As seen in FIG. 75, in one

embodiment, a Scaled Video Stream Capability Packet is structured to have Packet

Length, Packet Type, cClient ID, Max Number of Streams, Source Max X Size, Source

Max Y size, RGB Capability, Monochrome Capability, Reserved 1, Y Cr Cb Capability,

Reserved 2, and CRC fields. The packet length, in one embodiment, is selected to be a

fixed 20 bytes, as shown in the length field, including the 2-byte cClient ID field, which

is reserved for use for a Client ID, otherwise set to zero, and the CRC field. In one

embodiment, the client indicates an ability to support the Scaled Video Stream

Capability Packet using a parameter value of 143 in the Valid Parameter Reply List of

the Valid Status Reply List Packet.

[00331] The 2-byte Maximum Number of Streams field contains a value to identify the

maximum number of simultaneous scaled video streams that may be allocated at one

time. In one embodiment, a client should deny a request to allocate a scaled video

stream if the maximum number of scaled video streams is already allocated. If less than

the maximum number of scaled video streams are allocated the client may also deny an

allocation request based on other resource limitations in the client.

WO 2005/091593 PCTIUS2005/008832

73

[00332] The Source Maximum X Size and Y size fields (2 bytes) specify values for the

maximum width and height, respectively, of the scaled video stream source image

expressed as a number of pixels.

[00333] The RGB Capability field uses values to specify the number of bits of resolution

that can be displayed in RGB format. If the scaled video stream cannot use the RGB

format then this value is set equal to zero. The RGB Capability word is composed of

three separate unsigned values with: Bits 3 through 0 defining a maximum number of

bits of blue (the blue intensity) in each pixel, Bits 7 through 4 defining the maximum

number of bits of green (the green intensity) in each pixel, and Bits 11 through 8

defining the maximum number of bits of red (the red intensity) in each pixel, while Bits

through 12 are reserved for future use in future capability definitions, and are

generally set to zero.

[00334] The 1-byte Monochrome Capability field contains a value that specifies the

number of bits of resolution that can be displayed in monochrome format. If the scaled

video stream cannot use the monochrome format then this value is set to zero. Bits 7

through 4 are reserved for future use and should, therefore, be set to zero for

current applications, although this may change over time, as will be appreciated by

those skilled in the art. Bits 3 through 0 define the maximum number of bits of

grayscale that can exist in each pixel. These four bits make it possible to specify that

each pixel consists of 1 to 15 bits. If the value is zero, then the monochrome format is

not supported by the scaled video stream.

[00335] The Reserved 1 field (here 1 byte) is reserved for future use in providing values

related to the Scaled Video Stream Packet information or data. Therefore, currently, all

bits in this field are set to a logic One purpose of this field is to cause all

subsequent 2-byte fields to align to a 16-bit word address and cause 4-byte fields to

align to a 32-bit word address.

[00336] The 2-byte Y Cb Cr Capability field contains values that specify the number of

bits of resolution that can be displayed in Y Cb Cr format. If the scaled video stream

cannot use the Y Cb Cr format then this value is zero. The Y Cb Cr Capability word is

composed of three separate unsigned values with: Bits 3 through 0 defining the

maximum number of bits that specify the Cr sample; Bits 7 through 4 defining the

maximum number of bits that specify the Cb sample; Bits 11 through 8 defining the

WO 2005/091593 PCTIUS2005/008832

74

maximum number of bits specify the Y sample; and with Bits 15 through 12 being

reserved for future use and is generally set to zero.

[00337] The 1-byte Capability Bits field contains a set of flags that specify capabilities

associated with the scaled video stream. The flags are defined as follows: Bit 0 covers

Pixel data in the Scaled Video Stream Packet can be in a packed format. An example of

packed and byte-aligned pixel data is shown earlier in FIG. 13. Bit 1 is reserved for

future use and is generally set to zero; Bit 2 is also reserved for future use and is set to

zero; Bit 3 covers scaled video streams that can be specified in the color map data

format. The same color map table is used for the scaled video streams as is used for the

main image buffer and the alpha-cursor image planes. The color map is configured

using the Color Map Packet described elsewhere; and Bits 7 through 4 are reserved for

future use and are generally set to be zero.

[00338] The Reserved 2 field (here 1 byte) is reserved for future use in providing values

related to the Scaled Video Stream Packet information or data. Therefore, currently, all

bits in this field are set to a logic One purpose of this field is to cause all

subsequent 2-byte fields to align to a 16-bit word address and cause 4-byte fields to

align to a 32-bit word address.

32. Scaled Video Stream Setup Packet

[00339] The Scaled Video Stream Setup Packet provides a means, structure, or method

used to define the parameters of the scaled video stream and the client uses the

information to allocate internal storage for buffering and scaling of the image. A stream

may be de-allocated by sending this packet with the X Image Size and Y Image Size

fields equal to zero. Scaled video streams that have been de-allocated may be

reallocated later with the same or different stream parameters. In one embodiment a

client indicates an ability to support the Scaled Video Stream Setup Packet using a

parameter value of 143 in the Valid Parameter Reply List of the Valid Status Reply List

Packet, and by using a non-zero value in the Maximum Number of Streams field of the

Scaled Video Stream Capability Packet.

[00340] The format of the Scaled Video Stream Setup Packet is shown generally in

FIG. 76. As seen in FIG. 76, in one embodiment, a Scaled Video Stream Setup Packet

is structured to have Packet Length, Packet Type, hClient, Stream ID, Video Data

WO 2005/091593 PCTIUS2005/008832

Format Descriptor, Pixel Data Attributes, X Left Edge, Y Top Edge, X Right Edge, Y

Bottom Edge, X Image Size, Y Image Size, and CRC fields.

[00341] The 2-byte Packet Length field specifies the total number of bytes in the packet

not including the packet length field. In one embodiment, this packet length is fixed at

24. The 2-byte Packet Type field employs a value of 136 to identify the packet as a

Scaled Video Stream Setup Packet. The 2-byte hClient ID field is reserved for future

use as a Client ID, and is generally set to an all bits at logic-zero value for the moment,

or until a protocol user determines what ID values are to be used, as would be known.

[00342] The Stream ID field uses 2 bytes to specify a unique identifier for the Stream ID.

This value is assigned by the host and ranges in value from zero to the maximum

Stream ID value specified in the Client Capability Packet. The host must manage the

use of Stream ID values carefully to ensure that each active stream is assigned a unique

value, and that streams that are no longer active are de-allocated or reassigned.

[00343] In one embodiment, the Video Data Format Descriptor field uses 2 bytes to

specify the format of each pixel in the Pixel Data in the present stream in the present

packet. The pixel data format should comply with at least one of the valid formats for a

alpha-cursor image plane as might be defined in an Alpha-Cursor Image Capability

Packet, or other pre-defined image pattern, as will generally be defined within the other

packets discussed above. The Video Data Format Descriptor defines the pixel format

for the current packet only and does not imply that a constant format will continue to be

used for the lifetime of a particular video stream. Fig. 12 illustrates an embodiment of

how the Video Data Format Descriptor is coded, and as discussed above for other

packets.

[00344] For example, as seen in FIGs. 12A through 12D, and for use in one embodiment,

when bits [15:13] are equal to '000', then the video data consists of an array of

monochrome pixels where the number of bits per pixel is defined by bits 3 through 0 of

the Video Data Format Descriptor word. Bits 11 through 4 are generally reserved for

future use or applications and are set to zero in this situation. When bits [15:13] are

instead equal to the values '001', then the video data consists of an array of color pixels

that each specify a color through a color map (palette). In this situation, bits 5 through 0

of the Video Data Format Descriptor word define the number of bits per pixel, and bits

11 through 6 are generally reserved for future use or applications and set equal to zero.

When bits [15:13] are instead equal to the values '010', then the video data consists of an

WO 2005/091593 PCTIUS2005/008832

76

array of color pixels where the number of bits per pixel of red is defined by bits 11

through 8, the number of bits per pixel of green is defined by bits 7 through 4, and the

number of bits per pixel of blue is defined by bits 3 through 0. In this situation, the total

number of bits in each pixel is the sum of the number of bits used for red, green, and

blue.

[00345] However, when bits [15:13] are instead equal to the values or string '011', as

shown in FIG. 12D, then the video data consists of an array of video data in 4:2:2

YCbCr format with luminance and chrominance information, where the number of bits

per pixel of luminance is defined by bits 11 through 8, the number of bits of the Cb

component is defined by bits 7 through 4, and the number of bits of the Cr component is

defined by bits 3 through 0. The total number of bits in each pixel is the sum of the

number of bits used for red, green, and blue. The Cb and Cr components are sent at half

the rate as Y. In addition, the video samples in the Pixel Data portion of this packet are

organized as follows: Cbn, Yn, Cr, Yn+l, Cbn+2, Yn+2, Crn+2, Yn-+3, where Cbn

and Cm are associated with Yn and Yn+l, and Cbn+2 and Cm+2 are associated with

Yn+2 and Yn+3, and so on. Yn, Yn+1, Yn+2 and Yn+3 are luminance values of four

consecutive pixels in a single row from left to right

[00346] For all four formats discussed above. Bit 12, which is designated as in the

figures, specifies whether or not the Pixel Data samples are packed, or byte-aligned

pixel data. A value of in this field indicates that each pixel in the Pixel Data field is

byte-aligned with an MDDI byte boundary. A value of indicates that each pixel and

each color within each pixel in the Pixel Data is packed up against the previous pixel or

color within a pixel leaving no unused bits.

[00347] In one embodiment, a 2-byte Pixel Data Attributes field has values that are

interpreted as follows with Bits 1 and 0 being reserved for future use, generally set to

logic-zero for now, and Bit 2 indicates whether or not the Pixel Data is in interlace

format. When Bit 2 is 0, then the Pixel Data is in the standard progressive format. The

row number (pixel Y coordinate) is incremented by 1 when advancing from one row to

the next. When Bit 2 is 1, then the Pixel Data is in interlace format. The row number

(pixel Y coordinate) is incremented by 2 when advancing from one row to the next.

[00348] In one embodiment, Bit 3 indicates whether or not the Pixel Data is in alternate

pixel format. This is similar to the standard interlace mode enabled by bit 2, but with

the interlacing being vertical rather than horizontal. When Bit 3 is 0, the Pixel Data is

WO 2005/091593 PCT/US2005/008832

77

generated or placed in the standard progressive format. The column number (pixel X

coordinate) is incremented by 1 as each successive pixel is received. When Bit 3 is 1,

then the Pixel Data is generated or placed in alternate pixel format. The column number

(pixel X coordinate) is incremented by 2 as each pixel is received.

[00349] Bits 4 through 15 are also reserved for future use, and are generally be set to

logic-zero level or values for current applications or designs.

33. Scaled Video Stream Acknowledgement Packet

[00350] The Scaled Video Stream Acknowledgement Packet allows a client to

acknowledge the receipt of a Scaled Video Stream Setup Packet. The client can indicate

an ability to support the Scaled Video Stream Acknowledgement Packet via a parameter

value of 143 in the Valid Parameter Reply List of the Valid Status Reply List Packet

and via a non-zero value in the Maximum Number of Streams field of the Scaled Video

Stream Capability Packet.

[00351] The format of the Scaled Video Stream Acknowledgement Packet is shown

generally in FIG. 77. As seen in FIG. 77, in one embodiment, a Scaled Video Stream

Acknowledgement Packet is structured to have Packet Length, Packet Type, cClient,

Stream ID, ACK Code, and CRC fields. The 2-byte Packet Length field is used to

specify the total number of bytes, excluding the packet length field, with a value of

for this packet type, while a Packet Type of 137 identifies a packet as a Scaled Video

Stream Acknowledgement Packet.

[00352] The 2-byte cClient ID field is reserved for future use for the Client ID), and is

generally set to zero. The 2-byte Stream ID field specifies a unique identifier for the

Stream ID. This is the same value assigned by the host in the Scaled Video Stream

Setup Packet.

[00353] The 2-byte Ack Code field provides values containing a code that describes the

outcome of an attempt to update the specified scaled video stream. In one embodiment,

the codes are defined as follows:

0 The stream allocation attempt was successful.

1 the stream de-allocation attempt was successful.

2 invalid attempt to allocate a stream ID that has already been allocated.

3 invalid attempt to de-allocate a stream ID that is already de-allocated-

4 the client does not support scaled video streams

WO 2005/091593 PCTIUS2005/008832

78

the stream parameters are inconsistent with the capability of the client.

6 stream ID value larger than the maximum value allowed by the client.

7 insufficient resources available in the client to allocate the specified stream.

[00354] The 2-byte CRC field contains the CRC of all bytes in the packet including the

Packet Length.

34. Scaled Video Stream Packet

[00355] The Scaled Video Stream Packet is used to transmit the pixel data associated

with a specific scaled video stream. The size of the region reference by this packet is

defined by the Scaled Video Stream Setup Packet. The client can indicate an ability to

support the Scaled Video Stream Packet using a parameter value of 143 in the Valid

Parameter Reply List of the Valid Status Reply List Packet and using a successful

scaled video stream allocation response in the Ack Code field of the Scaled Video

Stream Acknowledgement Packet.

[00356] The format of one embodiment of the Scaled Video Stream Packet is shown

generally in FIG. 78. As seen in FIG. 78, a Scaled Video Stream Packet is structured to

have Packet Length, Packet Type, hClient ID, Stream ID, Pixel data Attributes, Pixel

Count, Parameter CRC, Pixel Data, and Pixel D ata CRC fields. The 2-byte Packet Type

field uses a value of 18 to identify a packet as a Scaled Video Stream Packet. The

hClient ID field is reserved for the Client ID, and generally set to zero. As before, the

2-byte Stream ID field specifies a unique idertifier for the Stream ID. This value is

specified by the host in the Scaled Video Stream Setup Packet and confirmed in the

Scaled Video Stream Acknowledgement Packe-t. In one embodiment, the 2-byte Pixel

Data Attributes field has values that specify pixel data routing and display updating or

buffer locations. These values are, in one embodiment,

[00357] In one embodiment, the 2-byte Pixel Data Attributes field has values that

specify pixel data routing and display updating or buffer locations. These values are, in

one embodiment, interpreted as follows: with B3its 1 and 0 selecting the display where

the pixel data is to be routed. For bit values of '11' or '00' pixel data is displayed to or

for both eyes, for bit values pixel data is routed only to the left eye, and for bit

values and pixel data is routed only to the right eye.

[00358] Bits 7 and 6 are the Display Update Bits that specify the frame buffer where the

pixel data is to be written. The effects of the Frame Update Bits are described in more

WO 2005/091593 PCTIUS2005/008832

79

detail elsewhere. When Bits are the Pixel data is written to the offline image

buffer. When Bits are the Pixel data is written to the image buffer used to

refresh the display. When Bits are the Pixel data is written to all image

buffers. If Bits are this is treated as an invalid value. These bits are currently

reserved for future use. In this situation, Pixel data would be ignored and not written to

any of the image buffers. Bits 2 through 5 and 8 through 15 are reserved for future use

and are generally be set to logic-zero level or values.

[00359] The 2-byte Pixel Count field specifies the number of pixels in the Pixel Data

field below. The 2-byte Parameter CRC field has the CRC of all bytes from the Packet

Length to the Pixel Count. If this CRC fails to check then the entire packet is discarded.

The 2-byte Pixel Data field contains the raw video information that is to be scaled and

then displayed. Data is formatted in the manner described by the Video Data Format

Descriptor field. The data is transmitted a row at a time as defined previously.

[00360] The 2-byte Pixel Data CRC field contains a CRC of only the Pixel Data. If this

CRC fails to check then the Pixel Data can still be used but the CRC error count is

incremented.

Request Specific Status Packet

[00361] The Request Specific Status Packet provides a means, mechanism, or method for

a host to request that the client send a capability or status packet back to the host as

specified in this packet. The client returns the packet of the specified type in the next

Reverse Link Encapsulation Packet. The client will generally set bit 17 in the Client

Feature Capability field of the Client Capability Packet if the client has the capability to

respond to the Request Specific Status Packet. A convenient method for the host to use

to determine all of the types of status packets that a client can return or transfer is to use

the Valid Status Reply List Packet described elsewhere. The client can indicate an

ability to respond with the Valid Status Reply List Packet using bit 21 of Client Feature

Capability field of the Client Capability Packet.

[00362] The format of one embodiment of a Request Specific Status Packet is shown

generally in FIG. 79. As seen in FIG. 79, a Request Specific Status Packet is structured

to have Packet Length, Packet Type, hClient ID, Status Packet ID, and CRC fields.

Packet Length field specifies the total number of bytes in the packet not including the

packet length field, and is generally fixed at a value of 10 for this packet type. A Packet

WO 2005/091593 PCTIUS2005/008832

Type of 138 identifies the packet as a Request Specific Status Packet. The hClient ID

field (2 bytes) is reserved for future use for a Client ID, and is set to zero for now, while

a 2-byte Status Packet ID field specifies the type of capability or status packet that the

client is going to send to the host. Typical packets types are:

66 Client Capability Packet is sent by the client.

133 Alpha-Cursor Image Capability Packet is sent by the client.

139 Valid Status Reply List Packet is sent that identifies the exact types of

capability and status packets that the client can send.

141 Personal Client Capability Packet is sent by the client.

142 Client Error Report Packet is sent by the client.

143 Scaled Video Stream Capability Packet is sent by the client.

144 Client Identification Packet is sent by the client.

[00363] Packet Types 56 through 63 can be used for manufacturer-specific capability and

status identifiers.

[00364] The CRC field again contains a CRC of all bytes in the packet including the

Packet Length.

36. Valid Status Reply List Packet

[00365] The Valid Status Reply List Packet provides the host with a structure, means, or

method to have a list of status and capability packets that the client has the capability to

return. A client can indicate an ability to support the Valid Status Reply List Packet

using bit 21 of Client Feature Capability field of the Client Capability Packet.

[00366] The format of one embodiment of a Valid Status Reply List Packet is shown

generally in FIG. 80. As seen in FIG. 80, a Valid Status Reply List Packet is structured

to have Packet Length, Packet Type, cClient ID, Number of Values in List, Valid

Parameter Reply List, and CRC fields. The packet length for this type of packet is

generally fixed at a value of 10, and a type value of 139 identifies the packet as a Valid

Status Reply Packet. The cClient ID field is reserved for future use as the Client ID,

and is generally be set to zero. The 2- byte Number of Values in List field specifies the

number of items in the following Valid Parameter Reply List.

[00367] The Valid Parameter Reply List field contains a list of 2-byte parameters that

specify the types of capability or status packets that the client can send to the host. If

the client has indicated that it can respond to the Request Specific Status Packet (using

WO 2005/091593 PCT/US2005/008832

81

bit 21 of the Client Feature Capability field the in the Client Capability Packet) then it is

capable of sending at least the Client Capability Packet (Packet Type 66) and the

Valid Status Reply List Packet (Packet Type 139). The Packet Types that can be sent

by the client and may be included in this list, along with their respective assignments for

purposes of the one embodiment, are:

66 Client Capability Packet.

133 Alpha-Cursor Image Capability Packet.

139 Valid Status Reply List Packet, that identifies the exact types of

capability and status packets that the client can send.

141 Personal Display Capability Packet.

142 Client Error Report Packet.

143 Scaled Video Stream Capability Packet.

144 Client Identification Packet.

145 Alternate Display Capability Packet.

[00368] Packet Types 56 through 63 can be used for manufacturer-specific capability and

status identifiers.

[00369] The CRC field contains a CRC of all bytes in the packet including the Packet

Length.

37. Personal Display Capability Packet

[00370] The Personal Display Capability Packet provides a set of parameters that

describe the capabilities of a personal display device, such as a head-mounted display or

display glasses. This enables the host to customize the display information accordinag to

the specific capabilities of a client. A client, on the other hand, indicates an ability to

send the Personal Display Capability Packet by using a corresponding parameter im the

Valid Parameter Reply List of the Valid Status Reply List Packet.

[00371] The format of one embodiment of a Personal Display Capability Packet is shown

generally in FIG. 81. As seen in FIG. 81, a Personal Display Capability Packet is

structured to have Packet Length, Packet Type, cClient ID, Sub-Pixel Layout, Pixel

Shape, Horizontal Field of View, Vertical Field of View, Visual Axis Crossing, LEt./Rt.

Image, See Through, Maximum Brightness, Optical Capability, Minimum IPD,

Maximum IPD, Points of IFeld of Curvature List and CRC fields. In one embodiment,

the Packet Length field value is fixed at 68. A Packet Type value of 141 identifies a

WO 2005/091593 PCTIUS2005/008832

82

packet as a Personal Display Capability Packet. The cClient ID field is reserved for

future use and is generally set to zero for now.

[00372] The Sub-Pixel Layout field specifies the physical layout of a sub-pixel from top

to bottom and left to right, using values of: 0 to indicate that a sub-pixel layout is not

defined; 1 to indicate red, green, blue stripe; 2 to indicate blue, green, red stripe; 3 to

indicate a quad-pixel, having a 2-by-2 sub-pixel arrangement of red at the top left, blue

at the bottom right, and two green sub-pixels, one at the bottom left and the other at the

top right; 4 to indicate a quad-pixel, with a 2-by-2 sub-pixel arrangement of red at the

bottom left, blue at the top right, and two green sub-pixels, one at the top left and the

other at the bottom right; 5 to indicate a Delta (Triad); 6 to indicate a mosaic with red,

green, and blue overlayed LCOS display with field-sequential color); and with

values 7 through 255 being generally reserved for future use.

[00373] The Pixel Shape field specifies the shape of each pixel that is composed of a

specific configuration sub-pixels, using a value of: 0 to indicate that a sub-pixel shape

is not defined; 1 to indicate round; 2 to indicate square; 3 to indicate rectangular; 4 to

indicate oval; 5 to indicate elliptical; and with the values 6 through 255 being reserved

for future use in indicating desired shapes, as can be appreciated by one skilled in the

art.

[00374] A 1-byte Horizontal Field of View (HFOV) field specifies the horizontal field of

view in 0.5 degree increments if the HFOV is 30 degrees, this value is 60). If this

value is zero then the HFOV is not specified.

[00375] A 1-byte Vertical Field of View (VFOV) field specifies the vertical field of view

in 0.5 degree increments if the VFOV is 30 degrees, this value is 60). If this value

is zero then the VFOV is not specified.

[00376] A 1-byte Visual Axis Crossing field specifies the visual axis crossing in 0.01

diopter increments if the visual axis crossing is 2.22 meters, this value is

If this value is zero then the Visual Axis Crossing is not specified.

[00377] A 1-byte Left/Right Image Overlap field specifies the percentage of overlap of

the left and right image. The allowable range of the image overlap in percent is 1 to

100. Values of 101 to 255 are invalid and are generally not to be used. If this value is

zero then the image overlap is not specified.

[00378] A 1-byte See Through field specifies the see-through percentage of image. The

allowable range of see-through in percent is 0 to 100. Values of 101 to 254 are invalid

WO 2005/091593 PCT/US2005/008832

83

and are not to be used. If this value is 255 then the see-through percentage is not

specified. Al-byte Maximum Brightness field specifies the maximum brightness in

increments of 20 nits if the maximum brightness is 100 nits, this value is If this

value is zero then the maximum brightness is not specified.

[00379] A 2-byte Optical Capability Flags field contains various fields that specify

optical capabilities of the display. These bit values are generally assigned according to:

[00380] Bits 15 through 5 are reserved for future use and are generally set to a logic-zero

state.

[00381] Bit 4 selects Eye Glass Focus Adjustment, with a value of meaning the

display has no eye glass focus adjustment, and a value of meaning the display has an

eye glass focus adjustment.

[00382] Bits 3 through 2 select a Binocular Function according to: a value of 0 means the

display is binocular and can display 2-dimensional (2D) images only; 1 means the

display is binocular and can display 3-dimensional (3D) images; 2 means the display is

monocular, and 3 is reserved for future use.

[00383] Bits 1 through 0 select Left-Right Field Curvature Symmetry, with a value of0

meaning Field curvature not defined. If this field is zero then all field curvature values

from Al through E5 are set to zero except for point C3, which specifies a focal distance

of the display or is to be set to zero to indicate the focal distance is not specified. A

value of 1 means Left and Right displays have the same symmetry; 2 means Left and

right displays are mirrored on the vertical axis (column and 3 is reserved for future

use.

[00384] The 1-byte Inter-Pupillary Distance (IPD) Minimum field specifies the

minimum inter-pupillary distance in millimeters If this value is zero then the

minimum inter-pupillary distance is not specified. The 1-byte Inter-Pupillary Distance

(IPD) Maximum field specifies the maximum inter-pupillary distance in millimeters

If this value is zero then the maximum inter-pupillary distance is not specified.

[00385] The Points of Field Curvature List field contains a list of 25 2-byte parameters

that specify the focal distance in thousandths of a diopter with a range of 1 to

65535 1 is 0.001 diopters and 65535 is 65.535 diopters). The 25 elements in the

Points of Field Curvature List are labeled Al through E5 as shown in FIG. 82. The

points are to be evenly distributed over the active area of the display. Column C

corresponds to the vertical axis of the display and row 3 corresponds to the horizontal

WO 2005/091593 PCTIUS2005/008832

84

axis of the display. Columns A and E correspond to the left and right edges of the

display, respectively. And rows 1 and 5 correspond to the top and bottom edges of the

display, respectively. The order of the 25 points in the list is: Al, Bl, Cl, Dl, El, A2,

B2, C2, D2, E2, A3, B3, C3, D3, E3, A4, B4, C4, D4, E4, A5, B5, C5, D5,

[00386] The CRC field contains a CRC of all bytes in the packet including the Packet

Length.

38. Client Error Report Packet

[00387] The Client Error Report Packet acts as a mechanism or means for allowing a

client to provide a list of operating errors to the host. The client may detect a wide

range of 'errors in the course of its normal operation as a result of receiving certain

commands from the host. Examples of these errors include: the client may have been

commanded to operate in a mode that it does not support, the client may have received a

packet containing certain parameters that are out of range or are beyond the capability

of the client, the client may have been commanded to enter a mode in an improper

sequence. The Client Error Report Packet may be used to detect errors during normal

operation, but is most useful to the system designer and integrator to diagnose problems

in development and integration of host and client systems. A client indicates its ability

to send a Client Error Report Packet using a parameter value of 142 in the Valid

Parameter Reply List of the Valid Status Reply List Packet.

[00388] The format of one embodiment of a Client Error Report Packet is shown

generally in FIG. 83. As seen in FIG. 83, a Client Error Report Packet is structured to

have Packet Length, Packet Type, cClient ID, Number of List Items, Error Code List,

and CRC fields. A Packet Type value of 142 identifies a packet as a Client Error Report

Packet. The cClient ID field is reserved for future use and is generally set to zero for

now. The Number of List Items field (2 bytes) specifies the number of items in the

following Error Code List. The Error Code List field (here 8 bytes) is a list containing

one or more Error Report List items. The format of a single Error Report List item is

shown in FIG. 84.

[00389] In one embodiment, as shown in FIG. 84, each Error Report List Item is exactly

4 bytes in length, and has a structure in one embodiment comprising: a 2-byte Display

Error Code field that specifies the type of error being reported, a 2-byte Error Sub-code

field specifies a greater level of detail regarding the error defined by the Client Error

WO 2005/091593 PCTIUS2005/008832

Code packet. The specific definition of each Client Error Code is defined by the

manufacturer of the client. An Error Sub-code does not have to be defined for every

Display Error Code, and in those cases where the Error Sub-code is not defined the

value is set to zero. The specific definition of each Error Sub-code is defined by the

manufacturer of the client.

39. Client Identification Packet

[00390] The Client Identification Packet allows a client to return identifying data in

response to a Request Specific Status Packet. In one embodiment, a client indicates an

ability to send the Client Identification Packet using a parameter value of 144 in the

Valid Parameter Reply List of the Valid Status Reply List Packet. It is useful for the

host to be able to determine the client device manufacturer name and model number by

reading this data from the client. The information may be used to determine if the client

has special capabilities that cannot described in the Client Capability Packet. There are

potentially two methods, means, or mechanisms for reading identification information

from the client. One is through use of the Client Capability Packet, which contains

fields similar to those in the base EDID structure. The other method is through use of

the Client Identification Packet that contains a richer set of information compared to the

similar fields in the Client Capability Packet. This allows a host to identify

manufacturers that have not been assigned a 3-character EISA code, and allows serial

numbers to contain alphanumeric characters.

[00391] The format of one embodiment of a Client Identification Packet is shown

generally in FIG. 85. As seen in FIG. 85, a Client Identification Packet is structured to

have Packet Length, Packet Type, cClient ID, Week of Mfr, Year of Mfr., Length of

Mfr Name, Length of Product Name, Length of Serial Number, Manufacturer Name

String, Product Name String, Serial Number String, and CRC fields.

[00392] The 2 byte Packet Type field contains a value that identifies the packet as a

Client Identification Packet. This value is selected to be 144 in one embodiment. The

cClient ID field (2 bytes) again is reserved for future use for the Client ID, and is

generally set to zero. The CRC field (2 bytes) contains a 16-bit CRC of all bytes in the

packet including the Packet Length.

[00393] A 1-byte Week of Manufacture field contains a value that defines the week of

manufacture of the display. In at least one embodiment, this value is in the range of 1 to

WO 2005/091593 PCTIUS2005/008832

86

53 if it is supported by the client. If this field is not supported by the client, then it is

generally set to zero. A 1-byte Year of Manufacture field contains a value that defines

the year of manufacture of the client (display). This value is an offset from the year

1990 as a starting point, although other base years could be used. Years in the range of

1991 to 2245 can be expressed by this field. Example: the year 2003 corresponds to a

Year of Manufacture value of 13. If this field is not supported by the client it should be

set to a value of zero.

[00394] The Length of Mfr Name, Length of Product Name, and Length of Serial

Number fields each contain 2-byte values that specify the length of the Manufacturer

Name String field including any null termination or null pad characters, the length of the

Product Name String field including any null termination or null pad characters, and the

length of the Serial Number String field including any null termination or null pad

characters, respectively.

[00395] The Manufacturer Name String, Product Name String, and Serial Number String

fields each contain a variable number of bytes specified by the Length Mfr Name,

Product Name, and Serial Number fields, respectively, that contain an ASCII string that

specifies the manufacturer, product name, and alphanumeric serial number of the

display, respectively. Each of these strings is terminated by at least one null character.

Alternate Display Capability Packet

[00396] The Alternate Display Capability Packet is used as a means, structure, or method

to indicate the capability of alternate displays attached to the MDDI client controller. It

is sent in response to a Request Specific Status Packet. When prompted, a client device

sends an Alternate Display Capability Packet for each alternate display that is

supported. If a client has more than one alternate display, then the client should send,

generate, or provide multiple Alternate Display Capability Packets, one for each

display, in response to a single Request Specific Status Packet, although some

configurations can use multiple Request Specific Status Packets as desired, although

this is less efficient. The client may send Alternate Display Capability Packets in what

can be referred to as a "non-sequential order" based on the value of the Alt Display

Number field. The client can indicate an ability to send the Alternate Display

Capability Packet via a parameter value of 145 in the Valid Parameter Reply List of the

Valid Status Reply List Packet.

WO 2005/091593 PCTIUS2005/008832

87

[00397] For MDDI systems operated in internal mode it may be common to have more

than one display connected to an MDDI client controller. An example application is a

mobile phone with a large display on the inside of the flip and a smaller display on the

outside. It is not necessary for an internal mode client to return an Alternate Display

Capability Packet for two potential reasons. First, the host may already be programmed

or otherwise informed of the capabilities during manufacture since they are used in a

common device or housing. Second, due to assembly of the two, the client cannot

easily be disconnected or separated from a connection to the host, and the host may

contain a hard-coded copy of the client capabilities, or at least know they do not change

with a change in client, as otherwise might occur.

[00398] The Number of Alt Displays field of the Client Capability Packet is used to

report that more than one display is attached and the Alternate Display Capability

Packet reports the capability of each alternate display. The video stream packet

contains 4 bits in the Pixel Data Attributes field to address each alternate display in the

client device.

[00399] The format of one embodiment of a Alternate Display Capability Packet is

shown generally in FIG. 89. As seen in FIG. 86, an Alternate Display Capability Packet

is structured to have Packet Length, Packet Type, cClient ID, Alt Display Number,

Reserved 1, Bitmap Width, Bitmap Height, Display Window Width, Display Window

Height, Color Map RGB Width, RGB Capability, Monochrome Capability, Reserved 2,

Y Cb Cr Capability, Display Feature Capability, Reserved 3, and CRC fields. A Packet

Type value of 145 identifies a packet as a Alternate Display Capability Packet. The

cClient ID field is reserved for a Client ID for future use and generally set to zero.

[00400] The Alt Display Number field uses 1 byte to indicate the identity of the alternate

display with an integer in the range of 0 to 15. The first alternate display is typically

designated as number 0 and the other alternate displays are identified with unique Alt

Display Number values with the largest value used being the total number of alternate

displays minus 1. Values larger than the total number of alternate displays minus 1 are

not used. Example: a mobile phone having a primary display and a caller-ID display

connected to an MDDI client has one alternate display, so the Alt Display Number of

the caller-ID display is zero and the Number of Alt Displays field of the Client

Capability Packet has a value of 1.

WO 2005/091593 PCTIUS2005/008832

88

[00401] The Reserved 1 field (1 byte) is reserved for future use. All bits in this field are

set to zero. One purpose of this field is to cause all subsequent 2 byte fields to align to a

16-bit word address and cause 4-byte fields to align to a 32-bit word address.

[00402] The Bitmap Width field uses 2 bytes that specify the width of the bitmap

expressed as a number of pixels. The Bitmap Height field uses 2 bytes that specify the

height of the bitmap expressed as a number of pixels. The Display Window Width field

uses 2 bytes that specify the width of the display window expressed as a number of

pixels. The Display Window Height field uses 2 bytes that specify the height of the

display window expressed as a number of pixels.

[00403] The Color Map RGB Width field uses 2 bytes that specify the number of bits of

the red, green, and blue color components that can be displayed in the color map

(palette) display mode. A maximum of 8 bits for each color component (red, green, and

blue) can be used. Even though 8 bits of each color component are sent in the Color

Map Packet, only the number of least significant bits of each color component defined

in this field are used. If the display client cannot use the color map (palette) format then

this value is zero. The color map RGB Width word is composed of three separate

unsigned values:

[00404] Bits 3 through 0 define the maximum number of bits of blue in each pixel with

values of 0 to 8 being considered valid. Bits 7 through 4 define the maximum number

of bits of green in each pixel with values of 0 to 8 being considered valid. Bits 11

through 8 define the maximum number of bits of red in each pixel with values of 0 to 8

being considered valid. Bits 14 through 12 are reserved for future use and are generally

set to zero. Bit 15 is used to indicate the ability of a client to accept Color Map pixel

data in packed or unpacked format. When Bit 15 is set to a logic-one level, this

indicates that the client can accept Color Map pixel data in either packed or unpacked

format. If bit 15 is set to a logic-zero, this indicates that the client can accept Color Map

pixel data only in unpacked format.

[00405] RGB Capability field uses 2 bytes to specify the number of bits of resolution that

can be displayed in RGB format. In one embodiment, if the client cannot use the RGB

format then this value is set equal to zero. The RGB Capability word is composed of

three separate unsigned values: Bits 3 through 0 define the maximum number of bits of

blue (the blue intensity) in each pixel, Bits 7 through 4 define the maximum number of

bits of green (the green intensity) in each pixel, and Bits 11 through 8 define the

WO 2005/091593 PCTIUS2005/008832

89

maximum number of bits of red (the red intensity) in each pixel. Bits 14 through 12 arc

reserved for future use and are set to zero. Bit 15 is used to indicate the ability of a

client to accept RGB pixel data in packed or unpacked format. When Bit 15 is set to a

logic-one level, this indicates that the client can accept RGB pixel data in either packed

or unpacked format. If bit 15 is set to a logic-zero, this indicates that the client can

accept RGB pixel data only in unpacked format.

[00406] The 1 byte Monochrome Capability field contains a value or information to

specify the number of bits of resolution that can be displayed in monochrome format. If

the client cannot use the monochrome format then this value is set equal to zero. Bits 6

through 4 are reserved for future use and are generally set to zero. Bits 3 through 0

define the maximum number of bits of grayscale that can exist in each pixel. These four

bits make it possible to specify that each pixel consists of 1 to 15 bits. If the value is

zero then the monochrome format is not supported by the client. Bit 7 when set to one

indicates that the client can accept monochrome pixel data in either packed or unpacked

format. If bit 7 is set to zero this indicates that the client can accept monochrome pixel

data only in unpacked format.

[00407] The Reserved 2 field is a 1 byte wide field reserved for future use and generally

has all bits in this field set to logic-zero level. In one embodiment, one purpose of this

field is to cause all subsequent 2 byte fields to align to a 16-bit word address and cause

4-byte fields to align to a 32-bit word address.

[00408] A 2-byte Y Cb Cr Capability field specifies the number of bits of resolution that

can be displayed in Y Cb Cr format. If the client cannot use the Y Cb Cr format then

this value is zero. The Y Cb Cr Capability word is composed of three separate unsigned

values: Bits 3 through 0 define the maximum number of bits that specify the Cb

sample, Bits 7 through 4 define the maximum number of bits that specify the Cr sample,

Bits 11 through 8 define the maximum number of bits that specify the Y sample, and

Bits 14 through 12 are reserved for future use and are set to zero. Bit 15 when set to one

indicates that the client can accept Y Cb Cr pixel data in either packed or unpacked

format. If bit 15 is set to zero this indicates that the client can accept Y Cb Cr pixel data

only in unpacked format.

[00409] A 2 byte Bayer Capability field specifies the number of bits of resolution, pixel

group, and pixel order that can be transferred in Bayer format. If the client cannot use

the Bayer format then this value is set at zero. The Bayer Capability field is composed

WO 2005/091593 PCTIUS2005/008832

of the following values: Bits 3 through 0 define the maximum number of bits of

intensity that exist in each pixel, Bits 5 through 4 define the pixel group pattern that

may be required. Bits 8 through 6 define a pixel order that is required, and Bits 14

through 9 are reserved for future use and are set to zero. Bit 15 when set to one

indicates that the client can accept Bayer pixel data in either packed or unpacked format.

If bit 15 is set to zero, this indicates that the client can accept Bayer pixel data only in

unpacked format.

[00410] The 2-byte CRC field contains a 16-bit CRC of all bytes in the packet including

the Packet Length.

41. Register Access Packet

[00411] The Register Access Packet provides either a host or a client with a means,

mechanism, or method to access configuration and status registers in the opposite end of

the MDDI link. The registers are likely to be unique for each display or device

controller. These registers already exist in many displays that require setting

configurations, modes of operation, and have other useful and necessary settings. The

Register Access Packet allows the MDDI host or client to both write to a register and

request to read a register using the MDDI link. When the host or client requests to read

a register the opposite end should respond by sending the register data in the same

packet type, but also by indicating that this is the data read from a particular register

with the use of the Read/Write Info field. The Register Access Packet may be used to

read or write multiple registers by specifying a register count greater than 1. A client

indicates an ability to support the Register Access Packet using bit 22 of Client Feature

Capability field of the Client Capability Packet. The client will use the encapsulation

packet to send the Register Access Packet, therefore presenting what appears as a packet

within a packet configuration or structure.

[00412] The format of one embodiment of a Register Access Packet is shown generally

in FIG. 87. As seen in FIG. 87, a Register Access Packet is structured to have Packet

Length, Packet Type, bClient ID, Read/Write Flags, Register Address, Parameter CRC,

Register Data List and Register Data CRC fields. A Packet Type value of 146 identifies

a packet as Register Access Packet. The bClient ID field is reserved for future use and

is generally set to zero for now.

WO 2005/091593 PCTIUS2005/008832

91

[00413] The 2-byte Read/Write Flags field specifies the specific packet as either a write,

or a read, or a response to a read, and provides a count of the data values.

[00414] Bits 15 through 14 act as Read/Write Flags. If Bits[15:14] are '00' then this

packet contains data to be written to a register addressed by the Register Address field.

The data to be written to the specified registers is contained in the Register Data List

field. If Bits[15:14] are '10' then this is a request for data from one or more registers

addressed by the Register Address field. If Bits[15:14] are '11' then that packet

contains data that was requested in response to a Register Access Packet having bits

15:14 of the Read/Write Flags set to The Register Address field contains the

address of the register corresponding to the first Register Data List item, and the

Register Data List field contains data that was read from the address or addresses. If

Bits[15:14] are '01' this is treated as an invalid value, this value is reserved for future

use and is not used at this time, but those skilled in the art will understand how to

employ it for future applications.

[00415] Bits 13:0 use a 14-bit unsigned integer to specify the number of 32-bit Register

Data items to be transferred in the Register Data List field. If bits 15:14 equal '00' then

bits 13:0 specify the number of 32-bit register data items that are contained in the

Register Data List field to be written to registers starting at the register specified by the

Register Address field. If bits 15:14 equal '10' then bits 13:0 specify the number of 32-

bit register data items that the receiving device sends to a device requesting that the

registers be read. The Register Data List field in this packet contains no items and is of

zero length. If bits 15:14 equal '11' then bits 13:0 specify the number of 32-bit register

data items that have been read from registers that are contained in the Register Data List

field. Bits 15:14 are not currently set equal to which is considered an invalid

value, and otherwise reserved for future designations or use.

[00416] The Register Address field uses 4 bytes to indicate the register address that is to

be written to or read from. For addressing registers whose addressing is less than 32

bits, the upper bits are set to zero.

[00417] The 2-byte Parameter CRC field contains a CRC of all bytes form the Packet

Length to the Register Address. If this CRC fails to check then the entire packet is

discarded.

[00418] The Register Data List field contains a list of 4-byte register data values to be

written to client registers or values that were read from client device registers.

WO 2005/091593 PCT/US2005/008832

92

[00419] The 2-byte Register Data CRC field contains a CRC of only the Register Data

List. If this CRC fails to check then the Register Data may still be used, but the CRC

error count is incremented.

D. Packet CRC

[00420] The CRC fields appear at the end of the packets and sometimes after certain

more critical parameters in packets that may have a significantly large data field, and

thus, an increased likelihood of errors during transfer. In packets that have two CRC

fields, the CRC generator, when only one is used, is re-initialized after the first CRC so

that the CRC computations following a long data field are not affected by the

parameters at the beginning of the packet.

[00421] There is a remote possibility for packets containing multiple bit errors to

produce a good CRC. The probability of detecting a good CRC on a packet with errors

approaches 7.6 x 10 6 on very long packets containing many errors. By design, the
MDDI link will have a very low or zero error rate. The CRC is intended to be used to

monitor the health of the link, and is not intended to detect errors on specific packets to

determine whether packets should be retransmitted.

[00422] In an exemplary embodiment, the polynomial used for the CRC calculation is

known as the CRC-16, or X16 X15 X2 XO. A sample implementation of a CRC

generator and checker 3600 useful for implementing the invention is shown in FIG. 36.

In FIG. 36, a CRC register 3602 is initialized to a value of 0x0001 just prior to transfer

of the first bit of a packet which is input on the Tx_MDDI_Data_Before_CRC line, then

the bytes of the packet are shifted into the register starting with the LSB first. Note that

the register bit numbers in this figure correspond to the order of the polynomial being

used, and not the bit positions used by the MDDI. It is more efficient to shift the CRC

register in a single direction, and this results in having CRC bit 15 appear in bit position

0 of the MDDI CRC field, and CRC register bit 14 in MDDI CRC field bit position 1,
and so forth until MDDI bit position 14 is reached.

[00423] As an example, if the packet contents for the Client Request and Status Packets

are: Ox000c, 0x0046, 0x000, 0x0400, 0x00, 0x00, 0x0000 (or represented as a sequence

of bytes as: OxOc, 0x00, 0x46, 0x00, 0x00, Ox00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00),
and are submitted using the inputs of the multiplexors 3604 and 3606, and AND gate

WO 2005/091593 PCT/US2005/008832

93

3608, the resulting CRC output on the Tx_MDDI_Data_With_CRC line is Oxd9aa (or

represented as a sequence as Oxaa, Oxd9).

[00424] When CRC generator and checker 3600 is configured as a CRC checker, the

CRC that is received on the RxMDDI Data line is input to multiplexor 3604 and

exclusive-OR (XOR) gate 3612, and is compared bit by bit with the value found in the

CRC register using NOR gate 3610, AND gate 3608, and AND gate 3614. If there are

any errors, as output by AND gate 3614, the CRC is incremented once for every packet

that contains a CRC error by connecting the output of gate 3614 to the input of register

3602. Note that the example circuit shown in the diagram of FIG. 36 can output more

than one CRC error signal within a given CHECK_CRC_NOW window (see FIG. 37B).

Therefore, the CRC error counter generally only counts the first CRC error instance

within each interval where CHECKCRC_NOW is active. If configured as a CRC

generator the CRC is clocked out of the CRC register at the time coinciding with the

end of the packet.

[00425] The timing for the input and output signals, and the enabling signals, is

illustrated graphically in FIGs. 37A and 37B. The generation of a CRC and

transmission of a packet of data are shown in FIG. 37A with the state (0 or 1) of the

Gen_Reset, Check_CRCNow, Generate_CRCNow, and Sending_MDDI_Data

signals, along with the Tx_MDDI_Data_Before_CRC and Tx_MDDI_Data_With_CRC

signals. The reception of a packet of data and checking of the CRC value are shown in

FIG. 37B, with the state of the Gen_Reset, Check_CRC_Now, Generate_CRCNow,

and Sending_MDDIData signals, along with the Rx_MDDI_Data and CRC error

signals.

E. Error Code Overload for Packet CRC

[00426] Whenever only data packets and CRC are being transferred between the host and

client, there are no error codes being accommodated. The only error is a loss of

synchronization. Otherwise, one has to wait for the link to timeout from a lack of a

good data transfer path or pipeline and then reset the link and proceed. Unfortunately,

this is time consuming and somewhat inefficient.

[00427] For use in one embodiment, a new technique has been developed in which the

CRC portion of packets is used to transfer error code information. This is generally

shown in FIG. 65. That is, one or more error codes are generated by the processors or

WO 2005/091593 PCTIUS2005/008832

94

devices handling the data transfer which indicate specific predefined errors or flaws that

might occur within the communication processing or link. When an error is

encountered, that the appropriate error code is generated and transferred using the bits

for the CRC of a packet. That is, the CRC value is overloaded, or overwritten, with the

desired error code, which can be detected on the receiving end by an error monitor or

checker that monitors the values of the CRC field. For those cases in which the error

code matches the CRC value for some reason, the compliment of the error is transferred

to prevent confusion.

[00428] In one embodiment, to provide a robust error warning and detection system, the

error code may be transferred several times, using a series of packets, generally all, that

are transferred or sent after the error has been detected. This occurs until the point at

which the condition creating the error is cleared from the system, at which point the

regular CRC bits are transferred without overloading by another value.

[00429] This technique of overloading the CRC value provides a much quicker response

to system errors while using a minimal amount of extra bits or fields.

[00430] As shown in FIG. 66, a CRC overwriting mechanism or apparatus 6600 is

shown using an error detector or detections means 6602, which can form part of other

circuitry previously described or known, detects the presence or existence of errors

within the communication link or process. An error code generator or means 6604,

which can be formed as part of other circuitry or use techniques such as look up tables

to store pre-selected error messages, generates one or more error codes to indicate

specific predefined errors or flaws that have been detected as occurring. It is readily

understood that devices 6602 and 6604 can be formed as a single circuit or device as

desired, or as part of a programmed sequence of steps for other known processors and

elements.

[00431] A CRC value comparator or comparison means 6606 is shown for checking to

see if the selected error code or codes are the same as the CRC value being transferred.

If that is the case then a code compliment generator or generation means or device is

used to provide the compliment of the error codes as to not be mistaken as the original

CRC pattern or value and confuse or complicate the detection scheme. An error code

selector or selection means element or device 6610 then selects the error code or value it

is desired to insert or overwrite, or their respective compliments as appropriate. An

error code CRC over-writer or over writing mechanism or means 6612 is a device that

WO 2005/091593 PCTIUS2005/008832

receives the data stream, packets, and the desired codes to be inserted and overwrites the

corresponding or appropriate CRC values, in order to transfer the desired error codes to

a receiving device.

[00432] As mentioned, the error code may be transferred several times, using a series of

packets, so the over-writer 6612 may utilize memory storage elements in order to

maintain copies of the codes during processing or recall these codes from previous

elements or other known storage locations which can be used to store or hold their

values as needed, or as desired.

[00433] The general processing the overwriting mechanism of FIG. 66 is implementing

is shown in additional detail in FIGs. 67A and 67B. In 67A, an error, one or more, is

detected in step 6702 in the communication data or process and an error code is selected

in step 6704 to indicate this condition. At the same time, or at an appropriate point, the

CRC value to be replaced is checked in a step 6706, and compared to the desired error

code in step 6708. The result of this comparison, as discussed earlier, is a determination

as to whether or not the desired code, or other representative values, will be the same as

the CRC value present. If this is the case, then processing proceeds to a step 6712

where the compliment, or in some cases another representative value, as desired, is

selected as the code to insert. One it has been determined what error codes or values are

to be inserted in steps 6710 and 6714, that appropriate code is selected for insertion.

These steps are illustrated as separate for purposes of clarity but generally represent a

single choice based on the output of the step 6708 decision. Finally, in step 6716 the

appropriate values are overwritten in the CRC location for transfer with the packets

being targeted by the process.

[00434] On the packet reception side, as shown in FIG. 67B, the packet CRC values are

being monitored in a step 6722. Generally, the CRC values are being monitored by one

or more processes within the system to determine if an error in data transfer has

occurred and whether or not to request a retransmission of the packet or packets, or to

inhibit further operations and so forth, some of which is discussed above. As part of

such monitoring the information can also be used to compare values to known or pre-

selected error codes, or representative values and detect the presence of errors.

Alternatively, a separate error detection process and monitor can be implemented. If a

code appears to be present it is extracted or otherwise noted in step 6724 for further

processing. A determination can be made in step 6726 as to whether or not this is the

WO 2005/091593 PCTIUS2005/008832

96

actual code or a compliment, in which case an additional step 6728 is used to translate

the value to the desired code value. In either case the resulting extracted code,

compliment, or other recovered values are then used to detect what error has occurred

form the transmitted code in step 6730.

V. Link Hibernation

[00435] The MDDI link can enter the hibernation state quickly and wake up from

hibernation quickly. This responsiveness allows a communicating system or device to

force the MDDI link into hibernation frequently to reduce power consumption, since it

can wake up again for use very quickly. Tn one embodiment, as an external mode client

wakes up from hibernation for the first time it does so at a data rate and with strobe

pulse timing that is consistent with a 1 Mbps rate, that is, the MDDI_Stb pair should

toggle at a 500 kHz rate. Once characteristics of the client have been discovered by or

communicated to the host, then the host may wake up the link at generally any rate from

1 Mbps to the maximum rate at which the client can operate. Internal mode clients may

wake up at any rate at which both the host and client can operate. This is also generally

applicable to the first time an internal mode client wakes up.

[00436] In one embodiment, when the link wakes up from hibernation the host and client

exchange a sequence of pulses. These pulses can be detected using low-speed line

receivers that consume only a fraction of the current as the differential receivers

required to receive the signals at the maximum link operating speed. Either the host or

client can wake up the link, so the wake-up protocol is designed to handle possible

contention that can occur if both host and client attempt to wake up simultaneously.

[00437] During the hibernation state the MDDI_Data and MDDI_Stb differential drivers

are disabled in the high-impedance state and the differential voltage across all

differential pairs is zero volts. The differential line receivers used to detect the sequence

of pulses during the wake-up from hibernation have an intentional voltage offset. In one

embodiment, the threshold between a logic-one and logic-zero level in these receivers is

approximately 125 mV. This causes an un-driven differential pair to be seen as a logic-

zero level during the link wake-up sequence.

[00438] In order to enter a Hibernation State, the host sends 64 MDDI_Stb cycles after

the CRC of the Link Shutdown Packet. The host disables the MDDI_Data0 output of

WO 2005/091593 PCT/US2005/008832

97

the host in the range of 16 to 56 MDDIStb cycles (including output disable

propagation delays) after the CRC. The host finishes sending the 64 MDDI Stb cycles

after the CRC of the Link Shutdown packet before it initiates tlae wake-up sequence. In

one embodiment, the host-initiated wake-up is defined as the host having to wait at least

100 nsec after MDDI Data0 reaches a valid logic-one level before driving pulses on

MDDIStb. In one embodiment, the client waits at least 60 MVIDDI_Stb cycles after the

CRC of the Link Shutdown Packet before it drives MDDI_Data0 to a logic-one level to

attempt to wake-up the host.

[00439] In order to "wake-up" from a Hibernation State, several actions or processes are

undertaken. When the client, here a display, needs data or communication, service,

from the host it generates a request pulse by driving the MDDI_Data0 line to a logic-

one state for around 70 to 1000 psec, while MDDI_Stb is inactive and keeps

MDDI Data0 driven to a logic-one level for about 70 MDDI_Stb cycles (over a range

of 60 to 80) after MDDIStb becomes active, although other periods can be used as

desired. The client then disables the MDDI_Data0 driver b>y placing it into a high-

impedance state.

[00440] If MDDI Stb is active during hibernation, although unlikely, then the client

might only drive MDDI_Data0 to a logic-one state for about 70 MDDI_Stb cycles (over

a range of 60 to 80). This action causes the host to start or restart data traffic on the

forward link (208) and to poll the client for its status.

[00441] The host must detect the presence of the request pulse and begins the startup

sequence of first driving the MDDIStb to logic-zero level and MDDI_Data0 to a logic-

high level for at least around 200 nsec. And then while toggling MDDIStb continue to

drive MDDIData0 to a logic-one level for about 150 MDDIStb cycles (a range of 140

to 160) and to logic-zero for about 50 MDDI Stb cycles. The client should not send a

service request pulse if it detects MDDI_Data0 in the logic-one state for more than

MDDI_Stb cycles. When the client has detected MDDI_DataO at a logic-one level for

to 80 MDDI_Stb cycles it begins to search for the interval where the host drives

MDDI_Data0 to a logic-zero level for 50 MDDI Stb cycles. After the host drives

MDDI_Data0 to a logic-zero level for a duration of 50 MDDE_Stb cycles, then the host

starts sending packets on the link. The first packet sent is a Sub-frame Header Packet.

The client begins to look for the Sub-frame Header Packet after MDDIData0 is at a

logic-zero level for 40 MDDIStb cycles of the 50 cycle interval. The nature of

WO 2005/091593 PCT/US2005/008832

98

selection of the times and tolerances of time intervals related to the hibernation

processing and start up sequence are discussed further below. (See FIGs. 68A-C

below.)

[00442] The host may initiate the wake-up by first enabling MDDI_Stb and

simultaneously drive it to a logic-zero level. MDDI_Stb should not be driven to a logic-

one level until pulses are output as described below. After MDDI_Stb reaches a logic-

zero level the host enables MDDIData0 and simultaneously drives it to a logic-one

level. MDDI Data0 should not be driven to a logic-zero level during the wake-up

processjuntil the interval where it is driven to a logic-zero level for an interval of

MDDI_Stb pulses as described below. The host should wait at least 200 nsec after

MDDIDataO reaches a valid logic-one level before driving pulses on MDDIStb. This

timing relationship occurs while considering the worst-case output enable delays. This

substantially guarantees that a client has sufficient time to fully enable its MDDIStb

receiver after being awakened by a logic-one level on MDDI_Data0 that was driven by

the host.

[00443] An example of the processing steps for a typical client service request event

3800 with no contention is illustrated in FIG. 38, where the events are labeled for

convenience in illustration using the letters A, B, C, D, E, F, and G. The process

commences at point A when the host sends a Link Shutdown Packet to the client device

to inform it that the link will transition to a low-power hibernation state. In a next step,

the host enters the low-power hibernation state by disabling the MDDI_Data0 driver

and setting the MDDI_Stb driver to a logic zero, as shown at point B. MDDI_DataO is

driven to a logic-zero level by a high-impedance bias network. After some period of

time, the client sends a service request pulse to the host by driving MDDI_Data0 to a

logic one level as seen at point C. The host still asserts the logic-zero level using the

high-impedance bias network, but the driver in the client forces the line to a logic one

level. Within 50 gsec, the host recognizes the service request pulse, and asserts a logic

one level on MDDIData0 by enabling its driver, as seen at point D. The client then

ceases from attempting to assert the service request pulse, and the client places its driver

into a high-impedance state, as seen at point E. The host drives MDDI_DataO to a

logic-zero level for 50 sec, as shown at point F, and also begins to generate MDDI_Stb

in a manner consistent with the logic-zero level on MDDI_DataO. The client begins to

look for the Sub-frame Header Packet after MDDI_DataO is at a logic-zero level for

WO 2005/091593 PCT/US2005/008832

99

MDDIStb cycles. After asserting MDDI_Data0 to a logic-zero level and driving

MDDI Stb for 50 psec, the host begins to transmit data on the forward link by sending

a Sub-frame Header Packet, as shown at point G.

[00444] A similar example is illustrated in FIG. 39 where a service request is asserted

after the link restart sequence has begun, and the events are again labeled using the

letters A, B, C, D, E, F, and G. This represents a worst case scenario where a request

pulse or signal from the client comes closest to corrupting the Sub-frame Header Packet.

The process commences at point A when the host again sends a Link Shutdown Packet

to the client device to inform it that the link will transition to a low-power hibernation

state. In a next step, the host enters the low-power hibernation state by disabling the

MDDI_Data0 driver and setting the MDDIStb driver to a logic-zero level, as shown at

point B. As before, MDDI_DataO is driven to a logic-zero level by a high-impedance

bias network. After a period of time, the host begins the link restart sequence by driving

MDDI_Data0 to a logic-one level for 150 psec as seen at point C. Prior to 50 psec

passing after the link restart sequence begins the display also asserts MDDIDataO for a

duration of 70 psec, as seen at point D. This happens because the display has a need to

request service from the host and does not recognize that the host has already begun the

link restart sequence. The client then ceases attempting to assert the service request

pulse, and the client places its driver into a high-impedance state, as seen at point E.

The host continues to drive MDDI_DataO to a logic-one level. The host drives

MDDI_Data0 to a logic-zero level for 50 psec, as shown at point F, and also begins to

generate MDDI_Stb in a manner consistent with the logic zero level on MDDI_DataO.

After asserting MDDI_DataO to a logic-zero level, and driving MDDI Stb for 50 gsec,

the host begins to transmit data on the forward link by sending a Sub-frame Header

Packet, as shown at point G.

[00445] From the above discussion, one sees that the prior solution involved having the

host go through two states as part of a wakeup sequence. For the first state, the host

drives the MDDIData0 signal high for 150 ps, and then drives the MDDI_Data0 signal

low for 50 us while activating the MDDIStb line, and then begins to transmit MDDI

packets. This process works well to advance the state of the art in terms of data rates

achievable using the MDDI apparatus and methods. However, as stated earlier, more

speed in terms of reduced response time to conditions or being able to more quickly

WO 2005/091593 PCTIUS2005/008832

100

select the next step or process, are the ability to simplify processing or elements, are

always in demand.

[00446] Applicants have discovered a new inventive approach to wake-up processing

and timing in which the host uses a clock cycle based timing for the signal toggling. In

this configuration, the host starts toggling MDDI_Stb from 0 to 10 utsec after the host

drives the MDDI_Data0 signal high at the beginning of the wake-up sequence, and does

not wait until the signal is driven low. During a wake-up sequence, the host toggles

MDDI_Stb as though the MDDI_DataO signal were always at a logic-zero level. This

effectively removes the concept of time from the client side, and the host changes from

the prior 150 is and 50 gs periods for the first two states, to 150 clock cycles and

clock cycles, for these periods.

[00447] The host now becomes responsible for driving that data line high, and within

clock cycles starting to transmit a strobe signal as if the data line was zero. After the

host has driven the data line high for 150 clock cycles, the host drives the data line low

for 50 clock cycles while continuing to transmit the strobe signal. After it has

completed both of these processes, the host can begin to transmit the first sub-frame

header packet.

[00448] On the client side, the client implementation can now use the generated clock to

calculate the number of clock cycles that the data line is first high, and then low. The

number of clock cycles that need to occur in both the data line driven high state is 150

and data line driven low state is 50. This means that for a proper wakeup sequence, the

client should be able to count at least 150 continuous clock cycles of the data line being

high, followed by at least 50 continuous clock cycles of the data line being low. Once

these two conditions are met, the client can begin to search for the unique word of the

first sub-frame. A break in this pattern is used as a basis to return the counters to an

initial state in which the client again looks for the first 150 continuous clock cycles of

the data line being high.

[00449] A client implementation of the invention for host based wakeup from

hibernation is very similar to the initial start-up case except that the clock rate is not

forced to start at 1Mbps, as discussed earlier. Instead the clock rate can be set to resume

at whatever previous rate was active when the communication link went into

hibernation. If the host begins transmission of a strobe signal as described above, the

client should be able to again count at least 150 continuous clock cycles of the data line

WO 2005/091593 PCTIUS2005/008832

101

being high, followed by at least 50 continuous clock cycles of the data line being low.

Once these two conditions have been met, the client can begin the search for the unique

word.

[00450] A client implementation of the invention for client based wakeup from

hibernation is similar to the host based wakeup except that it starts by having the client

driving the data line. The client can asynchronously drive the data line without a clock

to wake up the host device. Once the host recognizes that the data line is being driven

high by the client, it can begin its wakeup sequence. The client can count the number of

clock cycles generated by the host starting or during its wakeup process. Once the

client counts 70 continuous clock cycles of the data being high, it can stop driving the

data line high. At this point, the host should already be driving the data line high as

well. The client can then count another 80 continuous clock cycles of the data line

being high to reach the 150 clock cycles of the data line being high, and can then look

for 50 clock cycles of the data line being low. Once these three conditions have been

met the client can begin to look for the unique word.

[00451] An advantage of this new implementation of wake-up processing is that it

removes the need for a time measuring device. Whether this is an oscillator, or

capacitor discharge circuit, or other such known devices, the client no longer needs such

external devices to determine the start up conditions. This saves money and circuit area

when implementing controllers, counters, and so forth on a client device board. While

this may not be as advantageous to the client, for the host, this technique should also

potentially simplify the host in terms of Very High Density Logic (VHDL) being used

for core circuitry. The power consumption of using the data and strobe lines as the

wakeup notification and measurement source will also be lower since no external

circuitry will need to be running for the core elements to be waiting for a host based

wakeup. The number of cycles or clock periods used is exemplary and other periods

can be used as will be apparent to one skilled in the art.

[00452] An advantage of this new implementation of wake-up processing is that it

removes the need for a time measuring device. Whether this is an oscillator, or

capacitor discharge circuit, or other such known devices, the client no longer needs such

external devices to determine the start up conditions. This saves money and circuit area

when implementing controllers, counters, and so forth on a client device board. While

this may not be as advantageous to the client, for the host, this technique should also

WO 2005/091593 PCT/US2005/008832

102

potentially simplify the host in terms of VHDL being used for core circuitry. The

power consumption of using the data and strobe lines as the wakeup notification and

measurement source will also be lower since no external circuitry will need to be

running for the core elements to be waiting for a host based wakeup.

[00453] To clarify and illustrate the operation of this new technique, the timing of

MDDI_DataO, MDDIStb, and various operations relative to the clock cycles are shown

in FIGs. 68A, 68B, and 68C.

[00454] An example of the processing steps for a typical Host-initiated Wake-up with no

contention is illustrated in FIG. 68A, where the events are again labeled for convenience

in illustration using the letters A, B, C, D, E, F, and G. The process commences at point

A when the host sends a Link Shutdown Packet to the client device to inform it that the

link will transition to a low-power hibernation state. In a next step, point B, the host

toggles MDDIStb for about 64 cycles (or as desired for system design) to allow

processing by the client to be completed prior to stopping MDDI_Stb from toggling,

which stops the recovered clock in the client device. The host also initially sets

MDDI DataO to logic-zero level and then disables the MDDI_Data0 output in the range

of 16 to 48 cycles (generally including output disable propagation delays) after the

CRC. It may be desirable to place high-speed receivers for MDDIData0 and

MDDIStb in the client in a low power state some time after the 48 cycles after the

CRC and prior to the next stage The client places its high-speed receivers for

MDDI Data0 and MDDIStb into hibernation any time after the rising edge of the 48th

MDDIStb cycle after the CRC of the Link Shutdown Packet. It is recommended that

the client place its high-speed receivers for MDDI_Data0 and MDDI_Stb into

hibernation before the rising edge of the 64
th MDDI_Stb cycle after the CRC of the Link

Shutdown Packet.

[00455] The host enters the low-power hibernation state at point or step C, by disabling

the MDDI Data0 and MDDIStb drivers and placing a host controller in a low power

hibernation state. One can also set the MDDIStb driver to a logic-zero level (using a

high-impedance bias network) or to continue toggling during hibernation, as desired.

The client is also in a low power level hibernation state.

[00456] After some period of time, the host commences the link restart sequence at point

D, by enabling the MDDI_Data0 and MDDIStb driver output. The host drives

MDDI Data0 to a logic-one level and MDDI_Stb to a logic-zero level for as long as it

WO 2005/091593 PCT/US2005/008832

103

should take for the drivers to fully enable their respective outputs. The host typically

waits around 200 nanoseconds after these outputs reach desired logic levels before

driving pulses on MMDI_Stb. This allows the client time to prepare to receive.

[00457] With the host drivers enabled and MDDIData0 being driven to a logic-one

level, the host begins to toggle MDDIStb for a duration of 150 MDDIStb cycles, as

seen at point E. The host drives MDDI_Data0 to a logic zero level for 50 cycles, as

shown at point F, and the client begins to look for the Sub-frame Header Packet after

MDDI_Data0 is at a logic-zero level for 40 MDDI_Stb cycles. The host begins to

transmit data on the forward link by sending a Sub-frame Header Packet, as shown at

point G.

[00458] An example of the processing steps for a typical Client-initiated Wake-up with

no contention is illustrated in FIG. 68B, where the events are again labeled for

convenience in illustration using the letters A, B, C, D, E, F, G, H, and I. As before, the

process commences at point A when the host sends a Link Shutdown Packet to inform

the client that the link will transition to the low power state.

[00459] At point B, the host toggles MDDI_Stb for about 64 cycles (or as desired for

system design) to allow processing by the client to be completed prior to stopping

MDDI_Stb from toggling, which stops the recovered clock in the client device. The

host also initially sets MDDIData0 to a logic-zero level and then disables the

MDDI_Data0 output in the range of 16 to 48 cycles (generally including output disable

propagation delays) after the CRC. It may be desirable to place high-speed receivers for

MDDI_Data0 and MDDIStb in the client in a low power state some time after the 48

cycles after the CRC and prior to the next stage

[00460] The host enters the low-power hibernation state at point or step C, by disabling

the MDDIData0 and MDDIStb drivers and placing a host controller in a low power

hibernation state. One can also set the MDDI_Stb driver to a logic-zero level (using a

high-impedance bias network) or to continue toggling during hibernation, as desired.

The client is also in a low power level hibernation state.

[00461] After some period of time, the client commences the link restart sequence at

point D, by enabling the MDDI_Stb receiver, and also enabling an offset in the

MDDI_Stb receiver to guarantee the state of the received version of MDDIStb is a

logic-zero level in the client before the host enables its MDDI_Stb driver. It may be

desirable for the client to enable the offset slightly ahead of enabling the receiver to

WO 2005/091593 PCT/US2005/008832

104

ensure the reception of a valid differential signal and inhibit erroneous signals, as

desired. The Client enables the MDDIData0 driver while driving the MDDI_Data0

line to a logic one level. It is allowed for MDDI_DataO and MDDI_Stb to be enabled

simultaneously if the time to enable the offset and enable the standard MDDI_Stb

differential receiver is less than 200 nsec.

[00462] Within about 1 msec., point E, the host recognizes the service request pulse from

the client, and the host begins the link restart sequence by enabling the MDDI Data0

and MDDI_Stb driver outputs. The host drives MDDI DataO to a logic-one level and

MDDI_Stb to a logic-zero level for as long as it should take for the drivers to enable

their respective outputs. The host typically waits around 200 nanoseconds after these

outputs reach desired logic levels before driving pulses on MDDI_Stb. This allows the

client time to prepare to receive.

[00463] With the host drivers enabled and MDDI_DataO being driven to a logic-one

level, the host begins outputting pulses on MDDI_Stb for a duration of 150 MDDIStb

cycles, as seen at point F. When the client recognizes the first pulse on MDDI_Stb it

disables the offset in its MDDI Stb receiver. The client continues to drive

MDDI Data0 to a logic-one level for 70 MDDI_Stb cycles, and disables its

MDDI_Data0 driver at point G. The host continues to drive MDDI_DataO to a logic-

one level for a duration of 80 additional MDDIStb pulses, and at point H drives

MDDIData0 to a logic-zero level.

[00464] As seen at points G and H, the host drives MDDIData0 to a logic-zero level for

cycles, and the client begins to look for the Sub-frame Header Packet after

MDDI Data0 is at a logic-zero level for 40 MDDI_Stb cycles. After driving

MDDIStb for a duration of 50 cycles, the host begins to transmit data on the forward

link by sending a Sub-frame Header Packet, as shown at point I.

[00465] An example of the processing steps for a typical Host-initiated Wake-up with

contention from the client, that is the client also wants to wake up the link, is illustrated

in FIG. 68C. The events are again labeled for convenience in illustration using the

letters A, B, C, D, E, F, G, H, and I. As before, the process commences at point A when

the host sends a Link Shutdown Packet to inform the client that the link will transition

to the low power state, proceeds to point B where MDDI_Stb is toggled for about 64

cycles (or as desired for system design) to allow processing by the client to be

completed, and then to point C, where the host enters the low-power hibernation state,

WO 2005/091593 PCT/US2005/008832

105

by disabling the MDDI_Data0 and MDDIStb drivers and placing a host controller in a

low power hibernation state. After some period of time, the host commences the link

restart sequence at point D, by enabling the MDDI_Data0 and MDDIStb driver output,

and begins to toggle MDDI_Stb for a duration of 150 MDDI_Stb cycles, as seen at

point E.

[00466] At up to 70 MDDIStb cycles after point E, here point F, the client has not yet

recognized that the host is driving MDDI_Data0 to a logic-one level so the client also

drives MDDIDataO to a logic-one level. This occurs here because the client has a

desire to request service but does not recognize that the host it is trying to communicate

with has already begun the link restart sequence. At point G, the client ceases to drive

MDDIDataO, and places its driver into a high impedance state by disabling its output.

The host continues to drive MDDIData0 to a logic-one level for 80 additional cycles.

[00467] The host drives MDDI_Data0 to a logic zero level for 50 cycles, as shown at

point H, and the client begins to look for the Sub-frame Header Packet after

MDDIData0 is at a logic-zero level for 40 MDDI_Stb cycles. The host begins to

transmit data on the forward link by sending a Sub-frame Header Packet, as shown at

point I.

VI. Interface Electrical Specifications

[00468] In the example embodiments, Data in a Non-Return-to-Zero (NRZ) format is

encoded using a data-strobe signal or DATA-STB format, which allows clock

information to be embedded in the data and strobe signals. The clock can be recovered

without complex phase lock loop circuitry. Data is carried over a bi-directional

differential link, generally implemented using a wire-line cable, although other

conductors, printed wires, or transfer elements can be used, as stated earlier. The Strobe

signal (STB) is carried over a uni-directional link which is driven only by the host. The

strobe signal toggles value (0 or 1) whenever there is a back-to-back state, 0 or 1, that

remains the same on the Data line or signal.

[00469] An example of how a data sequence such as bits "1110001011" can be

transmitted using DATA-STB encoding is shown in graphical form in FIG. 40. In

FIG. 40, a DATA signal 4002 is shown on the top line of a signal timing chart and a

STB signal 4004 is shown on a second line, each time aligned as appropriate (common

WO 2005/091593 PCT/US2005/008832

106

starting point). As time passes, when there is a change of state occurring on the DATA

line 4002 (signal), then the STB line 4004 (signal) maintains a previous state, thus, the

first state of the DATA signal correlates with the first state for the STB signal, its

starting value. However, if or when the state, level, of the DATA signal does not

change then the STB signal toggles to the opposite state or in the present example, as

is the case in FIG. 40 where the DATA is providing another value. That is, there is

one and only one transition per bit cycle between DATA and STB. Therefore, the STB

signal transitions again, this time to as the DATA signal stays at and holds this

level or value as the DATA signal changes level to When the DATA signal stays at

the STB signal toggles to the opposite state or in the present example, and so

forth, as the DATA signal changes or holds levels or values.

[00470] Upon receiving these signals, an exclusive-OR (XOR) operation is performed on

the DATA and STB signals to produce a clock signal 4006, which is shown on the

bottom of the timing chart for relative comparison with the desired data and strobe

signals. An example of circuitry useful for generating the DATA and STB outputs or

signals from input data at the host, and then recovering or recapturing the data from the

DATA and STB signals at the client, is shown in FIG. 41.

[00471] In FIG. 41, a transmission portion 4100 is used to generate and transmit the

original DATA and STB signals over an intermediary signal path 4102, while a

reception portion 4120 is used to receive the signals and recover the data. As shown in

FIG. 41, in order to transfer data from a host to a client, the DATA signal is input to two

D-type flip-flop circuit elements 4104 and 4106 along with a clock signal for triggering

the circuits. The two flip-flop circuit outputs are then split into a differential pair of

signals MDDIData0+, MDDI_Data0- and MDDI_Stb+, MDDIStb-, respectively,

using two differential line drivers 4108 and 4110 (voltage mode). A three-input

exclusive-NOR (XNOR) gate, circuit, or logic element 4112 is connected to receive the

DATA and outputs of both flip-flops, and generates an output that provides the data

input for the second flip-flop, which in turn generates the MDDI_Stb+, MDDIStb-

signals. For convenience, the XNOR gate has the inversion bubble placed to indicate

that it is effectively inverting the Q output of the flip-flop that generates the Strobe.

[00472] In reception portion 4120 of FIG. 41, the MDDI_Data0+, MDDI Data0- and

MDDI_Stb+, MDDIStb- signals are received by each of two differential line receivers

4122 and 4124, which generate single outputs from the differential signals. The outputs

WO 2005/091593 PCTIUS2005/008832

107

of the amplifiers are then input to each of the inputs of a two-input XOR gate, circuit, or

logic element 4126 which produces the clock signal. The clock signal is used to trigger

each of two D-type flip-flop circuits 4128 and 4130 which receive a delayed version of

the DATA signal, through delay element 4132, one of which (4128) generates data '0'

values and the other (4130) data values. The clock has an independent output from

the XOR logic as well. Since the clock information is distributed between the DATA

and STB lines, neither signal transitions between states faster than half of the clock rate.

Since the clock is reproduced using the exclusive-OR processing of the DATA and STB

signals, the system effectively tolerates twice the amount of skew between the input

data and clock compared to the situation when a clock signal is sent directly over a

single dedicated data line.

[00473] The MDDI Data pairs, MDDI_Stb+, and MDDI_Stb- signals are operated in a

differential mode to maximize immunity from the negative affects of noise. Each

differential pair is parallel-terminated with the characteristic impedance of the cable or

conductor being used to transfer signals. Generally, all parallel-terminations reside in

the client device. This is near the differential receiver for forward traffic (data sent from

the host to the client), but it is at the driving end of the cable or other conductors or

transfer elements for reverse traffic (data sent from the client to the host). For reverse

traffic, the signal is driven by the client, reflected by the high impedance receiver at the

host, and is terminated at the client. As described elsewhere, reverse data or data over

the reverse link can be transferred or sent at data rates greater than the reciprocal of the

round-trip delay in the cable. The MDDI_Stb+ and MDDI_Stb- conductors or signals

are only driven by the host.

[00474] An exemplary configuration of elements useful for achieving the drivers,

receivers, and terminations for transferring signals as part of the inventive MDDI are

shown in FIG. 42. This exemplary interface uses low voltage sensing, here 200 mV,

with less than 1 volt power swings and low power drain. The driver of each signal pair

has a differential current output. While receiving MDDI packets, the MDDI_Data and

MDDI_Stb pairs use a conventional differential receiver with a differential voltage

threshold of zero volts. In the hibernation state the driver outputs are disabled and the

parallel-termination resistors pull the differential voltage on each signal pair to zero

volts. During hibernation, a special receiver on the MDDI_DataO pair has an offset

WO 2005/091593 PCTIUS2005/008832

108

input differential voltage threshold of positive 125 mV, which causes the hibernation

line receiver to interpret the un-driven signal pair as a logic-zero level.

[00475] The differential voltage of a differential pair is defined as the difference of the

voltage on the positive signal minus the voltage on the negative signal. The

names of differential pair signals end with either or which indicates the positive

or negative signal of the pair, respectively. The output current of the driver of a

differential pair is defined as the current flowing out of the positive output. The

current passing through the negative output of a differential driver is always equal in

magnitude but opposite in direction compared to the current passing through the

positive output of the same differential driver.

[00476] Sometimes the host or client simultaneously drives the differential pair to a

logic-one level or a logic-zero level to guarantee a valid logic-level on the pair when the

direction of data flow changes (from host-to-client or client-to-host). The output

voltage range and output specifications are still met with simultaneously driven outputs

driven to the same logic level. In some systems it may be necessary to drive a small

current into the terminated differential pair to create a small offset voltage at certain

times during hibernation and when the link is waking up from the hibernation state. In

those situations, the enabled offset-current bias circuits drive the current levels referred

to as: IESD-and-Rx- internal ESD diode and differential receiver input with IESD-and-Rx 1

pA typically; ITx-Hi-Z differential driver output in the high-impedance state, with ITx-Hi-

z 1 pA typically; and lextemal-ESD the leakage through the external ESD protection

diodes, with Iextemal-ESD 5 3 pA typically.

[00477] Each of these leakage currents is illustrated in FIG. 47. The pull-up and pull-

down circuits must achieve the minimum differential voltage under the worst-case

leakage conditions described above when all occur simultaneously. The total leakage is

4 pA for internal mode without external ESD protection diodes and 10 pA for

external mode with external ESD protection.

[00478] The electrical parameters and characteristics of the differential line drivers and

line receivers are described for one exemplary embodiment in Tables IXa-IXd.

Functionally, the driver transfers the logic level on the input directly to a positive

output, and the inverse of the input to a negative output. The delay from input to

outputs is well-matched to the differential line which is driven differentially. In most

WO 2005/091593 PCT/US2005/008832

[004791

109

implementations, the voltage swing on the outputs is less than the swing on the input to

minimize power consumption and electromagnetic emissions. In one embodiment,

there is a minimum voltage swing of around 0.5V. However, other values can be used,

as would be known by those skilled in the art, and the inventors contemplate a smaller

value in some embodiments, depending on design constraints.

The differential line receivers have the same characteristic as a high-speed

voltage comparator. In FIG. 41, the input without the bubble is the positive input and

the input with the bubble is the negative input. The output is a logic one if: (Vinput+)

(Vinput-) is greater than zero. Another way to describe this is a differential amplifier

with very large (virtually infinite) gain with the output clipped at logic 0 and 1 voltage

levels.

The delay skew between different pairs should be minimized to operate the

differential transmission system at the highest potential speed.

Table IXa

Host Transmitter Electrical Specifications

[00480]

Parameter Description
Voutput-Range Allowable host driver output voltage range with

respect to host ground
IoD- Driver differential output high current

corresponding to a logic-one level (while driving
the terminated transmission line)

IOD- Driver differential output low current
corresponding to a logic-zero level (while driving
the terminated transmission line)

TRise-Fall Rise and fall time (between 20% and 80%
amplitude) of driver output, measured in
differential mode

Tskew-pair Skew between positive and negative outputs of
the same differential pair (intra-pair skew)

TDifferential- Peak delay skew between one differential pair
Skew and any other differential pair.
TA Jitter, bit boundary to center crossing
TB-TPO-DRVR Jitter, bit boundary to minimum output level

SMin I Max
0.35 1.60

I Unit
V

2.5 4.5 mA

-4.5 -2.5 mA

425 Note 1 psee

125 Psec

See
above

TB -283
See

above

Psec

Psec
Psec

Note 1: The maximum rise and fall time is either 30% of the interval to transmit one bit
on one differential pair or 100 nsec, whichever is smaller.

WO 2005/091593 PCTiUS2005/008832

110

Table IXb

Client Transmitter Electrical Specifications
Parameter Description Min Max Unit

Voutput-Pnge- Allowable client driver output voltage range with 0 1.25 V

Ext respect to client ground (External Mode)

Vouput-R ne- Allowable client driver output voltage range with 0.35 1.60 V

Int respect to client ground (Internal Mode)

1OD+ Driver differential output high current 2.5 4.5 mA
corresponding to a logic-one level (while driving
the equivalent of the pull-up and pull-down
circuits that exist at the host and client)

IOD- Driver differential output low current -4.5 -2.5 mA
corresponding t a logic-zero level (while driving
the equivalent of the pull-up and pull-down
circuits that exist at the host and client)

TRise-Fall Rise and fall time (between 20% and 80% 425 Note 1 psec
amplitude) of driver output, measured in
differential mode

Tskew-pair Skew between positive and negative outputs of 125 psec
the same differential pair (intra-pair skew)

TDifferential- Peak delay skew between one differential pair See psec

Skew and any other differential pair. above

TA Jitter, bit boundary to center crossing TB psec
283

T B-TP4-DRVR Jitter, bit boundary to minimum output level See psec
above

Note 1: The maximum rise and fall time is 30% of the interval to transmit one bit on one
differential pair or 100 nsec, whichever is smaller.

Table IXc

Client Receiver Electrical Specifications
Parameter Description Min Typ Max Unit

VIT+ Receiver differential input high 0 50 mV
threshold voltage. Above this
differential voltage the input signal is
interpreted as a logic-one level.

Vir- Receiver differential input low -50 0 mV
thrcshold voltage. Below this
differential voltage the input signal is
interpreted as a logic-zero level.

Vir+ Receiver differential input high 125 175 mV
threshold voltage (offset for
hibernation wake-up). Above this
differential voltage the input signal is
interpreted as a logic-one level.

V Receiver differential input low 75 125 mV

WO 2005/091593 PCT/US2005/008832

threshold voltage (offset for
hibernation wake-up). Below this
differential voltage the input signal is
interpreted as a logic-zero level.

VInput-Range Allowable receiver input voltage 0 1.65 V
range with respect to client ground.

Rtem Parallel termination resistance value 98 100 102 Q
'in Input leakage current -10 10 IA
Cpad Capacitance of pad to client ground 5 pF

(note 1)
Cdiff Capacitance between the two signals 1 pF

of a differential pair (note 1)
Tskew-pair-iNT Skew caused by the differential 250 psec

receiver between positive and negative
inputs of the differential receiver of
the same differential pair (intra-pair
skew). Internal Mode

Tskew-pair-EXT Intra-pair skew, External Mode 50 psec
TDifferential- Peak delay skew between one See psec

skew differential pair and any other above
differential pair.

TA Jitter, bit boundary to center crossing TB psec
38.5

TB-TP4-RCVR- Jitter, bit boundary to minimum input 0 See psec

INT level above
(Internal Mode)

TB-TP4-RCVR Jitter, bit boundary to minimum input 0 See psec
-EXT level above

(External Mode)

Table IXd

Host Receiver Electrical Specifications
Parameter Description Min Typ Max Unit

VIT+ Receiver differential input high 0 50 mV
threshold voltage (non-offset). Above
this differential voltage the input signal
is interpreted as a logic-one level.

VIT- Receiver differential input low threshold -50 0 mV
voltage (non-offset). Below this
differential voltage the input signal is
interpreted as a logic-zero level.

VIT+ Receiver differential input high 125 175 mV
threshold voltage (offset for hibernation
wake-up). Above this differential
voltage the input signal is interpreted as
a logic-one level.

VIT- Receiver differential input low threshold 75 125 mV

WO 2005/091593 PCT/US2005/008832

voltage (offset for hibernation wake-up).
Below this differential voltage the input
signal is interpreted as a logic-zero level

VInput-Range Allowable receiver input voltage range 0 1.65 V
with respect to host ground.

Iin Input leakage current (excluding -10 10 pA
hibernate bias)

Cpad Capacitance of pad to host ground 5 pF
Cdiff Capacitance between the two signals of 1 pF

a differential pair.
Tskew-pair Skew caused by the differential receiver 250 psec

between positive and negative inputs of
the differential receiver of the same
differential pair (intra-pair skew).

Tsiew-pair-EXT Intra-pair skew, External Mode 50 psec
TA Jitter, bit boundary to center crossing TB psec

38.5
TB-TPO-RCVR- Jitter, bit boundary to minimum output See psec
INT level above

(External Mode)
TB-TPO-RCVR- Jitter, bit boundary to minimum output See psec
EXT level above

(External Mode)

[00481] In FIG. 42, a host controller 4202 and a client or display controller 4204 are

shown transferring packets over the communication link 4206. The host controller

employs a series of three drivers 4210, 4212, and 4214 to receive the host DATA and

STB signals to be transferred, as well as to receive the client Data signals to be

transferred, while the client employs the three drivers 4230, 4232, and 4234. The driver

responsible for passage of the host DATA (4212) employs an enable signal input to

allow activation of the communication link generally only when transfer from the host

to the client is desired. Since the STB signal is formed as part of the transfer of data, no

additional enable signal is employed for that driver (4212). The inputs of each of the

client DATA and STB receivers (4132, 4230) have termination impedances or resistors

4218 and 4220, respectively paced across them. Driver 4234 in the client controller is

used to prepare the data signals being transferred from the client to the host, where

driver 4214 on the input side, processes the data.

[00482] The special receivers (drivers) 4216 and 4236 are coupled or connected to the

DATA lines, and generate or use the 125 mV voltage offset previously discussed, as

WO 2005/091593 PCT/US2005/008832

113

part of the hibernation control discussed elsewhere. The offsets cause the hibernation

line receivers to interpret un-driven signal pairs as a logic-zero level.

[00483] The above drivers and impedances can be formed as discrete components or as
part of a circuit module, or an Application Specific Integrated Circuit (ASIC) which acts

as a more cost effective encoder or decoder solution.

[00484] It can be easily seen that power is transferred to the client device, or display,
from the host device using the signals labeled HOST_Pwr and HOST_Gnd over a pair
of conductors. The HOST_Gnd portion of the signal acts as the reference ground and

the power supply return path or signal for the client device. The HOSTPvvr signal acts

as the client device power supply which is driven by the host device. In am exemplary

configuration, for low power applications, the client device is allowed to draw up to 500

mA. The HOST_Pwr signal can be provided from portable power sources, such as but

not limited to, a lithium-ion type battery or battery pack residing at the host device, and

may range from 3.2 to 4.3 volts with respect to HOSTGnd.

VII. Timing Characteristics

A. Overview

[00485] The steps and signal levels employed to enter a hibernation state (no service

requested, desired, or required), and to secure service for a client from the host, either

by host- or client initiation, are illustrated in FIGs. 43A, 43B, and 43C, respectively. In
FIGs. 43A, 43B, and 43C, the first part of signals being illustrated shows a Link

Shutdown Packet being transferred from the host and the data line is then driven to a

logic zero state using the high-impedance bias circuit. No data is being transmitted by

the client, or host, which has its driver disabled. A series of strobe pulses for the

MDDI_Stb signal line can be seen at the bottom, since MDDI_Stb is active during the

Link Shutdown Packet. Once this packet ends, the logic level changes to zero as the

host drives the bias circuit and logic to zero. This represents the termination of the last

signal transfer or service from the host, and could have occurred at any time in the past,
and is included to show the prior cessation of service, and the state of the signals prior

to service commencement. If desired, such as signal can be sent just to reset the

WO 2005/091593 PCT/US2005/008832

114

communication link to the proper state without a 'known' prior communication having

been undertaken by this host device.

[00486] As shown in FIG. 43A, and discussed for the Link Shutdown Packet above, in

the low-power hibernation state, the MDDI_DataO driver is disabled into a high-

impedance state starting after the 16th to 48th MDDIStb cycles or pulses after the last

bit of the All Zeros field in the Link Shutdown Packet. For Type-2, Type-3, or Type-4

links the MDDI_Datal through MDDI_DataPwr7 signals are also placed in a high-

impedance state at the same time that the MDDIData0 driver is disabled. As described

in the definition of the All Zeros field, MDDI_Stb toggles for 64 cycles (or as desired

for system design) following the MSB of the CRC field of the Link Shutdown Packet to

allow processing by the client to be completed and facilitate an orderly shutdown in a

client controller. One cycle is a low-to-high transition followed by a high-to-low

transition, or a high-to-low transition followed by a low-to-high transition. After the All

Zeros field is sent, the MDDIStb and MDDI_Data0 drivers in the host are disabled,

and the host enters the low-power hibernation state. After some period of time, the host

commences the link restart sequence as shown in FIGs. 43b and 43c, by enabling the

MDDI_DataO and MDDIStb lines or driver outputs, and begins to toggle MDDI_Stb,

as part of either at a host or client initiated wake-up request.

[00487] As shown in FIG. 43B, after some time passes with the signal output from

drivers for MDDI DataO and MDDIStb disabled, a host initiates service or wake-up

from hibernation by enabling its MDDIStb driver for a period of time designated tstb-

dagta-enbl, during which the line is driven to a logic zero level, until it is completely

enabled and then enabling its MDDI_DataO driver. The host holds MDDIStb at logic-

zero level after MDDI_Data0 reaches a high or a logic one level which occurs over a

period of time designated tclient-startup. At the end of the tclient-startup period the host then

toggles the MDDI Stb signal or line. The host drives the MDDI_DataO line high, a

logic-one level, while the client does not drive MDDI_Data0, for a period designated

trestart-high, and then drives the MDDIData0 line low, or to logic-zero level, for a period

designated tresart-low. After this, the first forward traffic begins with a Sub-Frame Header

Packet, and the forward traffic packets are then transferred. The MDDIStb signal is

active during the trestart-low period and the subsequent Sub-Frame Header Packet.

[00488] As shown in FIG. 43C, after some time passes with the signal output from

drivers for MDDI_DataO and MDDIStb disabled, a client initiates a service request or

WO 2005/091593 PCT/US2005/008832

115

wake-up from hibernation by enabling an offset in tire MDDI_Stb receiver or output

signal for a period of time designated tstb-dagta-enbl, as discussed above, before the host

enables its MDDI Stb driver. The client then enables its MDDI DataO driver for a

period of time designated thost-detect, during which the line is driven to a logic zero level,

before the host begins MDDI_Stb toggling.

[00489] A certain amount of time passes or may be needed before the host detects the

request during thost-dctect, after which the host responds by holding MDDIStb at logic-

zero level for the period designated tstb-startup before the host begins toggling MDDI_Stb

with a link startup sequence by driving the MDDI_DataO to a logic-one or high level

during the trestart-high period. When the client recognizes the first pulse on MDDI_Stb it

disables the offset in its MDDIStb receiver. "The client continues to drive

MDDI_DataO to a logic-one level or a period designated tclient-detect until it detects the

host driving the line. At this point, the client de-asserts the request, and disables its

MDDI_DataO driver so that the output from the client goes to a logic-zero level again,

and the host is driving MDDI_DataO. As before, the host continues to drive

MDDIDataO to a logic-one level for the trestart-high period, and then drives the

MDDI DataO line low for the trestart-lowperiod, after which the first forward traffic begins

with a Sub-Frame Header Packet. The MDDI_Stb signal is active during the testart-low

period and the subsequent Sub-Frame Header Packet.

[00490] Table X shows representative times or processing periods for the length of the

various periods discussed above, and the relationstiip to exemplary minimum and

maximum data rates, where:

1
tbit where Link Data Rate is the bit rate of a single data

Link Data Rate

WO 2005/091593 PCT/US2005/008832

116

Table X

Parameter Description Min. Typ. Max. Units
1/trIT-min-perf Link data rate for a minimum 0.001 1.1 Mbps

performance device
1/tBIT-max-perf Maximum link data rate 0.001 400 Mbps

range for a device, external
1/tBIT-max-perf Maximum link data rate 0.001 550 Mbps

range for a device, internal
Reverse Link data rate 0.0005 50 Mbps

tBIT Period of one forward link 2.5 100 nsec
data bit, external mode

tBIT Period of one forward link 1.8 10 nsec
data bit, internal mode

trestart-high Duration of host link restart 140 150 160 Stb
high pulse clks

trestart-low Duration of host link restart 50 50 50 Stb
low pulse clks

tstb-data-enabl MDDI Stb completely 0 psec
enabled to MDDI Data0
enabled link restart sequence

tclient-startup Time for host to hold 200 nsec
MDDIStb at logic-zero
level after MDDIData0
reaches logic-high level

thost-deted Time from MDDI_Data0 0 1000 psec
high to MDDI_Stb toggling

tclient-detect Time for client to detect 60 80 Stb
MDDI_DataO at logic-high clks
level performance device

tstb-startup Time for host to hold 200 nsec
MDDI_Stb at logic-zero
level before host begins
toggling MDDI Stb

[00491] Those skilled in the art will readily understand that the functions of the

individual elements illustrated in FIGs. 41 and 42, are well known, and the function of

the elements in FIG. 42 is confirmed by the timing diagram in PIGS 43a, 43b, and 43c.

Details about the series terminations and hibernation resistors thLat are shown in FIG. 42

were omitted from FIG. 41 because that information is unnecessary for a description of

how to perform the Data-Strobe encoding and recover the clock -from it.

WO 2005/091593 PCT/US2005/008832

117

B. Data-Strobe Timing Forward Link

[00492] The switching characteristics for the transfer of data on the forward link from the

host driver output is shown in Table XI-1. Table XI presents a tabular form of the

minimum and maximum desired, versus typical times for certain signal transitions to

occur. For example, the typical length of time for a transition to occur from the start to

the end of a data value (output of a or a Data0 to Data0 transition, termed ttdd-

(host-output), is ttbit while the minimum time is about ttbit-0.5 nsec., and the maximum

is about ttbit+0.5 nsec. The relative spacing between transitions on the Data0, other data

lines (DataX), and the strobe lines (Stb), is illustrated in FIG. 44 where the DataO to

Strobe, Strobe to Strobe, Strobe to Data0, Data0 to non-Data0, non-Data0 to non-Data0,

non-Data0 to Strobe, and Strobe to non-Data0 transitions are shown, which are referred

to as ttds-(host-output), ttss-(host-output), ttsd-(host-output), ttddx-(host-output), ttdxdx-(host-output), ttdxs-(host-output),

and ttsdx-(host-output), respectively.

Table XI-1

Parameter Description Min. Typ. Max. Units
ttdd-(host-output) Data0 to DataO transition ttbit 0.5 ttit ttbit 0.5 nsec

ttds-host-output) Data0 to Strobe transition ttbit 0.8 ttbit ttbit 0.8 nsec

ttss-(host-output) Strobe to Strobe ttbit 0.5 ttbit ttbit 0.5 nsec

transition

ttsd-(host-output) Strobe to DataO transition ttbit 0.8 ttbit ttbit 0.8 nsec

ttddx-(host-output) Data0 to non-Data0 ttbit nsec
transition

ttdxdx-(host-output) non-Data0 to non-Data0 ttbit 0.5 ttbit ttbit 0.5 nsec
transition

ttdxs-(host-output) non-Data0 to Strobe ttbit nsec

transition

ttsdx-(host-output) Strobe to non-Data0 ttbit nsec
transition

[00493] The typical MDDI timing requirements for the client receiver input for the same

signals transferring data on the forward link is shown in Table XI-2. Since the same

signals are being discussed but time delayed, no new figure is needed to illustrate the

signal characteristics or meaning of the respective labels, as would be understood by

those skilled in the art.

WO 2005/091593 PCT/US2005/008832

118

Table XI-2

Parameter Description Min. Typ. Max. Units
ttdd-(client-input) DataO to DataO transition ttbit 1.0 ttbit ttbit 1.0 nsec

ttds-(client-input) Data0 to Strobe transition ttbit 1.5 ttbit ttbit 1.5 nsec
ttss-client-input) Strobe to Strobe transition ttbit 1.0 ttbit ttbit 1.0 nsec
ttsd(client-input) Strobe to Data0 transition ttbit 1.5 ttbit ttbit 1.5 nsec
ttddx-(host-output) Data0 to non-Data0 transition ttbit nsec
ttdxdx-(host-output) non-Data0 to non-Data0 ttbit nsec

transition
ttdxs-(host-output) non-Data0 to Strobe ttbit nsec

transition
ttsdx-(host-output) Strobe to non-Data0 ttit nsec

transition

[00494] FIGs. 45 and 46 illustrate the presence of a delay in response that can occur

when the host disables or enables the host driver, respectively. In the case of a host

forwarding certain packets, such as the Reverse Link Encapsulation Packet or the Round

Trip Delay Measurement Packet, the host disables the line driver after the desired

packets are forwarded, such as the Parameter CRC, Strobe Alignment, and All Zero

packets illustrated in FIG. 45 as having been transferred. However, as shown in

FIG. 45, the state of the line does not necessarily switch from to a desired higher

value instantaneously, although this is potentially achievable with certain control or

circuit elements present, but takes a period of time termed the host Driver Disable Delay

period to respond. While it could occur virtually instantly such that this time period is 0

nanoseconds (nsec.) in length, it could more readily extend over some longer period

with 10 nsec. being a desired maximum period length, which occurs during the Guard

Time 1 or Turn Around 1 packet periods.

[00495] Looking in FIG. 46, one sees the signal level change undergone when the host

Driver is enabled for transferring a packet such as the Reverse Link Encapsulation

Packet or the Round Trip Delay Measurement Packet. Here, after the Guard Time 2 or

Turn Around 2 packet periods, the host driver is enabled and begins to drive a level,

here which value is approached or reached over a period of time termed the Host

Driver Enable Delay period, which occurs during the Driver Re-enable period, prior to

the first packet being sent.

WO 2005/091593 PCTIUS2005/008832

[00496] A similar process occurs for the drivers and signal transfers for the client device,

here a display. The general guidelines for the length of these periods, and their

respective relationships are shown in XII, below.

Table XII

Description Min. Max. Units
Host Driver Disable Delay 0 10 nsec

Host Driver Enable Delay 0 2.0 nsec

Display Driver Disable Delay 0 10 nsec
Display Driver Enable Delay 0 2.0 nsec

C. Host And Client Output Enable And Disable Times

[00497] The switching characteristics and relative timing relationships for Host and

Client output enabled and disable time or operations relative to the Reverse Link

Encapsulation Packet structure and period, is shown in FIG. 48. The driver output

functions or operations are labeled as: thost-enable for the Host output enable time, thost-disable

for the Host output disable time, tclient-enable for the Client output enable time, and tciient-

disable for the Client output disable time. Typical times for certain signal transitions are

discussed below. The minimum period for these operations would be zero nanoseconds,

with typical or maximum values determined from the system design employing the

interface, possibly on the order of 8 nanoseconds, or more.

[00498] The general guidelines for the length of these periods, (host and client

enable/disable times) and their respective relationships are shown in XIII, below.

Table XIII

Parameter Description Min. Typ. Max. Units

thost-enable Host output enable time 0 2 4 -tBIT nsec

thost-disable Host output disable time, entire 0 24-tBIT nsec

length of the Turn-Around 1 field

tclient-enable Client output enable time, entire 0 24-tBIT nsec
length of the Turn-Around 1 field

tclient-disable Client output disable time, 0 2 4 -tBIT nsec
measured from the end of the last
bit of the Turn-Around 2 field

WO 2005/091593 PCTIUS2005/008832

120

VIII. Implementation of Link Control (Link Controller Operation)

A. State Machine Packet Processor

[00499] Packets being transferred over a MDDI link are dispatched very rapidly,

typically at a rate on the order of 300 Mbps or more, such as 400 Mbps, although lower

rates are certainly accommodated, as desired. This type of bus or transfer link speed is

too great for currently commercially available (economical) general-purpose

microprocessors or the like to control. Therefore, a practical implementation to

accomplish this type of signal transfer is to utilize a programmable state machine to

parse the input packet stream to produce packets that are transferred or redirected to the

appropriate audio-visual subsystem for which they are intended. Such devices are well

known and use circuits generally dedicated to a limited number of operations, functions,

or states to achieve a desired high speed or very high speed operation.

[00500] General purpose controllers, processors, or processing elements, can be used to

more appropriately act upon or manipulate some information such as control or status

packets, which have lower speed demands. When those packets (control, status, or

other pre-defined packets) are received, the state machine should pass them through a

data buffer or similar processing element to the general-purpose processor so the

packets can be acted upon to provide a desired result (effect) while the audio and visual

packets are transferred to their appropriate destination for action. If future,

microprocessors or other general purpose controllers, processors, or processing elements

are manufactured to achieve higher data rate processing capabilities, then the states or

state machine discussed below might also be implemented using software control of

such devices, typically as programs stored on a storage element or media.

[00501] The general purpose processor function can be realized in some embodiments by

taking advantage of the processing power, or excess cycles available for,

microprocessors (CPUs) in computer applications, or controllers, processors, digital

signal processors (DSPs), specialized circuits, or ASICs found in wireless devices, in

much the same manner as some modems or graphics processors utilize the processing

power of CPUs found in computers to perform some functions and reduce hardware

complexity and costs. However, this cycle sharing or usage can negatively impact the

processing speed, timing, or overall operation of such elements, so in many

applications, dedicated circuits or elements are preferred for this general processing.

WO 2005/091593 PCTIUS2005/008832

121

[00502] In order for image data to be viewed on a display (micro-display), or to reliably

receive all packets sent by the host device, the client signal processing is synchronized

with the forward link channel timing. That is, signals arriving at the client and the client

circuits need to be substantially time synchronized for proper signal processing to occur.

A high level diagram of states achieved by signal for one embodiment is presented in

the illustration of FIG. 49. In FIG. 49, the possible forward link synchronization

"states" for a state machine 4900 are shown being categorized as one ASYNC FRAMES

STATE 4904, two ACQUIRING SYNC STATES 4902 and 4906, and three IN-SYNC

STATES 4908, 4910, and 4912.

[00503] As shown by starting step or state 4902, the display or client, such as a

presentation device, starts in a pre-selected "no sync" state, and searches for a unique

word in the first sub-frame header packet that is detected. It is to be noted that this no

sync state represents the minimum communication setting or "fall-back" setting in

which a Type 1 interface is selected. When the unique word is found during the search,

the client saves the sub-frame length field. There is no checking of the CRC bits for

processing on this first frame, or until synchronization is obtained. If this sub-frame

length is zero, then sync state processing proceeds accordingly to a state 4904 labeled

here as the "async frames" state, which indicates that synchronization has not yet been

achieved. This step in the processing is labeled as having encountered cond 3, or

condition 3, in FIG. 49. Otherwise, if the frame length is greater than zero, then the

sync state processing proceeds to a state 4906 where the interface state is set as "found

one sync frame." This step in the processing is labeled as encountering cond 5, or

condition 5, in FIG. 49. In addition, if the state machine sees a frame header packet and

good CRC determination for a frame length greater than zero, processing proceeds to

the "found one sync frame" state. This is labeled as meeting cond 6, or condition 6, in

FIG. 49.

[00504] In each situation in which the system is in a state other than "no sync," if a

packet with a good CRC result is detected, then the interface state is changed to the "in-

sync" state 4908. This step in the processing is labeled as having encountered cond 1,

or condition 1, in FIG. 49. On the other hand, if the CRC in any packet is not correct,

then the sync state processing proceeds or returns to the interface state 4902 of "NO

SYNC FRAME" state. This portion of the processing is labeled as encountering cond 2,

or condition 2, in the state diagram of FIG. 49.

WO 2005/091593 PCTIUS2005/008832

122

B. Acquisition Time for Sync

[00505] The interface can be configured to accommodate a certain number of "sync

errors" prior to deciding that synchronization is lost and returning to the "NO SYNC

FRAME" state. In FIG. 49, once the state machine has reached the "IN-SYNC STATE"

and no errors are found, it is continuously encountering a cond 1 result, and remains in

the "IN-SYNC" state. However once one cond 2 result is detected, processing changes

the state to a "one-sync-error" state 4910. At this point, if processing results in

detecting another cond 1 result, then the state machine returns to the "in-sync" state,

otherwise it encounters another cond 2 result, and moves to a "TWO-SYNC-ERRORS"

state 4912. Again, if a cond 1 occurs, processing returns the state machine to the "IN-

SYNC" state. Otherwise, another cond 2 is encountered and the state machine returns to

the "no-sync" state. It is also understandable that should the interface encounter a "link

shutdown packet," then this will cause the link to terminate data transfers and return to

the "no-sync frame" state as there is nothing to synchronize with, which is referred to as

meeting cond 4, or condition 4, in the state diagram of FIG. 49.

[00506] It is understood that it is possible for there to be a repeating "false copy" of the

unique word which may appear at some fixed location within the sub-frame. In that

situation, it is highly unlikely that the state machine will synchronize to the sub-frame

because the CRC on the sub-frame Header Packet must also be valid when processed in

order for the MDDI processing to proceed to the "IN SYNC" state.

[00507] The sub-frame length in the sub-frame Header Packet may be set to zero to

indicate that the host will transmit only one sub-frame before the link is shut down, and

the MDDI is placed in or configured into an idle hibernation state. In this case, the

client must immediately receive packets over the forward link after detecting the sub-

frame Header Packet because only a single sub-frame is sent before the link transitions

to the idle state. In normal or typical operations, the sub-frame length is non-zero and

the client only processes forward link packets while the interface is in those states

collectively shown as "IN-SYNC" states in FIG. 49.

[00508] An external mode client device may be attached to the host while the host is

already transmitting a forward link data sequence. In this situation, the client must

synchronize to the host. The time required for a client to synchronize to the forward

link signal is variable depending on the sub-frame size and the forward link data rate.

WO 2005/091593 PCTIUS2005/008832

123

The likelihood of detecting a "false copy" of the unique word as part of the random, or

more random, data in the forward link is greater when the sub-frame size is larger. At

the same time, the ability to recover from a false detection is lower, and the time taken

to do so is longer, when a forward link data rate is slower.

[00509] For one or more embodiments, it recommended or understood that a MDDI host

should perform certain additional steps to ensure that the MDDI reverse link is stable

before it stops forward link transmission to go to a low power mode or to shut down the

link completely.

[00510] One problem that can occur is that if a host uses an incorrect measurement of the

round-trip delay value this can cause all subsequently received reverse data transmission

from the client to fail even though the forward link appears to be fine. This could

happen if the host tries to send a Round Trip Delay Measurement Packet when the client

is not in sync with the forward link, or due to an extreme ambient temperature change

that causes a corresponding large change in the propagation delay of the differential

drivers and receivers which affects the round trip delay. An intermittent cable or

connector contact failure could also cause the client to temporarily lose synchronization

and then regain sync, during which time, it may miss receiving a Round Trip Delay

Measurement Packet. Subsequent reverse link packets would not be able to be decoded

properly by the host.

[00511] Another type of problem that can occur is that if the client temporarily loses

sync and the host sends a Link Shutdown Packet before the client is able to regain sync.

The host will be in hibernation while the client is unable to enter the hibernation state

because it did not receive the Link Shutdown Packet and does not have a clock because

the link is in hibernation.

[00512] One technique or embodiment useful for overcoming such problems is to have

the host ensure that the client is in sync with the forward link before putting the link into

the hibernation state. If the MDDI host is unable to do this or does not have such an

opportunity, such as when it loses power or the link is abruptly broken or fails due to a

cable, conductor, or connector separation, break, or disconnection occurring during

operation, then the host should first try to ensure that the client is in sync before starting

a round-trip delay measurement process or sending a Reverse Link Encapsulation

packet.

WO 2005/091593 PCTIUS2005/008832

124

[00513] A host can observe the CRC Error Count field in a Client Request and Status

packet sent by the client to determine the forward link integrity. This packet is

requested by the host from the client. However, in the event of a major link failure or

disruption, this request will most likely go unanswered since a client will not be able to

properly decode the packet, or maybe even receive it altogether. The request for the

CRC Error Count using the Client Request and Status Packet sent in a Reverse Link

Encapsulation Packet acts as a first integrity check, a sort of first line of defense. In

addition, a host can send a Round Trip Delay Measurement Packet to confirm whether

or not the assumption about the client having fallen out of sync is a valid one or not. If

the client does not respond to a Round Trip Delay Measurement Packet, the host will

conclude that the client is out of sync and can then start the process of getting it back in

sync.

[00514] Once the host concludes that the client has more than likely lost synchronization

with the forward link, it waits until the next subframe header before attempting to send

any packets other than filler packets. This is done in order to allow a client enough time

to detect or look for one unique word contained in the subframe header packet.

Following this, the host may assume that the client would have reset itself since it would

not have found the unique word at the correct location. At this point, the host may

follow the subframe header packet with a Round Trip Delay Measurement Packet. If the

client still does not respond correctly to the Round Trip Delay Measurement Packet, the

host may repeat the resynchronization process. A correct response is one in which the

client sends the specified sequence back to the host in the Measurement Period of the

Round Trip Delay Measurement Packet. If this sequence is not received, then attempts

to receive reverse data in a Reverse Link Encapsulation Packet will fail. Continued

failure of this nature may indicate some other system error which will have to be

addressed in some other manner, and is not part of the link synchronization at this point.

[00515] However, if after a successful Round Trip Delay Measurement Packet the host

still sees corrupted data or no response in the Reverse Link Encapsulation Packets, it

should confirm the reverse data sampling is correct by re-sending a Round Trip Delay

Measurement Packet. If this is not successful after a number of attempts it is

recommnended for one embodiment that the host reduce the reverse data rate by

increasing the reverse rate divisor value.

WO 2005/091593 PCTIUS2005/008832

125

[00516] The host should perform the Link Failure Detection and possibly the Link

Resynchronization steps described above before placing the MDDI link into the

hibernation state. This will generally ensure that the Round Trip Delay Measurement

Packet performed when the link is restarted later on is successful. If the host has no

reason to suspect a link failure, and a correct response to a Reverse Link Encapsulation

Packet and zero forward link CRC errors is being reported by the client, a host may

assume that everything is operating or functioning accordingly or appropriately (no link

failure for example) and proceed with the power down/hibernation process.

[00517] Another manner in which a host can test for synchronization is for the host to

send the Round Trip Delay Measurement Packet and confirm the proper response from

the client. If the proper response is received by the host, it can reasonably be assumed

that the client is successfully interpreting forward link packets.

C. Initialization

[00518] As stated earlier, at the time of "start-up," the host configures the forward link to

operate at or below a minimum required, or desired, data rate of 1 Mbps, and configures

the sub-frame length and media-frame rate appropriately for a given application. That

is, both the forward and reverse links begin operation using the Type 1 interface. These

parameters are generally only going to be used temporarily while the host determines

the capability or desired configuration for the client display (or other type of client

device). The host sends or transfers a sub-frame Header Packet over the forward link

followed by a Reverse Link Encapsulation Packet which has bit of the Request Flags

set to a value of one in order to request that the display or client responds with a

Client Capability Packet. Once the display acquires synchronization on (or with) the

forward link, it sends a Client Capability Packet and a Client Request and Status Packet

over the reverse link or channel.

[00519] The host examines the contents of the Client Capability Packet in order to

determine how to reconfigure the link for optimal or a desired level of performance.

The host examines the Protocol Version and Minimum Protocol Version fields to

confirm that the host and client use versions of the protocol that are compatible with

each other. The protocol versions generally remain as the first two parameters of the

client capability Packet so that compatibility can be determined even when other

WO 2005/091593 PCTIUS2005/008832

126

elements of the protocol might not be compatible or completely understood as being

compatible.

[00520] In internal mode the host can know the parameters of the client in advance

without having to receive a Client Capability Packet. The link may start up at any data

rate at which the host and client can both operate. In many embodiments, a system

designer will most likely choose to start the link at the maximum achievable data rate to

hasten data transfer, however, this is not required and may not be used in many

situations. For internal mode operation, the frequency of the strobe pulses used during

the link restart from hibernation sequence will usually be consistent with this desired

rate.

D. CRC Processing

[00521] For all packet types, the packet processor state machine ensures that the CRC

checker is controlled appropriately or properly. It also increments a CRC error counter

when a CRC comparison results in one or more errors being detected, and it resets the

CRC counter at the beginning of each sub-frame being processed.

E. Alternative Loss Of Synchronization Check

[00522] While the above series of steps or states work to produce higher data rates or

throughput speed, Applicants have discovered that an alternative arrangement or change

in the conditions the client uses to declare that there is a loss of synchronization with the

host, can be used effectively to achieve even higher data rates or throughput. The new

inventive embodiment has the same basic structure, but with the conditions for changing

states changed. Additionally a new counter is implemented to aid in making checks for

sub-frame synchronization. These steps and conditions are presented relative to FIG.

63, which illustrates a series of states and conditions useful in establishing the

operations of the method or state machine. Only the "ACQUIRING-SYNC STATES"

and "IN-SYNC STATES" portions are shown for clarity. In addition, since the resulting

states are substantially the same, as is the state machine itself, they use the same

numbering. However, the conditions for changing states (and the state machine

operation) vary somewhat, so that all are renumbered for clarity between the two figures

2, 3, 4, 5, and 6, versus 61, 62, 63, 64, and 65), as a convenience in identifying

WO 2005/091593 PCTIUS2005/008832

127

differences. Since the ASYNC FRAME state is not considered in this discussion, one
state (4904) and condition are no longer used in the figure.

[00523] In FIG. 63, the system or client (for display or presentation) starts with state

machine 5000 in the pre-selected "no sync" state 4902, as in FIG. 49. The first state

change for changing states from the no-sync condition 4902 is in condition 64 which is

the discovery of the sync pattern. Assuming that the CRC of the sub-frame header also

passes on this packet (meets condition 61), the state of the packet processor state

machine can be changed to the in-sync state 4908. A sync error, condition 62, will

cause the state machine to shift to state 4910, and a second occurrence to state 4912.

However, it has been discovered that any CRC failure of an MDDI packet will cause the

state machine to move out of in-sync state 4908, to the one sync error state 4910.

Another CRC failure of any MDDI packet will cause a move to the two sync failure

state 4912. A packet decoded with a correct CRC value will cause the state machine to

return to the in-sync state 4908.

[00524] What has been changed is to utilize the CRC value or determination for 'every'

packet. That is, to have the state machine look at the CRC value for every packet to

determine a loss of synchronization instead of just observing sub-frame header packets.

In this configuration or process, a loss of synchronization is not determined using the

unique word and just sub-frame header CRC values.

[00525] This new interface implementation allows the MDDI link to recognize

synchronization failures much more quickly, and therefore, to recover from them more

quickly, as well.

[00526] To make this system more robust, the client should also add or utilize a sub-

frame counter. The client then checks for the presence of the unique word at the time it

is expected to arrive or occur in a signal. If the unique word does not occur at the

correct time, the client can recognize that a synchronization failure has occurred much

more quickly than if it had to wait several (here three) packet times or periods that were

greater than a sub-frame length. If the test for the unique word indicates it is not

present, in other words that the timing is incorrect, then the client can immediately

declare a link loss of synchronization and move to the no-sync state. The process of

checking for the proper unique word presence, adds a condition 65 (cond 65) to the state

machine saying that the unique word is incorrect. If a sub-frame packet is expected to

be received on the client and doesn't match up, the client can immediately go to the no-

WO 2005/091593 PCTIUS2005/008832

128

sync state 4902, saving additional time waiting for multiple sync errors (condition 62)

normally encountered traversing through states 4910 and 4912.

[00527] This change uses an additional counter or counting function in the client core to

count sub-frame length. In one embodiment, a count down function is used and the

transfer of any packet that was currently being processed is interrupted to check for the

sub-frame unique word if the counter has expired. Alternatively, the counter can count

up, with the count being compared to a desired maximum or particular desired value, at

which point the current packet is checked. This process protects the client from

decoding packets that are incorrectly received on the client with extraordinarily long

packet lengths. If the sub-frame length counter needed to interrupt some other packet

that was being decoded, a loss of synchronization can be determined since no packet

should cross a sub-frame boundary.

IX. Packet Processing

[00528] For each type of packet discussed above that the state machine receives, it

undertakes a particular processing step or series of steps to implement operation of the

interface. Forward link packets are generally processed according to the exemplary

processing listed in Table XIV below.

Table XIV

Packet type Packet processor state machine
response

Sub-Frame Header (SH) Confirms good packet, captures sub-
frame length field, and sends packet
parameters to a general purpose
processor.

Filler Ignores data.

Video Stream (VS) Interprets the Video Data Format
Descriptor and other parameters,
unpacks packed pixel data when
necessary, translates pixels through the
color map if necessary, and writes pixel
data to appropriate locations in the
bitmap.

Audio Stream (AS) Sends audio sample rate setting to

WO 2005/091593 PCTIUS2005/008832

Packet type Packet processor state machine
response

audio sample clock generator, separates
audio samples of specified size,
unpacks audio sample data when
necessary, and routes audio samples to
appropriate audio sample FIFO

Color Map (CM) Reads color map size and offset
parameters, and writes the color map
data to a color map memory or storage
location.

Reverse Link Encapsulation (REL) Facilitates sending packets in reverse
direction at the appropriate time.
Reverse link flags are examined, and
Client Capability packets are sent as
necessary. Client Request and Status
packets are also sent as appropriate.

Client Capability (CC) Sends this type of packet when
requested by a host using the reverse
link flags field of the Reverse Link
Encapsulation Packet.

Keyboard Passes these packets to and from a
general purpose processor that
communicates with a keyboard type
device, if one is present, and use is
desired.

Pointing Device (PD) Passes these packets to and from a
general purpose processor that
communicates with a pointing type
device, if one is present, and use is
desired.

Link Shutdown (LS) Records fact link is shut down and
informs a general-purpose processor.

Client Service Request and Status Sends this packet as the first packet in
(CSRS) the Reverse Link Encapsulation packet.

Bit Block Transfer (BPT) Interprets packet parameters, such as
Video Data Format Descriptor,
determines which pixels to move first,
and moves pixels in bitmap as required.

Bitmap Area Fill (BAF) Interprets packet parameters, translates
pixels through color map if necessary,
and writes pixel data to appropriate
locations in bitmap,

WO 2005/091593 PCT/US2005/008832

Packet type Packet processor state machine
response

Bitmap Pattern Fill (BPF) Interprets packet parameters, unpacks
packed pixel data if necessary,
translates pixels through color map if
necessary, and writes pixel data to
appropriate locations in bitmap.

Communication Link Channel Sends this data directly to a general-
(CLC) purpose processor.

Client Service Request (CSR) General-purpose processor controls the
during hibernation low-level functions of sending request and

detects contention with link restarting on
its own.

Interface Type Handoff Request May pass these packets to and from the
(ITHR) and Interface Type general-purpose processor. The logic to
Acknowledge (ITA) receive this type of packet and formulate a

response with an acknowledgment is
substantially minimal. Therefore, this
operation could also be implemented
within the packet processor state machine.
The resulting handoff occurs as a low-level
physical layer action and is not likely to
affect the functionality or functioning of
the general-purpose processor.

Perform Type Handoff (PTH) May act on such packets either directly or
by transferring them to the general-purpose
processor, also commanding hardware to
undergo a mode change.

X. Reducing the Reverse Link Data Rate

[00529] It has been observed by the inventors that certain parameters used for the host

link controller can be adjusted or configured in a certain manner in order to achieve a

maximum or more optimized (scale) reverse link data rate, which is very desirable. For

example, during the time used to transfer the Reverse Data Packets field of the Reverse

Link Encapsulation Packet, the MDDIStb signal pair toggles to create a periodic data

clock at half the forward link data rate. This occurs because the host link controller

generates the MDDIStb signal that corresponds to the MDDI DataO signal as if it were

sending all zeroes. The MDDIStb signal is transferred from the host to a client where

it is used to generate a clock signal for transferring reverse link data from the client,

with which reverse data is sent back to the host. An illustration of typical amounts of

WO 2005/091593 PCT/US2005/008832

131

delay encountered for the signal transfer and processing on the forward and reverse

paths in a system employing the MDDI, is shown in FIG. 50. In FIG. 50, a series of

delay values 1.5 nsec., 8.0 nsec., 2.5 nsec., 2.0 nsec., 1.0 nsec., 1.5 nsec., 8.0 nsec., and

nsec., are shown near processing portions for the Stb+/- generation, cable transfer-

to-client, client receiver, clock generation, signal clocking, Data0+/- generation, cable

transfer-to-host, and host receiver stages, respectively.

[00530] Depending on the forward link data rate and signal processing delays

encountered, it may require more time than one cycle on the MDDI_Stb signal for this

"round trip" effect or set of events to be completed, which results in the consumption

undesirable amounts of time or cycles. To circumvent this problem, the Reverse Rate

Divisor makes it possible for one bit time on the reverse link to span multiple cycles of

the MDDIStb signal. This means that the reverse link data rate is less than the forward

link rate.

[00531] It should be noted that the actual length of signal delays through the interface

may differ depending on each specific host-client system or hardware being used.

Although not required, each system can generally be made to perform better by using

the Round Trip Delay Measurement Packet to measure the actual delay in a system so

that the Reverse Rate Divisor can be set to an optimum value. The host may support

either basic data sampling which is simper but operates at a slower speed or advanced

data sampling that is more complex but supports higher reverse data rates. The client

capability to support both methods is considered the same

[00532] A round-trip delay is measured by having the host send a Round Trip Delay

Measurement Packet to the client. The client responds to this packet by sending a

sequence of ones back to the host inside of, or during, a pre-selected measurement

window in that packet called the Measurement Period field. The detailed timing of this

measurement was described previously. The round-trip delay is used to determine the

rate at which the reverse link data can be safely sampled.

[00533] The round-trip delay measurement consists of determining, detecting, or

counting the number of forward link data clock intervals occurring between the

beginning of the Measurement Period field and the beginning of the time period when

the Oxff, Oxff, 0x00 response sequence is received back at the host from the client. Note

that it is possible that the response from the client could be received a small fraction of a

forward link clock period before the measurement count was about to increment. If this

WO 2005/091593 PCT/US2005/008832

132

unmodified value is used to calculate the Reverse Rate Divisor it could cause bit errors

on the reverse link due to unreliable data sampling. An example of this situation is

illustrated in FIG. 51, where signals representing MIDDI_Data at host, MDDI_Stb at

host, forward link data clock inside the host, and a Delay Count are then do write the

resulting pixel to the destination pixel location illustrated in graphical form. In FIG. 51,

the response sequence was received from the client a fraction of a forward link clock

period before the Delay Count was about to increment from 6 to 7. If the delay is

assumed to be 6, then the host will sample the reverse data just after a bit transition or

possibly in the middle of a bit transition. This could result in erroneous sampling at the

host. For this reason, the measured delay should typic ally be incremented by one before

it is used to calculate the Reverse Rate Divisor.

[00534] The Reverse Rate Divisor is the number of 1I4DDI_Stb cycles the host should

wait before sampling the reverse link data. Since MDDI_Stb is cycled at a rate that is

one half of the forward link rate, the corrected round_-trip delay measurement needs to

be divided by 2 and then rounded up to the next integer. Expressed as a formula, this

relationship is:

reverse_rate divisor RoundUpToNextnteger(rou n d t r ip d e lay +1)

For the example given, this becomes:

reverse rate divisor RoundUpToNextInteger 4

[00535] If the round trip delay measurement used in this example were 7 as opposed to 6,

then the Reverse Rate Divisor would also be equal to 4-.

[00536] The reverse link data is sampled by the host on the rising edge of the Reverse

Link Clock. There is a counter or similar known circuit or device present in both the

host and client (display) to generate the Reverse ink Clock. The counters are

initialized so that the first rising edge of the Reverse Link Clock occurs at the beginning

of the first bit in the Reverse Link Packets field of the Reverse Link Encapsulation

packet. This is illustrated, for the example given below, in FIG. 52A. The counters

WO 2005/091593 PCT/US2005/008832

133

increment at each rising edge of the MDDI_Stb signal, and the number of counts

occurring until they wrap around is set by the Reverse Rate Divisor parameter in the

Reverse Link Encapsulation Packet. Since the MDDI Stb signal toggles at one half of

the forward link rate, then the reverse link rate is one half of the forward link rate

divided by the Reverse Rate Divisor. For example, if the forward link rate is 200 Mbps

and the Reverse Rate Divisor is 4 then the reverse link data rate is expressed as:

1 200Mbps 2
2 4

[00537] An example showing the timing of the MDDI_Data0 and MDDI_Stb signal lines

in a Reverse Link Encapsulation Packet is shown in FIG. 52, where the packet

parameters used for illustration have the values:

Packet Length 1024 (0x0400) Turn Around 1 Length 1

Packet Type 65 (0x41) Turn Around 2 Length 1
Reverse Link Flags 0 Reverse Rate Divisor 2
Parameter CRC 0xdb43 All Zero is 0x00
Packet data between the Packet Length and Parameter CRC fields is:

0x00, 0x04, 0x41, 0x00, 0x02, 0x01, 0x01, 0x43, Oxdb, 0x00,...

[00538] The first reverse link packet returned from the client is the Client Request and

Status Packet having a Packet Length of 7 and a packet type of 70. This packet begins

with the byte values 0x07, 0x00, 0x46, and so forth. However, only the first byte

(0x07) is visible in FIG. 52. This first reverse link packet is time-shifted by nearly one

reverse link clock period in the figure to illustrate an actual reverse link delay. An ideal

waveform with zero host to client round-trip delay is shown as a dotted-line trace.

[00539] The MS byte of the Parameter CRC field is transferred, preceded by packet type,

then the all zero field. The strobe from the host is switching from one to zero and back

to one as the data from the host changes level, forming wider pulses. As the data goes

to zero, the strobe switches at the higher rate, only the change in data on the data line

causes a change near the end of the alignment field. The strobe switches at the higher

rate for the remainder of the figure due to the fixed 0 or 1 levels of the data signal for

extended periods of time, and the transitions falling on the pulse pattern (edge).

WO 2005/091593 PCT/US2005/008832

134

[00540] The reverse link clock for the host is at zero until the end of the Turn Around 1

period, when the clock is started to accommodate the reverse link packets. The arrows

in the lower portion of the figure indicate when the data is sampled, as would be

apparent from the remainder of the disclosure. The first byte of the packet field being

transferred (here 11000000) is shown commencing after Turn Around 1, and the line

level has stabilized from the host driver being disabled. The delay in the passage of the

first bit, and as seen for bit three, can bee seen in the dotted lines for the Data signal.

[00541] In FIG. 53, one can observe typical values of the Reverse Rate I>ivisor based on

the forward link data rate. The actual Reverse Rate Divisor is determined as a result of

a round-trip link measurement to guarantee proper reverse link operation. A first region

5302 corresponds to an area of safe operation, a second region 5304 corresponds to an

area of marginal performance, while a third region 5306 indicates settings that are

unlikely to function properly.

[00542] The round-trip delay measurement and Reverse Rate Divisor setting are the

same while operating with any of the Interface Type settings on either the forward or

reverse link because they are expressed and operated on in terms of units of actual clock

periods rather than numbers of bits transmitted or received.

[00543] Typically, the largest possible Reverse Rate Divisor is half the number of bits

that can be sent in the measurement window of the Round Trip Dela-y Measurement

Packet using a Type-I interface, or for this example:

(512bytes 8bits /byte) 2048
2

[00544] An advanced reverse data sampling method can also be employed as an

alternative that allows the reverse bit time to be smaller than the round-trip delay. For

this technique a host not only measures the round-trip delay, but can also determine the

phase of the response from the client with respect to an 'ideal' bit boundary of a client

and link with zero delay. By knowing the phase of the client device resp onse, a host can

detennine a relatively safe time to sample the reverse data bits from the client. The

round-trip delay measurement indicates to a host the location of the first bit of reverse

data with respect to the beginning of the Reverse Data Packets field.

WO 2005/091593 PCTIUS2005/008832

135

[00545] One embodiment of an example of advanced reverse data sampling is illustrate

in graphical form in FIG. 52B. An ideal reverse data signal with zero round-trip delay

is shown as a dotted-line waveform. The actual round-trip delay, between 3.5 and 4

MDDI_Stb cycles, can be observed as the difference in delay between solid waveform

and the ideal. This is the same delay that would be measured using the Round Trip

Delay Measurement Packet, and would be a measured round-trip delay value equal to 7

forward-link bit times. In this embodiment, reverse data bits are 2 MDDIStb pulses

long, which is 4 forward-link bit times, which corresponds to a reverse rate divisor

equal to 2. For advanced reverse data sampling it is convenient to use a pre-selected

reverse rate divisor of 2 instead of computing it as described elsewhere. This appears to

be a substantially optimum choice for advanced reverse data sampling because the ideal

sampling point can easily be determined using the conventional measurements

described above.

[00546] The ideal sampling point for reverse data can be easily computed by taking the

reminder of the total round-trip delay divided by the number of forward link clocks per

reverse bit, or round-trip delay modulo forward link clocks per reverse bit. Then

subtract either 1 or 2 to get to a safe point away from the data transition. In this

example, 7 mod 4 3, then 3 1 2, or 3 2 1. The safe sampling point is either 1

or 2 forward link bit times from the edge of the "ideal" bit boundary for zero round-trip

delay. The figure shows the sampling point at 2 forward link bit times from the ideal bit

boundary, as indicated by the series of vertical arrows at the bottom of the timing

diagram. The first sampling point is the first ideal bit boundary after the measured

round-trip delay, plus the offset for safe sampling. In this example, the round trip delay

measurement is 7, so the next ideal bit boundary is at the 8
th bit time, then add either 1

or 2 for the safe sampling point, so the first bit shall be sampled at either 9 or

forward link bit times after the beginning of the Reverse Data Packets Field.

XI. Turn-Around and Guard Times

[00547] The Turn-Around 1 field in the Reverse Link Encapsulation Packet allows time

for the host drivers to disable and the client drivers to enable simultaneously. The

Guard Time 1 field in the Round Trip Delay Measurement Packet allows overlap of the

host and client, so the client drivers can enable before the host interface drivers are

WO 2005/091593 PCT/US2005/008832

136

disabled. The Turn Around 2 field in the Reverse Link Encapsulation Packet allows

data in the previous field from the client to be fully transmitted before the host drivers

are enabled. The Guard Time 2 field provides a time value or period which allows the

client and host drivers to drive simultaneously at a logic-zero level. The Guard Time 1

and Guard Time 2 fields are generally filled with pre-set or pre-selected values for

lengths that are not meant to be adjusted. Depending on the interface hardware being

used, these values may be developed using empirical data and adjusted in some

instances to improve operation.

Turn-Around 1

[00548] Several factors contribute to a determination of the length of Turn-Around 1 and

these are the forward link data rate, the maximum disable time of the MDDI_Data

drivers in the host, and the enable time of the client driver which is which is generally

the same as the host disable time. The length of the Turn-Around 1 field is selected to

be 24-tBIT.(Table XIII) The length in the number of forward link bytes of the Turn-

Around 1 field is determined using the Interface Type Factor, and is computed using the

relationship:

24
LengthTunr ndl s InterfaceTypeFactorFw 3- InterfaceTypeFactorFwD

8bits byte

where the Interface Type Factor is 1 for Type 1, 2 for Type 2, 4 for Type 3, and 8 for

Type-4.

Turn-Around 2

[00549] The factors that determine the length of time generally used for Turn Around 2

are, the round-trip delay of the communication link, the maximum disable time of the

MDDI Data drivers in the client, and the enable time of the host driver which is

specified to be the same as the client driver disable time. The maximum host driver

enable time and client driver disable time is specified elsewhere. The round-trip delay

is measured in units of tBIT. The minimum length specified in the number of forward

link bytes of the Turn-Around 2 field is computed according to the relationship:

WO 2005/091593 PCT/US2005/008832

137

RoundTripDelay 24
LengthTurund2 RoundUpToNextIntege bits/ InterfaceTypeFactorF

[00550] For example, a Type 3 forward link with a round-trip delay of 10 forward link

clocks typically uses a Turn Around 2 delay on the order of:

11+24
LengthTur .r d2 RoundUpToNextnteger(4 18bytes

XII. Alternative Reverse Link Timing

[00551] While the use of timing and guard bands discussed above work to achieve a high

data transfer rate interface, the inventors have discovered a technique to allow for

reverse bit lengths that are shorter than the round trip time, by changing the reverse

timing discovery.

[00552] As presented above, the previous approach to the timing of the reverse link is

configured such that the number of clock cycles is counted from the last bit of the Guard

Time 1 of a reverse timing packet until the first bit is sampled on the rising edge of an

IO clock. That is the clock signal(s) used to time the inputs and outputs for the MDDI.

The calculation for the reverse rate divisor is then given by:

round trip delay+1
reverse rate divisor RoundUpToNextIntegerr -ndipd y+

[00553] This provides a bit width equal to the round trip delay which results in a very

reliable reverse link. However, the reverse link has been shown to be capable of

running faster, or at a higher data transfer rate, which the inventors want to take

advantage of. A new inventive technique allows utilizing additional capabilities of the

interface to reach higher speeds.

[00554] This is accomplished by having the host count the number of clock cycles until a

one is sampled, but with the host sampling the data line on both the rising and falling

edges during the reverse timing packet. This allows the host to pick the most useful or

even optimal sampling point within the reverse bit to ensure that the bit is stable. That

WO 2005/091593 PCTIUS2005/008832

138

is, to find the most useful or optimal rising edge to sample data on for reverse traffic

reverse encapsulation packets. The optimal sampling point depends on both the reverse

link divisor and whether the first one was detected on a rising edge or a falling edge.

The new timing method allows the host to just look for the first edge of the OxFF OxFF

0xOO pattern sent by the client for reverse link timing to determine where to sample in a

reverse encapsulation packet.

[00555] Examples of the arriving reverse bit and how that bit would look for various

reverse rate divisors, is illustrated in FIG. 64, along with a number of clock cycles that

have occurred since the last bit of Guard Time 1. In Fig. 64, one can see that if the first

edge occurs between a rising and falling edge (labeled as rise/fall), the optimal sampling

point for a reverse rate divisor of one, the optimal sample point is a clock cycle edge

labeled as that is the only rising edge occurring within the period of the reverse bit.

For a reverse rate divisor of two, the optimal sampling point is probably still clock cycle

leading edge as cycle edge is closer to a bit edge than For a reverse rate divisor

of four, the optimal sampling point is probably clock cycle edge as it is closer to the

back edge of the reverse bit where the value has probably stabilized.

[00556] Returning to FIG. 64, if, however, the first edge occurs between a falling and

rising edge (labeled as fall/rise), the optimal sampling point for a reverse rate divisor of

one is sampling point clock cycle edge as that is the only rising edge within the

reverse bit time period. For a reverse rate divisor of two. the optimal sampling point is

edge and for a reverse rate divisor of four the optimal sampling point is edge

[00557] One can see that as the reverse rate divisors get larger and larger, the optimal

sampling point becomes easier to ascertain or select, as it should be the rising edge that

is closest to the middle.

[00558] The host can use this technique to find the number of rising clock edges before

the rising data edge of the timing packet data is observed on the data line. It can then

decide, based on whether the edge occurs between a rising and falling edge or between a

falling and rising edge, and what the reverse rate divisor is, how many additional clock

cycles to add to a number counter, to reasonably ensure that the bit is always sampled as

close to the middle as possible.

[00559] Once the host has selected or determined the number of clock cycles, it can

"explore" various reverse rate divisors with the client to determine if a particular reverse

rate divisor will work. The host (and client) can start with a divisor of one and check

WO 2005/091593 PCTIUS2005/008832

139

the CRC of the reverse status packet received from the client to determine if this reverse

rate functions appropriately to transfer data. If the CRC is corrupt, there is probably a

sampling error, and the host can increase the reverse rate divisor and try to request a

status packet again. If the second requested packet is corrupt, the divisor can be

increased again and the request made again. If this packet is decoded correctly, this

reverse rate divisor can be used for all future reverse packets.

[00560] This method is effective and useful because the reverse timing should not

change from the initial round trip timing estimate. If the forward link is stable, the

client should continue to decode forward link packets even if there are reverse link

failures. Of course, it is still the responsibility of the host to set a reverse link divisor

for the link, since this method does not guarantee a perfect reverse link. In addition, the

divisor will depend primarily on the quality of the clock that is used to generate an IO

clock. If that clock has a significant amount of jitter, there is a greater possibility of a

sampling error. This error probability increases with the amount of clock cycles in the

round trip delay.

[00561] This implementation appears to work best for Type 1 reverse data, but may

present problems for Type 2 through Type 4 reverse data due to the skew between data

lines potentially being too great to run the link at the rate that works best for just one

data pair. However, the data rate probably does not need to be reduced to the previous

method even with Type 2 through Type 4 for operation. This method may also work

best if duplicated on each data line to select the ideal or an optimal clock sample

location. If they are at the same sample time for each data pair, this method would

continue to work. If they are at different sample periods, two different approaches may

be used. The first is to select an desired or more optimized sample location for each

data point, even if it is not the same for each data pair. The host can then reconstruct the

data stream after sampling all of the bits from the set of data pairs: two bits for Type 2,

four bits for Type 3, and eight bits for Type 4. The other option is for the host to

increase the reverse rate divisor such that the data bits for every data pair can be

sampled at the same clock edge.

WO 2005/091593 PCTIUS2005/008832

140

XIII. Effects of Link Delay and Skew

[00562] Delay skew on the forward link between the MDDI_Data pairs and MDDI_Stb

can limit the maximum possible data rate unless delay skew compensation is used. The

differences in delay that cause timing skew are due to the controller logic, the line

drivers and receivers, and the cable and connectors as outlined below.

A. Link Timing Analysis Limited by Skew (MDDI Type-1)

1. Delay and Skew Example of a Type 1 Link

[00563] A typical interface circuit similar to that shown in FIG. 41, is shown in FIG. 57

for accommodating a Type 1 interface link. In FIG. 57, exemplary or typical values for

propagation delay and skew are shown for each of several processing or interface stages

of an MDDI Type 1 forward link. Skew in the delay between MDDI_Stb and

MDDI_DataO causes the duty-cycle of the output clock to be distorted. Data at the D

input of the receiver flip-flop (RXFF) stage using flip-flops 5728, 5732, changes

slightly after the clock edge so that it can be sampled reliably. The figure shows two

cascaded delay lines 5732a and 5732b being used to solve two different problems with

creating this timing relationship. In the actual implementation these may be combined

into a single delay element.

[00564] Data, Stb, and Clock Recovery Timing on a Type 1 Link for exemplary signal

processing through the interface are illustrated in FIG. 58.

[00565] The total delay skew that is significant generally arises or comes from the sum

of the skew in the following stages: transmitter flip-flop (TXFF) with flip-flops 5704,

5706; transmitter driver (TXDRVR) with drivers 5708, 5710; the CABLE 5702;

receiver line receiver (RXRCVR) with receivers 5722, 5724; and receiver XOR logic

(RXXOR). Delayl 5732a should match or exceed the delay of the XOR gate 5736 in

the RXXOR stage which is determined by the relationship:

t PD -min(Delay 1) P t D -max(XOR

[00566] It is desirable to meet this requirement so that the D input of receiver flip-flop

5728, 5732 does not change before its clock input. This is valid if the hold-time of

RXFF is zero.

WO 2005/091593 PCT/US2005/008832

141

[00567] The purpose or function of Delay2 is to compensate for the hold-time of the

RXFF flip-flop according to the relationship:

tPD-min(Delay2) tH(RXFF)

[00568] In many systems this will be zero because the hold time is zero, and of course in

that case the maximum delay of Delay2 can also be zero.

[00569] The worst-case contribution to skew in the receiver XOR stage is in the data-

late/strobe-early case where Delayl is at a maximum value and the clock output from

the XOR gate comes as early as possible according to the relationship:

t -t -tt SKEW-max(RXXOR) tPD-max(Delayl) PD-min(XOR)

[00570] In this situation, the data may change between two bit periods, n and n+l, very

close to the time where bit n+1 is clocked into the receiver flip-flop.

[00571] The maximum data rate (minimum bit period) of an MDDI Type 1 link is a

function of the maximum skew encountered through all the drivers, cable, and receivers

in the MDDI link plus the total data setup into the RXFF stage. The total delay skew in

the link up to the output of the RXRCVR stage can be expressed as:

tSKEW-max(LIN7K) tSKEW-max(TXFF) tSKEW-max(TXDRVR) tSKEW-max(CABLE) SKEW-max(RXRCVR)

with the "cable" representing a variety of conductors or interconnections or wires and

corresponding delay, and the minimum bit period is given by:

tBT-min tSKEW-max(LINK) 2 tB-TP4 tAsym;etry SKEW-max(RXXOR) +j titter-host tPD-max(Delay2) tSU(RXFF)

[00572] In the example shown in FIG. 57 for external mode, tSKEW-max(LNK) 1000 psec

and the minimum bit period can be expressed as:

WO 2005/091593 PCT/US2005/008832

142

tr-_in 1000+ 2 .12 5+625+125+200+0+100 2300psec,

or stated as approximately 434 Mbps. In the example shown in FIG. 57 for internal

mode, tsKEw-max(LNK) 500psec and the minimum bit period can be expressed as:

tBrr-m 500+2.125+625+125+200+0+100 1800psec,

or stated as approximately 555 Mbps.

B. Link Timing Analysis for MDDI Type 2, 3, and 4

[00573] A typical interface circuit similar to that shown in FIGs. 41 and 57, is shown in

FIG. 59 for accommodating Type 2, 3, and 4 interface links. Additional elements are

used in the TXFF (5904), TXDRVR (5908), RXRCVCR (5922), and RXFF (5932,

5928, 5930) stages to accommodate the additional signal processing. In FIG. 59,

exemplary or typical values for propagation delay and skew are shown for each of

several processing or interface stages of an MDDI Type 2 forward link. In addition to

skew in the delay between MDDI_Stb and MDDI_Data0 affecting the duty-cycle of the

output clock, there is also skew between both of these two signals and the other

MDDI_Data signals. Data at the D input of the receiver flip-flop B (RXFFB) stage

consisting of flip-flops 5928 and 5930, is changed slightly after the clock edge so it can

be sampled reliably. If MDDI_Datal arrives earlier than MDDI Stb or MDDI Data0

then MDDI_Datal should be delayed to be sampled by at least the amount of the delay

skew. To accomplish this, data is delayed using the Delay3 delay line. IfMDDI Datal

arrives later than MDDI_Stb and MDDI_Data0 and it is also delayed by Delay3 then the

point where MDDI_Datal changes is moved closer to the next clock edge. This process

determines an upper limit of the data rate of an MDDI Type 2, 3, or 4 link. Some

exemplary different possibilities for the timing or skew relationship of two data signals

and MDDI_Stb with respect to each other is illustrated in FIGs. 60A, 60B, and

[00574] In order to sample data reliably in RXFFB when MDDI DataX arrives as early

as possible, Delay3 is set according to the relationship:

tPD-min(Delay3) t SKEW-max(LINK) tH(RXFFB) PD-max(XOR)

WO 2005/091593 PCTIUS2005/008832

143

[00575] The maximum link speed is determined by the minimum allowable bit period.

This is most affected when MDDIDataX arrives as late as possible. In that case, the

minimnum allowable cycle time is given by:

t -t +t +t -t
BIT-min tSKEW-max(LINK) +PD-max(Dalay3) tSU(RXFFB) tPD-min(XOR)

[00576] The upper bound of link speed is then:

PD-max(Delay3) tPD-min(Delay3)

and given that assumption:

tBIT-min(lower-bound) 2 tSKEW-max(LK) PD-max(XOR) tSU(RFFB) tH(R FB)

[00577] In the example given above, the lower bound of the minimum bit period is given

by the relationship:

tBT-min(lower-bound) 2 -(1000 2 125 625 200) +1500 +100 0 5750psec,

which is approximately 174 Mbps.

[00578] This is much slower than the maximum data rate that can be used with a Type 1

link- The automatic delay skew compensation capability of MDDI significantly reduces

the affect that delay skew has on the maximum link rate factor is just on-the-edge of

valid data setup. The calibrated skew between MDDIDataG and MDDIStb is:

tSKEW-max(Calibraed) 2 tP-SPACN-n4x

and the minimum bit period is:

tBIT-min-Caibraed tSKEW-max(Calibraied) 2 -B-TP4 tAsymmery tfjiter-host SKEW-max(RX4ND+RXXOR) tSU(RXF)

WO 2005/091593 PCT/US2005/008832

144

[00579] Where "TB" or tB represents signal jitter from a bit boundary to minimum output

level. Asymmetry simply refers to the asymmetrical nature of internal delay through or

of the differential receivers. "TP4" is associated with or is effectively defined for

electrical characterization and testing purposes as the connection or interface (pins of

the MDDI controller device in the client) for the differential line drivers and receivers

for the client. It represents a convenient or predetermined point from which signal delay

is measured and characterized for the link throughout the rest of a system. In one

embodiment, a maximum value of the parameter tB at TP4 is defined by the relationship

t Dffnifd-Sk-T4-DRVR-Er 0.3- tT for the external mode and

tDifferentaI-S TP4-DRVR-iNT 0.6- tBI for the internal mode for the client transmitters; and

tB-TP4-RCV<-*E 0.051- BIT 175ps for the external mode for the client receivers.

[00580] The label TP4 being simply useful in numbering various test points (TP) in the

interface and links. In one embodiment, this test point location is defined to be the same

for both internal and external modes. There is a corresponding "TP0" test point for, or

associated with, the connection or interface pins of the MDDI controller device in the

host that contains the differential line drivers and receivers. In this embodiment, a

maximum value of the parameter TB at TPO is defined by the

relationship tB-Tpo-RCVR-VT =0.051.- tB, 50ps, for the internal mode, and

tB-TP o-RCVR-r 0.051- tBIT 175ps for the external mode for the host receivers; and

tB-TPO 0.102 for the host transmitters.

[00581] In the example shown in FIG. 59, tsKEW-max(DataO-Stb-Calibrated) 300 psec and the

minimum bit period:

tBIT-m-Ca ibrted 300 2*125 625 200 +175 +100 1650psec,

approximately 606 Mbps.

[00582] In order to sample data reliably in RXFFB when MDDI_Datal arrives as early

as possible, the associated programmable delay is adjusted to the optimal setting with an

accuracy of one tap, and an additional tap delay is added for safety. The maximum link

speed is determnined by the minimum allowable bit period. This is most affected when

WO 2005/091593 PCTIUS2005/008832

145

MDDIDatal arrives as late as possible. In that case the minimum allowable cycle time

is:

tBIT-nin-Datal-Calibraed 2 tTAP-Spacig-ax +2 tTA-TP4

where "TA" or tN represents signal jitter from a bit boundary to center crossing.

[00583] In the example given in FIG. 59, the lower bound of the minimum bit period

based on sampling MDDIDatal is:

tBIT-min-Datal-Calbrated 2.150 2. -125 550p sec

[00584] In one embodiment, a typical total delay time for delay skew, delay asymmetry,

and Clock Jitter in the host transmitter for Internal Mode would be defined as:

tAsymnerty-TFF tAsymmeby-TXDR Skev-TAFF tSkev-TXDRVR tjitter-host 0.467 (t3, -150ps),

and for the external mode as:

tAsymmenyTXF tAsm 7YR tSkew-TXFF tSk-TRVR tter-host 0.TBD (t -150TBDps)

while a typical total delay time for delay skew, delay asymmetry, and setup time in the

client device (tB-TP4) for internal mode is:

tSymet~~V t~k~P1C +t 0.307 15 ps)
tAsymmerN-RNcV +tAsymmetry-RXYOR Skew-MRRCVR Skew-RI=OR +tse1up-RXFF 0.307.(t,, -150ps)

and for the external mode:

tAsymery- M +tAsymmey-AXOR +tkew-c tke-RYXOR t
seup-RXFF 0.TBD- (tf, TBDps),

where the term TBD is a flexible place keeping label for future to be detennrmined values

which will depend on a variety of well understood characteristics and operational

requirements for the external mode connections.

WO 2005/091593 PCT/US2005/008832

146

XIV. Physical Layer Interconnection Description

[00585] Physical connections useful for implementing an interface according to the

present invention can be realized using commercially available parts such as part

number 3260-8S2(01) as manufactured by Hirose Electric Company Ltd. on the host

side, and part number 3240-8P-C as manufactured by Hirose Electric Company Ltd. on

the client device side. An exemplary interface pin assignment or "pinout" for such

connectors used with a Type-l/Type 2 interfaces is listed in Table XV, and illustrated in

FIG. 61.

Table XV

Signal Name Pin Signal Name Pin
Number Number

MDDI Pwr 1 MDDI Gnd 11
MDDI Stb+ 2 MDDI Stb- 12
MDDI DataO+ 4 MDDI Data0- 14
MDDI Datal+ 6 MDDI Datal- 16
MDDI Data2+ 8 MDDI Data2- 18
MDDI Data3+ 10 MDDI Data3-
MDDI Data4+ 9 MDDI Data4- 19
MDDI Data5+ 7 MDDI Data5- 17
MDDI Data6+ 5 MDDI Data6-
MDDI Data7+ 3 MDDI Data7- 13

Shield

[00586] The shield is connected to the HOST_Gnd in the host interface, and a shield

drain wire in the cable is connected to the shield of the client connector. However, the

shield and drain wire are not connected to the circuit ground inside of a client.

[00587] Interconnection elements or devices are chosen or designed in order to be small

enough for use with mobile communication and computing devices, such as PDAs and

wireless telephones, or portable game devices, without being obtrusive or unaesthetic in

comparison to relative device size. Any connectors and cabling should be durable

enough for use in the typical consumer environment and allow for small size, especially

for the cabling, and relatively low cost. The transfer elements should accommodate data

and strobe signals that are differential NRZ data having a transfer rate up to around 450

Mbps for Type 1 and Type 2 and up to 3.6 Gbps for the 8-bit parallel Type 4 version.

WO 2005/091593 PCTIUS2005/008832

147

[00588] For internal mode applications there are either no connectors in the same sense

for the conductors being used or such connection elements tend to be very miniaturized.

One example is zero insertion force "sockets" for receiving integrated circuits or

elements housing either the host or client device. Another example is where the host

and client reside on printed circuit boards with various interconnecting conductors, and

have "pins" or contacts extending from housings which are soldered to contacts on the

conductors for interconnection of integrated circuits.

XV. Operation

[00589] A summary of the general steps undertaken in processing data and packets

during operation of an interface using embodiments of the invention is shown in FIGs.

54A and 54B, along with an overview of the interface apparatus processing the packets

in FIG. 55. In these figures, the process starts in a step 5402 with a determination as to

whether or not the client and host are connected using a communication path, here a

cable. This can occur through the use of periodic polling by the host, using software or

hardware that detects the presence of connectors or cables or signals at the inputs to the

host (such as is seen for USB interfaces), or other known techniques. If there is no

client connected to the host, then it can simply enter a wait state of some predetermined

length, depending upon the application, go into a hibernation mode, or be inactivated to

await future use which might require a user to take action to reactivate the host. For

example, when a host resides on a computer type device, a user might have to click on a

screen icon or request a program that activates the host processing to look for the client.

Again, simple plug in of a USB type connection could activate host processing,

depending on the capabilities and configuration of the host or resident host software.

[00590] Once a client is connected to the host, or visa versa, or detected as being present,

either the client or the host sends appropriate packets requesting service in steps 5404

and 5406. The client could send either Client Service Request or Status packets in step

5404. It is noted that the link, as discussed above, could have been previously shut

down or be in hibernation mode so this may not be a complete initialization of the

communication link that follows. Once the communication link is synchronized and the

host is trying to communicate with the client, the client also provides a Client

WO 2005/091593 PCTIUS2005/008832

148

Capabilities packet to the host, as in step 5408. The host can now begin to determine

the type of support, including transfer rates, the client can accommodate.

[00591] Generally, the host and client also negotiate the type (rate/speed) of service

mode to be used, for example Type 1, Type 2, and so forth, in a step 5410. Once the

service type is established the host can begin to transfer information. In addition, the

host may use Round Trip Delay Measurement Packets to optimize the timing of the

communication links in parallel with other signal processing, as shown in step 5411.

[00592] As stated earlier, all transfers begin with a Sub-Frame Header Packet, shown

being transferred in step 5412, followed by the type of data, here video and audio stream

packets, and filler packets, shown being transferred in step 5414. The audio and video

data will have been previously prepared or mapped into packets, and filler packets are

inserted as needed or desired to fill out a required number of bits for the media frames.

The host can send packets such as the Forward Audio Channel Enable Packets to

activate sound devices. In addition, the host can transfer commands and information

using other packet types discussed above, here shown as the transfer of Color Map, Bit

Block Transfer or other packets in step 5416. Furthermore, the host and client can

exchange data relating to a keyboard or pointing devices using the appropriate packets.

[00593] During operation, one of several different events can occur which lead to the

host or client desiring a different data rate or type of interface mode. For example, a

computer or other device communicating data could encounter loading conditions in

processing data that causes a slow down in the preparation or presentation of packets. A

client device receiving the data could change from a dedicated AC power source to a

more limited battery power source, and either not be able to transfer in data as quickly,

process commands as readily, or not be able to use the same degree of resolution or

color depth under the more limited power settings. Alternatively, a restrictive condition

could be abated or disappear allowing either device to transfer data at higher rates. This

being more desirable, a request can be made to change to a higher transfer rate mode.

[00594] If these or other types of known conditions occur or change, either the host or

client may detect them and try to renegotiate the interface mode. This is shown in step

5420, where the host sends Interface Type Handoff Request Packets to the client

requesting a handoff to another mode, the client sends Interface Type Acknowledge

Packets confirming a change is sought, and the host sends Perform Type Handoff

Packets to make the change to the specified mode.

WO 2005/091593 PCTIUS2005/008832

149

[00595] Although, not requiring a particular order of processing, the client and host can

also exchange packets relating to data intended for or received from pointing devices,

keyboards, or other user type input devices associated primarily with the client,

although such elements may also be present on the host side. These packets are

typically processed using a general processor type element and not the state machine

(5502). In addition, some of the commands discussed above will also be processed by

the general processor. (5504, 5508)

[00596] After data and commands have been exchanged between the host and client, at

some point a decision is made as to whether or not additional data is to be transferred or

the host or client is going to cease servicing the transfer. This is shown in step 5422. If

the link is to enter either a hibernation state or be shut down completely, the host sends

a Link Shutdown packet to the client, and both sides terminate the transfer of data.

[00597] The packets being transferred in the above operations processing will be

transferred using the drivers and receivers previously discussed in relation to the host

and client controllers. These line drivers and other logic elements are connected to the

state machine and general processors discussed above, as illustrated in the overview of

FIG. 55. In Fig. 55, a state machine 5502 and general processors 5504 and 5508 may

further be connected to other elements not shown such as a dedicated USB interface,

memory elements, or other components residing outside of the link controller with

which they interact, including, but not limited to, the data source, and video control

chips for view display devices.

[00598] The processors, and state machine provide control over the enabling and

disabling of the drivers as discussed above in relation to guard times, and so forth, to

assure efficient establishment or termination of communication link, and transfer of

packets.

XVI. Display Frame Buffers

[00599] Video data buffering requirements are different for moving video images

compared to computer graphics. Pixel data is most often stored in a local frame buffer

in the client so the image on the client can be refreshed locally.

[00600] When full-motion video is being displayed (nearly every pixel in the display

changes each Media Frame) it is usually preferred to store the incoming pixel data in

WO 2005/091593 PCTIUS2005/008832

150

one frame buffer while the image on the display is being refreshed from a second frame
buffer. More than two display buffers may be used to eliminate visible artifacts as
described below. When an entire image has been received in one frame buffer then the
roles of the buffers can be swapped, and the newly received image is then used to
refresh the display and the other buffer is filled with the next frame of the image. This
concept is illustrated in FIG. 88A, where pixel data is written to the offline image buffer
by setting the Display Update bits to "01."

[00601] In other applications the host needs to update only a small portion of the image
without having to repaint the entire image. In this situation it is desired to write the new
pixels directly to the buffer being used to refresh the display, as illustrated in detail FIG.
88B.

[00602] In applications that have a fixed image with a small video window it is easiest to
write the fixed image to both buffers (display update bits equal to as shown in
FIG. 88C, and subsequently write the pixels of the moving image to the offline buffer
by setting the display update bits to "01."

[00603] The following rules describe the useful manipulation of buffer pointers while
simultaneously writing new information to the client and refreshing the display. Three
buffer pointers exist: current_fill points to the buffer currently being filled from data
over the MDDI link. Just filled points to the buffer that was most recently filled.
being_displayed points to the buffer currently being used to refresh the display. All
three buffer pointers may contain values from 0 to N-l where N is the number of
display buffers, and N 2. Arithmetic on buffer pointers is mod N, e.g. when N=3 and
currentfill=2, incrementing currentfill causes current_fill to be set to 0. In the simple
case where N=2, just_filled is always the complement of currentfill. On every MDDI
Media Frame boundary (Sub-frame Header Packet with the Sub-frame Count field equal
so zero) perform the following operations in the order specified: set just_filled equal to
current_fill, and set currentfill equal to current fill 1.

[00604] MDDI Video Stream Packets update the buffers according to the structure or
methodology of: when Display Update Bits equal to pixel data is written to the
buffer specified by currentfill; when Display Update Bits equal to pixel data is
written to the buffer specified by justfilled; and when Display Update Bits equal to

pixel data is written to all buffers. The display is refreshed from the buffer
specified by the being_displayed pointer. After the display refreshes the last pixel in

WO 2005/091593 PCTIUS2005/008832

151

one frame refresh epoch and before it begins to refresh the first pixel in the next frame

refresh epoch the display update process performs the operation of setting

being_refreshed equal to justfilled.

[00605] The Packets with a Pixel Data Attribute field contain a pair of Display Update

Bits that specify the frame buffer where the pixel data is to be written. The Client

Capability Packet has three additional bits that indicate which combinations of the

Display Update Bits are supported in the client In many cases, computer-generated

images need to be incrementally updated based on user input or derived from

information received from a computer network. Display Update Bit combinations "00"

and "11" support this mode of operation by causing the pixel data to be written to the

frame buffer being displayed or to both frame buffers.

[00606] When accommodating video images, FIG. 89 illustrates how video images are

displayed using a pair of frame buffers when video data is transmitted over the MDDI

link with the Display Update Bits equal to After a media-frame boundary is

detected on the MDDI link, the display refresh process will begin refreshing from the

next frame buffer when the refresh process for the frame currently being :efreshed is

completed.

[00607] An important assumption related to FIG. 89 is that the image is received from

the host as a continuous stream of pixels that are transmitted in the same order that the

client uses to read the pixels from the frame buffer to refresh the display (usually upper-

left, reading row by row, to the bottom-right comer of the screen. This is an important

detail in the cases where the Display Refresh and Image Transfer operations reference

the same frame buffer.

[00608] It is necessary for the display refresh frame rate to be greater thain the image

transfer frame rate to avoid displaying partial images. FIG. 90 shows how image

fragmentation can occur with a slow display refresh rate that is the display refresh is

slower than the image transfer.

[00609] In an image that contains a combination of computer graphic images and moving

video pictures the video pixel data might occupy a small portion of a media-frame. This

could be significant in situations where the display refresh operation and the image

transfer reference the same frame buffer. These situations are shown by a cross-hatched

shading in FIG. 91, where the pixels read from the buffer to refresh the display might be

WO 2005/091593 PCTIUS2005/008832

152

the pixels written to the buffer two frames ago, or they may correspond to the frame

immediately being written to the same frame buffer.

[00610] The use of three frame buffers in the client will resolve the problem of the small

window of contention for access to a frame buffer as shown in FIG. 92.

[00611] However, there is still a problem if the display refresh rate is less than the

media-frame rate over the MDDI link as shown in FIG. 93.

[00612] The use of a single buffer for moving video images is somewhat problematic as

shown FIG. 94. With the display refresh faster than the image transfer into the buffer,

the image being refreshed sometimes will show the upper portion of the frame being

written and the lower portion of the image will be the frame previously transferred.

With the display refresh faster than the image transfer (the preferred mode of operation)

there will be more frequent instances of frames showing a similar split image.

XVII. Multiple Client Support

[00613] The current protocol version does not appear to directly support multiple client

devices. However, most packets contain a reserved Client ID field that can be used to

address specific client devices in a system with multiple clients. Currently, for nany

applications this client ID or these client IDs are set to be zero. The sub-frame header

packet also contains a field to indicate whether or not the host supports a multiple client

system. Therefore, there is a manner in which multiple client devices would likely be

connected and addressed in future applications of the MDDI or protocol to aid system

designers to plan for future compatibility with multiple client hosts and clients.

[00614] In systems having multiple clients it is useful for clients to be connected to the

host using a daisy-chain of clients, or using hubs, as shown in Fig. 95, or using a

combination of these techniques as shown in FIG. 96. It also may be useful for a host to

display certain error messages to manage the connected clients, such as an error

message when one or more clients desiring address 0 are connected, which should not

be the case for multi-client systems, as such displays expect to be or are set to operate as

the only client.

WO 2005/091593 PCT/US2005/008832

153

XIII. Addendum

[00615] In addition to the formats, structures, and contents discussed above for the

various packets used to implement the architecture and protocol for embodiments of the

invention, more detailed field contents or operations are presented here for some of the

packet types. These are presented here to further clarify their respective use or

operations to enable those skilled in the art to more readily understand and make use of

the invention for a variety of applications. Only a few of the fields not already

discussed are discussed further here. In addition, these fields are presented with

exemplary definitions and values in relation to the embodiments presented above.

However, such values are not to be taken as limitations of the invention, but represent

one or more embodiments useful for implementing the interface and protocol, and not

all embodiments need be practiced together or at the same time. Other values can be

used in other embodiments to achieve the desired presentation of data or data rate

transfer results, as will be understood by those skilled in the art.

WO 2005/091593 PCTIUS2005/008832

154

A. For Video Stream Packets

[00616] In one embodiment, the Pixel Data Attributes field (2 byte) has a series of bit

values that are interpreted as follows. Bits 1 and 0 select how the display pixel data is

routed. For bit values of '11' pixel data is displayed to or for both eyes, for bit values

pixel data is routed only to the left eye, and for bit values pixel data is routed

only to the right eye, and for bit values of '00' the pixel data is routed to an alternate

display as may be specified by bits 8 through 11 discussed below. If the primary

display in or being used or operated by a client does not support stereo images or

imaging in some form, then these commands cannot effectively be implanted to have an

impact as desired by the display. In this situation or configuration the client should

route pixel data to a primary display regardless of the bit values or for any of the bit

combinations or since the resulting commands or control won't be

implemented by the display. It is recommended, but not required by the embodiments,

that the value '11' be used to address the primary display in those clients that do not

support stereo display capability.

[00617] Bit 2 indicates whether or not the Pixel Data is presented in an interlace format,
with a value of meaning the pixel data is in the standard progressive format, and that

the row number (pixel Y coordinate) is incremented by 1 when advancing from one row

to the next. When this bit has a value the pixel data is in interlace format, and the

row nmnber is incremented by 2 when advancing from one row to the next. Bit 3
indicates that the Pixel Data is in alternate pixel format. This is similar to the standard

interlace mode enabled by bit 2, but the interlacing is vertical instead of horizontal.

When Bit 3 is the Pixel Data is in the standard progressive format, and the column

number (pixel X coordinate) is incremented by 1 as each successive pixel is received.

When Bit 3 is the Pixel Data is in alternate pixel format, and the colunm number is

incremented by 2 as each pixel is received.

[00618] Bit 4 indicates whether or not the Pixel data is related to a display or a camera,
as where data is being transferred to or from an internal display for a wireless phone or

similar device or even a portable computer, or such other devices as discussed above, or

the data is being transferred to or from a camera built into or directly coupled to the

device. When Bit 4 is the Pixel data is being transferred to or from a display frame

buffer. When Bit 4 is Pixel data is being transferred to or from a camera or video

device of some type, such devices being well known in the art.

WO 2005/091593 PCTIUS2005/008832

155

[00619] Bit 5 is used to indicate when the pixel data contains the next consecutivez row of

pixels in the display. This is considered the case when Bit 5 is set equal to When

bit 5 is set to then the X Left Edge, Y Top Edge, X Right Edge, Y Bottom Edge, X

Start, and Y Start parameters are not defined and are ignored by the client. Whea Bit

is set at a logic-one level, this indicates that the pixel data in this packet is the last row

of pixels in the image. Bit 8 of the Client Feature Capability Indicators field of the

Client Capability Packet indicates whether this feature is supported.

[00620] Bits 7 and 6 are Display Update Bits that specify a frame buffer where the pixel

data is to be written. The more specific effects are discussed elsewhere. For bit values

of '01' Pixel data is written to the offline image buffer. For bit values of '00' Pixel data

is written to the image buffer used to refresh the display. For bit values of '11' Pixel

data is written to all image buffers. The bit values or combination of '10' is treated as

an invalid value or designation and Pixel data is ignored and not written to any of the

image buffers. This value may have use for future applications of the interface.

[00621] Bits 8 through 11 form a 4-bit unsigned integer that specifies an alternate display

or display location where pixel data is to be routed. Bits 0 and 1 are set equal to '00' in

order for the display client to interpret bits 8 through 11 as an alternate display number.

If bits 0 and 1 are not equal to '00' then bits 8 through 11 are set to logic-zero levels.

[00622] Bits 12 through 14 are reserved for future use and are generally set to logic-zero

levels. Bit 15, as discussed, is used in conjunction with bit 5, and setting bit 15 to logic-

one indicates that the row of pixels in the Pixel Data field is the last row of pixrels in a

frame of data. The next Video Stream Packet having bit 5 set to logic-ome will

correspond to the first row of pixels of the next video frame.

[00623] The 2-byte X Start and Y Start fields specify the absolute X and Y coordinates

of the point (X Start, Y Start) for the first pixel in the Pixel Data field. The 2-byte X

Left Edge and Y Top Edge fields specify the X coordinate of the left edge and Y

coordinate of the top edge of the screen window filled by the Pixel Data field, wnile the

X Right Edge and Y Bottom Edge fields specify the X coordinate of the right edge, and

the Y coordinate of the bottom edge of the window being updated.

[00624] The Pixel Count field (2 bytes) specifies the number of pixels in.the Pixel Data

field below.

[00625] The Parameter CRC field (2 bytes) contains a CRC of all bytes from the Packet

Length to the Pixel Count. If this CRC fails to check then the entire packet is dis. carded.

WO 2005/091593 PCT/US2005/008832

156

[00626] The Pixel Data field contains the raw video information that is to be displayed,

and which is formatted in the manner described by the Video Data Format Descriptor

field. The data is transmitted one "row" at a time as discussed elsewhere. When Bit

of the Pixel Data Attributes field is set at logic level one, then the Pixel Data field

contains exactly one row of pixels, with the first pixel being transmitted corresponding

to the left-most pixel and the last pixel transmitted corresponding to the riglat-most

pixel.

[00627] The Pixel Data CRC field (2 bytes) contains a 16-bit CRC of only the Pixel

Data. If a CRC verification of this value fails then the Pixel Data can still be used, but

the CRC error count is incremented.

B. For Audio Stream Packets

[00628] In one embodiment, the Audio Channel ID field (1 byte) uses an 8 bit unsigned

integer value to identify a particular audio channel to which audio data is sent by the

client device. The physical audio channels are specified in or mapped to physical

channels by this field as values of 0, 1, 2, 3, 4, 5, 6, or 7 which indicate the left front,

right front, left rear, right rear, front center, sub-woofer, surround left, and surround

right channels, respectively. An audio channel ID value of 254 indicates that the single

stream of digital audio samples is sent to both the left front and right front channels.

This simplifies communications for applications such as where a stereo headset is used

for voice communication, productivity enhancement apps are used on a PDA, or other

applications where a simple User Interface generates warning tones. Values fox the ID

field ranging from 8 through 253, and 255 are currently reserved for use where new

designs desire additional designations, as anticipated by those skilled in the art.

[00629] The Reserved 1 field (1 byte) is generally reserved for future use, and has all bits

in this field set to zero. One function of this field is to cause all subsequent 2 byte fields

to align to a 16-bit word address and cause 4-byte fields to align to a 32-1it word

address.

[00630] The Audio Sample Count field (2 bytes) specifies the number of audio samples

in this packet.

[00631] The Bits Per Sample and Packing field contains 1 byte that specifies the packing

format of audio data. In one embodiment, the format generally employed is for Bits 4

through 0 to define the number of bits per PCM audio sample. Bit 5 then specifies

WO 2005/091593 PCTIUS2005/008832

157

whether or not the Digital Audio Data samples are packed. As mentioned above,

FIG. 12 illustrates the difference between packed and byte-aligned audio samples. A

value of for Bit 5 indicates that each PCM audio sample in the Digital Audio Data

field is byte-aligned with the interface byte boundary, and a value of indicates that

each successive PCM audio sample is packed up against the previous audio sample.

This bit is effective only when the value defined in bits 4 through 0 (the number of bits

per PCM audio sample) is not a multiple of eight. Bits 7 through 6 are reserved for use

where system designs desire additional designations and are generally set at a value of

zero.

[00632] The Audio Sample Rate field (1 byte) specifies the audio PCM sample rate. The

format employed is for a value of 0 to indicate a rate of 8,000 samples per second (sps),

a value of 1 indicates 16,000 sps., value of 2 for 24,000 sps, value of 3 for 32,000 sps,

value of 4 for 40,000 sps, value of 5 for 48,000 sps, value of 6 for 11,025 sps, value of 7

for 22,050 sps, and value of 8 for 44,100 sps, respectively, with values of 9 through 255

being reserved for future use, so they are currently set to zero.

[00633] The Parameter CRC field (2 bytes) contains a 16-bit CRC of all bytes from the

Packet Length to the Audio Sample Rate. If this CRC fails to check appropriately, then

the entire packet is discarded. The Digital Audio Data field contains the raw audio

samples to be played, and is usually in the form of a linear format as unsigned integers.

The Audio Data CRC field (2 bytes) contains a 16-bit CRC of only the Audio Data. If

this CRC fails to check, then the Audio Data can still be used, but the CRC error count

is incremented.

C. For User-Defined Stream Packets

[00634] In one embodiment, the 2-byte Stream ID Number field is used to identify a

particular user defined stream. The contents of the Stream Parameters and Stream Data

fields, are typically defined by the MDDI equipment manufacturer. The 2-byte Stream

Parameter CRC field contains a 16-bit CRC of all bytes of the stream parameters

starting from the Packet Length to the Audio Coding byte. If this CRC fails to check,

then the entire packet is discarded. Both the Stream Parameters and Stream Parameter

CRC fields may be discarded if not needed by an end application of the MDDI, that is,

they are considered optional. The 2-byte Stream Data CRC field contains a CRC of

only the Stream Data. If this CRC fails to check appropriately, then use of the Stream

WO 2005/091593 PCTIUS2005/008832

158

Data is optional, depending on the requirements of the application. Use of the stream

data contingent on the CRC being good, generally requires that the stream data be

buffered until the CRC is confirmed as being good. The CRC error count is

incremented if the CRC does not check.

D. For Color Map Packets

[00635] The 2-byte hClient ID field contains information or values that are reserved for a

Client ID, as used previously. Since this field is generally reserved for future use, the

current value is set to zero, by setting the bits to

[00636] The 2-byte Color Map Item Count field uses values to specify the total number

of 3-byte color map items that are contained in the Color Map Data field, or the color

map table entries that exist in the Color Map Data in this packet. In this embodiment,

the number of bytes in the Color Map Data is 3 times the Color Map Item Count. The

Color Map Item Count is set equal to zero to send no color map data. If the Color Map

Size is zero then a Color Map Offset value is generally still sent but it is ignored by the

display. The Color Map Offset field (4 bytes) specifies the offset of the Color Map

Data in this packet from the beginning of the color map table in the client device.

[00637] A 2-byte Parameter CRC field contains a CRC of all bytes from the Packet

Length to the Audio Coding byte. If this CRC fails to check then the entire packet is

discarded.

[00638] For the Color Map Data field, the width of each color map location is a specified

by the Color Map Item Size field, where in one embodiment the first part specifies the

magnitude of blue, the second part specifies the magnitude of green, and the third part

specifies the magnitude of red. The Color Map Size field specifies the number of 3-byte

color map table items that exist in the Color Map Data field. If a single color map

cannot fit into one Video Data Format and Color Map Packet, then the entire color map

may be specified by sending multiple packets with different Color Map Data and Color

Map Offsets in each packet. The number of bits of blue, green, and red in each color

map data item is generally the same as specified in the Color Map RGB Width field of

the Display Capability Packet.

[00639] A 2-byte Color Map Data CRC field contains a CRC of only the Color Map

Data. If this CRC fails to check then the Color Map Data can still be used but the CRC

error count is incremented.

WO 2005/091593 PCTIUS2005/008832

159

[00640] Each color map data item is to be transmitted in the order: blue, green, red, with

the least significant bit of each component transmitted first. The individual red, green,

and blue components of each color map item are packed, but each color map item (the

least significant bit of the blue component) should be byte-aligned. Fig. 97 illustrates an

example of color map data items with 6 bits of blue, 8 bits of green, and 7 bits of red.

For this example, the Color Map Item Size in the Color Map Packet is equal to 21, and

the Color Map RGB Width field of the Client Capability Packet is equal to 0x0786.

E. For Reverse Link Encapsulation Packets

[00641] The Parameter CRC field (2 bytes) contains a 16-bit CRC of all bytes from the

Packet Length to the Turn-Around Length. If this CRC fails to check, then the entire

packet is discarded.

[00642] In one embodiment, the Reverse Link Flags field (1 byte) contains a set of flags

to request information from the client and specify a reverse link type. If a bit (for

example, Bit 0) is set to a logic-one level, then the host requests the specified

information from the client, but if the bit is set to a logic-zero level then the host does

not need the information from the client. Bit 0 is used to indicate when the host desires

the Client Capability Packet, which is generally sent by the client to the host in the

Reverse Data Packets field. Bit 1 is used to indicate when the host desires the Client

Request and Status Packet which is sent by the client to the host in the Reverse Data

Packets field. The remaining bits (here Bits 2 through 7) are reserved for future use and

are set to zero. However, more bits can be used as desired to set flags for the reverse

link.

[00643] The Reverse Rate Divisor field (1 byte) specifies the number of MDDIStb

cycles that occur in relation to the reverse link data clock. The reverse link data clock is

equal to the forward link data clock divided by two times the Reverse Rate Divisor. The

reverse link data rate is related to the reverse link data clock and the Interface Type on

the reverse link. In this embodiment, for a Type 1 interface the reverse data rate equals

the reverse link data clock, for Type 2, Type 3, and Type 4 interfaces the reverse data

rates equal two times, four times, and eight times the reverse link data clock,

respectively.

[00644] The All Zero 1 field contains a group of bytes, here 8, that is set equal to zero in

value by setting the bits at a logic-zero level, and is used to ensure that all MDDI_Data

WO 2005/091593 PCT/US2005/008832

160

signals are at a logic-zero level for a sufficient time to allow the client to begin

recovering clock using only MDDI_Stb prior to disabling the host's line drivers during

the Turn-Around 1 field. In one embodiment, the length of the All Zero 1 field is

greater than or equal to the number of forward link byte transmission times in the

round-trip delay of the cable.

[00645] The Turn-Around 1 Length field (1 byte) specifies the total number of bytes that

are allocated for Turn-Around 1, establishing the first turn-around period. The Turn-

Around 1 field employs the number of bytes specified by the Turn-Around 1 Length

parameter are allocated to allow the MDDI_Data line drivers in the client to enable,

before the line drivers in the host are disabled. The client enables its MDDI_Data line

drivers during bit 0 of Turn-Around 1 and the host disables its outputs so as to be

completely disabled prior to the last bit of Turn-Around 1. The MDDI_Stb signal

behaves as though MDDIData0 were at a logic-zero level during the entire Turn

Around 1 period. A more complete description of the setting of Turn-Around 1 is given

above.

[00646] The Reverse Data Packets field contains a series of data packets transferred from

the client to host. The client may send filler packets or drive the MDDI_Data lines to a

logic-zero state or level when it has no data to send to the host. In this embodiment, if

the MDDI Data lines are driven to zero, the host will interpret this as a packet with a

zero length (not a valid length) and the host will accept no additional packets from the

client for the duration of the current Reverse Link Encapsulation Packet.

[00647] The Turn-Around 2 Length field (1 byte) specifies the total number of bytes that

are allocated for Turn-Around 2, for establishing a second turn-around period. The

recommended length of Turn-Around 2 is the number of bytes required for the round-

trip delay plus the time required for the host to enable its MDDI_Data drivers. Turn-

Around 2 Length may be also be a value larger than the minimum required or calculated

value to allow sufficient time to process reverse link packets in the host.

[00648] The Turn Around 2 field consists of the number of bytes as specified by the

Turn-Around Length parameter. The host waits for at least the round trip delay time

before it enables its MDDIData line drivers during Turn-Around 2. The host enables

its MDDI Data line drivers so that they are generally completely enabled prior to the

last bit of Turn-Around 2, and the client disables its outputs so that they are generally

completely disabled prior to the last bit of Turn-Around 2. The purpose of the Turn-

WO 2005/091593 PCTIUS2005/008832

161

Around 2 field is to allow the remaining amount of data fi-om the Reverse Data Packets

field to be transmitted or transferred from the client. Variations in different systems

implementing the interface and the amount of safety margin allocated, it is possible that

neither the host nor client will be driving the MDDI_Data signals to a logic-zero level

during some parts of the Turn Around 2 field period, as seen by the line receivers in or

at the host. The MDDI_Stb signal behaves as though the MDDI_DataO were at a logic-

zero level during substantially the entire Turn Around 2 period. A description of the

setting of Turn-Around 2 is given above.

[00649] The Reverse Data Packets field contains a series of data packets being

transferred from the client to a host. As stated earlier, Filler packets are sent to fill the

remaining space that is not used by other packet types.

[00650] The All Zero 2 field contains a group of bytes (8 in this embodiment) that is set

equal to zero in value by setting the bits at a logic-zero level, and is used to ensure that

all MDDI_Data signals are at a logic-zero level for a sufficient time to allow the client

to begin recovering clock using both MDDI_DataO and MDDI_Stb after enabling the

host's line drivers following the Turn-Around 2 field.

F. For Client Capability Packets

[00651] As illustrated for one embodiment, the Protocol Version field uses 2 bytes to

specify a protocol version used by the client. The initial version is currently set equal to

one, and will be changed over time as new versions are generated as would be known,

while the Minimum Protocol Version field uses 2 bytes to specify the minimum

protocol version that the client can employ or interpret. In this case, a zero value is also

a valid value. The Data Rate Capability field (2 bytes) specifies the maximum data rate

the client can receive on each data pair on the forward link of the interface, and is

specified in the form of megabits per second (Mbps). The Interface Type Capability

field (1 byte) specifies the interface types that are supported on the forward and reverse

links. A bit set to indicates that a specified interface type is supported, and a bit set

to indicates that the specified type is not supported. Hosts and clients should support

at least Type 1 on the forward and reverse links. There is no requirement to support a

contiguous range of interface types. For example, it would be perfectly valid to support

only Type 1 and Type 3, but not Type 3 and Type 4 in an interface. It is also not

necessary for the forward and reverse links to operate with the same interface type.

WO 2005/091593 PCTIUS2005/008832

162

However, when a link comes out of hibernation both forward and reverse links should

commence operating in Type 1 mode, until other modes may be negotiated, selected, or

otherwise approved for use by both the host and client.

[00652] The supported interfaces are indicated in one embodiment by selecting Bit 0, Bit

1, or Bit 2 to select either a Type 2 (2 bit), Type 3 (4 bit), or Type 4 (8 bit) mode on the

forward link, respectively; and Bit 3, Bit 4, or Bit 5 to select either a Type 2, Type 3, or

Type 4 mode on the reverse link, respectively; with Bits 6 and 7 being reserved and

generally set to zero at this time. The Bitmap Width and Height fields, here each being

2 bytes, specify the width and height of the bitmap, respectively, in pixels.

[00653] The Monochrome Capability field (1 byte) is used in one embodiment to specify

the number of bits of resolution that can be displayed in a monochrome format. If a

display cannot use a monochrome format then this value is set at zero. Bits 7 through 4

are reserved for future use and are, thus, set as zero. Bits 3 through 0 define the

maximum number of bits of grayscale that can exist for each pixel. These four bits

make it possible to specify values of 1 to 15 for each pixel. If the value is zero then

monochrome format is not supported by the display.

[00654] The Bayer Capability field uses 1 byte to specify the number of bits of

resolution, pixel group, and pixel order that can be transferred in Bayer format. If the

client cannot use the Bayer format then this value is zero. The Bayer Capability field is

composed of the following values: Bits 3 through 0 define the maximum number of bits

of intensity that exist in each pixel, while Bits 5 through 4 define the pixel group pattern

that is required, while Bits 8 through 6 define the pixel order that is required; with Bits

14 through 9 being reserved for future use and generally set to zero in the meantime.

Bit 15, when set to a logic-one level indicates that the client can accept Bayer pixel data

in either packed or unpacked format. If bit 15 is set to zero this indicates that the client

can accept Bayer pixel data only in unpacked format.

[00655] The Color Map Capability field (3 bytes) in one embodiment specifies the

maximum number of table items that exist in the color map table in the display. If the

display cannot use the color map format then this value is set at zero.

[00656] The RGB Capability field (2 bytes) specifies the number of bits of resolution

that can be displayed in RGB format. If the display cannot use the RGB format then

this value is equal to zero. The RGB Capability word is composed of three separate

unsigned values where: Bits 3 through 0 define the maximum number of bits of blue,

WO 2005/091593 PCTIUS2005/008832

163

Bits 7 through 4 define the maximum number of bits of green, and Bits 11 through 8

define the maximum number of bits of red in each pixel. Currently, Bits 14 through 12

are reserved for future use and are generally set to zero. Bits 14 through 12 are reserved

for future use and generally set to zero. Bit 15, when set to a logic-one level indicates

that the client can accept RGB pixel data in either packed or unpacked format. If bit

is set to a logic-zero level, this indicates that the client can accept RGB pixel data only

in unpacked format.

[00657] The Y Cr Cb Capability field (2 bytes) specifies the number of bits of resolution

that can be displayed in Y Cr Cb format. If the display cannot use the Y Cr Cb format

then this value is set equal to zero. The Y Cr Cb Capability word is composed of three

separate unsigned values where: Bits 3 through 0 define the maximum number of bits in

the Cb sample, Bits 7 through 4 define the maximum number of bits in the Cr sample,

Bits 11 through 8 define the maximum number of bits in the Y sample, and Bits

through 12 are currently'reserved for future use and are set to zero.

[00658] The Client Feature Capability field uses 4 bytes in one embodiment that contain

a set of flags that indicate specific features in the client that are supported. A bit set to a

logic-one level indicates the capability is supported, while a bit set to a logic-zero level

indicates the capability is not supported. In one embodiment, the value for Bit 0

indicates whether or not Bitmap Block Transfer Packet (packet type 71) is supported.

The value for Bits 1, 2, and 3 indicate whether or not Bitmap Area Fill Packet (packet

type 72), Bitmap Pattern Fill Packet (packet type 73), or Read Frame Buffer Packet

(packet type 74), respectively, are supported. The value for Bit 4 indicates whether or

not the client has the capability to make one color transparent using the Transparent

Color Enable Packet, while values for Bits 5 and 6 indicate if the client can accept audio

data in unpacked or packed format, respectively, and the value for Bit 7 indicates

whether or not the client can send a reverse-link video stream from a camera. The value

for Bit 8 indicates whether or not the client has the ability to receive a full line of pixel

data and ignore display addressing as specified by bit 5 of the Pixel Data Attributes field

of the Video Stream Packet, and the client can also detect frame sync or end of video

frame data using bit 15 of the Pixel Data Attributes Field.

[00659] The value of Bit 9 indicates whether or not the client has the ability to interpret

the Request Specific Status Packet and respond with the Valid Status Reply List Packet.

The client can indicate an ability to return additional status in the Valid Parameter Reply

WO 2005/091593 PCTIUS2005/008832

164

List field of the Valid Status Reply List Packet as described above. The value of Bit

indicates whether or not the client has the ability to support display power state 01. The

display power state is set using bits of the Power State field of the Display Power

State Packet described above. Display power state 01 is a state where the selected

display is not illuminated and is consuming a minimum amount of power, if any, and

the contents of the frame buffer are generally guaranteed to be retained during this state

[00660] The value for Bits 11 and 12 indicate when the client is communicating either

with a pointing device and can send and receive Pointing Device Data Packets, or with a

keyboard and can send and receive Keyboard Data Packets, respectively. The value for

Bit 13 indicates whether or not the client has the ability to set one or more audio or

video parameters by supporting the VCP Feature packets: Request VCP Feature Packet,

VCP Feature Reply Packet, Set VCP Feature Packet, Request Valid Parameter Packet,

and Valid Parameter Reply Packet. The value for Bit 14 indicates whether or not the

client has the ability to write pixel data into the offline display frame buffer, which is

illustrated in FIG. 88A. If this bit is set to a logic-one level then the Display Update

Bits (bits 7 and 6 of the Pixel Data Attributes field of the Video Stream Packet) may be

set to the values '01'.

[00661] The value for Bit 15 indicates when the client has the ability to write pixel data

into only the display frame buffer currently being used to refresh the display image,

which is illustrated in FIG. 88B. If this bit is set to a logic-one then the Display Update

Bits (bits 7 and 6 of the Pixel Data Attributes field of the Video Stream Packet) may be

set to the values The value for Bit 16 indicates when the client has the ability to

write pixel data from a single Video Stream Packet into all display frame buffers, which

is illustrated in FIG. 88C. If this bit is set equal to a logic-one level then the Display

Update Bits (bits 7 and 6 of the Pixel Data Attributes field of the Video Stream Packet)

may be set to the value '11'.

[00662] In one embodiment, the value for Bit 17 indicates when a client has the ability to

respond to the Request Specific Status Packet, the value for Bit 18 indicates when the

client has the ability to respond to the Round Trip Delay Measurement Packet, and the

value for Bit 19 indicates when the client has the ability to the Forward Link Skew

Calibration Packet. In one embodiment, the value for Bit 20 indicates when the client

has the ability to respond to the Display Power State Packet.

WO 2005/091593 PCTIUS2005/008832

165

[00663] In one embodiment, the value for Bit 21 indicates when the client has the ability

to use the Raster Operation field of the Block Transfer Packet (packet type 71) the

Bitmap Area Fill Packet (packet type 72), and the Bitmap Pattern Fill Packet (packet

type 73) if those packets are supported by the client as specified by bits 0, 1, and 2 or

this field. In one embodiment, if bit 21 has a logic-zero level or value, and the packets

are supported, then the client does not have the ability to use the Raster Operation field

and the client only has the ability to copy or write to pixel locations specified by these

packets.

[00664] The value for Bit 22 indicates whether or not the client has the ability to respond

to the Register Access Packet. Bits 23 through 31 are currently reserved for future use

or alternative designations useful for system designers, and are generally set equal to a

zero value or a logic-zero level.

[00665] The Display Video Frame Rate Capability field (1 byte) specifies the maximum

video frame update capability of the display in frames per second. A host may choose

to update the image at a slower rate than the value specified in this field.

[00666] The Audio Buffer Depth field (2 bytes) specifies the depth of the elastic buffer

in a Display which is dedicated to each audio stream.

[00667] The Audio Channel Capability field (2 bytes) contains a group of flags that

indicate which audio channels are supported by the client or client connected device. A

bit set to one indicates the channel is supported, and a bit set to zero indicates that

channel is not supported. The Bit positions are assigned to the different channels, for

example Bit positions 0, 1, 2, 3, 4, 5, 6, and 7 in one embodiment, indicate the left front,

right front, left rear, right rear, front center, sub-woofer, surround left, and surround

right channels, respectively. Bits 8 through 14 are currently reserved for future use, and

are generally set to zero. In one embodiment Bit 15 is used to indicate if the client

provides support for the Forward Audio Channel Enable Packet. If this is the case, Bit

set to a logic-one level. If, however, the client is not capable of disabling audio

channels as a result of the Forward Audio Channel Enable Packet or if the client does

not support any audio capability, then this bit is set to a logic-zero level or value.

[00668] A 2-byte Audio Sample Rate Capability field, for the forward link, contains a set

of flags to indicate the audio sample rate capability of the client device. Bit positions

are assigned to the different rates accordingly, such as Bits 0, 1, 2, 3, 4, 5, 6, 7, and 8

being assigned to 8,000, 16,000, 24,000, 32,000, 40,000, 48,000, 11,025, 22,050, and

WO 2005/091593 PCTIUS2005/008832

166

44,100 samples per second (SPS), respectively, with Bits 9 through 15 being reserved

for future or alternative rate uses, as desired, so they are currently set to Setting a bit

value for one of these bits to indicates that that particular sample rate is supported,

and setting the bit to indicates that that sample rate is not supported.

[00669] The Minimum Sub-frame Rate field (2 bytes) specifies the minimum sub-frame

rate in frames per second. The minimum sub-frame rate keeps the client status update

rate sufficient to read certain sensors or pointing devices in the client.

[00670] A 2-byte Mic Sample Rate Capability field, for the reverse link, contains a set of

flags that indicate the audio sample rate capability of a microphone in the client device.

For purposes of the MDDI, a client device microphone is configured to minimally

support at least an 8,000 sample per second rate. Bit positions for this field are assigned

to the different rates with bit positions 0, 1, 2, 3, 4, 5, 6, 7, and 8, for example, being

used to represent 8,000, 16,000, 24,000, 32,000, 40,000, 48,000, 11,025, 22,050, and

44,100 samples per second (SPS), respectively, with Bits 9 through 15 being reserved

for future or alternative rate uses, as desired, so they are currently set to Setting a bit

value for one of these bits to indicates that that particular sample rate is supported,

and setting the bit to indicates that that sample rate is not supported. If no

microphone is connected then each of the Mic Sample Rate Capability bits are set equal

to zero.

[00671] The Keyboard Data Format field (here 1 byte) specifies whether or not a

keyboard is connected to the client system and the type of keyboard that is connected.

In one embodiment, the value established by Bits 6 through 0 is used to define the type

of keyboard that is connected. If the value is zero then the keyboard type is

considered as unknown. For a value of 1, the keyboard data format is considered to be a

standard PS-2 style. Currently values in the range of 2 through 125 are not in use, being

reserved for use of system designers and interface incorporators or product developers

to define specific keyboard or input devices for use with the MDDI and corresponding

clients or hosts. A value of 126 is used to indicate that the keyboard data format is user-

defined, while a value of 127 is used to indicate that a keyboard cannot be connected to

this client. In addition, Bit 7 can be used to indicate whether or not the keyboard can

communicate with the client. The intended use of this bit is to indicate when the

keyboard can communicate with the client using a wireless link. Bit 7 would be set to a

zero level if bits 6 through 0 indicate that a keyboard cannot be connected to the client.

WO 2005/091593 PCTIUS2005/008832

167

Therefore, for one embodiment, when the value of Bit 7 is 0, the keyboard and client

cannot communicate, while if the value of Bit 7 is 1, the keyboard and client have

acknowledged that they can communicate with each other.

[00672] The Pointing Device Data Format field (here 1 byte) specifies whether or not a

pointing device is connected to the client system and the type of pointing device that is

connected. In one embodiment, the value established by Bits 6 through 0 is used to

define the type of pointing device that is connected. If the value is zero then the

pointing device type is considered as unknown. For a value of 1, the pointing device

data format is considered to be a standard PS-2 style. Currently values in the range of 2

through 125 are not in use, being reserved for use of system designers and interface

incorporators or product developers to define specific pointing device or input devices

for use with the MDDI and corresponding clients or hosts. A value of 126 is used to

indicate that the pointing device data format is user-defined, while a value of 127 is

used to indicate that a pointing device cannot be connected to this client. In addition,

Bit 7 can be used to indicate whether or not the pointing device can communicate with

the client. The intended use of this bit is to indicate when the keyboard can

communicate with the client using a wireless link. Bit 7 would be set to a zero level if

bits 6 through 0 indicate that a pointing device cannot be connected to the client.

Therefore, for one embodiment, when the value of Bit 7 is 0, the pointing device and

client cannot communicate, while if the value of Bit 7 is 1, the pointing device and

client have acknowledged that they can communicate with each other.

[00673] The Content Protection Type field (2 bytes) contains a set of flags that indicate

the type of digital content protection that is supported by the Display. Currently, bit

position 0 is used to indicate when DTCP is supported and bit position 1 is used to

indicate when HDCP is supported, with bit positions 2 through 15 being reserved for

use with other protection schemes as desired or available, so they are currently set to

zero.

[00674] The Mfr Name field (here 2 bytes) contains the EISA 3-character ID of the

manufacturer, packed into three 5-bit characters in the same manner as in the VESA

EDID specification. The character is represented as 00001 binary, the character 'Z'

is represented as 11010 binary, and all letters between and are represented as

sequential binary values that correspond to the alphabetic sequence between and

The most significant bit of the Mfr Name field is unused and is generally set to

WO 2005/091593 PCTIUS2005/008832

168

logic-zero for now until a use is made in the future implementations. For example, a

manufacturer represented by the string "XYZ" would have a Mfr Name value of

0x633a. If this field is not supported by the client it is generally set to zero. Product

Code field uses 2 bytes to contain a product code assigned by the display rnanufacturer.

If this field is not supported by the client it is generally set to zero.

[00675] Reserved 1, Reserved 2, and Reserved 3 fields (here 2 bytes each) are reserved

for future use in imparting information. All bits in these field are generally be set to a

logic-zero level. The purpose of such fields is currently to cause all subsequent 2 byte

fields to align to a 16-bit word address and cause 4-byte fields to align to a 32-bit word

address.

[00676] The Serial Number field uses 4 bytes in this embodiment to specify the serial

number of the display in numeric form. If this field is not supported by the client it is

generally set to zero. The Week of Manufacture field uses 1 byte to define the week of

manufacture of the display. This value is typically in the range of 1 to 53 if it is

supported by the client. If this field is not supported by the client it is set to zero. The

Year of Manufacture field is 1 byte that defines the year of manufacture of the display.

This value is an offset from the year 1990. Years in the range of 1991 to 2245 can be

expressed by this field. Example: the year 2003 corresponds to a Year of Manufacture

value of 13. If this field is not supported by the client it is set to zero.

[00677] The CRC field (here 2 bytes) contains a 16-bit CRC of all bytes in the packet

including the Packet Length.

G. For Client Request and Status Packets

[00678] The Reverse Link Request field (3 byte) specifies the number of bytes the client

needs in the reverse link in the next sub-frame to send information to the ho st.

[00679] The CRC Error Count field (1 byte) indicates how many CRC errors have

occurred since the beginning of the media-frame. The CRC count is reset when a sub-

frame header packet with a Sub-frame Count of zero is sent. If the actual number of

CRC errors exceeds 255 then this value generally saturates at 255.

[00680] The Capability Change field uses 1 byte to indicate a change in the capability of

the client. This could occur if a user connects a peripheral device such as a microphone,

keyboard, or display, or for some other reason. When Bits[7:0] are equal to 0, then the

capability has not changed since the last Client Capability Packet was sent. However,

WO 2005/091593 PCT/US2005/008832

169

when Bits[7:0] are equal to 1 to 255, the capability has changed. The Client Capability

Packet is examined to determine the new display characteristics.

[00681] The Client Busy Flags field uses 2 bytes to indicate that the client is performing

a specific function and is not ready to yet accept another packet related to that function.

A bit set to a logic-one level or value indicates that the particular function is currently

being performed by the client and that the related fumction in the client is busy. If the

related function in the client is ready, the bit is set t a logic-zero. The client should

return a busy status (bit set to one) for all functions that are not supported in the client.

[00682] In one embodiment, these bytes are interpreted according to the following

relationships. If Bit 0 is a then the bitmap block: transfer function is busy, while if

Bit 1 is a then a bitmap area fill function is busy, and if Bit 2 is a then a bitmap

pattern fill function is busy. At the same time, if Bit 3 is a then the graphics

subsystem is busy performing an operation that requires use of the frame buffer in the

client. Other graphics functions that require use of the frame buffer may not begin until

this bit is set to logic-one.

[00683] Currently, Bits 4 through 15 remain reserved for future use and are generally set

to a logic-one level or state to indicate a busy status in case these bits are assigned in the

future.

H. For Bit Block Transfer Packets

[00684] The Window Upper Left Coordinate X Value and Y Value fields use 2 bytes

each to specify the X and Y value of the coordinates of the upper left comer of the

window to be moved. The Window Width and Height fields use 2 bytes each to specify

the width and height of the window to be moved. The Window X Movement and Y

Movement fields use 2 bytes each to specify the number of pixels that the window is to

be moved horizontally and vertically, respectively. Typically, these coordinates are

configured such that positive values for X cause the window to be moved to the right,

and negative values cause movement to the left, while positive values for Y cause the

window to be moved down, and negative values cause upward movement.

I. For Bitmap Area Fill Packets

[00685] Window Upper Left Coordinate X Value and Y Value fields use 2 bytes each to

specify the X and Y value of the coordinates of the upper left corer of the window to

WO 2005/091593 PCTIUS2005/008832

170

be filled. The Window Width and Height fields (2 bytes each) specify the width and

height of the window to be filled. The Video Data Format Descriptor field (2 bytes)

specifies the format of the Pixel Area Fill Value. The format is the same as the same

field in the Video Stream Packet. The Pixel Area Fill Value field (4 bytes) contains the

pixel value to be filled into the window specified by the fields discussed above. The

format of this pixel is specified in the Video Data Format Descriptor field.

J. For Bitmap Pattern Fill Packets

[00686] Window Upper Left Coordinate X Value and Y Value fields use 2 bytes each to

specify the X and Y value of the coordinates of the upper left comer of the window to

be filled. The Window Width and Height fields (2 bytes each) specify the width and

height of the window to be filled. The Pattern Width and Pattern Height fields (2 bytes

each) specify the width and height, respectively, of the fill pattern. The Horizontal

Pattern Offset field (2 bytes) specifies a horizontal offset of the pixel data pattern from

the left edge of the specified window to be filled. The value being specified is to be less

than the value in the Pattern Width Field. The Vertical Pattern Offset field (2 bytes)

specifies a vertical offset of the pixel data pattern from the top edge of the specified

window to be filled. The value being specified is to be less than the value in the Pattern

Height field.

[00687] The 2-byte Video Data Format Descriptor field specifies the format of the Pixel

Area Fill Value. FIG. 11 illustrates how the Video Data Format Descriptor is coded.

The format is the same as the same field in the Video Stream Packet.

[00688] The Parameter CRC field (2 bytes) contains a CRC of all bytes from the Packet

Length to the Video Format Descriptor. If this CRC fails to check then the entire packet

is discarded. The Pattern Pixel Data field contains raw video information that specifies

the fill pattern in the format specified by the Video Data Format Descriptor. Data is

packed into bytes, and the first pixel of each row is to be byte-aligned. The fill pattern

data is transmitted a row at a time. The Pattern Pixel Data CRC field (2 bytes) contains

a CRC of only the Pattern Pixel Data. If this CRC fails to check then the Pattern Pixel

Data can still be used but the CRC error count is incremented.

WO 2005/091593 PCT/US2005/008832

171

K. Communication Link Data Channel Packets

[00689] The Parameter CRC field (2 bytes) contain a 16-bit CRC of all bytes from the

Packet Length to the Packet Type. If this CRC fails to check then the entire packet is

discarded.

[00690] The Communication Link Data field contains the raw data from the

communication channel. This data is simply passed on to the computing device in the

display.

[00691] The Communication Link Data CRC field (2 bytes) contains a 16-bit CRC of

only the Communication Link Data. If this CRC fails to check then the Communication

Link Data is still used or useful, but the CRC error count is incremented.

L. For Forward Audio Channel Enable Packets

[00692] The Audio Channel Enable Mask field (1 byte) contains a group of flags that

indicate which audio channels are to be enabled in a client. A bit set to one enables the

corresponding channel, and a bit set to zero disables the corresponding channel Bits 0

through 5 designate channels 0 through 5 which address left front, right front, left rear,

right rear, front center, and sub-woofer channels, respectively. Bits 6 and 7 are reserved

for future use, and in the mean time are generally set equal to zero.

M. For Reverse Audio Sample Rate Packets

[00693] The Audio Sample Rate field(1 byte) specifies the digital audio sample rate.

The values for this field are assigned to the different rates with values of 0, 1, 2, 3, 4,

6, 7, and 8 being used to designate 8,000, 16,000, 24,000, 32,000, 40,000, 48,000,

11,025, 22,050, and 44,100 samples per second (SPS), respectively, with values of 9

through 254 being reserved for use with alternative rates, as desired, so they are

currently set to A value of 255 is used to disable the reverse-link audio stream.

[00694] The Sample Format field (1 byte) specifies the format of the digital audio

samples. When Bits[l:0] are equal to the digital audio samples are in linear format,

when they are equal to 1, the digital audio samples are in g-Law :format, and when they

are equal to 2, the digital audio samples are in A-Law format. Bits[7:2] are reserved for

alternate use in designating audio formats, as desired, and are generally set equal to

zero.

WO 2005/091593 PCT/US2005/008832

172

N. For The Digital Content Protection Overhead Packets

[00695] The Content Protection Type field (1 byte) specifies the digital content

protection method that is used. A value of indicates Digital Transmission Content

Protection (DTCP) while a value of 1 indicates High-bandwidth Digital Content

Protection System (HDCP). The value range of 2 through 255 is not currently specified

but is reserved for use with alternative protection schemes as desired. The Content

Protection Overhead Messages field is a variable length field containing content

protection messages sent between the host and client.

O. For The Transparent Color Enable Packets

[00696] The Transparent Color Enable field (1 byte) specifies when transparent color

mode is enabled or disabled. If Bit 0 is equal to 0 then transparent color r-mode is

disabled, if it is equal to 1 then transparent color mode is enabled and the transparent

color is specified by the following two parameters. Bits 1 through 7 of this byte are

reserved for future use and are typically set equal to zero.

[00697] The Video Data Format Descriptor field (2 bytes) specifies the format of the

Pixel Area Fill Value. FIG. 11 illustrates how the Video Data Format Descriptor is

coded. The format is generally the same as the same field in the Video Stream Packet.

[00698] The Pixel Area Fill Value field uses 4 bytes allocated for the pixel value to be

filled into the window specified above. The format of this pixel is specified in the

Video Data Format Descriptor field.

P. For The Round Trip Delay Measurement Packets

[00699] The 2-byte Packet Length field specifies the total number of bytes in the packet

not including the packet length field, and in one embodiment is selected to have a fixed

length of 159. The 2-byte Packet Type field that identifies this packet type with a value

of 82, identifying a packet as a Round Trip Delay Measurement Packet. The hClient ID

field, as before is reserved for future use as a Client ID, and is generally set to zero.

[00700] In one embodiment, the Parameter CRC field (2 bytes) contains a 16-bit CRC of

all bytes from the Packet Length to the Packet Type. If this CRC fails to check then the

entire packet is discarded.

[00701] The Guard Time 1 field (here 64 bytes) is used to allow the MDDI_Data line

drivers in the client to enable before the line drivers in the host are disabled. Tbhe client

WO 2005/091593 PCTIUS2005/008832

173

enables its MDDI_Data line drivers during bit 0 of Guard Time 1 and the host

disenables its line drivers so as to be completely disabled prior to the last bit of Guard

Time 1. The host and client both drive a logic-zero level during Guard Time 1 when

they are not disabled. Another purpose of this field is to ensure that all MDDI_Data

signals are at a logic-zero level for a sufficient time to allow the client to begin

recovering a clock or clock signal using only MDDI_Stb prior to disabling the host's

line drivers.

[00702] The Measurement Period field is a 64 byte window used to allow the client to

respond with two bytes of Oxff, and 30 bytes of 0x00 at half the data rate used on the

forward link. This data rate corresponds to a Reverse Link Rate Divisor of 1. The

client returns this response immediately at the time it perceives as being the beginning

of the Measurement Period. This response from the client will be received at a host at

precisely the round trip delay of the link plus logic delay in the client after the beginning

of the first bit of the Measurement Period at the host.

[00703] The All Zero 1 field (2 bytes) contains zeroes to allow the MDDIData line

drivers in the host and client to overlap so that MDDI_Data is always driven. The host

enables MDDIData line drivers during bit 0 of the All Zero 1 field, and the client also

continues to drive the signal to a logic-zero level as it did at the end of the Measurement

Period.

[00704] The value in the Guard Time 2 field (64 bytes) allows overlap of the

Measurement Period driven by the client when the round trip delay is at the maximum

amount that can be measured in the Measurement Period. The Client disables its line

drivers during bit 0 of Guard Time 2 and the Host enables its line drivers immediately

after the last bit of Guard Time 2. The host and client both drive a logic-zero level

during Guard Time 2 when they are not disabled. Another purpose of this field is to

ensure that all MDDIData signals are at a logic-zero level for a sufficient time to allow

the client to begin recovering a clock signal using both MDDI_DataO and MDDI_Stb

after enabling the line drivers for a host.

Q. For The Forward Link Skew Calibration Packets

[00705] In one embodiment, the Parameter CRC field (2 bytes) contains a 16-bit CRC of

all bytes from the Packet Length to the Packet Type. If this CRC fails to check then the

entire packet is discarded.

WO 2005/091593 PCTIUS2005/008832

174

[00706] The All Zero 1 field uses 8 bytes to ensure that there will be an transitions on the

MDDIStb at the beginning of the Calibration Data Sequence field. Generally, these

bytes employ 8-bit unsigned integers equal to zero. It also provides for sufficient time

for the client core logic to change the mode of the clock recovery circuit from using the

XOR of MDDI_0 and MDDIStb, to simply using MDDI_Stb or the MDDI_Stb signal

as the recovered clock.

[00707] The Calibration Data Sequence field contains a data sequence that causes the

MDDI_Data signals to toggle at every data period. The length of the Calibration Data

Sequence field is determined by the interface being used on the forward link. During

the processing of the Calibration Data Sequence, the MDDI host controller sets all

MDDI_Data signals equal to the strobe signal. The client clock recovery circuit should

use only MDDI_Stb rather than MDDI_Stb XOR MDDI_Data0 to recover the data

clock while the Calibration Data Sequence field is being received by the client.

Depending on the exact phase of the MDDI_Stb signal at the beginning of the

Calibration Data Sequence field, the Calibration Data Sequence will generally be one of

the following based on the interface Type being used when this packet is sent:

Type 1 (64 byte data sequence) Oxaa, Oxaa or 0x55, 0x55...

Type 2 (128 byte data sequence) Oxcc, Oxce or 0x33, 0x33...

Type 3 -(256 byte data sequence) OxfO, OxfO or OxOf, OxOf...

Type 4 (512 byte data sequence) Oxff, 0x00, Oxff, 0x00 or 0x00, Oxff, 0x00,

Oxff...

[00708] The All Zero 2 field uses 8 bytes to provide sufficient time for the client core

logic to change the mode of the clock recovery circuit back to an original state, from

using the MDDI_Stb signal as the recovered clock to using the XOR of MDDI_0 and

MDDI_Stb. Generally, these bytes employ 8-bit unsigned integers equal to zero.

[00709] An example of the possible MDDIData and MDDI_Stb waveforms for both the

Type 1 and Type 2 Interfaces are shown in FIGs. 62A and 62B, respectively.

XIX. Conclusion

[00710] While various embodiments of the present invention have been described above,

it should be understood that they have been presented by way of example only, and not

limitation. Thus, the breadth and scope of the present invention should not be limited

00

0

by any of the above-described exemplary embodiments, but should be defined only in accordance with

the following claims and their equivalents.

Throughout the specification and the claims that follow, unless the context requires otherwise,

the words "comprise" and "include" and variations such as "comprising" and "including" will be

understood to imply the inclusion of a stated integer or group of integers, but not the exclusion of any

other integer or group of integers.

The reference to any prior art in this specification is not, and should not be taken as, an

acknowledgement of any form of suggestion that such prior art forms part of the common general

knowledge.
0

t' IN
0

176

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:
000

S 1. A method for communicating a specific client supported power state to a host in a digital

transmission link, the method including the steps of:

providing a client capability packet including a client power state capability field, the client

power state capability field including at least one client supported power state;

sending the client capability packet by a client to the host after a request by the host;

choosing the specific client supported power state from the at least one client supported power

O state by the host; and

r 10 sending a power state packet from the host to the client, the power state packet including the

S chosen specific client supported power state.

S 2. The method of claim 1 wherein the at least one client support power state includes a low

power state.

3. The method of claim 2 further including the step of not illuminating a display and not

retaining a content of a frame buffer.

4. The method of claim 3 wherein the display is an alternate display.
!0

The method of claim 2 further including the step of not illuminating a display and retaining a

content of a frame buffer.

6. The method of claim 5 wherein the display is an alternate display.

7. The method of claim 1 wherein the at least one client supported power state includes a high

power state.

8. The method of claim 7 further including the step of illuminating a display and refreshing the

display from a frame buffer.

9. The method of claim 8 wherein the display is an alternate display.

A system for communicating a specific client supported power state to a host in a digital

transmission link, the system including:

means for providing a client capability packet including a client power state capability field,

the client power capability field including at least one client supported power state;

means for sending the client capability packet by a client to the host after a request by the

0 host;

means for choosing the specific client supported power state from the at least one client

supported power state by the host; and

means for sending a power state packet from the host to the client, the power state packet

including the chosen specific client supported power state.

11. The system of claim 10 where the at least one client supported power state includes a low

ID power state.

S 12. The system of claim 11 further including a means for not illuminating a display and a means

Sfor not retaining a content of a frame buffer.

13. The system of claim 12 wherein the display is an alternate display.

14. The system of claim 11 further including a means for not illuminating a display and a means

for retaining a content of a frame buffer.

The system of claim 14 wherein the display is an alternate display.

16. The system of claim 10 where the at least one client supported power state includes a high

power state.

17. The system of claim 16 further including a means for illuminating a display and a means for

refreshing the display from a frame buffer.

18. The system of claim 17 wherein the display is an alternate display.

19. A computer program product, including:

computer readable medium including:

code for causing a communication of a specific client supported power state to a host

in a digital transmission link, the computer code including:

code for causing a client capability packet to be provided, the client packet

including a client power state capability field, the client power state capability field

comprising at least one client supported power state;

code for causing the client capability packet to be sent by a client to the host

after a request by the host;

code for causing the specific client supported power state to be chosen from
00 0 the at least one client supported power state by the host; and

Scode for causing a power state packet to be sent from the host to the client, the

power state packet including the chosen specific client supported power state.

The computer program product of claim 19 where the at least one client supported power state

includes a low power state.

NO 21. The computer program product of claim 20 further including code for causing a display not to

M 10 be illuminated and code for causing a content of a frame buffer to not be retained.

tIn

22. The computer program product of claim 21 wherein the display is an alternate display.

23. The computer program product of claim 20 further including code for causing a display to not

be illuminated and code for causing a content of a frame buffer to be retained.

24. The computer program product of claim 23 wherein the display is an alternate display.

The computer program product of claim 19 wherein the at least one client support power state

includes a high power state.

26. The computer program product of claim 25 further including code for causing a display to be

illuminated and code for causing the display from a frame buffer to be refreshed.

27. The computer program product of claim 26 wherein the display is an alternate display.

28. A method substantially as herein described with reference to any one of the embodiments of

the invention illustrated in the accompanying drawings.

29. A system substantially as herein described with reference to any one of the embodiments of

the invention illustrated in the accompanying drawings.

A computer program product substantially as herein described with reference to any one of the

embodiments of the invention illustrated in the accompanying drawings.

WO 2005/091593 PCTiUS2005/008832

1/86

T--

0&

I

IL

IL

C)C

WO 2005/091593 WO 205101593PCTiUS2005/008832

2186

//0

144

134

204

24148 C

202

138146

130

FIG. 2A
FIG. 2B

FORWARD DIRECTION

-210

REVERSE DIRECTION

FIG. 3

FIG. 4

204

404

MIDDIData0+

i,1:>MDDIDatao-

MIDDI LINK
MDDIStb+ CONTROLLER

00

HOSTGnd CLIENT

FIG.

-204'

-506

MDDI Link
Controller

MDDI Link
Controller

FIG. 6

FIG. 7

Packet Length Packet Type Data Bytes CRC

FIG. 8

OxOO5a3bff

ervd 1Sub-frame Protocol Sub-frame Media-frame CR
Length Version Count Count

bytes 4 bytes 2 bytes 2 bytes 4 bytes 2 bytes

0 0

Ill III00
00

FIG. 9

Packet filler bytes (all zero CRC
Type -fO recommended)

2 bytes (Packet-Length 4) bytes 2 bytes

FIG.

2 bytes

FIG. 11

FIG. 12A

FIG. 12B

FIG. 12C

FIG. 12D

FIG. 12E

Pixel Parameter Pixel Data
X Start Y Start e Paramet Pixel Data

Count CRC CRC
2 bytes 2 bytes 2 bytes 2 bytes Packet Length 26 bytes 2 bytes

Video Data Format Descriptor Monochrome

number of bits per0 0 0 P not used =I pixe
14 13 12 11 4 3 0

Video Data Format Descriptor Color Using Color Map

0 0 1 P not used= 0 number of bits per pixel
14 13 12 11 6 5 0

Video Data Format Descriptor Color, Raw RGB
number of bits of number of bits of number of bits of

red per pixel green per pixel blue per pixel

14 13 12 11 8 7 4 3 0

Video Data Format Descriptor Color Component Video, V Cb Cr

number of bits of Y number of bits of number of bits of
per pixel Cb per pixel Cr per pixel

14 13 12 11 8 7 4 3 0

Video Data Format Descriptor Bayer

Pixel number of bits per1 0 0 P not used 0 Pixel order p e
15 14 1 1 11 9 Pattern pixe

14 13 12 11 9 8 6 5 4 3 0

Byte-Aligned RGB Pixel (not packed), P 0

5;6;7

Pixel 1 ue PixL] 1 reen Pixel 1 Red PIxe12le OPixel 2 8.,reen Pxi2 Re 145 1 uue l~ 1 25 d
o 5 01 34 01 34 unse 5 0 1 4 5 0 unused

Packed RGB Pixe[Data, P 1
4Mlbyen)oMDoIbye n+1 DI ~Elbyt n+2 -MDDl byte n+3 l MDIbyte n4** Dbye

Pixel 1 Red Pixel 2 lue Pixe 12 ixe l 2 Red lxel ue Pxel3 Grre01 3 5 12en. 2 1 3 503

Byte-Aligned Y Cr Ob Pixel (not packed), P 0
MDIbyten A<MDDl byte n+1)1kM bten2 o l1byte DI bt 2. J,,-,Dte nt,--

5610 1 2356 123 51 235 61 unused06124501_&l2 Cb iel iell &r j PixI2 Y P x3 PA 1 xel3A Pix

Packed Y Cr Cb Pixel Data, P 1 0
4MFDlI byte .Oilb 3 4 :Siil MDDI byte n+2--*fr--MD)DI byte n+3 A4-MDDI byte234 bytei::456i11 n2345iiI:1 45--+

e 1 %6 1 2xej1 4 5 61 0 ixjl 3 j 1 6 X~ 4 560i~3&~ 61 X 3 Y 6 0P 1 l2 4C

1 '41 3j__ PAx &2 el 1 unse& 1 2r 1 Pie 3 uns A xe us P1 ixe l 5 4 Pi xe 3

Pyoack ed Colope (Palette) or Monochrome Pixel a tackd, P
0.M yen)1 MIDDI byte n-i1 MDDI byte n-i2 rviDDI byte n+ MvDDI byte n+ Ni-DEDl byte

01.112131-415-6170111213-141516717 0-:1:2-3:j415:6 011:2-3i4i5i6i7 01112-'31415-6:7
1x 230231231012 01 1 2 23 01 unuse 1 3 231 1 3 01 23se 0 1 2 3 01n23edPixelse 1 e 0 Pixel2 Pixse Pixel Pixe Pixel1 Pixse 0 P 105 Pixel11 Pxl2

FIG. 13

Audio Stream Packet
Packet Packet bCljt I Audio R d Audio
Length Type =32 bClient ID Reserved 1CLength Type 32 Channel ID Sample Count

2 bytes 2 bytes 2 bytes 1 byte 1 byte 2 bytes

Bits per Sample Audio Parameter Digl Audio DataC
and Packing Sample Rate CRC Digital Audio DataCRC

1 byte 1 byte 2 bytes Packet Length 14 bytes 2 bytes

FIG. 14

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

FIG. 16

Packet Color Color ColorPacket hClient Reserved Parameter
Length Type Map Item Map Map Item Color Map Data Data CRC

64 Count Offset Size 1

2 bytes 2 bytes 2 bytes 2 bytes 4 bytes 1 byte 1 byte 2 bytes (Packet_Length 16) bytes 2 bytes

FIG. 17

Byte-Aligned (not packed) PCM Audio Samples

D DI byte
011 121314151617

1 1 1 I 1 1 1

.4-MODI byte
011 121314151617

I 1 I 1 1 1 1

.4-MDDl byte n+2--4
Oil1121314151617

1 1 1 1 II 1

o--MDDI byte n+3--o-
O011121314151617

.4-MDDI byte
O0l1121314151617

I I I I I I I

4--MDDI byte
011 121314151617

II I 1 1 I

II I lnused;;234;; iu'sdII fnsd

Audio Sample 0 Audio Sample 1 Audio Sample 2

Packed POM Audio Samples

oMDDI byte n o+MODI byte rn- +MDDI, byte MDDI byte -MDDI byte n+4 -+MDDI byte
011121314151617 011121314151617 011121314151617 011121314151617 011121314151617 011121314151617I

0 11 2 13 14 151617 819l1010111213I4 5161j7181910o Oi 213141516171819 10I0il2i3i4i5i6 7i8i9I10i0,12i3
I I I I 1 1!1 I-

Audio Sample 0 Audio Sample 1 Audio Sample 2 Audio Sample 3 Audio

FIG.

Reverse Link Encapsulation Packet
Packet Packet Type hClient Reverse Link Reverse Rate Turn-Around 1 Turn-Around 2
Length 65 flags Divisor Length Length
2 bytes 2 bytes 2 bytes 1 byte 1 byte 1 byte 1 byte

Parameter reverse dataParameter All Zero 1 Turn-Around 1 Turn-Around 2 All Zero 2
CRC packets

2 bytes 8 bytes x bytes (PacketLLength x y 26) bytes

FIG. 18
y bytes 8 bytes

I

Client Capability Packet
Packet Packet Type t
Length 66 I
2 bytes 2 bytes 2 bytes

Protocol
Version

2 bytes

Min Protocol
Version

2 bytes

Data Rate
Capability
2 bytes

Interface Type
Capability

1 byte

SNumber of Reserved 1
Alt Displays I

1 byte 2 bytes

Bitmap
Width

Bitmap
Height

Display IDisplay Window IColor Map Size
Window Width Height

Width I-
2 bytes 2 bytes

Color Map
RGB Width

2 bytes

RGB
Capability

Monochrome
Capability

2 bytes 2 bytes
Y Cb Cr

Reserved 2 Capabili
Capability

1 byte 2 bytes

4 bytes

Capability es
2 bytes 2 bytes

I

2 bytes 1 byte

Client Feature Max Video Min Video Min Sub-Frame Audio Buffer Audio Channel Audio Sample
Capability Frame Rate Frame Rate rate Depth Capability Rate Capability

4 bytes 1 byte 1 byte 2 bytes 2 bytes 2 bytes 2 bytes

Audio Sample Mic Sample Mic Sample Rate Keyboard Data Poining Device Content MfrName
Resolution Resolution ICapability Format Data Format Protection Type I

1 byte 1 byte 2 bytes 1 byte 1 byte 2 bytes 2 bytes

Product Week ofProduct Reserved 4 Serial Number eekof Year of Mfr CRC
Code I IMfr

2 bytes 2 bytes 4 bytes 1 byte 1 byte 2 bytes FIG. 19

-Packet Type Keyboard Data
Packet Length Packet Type bClient ID at

67 Format

2 bytes 2 bytes 2 bytes 2 bytes

I I

Keyboard Data

(Packet_Length 8) bytes

CRC

2 bytes

FIG.

Packet Type Pointing Device
Packet Length t bClient ID68 Format

2 bytes 2 bytes 2 bytes 2 bytes

FIG. 21

Pointing Device Data

(PacketLength 8) bytes

CRC

2 bytes
I

I

Packet Length Packet Type 69 CRC All Zeros

2 bytes 2 byte 2 bytes 16 bytes

FIG. 22

Packet Packet Type Clent I Reverse Link CRC Error Capability Graphics CRC
Length 70 Request Count Change Busy flags

2 bytes 2 bytes 2 bytes 2 bytes 1 byte 1 byte 2 bytes 2 bytes

FIG. 23

Bitmap Block Transfer Packet

acket Packet Type= 71 hCen ID Pixel Data Raster Upper Left X
Lengt Packet Type 71 hClient ID eLength Attributes Operation Value

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

Upper Left Y Window Width Window Height W indowX WindowY CRCValue Movement Movement

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

FIG. 24

Bitmap Area Fill Packet

Packet Packet Type Video Data Format Pixel Data Pixel Area Fill
Length 72 hCent Descriptor Attributes Value

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 4 bytes

Upper Left Upper Left Window Window H t
X Value Y Value Width Window Height CRC

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

FIG.

Bitmap Pattern Fill Packet

Packet Packet Type I Video Data Format Pixel Data Upper Left Upper Left Window Window
Length 73ient ID Descriptor Attributes X Value Y Value Width Height

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

Pattern I Pattern I Horizontal Vertical I I
Width Height Pattern Offset Pattern Offset CRC Patter Pixel Data Pixel

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes length -22 bytes 2 bytes

FIG. 26

Packet
Length

Y Bottom

2 bytes

a ype hClient ID X Left Edge Y Top Edge X Right Edge

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

FIG. 27

Y Bottom
Edge

2 bytes

I

CRC

2 bytes

I

Display Power State Packet

Packet Length acketType

2 bytes 2 bytes
2 bytes 2 bytes

hClient ID

2 bytes

FIG. 28

Power State

2 bytes

I

CRC

2 bytes

I

Perform Type Handoff Packet
Pae L t Packet TypePacket Length 77 Interface Type

2 bytes 2 bytes 1 byte

2 bytes 2 bytes 1 byte

Reserved 1

1 byte

FIG. 29

Delay Filler

Packet Length 6 bytes

0I
CRC I

2 bytes
2 bytes

I

Packet Packet IAudio Channel
Length Type78 Enable Mask CRC

Length Type 78 Enable Mask

2 bytes 2 bytes 2 bytes

FIG.

2 bytes 2 bytes

Packet Packet Audio I
Length Type =79 hClient ID Sample Rate Reserved 1 CRC
Length Type 79 Sample Rate

2 bytes 2 bytes 2 bytes

FIG. 3-

1 byte 1 byte 2 bytes

Packet Packet Content Protection Content Protection Overhead CRC
Length Type 80 ent ID Type Messages
2 bytes 2 bytes 2 bytes 2 bytes Packet Length 8 bytes 2 bytes

FIG. 32

Packet Packet lent Transparent
Length Type 81 Color Enable

2 bytes 2 bytes 2 bytes 1 byte

Reserved Alpha-Cursor Data Format
Ieserve Identifier Descriptor

1 byte 2 bytes 2 bytes

FIG. 33

Transparent
Transparent
Pixel Value

4 bytes

CRC

2 bytes

Packet Packet Type hClient ID Parameter
Length 82 CRC

2 bytes 2 bytes 2 bytes 2 bytes

Guard Time 1 Measurement Period All Zero Guard Time 2

64 bytes 64 bytes

FIG. 34

2 bytes 64 bytes

Data from Packet Parameter
Host Type CRC

2 bytes

Guard Time 1

All Zero1

Measurement Period

64 bytesIHost to
*-Client -j Oxif, Oxff, 30 bytes

f De~layof OxO seqluence, at
ely 1/2 fwd rate

64 bytes

Guard Time 2

64 bytes

Packet
Length

(etpacket)

Data from
Client

Aggregatel =Pce aaee
Data viewed Type CRC

at Host

Client

Delay
L

Packet

1 Length

I 1 Round-Trip K Delay

FIG.

3600

3602

GenReset

+I
R RI

I B

RxMDDIData 0mxe,30

TxMDDIDataBeforeCRC

SendingMDDIData

GenerateCRCNow -Y TxMDDIData With CRC

FIG. 36

Gen-Reset

CheckCRCNow

GenerateCRCNow

Tx MDDIData BeforeCRC

Sending-MDDIData

TX_MDDI_Data_Wlt1LCRC

Gen-Reset

Check CRC Now

GenerateCRCNow

RxMDDIData

Sending-MDDIData

CRCError

1
0-l
1
U

1

1 aktPacket Type JUnique wod Sub-frame Header1

0 Legt Ox3bff I x005a I Parameters

01i Pake Packet Type Unqeword Sub-frame Header

1 FIG. 37A

0

1

0

FIG. 37B

G) (D 00
Link Shutdown

Packet I
bE bE

50 usec Frame Header
Packet50 usec 130 usec

last forward
traffic

host drives
high-

impedance
logic zero

client
drives
service
request

host responds with link
startup sequence by

driving a logic one level,
client de-asserts request

host drives
logic zero
level and

activates Clk

first forward
traffic

FIG. 38

00
Link Shutdown

Packet

F
49.99 usec

I 0 ue Frame Header
use301 Packet70 usec

70 usec

last forward
traffic

host drives
high-

impedance
logic zero

host begins
link restart

host begins link
restart

host drives
logic zero
level and

activates Clk

first forward
traffic

FIG. 39

4002

DATA

STB

OLK

1 0

4006

0
1

I I

I I

FIG.

Data

4102

_DIDta+43 OutputData(1 :0)

4164130 Output Clock! 2

4100 4120

FIG. 41

4206

4, 4204

C_-Stb

MDDIDataO-

FIG. 42

FIG. 43ALink Entering Hibernation Timing

MDDIDataO Link Shutdown -tetr-ihtrestart-owL Sub-framePacket hos7t dibesi l 14rHeadert-acke
last orwadtrffi data es II host beins link restart wAith MDDl DataO high, host drives f~ owr rfi

last forard trafic dataand sthclient does not drive MDDIDataO logic- zero level fowrdtafi

HotI itiatedaa-nb Wak-u I' FI.4B c
Hos-iitate WkeupSequence

client begins link

64 Stb host disables restart, drives
las frwad raficpulses data and stb MDI_DataO highid_

Lat for ~war j trfIc

MDDDaaO inkShtdon Pcke I Ithostdetect t hostdritecI vesj frt forward traffic
Ill Ilogic, zero levelir

MDlDlIl~ll~lllll [111 S-IlIil 111 I]IJ 111 1111
r__ q stb-;tartup V

Client-initiated Wake-up Sequence host reponds by driving a logic-one level, FIG. 430
then client stops driving MDDI_DataO

t tds t tss

MDDIStb

MDDIDataO

MDDIDataX
(X=1l..7)

ttddx

ttdd 0

czzzcz-i tdx

ttsd

ttsdx

FIG. 44

MDDIData
from Host

Parameter Srb lgmn
CRC Stob Algmn

All
Zero

Guard Time 1
or

TunAround1

Host Driver:
Disable DelayFIG.

1
MDDIData
from Host

0-

Guard Time 2 DorD
or Re-cTurn Around 2

iver
nable

Packet Length
(next packet)

Host Driver
Enable
Delay

FIG. 46

H Enable

MDDIDataO+
DH-DData

FIG. 47

Reverse Link Encapsulation Packet
Parameter Turn- reverse data

CRC 1 Around 1 packets
2 bytes 8 bytes x bytes (Packet_Length x y

26) bytes
i I

Next
Turn-Around 2 All Zero 2 Net

I I Packet
y bytes 8 bytes

one way
delay Turn-
f'Around 1

host
disable

Sclient

reverse data Tdreverse data Turn-Around 2
packets

Host Output Data 1
observed at Host 0 -L host data

Client Output Data 1
observed at Client o

I t~llal)lt?
I I

I

I
I

I

cli

I II

Round Trip Delay
er

client
disable

I I

ent data

client data

lauie
host data

host data
I

Aggregate Data 1
observed at Host o 0

host data

Round Trip Delay

Round Trip Delay

FIG. 48

ASYNC FRAMES 4900
STATE

4904

cond 3 (from
any state)

async
frames L ACQUIRING-

S cond 6 4906 SYNC STATES

,ond 4 found cd2 1/
onesync cond 1 cond 5

cond 1 Sub-frame header packet good CRC at fram e boundary, Frame IN-SYNC
STATES

cond n s 4902 cond 2 at frame b
2 Y fun sync pa cond1cond (fall back shutdown packet

coto cond 1 in-sync
cType-)

S^ cond 1

cond 4/ 4908
(from any

state). two sync one sync cond 2
cond 2 errors error

4912 cond 2 4 9 10

cond 1 Sub-frame header packet good CRC at frame boundary, Frame Length 0
cond 2 no sync pattern or bad CRC at frame boundarycond 3 found sync pattern, Frame Length 0
cond 4 received link shutdown packet
cond 5 found sync pattern, Frame Len th 0 FIG. 49cond 6 frame header packet good CRC, Frame Length 0

HOS DISPLAY

I ReverseI
8.0 I2.5 RateI

nsec I nsec nsec Initialize DivisorI

InDUt Data F1 MDDI N_ 1 9..

ReverseI
RateI

DivisorI

FIG.

MEASUREMENT PERIOD

ROUND TRIP DELAYMDDI_DATA
AT HOST

0-

MDDI_STB
AT HOST

0-

FORWARD LINK DATA
CLOCK INSIDE HOST

0-

DELAY COUNT II j 4 0 Id

C,]

FIG. 51
0

cresa

Reverse Link
Packets

MS byte of
Parameter

All
Zero
field

Turn
Around 1 0x07, upper byte of Packet Length field,

of Reverse Link Request and Status Packet

MDDIData
from Host

MDDIStrobe
from Host

Reverse Link
Clock
inside Host

Oxdb OX00

1-

0-1-A!M

Host Driver
1- 1 Disabled

0 0i

I1Ii
'I

-i~riI-

ilL] ilLIiI'ILIL
K L..L

31 i

Reverse Data sampled
at these times

FIG. 52A

Reverse Link Packets

0x07, upper byte of Packet Length field,
of Reverse Link Request and Status Packet

MDDI_Data as
seen at Host

MDDI_Stb
from Host

Reverse Link Clock
inside Host

at these times

FIG. 52B

ReverseW
Rate

Divisor 0

0 100 200 300 400 2
Forward Link Bit Rate per Data Pair (Mbps)

FIG. 53_

WO 2005/091593 PCT/US2005/008832

38/86

Client
Requests Service by:

Display Service Request And Status Packet
OR

Display Service Request Packet (Hibernation)
through Reverse Link Encapsulation

Packet

NO

YES

FIG. 54A

WO 2005/091593 PCT/US2005/008832

39/86

r 5411

Host Sends:
Sub-Frame Header Packet

5414

Host Sends:
Video Stream and/or

Audio Stream Packets

Filler Packets As Needed

Prepare
Data For
Packets

Send Color Map; Bit Block Transfer;
Bit Area Fill; and Bit Pattern Fill

Packets As Desired

S-5418

Transfer Keyboard
and

Pointing Device Packets

S5420

Interface Type Handoff Request and
Interface Type Acknowledge; And

Perform Type Handoff
Packets

5422

NO Host or
Client Done

YES
S5424

Send Link
Shutdown

Packet

STOP
FIG. 54B

5502

I

Rterm MDDI Stb+ r5508___

Stbb
Rterm MDDI Stb-

E.nable 4210ssr
Rterm 'IMDD1 Data+:Rtr

Rterm MDDI Data-'

1212 17nabl_

DATA D-HDATA Storage

4214<

RhibernateI

R hibernate

4220
I

FIG.

Forward Link Skew Calibration Packet

Packet Packet Type t ID Parameter
Length 83 D CRC 1

2 bytes 2 bytes 2 bytes 2 bytes 8 bytes

FIG. 56

Calibration Data
Calibration Data

Sequence

Packet Length 22 bytes

All Zero 2

8 bytes o

SKEW 10P 0 s 60p100 ps 300 ps 600 ps 400 ps 300 Ps TOTAL 2.4 ns

tSU 0.5 n
tH 0.1 ns

DELAY 1.Ons typ 1.0Ons typ
ns max 2.0 ns max

7.7 ns typ 2.4 ns typ 1.0 ns typ 0.1 ns min
10.0 ns max 3.3 ns max 1.5 ns max 0.2 ns max

CABLE

FIG. 57

WO 2005/091593 WO 205101593PCTiUS2005/008832

43186

MDDIDataQ

MODIStb
(ideal)

CLOCK
(ideal)

MDDIStb
(early)

CLOCK
(early)

MIDDI_,Stb
(late)

CLOCK
(late)

1

0-

1-

0-

1-

0-

1-

0-

II T--

I

L

FIG. 58

SKEW l~s 30p 0 s 40P 0 sTTL=24n100 ps 300 ps 600 ps 400 ps 300 ps TOTAL 2.4 ns

DELAY 1.Ons typ 1.0Ons typ
ns max 2.0 ns max

7.7 ns typ 2.4 ns typ 1.0 ns typ 0.1 ns min
10.0 ns max 3.3 ns max 1.5 ns max 0.2 ns max

CABLE RXRCVR RXXOR
MDDIDatao-i r.

tSU =0.5 ns
tH =0.1 ns

FIG. 59

MDDIDataO
c

MODIStb 1
(ideal) 0

CLOCK I
(ideal) 0

Delayed 1
MDDI-DataX0

MDDIDataX I
(early) 0

MDDIDataX 1

(late)

FIG.

MDDIStb
(early) I
CLOCK
(early)

Delayed nn
MDDIDataX 0

MDDI_-DataX1 nn1
(early) 0 nF

MDDI_-DataX 1 n 1 n+1
(ideal)

n+2 n+3+4 n+5n6

FIG.

MDDIStb 1-
(late) 0- I I

CLOCK
(late)

Delayed
MDDI DataX

MDDIDataX
(ideal)

1-1

0-

1-

n+1 n+2 n+3C Z5 tIEDC n+4 X

n n+1 n+2 n+3 n+4 n+5 n+6

MDDI DaaX I
(late) I3n+1 n+2 ELnF3 IXn+4 EnL5 In+6

FIG. 600

Host
Host Connector

MDDI Pwr

2
MDDI Stb 3 I
MDDI Stb- 4 I
MDI DataO+ I
MDDI Data0- 6!

MDDI Datal+ 7
MDDI Datal -I

Display Car

d 1
~12

17
1-

18

ineotor Twisted-Pair op" I

Red Cable

Green

ictY

MDDI_Pwr

1 MDDILStb+

White

Shield and Drain Wire..

Stb-
Data'
Data
Data

0-

1+

I

Datal-

n.c. in
DisplayIcase- I 4.

v

FIG. 61

Type-I Data Example

Calibration Data
hClient ID 0x0000 Parameter CRC Oxaclc All Zero 1 Sequence All Zero

1 Ox00 Ox00
MODIDatD r i N IPacket Length

8 JU((next packet)

I I

high-byte 2 bytes 8 bytes 64 bytes 8 bytes 2 bytes

MDDI Stb 0 h
(one phase) 0-

hClient ID 0x0000 Parameter CRC Oxaclc

MDDI Data0 _Data ~Packet LengthM-DI L[r (next packet)

high-byte 2 bytes 8 bytes 64 bytes 8 bytes 2 bytes

MDDIStb
(opposite phase)0

MDDI Stb behaves as it would with If the LSB of the next
all zero data during Calibration Data, Packet Length is a one
always an MDDIStb transition here then MDDIStb toggles
because the all zero field precedesFIG. 62A the Calibration Data Sequence

Type-11 Data Example
hClient ID 0x0000

1 I
MDDI Datal

n-

MDDI DataO

MDDI Stb
(one phase)

MDDI Datal

MDDI DataO

MDDI Stb
(opposite phase)

SI I I I I
1

Packet Length
-I (next packet)0- .I I

low-byte high-byte 2 bytes 8 bytes 128 bytes 8 bytes 2 bytes

I I I I0-
hClient ID 0x0000 Parameter CRC All Zero 1 Calibration Data All Zero 2

OxacOd 0x00 Sequence Ox00

1- packet

0-I I I II I I
I

all zero data during Calibration Data, Packet Length on

'(next packet)

low-byte high-byte 2 bytes 8 bytes 128 bytes 8 bytes I 2 bytes

MDDIStb behaves as it would with If the LSB of the next
all zero data during Calibration Data, Packet Length on
always an MDDI_Stb transition here MDDI Data0 is a one
because the all zero field precedes then MDDI Stb toggles

the Calibration Data Sequence
FIG. 62B

6300

ACQUIRING-
4906 SYNC STATES

found
Sone sync cond 61

frame IN-SYNC
S.STATES

cond 62_nosn 490 2 cond 62 cond 61no sync C y 1

(fall back cond
s t o it n sy n c

Type-') 0)
cond 61

cond 63 \ond 61 4908
(from any

state) two sync one sync cond 62
S" cond 62 errors error

4912 cond 62 4910

cond 61 sub-frame header packet good CRC at sub-frame boundary
cond 62 no sync pattern or bad CRC at sub-frame boundary
cond 63 received link shutdown packet
cond 64 found sync pattern
cond 65 Unique word incorrect

FIG. 63

WO 2005/091593 WO 205101593PCTiUS2005/008832

52186

I

I

I I

L: f

cu)

0)

E 0

o o

ClU)

co

U) 0

U> 6
a)Q

U-

a)

al)0

a)

UL-

U)

CD 5

U-

a)
ca C\i

C0l

a)Q

as
LL

a) (D

CO- U)

a) a)

UU-

DETECT ERROR
RESPOND TO
ERROR CODE

OVERLOAD CRC
VALUE W/CODE

DETECT ERROR
CODE IN CRC FIELD

I CRC CRC I CRC I ICRC

FIG.

WO 2005/091593 WO 205101593PCTiUS2005/008832

54186

6600

DATA/FRAMES DATA/F RAM ES

FIG. 66

WO 2005/091593 WO 205101593PCTiUS2005/008832

55186

6702

FIG. 67A

WO 2005/091593 WO 205101593PCTiUS2005/008832

56/86

-6722

FIG. 67B

MDDI_DataO

MDDI_Stb

FIG. 68A

Link !Hibernation 5puss Sub-frame
Shutdown 5 Header
E Packet '.Thost disables host begins link restart with Packet

last forward daandsb MDDIData0 for 150 Stb pulses, 'is owr
traffic...~..L~ dier client does not drive MDDIData0

64 Stb pulses host drives logic-
zero level

client begins link restart,
drives MDDI_Data0 high then client stops driving MDDIDataO

7n RO n

MDDI_DataO Shutdo
Pack(

last forvY
traffii

MDDI St

FIG. 68B

MDDI_DataO

MDDI_Stb

FIG. 680

An) I 3O)
L) nsec host begins link restart, lit.

drives MDDI_DataO high

n
69 80 Link~ Hiernaion,, pulses I .uses Sub-frame

Shutdown Header
Packet host~f' j* Packet

clen stoplast forward disables cletsosfirst forward
traff ic dat an driving traffic

Stb drivers. iii
111111host drives64 tblogic-zero level

I
Request VCP

Packet
Length

2 bytes

Feature Packet
Packet Type

128

2 bytes

MCCS VCP
hClient ID MCCoS

2 bytes 2 bytes
2 bytes 2 bytes

CRC FIG. 69
2 bytes

FIG.

VCP Feature Reply List Item

MCCS VCP tHESUlt Code
code

2 bytes 2 bytes

Maximum

Value

4 bytes

Present Value IFIG3. 71
4 bytes

Set VCP Feature Packet
Packet Packet Type MCCS Number of
Length P 130 hClient ID VCP Code Values in List Control Value List CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytValues (Packe ength -10 bytes) 2 bytesList2 bytes 2 bytes 2 bytes 2 bytes 2 bytes (Packet-Length 10 bytes) 2 bytes

FIG. 72

I
Request Valid Parameter Packet

Packet Packet Type
Length 131

2 bytes 2 bytes

MCCS VOP
MCCS VCPhClient ID Coe

2 bytes 2 bytes2 bytes 2 bytes

CRC FIG. 73
2 bytes

Valid Parameter Reply Packet
Packet Packet Clnt I MCCS Response
Length Type 132 client ID VCP Code Code
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

Reply Sequence Number of IVCP Parameter Lis CRC
Number Values in List a a m e r R L C R C

2 bytes 2 bytes (Packet_Length 14 bytes) 2 bytes
FIG. 74

I

Scaled Video Stream Capability Packet
Packet Packet Type client ID
Length 143

2 bytes 2 bytes 2 bytes

Max Number ISource Max
of Streams X Size

2 bytes 2 bytes

Source Max
Y Size

2 bytes

RGB Monochrome Y Cr Cb Capability I
Capability Capability Reseed 1 Capability Bits Reseed 2 CRC

2 bytes 1 byte 1 byte 2 bytes 1 byte 1 byte 2 bytes

FIG.

Scaled Video Stream Setup Packet
Packet Packet Type hClient D
Length =136

2 bytes 2 bytes 2 bytes

Stream ID

2 bytes

Video Data Pixel Data
Format Descriptor Attributes

2 bytes 2 bytes

X Left Edge Y Top Edge X Right Edge

2 bytes 2 bytes 2 bytes

YBottom I.
EdgeBtt X Image Size Y Image Size

2 bytes 2 bytes 2 bytes

FIG. 76

CRC

2 bytes
I

Scaled Video Stream Acknowledgement Packet

Packet Packet Type cClient ID Stream ID Ack Code CRCLength =137

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

FIG. 77

Scaled Video Stream Packet
Packet Packet Type hletI ramID Pixel Data
Length I 18 h1 1 1 Attributes

0;
It" I-r m t 0)

Pixiel Data *%JPixel Data
Pixel DataI I I II I I 00

Eoyes 2 ytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes Packet Length 12 bytes 2 bytes

FIG. 78

Request Specific Status Packet
Packet Packet Type Status I
Length 138 hClient ID Packet ID CRC
2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

FIG. 79

rJ

Valid Status Reply List Packet
Packet Packet Type client Number of
Packet PacketTyp cClient ID Number Valid Parameter Reply List CRC
Length =139 Values in List I
2 bytes 2 bytes 2 bytes 2 bytes F

FIG.
'acket Length 8 bytes 2 bytes

Personal Display Capability Packet
Packet Packet Type ien ID Sub-Pixel Pixel Horizontal Vertical Field Visual Axis
Length 141 Layout Shape Field of View of View Crossing

2 bytes 2 bytes 2 bytes 1 byte 1 byte 1 byte 1 byte 1 byte

Lft./Rt. Image See Maximum Optical Minimum Maximum Points of Field Curvature CRC
Overlap Through Brightness Capability IPD IPD list (25 2-Byte Values)
1 byte 1 byte 1 byte 2 bytes 1 byte 1 byte 50 bytes 2 bytes

FIG. 81

CJl

WO 2005/091593 WO 205101593PCTiUS2005/008832

71/86

A B C D E
01-0-- 0

I--

3U

I I

2I.8

Client Error Report Packet

Packet Packet Type Number of Error Code List CRCLengthClient ID Error Code List CRC
Length 142 List Items

2 bytes 2 bytes 2 bytes 2 bytes Packet Length 8 bytes 2 bytes

FIG. 83

Error Report List Item
Display ErrorW

Error Code Sub-Code FIG08
2 bytes 2 bytes

Client Identification Packet

Packet Packet Type
Length 144

2 bytes 2 bytes

cClient ID

2 bytes

Week of
Mfr

1 byte

Year of Length of Length of ILength of
Mfr Mfr Name Product Name Serial Number

1 byte 2 bytes 2 bytes 2 bytes

Manufacturer Name String Product Name String Serial Number String CRC

Length of Mfr Name bytes Length of Mfr Name bytes

FIG.
Length of Mfr Name bytes 2 bytes

Alternate Display Capability Packet

Packet Packet Alt Display Reserved Bitmap Bitmap Display Display
Length Type 145 cent Number 1 Width Heigh t Window Width Window Height

2 bytes 2 bytes 2 bytes 1 byte 1 byte 2 bytes 2 bytes 2 bytes 2 bytes

Color Map RGB Monochrome Reserved 2 Y Cb Cr Display Feature Reserved 3 CRC
RGB Width Capability Capability Capability Capability

2 bytes 2 bytes 1 byte 1 byte 2 bytes 1 byte 1 byte 2 bytes

FIG. 86

Register Access Packet

Packet Packet Type bClient ID Read/Write Register Parameter egister Data List CR
Length 146 Flags Address CRC

2 bytes 2 bytes 2 bytes 2 bytes 4 bytes 2 bytes Packet Length 14 bytes 2 bytes

FIG. 87

WO 2005/091593 PCT/US2005/008832

77/86

Display Update Bits equal to "01"

Pixel Data
from MDDI

Swap when a complE
frame is received

Swap after begining of a
new media-frame and

display refresh begins at
upper left

image
being

Sdisplayed

Image updates and
display refresh from

/the same frame buffer

Display Update Bits equal to "00"

Frame Bi

Pixel Data rame B
from MDDI

FIG.

Display Update Bits equal to "11"

Pixel Data Frame Bu
from MDDI F e

Frame Bu

Pixel Data is written FIG. 8
to both buffers

Swap after begining of a
new media-frame and

display refresh begins at
upper left

Two Buffers, display refresh faster than Image transfer
Image Transfer

frame 1, buffer A tame 2, buffer B frame 3, bufferA fiame 4, buffer B frame 5, bufferA fiame 6, buffer
40% W1. WD 20%/ 40%/ 60% W/o 2 X/o 0% T/o 6T/o W/o 000/ 60 800/ 20%/ 40% 6CP/o 809/o 206o0/0%0o

Display Refresh

frameO but B fI meO, buf B ftame 1, bufA ftame 2, buf B rame2, buf B frame3bufA frane4 but B fiame4 but B

40% 600/o80% 20/ 4001. 600/6 800/1 200/. 400/% 600/6 80/c20% 40% 60% 801. 200/ 40/ 60/ 80% 20% 402/ 60/ 800/a 20/a 40/a 600/ 80E/1 20% 400/ 600 800/ 20% 400/a 600/a0/1

Two Buffers, display refresh much faster than image transfer
Image Transfer

I ramelbufferA frane2, buffer B frame 3, bufferA frame 4, buffer B fame 5, buffer A fame 6, buffer B
/o400/ 60% 80/o 200/ 40/ 600/c 80/c 20/ 400/c 60/. 800/ 2/c 400/ 606 80/ 200/ 40/ 60/o 800/ 20/ 400/. 60P680%

Display Refresh
fm0,b=B I fm 0,lB fm0,b=B fmnl,b=A Im1,A Ifm2,b=B ifm2,b=B fm 2,b=B fm3, bA n 3,b=A fm4,b=B fmn4,b=B I fm4, b=B fm5,b=A fm5, bA I

204060820 40 204060 20 204060 204060 204060 2040609204060
0I/00I0O0/0000I0 10010 /000/0 0 11/010 010 0 011 /0/00//

/0 %q1010/0 %00l iO// j %01/0/0/0 0

FIG. 89

Two Buffers, display refresh slower than Image transfer
Image Transfer

fram 1, buffer A fia-re 2, buffer B frane 3, bufferA farne 4, buffer B frarre5,6ufferA ftame 6, buffer B
200/. 400/a 60%/ 800/o 2)0/a 40%/ 600/a W0o 200/a 400/a 00/ 80%/ 2 00/a 400/a 60/o 800/a 200/a 406/ 60%/a 0 209/ 40%/ 600/o 809/

Display Refresh
fieO, buffer B frme 1 3, bufferA kare3, bufferA j tane 4 buffer B

200/. 4TI. 6004. 200/. 40% 60%/ 80%/ 200/. 40%. 60% 80./ 1 20%/ 400/a 600/. 80%/
0

FIG.

C,]

Cit

00
00

0

Two Buffers, display refresh much faster than Image transfer, small video window
Image Transfer

fame 1, buffer A horme 2, buffer B fnrr 3, bufferA kame 4, buffer B frame 5, buffer A frame 6, buffer B
400/c 600/6 80/ 200/o 40% 60% 800/o 203/ 60%/o 8W0 j20T/o 40%r/ 60%P/ 80%[200/o 400/% 600% 800% 20T1-401- W 800/6

Display Refresh

fm 0,B mOI fm0,h=If T fmnl, b=;A fm 1,b=A fTn2'b=B fm 2, b=B fm2,b=B fm3,b=A I hm3, bA 1 4LbB I fm4,ibB fm fm5,b=A Ifm5, b=A
1262040 046081T4 204060+24060 204060 204060 82068(2040608(1020406004602040 06 20 20 40 60 20 40

1/0/0/0/10 I0 q 0 0 0//0 40//0/ 600// 8000/ 2000 0

FIG. 91

00
0
00

C,]

Cit

00

Three Buffers, display refresh much faster than Image transfer, any-size video window
Image Transfer

frare 1 buffer A frae 2, buffer B forne 3, buffer C fkme4 bufferA frame 5, buffer B f-mme 6, buffer C
2Oo j 200/0 400/c 600/a 800/ 200/c 40%r/ 60% 800/c 2/o40% 60% 80% 2040/c 600/ 800/c

Display Refresh

fmob=C fmbC I fmOb=C i i1, bA Im1,b=A fmt2,b=B fm Z=B I fm2,b=B I fm 3,b= fm3, frn4,A ft4,b=A frn4,b=A fm5,IbB I
2040608(420060 8(1200 20 04 2040 2046 20460204060

0/J% 0/ %0/j

FIG. 92

Three Buffers, display refresh slower than Image transfer
Image Transfer

frame 1, bufferA frame 2, buffer B frame 3,bufferC fCtme 4,bufferA fime 5,buffer B tame 6,buffer C frame 7
o400/ 60/o 80/o 20/ 40% 60/ 800/ 20/o40 /o600/80/ 200/c 40% 60% 80% 20% 400/ 60% 80% 20%D40% 60% 80%

00
K)Display Refresh
00

trame 0,buffer C tame 1 bufferA tame 3, qbuffer C ftame 4 bulferA K(

WNP/ 49 W N mg I W 20Sq vq W(Q 9=9 V9 V(Q 9"/0 61(Q I U(Q VQ v (OQ

FIG. 93

c
cc

One Buffer, display refresh faster than Image transfer
Image Transfer

firnie1 frame2 finme 3 j franme 4 tamre 5 ft-I~ne 6
400/a 600/o 800/ 200/o 400/a 60/a80/ 2001. 400c 600/a 8004o 20%/ 4o/ 600/a 800/a 20040/ 600/ 0/ 0/ 60%/ 0/

Display Refresh
I ffaneo fram 1 fr~m2 ftame3&2 frame3 ftnre 4 frani5&4 I ftam 5l frarme6

One Buffer, display refresh much faster than image transfer
Image Transfer

fiam 1 ftarme2 fian-e 3 fi me4 j fi ne5 farre 6
40/a 600/a 800/. 20%/ 40%/ 600/a 800/ 200/- 40%/ 600/s 800/o 200% 400/ 600/o 800/o 271/o 400/ 600/a 80/a 20/o 400/o 600/o

D isplay Refresh 2 k 2 1 knh 3 j n j h i -5 4If 5fmOI tml &0 1fml fmn2&1 IfM2122&1 1 fm m m& m m& &4 2fm5 frr6&51 fm6 Ifm6
o/

40/J%%0lf/0/0 2~/~,f0001/O 000001 0 0 r 2 0 r 0 ZM08 20
0
004 0

6080j %%014 /1 %%014%%0/

FIG. 94

DAISY-CHAINED CONFIGURATION

MDDI A MDDI MDDI /L MDDI
HOST CLIENT CLIENT CLIENT

EACH CLIENT REPEATS DATA AFTER IT
HAS BEEN ASSIGNED AN ADDRESS

0o
MDDI

CLIENT o

CLIENTS CONNECTED VIA A HUB

MDDI HB1\ U MDDIooo,
HOST CLIENT

MDDI
CLIENT

FIG.

COMBINATIONS OF HUB AND DAISY-CHAIN 0

tn

MDDI
CLIENT

DDI

FIG. 96

Color Map Data Formatting

*MDDl byte m MDDI byte MDDI byte

1516.7 0 1 21!45.6-.711 Ol2i3.4567 0.11121. 1W

PaRmeter0 12 3 4 501 2 34 5 6 7 01 345
CC item n Blue item n Green item n Red

Example: 6 bits of Blue, 8 bits of Green, 7 bits of Red

FIG. 97

	Abstract
	Description
	Claims
	Drawings

