wo 2009/099691 A2 M1 YO OO AR

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2009/099691 A2

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau V,&J U
Al
(43) International Publication Date \'{_5___,/
13 August 2009 (13.08.2009) PCT
(51) International Patent Classification:
GO6F 9/06 (2006.01) GO6F 15/17 (2006.01)
GO6F 9/44 (2006.01)
(21) International Application Number:
PCT/US2009/030211
(22) International Filing Date:
6 January 2009 (06.01.2009)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
12/027,990 7 February 2008 (07.02.2008) US
(71) Applicant (for all designated States except US): MI-

CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: KIMMERLY, Randy S.; One Microsoft
Way, Redmond, Washington 98052-6399 (US). ANDER-
SON, Christopher L.; One Microsoft Way, Redmond,
Washington 98052-6399 (US). SZYPERSKI, Clemens
A.; One Microsoft Way, Redmond, Washington
98052-6399 (US). MOORE, Anthony J.; One Microsott
Way, Redmond, Washington 98052-6399 (US). BOX,
Donald F.; One Microsoft Way, Redmond, Washington
98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,

[Continued on next page]

(54) Title: ITERATIVE COMPONENT BINDING

(57) Abstract: Component domains used to define a binding between various com-

e
€2

Create Component
Domain

Instantiate Initial
Component Set

Expand Nested
Components

L~ 503

Notify Components That
Setvica Export Polling
To Begin

)

Sarvice Export Polling

Service Import Discovery
And Satisfaction
¥
Notify That teration § -507
Complete

504

L~ 505

506

More
Service Imports
DueTo Side
Effects?

Notify Components That | 509
Binding is Complete

FiG, 5

ponents associated with the component domain. The component domain tracks the
various services to be imported by each component, and tracks the various services
exported by each component. At runtime, rather than at compile time, the various in-
terrelations between the components are bound using the service import and export
) data. Accordingly, depending on the components available and their characteristics,
the bindings may differ. This permits applications to be much more flexible. In one
implementation, the binding is performed iteratively. For example, if after one itera-
tion of binding service imports to service exports, some components may expand the
services that they export, or the services that they desire to import.

WO 2009/099691 A2 I 0000 NPT 0RO A0 A

84)

NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US,UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),
OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted
a patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

ITERATIVE COMPONENT BINDING
BACKGROUND
[0001] Object-oriented programming structures software as a collection of object
instances or “components,” each patterned after a class that defines the methods
and properties of the component. When referring to programming,
“componentization” refers to the defining of the components such that they are
made available to a program. Of course, components of a program are functionally
interconnected in order to accomplish the larger purposes of the program.
“Composition” refers to the defining of how objects in the program are related
together.
[0002] Typically, the interrelation between objects is accomplished using code or
declarations that define very specifically the relationship between components of a
program. Great progress on the art of object-oriented programming has been made
using such explicit composition of the interconnection between coded objects. In
conventional explicit composition, for example, code that defines the composition
of the program (i.e., the interrelation between components) is compiled after
authoring the program using source code. The executable file thus from its birth
represents the various components of the program and the various interrelations
between the program components.
BRIEF SUMMARY
[0003] Embodiments described herein relate to the use of component domains to
define a binding between various components associated with the component
domain. The component domain tracks the various services to be imported by each
component, and tracks the various services exported by each component. At
runtime, rather than at compile time, the various interrelations between the
components are bound using the service import and export data. Accordingly,
depending on the components available and their characteristics, the bindings may
differ. This permits applications to be much more flexible. In one embodiment,
the binding is performed iteratively. For example, if after one iteration of binding
service imports to service exports, some component may expand the services that

they export, or the services that they desire to import.

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

[0004] This Summary is not intended to identify key features or essential features of
the claimed subject matter, nor is it intended to be used as an aid in determining the
scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0005] In order to describe the manner in which the above-recited and other
advantages and features of embodiments described herein can be obtained, a more
particular description of the invention briefly described above will be rendered by
reference to specific embodiments which are illustrated in the appended drawings.
Understanding that these drawings depict only example embodiments of the
broader principles and are not therefore to be considered to be limiting of the scope
of the invention, the embodiments will be described and explained with additional
specificity and detail through the use of the accompanying drawings in which:
[0006] Figure 1 illustrates an example computing system that may operate a
component domain;
[0007] Figure 2 illustrates an example architecture of a component domain with its
associated logic and components contained within the component domain;
[0008] Figure 3 illustrates an example of the various components in the component
domain after being bound;
[0009] Figure 4 illustrates a process flow associated with nested component
expansion;
[0010] Figure 5 illustrates a flowchart of a method for iteratively binding the
components in the component domain;
[0011] Figure 6 illustrates a flowchart of a method for expanding nested
components after instantiating a component having nested component; and
[0012] Figure 7 illustrates a flowchart of a method for satisfying a service import
with a service export.

DETAILED DESCRIPTION

[0013] In accordance with embodiments described herein, component domains are
used to create a binding between various components in the component domain.
The component domain tracks the various services to be imported by each

component, and tracks the various services exported by each component. At

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

runtime, rather than at compile time, the various interrelations between the
components are bound using the service import and export data. Accordingly,
depending on the components available and their characteristics, the bindings may
differ. This permits applications to be much more flexible. In one implementation,
the binding is performed iteratively. For example, if after one iteration of binding
service imports to service exports, some component may expand the services that
they export, or the services that they desire to import.

[0014] First, after some introductory discussion regarding computing systems in
general, a basic computing system will be described with respect to Figure 1.

Then, various embodiments of a component domain with component domain logic
and various embodiments of its operation will be shown and described with respect
to Figures 2 through 7.

[0015] Computing systems are now increasingly taking a wide variety of forms.
Computing systems may, for example, be handheld devices, appliances, laptop
computers, desktop computers, mainframes, distributed computing systems, or even
devices that have not been conventionally considered a computing system. In this
description and in the claims, the term “computing system” is defined broadly as
including any device or system (or combination thereof) that includes at least one
processor, and a memory capable of having thereon computer-executable
instructions that may be executed by the processor. The memory may take any
tform and may depend on the nature and form of the computing system. A
computing system may be distributed over a network environment and may include
multiple constituent computing systems.

[0016] Referring to Figure 1, in its most basic configuration, a computing system
100 typically includes at least one processing unit 102 and memory 104. The
memory 104 may be physical system memory, which may be volatile, non-volatile,
or some combination of the two. The term “memory” may also be used herein to
refer to non-volatile mass storage such as physical storage media. If the computing
system 1s distributed, the processing, memory and/or storage capability may be
distributed as well. As used herein, the term “module” or “component” can refer to

software objects or routines that execute on the computing system. The different

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

components, modules, engines, and services described herein may be implemented
as objects or processes that execute on the computing system (e.g., as separate
threads).

[0017] In the description that follows, embodiments are described with reference to
acts that are performed by one or more computing systems. If such acts are
implemented in software, one or more processors of the associated computing
system that performs the act direct the operation of the computing system in
response to having executed computer-executable instructions. An example of
such an operation involves the manipulation of data. The computer-executable
instructions (and the manipulated data) may be stored in the memory 104 of the
computing system 100.

[0018] Computing system 100 may also contain communication channels 108 that
allow the computing system 100 to communicate with other computing systems
over, for example, network 110. Communication channels 108 are examples of
communications media. Communications media typically embody computer-
readable instructions, data structures, program modules, or other data in a
modulated data signal such as a carrier wave or other transport mechanism and
include any information-delivery media. By way of example, and not limitation,
communications media include wired media, such as wired networks and direct-
wired connections, and wireless media such as acoustic, radio, infrared, and other
wireless media. The term computer-readable media as used herein includes both
storage media and communications media.

[0019] In Figure 1, the computing system 100 is shown with a component domain
112 within the non-volatile portion of the memory 104. As will be described in
further detail with respect to Figure 2 and subsequent figures, the component
domain 112 is used as a logical container into which to instantiate various
components. The component domain logic 114 then dynamically binds the various
components, rather than having the components bound at compile time.

[0020] Embodiments within the scope of the present invention also include
computer-readable media for carrying or having computer-executable instructions

or data structures stored thereon. Such computer-readable media can be any

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

available media that can be accessed by a general purpose or special purpose
computer. By way of example, and not limitation, such computer-readable media
can comprise physical storage and/or memory media such as RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to carry or store
desired program code means in the form of computer-executable instructions or
data structures and which can be accessed by a general purpose or special purpose
computer. When information is transferred or provided over a network or another
communications connection (either hardwired, wireless, or a combination of
hardwired or wireless) to a computer, the computer properly views the connection
as a computer-readable medium. Thus, any such connection is properly termed a
computer-readable medium. Combinations of the above should also be included
within the scope of computer-readable media.

[0021] Computer-executable instructions comprise, for example, instructions and
data which cause a general purpose computer, special purpose computer, or special
purpose processing device to perform a certain function or group of functions.
Although the subject matter has been described in language specific to structural
teatures and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or
acts described herein. Rather, the specific features and acts described herein are
disclosed as example forms of implementing the claims.

[0022] Figure 2 illustrates a component domain 210 and an associated component
domain manager labeled as “component domain logic” 220. The component
domain 210 of Figure 2 may be, for example, the component domain 112 of Figure
1. The component domain 210 may be any logical container that may contain
component instances. The flexibility in the component domain 210 allows the
component domain to contain a variety of component instances of a variety of
classes. The types of components included within the component domain 210 will
depend on the application, and the building blocks used by that application.
Accordingly, the principles of the present invention are not limited to the types of

components included within the component domain 210, nor the number of

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

components within the component domain. Nevertheless, for illustrative purposes,
six components 211, 212, 213, 214, 215 and 216 are illustrated as being contained
within the component domain 210.

[0023] The component domain 210 may be any logical container that is capable of
literally or logically containing other components. For example, the component
domain 210 may be an instance of a container class capable of receiving various
component instances, with the collection of component instances being a data
structure. The component domain 210 may also be an object that does not directly
contain each component instance, but perhaps has information regarding associated
components. Even in that case, the components may be considered as logically
within the component domain 210. For instance, in one embodiment, the
component domain includes only a group of values, perhaps a group of name-value
pairs. The component domain receives a value from components that export the
service, and the component that imports that service receives the value. Still, even
in that context, the components may be considered to be logically inside or within
the component domain. In this description and in the claims, when components are
referred to as being “within” or “inside” the component domain, that means that the
components are either contained within the component domain, or are somehow
logically associated with the component domain in a manner that the component
domain logic 220 is capable of communicating with and binding the various
components associated with the component domain.

[0024] The component domain logic 220 is illustrated as including various
mechanisms including, for example, an association mechanism 222, a service
inventory mechanism 223, a nested component expansion mechanism 224, a
matching mechanism 225 having associated matching rules 226, an abstraction
mechanism 227, and a cataloging mechanism 228 having an associated catalog 229.
These various mechanisms 222 through 229 are shown as separate mechanisms.
However, this is for purposes of clarity in explaining the functionality of the
component domain logic 220. It is not used to represent that they are actually
separate mechanisms. Some of the mechanisms may be combined into a single

component. In fact, all of the component domain logic may be monolithic. On the

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

other extreme, each mechanism may be composed of multiple components. A
single component may also include logic that contributes to multiple mechanisms.
The operation of the various component domain logic 220 mechanisms will be
described shortly.

[0025] First, however, this description refers back to the various constituent
components instantiated within the component domain 210. In the illustrated
example, the constituent components include components 211 through 216. Each
component is an instance of a particular class. To symbolically illustrate this
principle, each component is illustrated as a particular shape. For instance, in the
example, the component 211 is illustrated as a square. Components 212 and 214
are illustrated as triangles indicating that they are each instances of the same class,
which is not the same class as the component 211. The component 213 is
illustrated as a circle symbolizing that it is an instance of a class that is different
than components 211 and 212. The component 215 is illustrated as a top-heavy
parallelogram symbolizing that it is an instance of a class that is different than
components 211 through 214. Lastly, the component 216 s illustrated as a bottom-
heavy parallelogram symbolizing it is an instance of a class that is different than
components 211 through 215.

[0026] Each component includes potentially one or more service imports, and
potentially one or more service exports. A “service import” with respect to a
component is an indication that the component is requesting a service. A “service
export” with respect to a component is an indication that a component is offering to
provide a service. Service imports and exports are each symbolically represented
in Figure 2 by an arm extending from the corresponding component. Service
imports are represented by an arm that has a cup form at its end. Service exports
are represented by an arm that has a ball form at its end. In the configuration of
Figure 2, all of the components 211-216 are instantiated within the component
domain 210. However, none of the components are connected together. The
manner in which the components are to be connected is furthermore not explicitly

specified in advance of runtime. Instead, the service imports and exports are

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

specified. The various services’ imports and exports are for various services
represented abstractly using letters A through F in Figure 2.

[0027] For instance, component 211 has one service export for service B as
represented by arm a; and two service imports, one for service A as represented by
arm 1, and yet another for service A as represented by arm j. Component 212 has
two service exports, one for service A as represented by arm b, and one for service
E as represented by arm ¢. Component 212 has no service imports. Component
213 has one service export for service F as represented by arm d; and two service
imports, one for service B as represented by arm k, and another for service C as
represented by arm m. Component 214 is of the same class as component 212. In
one embodiment, the type of service imports and service exports are defined by the
class. Accordingly, component 214 is like component 212, in that it has no service
imports, and two service exports, one for service A as represented by arm f, and
one for service E as represented by arm e. Component 215 has no service imports
and one service import, which is for service D as represented by arm g.
Component 216 has one service import for service D as represented by arm n, and
one service export for service C as represented by arm h.

[0028] The component domain 210 shows the various components 211 through 216
prior to the composition of the components. “Composition” refers to the defining
of how the various components are to be interconnected. Ultimately, the
components in the component domain 210 will have their interconnections defined.
However, this was not done prior to running the application represented by the
various components in the component domain 210. Rather, the component domain
logic 220 will define the connections between the various components at runtime.
[0029] Figure 3 illustrates the various components 211 through 216 after
composition. In one particular matching operation, the service exports for a
particular service are to be coupled with a service import for the same particular
service. In Figure 3, the service export for service A of the component 212 is
connected to the service import for service A of the component 211 (as represented
by the arm b meeting with the arm j). This represents that component 212 provides

service A to component 211 using the relevant interface. The same symbolism

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

applies to the other connections between service imports and exports illustrated in
Figure 3 with respect to their respective service. For example, the following arm
pairs are shown connected, arms f and 1 for service A, arms a and k for service B,
arms h and m for service C, and arms g and n for service D. The service export for
service E of the component 212 (represented by arm ¢) is not connected to any
service import, representing that this service export is latent. The same symbolism
applies to the arms d and e.

[0030] Although the connections between components are not defined ahead of
time, the service exports and imports for the components are indicated. It does not
matter where or how the service exports and imports are specified. However, one
possible location may be in the class definition itself. For example, consider the
following class definition for a class called “Consumer” written in C# code:

class Consumer

{

[Import (“Consumer Report”)]
IReport MyReport {get; set;}

}

[0031] In square brackets, the class Consumer declares that it imports a service
called “Consumer Report.” The content of square brackets does not atfect the
functionality of the compiled object in C#. Rather, the contents are written to the
compiled class as metadata that accompanies a compiled type or member that
describes it in a way that is not part of its default execution, but can be inspected
and acted on from the outside. In this example, when an object of a class is to be
instantiated, the class definition, either in its pre-compiled or post-compiled form,
may be referred to in order to identify the service import for a particular object
tollowing that class.

[0032] In one example matching between service imports and service exports, the
service name is to exactly match, although other matching rules are conceivable.
The following represents a class definition represented in C# in which the class

exports a service called “Consumer Report™:

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

class ReportEnvelope

{

[Export (““Consumer Report”)]
IReport Content {get; set}

}

[0033] Here, the metadata expression in the brackets declares that the class
ReportEnvelope exports a “Consumer Report” service. For instance, when an
object of the ReportEnvelope class is connected with the object of the Consumer
class, the Consumer object may get reports from the ReportEnvelope object.

[0034] In this example, the class itself, whether compiled or pre-compiled, may be
referred to in order to determine the service exports and service imports for a
particular object. In another embodiment, the object may be configured to offer an
interface that the component domain logic may use to ask the various objects for
the service imports and export identifications.

[0035] The various mechanisms 222-229 of the component domain manager 220
will now be described in detail. Once again, these mechanisms are divided by
function, and do not represent any actual object boundaries in the component
domain manager 220. As will be mentioned below, some of the various
mechanisms 222-229 may occasionally use an instantiation mechanism that is often
provided by the underlying runtime provided in the system. The instantiation
mechanism has the capability to use a class definition to instantiate a component
that follows that class.

[0036] An association module 222 is capable of associating instantiated
components with the component domain 210. For instance, in Figure 2,
components 211 through 216 are shown associated within the component domain
210, symbolizing that they are not just instantiated, but they are instantiated in such
a way that they are associated with the component domain 210. The components
associated with the component domain 210 will be subjected to a particular binding

processing at runtime. The association of the components with the component

10

10

15

20

25

WO 2009/099691 PCT/US2009/030211

domain may be done at the time of instantiation of each component, or sometime
thereafter.

[0037] A service inventory mechanism 223 indexes services exported and imported
by the components associated with the component domain. The service inventory
mechanism 223 may have a mechanism for discovering those services. For
example, in one embodiment, when a component of a particular class is
instantiated, the service inventory mechanism 223 may access a class definition to
evaluate the service(s) imported or exported. In another embodiment, the
components may be drafted so as to respond to discovery requests. For example,
the components may offer an Application Program Interface that serves to notify
querying entities of the service(s) that it exports and imports. Alternatively, the
component may be drafted to write its service imports and exports to a particular
location immediately upon instantiation.

[0038] For instance, referring to Figure 2, the service inventory mechanism may

conceptually maintain the following Table 1:

Component Identifier Services Exported Services Imported
211 B ALA
212 AE
213 F B, C
214 AE
215 D
216 C D
Table 1

The service inventory mechanism 223 need not represent information as a table, but
a table is a useful illustration to show the reader the type of information that may be
maintained. Furthermore, the service inventory mechanism 223 may not know all
of the services exported or imported by a particular component.

[0039] A nested component expansion mechanism 224 evaluates whether a
component in the component domain has nested components therein. For example,
Figure 4 represents that one of the components (i.e., component 215) of Figure 2
includes a hierarchy of nested components prior to expansion represented by arrow

410. In particular, the component 215 in Figure 4 includes two child components

11

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

401 and 402 prior to expansion. One of those child components 401 includes their
own child components 411 and 412 prior to expansion.

[0040] The nested component expansion mechanism 224 is configured to discover
nested components, and expand them such that services exported and imported by
nested components are also made visible to the binding operation. For example,
after expansion 410, the various nested components 401, 402, 411 and 412 are
shown with their various services exported (service A and E in the case of
component 411) shown as visible for binding. Additionally, the various services
imported (service A for component 401, service B for component 402, and service
C for component 412) are shown as visible for binding. Thus, after expansion,
these nested components are recognized by the service inventory mechanism 223.
[0041] A matching mechanism 225 actually responds to a request to bind the
components. In order to do that, the matching mechanism 225 follows a set of
matching rules 226. The matching mechanism 225 follows the matching rules 226
in order to match up and bind service imports to service exports. For example, in
Figure 3, the various components in the component domain 210 are shown bound
together.

[0042] The matching rules may be a default implicit set of matching rules, or there
may be other matching rules that override the default matching rules. For instance,
perhaps, by default, matching of a service import to a service export is made by
finding an exact service name match. For instance, in the class definition examples
set forth above, the class “Consumer” has a service import called “Consumer
Report.” On the other hand, the class “ReportEnvelope” has a service export by the
same exact name “Consumer Report.” In accordance with the exact service name
matching rules, therefore, a service export of an instance of ReportEnvelope may
be bound to a service import of an instance of Consumer.

[0043] However, other service matching rules may be applied. For instance, case
may be ignored in some matching rules. In other rules, there may be clusters of
service names that may be deemed to match each other. For instance, there might
be a service name in Italian, a service name in French, and so forth, which may

each be deemed to match. In accordance with another set of matching rules, if a

12

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

service import or export is not specified by name, the matching mechanism 224
may actually structurally evaluate member names, types and parameters of the
service import, against member names, types and parameters of the service export.
[0044] The service matching mechanism 225 may also take steps to not just
logically match components, but may also at least contribute to the actual
functional binding of the service import and export. In one embodiment, once the
service matching mechanism 225 finds a match, the service matching mechanism
225 may acquire the requested service from the service exporting component, and
provide that service to the service importing component.

[0045] In another embodiment, the service matching mechanism 225 may provide a
handle data structure to the service importing component. The service importing
mechanism may then use that handle to complete the binding with the service
exporting mechanism. The service matching mechanism may optionally allow the
service importing mechanism to accept or reject the match. For instance, the
service importing component may notify the service matching mechanism if the
match is acceptable, following which the actual binding is to occur. If the service
1s not deemed acceptable, perhaps the service matching mechanism finds a backup
match, and so forth, until an acceptable match is found and accepted by the service
importing component.

[0046] For example, the handle data structure might include a factory that the
service importing component might use to perform the binding operation between
its import and the export proffered by the matching component. The handle might
also include metadata (called hereinafter “selection metadata”) that contains
information that the service importing component might use to determine whether
or not to trigger the factory to perform the binding. In one embodiment, the service
importing component might not use the selection metadata, but may instead use the
factory to automatically accept the binding. However, the service importing
component may alternatively use the selection metadata to evaluate whether the
proposed export will be acceptable to the service importing component. If the

service importing component elects to accept the binding, then the service

13

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

importing component may use the factory to trigger the system to complete the
binding.

[0047] In other cases, there might be multiple possible matches of service exports to
a particular service import. In that case, the handle might include a factory and
selection metadata for each potential service export. The service importing
component may then use the metadata to select none or perhaps a subset of the
service exports for importing. The service importing component may then use the
corresponding factories of the selected service exports to complete the binding with
each of the selected service exports.

[0048] For example, suppose a Consumer component is to import a service named
“Consumer Report” as in the example above. If there were multiple components
that offered the service named “Consumer Report,” the Consumer component may
be given factories and selection metadata for each potential service export match.
The selection metadata might include, for example, 1) the date that the Consumer
Report was generated, and 2) an identification of a product class that the Consumer
Report is regarding. If the Consumer component was interested in only one service
export named “Consumer Report,” the Consumer component might use the
selection metadata to identify a Consumer Report service export that was generated
recently, and which indicates a product class that was most relevant to the
Consumer component.

[0049] In some cases, there may be no components within the component domain
that offer a service export that matches a particular service import. In such a case,
the binding may still be potentially performed. There will now be described a
number of ways of handling the case where a bind cannot be initially performed for
a particular service import.

[0050] In one case, the service import may have associated with it an “importance”
property or the like, which specifies how urgent it is to the functionality of the
overall application that the service import be satisfied. If the importance is high,
then a service export should be found somewhere. However, if the importance is

low, then perhaps the application can get by without binding the service import at

14

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

all. There may be a variety of intermediary importance levels, which may govern
to what extent the binding operation is to go to try to find a service export.

[0051] In one embodiment, if a service export for a particular service import is not
found within the component domain, an abstraction mechanism 227 may perhaps
find another component from another component domain. Therefore, there may be
many component domains running on a single computing system, or that may be
accessible over a network by the computing system. In that case, the abstraction
mechanism 227 may consult the service inventory mechanism (or perhaps the
cataloging mechanism 228) for those other component domains until a component
1s found that offers the service export corresponding to the service import to be
bound. In one embodiment, the abstraction mechanism 227 may simulate itself as a
component that offers the service export. The service import may be thus bound to
the abstraction mechanism 227 itself. When the service importing component
makes a call to the abstraction mechanism 227 for the service, the abstraction
mechanism 227 may interface with that external component to perform the
requested service.

[0052] In one embodiment, the component domain may be associated with a
number of related components domains. The abstraction mechanism 227 may
search out all of those related component domains for the appropriate service
exports. In other embodiments, the abstraction mechanism 227 may search out
only some of the related component domains. For instance, if the component
domain 210 was a node in a hierarchical tree of component domains, perhaps the
abstraction mechanism 227 may search only the component domains representing
nodes in the ancestral line, rather than searching cousin component domains. The
abstraction component 227 may thus abstract service exports for a number of
different service exports, while performing the underlying processing necessary to
interface with the various external components to thereby perform the service.
[0053] Alternatively, or in addition, if a service import cannot be satistied by an
already instantiated component within the component domain, a cataloging
mechanism 228 may use a catalog 229 to find components that are not presently

instantiated that offer a particular service export. For instance, the catalog 229 may

15

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

contain a variety of class definitions, each having metadata that describes the
services exported by objects of that class. Based on the evaluation of the associated
metadata, the cataloging mechanism 228 may find a particular class definition that
offers the needed service export. The cataloging mechanism 228 may then select
the external component of that class to be instantiated within the component
domain 210. Alternatively, the component importing the service may be provided
with the metadata that describes the service exported by the cataloged class, so that
the importing component can make its own decision regarding whether the service
exported will be satistactory. If it is satisfactory, the component importing the
service may cause a component of the class to be instantiated. For instance, the
component importing the service may also have been provided with the ability to
access a factory that allows the component exporting the service to be instantiated.
[0054] Having described the various functionality of the component domain logic
220 of Figure 2, various processes will now be described with respect to Figures 5
through 7.

[0055] Figure 5 illustrates a flowchart of a method 500 for composing components
of a program. After creating a component domain (act 501), an initial set of
components are instantiated and associated with the component domain (act 502).
For example, referring to Figure 2, the component domain 210 may be created with
some or all of the associated component domain logic 220. The initial set of
components in the component domain may be as few as one, but may be many
more without limit. In the example of Figure 2, there are six components 211
through 216 in the component domain. However, the number of components in the
initial set of components is not important to the broader principles of the present
invention. Each component in the initial set of components, and any subsequent
component that should be instantiated in the component domain, is associated with
the component domain such that services imported, if any, and service exported, if
any, by any of the components are made visible to the component domain.

[0056] As part of this instantiation process, nested components are expanded (act
503). Figure 6 illustrates a flowchart of a method 600 for instantiating components.

The component itself is first instantiated (act 601). If the component does not

16

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

contain any nested components (No in decision block 602), then no expansion
occurs. On the other hand, if there are nested components (Yes in decision block
602), those nested components are expanded (act 603) such that the nested
components are also visible to the component domain to the extent that services
imported, if any, by the nested component are made visible to the component
domain, and such that services exported, if any, by the nested component are made
visible to the component domain. An example of this expansion was illustrated
with respect to Figure 4. This expansion may be performed whenever a component
having one or more nested components is instantiated into the component domain.
Alternatively or in addition, the components may be expanded at a predetermined
time each time a binding is iterated. For instance, in Figure 3, the expansion of
nested components occurs at the beginning of each iteration.

[0057] Returning to Figure 5, once all of the components have been expanded, the
component domain logic optionally notifies at least some of the initial set of
components that the component domain logic is about to poll the components for
services exported (act 504). The component domains may respond by taking any
action it is programmed to take in preparation for being polled regarding its service
exports. For instance, the component might programmatically instantiate another
component into the component domain. The component might otherwise put its
state in appropriate readiness for receiving a service export request.

[0058] Next, the component domain logic polls each component in the component
domain for service exports offered by the components (act 505). From this list,
service export data may be formulated. Next, the component domain logic may
poll each component for service imports, and may satisty each of the service
imports with the list of service exports (act 506). As explained in further detail
with respect to Figure 7, if a service export is not found for satistfying a service
import, the component domain logic may search the catalog for classes that provide
the service, and then if appropriate cause a component of the cataloged class to be
instantiated.

[0059] If there are multiple service exports that can satisfy a particular service

import, and multiple exports are acceptable to the service import, then all of the

17

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

service exports are made available to the service import as a collection of service
exports. There is also a case in which there might be more service exports that can
satisfy a service import than the service import wants. For example, perhaps there
are multiple service exports that might satisfy a service import that has indicated
that it wants only one or no more than one service export. Alternatively, perhaps
there are 10 service exports available for a service import that has designated that it
wants no more than 4 service exports. In that case conflict resolution is used to
identify how to handle these cases.

[0060] One optional conflict resolution step is to simply have the composition
process fail if there are more service exports than the service import wants. In that
case, an exception report may give some guidance as to the reason for the failure to
complete the composition process. Another option would be to have rules for
designating the acceptability of a particular match, and have the more acceptable
service export(s) matched with the service import such that the appropriate number
of service exports are bound with the service import. If there were no matching
service exports, then the service import might also specify whether or not an empty
match would be acceptable. This might depend on the importance of functionality
enabled by the importation of the service.

[0061] For example, referring to Figure 7, upon searching the components within
the component domain (act 701), it is determined whether or not there exists a
service export within the component domain that satisfies a particular service
import (decision block 702). If a service component that provides the service
export is found (Yes in decision block 702), then the service import is satisfied
using the service export of the component found within the component domain (act
703).

[0062] On the other hand, if a service component that satisties a particular service
import is not found within the component domain (No in decision block 702), then
a component is found outside of the component domain that exports the appropriate
service (act 704). This may be accomplished by, for example, consulting a catalog

listing component classes and their services exported.

18

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

[0063] Depending on whether the component is to be instantiated within the
component domain (“Instantiation” in decision block 705), or abstracted by the
component domain logic (“Abstraction” in decision block 705), different action
may then be taken.

[0064] If instantiation of the component is to occur, the found component is to be
instantiated in the component domain (act 706), and the service exported by the
newly instantiated component is bound with the service import of the pre-existing
component in the component domain (act 707). If abstraction is to occur, the
abstraction mechanism of the component domain logic may abstract the service
export offered by the found component (act 708).

[0065] Returning to Figure 5, once the initial iteration of binding is completed, the
various components are notified that the binding iteration is completed (act 507).
At this stage, the components might make visible new service imports or exports in
response to the initial binding.

[0066] In this embodiment, the expansion of nested components are performed first,
the polling for service exports is done next, and the polling for service imports and
satisfaction of each service import is done next. However, so long as these steps
are performed in a predetermined order, and the various components have an
understanding of that order, the components may take appropriate action based on
where in the predetermined order the components are. For example, in the above
example, the components were to first expand nested components prior to service
export polling. Furthermore, the services were in a position to get themselves
ready for polling by, for example, instantiating other components
programmatically. Finally, once the initial binding was complete, the components
knew that the iteration might be repeated, and so they had the opportunity to expose
new service imports and exports for the next iteration.

[0067] Returning to Figure 5, it is then determined whether or not the binding
operation from the last iteration caused any side effects that would require another
iteration of the binding operation (decision block 508). For example, in the binding
operation, new components may have been instantiated into the component domain.

For instance, perhaps components were found in the catalog and instantiated into

19

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

the component domain. Those newly instantiated components may themselves
have service imports. Furthermore, when a component has a service bound, it may
discover that it can offer new service exports, and may need to expose new service
imports.

[0068] If reiteration is required (Yes in decision block 508), the component domain
logic once again expands any nested components of any newly instantiated
components (act 503) (if not expanded already during initial instantiation), and then
notifies each of the components that service export polling is about to begin (act
504). The determination that reiteration is to be performed may be performed well
after the initial set of components is already bound. For example, a new version of
a program may become available requiring a rebinding operation for each of the
components.

[0069] If reiteration is not required (No in decision block 508), then the components
are notified that the binding operation is complete (act 509). This composition of
components was performed at runtime, not at compile time, and was based on a
loose identification of a service import and export. This allows for new
components to be added, and for old components to be modified, and added to the
system after the time of shipment. For instance, a catalog may be updated when
new components become available for a particular program. When the program
next runs, the components offering a particular service may be acquired from a
remote location such as, for example, over a network from a program vendor.
[0070] In some cases, an iteration might be terminated. For instance, in the process
of attempting to satisfy the imports with the exports (in act 506), it may be
discovered that some imports cannot be acceptably satistied using the current set of
available components. In that case, the process may terminate. The computing
system may automatically, or perhaps with user help or perhaps following some
policy rules, may then change the set of components by removing one or more
components and/or adding one or more components to the component domain.
Then, the composition process may again be reinitiated. At the time of the
reinitiation of the composition process, if some imports are already bound to some

exports, then the rebinding might optionally honor that binding by not attempting to

20

10

WO 2009/099691 PCT/US2009/030211

rebind to another exports. Alternatively, the composition process might start afresh
without giving deference to existing bindings. In between these two extremes,
there are a variety of different levels of deference that can be given to existing
bindings.

[0071] The present invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The described embodiments
are to be considered in all respects only as illustrative and not restrictive. The
scope of the invention 1s, therefore, indicated by the appended claims rather than by
the foregoing description. All changes which come within the meaning and range

of equivalency of the claims are to be embraced within their scope.

21

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

CLAIMS
What is claimed is:

1. A computer program product comprising one or more computer-
readable media (104) having thereon computer-executable instructions that, when
executed by one or more processors (102) of a computing system (100), cause the
computing system to perform a method for composing a plurality of components of
a program, the method comprising:

an act of creating (501) a component domain (112, 210);

an act of instantiating (502, 601) an initial set of one or more components
(211) such that they are associated with the component domain, and such that
services (A, B, C, D, E, F) imported, if any, by each of the components in the initial
set are made visible to the component domain, and such that services exported, if
any, by each of the components of the initial set are also made visible to the
component domain;

an act of the component domain identifying (602) any component of the
initial set of one or more components that includes nested components (401, 402,
411, 412);

for each component of the initial set of components that includes one or
more nested components, an act of expanding (503, 603) the component that
includes one or more nested components such that the nested components are also
visible to the component domain to the extent that services imported, if any, by the
nested component are made visible to the component domain, and such that
services exported, if any, by the nested component are made visible to the
component domain;

an act of the component domain polling (505) the initial set of components
for services exported; and

an act of the component domain polling (506) the initial set of components
for services imported and satisfying at least one of the services imported of at least
one of the components of the initial set of components using one of the services
exported by another of the initial set of components, wherein the acts of expanding

tfor each component that includes one or more nested components, the act of the

22

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

component domain polling for services exported, and the act of the component
domain polling for services imported and satisfying at least one of the services
imported occur in a predetermined order.

2. A computer program product in accordance with Claim 1, wherein
the predetermined order is first the act of expanding for each component that
includes one or more nested components, second the act of the component domain
polling for services exported, and third the act of the component domain polling for
services imported and satisfying at least one of the services imported.

3. A computer program product in accordance with Claim 2, the method
further comprising:

prior to the act of polling for services exported, an act of notifying at least
some of the initial set of components that polling for services exported is about to
begin.

4, A computer program product in accordance with Claim 3, the method
further comprising:

after the act of polling for services imported and satisfying at least one of the
services imported, and act of notifying at least some of the initial set of components
that polling for services imported and satisfying at least one of the services
imported has now completed for now.

S. A computer program product in accordance with Claim 2, the method
further comprising:

after the act of polling for services imported and satisfying at least one of the
services imported, an act of notifying at least some of the initial set of components
that polling for services imported and satisfying at least one of the services
imported has now completed for now.

6. A computer program product in accordance with Claim 2, wherein
the collective acts including the act of expanding for each component that includes
one or more nested components, the act of the component domain polling for
services exported, and third the act of the component domain polling for services
imported and satisfying at least one of the services imported are performed in an

initial iteration of the collective acts of polling, the method further comprising:

23

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

after the act of polling for services imported and satisfying at least one of the
services imported in the initial iteration of the collective acts, an act of determining
if there might be further services imports that were added as a result of the act of
satisfying at least one of the service imports; and

an act of performing a subsequent iteration of the collective acts.

7. A computer program product in accordance with Claim 6, wherein
the collective acts are iteratively performed for a plurality of iterations until all
service imports are satistied.

8. The computer program product in accordance with Claim 6, wherein
the additional service imports were added as a result of additional components
being associated with the component domain in order to satisty a service import of
the initial set of components, an additional service import being a service import of
at least one of the additional components.

0. The computer program product in accordance with Claim 6, wherein
the additional service import was added by one of the initial set of components after
having had another of its service imports satisfied.

10. The computer program product in accordance with Claim 1, wherein
the one or more computer-readable media are physical memory and/or storage
media.

11. A computer program product comprising one or more computer-
readable media (104) having thereon computer-executable instructions that, when
executed by one or more processors (102) of a computing system (100), cause the
computing system to perform a method (500) for composing a plurality of
components (211-216) of a program, the method comprising:

an act of creating (501) a component domain (112, 210) that is capable of
identifying services (A, B, C, D, E, F) exported and services imported by each
component instantiated within the component domain;

an act of instantiating (502) an initial set of components in the component
domain; and

an act of iteratively performing the following for at least two iterations:

24

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

an act of performing (503, 603) a nested component (401, 402, 411,
412) expansion (410) of each of the components in the initial set of
components, wherein the nested component expansion allows the
component domain to identify services exported and imported by the nested
components;

an act of the component domain identifying (505) the services
exported, if any, by each of the components in the initial set of components
including the nested components;

after identifying the services exported, an act of the component
domain identifying the services imported (506), if any, by each of the
components in the initial set of components;
an act of satisfying (5006) at least one of the services imported; and

an act of determining (508) whether there are yet other services
imported that are yet to be satisfied after the act of satisfying, and if so,
continuing the act of iterating with the next iteration with respect to a
possibly expanded set of components in the component domain, and if not,
ending the act of iterating.

12. The computer program product in accordance with Claim 11, wherein

the one or more computer-readable media are physical memory and/or storage

media.

13. The computer program product in accordance with Claim 12, wherein

for at least one of the iterations, the act of satisfying at least one of the services

imported comprises:

an act of satisfying at least one of the services imported with a service

exported by another of the components in the component domain.

14. The computer program product in accordance with Claim 12, wherein

for at least one of the iterations, the act of satisfying at least one of the services

imported comprises:

an act of searching the instantiated components within the component

domain;

25

10

15

20

25

30

WO 2009/099691 PCT/US2009/030211

an act of determining that none of the instantiated components in the
component domain export the service;

an act of finding a component that is not yet instantiated inside the
component domain that exports the service;

an act of instantiating the found component in the component domain; and

an act of binding the service exported by the instantiation of the found
component with the service imported by the component that was already
instantiated within the component domain.

15. The computer program product in accordance with Claim 14, wherein
the act of finding comprises:

an act of consulting a catalog listing components and their services exported.

16. A computer program product in accordance with Claim 11, wherein
the nested components expanded includes at least two levels of nested components.

17. A computer program product in accordance with Claim 11, further
comprising:

for at least one of the iterations, an act of notifying the components in the
component domain before identifying the services exported by the components, and
after the act of satistfying at least one of the services exported.

18. A computer program product in accordance with Claim 11, further
comprising:

an act of notifying the components in the component domain after the act of
iterating is complete.

19. A computer program product comprising one or more computer-
readable media (104) having thereon computer-executable instructions that, when
executed by one or more processors (102) of a computing system (100) , cause the
computing system to perform a method (500) for composing a plurality of
components (211-216) of a program, the method comprising:

an act of creating (501) a component domain (112, 21) that is capable of
identifying services (A, B, C, D, E, F) exported and services imported by each

component instantiated within the component domain;

26

10

15

20

25

WO 2009/099691 PCT/US2009/030211

an act of instantiating (502) an initial set of components in the component

domain;

an act of iteratively performing the following for at least two iterations:

an act of performing (503, 603) a nested component (401, 402, 411,
412) expansion (410) of each of the components in the initial set of
components, wherein the nested component expansion allows the
component domain to identify services exported and imported by the nested
components;

an act of notifying (504) the components in the component domain
before identifying (505) the services exported by the components,

an act of the component domain identifying (505) the services
exported, if any, by each of the components in the initial set of components
including the nested components;

after identifying (505) the services exported, an act of the component
domain identifying the services imported (506), if any, by each of the
components in the initial set of components;

an act of satisfying (506) at least one of the services imported; and

an act of notifying (507) the components in the component domain
that the act of satisfying is complete;

an act of determining (508) whether there are yet other services
imported that are yet to be satisfied after the act of satisfying, and if so,
continuing the act of iterating with the next iteration with respect to a
possibly expanded set of components in the component domain, and if not,
ending the act of iterating; and

an act of notifying (509) the components in the component domain that the

act of iterating is complete.

20. The computer program product in accordance with Claim 19, wherein

the one or more computer-readable media are physical memory and/or storage

media.

27

PCT/US2009/030211

WO 2009/099691

1/6

i

YIOMIBN

} Ol

SHEIOA-UON g

ameion ||

80}
SjeuuBYD
UOIROILINUWIOD

voL N
Aowem

wasAs Bunndwon

20t
{$)10$5200id

2L
LB
suodiuos

17 abo uewoq
suodwoen

WO 2009/099691 PCT/US2009/030211

2/6

200

Component Domain Logic 220

Association Service inventory
222 223
Nested Component Matching Maiching
Expansion Mechanism Rules
224 225 226
Abstraction Cataloging Catalog
427 228 229

FIG. 2

WO 2009/099691 PCT/US2009/030211

3/6

300

FIG. 3

WO 2009/099691 PCT/US2009/030211

4/6

401

1 Nested Component
' Expansion
410

401

FIG. 4

WO 2009/099691

5/6

500

Create Component
Domain

L~ 501

v

Instantiate Initial
Component Set

502

¥

Expand Nested
Components

503

v

Notify Componenis That
Service Export Polling
To Begin

504

v

Service Export Polling

L~ 505

¥

Service Import Discovery
And Satisfaction

L~ 506

v

MNotify That lteration
Complete

507

~" More ™~
Service Imports ™
~, DueToSide

' No

Notify Componenis That
Binding Is Complete

L~ 509

FIG. §

PCT/US2009/030211

WO 2009/099691

PCT/US2009/030211
6/6
600
instantiate Component ¢~ 601
" Nested
.................. Compr?ﬂemg
kil
; 604 Expand Nested 603
No Expansion - Components -
FiG. 6
160
Search Component 7 701
~ 702
~Component ~_
. hatkxports 3 Yes
/704 /703
Find Component Qutside Satisfy Import Using

Domain

Component From Domain

“Tnstantiation™~

Instantiation "
Or

“Thabstraction

705

708

A o
e S
, gmponen
Domain
¥
Rind L~ 707

FIG. 7

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings

