ABSTRACT

An apparatus for dispensing a selected grade of motor fuel (each grade having a different octane rating) has an array of operating pushbuttons a selected one of which may be actuated (the selection being made according to the grade of fuel desired) to start the dispensing operation. Upon the actuation of a pushbutton, certain instrumentalities in the apparatus are energized or released to (among other things) select gearing in the apparatus appropriate to the grade selected, reset the counter or register to zero, set a control valve to a predetermined position, and start up the pump to cause the dispensing of fuel to begin. All of these functions are performed automatically, i.e., without any further human intervention, once the pushbutton has been actuated. Upon the termination of the actual dispensing, electrical instrumentalities are automatically activated to carry out certain resetting operations, prior to the next dispensing operation. The dispensing apparatus is particularly suitable for a self-service type of operation.

5 Claims, 17 Drawing Figures
MOTOR FUEL DISPENSING APPARATUS

This application is a division of application Ser. No. 85,612, filed Oct. 30, 1970, now U.S. Pat. No. 3,705,596, which is in turn a division of U.S. Pat. No. 3,587,337, filed Aug. 18, 1969 as Ser. No. 850,901.

This application relates to motor fuel dispensing apparatus, and more particularly to dispensing apparatus of the so-called "multigrade" type, wherein a plurality of different grades of fuel (each having a different octane rating) are selectively dispensed by a single apparatus. These various grades are provided by various blends of two fuel components of different octane ratings, and in addition by solely one component and solely the other component. Thus, the number of "grades" usually is two greater than the number of "blends."

A typical example of a "multigrade" motor fuel dispensing apparatus according to the prior art is described in my U.S. Pat. No. 2,880,908, referred to hereinafter as the '908 patent. Dispensing apparatus built according to the teachings of the '908 patent is now being used to a considerable extent in gasoline marketing operations, in service stations. However, such apparatus, while easily manipulatable for the dispensing of motor fuel by a trained service station attendant, is too complicated for a self-service or unattended type of dispensing operation, that is, for an operation wherein the customer operates the dispensing apparatus himself, for his own motor vehicle. To particularize, in the prior dispensing apparatus all of the control operations, such as fuel grade selection, resetting of the counter or register to zero, and turning the pump motor or motors on and off, must be performed manually through the actuation of various knobs or handles, some of which require considerable physical force to actuate. For fuel grade selection, one handle must be actuated and held in this actuated position while a separate knob is rotated, all while watching an indicator. A separate control lever must be actuated to effect a resetting of the counter or register, while still another handle, which calls for considerable physical force to actuate, must be rotated in one direction to turn the pump motor or motors on and in the opposite direction to turn the pump motor or motors off. In addition, the prior dispensing apparatus includes a manually-operated nozzle valve which must be opened in order to begin the actual dispensing.

The rather complicated control operations which are required for the prior dispensing apparatus render it unsuitable for a self-service type of operation. Therefore, a fuel dispensing apparatus which is much simpler to operate would be very desirable, since there is now a trend toward self-service in the industry. In addition to its use for self-service, such a simplified apparatus would be highly beneficial even for attended operation. An object of this invention is to provide a novel motor fuel dispensing apparatus.

Another object is to provide a novel motor fuel dispensing apparatus of the "multigrade" type.

A further object is to provide a "multigrade" motor fuel dispensing apparatus which is simple and convenient to manipulate.

A still further object is to provide a "multigrade" motor fuel dispensing apparatus wherein an electric motor is employed to carry out certain resetting and adjustment actions required for each dispensing operation, thereby reducing to a substantial extent the manual, physical manipulative force utilized as compared to that utilized with prior apparatus.

Still another object is to provide an automated "multigrade" motor fuel dispensing apparatus which operates to carry out the dispensing completely automatically, once a single (combined) grade selection and "start" manipulation has been performed.

The objects of this invention are accomplished, briefly, in the following manner: An array of pushbuttons is provided on each side of the housing of a "multigrade" motor fuel dispensing apparatus, one pushbutton for each "grade" to be dispensed. These pushbuttons carry individual gearing for mechanically positioning a shaft, and also actuating means which causes closure of a pair of electrical contacts when any one of the pushbuttons is actuated. If the dispensing nozzle has been properly positioned in the fillpipe of the motor vehicle fuel tank, the closure of the contacts results in the energization of a reset motor and also of a solenoid which are included in the dispensing apparatus. These two electrical instrumentalities, when energized, effect an adjustment of selective gearing in the apparatus appropriate to the grade of motor fuel selected for dispensing, in accordance with the position of the pushbutton-operated shaft, as well as an adjustment of a blend control valve in the apparatus to an appropriate position, and cause the pushbutton which has been actuated to be mechanically locked in, and reset the counter or register to zero. After the adjustments and resetting have been completed, the motor brings about energization of a relay which energizes the pump motor and starts the dispensing of the selected grade of motor fuel, and then shuts itself off.

When the dispensing operation is finished, the pump motor relay is almost immediately deenergized (terminating the dispensing), and the reset motor is automatically reenergized and the solenoid is deenergized, thereby to operate the blend control valve to an "OFF" position, and then to reset the various mechanically-adjustable items to their initial positions. A detailed description of the invention follows, taken in conjunction with the accompanying drawings, wherein:

FIG. 1 is a block diagram illustrating the liquid and mechanical connection involved in a preferred form of dispensing apparatus according to the present invention;

FIG. 2 is a side elevation, partly in section and with certain parts broken away, of the dispensing apparatus of the invention;

FIG. 3 is a sectional plan view of the apparatus, as viewed along line 3—3 in FIG. 2;

FIG. 4 is a view similar to FIG. 3, but taken along line 4—4 in FIG. 2;

FIG. 5 is a diagram illustrating electrical circuitry employed in the apparatus;

FIG. 6 is a diagrammatic illustration of the operation of certain cam-operated switches;

FIG. 7 is a horizontal section, somewhat schematic, through the blend control portion of the apparatus;

FIG. 8 is a cross-section through a portion of the dispensing apparatus, taken along line 8—8 of FIG. 7;

FIG. 9 is a bottom view of the blend control portion of the apparatus, as viewed along line 9—9 of FIG. 2;
FIG. 10 is a vertical section of the apparatus, taken along line 10—10 of FIG. 2; FIG. 11 is a side elevation, partly in section, of the lower portion of the apparatus shown in FIG. 2, but illustrating another position of the mechanism; FIG. 12 is a sectional view taken along line 12—12 of FIG. 11; FIG. 13 is a vertical section taken on line 13—13 of FIG. 12; FIG. 14 is a fragmentary section, showing certain of the parts of FIG. 13 in a different position; FIG. 15 is a view similar to FIG. 14, but illustrating still another position; FIG. 16 is a section of a portion of the apparatus taken on line 16—16 of FIG. 10, and drawn on an enlarged scale; and FIG. 17 is a diagram illustrating remote circuitry which can be used with the apparatus of the invention.

A brief description of the overall operation of the dispensing apparatus will first be given, referring to FIG. 1. In this figure, liquid connections between various elements are indicated by double lines (as pipes), mechanical connections utilized during the resetting and adjustment cycles are indicated by single dotted lines, while mechanical connection utilized during the actual dispensing operation are indicated by single solid lines. In this connection, it is noted that throughout the present description, the various resetting and adjustment operations that take place immediately prior to an actual dispensing operation will be referred to as constituting an "ON" cycle, while those resetting operations that take place after the conclusion of a dispensing operation (and prior to the start of a following "ON" cycle) will be referred to as constituting an "OFF" cycle.

In FIG. 1, the apparatus housing indicated as 1 may be more or less conventional, locked against unauthorized access, and provided with windows and various operating devices (such as pushbuttons) accessible from the outside of the housing, as will hereafter appear. Where an apparatus generally is referred to hereinafter, it will be understood that it is this housing and the parts contained therein and associated therewith, though in some cases (as will hereinafter appear) there may be a remote unit associated with the apparatus. Included in the dispensing apparatus is a "lo" gasoline pumping 2 driven during dispensing by a pump motor 3 (for example, by means of a belt drive) and provided with an inlet connection 4 from a supply (storage) tank containing a "lo" or relatively low-octane gasoline (fuel) component. As usual, a bypass 5 is provided containing a relief valve 6 to bypass the pump in the event that a blend control valve is closed. The "lo" gasoline to be dispensed flows through connection 7 and a conventional "lo" meter 8 and thence through the pipe connection 9 incorporating a check valve 10.

A pump 11 for the "hi" gasoline draws its supply of "hi" gasoline (a high-octane fuel or gasoline component) from a storage tank through pipe connection 12. This pump 11 may be of the same type as the "lo" pump 2 and is preferably driven by the same motor 3. Associated with it is a bypass 13 incorporating a relief valve 14.

The "hi" gasoline pump 11 delivers the "hi" gasoline through line 15 to the "hi" meter 16 which may be of the type serving to meter the "lo" gasoline. Delivery from the meter 16 takes place through piping 17 which includes the check valve 18.

The "lo" and "hi" gasolines delivered, respectively, through lines 9 and 17, are respectively controlled by the "lo" and "hi" sections of a blend control valve 19, to be further described hereinafter. The "lo" and "hi" gasolines, as controlled by the "lo" and "hi" sections of the valve 19, are delivered through conduits 20 and 21, which are connected to passages through a hose to a nozzle, such as the nozzle disclosed in FIGS. 7 and 8 of my U.S. Pat. No. 3,590,890, referred to hereinafter as the '890 patent. The hose passages are maintained separate, communicating with each other closely adjacent to the nozzle itself, so that admixture of the two components cannot taken place to any substantial degree so as to markedly change the composition dispensed. As disclosed in my '890 patent, if, but only if, the nozzle is properly inserted into the filipipe of a motor vehicle fuel tank, electrical continuity is provided by the filipipe between a pair of spaced electrodes mounted on the nozzle, thus completing a conducting path between such electrodes, one of which is grounded. This conducting path will be further referred to hereinafter.

As disclosed in my '890 patent, a triple-conduit hose combination connects housing 1 to the nozzle mentioned. The third conduit 22 of this combination (being in addition to the conduits 20 and 21) is utilized, during dispensing, for abstracting air and vapor from the fuel tank into which the nozzle is inserted. The housing end of the vapor conduit or hose 22 is connected to a vacuum pump 23 by way of a tee fitting 24. The vacuum pump 23 is driven (as by way of a belt drive) during the actual dispensing by the pump motor 3, along with pumps 2 and 11. A vacuum switch 25 is also connected to the tee 24, so as to be responsive to the pressure in conduit 22. This vacuum switch, as disclosed in my '890 patent, includes a pair of electrical contacts which are opened in response to a "full" condition of the motor vehicle fuel tank. These contacts will be further referred to subsequently. These contacts are mechanically held closed during a portion of the "ON" resetting and adjustment cycle, until the actual dispensing gets well under way, by means of a cam arrangement schematically indicated at 26 and described in detail hereinafter. This cam arrangement is also referred to in my '890 patent. It has been stated previously that the vacuum pump 23 is used to abstract air and vapor from the fuel tank. (This pump also in a sense forms a portion of the automatic shutoff for a "full" fuel tank, since it establishes the pressure in conduit 22, to which vacuum switch 25 is responsive.) The air and vapor (which together may be thought of as tank vapors) discharged from vacuum pump 23 is preferably conducted (by means of one or more pipes, not shown) back to the underground storage tanks (from which tanks connections are made at 4 and 12, respectively, to pumps 2 and 11).

The "lo" meter 8 provides one input 27 to a differential 28, the other input to which is provided at 29 from the "hi" meter 16. The output of the summation-type differential 28 at 30 represents the sum of the two quantities delivered by the two meters 8 and 16, and operates the total gallons portion of the gallons and
cost counter or register 31. This said portion of the counter 31 is arranged to indicate the total gallons dispensed during an operation, through a suitable window arrangement in the apparatus housing 1.

A second output from the differential 28, also corresponding to total gallons, is delivered at 32 to a variator 33 in which is set the price per gallon ascribed to the "lo" gasoline. The setting of this variator may be changed by a manual operation from time to time, whenever the price of the "lo" gasoline changes; this setting is changed only by an authorized person, upon proper access to the interior of housing 1. This price setting is automatically exhibited through a window in the housing 1. The output 34 of variator 33 represents the total gallons of both "lo" and "hi" gasolines multiplied by the price of the "lo" gasoline.

A third output from the differential 28, also corresponding to total gallons, is provided at 35 to a price increment unit (termed "selective gearing" in my '908 patent) indicated at 36, from which there is provided an output 37. The price increment unit 36 just mentioned is reset (i.e., adjusted) during each "ON" resetting and adjustment cycle concurrently with, and in dependence upon, the adjustment for control of the grade of fuel to be dispensed. The mechanical arrangement whereby this resetting is effected is indicated schematically at 38, and will be further referred to hereinafter. As described in detail in my '908 patent, the price increment unit 36 effects the multiplication of the total gallons dispensed (at 35) by an amount according to the excess (or increment) of the price per gallon of a grade being dispensed over the price per gallon ascribed to the "lo" gasoline. The output from the price increment unit delivered at 37 provides an input to a summing-type differential 39, the other input to which is 34, the differential providing its output at 40 to the total cost portion of the gallons and cost register 31. This portion of the register 31 is arranged to exhibit through a window in the apparatus housing 1 the total cost of the gasoline dispensed.

Another output at 41 from the "lo" meter 8 provides an input to a "lo" gear box 42, while a corresponding output at 43 from the "hi" meter 16 provides an input to a "hi" gear box 44. The gear boxes 42 and 44 are reset (i.e., adjusted) during each "ON" resetting and adjustment cycle to adjust the control of the grade of fuel to be dispensed. The mechanical arrangement whereby the "lo" gear box 42 is adjusted is indicated schematically at 45, while the mechanical arrangement whereby the "hi" gear box 44 is adjusted is indicated schematically at 46. The "lo" and "hi" gear boxes may together be thought of as comprising a blend control unit.

The outputs of the "lo" and "hi" gear boxes at 47 and 48 drive a subtractive differential 49, the output of which at 50 controls concurrently the relative positions of the "lo" and "hi" sections of the blend control valve 19. For example, this control may be effected by means of a pair of shafts which are operated simultaneously to control valve shoes in the "10" and "hi" sections of valve 19, as will be described hereinafter. In brief, with particular settings of the "10" gear box 42 and the "hi" gear box 44, if the meters 8 and 16 indicate a proper ratio of deliveries of "lo" and "hi" gasolines, the output at 50 is zero and does not affect the settings of the valve shoes in the two portions of valve 19. On the other hand, if this correspondence does not exist, an output at 50 adjusts the valve shoes to control the composition of the delivered blend. At this juncture, it is desired to be pointed out that for the dispensing of solely the "lo" gasolene or solely the "hi" gasoline, the gear boxes 42 and 44 and the differential 49 are in effect rendered inoperative and thus out of the picture. For the dispensing of the "lo" or "hi" components separately, the blend control valve 19 is mechanically placed in a predetermined corresponding position and is positively maintained in such position during the dispensing operation. This will all be described in somewhat more detail hereinafter.

Also operating on the shoes of valve 19 are two mechanical arrangements indicated schematically at 51 and 52. The arrangement 51 is operated by a solenoid 53 and functions to bring the valve 19 to an open position at the beginning of a dispensing cycle and to bring this valve to a closed position at the end of the actual dispensing operation; this arrangement will be described more in detail hereinafter. The arrangement 52 is controlled by a reset motor 54 during the "ON" and "OFF" resetting cycles and functions to bring the valve 19 to certain predetermined positions; this arrangement will also be described in detail hereinafter.

The reset motor 54 also controls the mechanical arrangements 26, 38, 45, and 46 previously referred to, and also operates to reset the number wheels of the register 31 to zero during the "ON" resetting cycle, through a mechanical arrangement indicated schematically at 55. In addition, the motor 54 operates a group of cam-operated switches 56 through a mechanical arrangement indicated schematically at 57. All of these mechanical arrangements will be described in detail hereinafter.

Refer now to FIGS. 2-4. A vertically-extending array or column of operating or grade selecting pushbuttons 58-65, which for convenience may be termed "start" buttons, is provided at one side of the apparatus housing, in the upper portion thereof, these buttons extending through respective holes in a suitable escutcheon plate (not shown) and thus being accessible for operation from the exterior of the housing. A duplicate array of pushbuttons 58-65′ is provided at the opposite side of the housing, so that the dispensing apparatus may be operated or started from either side. The last mentioned pushbuttons are located directly opposite (across the housing) to the respective "start" buttons 58-65. The apparatus housing is generally frustum-pyramidal in configuration, so the arrays of pushbuttons 58-65 and 58′-65′, viewed from the side thereof as in FIG. 2, slope inwardly from bottom to top, as shown.

The "start" buttons 58-65 and 58′-65′, being arranged for grade selection, each correspond in number to the number of grades of motor fuel which the dispensing apparatus is capable of dispensing, there being one button (on each side of the housing) for each respective grade of fuel. Assume, for purposes of illustration, that the dispensing apparatus is capable of dispensing any one of eight grades of motor fuel; thus, there are eight "start" buttons 58-65 on one side of the housing, and eight "start" buttons 58′-65′ on the opposite side of the housing. Each of these buttons car-
ries, on its outer end, individual indicia (such as an arbitrarily-assigned number) corresponding to a respective grade of motor fuel. By way of example only, these numbers may be respectively as follows, beginning with button 58 and proceeding in order to button 65: 190, 200, 210, 220, 230, 240, 250, and 260. Button 58 may correspond to solely "lo" gasoline, and button 65 to solely "hi" gasoline, the remaining buttons corresponding to blends of "lo" and "hi" gasolines.

Each of the "start" buttons 58–65 is mounted for individual sliding movement in a direction inwardly and outwardly of the apparatus housing, by means of an individual shank such as 66 (FIG. 3) secured to each respective pushbutton. The inner end of each shank is slidably mounted in a respective aperture provided in the base of a channel-shaped support 67 secured to the apparatus housing and extending somewhat vertically, parallel to the array of pushbuttons. Each "start" button is biased outwardly by a separate coiled spring such as 79 which surrounds the respective shank 66, one end of the spring bearing against the base of support 67 and the other end thereof bearing against the inner end of the respective pushbutton.

The shank of each of the pushbuttons 58–65 carries linear or rack-like gear teeth such as illustrated at 68 (FIG. 3). Each of these pushbutton shanks has a different number of teeth, as follows: pushbutton 58, eight teeth; pushbutton 59, seven teeth; pushbutton 60, six teeth; pushbutton 61, five teeth; pushbutton 62, four teeth; pushbutton 63, three teeth; pushbutton 64, two teeth; pushbutton 65, one tooth.

It is again pointed out that all of the structure so far described (at one side of the housing) is duplicated at the opposite side of the housing. There is a pushbutton (in the array 58–65 at the opposite side of the housing) exactly corresponding to each respective one of the pushbuttons 58–65, and the former carry rack-like teeth corresponding to those carried by the latter, the least number of teeth being carried by the uppermost pushbutton 65' and the greatest number of teeth being carried by the lowermost pushbutton 58'. The duplicated structure at the opposite side of the housing is denoted by the housing same reference numerals but carrying prime designations.

A shaft 69, the axis of which extends more or less vertically and parallel to the support 67, is journaled for rotation in a pair of fixed bearings 70 secured to the base of support 67. Fixedly secured to shaft 69 are eight sector gears 71 (one for each of the pushbuttons 58–65) which are all exactly alike (they may each have ten teeth, for example) and which are adapted to mesh with the rack-like gear teeth carried by the respective pushbuttons. Each of the sector gears 71 is so located as to mesh with a corresponding one of the pushbutton-carried rack gears, when such pushbutton is pushed inwardly. To make this possible, the axis of shaft 69 is laterally offset from the centerlines of the pushbutton shanks (see FIG. 3). Since the number of teeth carried by each of the pushbuttons is different, when a certain one of the buttons 58–65 is depressed, the shaft 69 will be gear-driven through an angle depending upon and uniquely determined by which one of these buttons is so depressed or actuated.

A similar shaft 69' is journaled for rotation at the opposite side of the housing, in bearings 70'. This latter shaft carries eight sector gears 71' which are exactly like gears 71 and which are adapted to mesh with the rack-like gear teeth carried by the respective pushbuttons 58'–65' at this opposite side of the housing. When a certain one of the "start" buttons 58'–65' is depressed, the shaft 69' will be gear-driven through an angle depending upon and uniquely determined by which one of these latter buttons is so depressed or actuated. The gear ratios between the shaft 69' and the array of "start" pushbuttons 58'–65' at the corresponding side of the housing are exactly similar to those between the shaft 69 and the array of "start" buttons 58–65. Thus, when a particular one of the "start" buttons 58'–65' is depressed, the shaft 69' will be rotated through a certain angle which is exactly the same as the angle through which shaft 69 is rotated when the matching pushbutton on the first-mentioned side of the housing is depressed.

In order to lock the shafts 69 and 69' together, a crank plate 72 (see FIG. 4) is pinned at one end to the upper end of shaft 69', and a crank plate 73 is pinned centrally to the upper end of shaft 69. A rigid link member 74 is pivotally secured at one end to the other end of crank 72, and is pivotally secured at its other end to one of the ends of crank 73. It may be seen that the link and crank arrangement just described positively locks the two shafts 69 and 69' together. A coiled spring 75, one end of which is attached to link 74 and the other end of which is attached to crank 73, tends to return the crank 73 to the "OFF" position illustrated in FIG. 4.

The end of crank 73 opposite to link 74 has therein a plurality of holes 76 equal in number to the number of grades of motor fuel to be dispensed (in accordance with what has been previously stated, eight holes are illustrated), these holes being equally spaced along the circumference of a circle centered on the axis of shaft 69. A thin locking plate 77, slightly flexible in the direction of its thickness, which carries an upstanding pin 78 at one end thereof, is secured at its opposite end to the side of support 67, in such a position that the pin 78 can enter any one of the holes 76. Plate 77 is positioned below crank 73 and is arranged so that in its released position the pin 78 will enter one of the holes 76 (if such hole has been rotated into vertical alignment with this pin). Plate 77 is normally (which is to say, in the "OFF" position, between dispensing operations) held downwardly (in such a position that the crank 73 can rotate freely thereafter, without interference by pin 78) by a downwardly depending pin attached to one end extension 80 of a somewhat T-shaped pivoted arm 81 which will be further referred to hereinafter. Arm 81 is rotatably mounted on a fixed pivot pin 224.

As previously described, when one of the "start" buttons 58–65 is actuated, the shaft 69 (and also, incidentally, the shaft 69', through link 74) will be rotated to an angular position which depends on the particular button actuated. Of course, if one of the buttons 58'–65' is actuated, shaft 69 is caused to rotate through the operation of shaft 69' and link 74. As shaft 69 rotates, the crank 73 pinned thereto also rotates (in the counterclockwise direction in FIG. 4), bringing one of the holes 76 into vertical alignment with pin 78. The particular hole 76 which is brought into alignment with
pin 78 will depend on the amount of angular rotation of shaft 69. When the pushbutton being actuated has reached the limit of its travel (bringing shaft 69 to the appropriate angular position), the solenoid 53 (see FIG. 2) is energized, as will be subsequently described. Solenoid 53 is mounted above the apparatus housing in a suitable manner, and the plunger of this solenoid is pivotally attached to the upper end of a rigid link member 225 which extends through an aperture into the housing, the lower end of link 225 being pivotally attached at 226 to the end of arm 81 adjacent extension 80. When solenoid 53 is energized, link member 225 moves vertically upwardly from the position shown. This causes the end extension 80 of arm 81 to move upwardly, away from plate 77. This action releases plate 77 so that its pin 78 enters the particular one of holes 76 which is then vertically aligned therewith. Since the plate 77 is rigid in the direction of its length, this provides a locking effect, which mechanically locks the shaft 69 in its rotated or adjusted ("ON") angular position. Therefore, that one of the sector gears 71 (or 71') which is then in mesh with the rack teeth of the actuated pushbutton holds such pushbutton in the depressed or actuated position during the dispensing operation, even though this pushbutton has been manually released after being manually actuated. This arrangement provides a mechanical lock, which locks "in" the particular pushbutton which has been actuated, during the dispensing operation which occurs upon its actuation.

At the conclusion of the dispensing operation, as will be described, solenoid 53 is deenergized, which allows the end extension 80 of arm 81 to be pulled downwardly by a spring (hereafter described), along with the link 225, causing plate 77 to be pushed downwardly and its pin 78 to be pushed out of the hole 76 into which it had previously entered. Crank 73 and shafts 69 and 69' then return to the "OFF" position illustrated in FIG. 4 under the urging of spring 75, and the actuated pushbutton is released for return to its outward or unactuated position, under the urging of its respective spring 79.

A stop plate 82, seen in face view in FIG. 3, is fixedly secured to the lower end of shaft 69, so as to rotate therewith. Plate 82 has a plurality of stepped projections 83 on its outer periphery, equal in number to the number of grades of motor fuel to be dispensed (in our example, this would be eight), providing eight abutments on the periphery of this plate which are located at different radial distances from the axis of shaft 69, these radial distances constituting a stepped or orderly progression (in a clockwise direction in FIG. 3) from the minimum radial distance (corresponding to "start" button 65) to the maximum radial distance (corresponding to "start" button 58). In this connection, it may be noted that buttons 65 and 65' stand for solely the "hi" gasoline, buttons 58 and 58' stand for solely the "lo" gasoline, while the intermediate buttons stand for different blends of the "lo" and "hi" gasolines or gasoline components. The array of pushbuttons is orderly, with buttons 64 and 64' denoting the highest-octane one of the six blends, and buttons 59 and 59' the lowest-octane one of the six blends. Since buttons 58 and 58' carry eight teeth, while buttons 65 and 65' carry one tooth, it may be noted that the actuation of one of the former causes a maximum angular rotation of shaft 69 and of stop plate 82, from the position illustrated in FIG. 3, while the actuation of one of the latter causes a minimum angular rotation of stop plate 82, from this same position. The rotation of shaft 69 (or shaft 69') to an angular position determined by the particular pushbutton which is depressed, brings stop plate 82 to a corresponding angular position, such that a particular one of the projections 83 is brought to a position wherein it can control or govern the amount of angular rotation of a cooperating member 114 which will be described hereinafter.

A resilient, U-shaped contact member 84, insulated from "ground" or the metallic elements such as support 67, and a similar insulated contact member 84' are each insulatingly mounted within a respective one of the channel-shaped supports 67 and 67', as by means of a bolt 85 which extends through the member 84, through a washer 86 of electrical insulating material, through an enlarged hole in the support, and through another washer 87 of electrical insulating material on the outside of the support. A common electrical connection is made to the bolts 85, the two bolts 85 being directly connected together. The contact member 84, and the duplicate contact member 84' on the opposite side of the housing, are positioned within the respective supports 67 and 67' as illustrated in FIG. 3, and are arranged to be engaged respectively by grounded U-shaped bars 88 or 88'. Each of these bars extends for most of the length of supports 67 and 67', so that they will cooperate with all pushbuttons in the respective supports. That is to say, when any one of the pushbuttons is depressed the grounded bar on that side is caused to come into contact with the insulated contact member on the same side of the housing. This will result in the grounding of the corresponding insulated contact member. Each foot 89 and 89' of the U-shaped bar 88 or 88' is flexibly attached as by a bolted hinge-strap to the respective support such as 67'. As the pushbutton is depressed or actuated, its base comes into engagement with the bar 88 or 88' and swings this bar inwardly to bring it into contact with the appropriate insulated contact member 84 or 84', thus grounding this insulated contact. The arrangement is such that the contact between members 88 or 88' and 84 or 84' is made subsequently to the actuation of shaft 69 or 69' by the actuated pushbutton, and just prior to the reaching of the extreme limit of travel (inwardly) by the pushbutton. Thus, each time a pushbutton is actuated, one or the other of the two insulated contacts 84 or 84' (one of which contacts is at each respective side of the apparatus housing) is grounded.

Refer now to the circuit diagram of FIG. 5. A low-voltage alternating current (25 volts, for example) is supplied to a pair of buses 91 and 92 by means of a stepdown transformer 93 whose primary is connected to the a.c. supply terminals 94 and 94' (these terminals comprising one 115-volt side of a three-wire a.c. supply, terminal 94 being one "line" terminal, terminal 94' being a "neutral" terminal, and terminal 94' being the other "line" terminal) through a cam-operated switch 95 which is closed prior to the start of each dispensing operation, and is so illustrated. It may be noted here that the cam operator for switch 95 is driven mechanically by the reset motor 54.
The nozzle associated with the dispensing apparatus (and to which the hose or conduits 20-22, FIG. 1, are connected) carries a pair of spaced electrodes 96 and 97, as disclosed in my '890 patent. As described in my '890 patent, one of these electrodes is insulated from ground; this electrode 96 is connected to bus 91. The other electrode 97 is grounded and when the nozzle is properly inserted into the filipipe of a motor vehicle fuel tank, the metal filipipe schematically illustrated at 98 forms a conducting path between the electrodes 96 and 97, all as described in my '890 patent. It will be assumed that the nozzle has been properly positioned in the filipipe prior to the actuation of one of the "start" buttons, so that electrode 96 is connected electrically to the grounded electrode 97.

The contact 99 represents bar 88 on one side of the apparatus housing, while the contact 100 represents bar 88 on the opposite side of the housing. As previously described, when any one of the buttons is actuated, either the insulated contact 84 or the insulated contact 84' is grounded. These insulated contacts (by way of bolts 85) are connected together as at 188 and through the closed contacts of a pair of "emergency stop" switches ("panic buttons") 101 and 102 (push-button, spring-biased, normally closed, push to open; these two switches being on respective opposite sides of the apparatus housing and being accessible from the outside of the housing) to one contact 103 of a vacuum-operated single-pole, single-throw switch 25. This latter switch may be constructed, for example, as disclosed in my '890 patent, and is mechanically caused to close by a cam (as will be described subsequently) prior to the beginning of each dispensing operation. It is therefore shown as closed in FIG. 5. It may be noted here that the cam just mentioned is driven mechanically by the reset motor 54.

The other contact 105 of switch 25 is connected through a pair of resistors 106 and 107 and then through the operating winding of a relay 108 to the bus 92.

When one of the "start" buttons is actuated, it may be seen that a circuit is completed between buses 91 and 92 through the winding of relay 108 (provided, of course, that the dispensing nozzle has been properly positioned in the filipipe). This energizes relay 108. The a.c. supply terminal 94 is connected directly to the reset motor 54. When relay 108 is energized, a pair of relay contacts 109 are closed to connect the a.c. terminal 94' to one of the movable contacts 110 of a single-pole, double-throw cam-operated switch 111. The cam operator for switch 111 is also driven mechanically by the reset motor 54, and the movable arm of this switch is closed on contact 110, as illustrated, prior to the beginning of each dispensing operation. Thus, when relay 108 is energized (in response to actuation of one of the "start" buttons), a circuit is completed from the a.c. supply terminals 94 and 94' to reset motor 54, energizing this motor.

The reset motor 54 is one of the electrical instrumentations employed to bring about the "ON" resetting and adjustment cycle of the dispensing apparatus. Refer now to FIG. 6, which diagrammatically illustrates the mode of operation of various cam-operated switches (some in the group 56, FIG. 1) operated by the reset motor 54. The cams which operate these switches are mounted on a shaft driven by motor 54 through suitable gearing indicated at 57 in FIG. 1. The various arcs illustrated in FIG. 6, with respect to the center 112, represent the angles through which the cams actuate the switches, referred to the vertical line extending upwardly from center 112, which line represents the beginning of the "ON" resetting and adjustment cycle. This line is denoted by "OFF," since it represents conditions at the end of the "OFF" cycle, as well as at the very beginning of the "ON" cycle. The entire figure represents one complete or 360° rotation of the shaft on which the cams are mounted.

The arc indicated by A represents the operation of the switch 111. This switch is closed on its contact 110 (by a previous rotation of the camshaft) slightly prior to the reaching of the "OFF" position or upwardly-extending vertical line, and remains closed on this contact for about 25° more of the camshaft rotation; throughout the remainder of the 360° of camshaft rotation this switch is closed on its other contact 113. Thus, after about 25° of camshaft rotation from "OFF" (during the "ON" cycle) the contact 110 is opened and the motor energization circuit previously described is opened.

However, the motor 54 is maintained energized for substantially 180° of camshaft rotation (from "OFF") by means of a cam-operated switch 104 whose single-pole, single-throw contacts are connected directly in a series circuit with motor 54 across the a.c. supply terminals 94 and 94'. The arc indicated by B represents the operation of switch 104. Switch 104 is closed by its cam at about 8° after the beginning of the "ON" cycle (the "ON" cycle beginning at the upwardly-extending vertical line in FIG. 6, and proceeding in the direction of the clockwise arrow denoted by G), and remains closed throughout substantially all of the remainder of the 180° of the "ON" cycle, that is, substantially until the downwardly-extending vertical line designated "ON" in FIG. 6 is reached. This last-mentioned line represents the completion of the "ON" cycle, which coincides in camshaft position, but not in time, with the beginning of the following "OFF" cycle. Thus, the reset motor 54 is maintained energized (by switch 104) until the substantial completion of the "ON" cycle, even though the original energization circuit for this motor (through contact 110) is opened at about 25° of camshaft rotation following the beginning of the "ON" cycle. It may be mentioned here, in passing, that the arc B indicates that switch 104 is also closed throughout substantially all of the following "OFF" cycle; this will be further referred to later.

The arc denoted by D represents the operation of switch 95. Switch 95 is closed by its cam (by a previous rotation of the camshaft) slightly prior to the reaching of the "OFF" position, and remains closed throughout the "ON" cycle, and also for a few degrees of rotation in the following "OFF" cycle.

The arc denoted by E represents the operation of the cam which mechanically causes the contacts 103 and 105 of vacuum switch 25 to close. The contacts of this vacuum switch are mechanically caused to close (by a previous rotation of the camshaft) slightly prior to the reaching of the "OFF" position, and are mechanically released just prior to the termination of the "ON" cycle. The operation of other cam-operated switches depicted in FIG. 6 will be described hereinafter.
From the above, it may be seen that the reset motor 54, upon energization thereof in response to actuation of one of the “start” buttons 58–65 or 58’–65’ is maintained energized until it has caused rotation of the camshaft through substantially 180°, then it is shut off or deenergized by the opening of switch 104 (see are B in FIG. 6). This motor is provided with a brake which causes its output shaft to stop rotating immediately upon deenergization of the motor. Thus, the motor is made to stop exactly when the camshaft has reached the position represented by the downwardly-extending vertical line designated “ON” in FIG. 6. This line denotes the completion of the “ON” cycle.

A positioning and adjusting member 114, which is somewhat disc-shaped when seen in end view as in FIG. 2, is pinned to the outer end of a shaft 115 which is suitably journaled for rotation in a fixed supporting plate 116 (FIG. 8). Along a portion of the edge thereof, and extending over say 80° of its circumference, member 114 has a plurality of stepped projections 117, equal in number to the number of grades of motor fuel to be dispensed (in the example, this would be eight), providing eight abutments along the periphery of member 114 which are located at different axial distances (measured parallel to the axis of shaft 115) from a reference plane transverse to the axis of shaft 115. That is to say, this portion of the edge of member 114 may be thought of as forming a stepped cylindrical wall. If it be assumed that the reference plane previously mentioned coincides with the extreme outer end of member 114 in FIG. 3, the axial distances of the stepped projections 117 from this reference plane constitute an orderly progression from the minimum axial distance (corresponding to solely the “lo” gasoline component) to the maximum axial distance (corresponding to solely the “hi” gasoline component).

The axes of shafts 115 and 69 lie at substantially 90° to each other, and the projections 117 provided on member 114 are arranged to cooperate with the projections on stop plate 82 in such a manner that, when member 114 is free to rotate in the counterclockwise or “ON” direction in FIG. 2, it will rotate to an angular position uniquely determined by the angular position to which stop plate 82 has been rotated by shaft 69. That is to say, member 114, when it is free to rotate in the counterclockwise direction in FIG. 2, will be caused to stop at a selected one of eight angular positions, the selection being made in dependence upon the particular one of the “start” buttons 58–65 or 58’–65’ which has been actuated (and the consequent angular position of stop plate 82). A coiled tension spring 118, which is rather strong, provides the motive force for driving member 114 in the counterclockwise or “ON” direction in FIG. 2. One end of this spring is attached to an outstanding eccentric pin 119 secured to member 114, and the other end is attached to a pin 120 which also secures one end of a diagonally-extending brace 121 to the support 67. The other end of brace 121 is secured to support 67. A similar diagonally-extending brace 121a is secured at its ends respectively to supports 67 and 67’. The braces 121 and 121a together form an X-shaped configuration. Spring 118 acts to urge the member 114 to rotate in the counterclockwise or “ON” direction in FIG. 2, to move the projections 117 toward the stop plate 82.

Refer now to FIGS. 7–9, which illustrate the “lo” and “hi” gear boxes 42 and 44, respectively, together with mechanical connections such as 45 and 46 for resetting the same, that is, for adjusting the same to various selected positions. These gear boxes constitute an essential part of the blend control unit or portion of the dispensing apparatus. The shaft coupling 41 (FIGS. 1 and 8) is driven through suitable gearing from the output of “lo” meter 8 and corresponds to gallons of “lo” gasoline. A shaft 122, which may be integral with the shaft coupling 41, has secured thereto a cone gear 123. Similarly, the shaft coupling 43 (FIG. 1) is driven through suitable gearing from the output of “hi” meter 16 and corresponds to gallons of “hi” gasoline. A shaft 124 (FIG. 7), which may be integral with the shaft coupling 43, has secured thereto a cone gear 125. Since the “lo” gear box 42 and the “hi” gear box 44 are essentially similar, only the “lo” gear box will be described in detail, in connection with FIG. 8, reference being made to elements of the “hi” gear box, when necessary, to complete the disclosure.

Each of the cone gears 123 and 125 comprises six spur gears arranged each in a separate level, for a total of six levels. The two cone gears 123 and 125 are identical, but they are disposed oppositely, that is, they are disposed in parallel but inverted relation with respect to each other. They are so disposed that the levels of the two gears are respectively aligned with each other, reference being made here to a horizontal alignment. By way of example, the numbers of teeth in the various levels of gear 123 are, reading from top to bottom in FIG. 8, as follows: eight teeth, 16 teeth, 24 teeth, 32 teeth, 40 teeth, and 48 teeth.

The shafts 122 and 124 are journaled for rotation by bearings provided in the supporting plate 116 and in a lower supporting plate 126. A rocker shaft 127 is journaled for rotation at its upper and lower ends, respectively, in plates 116 and 126. Rotatably carried by shaft 127 are six vertically-arranged pairs of mounting plates 128 (one pair of plates for each of the levels of cone gear 123), of more or less triangular shape seen in plan as in FIG. 7, these plates being carried by shaft 127 adjacent one of the three vertices of the triangle. Each pair of plates 128 carries, adjacent another of its three vertices, a respective idler gear 129, one such gear for each of the levels of cone gear 123. Each of the idler gears is journaled for rotation in suitable bearings provided in the two individual plates of its respective pair of plates 128. All of the idler gears 129 are identical, and each is adapted to be swung into and out of mesh with its corresponding spur gear (or level) of cone gear 123.

A separate banjo-shaped member 130 is positioned between each respective pair of plates 128, the large end of each of these members 130 being pinned to shaft 127. A fixed pin 131, whose two ends are fixed in the respective plates 128, is mounted between each respective pair of plates 128, in such a location as to be engaged by one side of the straight or “neck” portion of the respective banjo member 130. A wishbone-shaped spring 132 is positioned between each respective pair of plates 128, one end portion of this spring engaging the “neck” of the banjo member 130, on the opposite side thereof from pin 131, and the other end portion of this spring being wrapped around a respective fixed pin.
133 (similar to pin 131) whose two ends are fixed in the respective plates 128. Pin 131 is located near one side of its (somewhat triangular) respective plates 128, while pin 133 is located near another side of its respective plates 128.

In the "hi" gear box, the elements 127–133 previously described are duplicated, being denoted in this latter gear box by the same reference numerals but carrying prime designations. Each of the idle gears 129' in the "hi" gear box is adapted to mesh with a corresponding spur gear (or level) of cone gear 125.

The elements 127–128 and 130–133 together comprise a "gear throw-out," by operation of which the idle gears 129 may be brought into and out of mesh with cone gear 123 and pinion gear 134. Elements 127–128 and 130–133 comprise a similar "gear throw-out" for the "hi" gear box, by operation of which the idle gears 129' may be brought into and out of mesh with cone gear 123 and pinion gear 134'. For convenience of illustration only, in Fig. 7 a "lo" idle gear 129 is shown out of mesh with cone gear 123 and pinion gear 134, while a "hi" idle gear 129' is shown in mesh with cone gear 125 and pinion gear 134'; it is desired to be pointed out, however, that these conditions will never occur in actual practice during dispensing, which is to say that in actual practice, either both, or neither, of (a selected one of) the idle gears 129 and 129' will be in mesh with the respective cone and pinion gears, during dispensing.

Each idle gear 129 in the "lo" gear box, in addition to meshing with its corresponding one of the individual gears in cone gear 123, is adapted to mesh with an elongated pinion gear 134 (having a vertical length about equal to the combined vertical lengths of the six levels of cone gear 123) which is pinned to a shaft 135 journaled for rotation in plates 116 and 126. Each idle gear 129' in the "hi" gear box, in addition to meshing with its corresponding one of the individual gears in cone gear 125, is adapted to mesh with a similar pinion gear 134' which is pinned to a shaft 135'.

The shafts 135 and 135' constitute the mechanical cooperation, respectively (Figs. 1, 2, 3, and 4), which couple the outputs of gear boxes 42 and 44, respectively, to the subtractive differential 49. This subtractive differential is preferably constructed and arranged as disclosed in my U.S. patent No. 2,977,970, referred to hereinafter as the '970 patent. This subtractive differential will not be described in detail herein, since it is fully and completely disclosed in my '970 patent. The principle of operation, however, may be described as follows. The "lo" gear box 42 may be thought of as including cone gear 123, a selected one of the idle gears 129, and pinion 134, while the "hi" gear box 44 may be thought of as including cone gear 125, a selected one of the idle gears 129', and pinion 134'. The settings of the gear boxes 42 and 44 (i.e., the particular levels of the cone gears with which the corresponding idle gears are in mesh) determine the relative flows which would be required to maintain at zero the output 50 of differential 49 to hold the two sections of valve 19 in fixed relative position. If the rate of flow of "hi" gasoline relative to "lo" gasoline (assuming that a mixture or blend of liquids is being dispensed) exceeds the predetermined ratio, the differential 49 will have an output of such direction as to move the valve shoe in

the "hi" section of valve 19 toward closed position and the valve shoe in the "lo" section of valve 19 toward open position. The result is readjustment of the individual flows to a ratio predetermined by the gear box settings and resulting in zero output from differential 49. If the "lo" flow is in excess, a reverse output from the differential 49 occurs, resulting in correction of the ratio of the flows.

The output 50 of the subtractive differential 49 is provided in an output gear 137 which meshes with a sector gear 138 carried by one end of a rigid lever 138 pivotally mounted at 140 to the frame and having a dog configuration 141 at the other end of the lever. The dog 141, moving back and forth (about pivot 140) as the output of differential 49 varies from zero, effects a mechanical control adjustment of the blend control valve 19, as will appear hereinafter.

It is here noted that all of the foregoing description of the operation of differential 49 has assumed that a mixture of liquids is being dispensed, which means that a selected one of the idle gears 129 is in mesh with a corresponding spur gear (in a particular level) of the cone gear 123, and a selected one of the idle gears 129' is in mesh with a corresponding spur gear (in the same level) of the cone gear 125. For the dispensing of either "hi" or "lo" gasoline, alone, the differential 49 is in effect inoperative, as will hereinafter appear.

Referring now to FIGS. 2 and 10, reset motor 54 (illustrated schematically in FIG. 10) is mounted on top of the apparatus housing 1. This motor, when energized in the manner previously described, drives, through a small gear 142 pinned to its output shaft, a larger gear 143 which is secured to a camshaft 144 to be later described. Gear 143, in turn, drives a gear 145 (having the same number of teeth as gear 143) which is located inside the apparatus housing. Gear 145 is pinned to one end of a stub shaft 146 which may be thought of as a motor-driven shaft. The hub end of a crank 147 is pinned to the other end of the motor-driven shaft 146, and a crank pin 148 at the radially-outer or eccentric end of crank 147 is pivotally connected to one end of a rigid link member 149 which extends in a generally downward direction and whose opposite or lower end is pivotally connected to one outer end of a bifurcated plate 150. At its base, the plate 150 is attached to a stub shaft 151 which is pinned to a counter reset shaft (referred to hereinafter). The stub shaft 151 may be thought of hereinafter as itself comprising the counter reset shaft. Shaft 151 is journaled for rotation in the cross braces 121 and 121a, at the point of intersection or overlap of these two braces. Shaft 146 operates at the same speed as camshaft 144.

One end of a rigid link member 152 is pivotally connected to the other outer end of plate 150, and the other end of this link member is pivotally attached to one end of an L-shaped lever 153 which is rotatably supported at its base by means of a fixed pin 154. Also rotatably supported on pin 154 is a wing plate 155, which carries at one side a sector gear 156 and at its other side (more or less diametrically opposite to gear 156) another sector gear 157. The wind plate 155 has thereon an integral outwardly-extending leg 158 which is adapted to engage the side edge of that leg of lever 153 to which link 152 is coupled.
During the “ON” cycle (180° of rotation of shaft 146), the reset motor 54, through the various linkages described, drives the plate 150 in the direction indicated by the “ON” arrowhead on arc 159, and the arrangement is such that during this cycle the center of the lower end of link 152 (that is, the end of this link which is coupled to lever 153) travels through an arc of 90° about the center of pin 154.

The sector gear 156 meshes with a sector gear 160 which is formed integrally on member 114, approximately diametrically opposite the projections 117. Thus, when member 114 rotates in the “ON” direction (counterclockwise in FIG. 2), it can drive plate 155 (by way of the gearing 156, 160) in the “ON” direction (clockwise in FIG. 2). As previously stated, member 114 is caused to rotate in the “ON” direction by the force exerted on it by spring 118. The various elements are illustrated in the “OFF” position in FIG. 2.

A rearwardly-extending pin 161 is secured to that end of lever 153 which is opposite to link 152. A crank 162, secured to the outer end of a price increment unit locking shaft 163 and adapted to rotate about the axis of such shaft, has a radially-outwardly extending portion which lies in the path of pin 161, as lever 153 is rotated by the reset motor. A tension spring 164, one end of which is tied to a fixed pin 165 and the other end of which is tied to the previously-mentioned portion of crank 162, tends to maintain the crank 162 in the “OFF” position illustrated in FIG. 2. When the lever 153 is rotated by the reset motor 154 in the “ON” direction (which is clockwise in FIG. 2). pin 161 will engage crank 162 and rotate it in the clockwise direction, about its pivot point 163, in opposition to the bias of spring 164.

One end of a rigid link member 166 is pivotally connected to crank 162 at an eccentric location, and the opposite end of this link is pivotally connected to one end of a lever 167 (see FIG. 3) which is pinned at its central point to the upper end of the “lo” gear box rocker shaft 127 (see also FIG. 8). At its other end, arm 167 carries a pin 168 which fits between the two arms provided by the bifurcated end of an arm 169 pinned to the upper end of the “hi” gear box rocker shaft 127.

The arrangement is such that, during the “ON” cycle, when pin 161 engages crank 162 and causes it to rotate in the clockwise direction in FIG. 2, the link 166 rotates lever 167 to cause a rotation of shaft 127 in the clockwise direction in FIG. 7, and a rotation of lever 169 (by way of pin 168) to cause a rotation of shaft 127’ in the counterclockwise direction in FIG. 7.

The spring 164 ordinarily (which is to say during the interval between successive dispensing operations) maintains the crank 162 in such a position that both of the rocker shafts 127 and 127’ are brought to the position exemplified by the shaft 127 in FIG. 7, that is, to a position wherein all of the idler gears 129 and 129’ are out of mesh with the respective cone gears 123 and 125 and also out of mesh with the respective pinions 134 and 134’. Also, during the “OFF” resetting and adjustment cycle (which takes place following the completion of an actual dispensing operation, as will later become apparent) the spring 164 rotates crank 162 in such a direction as to cause rotation of rocker shaft 127 in the counterclockwise direction in FIG. 7 and to cause rotation of rocker shaft 127’ in the clockwise direction in FIG. 7. The “ON” position for shaft 127 being illustrated in the upper portion of FIG. 7 (wherein the illustrated one of the idler gears 129 is in mesh with cone gear 125 and with pinion 134’), the rotation of rocker shaft 127’ in the clockwise direction (during the “OFF” cycle) causes all of the banjo members 130 to engage their fixed pins 131’ to swing all of the mounting plates 128’ clockwise from the position illustrated, moving all of the idler gears 129’ out of mesh with the cone gear 125 and with the pinion 134’.

No net force is exerted at this time by wishbone spring 132’, since one of its ends is attached to the pin 133’ (attached to and moving with plate 128’), and the other of its ends bears against banjo member 130’, which is in firm engagement with the pin 131’ (also attached to and moving with plate 128’).

Similar action takes place during the “OFF” cycle for the “lo” gear box, when rocker shaft 127 is rotated in the counterclockwise direction in FIG. 7. Summarizing the operation so far described of the gear throw-out arrangement for the “lo” and “hi” gear boxes, it may be seen that all of the idler gears 129 and 129’ are moved out of mesh with their corresponding cone gears 123 and 125 and pinions 134 and 134’ during the “OFF” cycle, by the force of spring 164 acting through the crank 162 and linkage 166, etc., and are maintained out of mesh, until the next “ON” cycle, by this same spring. It remains to be explained how a selected one of the gears 129 and a selected one of the gears 129’ (or alternatively, none of these gears) are brought into mesh with the cone gears and pinions during the “ON” cycle.

Refer again to FIGS. 7 and 8. A vertically-extending supporting shaft 170 is mounted between the fixed supporting plates 116 and 126. Journalled on the shaft 170 are two spaced stirrup members 171 between which is mounted an arcuate plate 172 (for the “lo” gear box) provided with six helically-arranged apertures 173, one such aperture for each of the levels of cone gear 123.

One of the two individual plates of each pair of mounting plates 128 (it will be remembered that there are a total of six pairs of such plates, each pair carrying an idler gear 129) is provided with a projecting tab 174 which is adapted to enter a corresponding one of the apertures 173, and can enter such aperture if the plate 172 has been rotated to a position wherein the aperture 173 is in alignment with the tab. That is to say, a selected one of the six tabs 174 can enter its aperture 173, the selection depending upon the angular position to which arcuate plate 172 has been rotated.

Also journalled on the shaft 170 are two spaced stirrup members 175 between which is mounted an arcuate plate 176 (for the “hi” gear box) similar to plate 172 and also provided with six helically-arranged apertures 177, one such aperture for each of the levels of cone gear 125. One of the two individual plates of each pair of mounting plates 128’ (it will be remembered that there are a total of six pairs of such plates, each pair carrying a separate idler gear 129’) is provided with a projecting tab 178 which is adapted to enter a corresponding one of the apertures 177 as illustrated in FIG. 7, and will enter such aperture if the arcuate plate 176 has been rotated to a position wherein the aperture 177 is in alignment with the tab. The particular one of the six tabs 178 which enters its aperture depends upon
the angular position to which arcuate plate 176 has been rotated.

When one of the tabs 178 enters its aperture 177 (as illustrated in the upper portion of FIG. 7), the idler gear 129 associated with that particular tab (that is, the idler gear which is carried by that particular plate 128) is brought into mesh with the cone gears 125 and with the pinion 134. The same is true for one of the tabs such as 174 in the "lo" gear box. If, on the other hand, the apertures in arcuate plates 172 and 176 are not in alignment with the tabs (which condition is in effect illustrated in the lower portion of FIG. 7), the idler gears associated with all of these latter tabs are prevented from meshing with the cone gears 123 and 125 and the pinions 134 and 134'. For each of the six blends, the arcuate plate 176 will be brought to a position wherein one of its apertures 177 is in alignment with a corresponding tab 178, and the arcuate plate 172 will be brought to a position wherein one of its apertures 173 (generally on the same horizontal level as the aligned aperture in plate 176) is in alignment with a corresponding tab 174; the idler gears 129 and 129' on this particular level will come into mesh with their cone gears 123 and 125 and pinions 134 and 134'. All the other idler gears (to wit, five idler gears in the group 129 and five idler gears in the group 129') will be prevented from meshing with the cone gears and pinions.

For each of the two additional grades of gasoline to be dispensed (to wit, the "lo" gasoline component alone and the "hi" gasoline component alone), no corresponding holes are provided in arcuate plates 172 and 176. This means that for each of these two latter grades, all of the idler gears 129 and 129' will be prevented from meshing with the cone gears and pinion gears (as illustrated in the lower portion of FIG. 7). In each of these cases, the subtractive differential 49 is in effect rendered inoperative to adjust the blend control valve 19, the cone gear 123 rotating idly during the dispensing of solely the "lo" gasoline and the cone gear 125 rotating idly during the dispensing of solely the "hi" gasoline.

It has been previously stated that during the "ON" resetting and adjustment cycle, the motor-driven pin 161 engages and rotates crank 162, resulting in a rotation of shaft 127 in the counterclockwise direction in FIG. 7, from the "OFF" position illustrated, and also a rotation of shaft 127 in the counterclockwise direction from its "OFF" position (not illustrated, but corresponding to the "OFF" position illustrated for shaft 127). When shaft 127 rotates in the clockwise direction, each banjo member 130 tends to push against its respective wishbone spring 132, tending to compress the latter somewhat, and whichever one of the six tabs 174 is aligned with an aperture 173 in arcuate plate 172 is pushed into such aperture by the respective spring 132, pushing resiliently against the fixed pin 133 in the corresponding mounting plate 128. The spring 132 corresponding to the tab 174 which so moves into its aperture 173 is compressed somewhat, and exerts a force on pin 133 which tends to maintain this tab in its aperture 173 (and the corresponding idler gear 129 in mesh with cone gear 123 and pinion 134) during the rotation of such gears (which rotation takes place during the actual dispensing operation).
by the final angular position of member 114 (and appropriate to the particular grade of gasoline selected by the actuated "start" button). The arrangement is such that the arcuate plates reach their (selected) angular positions before the motor-driven pin 161 comes into engagement with crank 162 (it will be remembered that the tabs 174 and 178 are free of the plates 172 and 176 during this time, so that the latter are free to rotate). When the pin 161 engages and rotates crank 162, the rocker shafts 127 and 127' are rotated (through link 166, etc.) to "throw in" or bring into mesh the one selected (as determined by the angular positions of the arcuate plates 172 and 176) idler gear in each group 129 and 129', or, alternatively, to keep all idler gears out of mesh (again as determined by the angular positions of the arcuate plates).

It is pointed out that during the "ON" cycle, the wing plate 155 rotates in the clockwise direction as member 114 rotates, being driven through the gearing 156, 160 from this latter member.

As wing plate 155 rotates, the sector gear 157 carried thereby meshes with a gear 183 pinned to the cam-carrying shaft 184 of a price increment unit denoted generally by the numeral 36. This price increment unit is preferably of the type disclosed in FIGS. 8 et seq. of my '908 patent. In the '908 patent, the price increment unit is termed "selective gearing." The diametral relation of gears 183 and 157 is such that the shaft 184 is rotatable in 40° steps, whereas the wing plate 155 and the member 114 rotate in 10° steps (the individual projections 117 on member 114 being in 10° steps). That is to say, the successive possible stop positions of member 114 and of wing plate 155 are separated by 10°, whereas the successive possible stop positions of camshaft 184 are separated by 40°.

The camshaft 184 corresponds to camshaft 302 of my '908 patent, and operates by means of cams to select gearing (for inclusion between the couplings 35 and 37, FIG. 1) individual to each possible stop in the angular rotation of camshaft 184. The particular gearing selected by the operation of camshaft 184 depends upon the final angular position to which this shaft is brought during the "ON" cycle, and this in turn depends upon the final angular position of wing plate 155 (the latter being governed, as previously described, by the final angular position of member 114, which in turn depends upon the particular grade of gasoline selected for dispensing by means of the "start" pushbuttons 58–65 or 58'–65'). For further details regarding this gearing selection, reference should be made to my '908 patent, wherein the same is more fully and completely described. It is here noted that the rotation of camshaft 184 to its final angular position is completed before the motor-driven pin 161 comes into engagement with crank 162.

The price increment unit 36 is provided with a locking arrangement for locking the price selection gears out of mesh, this locking arrangement preferably being similar to that illustrated at 338, 340, 342, etc., in FIG. 11 of my '908 patent. The locking arrangement just referred to includes a rockable lever operated by a locking shaft 163. As previously described, shaft 163 is secured to crank 162. In the "OFF" position illustrated in FIG. 2, the locking shaft 163 is in its "locked" position, wherein the gears are held out of mesh. The spring 164, acting on crank 162, tends to maintain shaft 163 in this "locked" position. During the "ON" cycle, as previously described, the motor-driven pin 161 engages crank 162 and causes this crank to rotate in the counterclockwise direction. This happens after camshaft 184 has reached its final angular position, and results in the rotation of shaft 163 to its "unlocked" position, wherein the proper gear is allowed to go into mesh, as urged by the cam and spring. It remains in mesh during the actual dispensing operation, which follows the "ON" resetting and adjustment cycle.

Refer again to FIG. 5. Relay 108, shown in its unenergized position, has a pair of normally-open contacts 185 which are connected in a series circuit extending from the a.c. supply terminal 94 (the cam-operated switch 95 being closed) to the a.c. supply terminal 94', by way of a pair of normally-closed (reed switch) contacts 186 of a reed-switch-actuating relay 187 and the operating winding of the solenoid 53. Thus, when relay 108 is energized as above described (e.g., as a result of the operation of one of the "start" contacts denoted as 99 and 100 in FIG. 5), its contacts 185 close to energize the winding of solenoid 53. The solenoid 53 is thus energized simultaneously with the energization of reset motor 54, at the beginning of the "ON" cycle. This solenoid remains energized after the end of the "ON" resetting and adjustment cycle, and throughout most if not all of the actual dispensing operation which follows such "ON" cycle.

Refer now to FIGS. 2, 10, and 11. The blend control valve 19 is generally somewhat similar in construction to the "combined proportioning and shut-off valve 36" described in my U.S. Pat. No. 3,073,484. In the "lo" section of this valve, a shaft 227 serves to mount a spring-engaged valve shoe 228, which is provided with a cylindrical surface engaging the interior wall of a chamber 229 in the valve housing or body 230. The shoe 228 cooperates with an outlet port 231 in the valve body for the control of flow of the "lo" fuel component, the valve or housing end of the "lo" hose 20 being coupled to receive liquid flowing through this outlet port. The valve housing 230 is suitably secured to a fixed support or frame 232 (see FIG. 10) provided inside the apparatus housing 1. The "lo" gasoline enters the chamber 229 by way of the connection or coupling 9. It may be seen that by rotation of shaft 227, the shoe 228 may be made to selectively cover or uncover the outlet port 231, and thus to control the flow of "lo" gasoline into the hose 20.

The "hi" section of the valve 19 is sealed off from the "lo" section thereof by means of a sealing partition 233. In the "hi" section of the valve, a shaft 234 serves to mount a spring-engaged valve shoe 235, which is provided with a cylindrical surface engaging the interior wall of a chamber 236 in the valve housing or body. Preferably, the two chambers 229 and 236 are cylindrical and have a common longitudinal axis which extends horizontally. The shoe 235 cooperates with an outlet port 237 in the valve body for the control of flow of the "hi" fuel component, the valve or housing end of the "hi" hose 21 (see FIG. 1) being coupled to receive liquid flowing through this outlet port. The "hi" gasoline enters the chamber 236 by way of the connection or coupling 17. It may be seen that by rotation of shaft 234, the shoe 235 may be made to selectively cover or
uncover the outlet port 237, and thus to control the flow of "hi" gasoline into the hose 21.

The shafts 227 and 234 preferably have a common longitudinal axis, and extend outwardly from opposite sides of the housing 230. The inner ends of these two shafts are mounted for rotation in respective opposite sides of the partition 233. One end of an arm 238 is fixedly secured (pinned) to the outer end of shaft 227, and one end of a similar arm 239 is fixedly secured to the outer end of shaft 234. In FIGS. 2 and 10, the valve 19 is illustrated in the closed position, both sections of the valve being closed (valve shoes 228 and 235 completely closing their respective outlet ports 231 and 237). This closed position is the position reached just after the start of an "OFF" cycle, and is the position which is maintained between successive dispensing operations. As will be later detailed, at the end of an "OFF" cycle the reset motor 54 and the solenoid 53 are both deenergized, and the "start" buttons 58--65 and 58'--65' are all in their outward or unactuated positions. A fixed pin 240, which extends outwardly from housing 230 into the path of rotation of arm 238, provides a limiting abutment or stop which limits the rotation of this arm in the valve closing direction (counter-clockwise in FIG. 10), and thus fixes the amount of rotation of the arm in this direction. A similar fixed pin 240' is provided for arm 239, to limit the rotation of this arm in the valve closing direction.

One end of a rigid link member 241 is pivotally connected to the other end of arm or crank 238, and one end of a similar link member 242 is pivotally connected to the other end of arm or crank 239. The other ends of links 241 and 242 are pivotally connected to the respective ends of the crossarm portion of a T-shaped arm 243 which is rotatably mounted on a "floating" pin 244 located at the center of the crossarm portion. Pin 244 is in turn rigidly secured to an intermediate point on a somewhat L-shaped arm 245 which is pivotally mounted at one end thereof on a pivot pin 246 secured to the fixed support 232.

The pin 244 is caused to move along an arc (centered at the center of pin 246) by means of a rigid elongated link member 247 the lower end of which is pivotally attached to the end of arm 245 opposite pin 246 and the upper end of which is pivotally secured to the pivoted arm 81, at a location on the latter adjacent the attachment 226 and the end extension 80. When the solenoid 53 is energized at the beginning of the "ON" cycle, in the manner previously described, the plunger-attached link 225 moves upwardly, causing arm 81 to rotate in the counterclockwise direction in FIG. 2, about its fixed pivot 224. This moves the link 247 upwardly FROM the "OFF" position illustrated, the amount of rotation of arm 81 (and hence the amount of upward movement of link 247) being determined in a positive manner by the engagement of the upwardly-moving solenoid armature 248 with the fixed solenoid core. The lower end of the link 247, obviously, moves upwardly the same distance as the upper end of this link, and the link 247, acting on arm 245, moves pin 244 through a predetermined arc, about the fixed pivot 246.

An arm 249 which is bifurcated or slotted at its lower end, is mounted for rotation about a fixed pivot pin 250. The end of dog 141, which as previously described provides output from the subtractive differential 49, and which moves horizontally in FIG. 2 as the differential output varies from zero, fits within the slot at the lower end of arm 249, and by engaging the sides of such slot, causes arm 249 to rotate back and forth as the differential output varies from zero. The differential 49 is operative during the dispensing of the six blends of the total of eight grades of gasoline, but is in effect inoperative during the dispensing of either solely "hi" gasoline or solely "lo" gasoline (as previously described).

Member 249 is provided at its upper end with an integral lug 251 which an engage one or the other of two rigid pins 252 or 253 mounted on the positioning and adjusting member 114, during the "ON" cycle, thereby to bring the arm 249 to one or the other of two corresponding predetermined angular positions; it should be pointed out that one of these two positions (determined by pin 252) represents solely "lo" gasoline, and the other (determined by pin 253) represents solely "hi" gasoline.

The pins 252 and 253 are centered on a base circle whose center is at the center of shaft 115, and they extend in such a direction from member 114 that they can come into engagement with the sides of lug 251. The location of pin 252 is fixed on member 114, but the pin 253 is carried by an arm 254 which can be swung to various adjusted positions and then tightened in position on member 114, thereby to position the pin 253 in any selected one of various holes 255 spaced on the base circle just mentioned. The adjustment provided for the location of pin 253 on member 114 enables the dispensing apparatus of the invention to be adjusted to dispense either eight grades of gasoline (with pin 253 in the particular one of holes 255 in which it is shown in FIG. 2) or, in the alternative, some number of grades less than eight (with pin 253 in some other one of the holes 255).

If solely "lo" gasoline is selected for dispensing, the member 114 will rotate (as previously described) during the "ON" cycle in the counterclockwise direction through only a very small angle from the "OFF" position illustrated in FIG. 2, and arm 249 will be allowed to rotate clockwise through only a very small angle, and will be held in this latter position by pin 252 during dispensing, as will become apparent hereinafter. If solely "hi" gasoline is selected for dispensing, the member 114 will rotate during the "ON" cycle in the counterclockwise direction through a maximum angle from the "OFF" position, and arm 249, being engaged by pin 253 as member 114 rotates, will be rotated clockwise through a maximum angle, and will be held in this latter position, during dispensing, by pin 253.

If an intermediate grade of gasoline, which is to say a "blend," is selected for dispensing, the member 114 will rotate during the "ON" cycle in the counterclockwise direction to an intermediate position wherein neither pin 252 nor pin 253 will interfere during dispensing with the movement of arm 249, and in these cases the rocking of arm 249 will be controlled from the subtractive differential 49, through dog 141 which acts on the lower end of this arm.

Near its lower end, arm 249 carries an outwardly-extending fixed pin 256 which is arranged to cooperate with the upper end of the upwardly-extending straight
The upper end of the straight leg of arm 243 is beveled inwardly from both sides to provide two surfaces 257 and 258 which together form a V, the intersection of these two surfaces (at the center of the width of this straight leg) being cut out to form a U-shaped notch 259 having substantially the same radius of curvature as pin 256, so that pin 256 can enter into and seat in notch 259.

The operation of the linkage which adjusts the position of the blend control valve 19 during the "ON" cycle, will now be described. As previously stated, FIG. 2 illustrates the various members (including the blend control valve 19) in their "OFF" positions, which means prior to the beginning of an "ON" adjustment and resetting cycle; it will be recalled that in the "OFF" position of the blend control valve, both sections of the valve are closed. In the "OFF" position, the pin 256 rests in engagement with the inclined or beveled surface 258 at the upper end of arm 243; this relation is a result of the previous "OFF" cycle, as will later appear.

Assume, first, that a selection of solely the "lo" gasoline has been made, by actuation of either of the "start" buttons 58 or 58′. Assuming that the nozzle has been properly inserted into the filipipe, the closure of an electrical circuit by the actuated pushbutton (at or near the end of its mechanical travel) begins the "ON" cycle and causes the relay 108 (FIG. 5) to be energized, resulting in the simultaneous energization of reset motor 54 and of solenoid 53. Immediately after the solenoid 53 is energized, the solenoid-actuated link 225 is pulled upwardly, to bring the end of its travel in the upward direction. Due to various factors, such as mechanical inertia in the motor 54, the gear ratio between the motor output shaft and shaft 146, the fact that the motor-driven lever 153 must release the wing plate 155 at 158 before the spring-actuated member 114 can rotate, etc., the solenoid link 225 completes its travel before the member 114 has rotated to any substantial degree.

At this juncture, it is pointed out that when the link 225 pulls upwardly on the end of the pivoted arm 81, the end extension 80 thereof moves away from locking plate 77, which permits pin 78 to enter the appropriate one of the holes 76 and mechanically "lock in" the pushbutton which has been actuated.

The upward movement of link 247, produced as a result of the solenoid link 225 acting on arm 81, moves the "floating" pin 244 upwardly through an arcuate path about the pivot pin 246. As pin 244 moves in the upward direction, carrying with it the arm 243, the reaction of pin 256 against the inclined surface 258 (which is on arm 243) causes the arm 243 to tilt or rotate in the clockwise direction about pin 244, as illustrated in FIG. 11, to a final position which is reached when pin 256 enters the U-shaped notch 259. In this connection, it may be noted that during this rotation of arm 243, pin 256 remains essentially stationary because the lug end 251 of arm 249 is in engagement with pin 252 on member 114. For this grade of gasoline, the member 114 rotates through only a very small angle from its "OFF" position, so that when this latter member does rotate somewhat later during the "ON" cycle, the arm 249 rotates only slightly, lug 251 remaining in engagement with pin 252.

The above-described tilting of the T-shaped arm 243 tends to pull link 241 upwardly, and to push link 242 downwardly. However, the lower edge of arm 239 (to which the lower end of link 242 is attached) is at this time in engagement with its stop 240′, so that link 242 is prevented from moving downwardly; therefore, shaft 234 does not rotate, so the "hi" valve shoe 235 remains in its closed position, covering and sealing the "hi" outlet port 237.

The movement of link 241 upwardly (in response to the tilting of arm 243) rotates arm 238 in the upward direction, rotating the valve shaft 227 to move the "lo" valve shoe 228 away from its outlet port 231. By the time the tilting of arm 243 ceases, the "lo" outlet port 231 is completely uncovered, so that "lo" gasoline can flow substantially unimpeded through the connection or coupling 9, through the valve chamber 229, and through the "lo" outlet port 231 to the "lo" hose 20, and thence to the nozzle.

FIGS. 11 and 12 show the positions of the various parts of the linkage, and of the blend control valve 19, at the end of the "ON" cycle in accordance with the action just described, when solely "lo" gasoline has been selected. The "lo" section of the blend control valve 19 is fully open, and the "hi" section is completely closed. The subtractive differential 49 being inoperative for any control purpose under these conditions, dog 141 is ineffective, and the blend control valve 19 remains in the position illustrated in FIGS. 11 and 12 throughout the dispensing of solely the "lo" gasoline.

Now assume that a selection of solely "hi" gasoline has been made, by actuation of either of the "start" buttons 65 or 65′. The relay 108 is again energized to begin the "ON" cycle, resulting in the simultaneous energization of reset motor 54 and of solenoid 53. The solenoid-actuated link 225 is again pulled upwardly by the solenoid, producing an upward movement of link 247 from the "OFF" position illustrated in FIG. 2. Again, the "floating" pin 244 is caused to move upwardly through an arcuate path. Also, the arm 243 is caused to tilt or rotate in the clockwise direction about pin 244, as the notch 259 is caused to move upwardly, to bring pin 256 thereinto. (Lug end 251 of arm 249 remains essentially in engagement with pin 252 during this portion of the operation). This results in bringing the blend control valve 19, during this initial part of the "ON" cycle, to the position illustrated in FIG. 11-12, just as before.

However, somewhat later during the "ON" cycle, member 114 rotates to a position (which is reached prior to the end of its angular rotation) such that pin 253 comes into engagement with lug 251, and, as member 114 continues to rotate in the counterclockwise or "ON" direction, arm 249 is forced to rotate clockwise about its pivot 250. This rotation of arm 249 causes (by the action of pin 256 against one side of the U-shaped notch 259) the arm 243 to tilt or rotate in the counterclockwise direction about pin 244, away from the position illustrated in FIG. 11. The final tilted position of arm 243 is reached, in this case, when member 114 reaches its final angular position and ceases rotating arm 249. The tilting of arm 243 in the manner just mentioned (in the counterclockwise direction, away from the position illustrated in FIG. 11) causes link 241 to move downwardly, and link 242 to move upwardly.
The movement of link 241 downwardly rotates arm 238 in the downward direction, until it comes into engagement with its stop 240. This rotation of arm 238 rotates the valve shaft 227 in such a direction as to move the "lo" valve shoe 228 back over its port 231, until it reaches the closed position illustrated in FIGS. 2 and 10 (which position it reaches when the lower edge of arm 238 comes into engagement with stop 240). The "lo" valve shoe then covers and seals the "lo" outlet port 231.

The movement of link 242 upwardly rotates arm 239 in the upward direction, rotating the valve shaft 234 to move the "hi" valve shoe 235 away from its outlet port 237. By the time the member 114 has reached its final angular position and has stopped rotating (thus stopping the rotation of arm 249) the "hi" outlet port 237 is completely uncovered, so that "hi" gasoline can flow substantially unimpeded through the coupling or connection 17, through the valve chamber 236, and through the "hi" outlet port 237 to the "hi" hose 21, and thence to the nozzle. During the actual dispensing, which follows the "ON" adjustment operations described, no further motion of the blend control valve 19 occurs (the subtractive differential 49 being ine
teractive for any control purpose under these conditions), and such valve remains in the condition last described, that is, with its "lo" section completely closed and with its "hi" section fully open.

Next assume that an intermediate grade of gasoline is desired, that is, a "blend." The selection is made by actuation of one of the "start" buttons 59–64 or one of the buttons 59–64. The relay 108 is again energized to begin the "ON" cycle, resulting in the simultaneous energization of motor 54 and of solenoid 53. The solenoid-actuated link 225 is again pulled upwardly by the solenoid, producing an upward movement of link 247. The "floating" pin 244 is caused to move upwardly through an arcuate path. Lug end 251 of arm 249 remains essentially in engagement with pin 252, causing the arm 243 to tilt or rotate in the clockwise direction about pin 244, as notch 259 moves upwardly, to bring pin 256 thereinto. This results in bringing the blend control valve 19, during this initial part of the "ON" cycle, to the position illustrated in FIGS. 11–12, as before. In this position, the "lo" section of the valve is fully open, and the "hi" section is completely closed. The valve 19 tends to remain in this position as member 114 rotates (somewhat later during the "ON" cycle) to its final angular position, even though pin 252 may move away from the lug end 251 of arm 249, since in the case there is nothing to positively cause a movement of arm 249, and therefore a certain amount of friction acts to keep the valve in the position illustrated in FIGS. 11–12 (to which it has been brought).

When the member 114 has reached its final angular position, the pin 252 has moved sufficiently counterclockwise (from the position illustrated in FIG. 2) to prevent any interference thereby with movements of the lug end of arm 249, and the member 114 has not rotated enough to bring pin 253 sufficiently close to lug 151 to cause any interference thereby with movements of this same lug end.

For the actual dispensing of a blend, the output dog 141 of the subtractive differential 49 moves back and forth (horizontally) automatically, as called for by any change in conditions (this including the initial and rapid automatic setting of the valve 19, at the very beginning of the actual dispensing of a blend, from the "lo" valve open, "hi" valve closed initial position of FIGS. 11–12 to another position, for a blend, wherein the ports 231 and 237 are both partially closed, or both partially open, depending on the way one looks at it). Considering, by way of example, this initial and rapid automatic setting, when the "lo" flow is in excess of what it should be (as would be the case when the valve is in the solely "lo" position illustrated in FIGS. 11–12, whereas a blend of "hi" to "lo" has been selected by the "start" button), an output from the subtractive differential 49 occurs, such as to cause dog 141 to move horizontally to the left in FIG. 11. When dog 141 moves to the left, arm 249 pivots to move pin 256 to the left also. When pin 256 moves to the left, it causes a counterclockwise tilting or rocking of arm 243 about its pivot 244 (due to the pin 256 engaging the respective side of notch 259). This counterclockwise tilting of arm 243 causes link 241 to move downwardly and link 242 to move upwardly, resulting in the moving of "lo" valve shoe 228 in a direction to partially cover its port 231, and in the moving of "hi" valve shoe 235 in a direction to partially uncover its port 237.

Conversely, when the "hi" flow is in excess of what it should be, dog 141 moves to the right, pin 256 moves to the right, and the arm 243 tilts or rocks in the clockwise direction about pin 244, resulting in the moving of link 241 upwardly and link 242 downwardly. This opens the "lo" shoe 228 and closes the "hi" shoe 235.

Now referring to FIGS. 10 and 16, a subsidiary housing 270, which is secured in the main apparatus housing on the underside of the top wall thereof, provides a mounting support for the vacuum switch 25, this switch being mounted on a side wall of the subsidiary housing. The vacuum switch 25 preferably is of the construction disclosed in FIG. 10 of my "890 patent, and includes a movable plunger 271 which extends outwardly from the casing of the switch, as well as a pair of wires 272 which are connected individually to respective contacts inside the switch casing and which may be electrically connected to external circuitry. The two wires 272 are connected to circuitry as diagrammatically illustrated in FIG. 5, wherein the two contacts 103 and 105 represent the pair of contacts inside the vacuum switch casing. As described in my "890 patent, the plunger 271 may be mechanically pushed inwardly with respect to the switch casing for a predetermined distance, in order to cause closure of the two electrical switch contacts inside the casing.

The vacuum switch 25 is so located that its plunger 271 may be acted upon by a camming surface 273 integrally formed on the same wheel which carries gear 145. This latter wheel, as previously stated, is pinned to shaft 146 and is driven by reset motor 54 through the gearing 142, 143. The camming surface 273 rotates in the direction indicated by the arrow 274 in FIG. 16, and the motor-driven shaft 146 rotates at the same speed as camshaft 144.

Refer again to FIG. 6. It may be seen that the configuration of the cam 273 corresponds to that illustrated by arc E, with the "OFF" position line extending horizontally to the right from the center of shaft 146 in FIG. 16 and the "ON" position line extending horizon-
3,727,796

tally to the left from this same center, the arrow 274 indicating a clockwise direction of rotation, as does the arrow G; the “OFF” position of the cam 273 is illustrated in FIG. 16.

In the “OFF” position, the cam 273 pushes the plungers 271 of vacuum switch 25 inwardly, causing its contacts to be mechanically closed. These contacts are held closed by cam 273 throughout most of the “ON” cycle, and are mechanically released (by the left-hand end of cam 273 in FIG. 16 passing the plungers 271) just prior to the termination of the “ON” cycle.

During the “OFF” cycle, just before reaching the “OFF” position, the cam 273 again comes into engagement with the switch plungers 271, mechanically closing the contacts of the vacuum switch in preparation for the next “ON” cycle.

Recapitulating the operations so far described, actuation of one of the “start” pushbuttons 58–65 or 58’–65’ (the selection being made according to the grade of gasoline desired) mechanically rotates the shaft 69 and the step plate 82 to a corresponding angular position. After this has occurred, the actuated pushbutton causes the closure of electrical contacts, which (assuming that the nozzle has been properly positioned in the fillpipe) results in the energization of relay 108 (FIG. 5). The closure of the contacts of this relay simultaneously energizes the solenoid 53 and the reset motor 54. The solenoid remains energized throughout the actual dispensing operation (contacts 186 and the contacts 185 of relay 108 normally remaining closed during such actual dispensing). Relay 108 normally remains energized throughout the actual dispensing, since the mechanical “locking in” of the actuated pushbutton, which occurs as previously described, causes one or the other of contacts 99 or 100 in FIG. 5 to remain closed throughout such actual dispensing. Motor 54, as previously described, locks itself on by means of the cam-operated switch 104, which maintains the motor energized until shaft 146 has rotated through 180° from the “OFF” position, at which time switch 104 opens to deenergize the motor and thus stop the rotation of shaft 146.

Solenoid 53, which operates almost instantaneously upon the closure of the pushbutton contacts, lifts one end of arm 81 to cause (by means of 77, 78, etc.) a mechanical “locking in” of the particular pushbutton which has been actuated, and also to cause (by means of 247, 244, etc.) the adjustment of blend control valve 19 to a position different from the “OFF” position (for example, to the position illustrated in FIGS. 11–12).

Reset motor 54 (by means of 147, 149, 150, etc.) causes rotation of the counter reset shaft 151 through a predetermined angle. This rotation causes the resetting of the counter 31 to zero, prior to the beginning of the actual dispensing. Motor 54 also (by means of 152, etc.) rotates the lever 153, releasing wind plate 155 and allowing this latter to be driven from member 114. Member 114, as it is rotated in the counterclockwise direction by spring 118 to a selected angular position established by stop plate 82, causes (in conjunction with the throwout mechanism 161, 162, 166, etc.) an appropriate selection of gears to be made in the blend control unit 42, 44. Also, it may cause a further adjustment of the blend control valve 19 to be made, if solely "hi" gasoline has been selected, by means of 253, 249, etc.

The wing plate 155, as it is driven in the “ON” direction by member 114, causes (in conjunction with the throwout mechanism 161, 162, 163) an appropriate selection of gears to be made in the price increment unit 36.

Again referring to FIG. 5, the pump motor 3 is connected in series with the normally-open contacts 260 of a relay 261 across the 230-volt a.c. supply terminals 94’, 94”’. One end of the operating winding of relay 261 is connected to the a.c. supply terminal 94’, and the other end of this winding is connected through the contacts of a single-pole, single-throw cam-operated switch 262 and the contacts 185 of relay 108 to the supply terminal 94, through the normally-closed switch 95. In FIG. 6, the arc dented by C represents the operation of switch 262. Switch 262 is closed by its cam prior to the reaching of the “ON” position, and prior to the termination of arc E (which latter represents the operation of the cam which operates on the contacts 103 and 105 of vacuum switch 25). Thus, switch 262 is closed prior to the mechanical releasing of the vacuum switch contacts 103 and 105.

The cam arrangement provided for switch 262 is so designed that the closing of this switch by such cam always occurs after the completion of all of the previously-described mechanical resetting and adjustment operations. When, at the time indicated by the commencement of arc C in FIG. 6 (this commencement being referred to the clockwise direction of arrow G), switch 262 closes, an energization circuit is completed from the a.c. supply terminals through the operating winding of relay 261 (switch 95 and contacts 185 then being closed). Relay 261 then closes its contacts 260, energizing the pump motor 3. This motor drives the “lo” pump 2 and the “hi” pump 11, thus causing the actual dispensing of gasoline to begin. The dispensing takes place in the manner previously described and is of course controlled by the blend control valve 19. When solely “hi” gasoline or solely “lo” gasoline is being dispensed, the blend control valve 19 is set to and maintained at a corresponding fixed position, but when a “blend” is being dispensed, the gear boxes 42 and 44 (which have been adjusted for that blend during the “ON” cycle), acting through the subtractive differential 49, provide a continuous control of the position of the blend control valve.

As previously mentioned, the contacts 103 and 105 of vacuum switch 25 are held closed by a cam when pump motor 3 is energized to begin the actual dispensing. Motor 3 drives the vacuum pump 23, as well as the gasoline pumps 2 and 11. As indicated in FIG. 6 by the termination of arc E, the contacts of vacuum switch 25 are mechanically released by its cam shortly after the vacuum pump 23 is started (by the energization of its driving motor 3). If, at the time of this mechanical release, a suitable vacuum has been developed in the vapor hose 22, the contacts of the vacuum switch 25 will be maintained closed in response to such vacuum, as described in my '890 patent. If, on the other hand, there is not present at this time a suitable vacuum in hose 22, the vacuum switch contacts 103, 105 will open (also as described in my '890 patent). The opening of contacts 103, 105 will result in the commencement of an “OFF” cycle of the dispensing apparatus and the termination of the dispensing, as will subsequently be explained.
It may be observed that the following items are all connected in series in the energization circuit (between buses 91 and 92) for the operating winding of relay 108: (1) the electrical path provided by the fillippe 98 between the nozzle electrodes 96 and 97; (2) the push-button contacts 99 or 100, one or the other of which has been actuated to start the operation; (3) the emergency stop switches 101 and 102; and (4) the contacts of vacuum switch 25. The breaking of the series circuit to the winding of relay 108 by any of items (1) through (4) will result in the deenergization of relay 108 and, as will subsequently be explained, such deenergization causes the commencement of an “OFF” cycle and the termination of the actual dispensing of gasoline. Items (1), (2), and (3) provide emergency-type or safety-type action, whereas item (4) provides a more normal type of termination, resulting from the filling of the motor vehicle fuel tank; filling of the customer’s fuel tank is what is desired, in many instances.

When the nozzle accidentally drops out of the fillippe 98 during dispensing, the necessary electrical continuity is broken at 96-98, and relay 108 is deenergized; this provides a safety feature by automatically terminating the dispensing.

If the closed one of pushbutton switches 99 or 100 opens accidentally for any reason, relay 108 is deenergized, again automatically terminating the dispensing.

If either of the emergency stop switches or panic buttons 101 or 102 is pressed, such switch will be opened, deenergizing relay 108 and automatically terminating the dispensing.

If the contacts of vacuum switch 25 open when the cam mechanically releases such contacts, just before the end of the “ON” cycle (rather than being held closed by the vacuum developed), relay 108 is deenergized, automatically terminating the dispensing.

Now, somewhat more normal (and typical) type of operation will be considered in detail, to explain what takes place when relay 108 is deenergized. A typical nozzle arrangement which can be employed with the dispensing apparatus of this invention is disclosed in my ‘890 patent. A nozzle arrangement of the type mentioned operates on vacuum switch 25 to open its contacts 103, 105 in response to a “full” condition of the motor vehicle fuel tank into which gasoline is being dispensed by way of the nozzle. This action is explained in detail in my ‘890 patent. When the contacts 103, 105 of switch 25 thus open, in response to the fuel tank becoming full of gasoline, relay 108 is deenergized, opening its contacts 109 and 185 and returning it to the position illustrated in FIG. 5.

The opening of relay contacts 185 deenergizes the solenoid 53. Since the contacts 185 are connected in series with the operating winding of relay 261, the opening of these contacts deenergizes this relay, opening its contacts 260 and turning off the pump motor 3. This stops the pumping of gasoline and terminates the actual dispensing operation. However, there is provided a more rapid and more positive cutoff of the actual gasoline flow through the hoses 20 and 21 at this time, by the operation of the bend control valve 19; this will now be explained.

The arm 81 has an integral lateral (upwardly-projecting) extension 263, to the free end of which is attached one end of a coiled tension spring 264. The other end of spring 264 is attached to a fixed pin 265 secured to the framework. The spring 264 normally acts to rotate arm 81 in the clockwise direction (in FIG. 2) about its fixed pivot 224, that is, to urge the solenoid pin 226 end of this arm in the downward direction. When solenoid 53 is energized at the beginning of the “ON” resetting and adjustment cycle, it pulls this end of arm 81 upwardly, against the bias of spring 264. When solenoid 53 is deenergized at the beginning of the “OFF” cycle, the arm 81 is released for rotation by spring 264, to move the links 225 and 247 downwardly. A fixed stop 266, secured to the framework, is provided in such a position as to engage the lower end of link 225 and limit the rotation of arm 81 in the clockwise direction.

When the arm 81 rotates in the clockwise direction from its “ON” position to the position illustrated in FIG. 2, the end portion 80 of this arm pushes locking plate 77 downwardly, removing the pin 78 from that one of the holes 76 into which it had previously entered. This unlocks or releases (by releasing shafts 69 and 69 for rotation) the particular “start” button (in the groups 58-65 or 58-65) which had previously been actuated to start the operation, and allows it to be pushed outwardly to its unactuated position by means of its individual spring 79.

When the link 247 is moved downwardly as a result of the rotation of arm 81, the “floating” pin 244 is moved in a clockwise direction in FIG. 2, about its pivot 246. This pushes the T-shaped arm 243 in a generally downward direction, which causes both of the links 241 and 242 (if unimpeded) to move downwardly.

When the pin 244 is moved in a generally downward direction as previously described, both of the valve shoes in blend control valve 19 are moved to their closed or shut-off positions, no matter in what positions they had been previously. For example, if solely “lo” gasoline were being dispensed, the blend control valve 19 would have been in the position illustrated in FIGS. 11 and 12, during the actual dispensing operation. In this case, when pin 244 is moved downwardly (since the valve shoe 235 is closed and the “hi” arm 239 is already against its stop) the link 242 does not move downwardly and the arm 243 in effect pivots about its right-hand end, moving the link 241 downwardly, which results in moving the arm 238 upwardly and the “lo” valve shoe 228 to its closed position covering the outlet port 231. The converse occurs in the case of the dispensing of solely “hi” gasoline; now, when pin 244 is moved downwardly, the link 241 does not move downwardly and the arm 243 in effect pivots about its left-hand end, moving the link 242 downwardly and closing the “hi” valve shoe 235.

In the case of the dispensing of a “blend” (wherein both of the ports 231 and 237 are partially uncovered by their respective valve shoes), when pin 244 is moved downwardly the links 241 and 242 move downwardly together, moving both valve shoes 228 and 235 toward their closed positions until one or the other of the arms 238 or 239 engages its respective stop; following which the single unimpeded link continues to move downwardly until its corresponding arm 238 or 239 engages its stop. When this occurs, both of the valve shoes 228 and 235 are completely closed.
The operation of the blend control valve 19 just described (which takes place upon deenergization of solenoid 53) occurs very rapidly upon deenergization of the solenoid, and, since such operation results in both valve shoes 228 and 235 being brought to their completely closed positions, a positive cutoff of the gasoline from hoses 20 and 21 is provided.

It may be noted, from a comparison of FIGS. 10 and 12, that the valve shoes 228 and 235 move to only one side of their respective ports 231 and 237 during any operation of the valve, from closed to open and back to closed.

When pin 244 is moved downward in the manner previously described, the arm 243 moves in a generally downward direction. This moves the notch 259 down to a position wherein the pin 256 is freed for lateral movement on the surfaces 257 or 258, without contacting the sides of the U-shaped notch 259.

Referring again to FIG. 5, the relay 108 carries a pair of normally-closed contacts 267 which are connected in series with the cam-operated switch 111 and its contact 113, and with reset motor 54, across the a.c. supply terminals 94, 94'. It will be recalled that switch 111 is closed on its contact 113 during the “ON” cycle, at the termination of arc A in FIG. 6. Therefore, when relay 108 is deenergized in response to the opening of the contacts of vacuum switch 25 upon “fill” (or in response to the removal of the nozzle from the filipipe, the pressing of one of the switches 101 or 102, etc., as previously described), an energization circuit is completed for reset motor 54. Shortly after motor 54 begins to rotate at the beginning of the “OFF” cycle, it causes the cam-operated switch 104 (whose cam is driven from this motor) to close, as illustrated by the left-hand portion of arc B in FIG. 6 (the cam operation continuing in the direction G). This closes a “lock-in” circuit for the motor, maintaining the motor energized for as long as switch 104 is closed. Switch 104 remains closed throughout substantially all of the remainder of the “OFF” cycle, that is, substantially until the upwardly-extending vertical line designated “OFF” in FIG. 6 is reached. This last-mentioned line represents completion of the “OFF” cycle, which coincides in camshaft position, but not in time, with the beginning of the following “ON” cycle.

From the above, it may be seen that the reset motor 54, upon energization thereof in response to deenergization of relay 108 (normally at the end of an actual dispensing operation, is maintained energized until it has caused rotation of the camshaft 144 (and also of the shaft 146) through substantially 180° from the “ON” line in FIG. 6; then it is shut off and deenergized by the opening of switch 104 (see the left-hand portion of arc B in FIG. 6). The line designated “OFF” in FIG. 6 denotes the completion of the “OFF” cycle.

During the “OFF” cycle (180° of rotation of shaft 146 in a clockwise direction in FIG. 2, beginning with a position 180° clockwise from the position illustrated), the reset motor 54, through the various linkages previously described, including the crank 147, drives the plate 150 in the direction indicated by the “OFF” arrowhead on arc 159.

The arm 81 is somewhat T-shaped, having an integral extension 268 which extends to the left of the pivot 224 in FIG. 2, approximately in alignment with the center of the pivotal attachment 226 and with the center of the aperture through which the upper end of link 247 extends. This extension 268 is adapted to at times (as will be explained hereinafter) come into engagement with an outwardly-extending lug 269 formed on and carried by crank 147, as the extension 268 is moved upwardly by spring 264, when the solenoid 53 is deenergized. However, in the present case (a “fill” operation, wherein the solenoid 53 is deenergized simultaneously with the energization of motor 54), the lug 269 has been moved (by motor 54, rotating crank 147) out of the way of extension 268, by the time this extension has moved upwardly to a point where such engagement might otherwise occur. Therefore, the lug 269 does not interfere in this case with the rotation of arm 81, and complete shutoff of valve 19 (in the manner previously described) is effected very rapidly.

During the “OFF” cycle, when plate 150 rotates in the counterclockwise direction, the counter reset shaft 151 pinned thereto rotates in the counterclockwise direction, effecting the first step in a counter resetting operation. This will be further referred to hereinafter.

During the “OFF” resetting and adjustment cycle, as the crank 147 rotates clockwise from its “ON” position, the link member 152 moves generally upwardly, rotating the L-shaped lever 153 in the counterclockwise or “OFF” direction, from its “ON” position.

When the pin 161 (carried by lever 153) rotates away from its previous engagement with crank 162, spring 164 rotates the latter to the “OFF” position illustrated in FIG. 2. This rotation of crank 162, by means of the linkage 166, 167, etc., “throws out” all of the gears in the “lo” gear box 42 and in the “hi” gear box 44, which is to say that all of the idler gears 129 and 129' are brought to a position wherein they are out of mesh with the respective cone gears 123 and 125, and also out of mesh with the respective pinions 134 and 134'. Also, the rotation of crank 162 to its “OFF” position by spring 164 returns the shaft 163 to its “locked” position, wherein the gears are held out of mesh, in unit 36.

As lever 153 continues to rotate in the counterclockwise direction (being driven in this direction by the motor 54), a location is reached wherein one of its arms “picks up” or comes into engagement with the lug 158 of wing plate 155. Then, as lever 153 continues to rotate in this “OFF” or counterclockwise direction, it rotates wing plate 155 along with it.

The rotation of wing plate 155 in the counterclockwise direction, through gearing 157, 183, causes rotation of the camshaft 184 of the price increment unit 36 to its “OFF” or “reference” position.

The wing plate 155, as it rotates in the counterclockwise direction, drives the positioning and adjusting member 114 through the gearing 156, 160, the rotation of the latter member being in the clockwise direction in FIG. 2, which is the “OFF” direction of rotation for such latter member. The rotation of member 114 in this “OFF” direction tensions or stretches spring 118.

The rotation of member 114 in the “OFF” direction rotates shaft 115, which causes rotation of arcuate plates 172 and 176 in the “lo” and “hi” gear boxes 42 and 44, respectively, to an “OFF” or reference position.
The member 114 itself rotates in the clockwise direction, under the positive control offered by the gearing 156, 160, to the "OFF" or reference position illustrated in Fig. 2, wherein its projections 117 have a certain predetermined relation to the projections 83 on stop plate 82.

As the member 114 nears the end of its rotation in the clockwise or "OFF" direction, the pin 252 carried thereby comes into engagement with the lug 251 of arm 249, rotating this arm in the counterclockwise direction about its pivot 250 to bring the pin 256 to the predetermined "OFF" position illustrated in Fig. 2.

Refer again to Figs. 5 and 6. In Fig. 6, the arc denoted by C represents the operation of the cam-operated switch 262. It has been described previously how this switch is closed by its cam (driven by camshaft 144) near the end of the "ON" cycle, thereby to energize the pump motor relay 261 (relay 108 being energized at this time, and its contacts 185 closed) and turn on the motor 3. As indicated by arc C, the switch 262 is opened by reset motor 54 shortly after the beginning of the "OFF" cycle, thus making absolutely certain that the pump motor relay 261 will not be again energized during the "OFF" cycle (even though, of course, this relay has been previously deenergized by the opening of contacts 185 of relay 108 at the very beginning of the "OFF" cycle).

The arc denoted by D in Fig. 6 represents the operation of the cam-operated switch 95. As indicated by this arc, the switch 95 is opened by reset motor 54 shortly after the beginning of the "OFF" cycle. The opening of this switch removes the voltage from buses 91 and 92, thus making certain that the "OFF" cycle will proceed in the desired manner regardless of any changes that might take place in any of the circuit elements connected to these buses (such as, for example, the closing of one of the pushbutton switches 99 or 100, which might otherwise cause relay 108 to again become energized). The opening of switch 95 also effects another break in the energization circuit of solenoid 53, preventing this solenoid from accidentally becoming energized during the "OFF" cycle, as well as effecting an additional break in the energization circuit of the pump motor relay 261.

Just prior to the end of the "OFF" cycle, the reset motor 54 causes the closing of the cam-operated switch 111 on its contact 110 (see arc A in Fig. 6). Also, at or about this same time the cam-operated switch 95 is closed (see arc D), and the cam 273 acts to close the contacts of the vacuum switch 25 (see arc E). Thus, the various items are reset for the following "ON" cycle, which can be begun by actuation of one of the "start" buttons 58-65 or 58'-65', as before.

Although not illustrated in the drawings, all of the electrical contacts at which sparking might be produced are enclosed in an explosion-proof housing located, for example, on top of the apparatus housing. Inside this explosion-proof housing are mounted the relays 108 and 261 (together, of course, with their contacts), and the cam-operated switches 11, 104, 262, and 95, as well as another cam-operated switch 275, yet to be described. In this housing, also, is mounted a switch for turning on a lamp (not shown) which provides illumination for the dispensing apparatus. The cams which operate the cam-operated switches are rotated by means of the camshaft 144, which is sealed through a wall of the explosion-proof housing. This camshaft rotates at the same speed as does shaft 146. In order to avoid undue complication of the drawings, the configurations of the cams which operate the switches 111, 104, etc. are not shown in detail; from a study of Fig. 6, the actual cam configurations should be apparent to those skilled in the art.

The foregoing has described the termination of the actual dispensing operation, and the beginning of the "OFF" resetting and adjustment cycle which follows, as resulting from a "full" condition of the motor vehicle fuel tank. The dispensing apparatus of this invention also includes an arrangement for terminating the dispensing operation upon the dispensing of a preset number of dollars' worth of gasoline, and this latter arrangement will now be described.

The register 31 which is included in the overall dispensing apparatus may generally be of the type disclosed in Bliss U.S. Pat. No. 2,814,444, insofar as the actual registering of total gallons or quantity and total cost is concerned. This register ordinarily includes a set of gallons or quantity wheels, which are driven by the total gallons (mechanical) output 30 of summing differential 28, and a set of cost or money wheels, which are driven by the total cost (mechanical) output 40 of summing differential 39 (Fig. 1). The money wheels comprise dollars, tens of cents, and cents wheels coupled together in decade transfer relationship, in accordance with the teachings of the aforementioned Bliss patent.

Refer again to Figs. 5 and 6. A single-pole, singlethrow reed switch 275, one contact 276 of which is connected directly to bus 92, serves as a power control switch for the "money cutoff" network now to be described. Switch 275 is controlled by a rod-type permanent magnet mounted on the gear wheel 145, which is driven by reset motor 54 (and which also carries the camming surface 273). In Fig. 6, the arc denoted by F represents the operation of switch 275. Switch 275 is operated substantially simultaneously with switch 262 (see arc C), which is to say that switch 275 is caused to close toward but before the end of the "ON" resetting and adjustment cycle, remains closed during the actual dispensing operation which follows, and is opened shortly after the beginning of the "OFF" cycle; switch 275 is open at all other times. It will be assumed in what follows that an actual dispensing operation is taking place; switch 275 is then closed.

In Fig. 5, switches (including the switch 275, previously referred to) surrounded by circles represent so-called reed switches, which are operated or actuated by bringing permanent magnets in proximity to the fixedly-mounted switches. Generally, these reed switches are of the single-pole, single-thyve type. A reed switch 278 has one contact connected to the other contact 277 of switch 275 and its other contact connected to one end of a stepper winding 279, the other end of winding 279 being connected to bus 91. Switch 275 being closed, each time that switch 278 closes, a pulse of current will flow through stepper winding 279.

The reed switch 278 is arranged to be actuated (i.e., closed) by a rod-type permanent magnet which is attached to the tens cents money wheel of the gallons and cost register 31, at a location such that switch 278 is
closed simultaneously with each appearance of the "9" digit on this wheel in the viewing window of the register, which would occur each time 90 cents, plus some dollar value from zero upward, worth of gasoline has been dispensed.

The energization circuit for stepper 279 closes each time that switch 278 closes. Stepper 279 comprises part of a manually-settable counter which can be set to some desired whole number of dollars, prior to the "start" of the dispensing operation. Each time that the stepper 279 operates, it mechanically sets this counter back one step, in the direction toward zero. Thus, it may be set back once when 90 cents worth of gasoline has been dispensed, again when $1.90 worth has been dispensed, and so on. When the counter has reached the "1 dollar" step (either from having been stepped backward to this step by means of successive operations of the stepper 279, or from originally having been set to only the "1 dollar" step), the next following operation of the stepper 279 causes a reed-type "reset switch" 280 to close. Switch 280 is actuated (i.e., closed) by a rod-type permanent magnet attached to the shaft of the manually-settable counter (which shaft is mechanically stepped in the reverse direction by stepper 279).

The contacts of a reed switch 281 are connected in series with the contacts of switches 278 and 280, and with the operating winding of the reed-switch-actuating relay 187, between contact 277 of switch 275 (this latter contact being connected to bus 92 by closed switch 275) and bus 91. The reed switch 281 is arranged to be actuated (i.e., closed) by a rod-type permanent magnet which is attached to the cents money wheel of the gallons and cost register 31, at a location such that switch 281 is closed simultaneously with each appearance of the "8" digit on this wheel in the viewing window of the register. Thus, when 98 cents of the final dollar's worth of gasoline ordered has been dispensed, reed switches 278, 281, and 280 are all closed, resulting in the energization of relay 187. Relay 187 is preferably a reed-switch-actuating relay, carrying magnets which operate reed switch contacts.

When relay 187 is energized, its normally-closed reed switch contacts 186 are opened and its two normally-open pairs of reed switch contacts 282 and 283 are both closed. Contacts 282 are connected between switch contact 277 and one end of the winding of relay 187, and thus across the series combination of reed switches 278, 281, and 280; the closing of contacts 282 thus "locks in" the relay 187. In this connection, it may be here noted that relay 187 is reset (i.e., deenergized) at a later time (to wit, shortly after the beginning of the "OFF" resetting and adjustment cycle, which follows the termination of the actual dispensing operation by the opening of the cam-operated switch 95, which removes the voltage from buses 91 and 92.

The opening of contacts 186 of relay 187 opens the energization circuit of solenoid 53, deenergizing this solenoid. Thus, this solenoid is deenergized upon the dispensing of 98 cents of the final dollar's worth of gasoline ordered.

Refer now to FIGS. 2 and 13-15. Each of the valve shoes 228 and 235 in the blend control valve 19 has therein a centrally-located cutout or notch, on the side of the shoe which is closest to its respective outlet port when the shoe is in its open position. The notch 284 in the "lo" valve shoe 228 is illustrated in FIGS. 13-15 (and also in FIGS. 10 and 12); the "hi" valve shoe 235 has a similar notch therein. Each notch allows a restricted flow to take place through the respective outlet port when the valve shoe is moved to a "partial shutoff" position.

FIG. 13 illustrates the fully open position of the "lo" valve shoe 228; in this position an unrestricted flow can take place through the outlet port 231. (Of course, if a "blend" of "lo" and "hi" gasolines is being dispensed, the "lo" valve shoe would not be in this fully open position, but would be in some intermediate position wherein the outlet port 231 is partially covered.)

FIG. 14 illustrates the "partial shutoff" position of the "lo" valve shoe 228, wherein this shoe has been moved upwardly, from the position illustrated in FIGS. 13 and 12, to cover all but the upper central portion of the outlet port 231; a very restricted flow then takes place through the outlet port, by way of the notch 284.

FIG. 15 illustrates (like FIG. 10) the fully closed position of the "lo" valve shoe 228, wherein the lower edge of the notch 284 has moved upwardly beyond the outlet port 231, completely closing this port and completely cutting of the flow therethrough.

Summarizing the above, it may be seen that a "partial shutoff" position of the valve shoe 228 (wherein a very restricted flow takes place through the outlet port 231) results from moving the shoe upwardly (with respect to the outlet port) from the FIG. 13 position to the FIG. 14 position, followed by complete shutoff when the valve shoe moves to the FIG. 15 position.

The foregoing description, in connection with FIGS. 13-15, is also applicable to the "hi" valve shoe 235, which has a notch cooperating in exactly the same way with its outlet port 237, to provide a partial shutoff when this valve shoe moves upwardly (with respect to its outlet port) for a certain distance, from a previous fully open (or partially open) position. Further movement upwardly of this "hi" valve shoe provides a complete shutoff.

The lug 269 carried by crank 147 extends outwardly (i.e., to the right of the plane of crank 147 in FIG. 10) a sufficient distance to intersect the plane of the main portion of arm 81. In the "ON" position of crank 147, the lug 269 has been rotated 180° clockwise, around to the dotted-line position indicated at 269; in this latter position, it can come into engagement with the end extension 268 of arm 81, and thus limit the upward movement of this end of the arm.

As previously described, when solenoid 53 is deenergized the arm 81 is rotated by spring 264 in the clockwise direction in FIG. 2, moving the end extension 268 upwardly, and (in the case of automatic money cutoff) the solenoid is deenergized upon the dispensing of 98 cents of the final dollar's worth of gasoline ordered.

As described hereinabove, when arm 81 is rotated clockwise upon deenergization of solenoid 53, link 247 moves downwardly, to move both of the valve shoes 228 and 235 toward their closed positions. However, in the present case (motor 54 having not yet been energized, and lug 269 therefore remaining in the path of rotation of extension 268 of arm 81), the valve shoes will be prevented from moving to their fully closed
positions, and will instead move only to the "partial shutoff" position illustrated in FIG. 14. In this latter position, only a very restricted flow takes place through one or both of the valve outlet ports, by way of the notches such as 284.

Summarizing the foregoing, it may be seen that upon the dispensing of 98 cents of the final dollar's worth of gasoline ordered, the solenoid 53 is deenergized, thereby to cause operation of the blend control valve 19 to the "partial shutoff" position illustrated in FIG. 14. The reduced or restricted flow of "partial shutoff" is then effective throughout the remainder of the actual dispensing operation.

Under the reduced flow conditions which continue, the reed switch 281 will open, but this has no effect since relay 187 remains locked in or energized by means of its contacts 282.

The contacts 283 of relay 187 are connected in series with the contacts of a reed switch 285, across the winding of relay 108. In this connection, it will be recalled that the relay contacts 283 close when relay 187 is energized, and remain closed as long as this relay remains energized. The reed switch 285 is arranged to be actuated (i.e., closed) by a rod-type permanent magnet which is attached to the tens cents money wheel of the gallons and cost register 31, at a location such that switch 285 is closed simultaneously with each appearance of the "zero" or "0" digit on this wheel in the viewing window of the register.

Under the partial shutoff or restricted flow condition which comes into effect upon the dispensing of 98 cents of the final dollar's worth of gasoline ordered, the cost wheels of the register continue to rotate, though of course at a much slower rate, and upon the dispensing of the full amount of the final dollar's worth of gasoline ordered, the "zero" on the tens cents wheel comes into view, and switch 285 closes. When switch 285 closes, the winding of relay 108 is short-circuited through contacts 283 and switch 285, so that this relay becomes deenergized and releases.

The deenergization of relay 108, as before, causes the energization of reset motor 54, which rapidly rotates the crank lug 269 out of the path of extension 268 of arm 81, permitting this arm to continue its clockwise rotation to bring it against its stop 266. This moves link 247 further downwardly, to bring both of the shoes in blend control valve 19 to their fully shutoff positions illustrated in FIG. 15, and also in FIGS. 2 and 10.

The "OFF" resetting and adjustment cycle begins, as before, with the deenergization of relay 108 and the resultant energization of reset motor 54. The "OFF" 55 cycle then proceeds in the manner previously described, this cycle including the deenergization of the pump motor relay 61 (thereby turning off the pump motor 3) by the cam-operated switch 262.

Again summarizing, full and complete shutoff of the gasoline flow occurs automatically upon the dispensing of the exact number of dollars' worth of gasoline which has been ordered or present into the mechanism (by manual operation of the counter associated with stepper 279). The "OFF" resetting and adjustment cycle again takes place upon the completion of the actual dispensing operation.

Refer now to FIG. 17. This figure diagrammatically illustrates circuitry which may be added to the circuitry of FIG. 5, below the line H—H, when remote indication of the cost of the gasoline dispensed is desired.

When the remote circuitry of FIG. 17 is added to that of FIG. 5, the supply of voltage to the buses 91 and 92 from the secondary of the stepdown transformer 93 is by way of the contacts 286 of a relay 287 whose operating winding is connected across the buses 91 and 92. For the sake of consistency, the relay 287 is illustrated in its unenergized condition; however, it is pointed out that during each dispensing operation this relay is actually energized and its contacts 286 closed, which causes the low voltage to be fed to buses 91 and 92, for operation, as required (the cam-operated switch 95, FIG. 5, being closed during dispensing, as previously described).

The operating winding of a remote counter 288 is connected in series with a reed switch 289, between bus 91 and the contact 277 of switch 275 (contact 277 being connected to bus 92 during the actual dispensing operation, since cam-operated switch 275 is closed during such operation). The reed switch 289 is located in the apparatus housing, not as a remote point, and is arranged to be repetitively actuated (i.e., closed) by rod-type permanent magnets which are attached to the cents money wheel of the gallons and cost register 31, at respective locations such that switch 289 is closed simultaneously with the appearance of each of the digits on this wheel in the viewing window of the register, which is to say that each closure of switch 289 represents the dispensing of 1 cent worth of gasoline. During the actual dispensing, then, the operating winding of the remote counter 288 is provided with "cents" pulses which step the counter 288 around in steps of one cent for each pulse. Thus, the cost of the gasoline dispensed is indicated remotely by counter 288.

Incorporated in the remote counter 288 is a reset winding 290, which is connected in series with one pair of normally-open contacts 291 of a pushbutton (manually-operable) reset switch 292, across the buses 91 and 92. When the reset switch 292 is actuated following the termination of a dispensing operation, its contacts 291 are closed, which supplies current to the counter reset winding 290, for resetting the counter 288 to zero.

As previously stated, the cam-operated switch 95 is opened during the "OFF" resetting and adjustment cycle; this removes the voltage from buses 91 and 92 and thus deenergizes the relay 287, opening its contacts 286. Just before the end of the "OFF" cycle, switch 95 is reclosed, which reconnects the primary of transformer 93 to the a.c. supply terminals. The other pair of normally-open contacts 293 of reset switch 292 are connected across relay contacts 286. When reset switch 292 is actuated, its contacts 293 are closed, which applies voltage from the secondary of transformer 93 to buses 91 and 92. This energizes the operating winding of relay 287, which then closes its contacts 286 to maintain the necessary operating voltage on buses 91 and 92.

All of the electrical items of FIG. 5 which were not previously described as being enclosed in an explosion-proof housing, are considered to be "intrinsically safe," since they all operate on low voltage and since a goodly number of them comprise reed switches.
3,727,796

The total gallons and cost counter or register 31 has not been illustrated in the drawings, in order not to complicate them unduly. This counter, except for its resetting mechanism, may be quite conventional, and is preferably, of the type disclosed in the aforementioned Bliss patent. The resetting mechanism for this counter has been only briefly referred to hereinabove, in connection with the counter reset shaft 151 (which is rotated back and forth during the “ON” and “OFF” cycles by means of the bifurcated plate 150, to which it is attached). A useful counter resetting mechanism is disclosed in my U.S. Pat. No. 3,616,996.

The invention claimed is:

1. In apparatus for the simultaneous delivery of two liquids in any one of a plurality of preestablished ratios, metering means providing a first output corresponding to the total delivery of said liquids, a variator receiving said output and adjustable to provide a second output corresponding to the amount of said total delivery multiplied by a base price per unit, a settable gear mechanism also receiving said first output and providing a third output corresponding to the amount of said total delivery multiplied by an incremental price per unit which depends upon the particular one of said preestablished ratios selected for delivery, means adding said second and third outputs to provide an indication of total price of said total delivery, a plurality of manually-operable pushbuttons one for each of said preestablished ratios, means operating automatically, in response to the operation of a selected one of said pushbuttons, for setting said gear mechanism to a position depending upon which particular pushbutton has been operated, valve means controlling the delivery of said liquids, and controlling means for said valve means to effect delivery of said liquids in substantially a predetermined ratio.

2. In apparatus for the simultaneous delivery of two liquids in any one of a plurality of preestablished ratios, metering means providing individual outputs corresponding to the delivery of said first and second liquids and also providing a first output corresponding to the total delivery of said liquids, a variator receiving said first output and adjustable to provide a second output corresponding to the amount of said total delivery multiplied by a base price per unit, a settable gear mechanism also receiving said first output and providing a third output corresponding to the amount of said total delivery multiplied by an incremental price per unit which depends upon the particular one of said preestablished ratios selected for delivery, means adding said second and third outputs to provide an indication of total price of said total delivery, a plurality of manually-operable pushbuttons one for each of said preestablished ratios, means operating automatically, in response to the operation of a selected one of said pushbuttons, for setting said gear mechanism to a position depending upon which particular pushbutton has been operated, valve means controlling the delivery of said liquids, and controlling means for said valve means to effect delivery of said liquids in substantially a predetermined ratio.

3. In apparatus for the simultaneous delivery of first and second liquids in any selected one of a plurality of preestablished ratios ranging from a zero ratio of the first to the second to an infinite ratio of the first to the second, metering means providing individual outputs corresponding to the deliveries of said first and second liquids and also providing a first output corresponding to the total delivery of said liquids a variator receiving said first output and adjustable to provide a second output corresponding to the amount of said total delivery multiplied by a base price per unit, a settable gear mechanism also receiving said first output and providing a third output corresponding to the amount of said total delivery multiplied by an incremental price per unit which depends upon the particular one of said preestablished ratios selected for delivery, means adding said second and third outputs to provide an indication of total price of said total delivery, a plurality of manually-operable pushbuttons one for each of said preestablished ratios, means operating automatically, in response to the operation of a selected one of said pushbuttons, for setting said gear mechanism to a position depending upon which particular pushbutton has been operated, valves individually controlling the deliveries of said liquids, adjustable means operated by said metering means and simultaneously controlling said valves to effect the delivery of said liquids in substantially a predetermined ratio, and second means operating automatically, in response to the operation of said one selected pushbutton, for adjusting said adjustable means to a position depending upon which particular pushbutton has been operated.

4. Apparatus set forth in claim 3, wherein the valves are preset to one of said predetermined positions for all of said plurality of preestablished ratios of liquids except an infinite ratio of the first liquid to the second liquid, and are preset to the other of said predetermined positions for an infinite ratio of the first liquid to the second liquid.

5. Apparatus recited in claim 3, wherein said pushbuttons are resiliently urged toward their unoperated positions, said apparatus including also means acting in response to the operation of any one of said pushbuttons for mechanically locking the same in its operated position.