

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199740951 B2
(10) Patent No. 726305

(54) Title
Plating turbine engine components

(51)⁶ International Patent Classification(s)
C25D 005/34 C25D 005/48

(21) Application No: 199740951 (22) Application Date: 1997.10.10

(30) Priority Data

(31) Number (32) Date (33) Country
08/733028 1996.10.16 US

(43) Publication Date : 1998.04.23

(43) Publication Journal Date : 1998.04.23

(44) Accepted Journal Date : 2000.11.02

(71) Applicant(s)
Chromalloy Gas Turbine Corporation

(72) Inventor(s)
David Kang; Kevin Updegrave; Frank Goodwater

(74) Agent/Attorney
GRIFFITH HACK, GPO Box 3125, BRISBANE QLD 4001

(56) Related Art
US 4743469
US 4224118
US 4978558

PLATING TURBINE ENGINE COMPONENTS

Abstract

A process is provided for plating a coating onto a gas turbine engine component without detrimentally effecting air flow through cooling holes by injecting a maskant into the cooling passage to fill the cooling holes with the maskant, plating the external surface of the component with a coating, then removing the maskant from the component.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659

AUSTRALIA
Patents Act 1990

**ORIGINAL
COMPLETE SPECIFICATION
STANDARD PATENT**

Invention Title: PLATING TURBINE ENGINE COMPONENTS

The following statement is a full description of this invention, including the best method of performing it known to us:

GH REF: P21988-D:GS:RK

PLATING TURBINE ENGINE COMPONENTS

Background of the Invention

This invention relates to a process for plating gas turbine engine components, more particularly it relates to the masking of cooling holes in a gas turbine engine component during the plating process.

The blades and vanes which are commonly used in the turbine section of modern gas turbine engines are typically made of nickel and cobalt based superalloys. The composition of the superalloys are generally tailored to provide a desirable combination of mechanical strength and resistance to environmental degradation (e.g. oxidation and hot corrosion). Coatings are often used to increase the level of oxidation and hot corrosion resistance, allowing the components made from such superalloys to be used for long periods of time before they need to be replaced or repaired.

Such protective coatings can typically be applied by plating wherein an article is immersed in a plating medium. One problem faced by this coating technique is the deposition of the coating in unwanted areas. A variety of techniques have been developed to prevent coatings in undesired areas including the use of film forming polymeric resinous materials to protect the metal surface as is disclosed by U.S. Patent 3,451,902. See also U.S. Patents 2,999,771, 4,089,686 and 4,224,118.

In gas turbine engines various components, in particular the high temperature turbine blades and vanes, are invariably air cooled to permit operation of the engine at a higher temperature. This air cooling requires the use of complex air cooling passages and cooling holes in the blades and vanes. In the application of protective coatings to such blades and vanes there is the tendency of the coatings to enter the cooling hole passages and have a detrimental effect on air flow. This problem has been observed in plating processes, e.g. platinum plating, wherein the platinum enters into and overlaps the hole opening thereby plugging the hole and having a serious consequence

on air flow therefrom. Some holes are observed to be completely plugged, while the plugging of other holes affects air flow by 10% to higher than 50%.

Various techniques which have been used in the art to deal with the hole plugging problem of plated blades have included: drilling the holes to a larger opening prior to coating to account for the subsequent plating; redrilling the holes after the plating has taken place; or sticking wires into the holes during the plating process. These methods are generally considered to be unsatisfactory, because they are time consuming and generally inefficient.

Summary of the Invention

The present invention provides a process of plating a coating onto a gas turbine engine component containing a plurality of cooling holes and a cooling passage interconnected therewith, the process including the steps of:

injecting a maskant into the cooling passage of the component filling the cooling holes of the component with the maskant;

plating the external surface of the component with the coating by immersing the component in a plating medium; and

removing the maskant from the component.

Brief Description of the Drawings

Fig. 1 is a representative turbine blade with cooling holes.

Fig. 2 is an expanded view of a cross-section through cooling holes showing cooling hole restrictions with platinum plating.

Fig. 3 is a cross section of a turbine blade showing the direction of plastic flow for masking.

Fig. 4 is a cross section through cooling holes showing injected maskant.

Fig. 5 is an expanded view of cross section through cooling holes showing maskant.

- 2a -

Fig. 6 is a cross section through cooling holes after platinum plating with maskant showing no cooling hole restriction.

Detailed Description of

Preferred Embodiments of the Invention

A process is provided for plating a coating onto a gas turbine engine component containing a plurality of cooling holes and a cooling passage

卷之三

interconnected therewith. Components containing such cooling passages and cooling holes include blades, vanes and shrouds.

The first step of the process involves injecting a maskant into the cooling passage(s) of the component in order to fill the cooling holes with the maskant. As shown in Figures 1 and 3 typically, for blades 1 and vanes the cooling passages 2 are accessed and the injection is carried out through the root 3. In order for the maskant to effectively fill the cooling holes 4 it may be necessary to preheat the component, and insert the hot molten maskant into the cooling passages under pressure effective to fill the cooling holes. As shown in Figures 4 and 5 the cooling holes 4 are filled so that the maskant 5 is flush with the surface of the component. The maskant is preferably an organic material which will facilitate its application and subsequent removal. The maskant is used to prevent coating of the metallic surface areas it is in contact with during plating and should not detrimentally react with the metal surface of the component or interfere with the plating bath. Plastics are preferred in that they can be injection molded into the component in a liquid state, then cured to harden the plastic for the subsequent plating process. Suitable maskants include polypropylene and a polyurethane oligomer mixture. Preferably the maskant will not contain halogens which could detrimentally react with the metal surface. When injecting the maskant care should be taken that the maskant is not present on surfaces intended to be coated. Any maskant that is present on the outside of the component is generally removed before plating.

After the maskant is injected into the cooling holes and cured to harden, if required, then plating of the external surface of the component with the protective coating can be carried out. A preferred plating process is an electroplating process which is well known in the art. A preferred protective coating to be applied by the electroplating process includes noble metals such as platinum. The use of the maskant injected into the cooling holes during the plating process inhibits coating of the holes which detrimentally affects airflow.

Following completion of the plating process, the maskant is removed. A preferred maskant and method for its removal includes a maskant which will

volatize on the application of high temperatures for an effective period of time. Other maskants which can be used include those which are removed by solvents. Typically the maskant can be removed by heat treatment at about 1100°F to 1700°F for 15 to 30 minutes. Treatment at these temperatures will not detrimentally effect the superalloy surface of the gas turbine engine component. As shown in Figure 2, without the maskant filling the cooling holes during plating, platinum will plate both the external surface 6 and the internal passages of the cooling hole 7 which detrimentally affects air flow. With the maskant filling the cooling holes during plating the platinum will plate only the external surface 8 as shown in Figure 6.

After removal of the maskant the component may then be processed as is common in the art, including a diffusion heat treatment to diffuse the protective coating, e.g. platinum, into the component's surface. Other operations may also be suitably carried out including the applications of additional coatings to the plated component. A preferred additional coating which is applied to a platinum coated substrate is a diffusion aluminide coating which can be applied by a vapor diffusion or pack diffusion (e.g. pack cementation) process followed by diffusion of the coating into the substrate at elevated temperatures (e.g. 1500 to 2000°F).

Example 1

Polypropylene at a temperature of about 400°F and under a pressure of about 1000 psi is injected into the cooling passages 2 through the root 3 of a CF6-80C2 first stage blade (see FIG 3), filling the cooling holes 4 of the blade. Excess polypropylene on the outside of the blade is cleaned off. The polypropylene sets to harden as it cools below about 200°F. The blade is then platinum plated in an electroplating bath containing a platinum diamminedinitrite solution at 180°F for 90 minutes yielding a platinum thickness of 0.0002 to 0.0004 inches. Following plating the plastic is volitized by a burnout at 1100°F for 30 minutes, ultrasonic cleaning in 150°F water for 15 minutes and a water backflush for 5 minutes.

The platinum plated parts were further coated by having a diffusion aluminide coating applied to the platinum plated surface by pack cementation and diffusion at 1800°F for 6 hours providing a platinum aluminide protective coating. The effect on airflow by hole plugging during platinum plating was measured with and without maskant injected into the cooling holes with the following observations. The average change in mass airflow is measured for each of the three chambers 9, 10 and 11 in the turbine blade 1 depicted in Figure 3, with Wa indicating the leading edge chamber 9, Wb indicating the central chamber 10 and Wc indicating the trailing edge chamber 11.

The control (without maskant) showed an average change in mass airflow for each chamber over 5 different plating and coating runs as follows:

Wa - 49.3%

Wb - 27.8%

Wc - 22.8%

The maskant injected blade showed an average change in mass airflow for each chamber over 5 different plating and coating runs as follows:

Wa - 12.1%

Wb - 8.6%

Wc - 7.7%

The masked blades thus exhibited a dramatic improvement in airflow after platinum plating and coating compared to the control platinum plated and coated blades without use of maskant.

Example 2

The process of Example 1 is repeated using a UV curable urethane acrylic polymer as the maskant which after injection is UV cured until hard and heat cured at 250°F for 30 minutes.

The plated blades also exhibited open cooling holes with minimal airflow change.

In the claims which follow and in the preceding summary of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprising" is used in the sense of "including", i.e. the features specified may be associated with further features in various embodiments of the invention."

CLAIMS:

1. A process of plating a coating onto a gas turbine engine component containing a plurality of cooling holes and a cooling passage interconnected therewith, the 5 process including the steps of:
 - injecting a maskant into the cooling passage of the component filling the cooling holes of the component with the maskant;
 - 10 plating the external surface of the component with the coating by immersing the component in a plating medium; and
 - removing the maskant from the component.
2. A process as claimed in claim 1 wherein the maskant is an organic maskant.
- 15 3. A process as claimed in claim 2 wherein the organic maskant is removed by heating the component to a temperature and for a time effective to volatize the maskant.
4. A process as claimed in claim 2 or claim 3 20 wherein the organic maskant is a plastic.
5. A process as claimed in any one of the preceding claims wherein the plating is effected by an electroplating process.
6. A process as claimed in claim 5 wherein the 25 electroplating process applies a noble metal as the coating.
7. A process as claimed in claim 6 wherein the noble metal is platinum.
8. A process as claimed in any one of claims 4 30 - 7 wherein the plastic is a polyurethane oligomer mixture.
9. A process as claimed in any one of claims 4 - 8 wherein after the plastic is injected it is cured to harden.
- 35 10. A process as claimed in any one of the preceding claims wherein the maskant on the outside of the component is removed before plating.

11. A process as claimed in claim 7 further including the step of heating the platinum plated component to diffuse the platinum into the surface of the component.

5 12. A process as claimed in claim 2 wherein the maskant is selected from the group consisting of polypropylene and polyurethane oligomer mixtures.

13. A process as claimed in any one of the preceding claims further including the step(s) of applying 10 additional coating(s) to the plated component.

14. A process as claimed in claim 7 further including the step of applying a diffusion aluminide coating to the platinum plated component.

15. A process as claimed in any one of the preceding claims wherein the component is preheated prior to injecting the maskant and the maskant is injected into the cooling passage of the component under pressure effective to fill the cooling holes.

16. A process of plating a coating onto a gas 20 turbine engine component containing a plurality of cooling holes and a cooling passage interconnected therewith, the process being substantially as herein described with reference to any one or more of the accompanying drawings.

17. A process of plating a coating onto a gas 25 turbine engine component containing a plurality of cooling holes and a cooling passage interconnected therewith, the process being substantially as herein described with reference to any one or more of the exemplary embodiments.

18. A gas turbine engine component plated by a 30 process as claimed in any one of the preceding claims.

35 Dated this 6th day of September 2000
CHROMALLOY GAS TURBINE CORPORATION

By its Patent Attorney

GRIFFITH HACK

H:\IsabelH\Spec\129165.doc 6 09/00

FIG-1

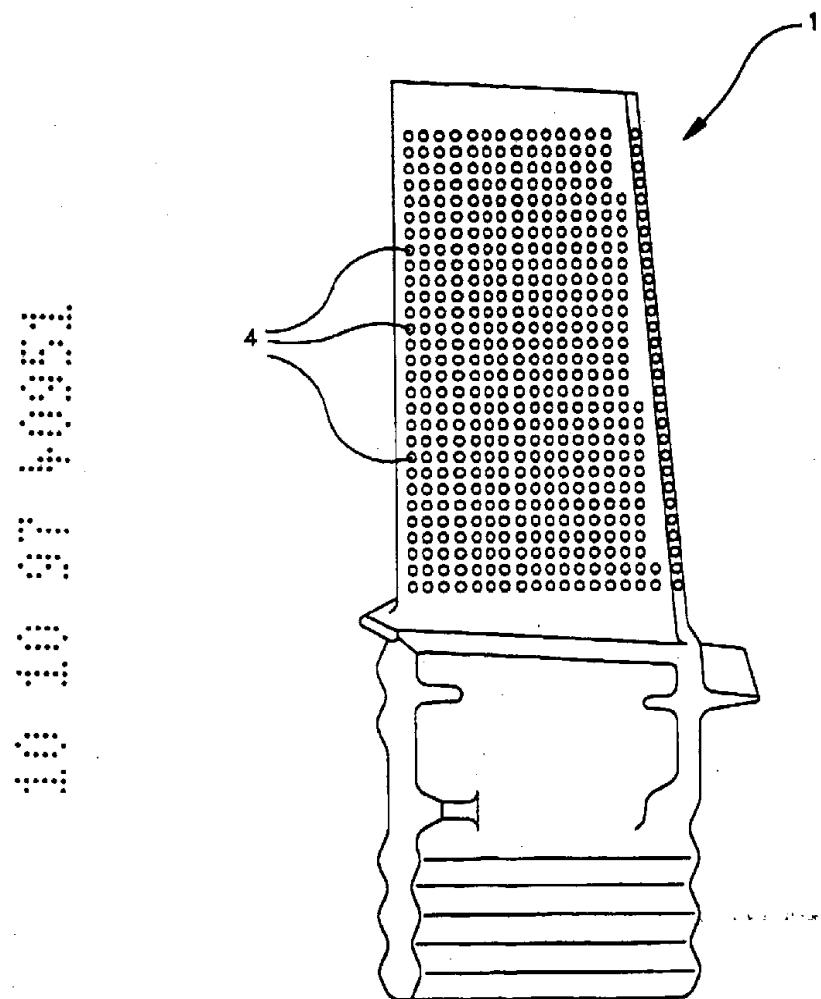
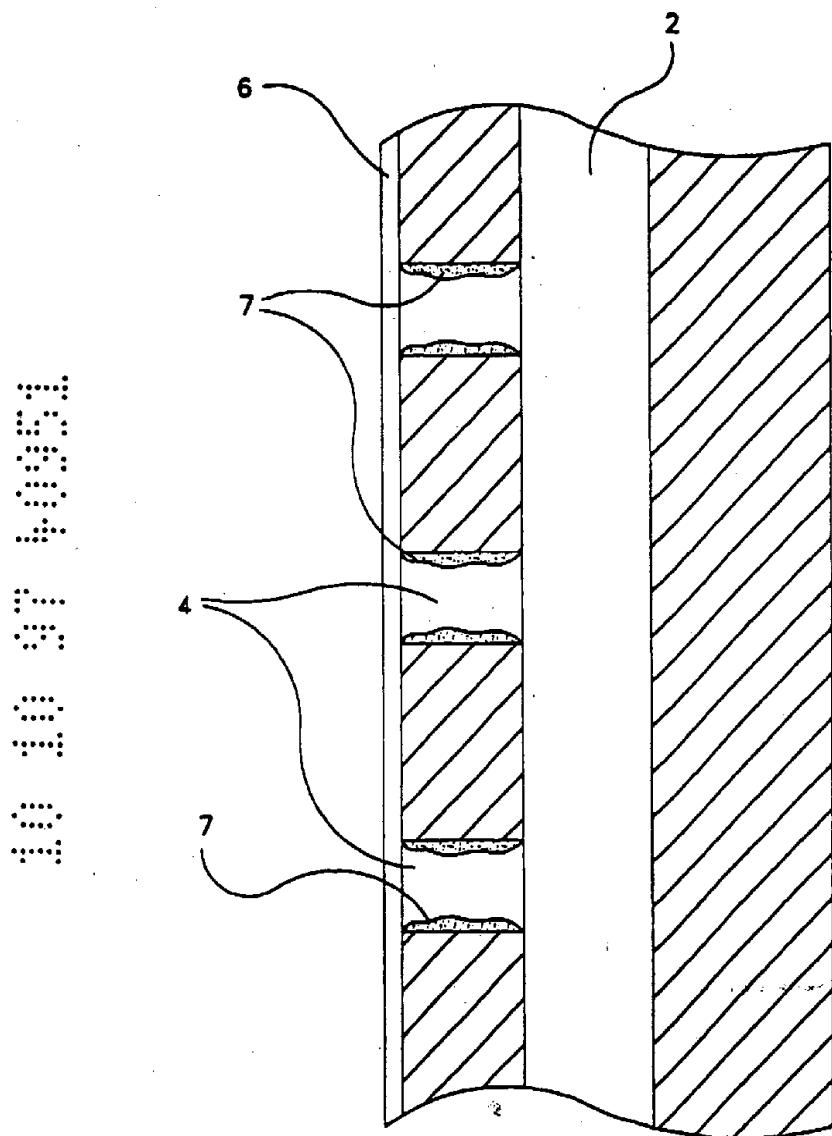



FIG-2

1000
500
250
125
62.5

FIG-3

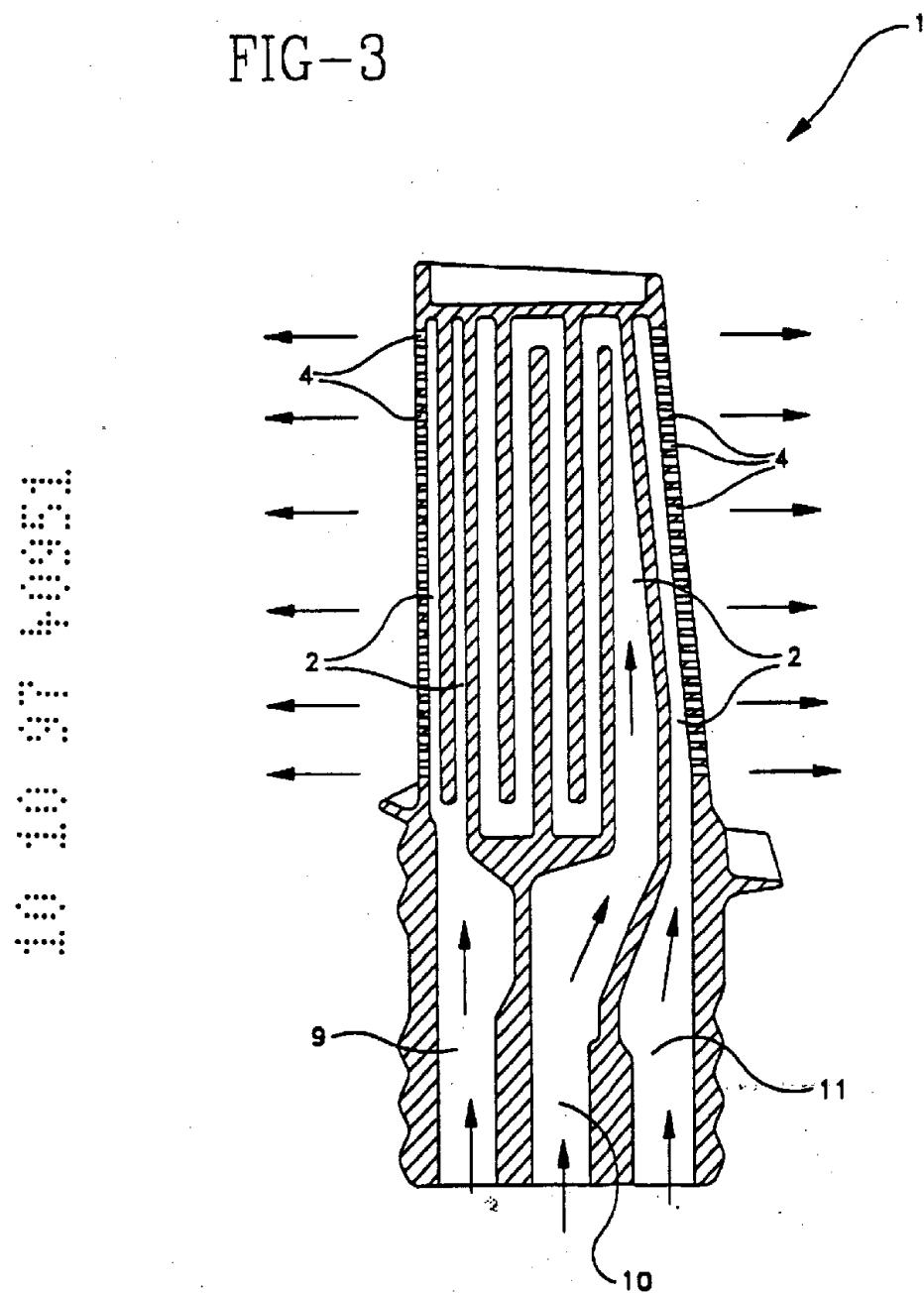


FIG-4

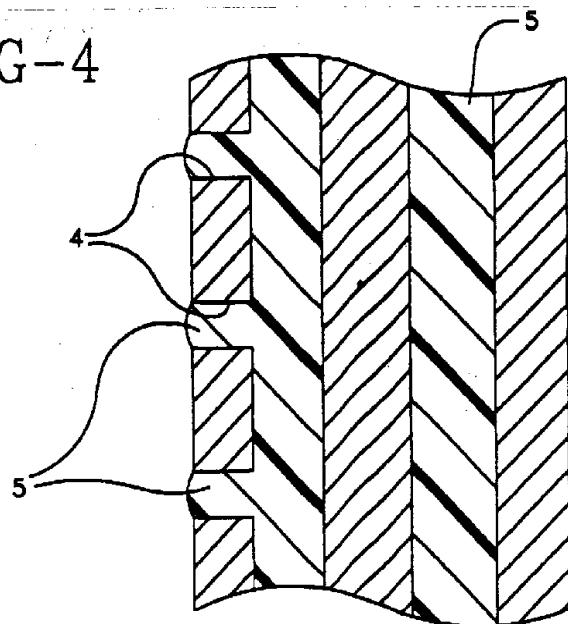

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000

FIG-5

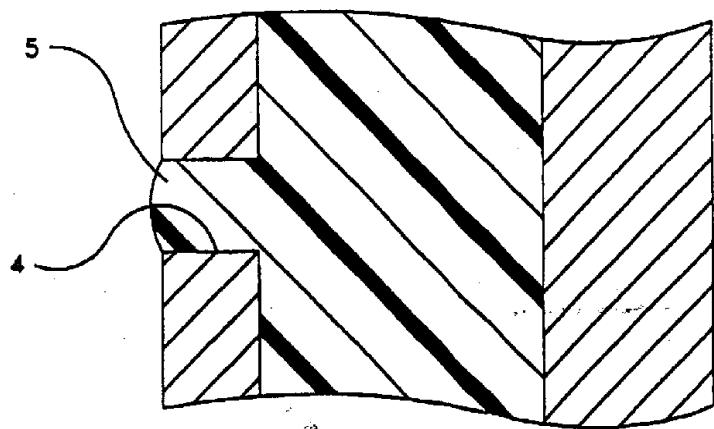
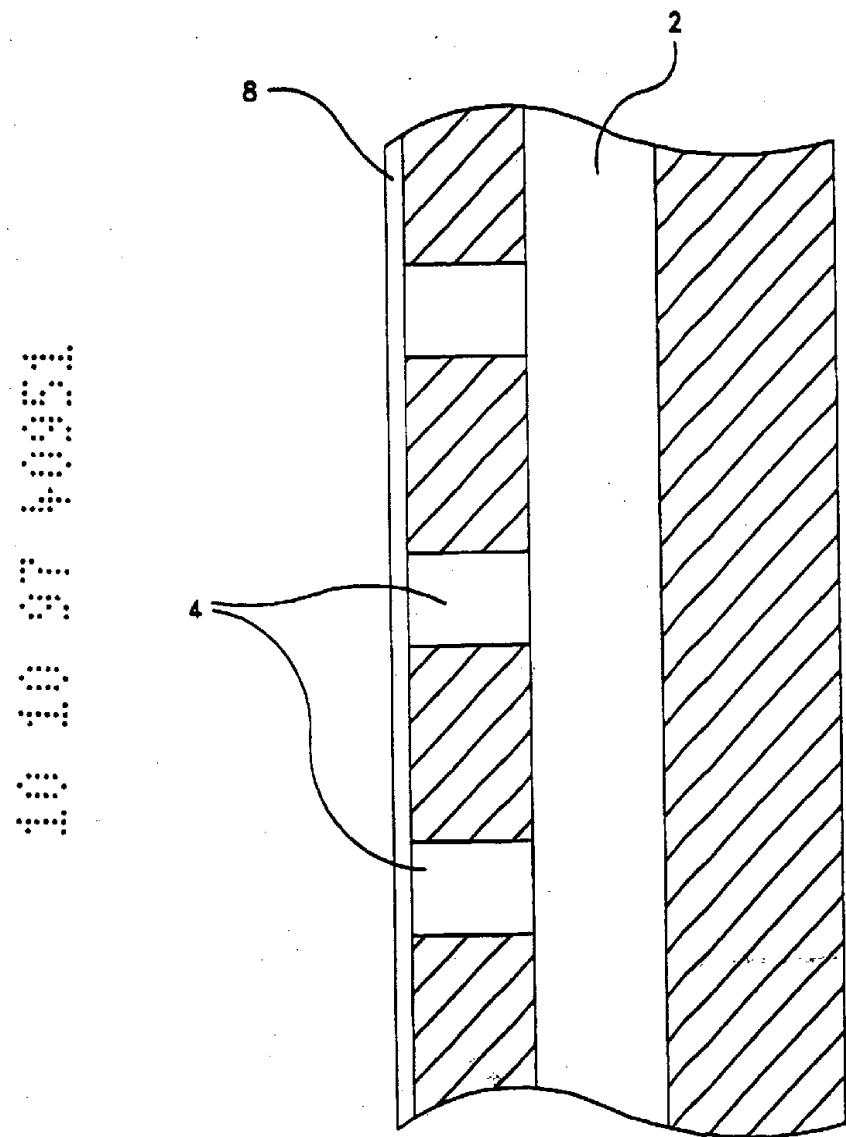



FIG-6

