Office de la Propriete Canadian CA 2298582 C 2003/11/11

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 298 582
g'rngL%?rri]ciesgaenada ﬁ?:luagt?;%/aﬁ;da (12) BREVET CANADIEN
CANADIAN PATENT
13) C
(86) Date de dépot PCT/PCT Filing Date: 1998/07/27 (51) Cl.Int."/Int.CI.* HO4L 9/00
(87) Date publication PCT/PCT Publication Date: 1999/03/04 | (72) Inventeur/Inventor:
(45) Date de délivrance/lssue Date: 2003/11/11 CLAWSON, JAMES, US
(85) Entrée phase nationale/National Entry: 2000/02/02 (73) Proprietaire/Owner:

ZIPSOFT, INC., US

(86) N° demande PCT/PCT Application No.: US 1998/015633
(74) Agent: OGILVY RENAULT

(87) N° publication PCT/PCT Publication No.: 1999/011018
(30) Priorite/Priority: 1997/08/27 (08/919,081) US

(54) Titre : ARCHITECTURE DE CALCUL REPARTIE
(54) Title: DISTRIBUTED COMPUTING ARCHITECTURE

300
RECEIVE INSTRUCTIONS
302
ANALYZE INSTRUCTIONS
* 304
QUERY RESOURCE DENIZEN(S)
. 306

SELECT LOCATION TO USE

OBTAIN PERMISSION FROM 308
SECURITY DENIZEN
_ 310

INFORM POSEIDON DENIZEN

SPAWN, ARCHIVE CCPY 312
FOR CURRENT (HOME)
LOCATICN

314
MOVE TO SELECTED LOCATION

316
EXECUTE

SPAWN, ARCHIVE COPY FOR 318
SELECTED LOCATION

| RETURNFOME Y
‘ 392

DELETE ARCHIVE COPY

INFORM POSEIDON DENIZEN

324

(57) Abrége/Abstract:

A method and system for utilizing resources according to a novel computing architecture are provided, including an operational
environment for denizen processes (100) and a way for denizens (100) to travel between locations. A denizen process (100) Is
capable of recelving instructions (300), evaluating different locations in the operational environment in view of the received

.
.
.
._:';-
CCLTEN S /]]]
.I : - h.l‘_‘.:.:{\: .&. -~ A L~
.
.

et L L/ §
3

C an adg http.//opic.ge.ca + Ottawa-Hull K1 A 0C9 - Attp:/cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2298582 C 2003/11/11

anen 2 298 582
13) C

(57) Abréege(suite)/Abstract(continued):

Instructions (302, 304), selecting a location based on that evaluation (306), moving itself to the selected location (314), and
executing a portion of the recelved Instructions at the selected location (316). To avoid distributing viruses and to reduce
bandwidth requirements, denizens (100) can move by specifying information for building a denizen (100) by using code stored
In a library at the destination location. The denizen (100) Is also capable of reproducing and archiving itself (318), of detecting an
error In Itself, and of attempting to replace Iitself with an archived copy of itself or attempting to rebuild itself from library
components. In addition, the denizen (100) Is capable of modifying itself by dynamically loading and unloading code. Denizens
(100) can flexibly allocate processors because each denizen (100) can individually decide where it should execute. Application
areas for employing the novel architecture include database management and natural language translation.

CA 02298582 2000-02-02

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :
HO04L 9/00

(21) International Application Number:

(22) International Filing Date: 27 July 1998 (27.07.98)

(30) Priority Data:
08/919,081 27 August 1997 (27.08.97) US

(71) Applicant: ZIPSOFT, INC. [US/US]; 570 East 300 South,
Orem, UT 84058 (US).

(72) Inventor; CLAWSON, James; 111 East 600 North #I, Orem,
UT 84057 (US).

(74) Agent: OGILVIE, John, W., L.; Computer Law++, Suite 725,
8 East Broadway, Salt Lake City, UT 84111 (US).

(54) Title: DISTRIBUTED COMPUTING ARCHITECTURE

(57) Abstract

A method and system for utilizing resources according
to a novel computing architecture are provided, including an
operational environment for denizen processes (100) and a way
for denizens (100) to travel between locations. A denizen
process (100) is capable of receiving instructions (300), evaluating
different locations in the operational environment in view of
the received instructions (302, 304), selecting a location based
on that evaluation (306), moving itself to the selected location
(314), and executing a portion of the received instructions at
the selected location (316). To avoid distributing viruses and
to reduce bandwidth requirements, denizens (100) can move by
specifying information for building a denizen (100) by using
code stored in a library at the destination location. The denizen
(100) is also capable of reproducing and archiving itself (318),
of detecting an error in itself, and of attempting to replace itself
with an archived copy of itself or attempting to rebuild itself from
library components. In addition, the denizen (100) is capable
of modifying itself by dynamically loading and unloading code.
Denizens (100) can flexibly allocate processors because each
denizen (100) can individually decide where it should execute.
Application areas for employing the novel architecture include
database management and natural language translation.

(11) International Publication Number: WO 99/11018
(43) International Publication Date: 4 March 1999 (04.03.99)
BR

ES GE

GH, GM, HR, HU, ID, IL, IS, IP, KE, KG, KP, KR, KZ,

MX. NO. NZ, PL, PT, RO, RU, SD, SE, SG, S, SK, SL, TJ,
TM. TR. TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
S

CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
. PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

300

RECEIVE INSTRUCTIONS
~ANALYZE INSTRUCTIONS Y

ANALYZE INSTRUCTIONS

“

l QUERY RESOURCE DENIZEN(S %04

SELECT LOCATION TO USE
OBTAIN PERMISSION FROM 308
SECURITY DENIZEN
310
INFORM POSEIDON DENIZEN

SPAWN, ARCHIVE COPY
FOR CURRENT (HOME) 312
OCATION

MOVE TO SELECTED LOCATION
316
_EXECUTE |

SPAWN. ARCHIVE COPY FOR | — 318
SELECTED LOCATION
. [RETURNHOMEY

DELETE ARCHIVE COPY
INFORM POSEIDON DENIZEN

314

322

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

DISTRIBUTED COMPUTING ARCHITECTURE

FIELD OF THE INVENTION
The present invention relates to computing system architectures, and more
particularly to a distributed system computing architecture which provides an operational

environment for self-reproducing, self-archiving, self-repairing mobile denizen processes.

TECHNICAL BACKGROUND OF THE INVENTION

The general advantages of distributed computing are well-known. As computing
power becomes more widely available at lower prices, the most cost-effective approach to
many problems may involve harnessing many connected processors together into one
large system. Some computing problems, such as tracking retail sales and inventory, are
inherently distributed. Distributing computing workloads may also improve reliability,
since the failure of a single processor in a distributed system will not necessarily bring all
work on a given problem to a halt.

A variety of tools are available for building distributed computing systems.
Shared memory, remote procedure calls, “blackboards,” event-driven modules, and other
mechanisms allow communication between processes that are running in a cooperative
manner in separate memory regions on one or more computers. These mechanisms, 1n
combination with networking protocols, domain name systems, distributed operating
systems, and distnibuted file systems, allow communication between processes running on
separate computers and efficient use of resources by such processes. The Internet, local
area networks, metropolitan area networks, wide area networks, wireless networks,
satellite networks, optical networks, and other collections of connected and/or
connectable computers provide processing power, memory, disk space, and other
resources, including facilities for inter-process communication. A host of secret key,
public key, and other cryptographic methods can be used to enhance the security of inter-
process communications. Java, Ada, C++, assembly, and other programming languages
or development environments support the creation, testing, and refinement of interrupt
handlers, concurrent processes, threads, multiprocessing systems, exception handlers, and

other concurrent and/or distributed programming constructs.

W 1Y

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

As a result, many different approaches to distributed computing have been tried,
and even more have been proposed. Each distributed computing system, whether it has
been implemented or not, embodies numerous design choices, making it one approach
selected from an enormous universe of possibilities. Some of the most important design
choices include deciding how the distributed processes communicate with one another
and with users, how security constraints are defined and enforced, how and when
processors and processes should be brought together and separated, how responsibility 1s
divided between processes, how processes arc updated to reflect new data or instructions,
and how processes should detect and handle errors.

Each of these broad design questions leads to additional, more specific questions.
For instance, determining how to match processors with processes typically involves
(among other considerations) selection of a processor allocation algorithm. As explained
in the text “Distributed Operating Systems” by Andrew S. Tanenbaum, ISBN 0-13-
219908-4 (1995), this choice n turn involves key choices between deterministic versus
heuristic algorithms, centralized versus distributed algorithms, optimal versus suboptimal
algorithms, local versus global algorithms, and sender-initiated versus receiver-initiated
algorithms.

When security, error control, communication, update propagation, and other broad
design issues are considered in greater depth, they likewise give rise to a host of
additional, more specific questions. Should memory be shared? If so, how should
consistency between different copies of the “same” data be maintained? What sort of
errors can be detected by a process, and how should each type of error be handled? What
should a given process do itself, and what should it ask other processes to do? What
formats should instructions and data be stored 1n? Hov? closely should a given process be
tied to the specific hardware and operating system of the computer it is running on?
Should a program be loaded into memory for execution as one complete, self-contained
block or should components be loaded only as they are needed? How should version
control be accomplished?

The design task is made even more difficult by the fact that answering one design
question in a particular way may change the importance of other questions or raise new
ones. For instance, if a process is sufficiently independent of the hardware being used to

avoid disk accesses after being launched, then the process can run on both diskless

P T TV S ————

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

computers and on computers that have a local disk. Disk storage formats for use while
the process runs apparently become irrelevant, while the options for recovering from

serious errors are different than they would be if checkpoints could be logged on a local

disk.

ways, but some design questions tend to be answered in the same or similar ways 1n most
systems. For instance, most systems contain a specialized process that is responsible for
matching other processes with available processors. This “process manager” is also
known by names such as the “scheduler,” “load-balancer,” “transfer manager,” “‘usage
table coordinator,” “process queue manager,” and “processor allocator.” Decisions about
how best to allocate processors are made by the process manager, sometimes with little or
no input from the processes that will run on the assigned processors. Some systems
include one process manager per processor or one pet computer, rather than one for the
entire distributed system, but all of the process managers in a given system typically use a
single algorithm to match processes with processors.

Likewise, in most known distributed systems, the types of errors that can be
detected are limited to (a) input errors, and (b) missing or unavailable resources. For
instance, data input from a file, a socket, or a user can be checked for values outside a
predetermined range, or it can be checked against another copy of the data. The contents
of a network packet or a Java applet may be checked by calculating a checksum and
comparing it with a checksum computed earlier. If the comparison detects an error,
packet retransmission or applet reloading can be requested, or the user can be asked to
supply different content.

With regard to resource errors, a process may determine that files, such as
dynamically linked library files or requested text files, cannot be found at the expected
location and may then search other locations. A process may also determine that a
telephone line, network socket, memory, disk space, or other requested resource 1S
unavailable, and try several times to obtain the resource before warning the user or failing.

However, errors other than input or missing resource errors may go undetected
until important information 1s corrupted or lost. In particular, processes do not typically

detect corruption of their own internal structure while they are running, and instead of

reacting gracefully to such errors, most processes fail catastrophically. Some processes do

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

use exception handlers to limit the impact of serious errors after they occur, but still fail to

detect corruption before the corrupted structures are relied upon.

Most computer programs, whether capable of distributed processing or not, need

time. Depending on the program’s architecture, updating can

inflexible. Many programs are provided to users
these monolithic agglomerations of

ors and

to be updated from time to

s be time-consuming, €rror-prone, and/or

as large self-contained pieces of code. Over time,

spreadsheets. Updating suc
existing code, regardless of whether it is different in the new version, and installing the

10 new version of the program. In some Cases, object code “patches” are used instead, and

the amount of code replaced is smaller, but patches are normally used onl

gram, not for fundamental or widespread changes.

lithic, being split into a main routine such as an

y for localized

changes to a pro

Some programs are less mono

event handler loop and a collection of dynamically loaded components. An update may

15 then involve merely replacing one or more relatively small components. Divid

functionality between components also has the advantage of allowing two or more

word processor could use the same spell checking code. Onc

20 executing (and some persist even after that time). Thus, even when dynamically linked

libraries are used. updates to a program’s behavior can often be made only after the

program finishes its current work and stops running.
Some specialized programs reduce the need for updates by “learning” while

neural net programs may alter the relative numeric weights

s in a neural net, thereby altering the program’s

running. For instance,

25 assigned to connections between node
response to inputs of a certain kind. Likewise, so-called “genetic” algorithms us¢

ermutations and optimality measurements to adjust successive generations of a program,

gram that is better than the initial program at optimizing some

P
eventually producing a pro

specified condition.

30 But when the code for measuring genetic optimality or adjusting neuron weights

needs to be changed, for instance, even programs that “learn” while they run are updated

using conventional techniques. Thus, difficult programming may be needed to change the

10

15

20

25

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

input types accepted by a neural network. Neural networks also do not readily perform
computing system functions such as keeping track of time or other system resources.

Thus, it would be an advancement in the art to provide an improved system and
method for distributed computing which allow processes to detect corruption of their own
internal structures before relying on the corrupted structures during execution, and which
allow processes to react gracefully to such errors.

it would also be an advancement in the art to provide a system and method for
distributed computing which provide a processor allocation scheme that is more flexible
and better tailored to the needs of individual processes than current schemes.

It would be an additional advancement in the art to provide a system and method
for updating distributed computing processes in a way which is more powerful than using
patches, more efficient than replacing entire monolithic programs, and more flexible than
the limited behavior changes available through neural net and genetic programming
“learning” methods.

It would be a further advancement if such a system and method could be
implemented in a manner which 1s compatible with current networks and their protocols,
and which takes advantage of suitable current programming language features and
security methods.

An architecture for such a distributed computing system and method is disclosed

and claimed below.

BRIEF SUMMARY OF THE INVENTION

One method for utilizing computer system resources according to a computing
architecture of the present invention assumes that the computer system resources include at
least two locations, with each location providing access to a processor for executing
nstructions and each location also providing a memory accessible to the processor for
storing instructions.

The method begins by obtaining an operational environment for denizen processes.
The operational environment includes at least the two locations and also includes a way for
denizens to travel between the locations. The method then provides at least one user
denizen which is capable of receiving instructions, evaluating different locations in the

operational environment in view of the received instructions, selecting a location based on

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

that evaluation, moving itself to the selected location, and executing at least a portion of the
received instructions at the selected location.

One embodiment of the user denizen includes a configuration portion, an origin
portion, and an executable portion. Among other contents, the configuration portion
includes routing information; the origin portion includes an encrypted certificate; and the
executable portion includes code and data. The user denizen is capable of reproducing at
least one of these portions. The user demzen is also capable of reproducing and archiving
itself. of detecting an error in itself, and of attempting to replace itself with an archived
version of itself or attempting to rebuild itself from library components such as classes and
templates which define denizen inheritance and extension information for the classes.

The user denizen is also capable of modifying itself, by dynamically loading and
unloading code or creating and compiling custom code. in response to the resuit of
executing one or more instructions. The modification may be accomplished using back
propagation, dynamic recompilation, and novel evolutionary algorithms. The denizen can
also handle exceptions internally to limit the impact of execution errors.

The operational environment includes administration denizens such as one capable
of gathering :nformation about different locations in the operational environment and
providing that information to a user denizen: one capable of controlling access by user
denizens to a particular location in the operational environment; one capable of tracking
movement of denizens between locations in the operational environment; one that maintains
a log of activities occurring in the operational environment; one that supports interactive
management of denizens in the operational environment; an archive pod denizen for
archiving and restoring denizens and accessing the library; and a connection pod denizen for
tracking thread use and for gatekeeping between different operational environments, such as
those owned by different entities.

In one embodiment, a computer system implementing an ecosystem computing
architecture according to the invention includes an operational environment for denizens
including at least two locations, each location providing access to a processor and memory;
a transport means for denizens to travel between the locations; and at least one denizen

which is capable of receiving instructions, evaluating different locations in the operational

environment in view of the received instructions, selecting a location based on that

Aaan LLEL L TEP

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

evaluation, moving itself to the selected location, and executing at least a portion of the

received instructions at the selected location.

The locations may be on different computers in a computer network. Some of the
locations may provide access to a Java virtual machine or to a native Java operating system
(possibly on a special chip) for executing denizens written partially or entirely in Java. The
transport means may include a TCP/IP or other network connection for transfer between
locations on separate machines; it may also include shared memory or memory copying
coutines for transfer between locations within a single machine. To avoid distributing
viruses, to tailor denizen executable portions to specific locations, and to reduce bandwidth

requirements, the transport means preferably includes means for specifying information for

bulldmg a denizen by identifying code stored in a library at a destination location.

The invention provides an improved system and method for distributed computing
which allows denizen processes to detect corruption of their own internal structures, by
detecting checksum errors or catching exception conditions before they rely on the
corrupted structures during execution. A denizen process reacts gracefully to such an
error by containing the error’s impact, by attempting to rebuild itself in order to proceed
in spite of the error, and/or by archiving itself for later diagnosis when a rebuild 1s not
possible.

In addition, denizens can use a processor allocation scheme that is more flexible
and better tailored to the needs of individual processes than current schemes, because
each denizen can individually decide where it should execute. The dynamic modification
(possibly including on-the-fly loading and unloading of execution blocks) used by
denizens for updating is more powerful than using patches, more efficient than replacing
entire monolithic programs, and more flexible than the limited behavior changes available
through conventional neural net and genetic programming methods. '

Denizens can also be implemented in a manner which 1s compatible with current
networks and their protocols, and which takes advantage of suitable current programming
language features, such as Java exception handling, and also takes advantage of security
methods such as encryption. Other features and advantages of the present invention will

become more fully apparent through the following description

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

BRIEF DESCRIPTION OF THE DRAWINGS

To illustrate the manner in which the advantages and features of the invention are

obtained. a more particular description of the invention will be given with reference to the

attached drawings. These drawings only ‘llustrate selected aspects of the invention and

s thus do not limit the invention’s scope. In the drawings:

Figure 1 is a diagram illustrating an operational environment, denizen processes,

and other aspects of the present invention.
Figure 2 is a diagram illustrating the internal structure of a denizen process in one

embodiment of the present invention.

10 Figure 3 is a flowchart illustrating a method by which denizen processes of the
present invention select locations at which to execute received instructions.

Figure 4 is a diagram illustrating the spawning of a fully identical version of a

denizen process according to the invention.
Figure 5 is a diagram illustrating the spawning of a partially identical version of a

15 denizen process according to the invention.
Figure 6 is a flowchart illustrating a method by which denizen processes of the

present invention attempt to detect and repair defects in their own internal structure.

Figure 7 is a diagram illustrating a family denizen of the present invention, a pod

denizen belonging to the family denizen, and two simple denizens belonging to the pod

20 denizen.
Figure 8 is a diagram illustrating administrative denizens of the present invention.

Figure 9 is a diagram illustrating the creation and dynamic modification ot a

denizen processing structure according to the invention.

Figure 10 is a diagram illustrating a denizen processing structure of the kind
55 shown in Figure 9, as initially configured to perform natural language translation.

Figure 11 is a diagram illustrating the denizen processing structure shown in

Figure 10 after it has been dynamically reconfigured.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

30 The present invention relates to a distributed computing system architecture. The

invention may be employed in computing systems, computing methods, and/or individual

computing devices. The invention may be used with stand-alone computers, with

8

TS CEPIPPPrby Fhre. bpaser s s srawre sy svia Piiwren. e

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

computers connected by a network. or both. The computers may be workstations, desktop
computers, laptop computers, mobile computers, servers, clients, peers, uniprocessor or
multiprocessor machines, embedded systems, and/or other computers. Suitable networks
‘nclude local area networks, metropolitan area networks, wide area networks, the Internet,
or any combination thereof. “Internet”’ as used herein includes variations such as a private
Internet. a secure Internet, a value-added network, a virtual private network, a portion of

the Internet such as the World Wide Web, or an intranet.

Ecosystem Model for a Computing Architecture

Although computer science and biology have mainly been viewed as very different
fields of endeavor, some biological systems and methods have proven useful as computa-
tional metaphors. Good metaphors are not mere oversimplifications or cosmetic attempts to
lighten an otherwise dry discussion. Instead, they summarize important aspects of a
technical system or process. Computer science is often a very detail-intensive field, and the
use of a well-chosen metaphor can help inventors and others by organizing details and by
suggesting new possibilities. Perhaps the most notable examples of good biological
computing metaphors are genetic algorithms, which use biological genetics as a model for
“evolving” computer programs, and neural net algorithms, which use brain physiology as a
model for “training” computers.

As illustrated in Figure 1, the present invention uses marine ecology as a guiding
metaphor for distributed computing. Computing processes 100 are viewed as creatures
inhabiting an ocean 102 of computing resources residing at various locations 104. A given
machine in a network may contain one or more locations 104. An ocean 102 can reside on
one machine or several. Likewise, all locations 104 can be viewed as belonging to a single
operational environment 102, or they can be grouped into separate connectable oceans 102.

The “denizen” processes 100, also known as “Organic Data Elements” or “ODEs”,
have capabilities which are analogous to those of living organisms. For instance,
denizens can move along paths 106 between locations 104 in the computational “ocean”
that serves as their operational environment 102. The denizens 100 can also produce
copies of themselves; they can detect damage to their internal structure and sometimes
“heal” themselves by repairing the damage; and they can “Jearn” using neural net

algorithms or other techniques. Each of these capabilities is discussed in detail.

—— - —— V- i g

vl

10

15

23

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

Of course. the denizen processes 100 are not actually alive, and a computing

the marine ecology metaphor is useful in understanding the technology of the present

invention. the metaphor is only a metaphor, and so has inherent limits.

Dénizen Structure

The internal structure of one embodiment of a denizen process 100 is illustrated in
Figure 2, with continued reference to Figure 1. Each denizen 100 includes at least a
configuration portion 202, an origin portion 204, and an executable portion 206. A
section of the configuration portion 202 contains routing information 208 which reflects
the paths 106 traveled by the denizen 100 to its current location 104 and/or known or
possible paths 106 to other locations 104 in the operational environment 102. The
configuration portion 202 may also contain a pod identifier 210 which identifies one or
more “pods” to which the denizen 100 belongs; pods are discussed in detail below. In
addition, the configuration portion 202 may contain an ocean identifier 212 which
distinguishes the currently surrounding operational environment 102 from other
operational environments. The configuration portion 202 may also contain execution
state information 214, such as Java virtual machine flags.

The origin portion 204 includes an encrypted certificate 216 which can be
presented before execution to an administrative denizen 810 (Figure 8) that controls
access to the operational environment 102 and otherwise enforces security constraints on
«user” denizens 100. User denizens are denizens 100 initiated directly by particular users
or directly on behalf of particular users, as opposed to administrative denizens 800 which
primarily serve security, location tracking, resource tracking, and other internal
administrative goals.

Information suitable for inclusion in the certificate 21 6 includes an author name,
home ocean routing information, group information, checksums (such as cyclic
redundancy codes) on the denizen’s overall contents and/or on the portions 202 and 204,
executable class information, and ODE type (administrative/user, security, and so on).
The author name may be in a form similar to that in standard postal addresses, or it may
be more complex, as with a login or user ID or an X .500 directory service distinguished

name. Group information may likewise be text such as a department name, or it may be a

10

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

One method for using the certificate 216 1s the following. The certificate 216 1s
registered with the security ODE 210. The certificate 216 of a first ODE is checked by or
on behalf of a second ODE before the second ODE will perform a transaction for the first
ODE. The certificate 216 of the second ODE may also be checked by or on behalf of the
first ODE. Approved certificates are used to generate a transaction certificate which 1s
unique for each transaction between ODEs. In addition to containing or otherwise
identifying the approved certificate(s) on which it is based, the transaction certificate
identifies the request or operation involved in the transaction. One of the underlying
approved certificates may be used as a decryption key for the transaction certificate.

The transaction certificate serves as an agreement between the ODEs involved in
the transaction. Only the information requested or the instructions issued for that
transaction certificate can be executed during the transaction, making the transaction
certificate similar in function to a conventional secured execution instruction. The results
returned are not necessarily stored in the transaction certificate, but the return status of the
request preferably is stored there. Each ODE, once it has "signed" the certificate to agree
that the transaction is complete and the status recorded, considers the transaction
completed. Each ODE stores (archives) the certificate or deletes it, based on the type of
transaction and user/system settings. This archive can provide a roll-back capability for
transaction processing.

The origin portion 204 of the ODE 100 may also include owner information 218
such as owner or author information, group identification, read/write/modify or other
permissions, and other information which is similar or identical to the information that
can be included in the certificate 216. However, the owner information 218 is not

encrypted, so it can also be used to contain comments Or information not needed for

authentication.

The executable portion 206 includes zero or more blocks 220, also known as a
data event paths 220. A default block 220 for receiving instructions, loading code, setting
up exception handling, communicating with a Poseidon denizen 820, archiving, moving,

and other basic denizen 100 functions is provided in a class or other code 228 that is

i

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

present in most or all denizens 100. A control block may be placed in each block 220 (in

the form of the fields 222, 224, 226 shown) or outside the blocks 220 but still within the

executable portion 206 (not shown), or both.

Each block 220 control block includes a length field 222, a type field 224, and a
checksum 226. Each block 220 also contains zero or more bytes of code 228. The length
field 222 specifies the length of the block 220 in bytes or another convenient unit.
Alternatively, the length of the first three fields 222, 224. 226 can be fixed and implicit, in
which case the length field 222 specifies the length of the code 228.

The type field 224 specifies the type of code in the code field 228. Suitable types
of code include machine-specific executable instructions and data, machine-independent
‘nstructions and data such as Java byte codes, markup language instructions and data such
s HTML instructions and pixel files, database instructions and data, and other types of
computer code. Code 228 may include classes such as C++ classes or other classes which
organize or generate code fragments for an execution on a particular platform. In addition
or instead, code 228 may include fragments of executable or interpretable (native or
virtual machine) code. In an ODE library from which the code 228 and/or blocks 220 are
obtained. class and subclass numbers refer to classes which organize code fragments to
accomplish a specific function.

Within a subclass, there may be many code fragment references. These code
fragments may be shared by all classes, or they may be unique to that class and subclass.
If a user is editing a web page via an ODE 100, and adds an ActiveX control to the page, a
code fragment with the ability to display ActiveX controls must be referenced or loaded
by the ODE 100 which contains the data path 220 in which the web page is being stored.
As long as the ODE 100 resides in an ocean 102 which contains that code fragment, only
one copy of that fragment 1s necessary in the ocean 102. However, the fragment may
become embedded in the data path 220 if the ODE 100 chooses to move to a néw ocean
102 which does not contain that code fragment, or onto a machine which has no ocean
102. The fragment is preferably embedded as encrypted source code, and compiled on the
destination machine as part of the ODE movement to that machine. The compiled or
source code can also be added to a new ODE library on the new machine.

In one embodiment, each data event path 220 includes a 32-bit data path number,
a 32-bit daia path type number, and a control block. The following information is stored

12

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

for each block 220 in the data path 220: an optional block name up to 16 characters long,
a data type number which is 4 bits long, a 37-bit machine location identifier identifying
the location 104 of the ODE 100, a starting address and an ending address for the code
228 (address length depends on the processor used but 1s generally 32 or 64 bits), the
length 222 (again, system-dependent but generally 32 or 64 bits), the checksum 226, and
the code 228 (variable length). The machine location identifier is given to each machine
(or location 104) as it becomes a part of the ocean 102.

In one embodiment, every ODE 100 has its own interface which allows users to

interact with the ODE 100 directly, subject to permission constraints. If there has been a

line interpreter text-only system) to acCess system resources and repair the data ocean 102
and other ODEs.

| ODE structures have several advantages. First, the ODE 100 can load the control
block for a data event path 220, and using the information in the control block, load only
the desired executable block(s) 220, without having to search memory for that informa-
tion.

The memory or storage location information can be real (physical or logical)
addresses if the ODE 100 is written in a language such as C or C++ that allows direct
memory access, and can reference locations in languages such as Java that do not allow
direct memory access. This combination allows the ODE 100 to load blocks 220 from
storage on any machine in the system 102. This functions like shared memory in a SMP
system, but without the additional programming required for SMP, MPP, or NUMA
architecture memory access. The ODE 100 simply makes a request and the operating
system on the machine retrieves the block of memory and gives the contents of the
memory to the ODE 100.

Another advantage of this arrangement 1s that even though the ODE 100 can move
from machine to machine, the contents of referenced blocks 220 do not have to move. If
three blocks 220 in the same ODE 110 or in different ODEs reference a code fragment
228 or any other piece of information, instead of duplicating the information, each block

790 can reference the same memory locations, freeing the ODEs and thus the system 102

from storing redundant information.

i3

EEPRETT | FATI dbhls bl wherw J o or

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

A drawback of this approach is that shared memory writes must be coordinated
with semaphores to prevent two ODEs from writing to the same memory location on the
same machine at the same time. In place of semaphores, this may be solved by using
ownership and access rights. Only one ODE 100 is allowed to own a given piece of
memory or a given piece of data. Only the ODE 100 that owns that location in memory
can modify the data contained there. Other ODEs that wish to access the data must
request permission from the ODE 100 which owns the data. If the ODE 100 gives
permission, it tells the requesting ODE 100 where the information is, and also stores a
record of the ODEs which have permission to access that information. If the owning
ODE 100 moves, and moves the data with 1t, or if the owning ODE chooses to move the
data for any reason, (such as efficiency, archiving, or predicted system downtime) the
owning ODE then informs all ODEs which access that data of the data’s new location.

Other advantages of the novel ODE structure and associated methods include:
dynamic code fragment access which reduces the size of tools and viewers by only
including code 228 that is actually needed (as opposed to the approach taken by
conventional monolithic feature-packed applications) and which allows non-sequential
code loads: smaller databases (because less data irrelevant to a given task is loaded);
dynamic index generation for database requests (discussed below); and less network
bandwidth needed when transferring ODEs (as discussed 1n connection with libraries).

The novel architecture of the invention supports dynamic index generation. For
instance, suppose a user needs to search a database which contains medical records for
name, age, and weight. Using the control block, only the name, age, and weight blocks
220, or only those three columns in a normal database, would be loaded. This makes
searches much faster, as well as requiring less RAM and CPU speed to access the same

information.

Viewers and Tools

Applications and processes such as spreadsheets and word processors may be

categorized as tools (permission to modify) or viewers (permission to read) of the data.

Several different users of a given piece of data can view it simultaneously using as many
different view methods as they wish. One viewer may see information using an ODE 100

with a spreadsheet viewer class, another may view the same information as a rendered

14

haadade d o d . 1

10

15

20

235

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

graph with a graphing viewer, while a third may analyze the data and generate a 3D object

representing the data with a scientific visualization tool.

All functions which modify data are performed using tools. All functions which
can only view data are performed using viewers. Viewers and tools may be generated
using the ODE library by managing ownership of the data that is being viewed and/or
modified. For example, an ODE 100 which 1s directed to load a chunk of text owned by a
different user — and therefore available only for viewing — would access the ODE library
for the code fragments 228 necessary to view the text, but would not load or access code
fragments needed to select, spell check, or in any other way modify the data. The owner
of the text could load the text, and his or her ODE 100 would load the same code
fragments as the first user for viewing, as well as loading spell-checking fragments 228,
font-changing fragments 228, and so forth, as needed.

Each ODE 100 in this example would show in its task list all functions available
to the ODE 100 for that piece of data. The user of the viewer ODE would see only two
functions: End Access and Access New Data. By contrast, if there is a spell-checker in
the ODE library for this ocean 102 and the owner of the data has permission to use the
spell-checker ODE, then the data owner’s ODE task list would include Spell Check Text,
even if the spell-checker code 228 had not been loaded into the tool ODE yet.

If a user limited to view permissions reads a web page, that user’s viewer ODE
only has the ability to read and display the web page. By contrast, a user with tool
(modify) permissions can modify the data from within almost the same interface. The
ODE task list only contains tasks that can be performed on the information selected. If
the user selects text that the user has permission to modify, the task list could display such
tasks as Spell Check, Resize, Change Font, or Translate. If nothing is selected, then three
sections appear in the task list: functions available in that tool or viewer; general ODE

functions, such as spawn and add tool or viewer; and general system wide functions such

as logout.

Denizen Mobility
As noted above, denizens 100 share certain capabilities with living creatures, at

least by way of analogy. These capabilities will now be discussed in greater detail,

beginning with mobility.

15

10

15

20

235

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

As illustrated in Figure 3, and with continued reference to the earlier Figures, each
denizen 100 has the ability to receive instructions during a receiving step 300.
[nstructions may be in the form of commands or parameters supplied by a user
interactively or by another denizen 100. Instructions may also be in the form of
executable blocks 220 which are loaded by a denizen in response to such commands or
parameters, or 1n response to information in the configuration portion 202.

During an analyzing step 302, the denizen 100 analyzes the received instructions
by checking the type field 224 and priority (if any). During a querying step 304 the
denizen 100 requests information about the resources presently available in the
operational environment 102. This information may be maintained internally by the
denizen 100 during its travels from location 104 to location 104. Resource information
may also be provided by an administration denizen 802 (Figure 8) which is tasked with
tracking resource capabilities and availability.

Suitable resource information includes CPU type and speed, memory
characteristics, hard drive availability, system histories, swap space, and other computing
resource characteristics. If the resources needed to execute a given set of instructions are
not available within the denizen’s native ocean 102, then the querying step 304 may
involve contacting resource denizens in other oceans in an attempt to locate the resources
the denizen 100 needs.

During a selecting step 306, the denmizen 100 selects a location 104 based on the
results of the steps 302, 304. Information considered may include not only the resources
at the current location but also a history of attempts made at various locations 104 and
other information needed to determine which location 104 is best for executing the
received instructions. Several locations 104 may be selected and ranked by preference in
case the best location 104 is unavailable. It will be appreciated that as a result of this and
other aspects of the novel architecture, denizens 100 are not limited to conventional
uniform-for-all-processes and/or centralized load-balancing approaches, since different
denizens 100 (or the “same” denizen 100 at different times) may use different load-
distribution algorithms, including chip-specific algorithms.

During an obtaining step 308, the denizen seeks permission from the appropriate
security denizen 810 to move to the selected location 104, by supplying the certificate 216

to the security denizen 810. If permission is not forthcoming, the requesting denizen 100

16

10

15

20

23

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

may wait and retry, or it may try to get a uset or administrator involved to override the
security denizen 810 if appropnate. However, it is presently preferred that the requesting
denizen 100 select and try a different location 104 without involving users and
administrators unless progress on the computational problem assigned to the denizen 100
is seriously impaired.

Once permission is obtained, the denizen 100 informs the administrative Poseidon
denizen 820 (Figure 8) of the impending move during a step 310. The Poseidon denizen
270 acts as an interface between the operating systems of the various locations 104, on the
one hand, and the ocean 102 and denizens 100, on the other. The denizen 100 then
archives a spawned copy of itself during a step 312, moves to the new location during a
étep 314, and executes the received instructions at the new location during a step 316.
Upon completion of its task, the denizen 100 archives a temporary spawned copy of itself
at its temporary location during a step 318, and then returns home during a step 320.

During a step 322, the archived copy of the denizen 100 created by the step 318 is
deleted. Alternatively, the denizen may make the new location its new home, in which
case step 318, or steps 318 and 320, are skipped and the archived copy created during the
step 312 is deleted during step 322. In either case, the Poseidon denizen 820 is informed
of the denizen’s location after execution of the received instructions.

It is presently preferred that ODEs be specified during transfers (between locations
and/or libraries and/or archives) in most cases as a tuple containing numbers or other
short identifiers which identify classes, templates, versions, and/or specific executable
blocks 220. The actual executable code and other data needed to build an ODE may be

located in an ODE library which is either stored centraily or stored at multiple locations

104. In one embodiment, ODEs are primarily written in Java and the ODE library

includes classes which organize or generate code in Java, C++, or other programming
languages.

When an ODE 100 spawns a new ODE 100 on the same machine in the ocean
102, the spawn subclass is preferably loaded or referenced from an ODE functions class,
which is archived in the ODE's JAR (Java archive) file or other archive file. If the class is
damaged, or if the ODE 100 is spawning the new ODE 100 on a different computer in the
ocean 102, then the same subclass is loaded from the same class file, but is from the ODE

library of the destination machine. This ensures that the new ODE 100 is written in code

17

10

15

20

235

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

native to the destination platform, and that the version number of the spawned ODE 100

is the same as the version number of the code fragments loaded on the destination system.
When an ODE 100 moves across a network communication line, or moves 1nto an

archive. the minimum amount of data needed to reconstruct the ODE can therefore be

transmitted or archived. This includes the tuple and any metadata or state information not

reflected in the tuple.
In one embodiment, when an ODE 110 moves, it actually transmits ODE hbrary

class and subclass information, other template information such as inheritance and
extension information, the ownership certificate 216, and data which is being referenced.
In place of some or all of the data, the ODE 100 may send references in the block 220 to
the data's location, in situations where the user does not own the referenced data or does
not wish to move (a copy of) the data. On the destination machine, a new ODE 100 1s
created based on the library information, and the data is transferred into that ODE 100.

Another advantage of this method is that it allows the new ODE 100 to be created
in the native code of the platform 104 to which it is being moved. This platform at the

new location 104 may be different from the platform at the prior location 104. Suitable

platforms include, without limitation, Java Virtual Machines and other virtual machines,
as well as native code systems. In the case of a transfer from a virtual machine platform
to a native code platform, the Poseidon denizen 820 will build the new ODE with native
code. Code fragments 228 within the data event path 220 are also preferably transmitted
by library number only, and the native code fragments 228 on the destination machine are
substituted. The new ODE 100 is compiled dynamically as needed and then goes about
its business on the new machine. When new ODE libraries are licensed, and when
upgrades are downloaded, they are preferably received as encrypted source instruction sets
(encrypted source code), which Poseidon then compiles for each platform in the ocean
102.

Yet another advantage to this method of movement is that executable code need
not be transferred across the network. In addition to reducing bandwidth requirements,
this prevents viruses from being transferred as ODEs move between locations 104, if the

embodiment uses a separate copy of the library at each location 104.

18

10

15

20

235

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

Denizen Reproduction

Each denizen 100 has the ability to reproduce, as illustrated in Figures 4 and 5 and
with continued reference to the earlier Figures. Figure 4 illustrates the case in which a
denizen 400 spawns a fully identical copy 402 of itself, while Figure 5 illustrates a
denizen 500 which spawns a partially identical copy 502 of itself. The fully identical
copy 402 is spawned by creating a complete copy of the original denizen 400 in memory
and then informing the Poseidon denizen 820. Thus, the configuration portions 404, 406,
origin portions 408, 410, and executable portions 412, 414 of the denizens 400, 402,
respectively, are identical in content, although they reside at different locations in
memory. The spawned denizen 402 may continue to reside in memory, or it may be
archived on a non-volatile buffer such as a hard disk 416.

The partially identical copy 502 is spawned by creating a partial copy of the
original denizen 500 in memory, optionally combining the partial copy with a portion
obtained from a source different from the original denizen 500, and then informing the
Poseidon denizen 820. Instead of creating the partial copy, a complete copy of the
denizen 500 could be created and then be truncated or overwritten. The spawned denizen
502 may continue to reside in memory, or it may be archived on the non-volatile buffer
416.

In the example shown, the configuration portions 504, 506, and the origin portions
508, 510, of the denizens 500, 502, respectively, reside at different locations 1n memory
but are identical in content. The executable portions 512, 514 of the denizens 500, 502,
respectively, contain different content. The executable portion 514 of the spawned
denizen 502 is derived from a library or other source 516, not merely copied from the
original denizen 500. In another spawning situation, the configuration portion 506 and/or
the origin portion 510 could also differ from those of the original denizen 500. The
executable portion 514 could also be a subset of the executable portion 512, or a
combination of one or more blocks from the executable portion 512 with one or more

blocks from the source 516.

Denizen Learning (Overview)
With reference to all Figures, denizens 100 may use a back propagation scheme

which is somewhat similar to the scheme used in neural networks. The learning methods

19

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

are discussed in detail elsewhere, particularly 1n connection with Figures 9 through 11. It
suffices to note here that denizens 100 can modify their execution code or data 228 based
on the success or failure of an attempted execution during the executing step 316. In

place of modifying its own executable portions 206, or in addition to such modification, a
denizen 100 can also spawn partially identical offspring 502 according to a genetic

algorithm or other evolutionary al gorithm.

Denizen Healing

If a denizen 100 becomes corrupted but still has at least a limited ability to
execute, then the denizen 100 preferably tnes to repair itself using the method shown in
Figure 6. The denizen 100 detects corruption of its internal structures during a step 600
either by noting a checksum error during a step 602 or by entering an exception condition
during a step 604.

The checksum error may be detected when the denizen 100 begins execution
and/or after the denizen 100 changes locations 104 during the step 314. The denizen 100
is corrupted if the checksum value in the certificate 21 6 does not match a checksum value
on the corresponding portions 202, 204 (or on the entire denizen 100, as appropriate)
which is calculated after moving or beginning execution. The checksum error may also
be detected during spawning or self-modification when the denizen 502 loads a block 220
or block container 908 (Figure 9), by comparing the checksum value in the block’s
checksum field 226 or in the block container with a checksum value calculated on the
code 228 after the block 220 or container 908 is loaded 1nto memory.

Depending on the kind of checksum used, and the nature of the corruption,
checksums alone will not necessarily detect the corruption. Thus, the denizen 100
preferably also detects exception conditions. Exception conditions may be caused by
programming errors that are difficult or impossible for the denizen 100 to repair or avoid.
However, hardware or transmission errors may also cause exceptions by corrupting data
or code in a block 220. Exception conditions detected preferably include any attempt to
divide by zero, to access memory outside the denizen’s memory space, 1o execute an

undefined instruction, to access an out-of-bounds array element, or to perform another

illegal operation.

20

10

15

20

235

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

The Java language features inherent exception handling. Software according to
the invention may use this feature for exception handling for a given piece of code 228.
In addition, or as an alternative, the software may use custom exception handling for an
entire ODE 100. In the latter case, the ODE 100 executes in a protected memory space.
These exception handling capabilities help prevent an ODE execution error from causing
a system failure if the host operating system is not fault tolerant (such as with certain
Microsoft Windows 95/NT, MacOS, and OS/2 operating systems). If an exception 1s
thrown, the ODE 100 attempts to send an exception number to its pod 700 and then
"dies"; self-repair and diagnostic methods discussed herein may then proceed.

After detecting a problem with its internal structure during the step 600, the
denizen 100 tries to repair itself. During a step 606, the denizen 100 first tries to reload
the most recently archived version of itself. If this 1s not possible, it informs the Poseidon
denizen 820 of its situation and then tries to rebuild itself based on its class, subclass, and
checksum information during a step 608. The rebuild may be accomplished by obtaining
copies of the blocks 220 defined in the (uncorrupted or restored) control block of the
denizen 100 and reloading them into memory. The blocks 220 are preferably obtained
from a local ODE library managed by the archive denizen 808, but may be transported
from other locations 104 if necessary. The blocks 220 are modified as indicated by the
denizen’s templates to reflect the desired class inheritance and extension status.

If either of the steps 606, 608 produce an uncorrupted version of the denizen 100,
then execution continues during a step 612. Otherwise, the denizen 100 informs the
Poseidon denizen 820 of the failure to heal and archives itself in its current state during a
step 610. A user or an administrator may be able to rebuild the denizen 100 later, or may
at least identify ways to prevent similar problems with other denizens. The denizen’s

remains can be analyzed, and any remaining data can be retrieved, during a step 614.

Pods

As shown in Figure 7, a given pod 700 may play dual roles as an executable
denizen 100 and as an organizational structure for child denizens 100. Each pod 700
maintains location references and other metadata 702 for its child denizens 704. Just as
the denizens 704 are grouped by the pod 700, the pod 700 and other pods may be grouped

by a family denizen 706. Metadata 702 may include information such as which spawned

21

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

child 704 received which portion of a database when spawning occurs to distribute a
database to promote efficiency or satisfy memory limitations. Metadata 702 may also
track the history of data references, in order to avoid attempts to access data which has

been moved., or to recover from such attempts by contacting the owner of the data to

determine the data’s new location.

In one embodiment, a denizen 704 informs its parent pod 700 when it moves. If
the denizen 704 moves outside of its home ocean 102, its parent pod 700 informs its
family 706, and the family 706 informs the Poseidon denizen 820, as discussed above 1n
connection with denizen mobility and step 310. In other embodiments, different
hierarchical or linked denizen organizational structures are used, such as by omitting the
family layer in the hierarchy or by using a ring instead of a tree hierarchy. In some
embodiments, different communication paths are used, such as when a denizen reports its
move directly to Poseidon 820. .

All denizens 704 belonging to the pod 700 are preferably related by function,
owner, or data content. When a denizen 100 spawns a child denizen, the parent denizen
becomes a pod 700 if it is not already one. The new pod’s structure is similar, but the pod
denizen 700 incorporates database blocks 220 and/or metadata needed to store
information on its child denizens 704. The parent denizen 700 may delegate its execution

functions to one or more child denizens 704 by transferring the execution blocks 220 1n

question to each child 704.

Administration Denizens

As noted above and illustrated in Figure 8, the operational environment 102
includes various administration denizens 800. Alternative embodiments omit some or all
of the denizens 800 by omitting their functionality from the system, by combining some
or all of the functions in fewer denizens 800, by assigning responsibility for the
administrative functions to what would otherwise be user denizens 100, or by a
combination of these measures.

Some embodiments include multiple instances of some or all administrative
denizens 800. For instance, database, logging, and archiving functions may use a single
database which is distributed and managed by several closely coupled denizens 800, or

they may use separate databases managed by loosely coupled denizens 800. Likewise,

22

10

15

20

25

30

35

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

security constraints may be enforced by a single central denizen 810, by several roving

denizens 810, or by one denizen 810 at each location 104.

The illustrated embodiment includes a system resource denizen 802 which gathers
information on the performance and resources available at a specified set of one or more

locations 104. Suitable resource and performance information includes some or all of the

following:
CPU speed
% available
hard drives total space
available space
file system type
access time
RAM total
available
system cache total L1
total L2
NICs speed
protocols
address
modems dial out speed
authentication method
backup devices device type

scheduling information

A user database denizen 804 contains and manages a users/groups database for the
ocean 102. This database may include login time restraints for each account or group,
user login paths, file and directory permissions, billing information for pay per use or per
time accounts, and similar accounting data. The Poseidon denizen 820 can configure this
database as needed. This database ODE 804 contains its own query processing code. As
with all ODEs. this ODE may remain a simple ODE 100 but it can also become a pod 700
and spawn other ODEs if it becomes too large to function efficiently.

A system log ODE 806 contains process logs, such as transaction logs, for this
ocean 102. In one embodiment, the logs are kept in a database and the denizen 806
includes query processing code 220. The ocean administrator 820 can preferably
configure the denizen 806 to track specified processes using a simple graphical user
interface (GUI). The administrator 820 can also configure the size of a log file. When the
system log ODE 806 is functioning with its default configuration, the ODE 806 closes and

archives the log file whenever the file reaches its maximum file length, and then creates a

23

. L N I 2 L

10

15

20

25

30

CA 02298582 2000-02-02

wO 99/11018 PCT/US98/15633

new log file. The ODE 806 may aiso contain blocks 220 for viewing the log file and/or

generating reports.

One embodiment uses no files, though users can import them from other systems.
Instead, the “log file” is actually a data event path 206, or many data event paths,
depending on the configuration. When the ODE 806 grows too large 1t spawns a new
ODE. and either copies the log into the data event path 206 of the new ODE, which 1s
then archived, or creates a new ODE with a data event path 206 ready to receive

additional log information and then archives itself.

An archive pod 808 allows Poseidon 820 to define an archive date for ODEs 100
within the ocean 102. For example, a system administrator of an Internet service provider
can set an archive date on user account ODEs 100. If the archive date is one week, and a
person with an active account has not logged on for eight days, then that person's ODE
100 will "sleep" and be archived by the archive denizen 808 in a USER_ ACCOUNTS.ark
or similar file. This archive file is preferably a compressed database ODE 100 which
stores the archived ODEs intact. The next time the account owner tries to log on, the
system will not find his or her account. It wili then query the archive pod 808, which will
pass the query to the USER_ACCOUNTS ODE. It will reply that the ODE for that
account is archived and, if the account is still valid, the ODE will be restored from the
archive and returned to active status. The account owner may notice a slightly longer log
on time, but will notice no other behavioral changes in his or her account for that session.

The Poseidon denizen 820 can also set a progressive die date. ODEs 100 will be
deleted from the ocean 102 after the die date has passed if the ODEs 100 also meet other
criteria. As an example, assume people fill out an entry form on a web page for an online
sweepstakes. The entry form contents are stored in a database ODE 100. After the
contest is over, the contestant data would be transferred to a marketing family 706, and
the ODE 100 for entering the sweepstakes would be deleted.

The archive pod 808 preferably defaults to an active archive approach. This
means that all ODEs resident on a host at a given location 104 will be archived on a
different host in the ocean 102 or on a specified backup device when the first host's mean
activity falls below a given limit, or after a given amount of time has passed since its last
archive. Archives can be done with the ODE 100 active by using a spawning technique,

or with the ODE 100 inactive by using a direct archive technique. These approaches are

24

10

15

20

25

30

PABE AN WS B AR B ke ko g

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

preferably administered through the Poseidon denizen 820. If the ocean 102 resides
entirely on a single machine, a Zip or Jazz Drive or a tape back up system is preferably

used by the archive ODE 808 to routinely back up the ocean 102; similar measures should

be taken on multi-machine oceans 102,

As noted earlier. the security ODE 810 checks certificates 216 of user or guest
ODEs 100 before they are allowed to execute on a given host or at a given location 104,
and otherwise enforces security constraints.

A VisualManager ODE 812 supports interactive management of denizens 100 in
the ocean 102. The VisualManager ODE 812 creates a panel on the computer screen
which can be maximized or minimized by the user. This panel displays icons
representing ODEs 100 which are currently active in the system (either limited to the
location 104 or for the entire ocean 102). The Poseidon denizen’s panel includes
administrative ODEs 800 and non-administrative user ODEs 100. Each ODE type 1s
displayed in an environment icon which, when clicked, expands to include a query box
and a scroll box with categories based on the origin portion 204. The ODEs within the
categories are listed by name. The query box allows an administrator or user to search for
active ODEs using a plain text search.

The user panels display only the ODEs which users have a right to access based on
their permissions level. Some ODE categories are available to all users, including: one
which shows the owner name for all users logged onto the system who have given that
user permission to see them (the administrator's panel displays the identity of all users);
one which lets the user search for log files on ODEs on that system; and one which lets
users search for non-active ODEs on the system.

A river pod denizen 814 manages connections with other oceans 102, such as
connections seeking resources across ocean boundaries. Such extra-ocean connections
may be made by an ODE 100 within the given ocean 102, or by a user logged on to a
machine in the ocean 102 who uses an ODE 100 to initiate the connection. The river
ODE 814 also manages connections to non-native ODE applications running on machines
in the ocean 102. This may include database management systems, legacy systems,
hardware drivers, Java virtual machines, network computers running non-ODE

environments, UNIX/VMS shell scripts, foreign executables, and any unknown data

stream.

25

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

When data is being transmitted between two ODEs across a network connection,
the communicated packets (such as TCP/IP packets) are encrypted using the certificates
216 of the two ODEs, the certificate 216 of the river ODE 814 that is managing the
transaction. the source network (IP) address, the destination network (IP) address, and the
transaction certificate for the transaction. This prevents unauthorized access to the
contents even if the communication is intercepted, because only the ODE which owns the
certificates can decrypt the transmission packets, and only at the specified destination
address, and even then only for the particular transaction involved. Of course, the
etwork does not have to rely on or even use TCP/IP. Software according to the
invention may support multiple network protocols, and may be expanded to include future
network protocols.

In one embodiment. the river pod denizen 814 is parent to a thread manager ODE
816. All ODEs can spawn and manage threads. But when an ODE 100 does so, it
registers the thread with the thread manager ODE 816. The thread manager ODE 816
dnalyses system resources and allows threads to be spawned on a priority and permissions
basis.

For instance, if an ODE 100 creates a socket connection with another application
across a network. that socket is managed as a thread. Each thread takes up memory and
(in this case) network bandwidth. If someone with very high priority has scheduled a
video multicast, they need most of the network bandwidth available to the system 102.
Other ODEs may not be aware of this scheduled event. If an ODE 100 sees that there 1s
network bandwidth available for its socket connection, it will ask the thread Manager
ODE 816 to allow it to spawn the thread. The thread manager ODE 816, knowing that the
video multicast is the highest priority for the allocation of that network resource, will not
allow the socket thread to be spawned through that network connection. However, the
thread manager ODE 816 will direct the requesting ODE 100 to use another network
connection if one is available.

In one embodiment, the river pod denizen 814 is also parent to a gatekeeper ODE
818. The gatekeeper 818 has two main functions. The first is security; the gatekeeper
818 provides the capabilities of standard firewall systems such as IP masking, IP filtering,

and user authentication. The second main duty of the gatekeeper 818 1s to manage

network configuration. Generally, this means tracking how the network resources of the

26

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

ocean 102 are configured. But the gatekeeper 818 may also provide a wide variety of
dial-in users with the configuration information needed to dial in and log on normally, as

in the traveling executive example elsewhere in this document.

Denizen Learning (In Depth)

Conventional genetic algorithms and adaptive neural networks can only adapt

single predetermined task. Finally, they cannot be dynamically created and modified in
response to unexpected input or system events.

Although the process by which an ODE 100 "learns" 1s somewhat similar to that in
conventional evolutionary computing systems, there are fundamental differences. As
shown in Figure 9, the ODE 100 analyzes the inputs requested in a user's query 900 and
takes steps 902 to generate (or steps 904 to modify) a suitable processing structure 906.
The processing structure 906 includes one or more block containers 908. In one
embodiment, the entire processing structure resides within an ODE 100; in an alternative
embodiment each block container 908 is a separate (loosely coupled) ODE 100.

The block containers 908 either are or contain executable blocks 220, which in
turn hold code fragments 228. Each fragment 228 has a given input type, a processing
method, and connections to other processing fragments 228. The fragments cooperate to
produce results 912 which are transmitted to the user and/or to the ODE 100 for handling.
Because the structure 906 can be a series of related code fragments 228 in a single data
event path 220 or an organization of ODEs 100 with each ODE containing code 228,
work on processing the query 100 can be divided throughout part or all of the ocean 102.

 The processing structure 906 is generated and configured on the fly, based on a
set of rules and templates found in an ODE library or on other criteria. Thus, the learning
method used by ODEs could be viewed as a novel form of evolutionary algorithm. Based
on analytic information 914 such as intermediate results, error messages, resource
requests, and user responses, the ODE 100 analyses the capacity of the structure 906 to
successfully respond to the user's query 900. During the step 904, the ODE 100 can load,
unload, and/or recompile the blocks 220 of the processing structure 306. ‘

27

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

This allows the ODE 100 to make fundamental changes in behavior during
runtime, without losing what the structure 906 and the ODE 100 have already learned
about the problem and its possible solutions. For instance, if the user changes the query
900 during runtime, the existing matches based on the first version of the structure 906

may be kept and compared against resuits in the new version of the structure 906 to assess

relevancy.

Unlike neural networks, genetic algorithms, and other conventional evolutionary
algorithms, the method of the present invention allows an ODE 100 to compile the
"network" of processing fragments 228 on the fly, with no user intervention. The code
228 being used can be modified to make the structure 906 more effective during runtime,
in response to the degree of success of the current and past versions of the structure 906.
ODE code fragments 228 in a data event path 220 can access databases or other data
repositories as a step in the data input evaluation process. The "weight" of a "connection”
between ODEs or between code fragments 228 could be simply a number, but it could
also be a connection to a different database or data resource. To the inventor’s
knowledge, nodes or connections of conventional neural nets cannot access databases as a
part of their process, and conventional genetic algorithms must be “hardwired” to access a
given database.

The learning method used by an ODE 100 is preferably tightly coupled to the
method by which the ODE 100 retrieves information from databases, files, and other
processes. If data inputs or databases move, even during a search, the processing structure
906 preferably can continue to access them as if they had not moved. If the structure of a
database changes in the middle of processing a request 900, the ODE 100 can load
appropriate blocks 220 and/or containers 908 and continue processing the request by
gathering information from the new database structures. If inputs need to be added to the
blocks 220 or if the interconnections 910 need to be added or changed, then the
processing structure 906 can be recompiled and rebuilt on the fly without abandoning
processing of the request 900. Such adaptation may also be needed as a result of
additional user requests 900 or as a result of unexpected events such as an exception

being thrown or an error being encountered in the database structure.

28

10

15

20

25

30

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

Denizen Learning Examples

The denizen learning method and architecture may be used as part of a novel
search engine. Suppose the user enters the four search terms "dog," "collie," and "brown,"
and "black.” and the structure 906 initially returns information on data paths or web pages
containing information on collies which are brown and black. If the user adds the
connector "or" between "brown” and "black”, then the initial results are kept and a new
request is generated for collies that are brown or collies that are black. The code fragment
linkages 910 in the structure 906 would change on the fly. The pages that were retrieved
for brown and black collies are kept, because brown and black collies would be found
twice — once by the "brown" comparison, and once by the "black" comparison. If the
search were modified again to say "brown" but not "black”, then the databases which were
searched before do not need to be searched. The structure 906 discards the information
for the collies that are black and for the ones that are brown and black. In short, the
structure of the request 900 can change, but the results of previous searches with similar
request structures, and whatever was learned from the search, can still be used.

The denizen learning method and architecture may also be used as part of a novel

translation engine. Assume an ODE 100 receives the following text in binary format to

be translated:

010010000110000101110010001000000110100001100001011011100010000001101000

011000010110011001110100001000000110011001100101011100100110100101100101
00111111

The ODE 100 assumes that the text chunk is in ASCII format, and displays 1t to
the user as the following new message: "Har han haft ferie?" The user, who speaks only
English, does not recognize the phrase or the language that the phrase is in. The user
selects the message and presses the "Translate" button.

In response to receiving the instruction to translate this message, the ODE 100
épawns a child ODE 100 to translate the expression. The child ODE 100 is created using
a database class and a phrase identification subclass. In order to create a data event path

220 based on the phrase identification subclass, the ODE 100 needs to identify the

number of words in the phrase.
In order to identify the number of words in the phrase, the ODE 100 uses a
tokenizer method to split the phrase into its component parts, in order. To do this, the

29

CA 02298582 2000-02-02

WO 99/11018 PCT/US98/15633

ODE 100 searches the binary representation of the ASCII characters in the phrase, as
listed below, for repeating non-character values. The following are the binary values of

the decimal representations of each character from the standard ASCII character map, 1n 8

10

15

20

25

30

35

bit chunks with decimal equivalents:

01001000 72
01100001 97
01110010 114
00100000 32
01101000 104
01100001 97
01101110 110
00100000 32
01101000 104
01100001 97
01100110 102
01110100 116
00100000 32
01100110 102
01100101 101
01110010 114
01101001 105
01100101 101
00111111 63

The ODE 100 sees two non-character ASCII values, 00100000 (32) which is a
space, and 00111111 (63) which is a question mark. The space is repeated three times,
and so is probably a separator between words. Based on this information, the ODE 100
makes several assumptions: the text is a phrase or a sentence fragment; there are four
words in the phrase, namely "Har", "han", "haft", and "ferie"; and the phrase is a question.

The ODE 100 then creates four new data event paths 220 identified as input
values. These are analogous to the nodes in the input layer in a neural net<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>