2007/032800 A 2 I} 1010 00 0 D01 OO O R

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization | o
International Bureau :

) IO O R OO0 O

(10) International Publication Number

WO 2007/032800 A2

(43) International Publication Date
22 March 2007 (22.03.2007)

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GOGF 17/30 (2006.01) kind of national protection available): AE, AG, AL, AM,

(21) International Application Number: AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
PCT/US2006/024019 CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP,

(22) International Filing Date: 20 June 2006 (20.06.2006) KE. KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,

(25) Filing Language: English LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,

(26) Publication Language: English NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,

(30) Priority Data: SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
11/189,584 25 July 2005 (25.07.2005) US UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): CISCO
TECHNOLOGY, INC. [US/US]; 170 WEST TASMAN (84) Designated States (unless otherwise indicated, for every

DRIVE, San Jose, CA 95134-1706 (US). kind of regional protection available): ARIPO (BW, GH,
(72) Inventors; and GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
(75) Inventors/Applicants (for US only): COHEN, Earl, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
T. [US/US]; 78 HERMOSA AVE., Oakland, CA 94618 European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, F,
(US). DELIBALTA, Ibrahim [TR/US]; 5133 LAWLER FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
AVENUE, Fremont, CA 94536 (US). ROSEN, Jonathan RO, SE, SI, SK, TR), OAPI (BE, BJ, CF, CG, C1, CM, GA,
[US/US]; 205 GLADE PARK ROAD, Cary, NC 27511 GN, GQ, GW, ML, MR, NE, SN, TD, TG).
(US).
(74) Agents: FORD, Stephen, S. et al.; MARGER JOHNSON Published:
& MCCOLLOM, PC., 210 SW MORRISON STREET, — without international search report and to be republished
SUITE 400, Portland, OR 97204 (US). upon receipt of that report

[Continued on next page]

(54) Title: HASHING ASSIST FOR NETWORK PROCESSORS

MEMORY
10
MEMORY INTERCONNECT
18
[
HMR
16 RESOURCE
——
S —

RESOURCE INTERCONNECT
12

PPE
14

PPE

w10

(57) Abstract: A resource unit has a request interface to allow the unit to receive a request and associated data. The resource unit
also has a hashing engine to create a hash of the associated data, a modulo engine to create a modulus result, a read engine to perform
a memory read, and a results interface to allow the device to return results.

WO 2007/032800 A2 |00 0T 0000000 A 0 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

WO 2007/032800 PCT/US2006/024019

HASHING ASSIST FOR NETWORK PROCESSORS

BACKGROUND

With the increasing use of packet-based transmissions, many network devices such as
switches and routers now use network processors. Network processors may be thought of as
general purpose processors with special features or architectures to enhance and/or to
optimize packet processing within networks. These processors are typically adapted to be
more flexible and more easily programmable with regard to their packet processing features.

Much of the work of network processors involves activities such as accessing data
structures for a particular data flow through the network device. They may also determine
which of a set of parallel interfaces should receive packets from a particular input or
corresponding to a particular flow. For example, a packet enters the network device and the
processor needs to determine to which flow that packet belongs. This involves a cluster of
information such as the source address of the packet, the destination address, etc.

This cluster of information is used to access static or dynamic per-flow state and other
information such as a table of input interface attributes etc. for whatever entities inside the
network device are involved in the flow for that packet. Reducing this cluster of information
down to a more manageable size is useful to speed up access of the information needed to
route the packet on its way. For example, ten or more bytes of source address, destination
address, and protocol information might be reduced to a three-byte key which could be used
to access state information for that particular flow.

This reduction is generally accomplished using hashing and modulo functions, in
which a hash of the information is further reduced modulo the size of a table, and is then used
as the access key to the table. However, hashing, particularly high-quality hashing which

distributes the data sufficiently randomly across the desired address space, may be very time-

10

15

20

WO 2007/032800 PCT/US2006/024019

consuming and require either more circuitry which raises costs, or more processor cycles
which lowers performance.

In addition, many network processors may not have division units used to carry out
the modulo reduction of the hash result. Division is generally an expensive operation to
implement in hardware, uses too many cycles to be implemented efficiently in software, and
is not generally needed for any packet-processing operations other than modulo reduction of
the hash result. Therefore, network processor architectures usually do not include division
capabilities.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention may be best understood by reading the disclosure with
reference to the drawings, wherein:

Figure 1 shows an embodiment of a network processor architecture having a hash-
mod-read resource unit.

Figure 2 shows an embodiment of a hash-mod-read resource unit.

Figure 3 shows a flowchart of an embodiment of operatipn of a hash-mod-read
resource unit.

DETAILED DESCRIPTION OF THE EMBODIMENTS

Figure 1 shows an embodiment of a network processor 10 having a hash-mod-read
resource unit. The network processor is only one embodiment in which this unit may be used
and is only discussed here to provide a framework for assistance in understanding the
embodiments of the invention. The network processor 10 has a resource interconnect 12 that
allows the packet processing elements, or processors, such as 14 to communicate with various
resources such as the hash-mod-read (HMR) resource unit 16. Other resources may exist,

including a lock request controller, discussed in more detail below.

10

15

20

25

WO 2007/032800 PCT/US2006/024019

A memory interconnect 18 may be provided to allow the resource unit 16 to perform
memmory accesses to the memory 19 as needed depending upon the request. In various
embodiments, the memory 19 could be a dedicated memory for the resource unit 16, or it
could be a general-purpose memory such as DRAM which is shared by the processing
elements 14 through the resource interconnect 12. These memories could be on-chip or off-
chip.

Tn other embodiments, the resource unit 16 could access the memory 19 via the
resource interconnect 12, rather than over a dedicated connection as shown in Figure 1. The
resource unit is a logical ‘device’ formed out of hardware circuitry. For example, the modulo
engine within the HMR resource unit may be an integer divider.

When a packet processing element such as 14 needs to perform a hash, it transmits a
request through the resource interconnect 12 to the HMR resource unit 16. The request may
include a request type, as well as a fixed or a variable amount of information to be hashed, a
size for the variable amount of information, a reduction modulus, and a base address. The
information accompanying the request will be referred to as the request information. The
fixed or variable amount of information to be hashed, along with the size if the amount is
variable, is referred to here as the associated data and is included in the request information.
The HMR resource unit performs the requested operation or operations and returns results as
a response to the request.

A more detailed view of one embodiment of the HMR resource unit 12 is shown in
Figure 2. The HMR unit has a resource interconnect request interface (RQI) 22 that allows
the resource unit to receive the request and the associated data. The request contains the
parameters of the desired operation or operations, as will be discussed in more detail further.
In the embodiment shown in Figure 2, the read engine is bypassed explicitly. In other

embodiments, the read engine could be bypassed by issuing a dummy read. In one

10

15

20

25

WO 2007/032800 PCT/US2006/024019

embodiment, the resource unit may perform a hash only, a hash and modulo reduction, a
modulo reduction only, a modulo reduction and a read, a hash and a read, or a hash, modulo
reduction and a read, or just a read.

In one embodiment, if hashing is to occur, this is done first as hashing reduces the size
of the associated data to more manageable proportions. If hashing is to be done, execution of
the operation begins by sending the associated data to a hash engine 22. If a hash is not to be
performed, the associated data would, in some embodiments, bypass the hash engine 22 and
go directly to the modulo engine 24.

Hashing is a known art, and various embodiments of the hash engine could be used in
the spirit of this invention. One technique which has desirable trade-offs between hardware
cost and hash quality is the use of a CRC (cyclic redundancy check). CRCs provide a good,
pseudo-random distribution of the keys — a one-bit change in the associated data can result in
a large change in the resulting key. Still other embodiments might implement the hash engine
as a processor or as a micro-coded engine.

In some embodiments, the operation type includes information about the type of hash
to be done, and the hash engine implements fnultiple hashing algorithms. In some
embodiments, the hash engine could be fully pipelined, accepting one new operation every
cycle. In other embodiments, the hash engine could be implemented as set of parallel hash
processors, in which case its throughput might be more limited.

As mentioned above, hashing provides a means to reduce the key size used to access a
data structure of some kind, such as a table or a memory. If the size of the associated data is
800 bits, for example, there is not enough memory anywhere to store tables having 800-bit
keys. For example, a table with 32-bit (four byte) entries using an 800-bit key would reqﬁire
2*##802 bytes of storage. If instead a hash is created from those 800 bits, it could reduce the

800 bits to, for example, 32 bits, and a modulo 2**20 reduction could then reduce the

10

15

20

25

WO 2007/032800 PCT/US2006/024019

resulting key to only 20 bits. These 20 bits could then be used to index into a table of 108-
byte entries, where the entries are the four original bytes, plus four bytes for a “next” pointer
to link any colliding entries, plus the 800 bits (100 bytes) of associated data corresponding to
that entry to disambiguate any collisions. The total required size is now less than 2227 bytes,
which is quite practical.

Hashing is a many-to-one operation, so there may be more than one set of associated
data which produces the same hashed key. When multiple sets of associated data map to the
same key, a key is sometimes referred to as a ‘hash bucket’ because multiple sets of
associated data end up in the same bucket. In some implemenfations, these items are formed
into a ‘collision chain’ of entries that is linked by a “next” pointer. This collision chain can
then be ‘walked’ one result at a time to find the desired entry among the set of entries that
have the same key. Each element in the chain must store the original, associated data which
created it, allowing comparisons to determine which entry, if any, in the collision chain
corresponds to the desired associated data.

An advantage of this approach is that the processor only has to search one bucket to
find the result, rather than the entire table or memory. The search problem is reduced from
searching a very large table, to searching a much smaller number of colliding entries. A good
hashing function would minimize the number of colliding entries, particularly when given
sets of associated data that might be very “close,” for example, only differing in one bit.
CRCs can provide quite acceptable hashing functions in this regard.

If a hash in not to be performed, the associated data is passed to the modulo engine 24,
either untouched through paths in the hash engine or directly from the RQI interface
bypassing the hash engine, along with the modulus denominator. In these bypass cases where
the hash is not done, in some embodiments the size of the associated data might be restricted

to be no more than the size of the normal output of the hash engine. Examples of processes

10

15

20

WO 2007/032800 PCT/US2006/024019

that may perform a modulo function and not a hash may include identification of a pseudo-
random link over which to send information, or selecting one from a small number of
interfaces that are sending packets to a particular source destination, or constructing a key
when the associated data is already smaller than the size normally produced by the hash
engine.

The modulo engine 24 could be implemented in a variety of ways. For example, in
various embodiments it could be an integer divider, or it could use a table look-up, or
approximate inverse, scheme optionally followed by fix-up or correction steps, such as
Newton-Raphson iteration. In some embodiments, the modulo engine could be fully
pipelined, accepting one new operation every cycle, or in other embodiments it might be
composed of one or more parallel engines that are not fully pipelined and thus have
throughput limitations.

It must be noted that the term ‘modulo’ is used to refer to the operation, function or
circuit that performs this operation, and ‘modulus’ and ‘modulus result’ are used to refer to
the arguments and results of the operation.

If a read is to be performed, the results of the modulo reduction are used to access a
memory through the memory interconnect via a read engine 26, and the read results are
returned as part of the results transmitted back to the requesting packet processing element.
Similar to the way in which the hash engine 22 might be bypassed if it was not to be used for
a given operation type, the modulo engine 24 could be bypassed either directly, or in some
embodiments just by setting the modulus denominator to 1.

Some embodiments might bypass both the hash engine and the modulo engine and,
for some operation types, only use the read engine 26. In some embodiments, the read engine

just does a simple, single read of the memory at an address determined by adding the base

10

15

20

WO 2007/032800 PCT/US2006/024019

address from the request to the result obtained from the modulo engine and/or the hash
engine. This is referred to here as a simple read.

In other embodiments, the read engine could also do a hash table “walk” by
comparing a portion of the result of a first, simple read with the associated data from the
request. If the associated data does not match and the read result contains a non-null “next”
pointer, the process follows this pointer to the next element in the collision chain and repeats
the comparison. In this fashion, some embodiments could implement the entire hash table
search process in the resource.

In other embodiments, the hash table search might involve additional operations to
acquire a semaphore, also called a lock, associated with the hash table or with this access
thereto. There might be one or more locks to be used, one used in the event of a miss, and one
used in the event of a hit, and the address or location of these locks could be part of the
corresponding data in the request. These locks might be cleared after the read engine
completes its work, or they may be held on behalf of the requesting processor, which would
then be responsible for releasing them. The read engine 26 could be implemented as a
hardware engine, or it might be a specialized processor or a micro-coded engine.

The results of the modulo reduction may be the modulus result alone when no hashing
is done or a reduced hash. Therefore, the results returned may be just the hash created by
hashing the associated data; a hash upon which has been performed a modulo reduction,
referred to here as a reduced hash; the result of a modulo reduction by itself, referred to here
as a reduction or reduction result; a hash with read results; a reduction with read results; and a
reduced hash with read results. Other combinations of results, including returning multiple of
these results, may be desirable in other embodiments and these are only intended as examples

of the possible results.

10

15

20

WO 2007/032800 PCT/US2006/024019

As mentioned above, the results returned depend upon the operations requested. The
following discussion is merely one example of request parameters and is in no way intended
to limit the scope of the invention. If one were to assume that the hashing engine uses
cyclical redundancy check (CRC) hashing with polynomials, for example, including a CRC
polynomial type field in the request, the value of the field could indicate whether hashing is
required, and if so, what CRC polynomial or other hashing function to use. Similarly, setting
a mod denominator to 0 or non-zero could determine whether or not modulo reduction is
desired. Similarly, a read field that may designate the size of the data to be read could be set
to 0 or to the size desired, depending upon whether read results are to be returned or not. In
other embodiments, which combination of operatiohs is to be determined might be encoded in
the operation type.

The operation of the resource unit would be based upon the parameters set in the
request, such as those examples described above. A flowchart of an embodiment to operate
an HMR resource unit is shown in Figure 3. At 40, the request and associated data is
received. At 42, whether hashing is to occur is determined. If hashing is to be performed, the
process moves to 44 where the hash is created.

If hashing is not desired, the process skips the hashing and move directly to 46, where
it is determined whether a modulo reduction occurs. If the modulo reduction is not desired,
the process moves to 50. If modulo reduction is desired, the reduction is performed at 48. At
52, the decision is made whether to perform a read. If a read is not desired, the process
returns the results at 54. If a read is desired, the memory is accessed. In one embodiment the
memory is accessed using a base address transmitted with the request added té the hash or the
modulus result as the address of an initial read at 52. Not shown is the embodiments where

the read engine might iteratively walk a hash chain.

10

15

20

WO 2007/032800 PCT/US2006/024019

The results returned will depend upon the path taken. As mentioned above, the results
could be a hash, a reduced hash, a reduced hash and read results, a hash and read results, a
modulus result, a modulus and read results, or just read results. Each of this possible results
may comprise at least a portion of the results returned.

By coupling the HMR resource unit to the memory system in a network processor, and
returning the contents of a memory location at a base address offset by a modulus result,
hashed or not, the HMR unit effectively performs a hash table look-up in one single operation
from the perspective of the requesting thread. If the read engine also detects hash collisions
and walks the hash chain in the event of such collisions, the entire hash search is
implemented by the HMR resource unit.

A thread is a particular process flow on the packet processing element. Several
hundred cycles of computation, plus latencies for one or more memory accesses, that would
otherwise be necessary for these operations are converted into one resource access. Without
the HMR resource, one resource access would be required just to access the memory for the
simple read portion of this operation. |

With pipelining employed in the hardware used to perform the hash and modulo
operations, the resource unit could run fast enough to handle requests from many threads. In
one embodiment, a pipelined HMR resource unit can support more than 200 threads.

Other variations and modifications are possible. The hashing could be implemented
in some other hashing function rather than CRCs. The resource unit could implement many
different types of hash functions, selectable as part of the request. The hash engine could
implement different sizes of hash functions, such as 32-bit, 16-bit, etc.

The modulus result need not be the same size as the hash result, meaning that the

dividend and the divisor do not have to be the same size. In most instances, a 16-bit modulus

10

15

20

WO 2007/032800 PCT/US2006/024019

will be sufficient for most purposes and a 24-bit modulus is sufficient for even enormous
hash tables.

The associated data, the data being hashed, may be fixed or variable in length. In
some network processors, the processor allows variable length requests, thereby allowing
variable lengths of data to be hashed.

The modulo reduction may be done in various ways. An embodiment mentioned,
above was an integer divider. A table look-up may be used to approximate the division. The
division could be performed as repeated subtraction. Other division approaches could be
used as well.

Using a memory look-up is merely one example of a coupled operation. One or more
coupled operations may exist. Another example is a lock request to a lock resource. The lock
request could be made only if there was a collision in the hash bucket returned by the memory
access. In this case, other information in the request, such as a lock identifier (ID), would
allow the read engine, upon detection of a hash collision which does not appear in the chain
that is walked, to request a lock, using the given lock ID, and perhaps even install the new
entry in to the collision chain. In an embodiment such as this, the HMR resource could have
connections, either directly or through the resource interconnect, to other resources, such as a
lock resource.

In another embodiment, the HMR need not be coupled to the network processor; it
could reside in the memory system instead. Another embodiment could have multiple HMR
resources, perhaps all the same, or perhaps each implementing different hashing functions or
understanding how to walk different types of hash collision chains or other structures.

Thus, although there has been described to this point a particular embodiment for a

method and apparatus for a hash-mod-read resource it is not intended that such specific

10

WO 2007/032800 PCT/US2006/024019

references be considered as limitations upon the scope of this invention except in-so-far as set

forth in the following claims.

11

10

15

20

WO 2007/032800 PCT/US2006/024019

WHAT IS CLAIMED IS:
1. A resource unit, comprising:

a request interface to allow the unit to receive a request and request information,
wherein the request information includes associated data;

a hashing engine to create a hash of the associated data;

a modulo engine to create a modulus result;

a read engine to perform a memory read; and

a results interface to allow the device to return results.
2. The resource unit of claim 1, the modulo engine further comprising at least one from
the group consisting of: an integer divider, a table look-up approximation, and a repeatable
subtraction umit.
3. The resource unit of claim 1, the hashing engine further to use cyclical redundancy
check hashing.
4. The resource unit of clam 1, the hashing engine to perform multiple types and sizes of
hashing functions, selectable by the request.
5. The resource unit of claim 1, the read engine further to perform a simple read at an
address offset from a base address in the request by an amount computed from the hash
engine and/or the modulo engine.
6. The resource unit of claim 1, the read engine to perform a walk of a collision chain.
7. The resource unit of claim 1, the hashing engine and the modulo engine being
communicatively coupled to allow the modulo engine to create a modulus result of the hash.
8. The resource unit of claim 1, the resource unit further comprising the hashing engine
being communicatively coupled to the results interface to return the hash as at least a portion

of the results.

12

10

15

20

25

WO 2007/032800 PCT/US2006/024019

9. The resource unit of claim 1, the resource unit further comprising the modulo engine
being communicatively coupled to the results interface to return the modulus result as at least
a portion of the results.
10. The resource unit of claim 1, the resource unit further comprising the read engine
interface being communicatively coupled to the results interface to return the read results as at
least a portion of the results.
11. A network processor, comprising:
at least one packet processing element;
a resource unit comprising:
a request interface;
a hashing engine;
a modulo engine;
a read engine;
a results interface; and
a resource interconnect to allow the resource unit to receive a request at the request
interface from the packet processing element and to return results through the results
interface.
12. The network processor of claim 11 further comprising a memory.
13. The network processor of claim 12, the network processor further comprising a
memory interconnect coupled to the resource unit to allow the resource unit to access the
memory.
14. The network processor of claim 12, the memory coupled to the resource interconnect
to allow access to the memory.
15. The network processor of claim 13, the memory coupled to the resource interconnect

to allow the packet processing element access to the memory.

13

10

15

20

25

WO 2007/032800 PCT/US2006/024019

16. The network processor of claim 11 at least one packet processing element further
comprising multiple packet processing elements and the resource unit further to handle
multiple requests from the multiple packet processing elements.
17. The network processor of claim 11, the resource unit being coupled to a lock request
controller.
18. The network processor of claim 17, the lock request controller further comprising a
resource unit.
19. A method of processing a request at a resource unit, comprising:

receiving a request and request information including associated data;

determining if hashing is to be performed to create a hash;

determining if modulo reduction is to be performed to create a modulus result;

determining if a read is to be performed to produce read results; and

returning results of the request.
20. The method of claim 19, receiving a request and request information including
associated data further comprising receiving associated data of variable length.
21. The method of claim 19, receiving a request and request information further
comprising receiving a request and request information including at least one of a lock
location, a lock identifier and a lock address.
22. The method of claim 19, returning results of the request further comprising returning
at least one of the group consisting of: a hash, a reduced hash, a hash and read results, a
reduced hash and read results, modulus results, a modulus result and read results, and read
results.
23. A resource unit comprising:

means for receiving a request and associated data;

means for performing a hash;

14

10

WO 2007/032800 PCT/US2006/024019

means for performing a modulo reduction;

means for reading from a memory; and

means for returning results as a response to the request.
24. The resource unit of claim 23, the means for performing a hash further comprising
performing a cyclic redundancy check hash.
25. The resource unit of claim 23, the means for performing a modulo reduction further
comprising at least one selected from the group consisting of: an integer divider, a table look-
up approximation, and a repeated subtraction unit.
76. The resource unit of claim 23, the means for reading from a memory further
comprising a memory interconnect.
97. The resource unit of claim 23, the means for reading from a memory further

comprising a resource interconnect.

15

WO 2007/032800

PCT/US2006/024019
1/2
MEMORY
. 19
Figure 1
MEMORY INTERCONNECT
18
[
H;VIR RESQURCE
16
1
]
RESOURCE INTERCONNECT
12
PPE
14 PPE
w10
12
FROM RESQURCE

INTERCONNECT

TO RESOURCE
INTERCONNECT

A

RQl
20

o A

Y

=lo'u

HASH
22

v

N\

MOD
24

A

Y

READ
26

READ
RESPONSE

28
'}

TO MEMORY
INTERCONNECT

Figure 2

FROM MEMORY
INTERCONNECT

WO 2007/032800

Figure 3

2/2

PCT/US2006/024019

40
RECEIVE REQUEST |
42
HASH?
YES
Y 44
CREATE HASH |

|

\

j 46
MOD?

YES

Y

48
PERFORM MOD) NO
50
READ?
YES
; 52
PERFORM READ |-

/

Y

RETURN RESULTS

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings

