发明名称
芳基，杂芳基，O-芳基和O-杂芳基碳环糖家族

摘要
本发明涉及芳基，杂芳基，O-芳基和O-杂芳基碳环糖家族。具体而言，本发明涉及下述式
的化合物，以及其制备方法，包含其的药学组合物，及其用途，特别是用作依赖性葡萄糖转
运蛋白如SGLT1，SGLT2和SGLT3的抑制剂，特别是用于治疗或预防糖尿病，并且更特别是II型糖尿
病，与糖尿病有关的并发症如心肌梗塞，肾功能不全，神经病变或失明，高血糖症、高胰岛素血
症，肥胖症，高甘油三酯血症，X综合征和动脉硬化，以及用作抗癌药物，抗感染药物，抗病毒
药物，抗炎药物，抗炎药物。
1. 具有下列式(1)的化合物:

![化学结构式](image)

(1)

或其药学上可接受的盐、互变异构体、立体异构体或任何比例的立体异构体的混合物，其中:

R、R₁和R₃代表OH基团，
R₂代表OH基团，
R₄代表OH基团，
R₅代表氢原子，
X₁、X₂、X₃、X₄、X₅、X₆、X₇和X₈彼此独立地代表氢原子、卤素原子、OH、(C₁-C₆)烷基、OR₂₄、NR₂₅、SR₂₄基团，
R₂₄代表(C₁-C₆)烷基、芳基、芳基-(C₁-C₆)烷基或(C₁-C₆)烷基-芳基基团，
R₂₅和R₂₆彼此独立地代表氢原子或-(C₁-C₆)烷基或芳基-(C₁-C₆)烷基基团，和
-芳基代表苯基或萘基。
2. 根据权利要求1所述的化合物，其特征在于，所述立体异构体的混合物是外消旋混合物。

3. 根据权利要求1所述的化合物，其特征在于，所述立体异构体的混合物是外消旋混合物。

4. 根据权利要求1所述的化合物，其特征在于，它对应于下列式(Ia)、(Ib)或(Ic):

 (Ia),

 (Ib),

 (Ic),

其中R₁、R₂、R₃、R₄和...如权利要求1中所定义。

5. 根据权利要求1所述的化合物，其特征在于，它对应于下列式(I-2)、(I-2a)或(I-2b):
或其药学上可接受的盐、互变异构体、立体异构体或任何比例的立体异构体的混合物，
其中R、R₁、R₂、R₃、X₁、X₂、X₃、X₄、X₅、X₆、X₇、X₈和X₉如权利要求1中所定义。

6. 根据权利要求5所述的化合物，其特征在于，X₁、X₂、X₃、X₄、X₅、X₆、X₇、X₈和X₉彼此独立地
选自氢原子、卤素原子、OH、(C₁-C₆)烷基和OR²基团。
7. 根据权利要求1所述的化合物，其特征在于，它对应于下列式(I-4)、(I-4a)或(I-4b)：

![化合物结构图](image)

(I-4)，

(I-4a)，

(I-4b)，

或其药学上可接受的盐、互变异构体、立体异构体或任何比例的立体异构体的混合物，其中R、R₁、R₂、R₃、R₄、X₁、X₂、X₃、X₄、X₅、X₆、X₇、X₈和X₉如权利要求1中所定义。

8. 根据权利要求7所述的化合物，其特征在于，X₁、X₂、X₃、X₄、X₅、X₆、X₇、X₈和X₉彼此独立地选自氢原子、卤素原子、0H、(C₁–C₆)–烷基和0R₂基团。

9. 根据权利要求1所述的化合物，其特征在于，它选自下列化合物:
10. 下式的化合物:

11. 根据权利要求1至10任一项所述的化合物在制备作用钠依赖性葡萄糖共转运蛋白的抑制剂的药物中的用途。

12. 根据权利要求11所述的用途，其特征在于，所述钠依赖性葡萄糖共转运蛋白选自SGLT1、SGLT2和SGLT3。

13. 根据权利要求1至10任一项所述的化合物在制备旨在用于治疗或预防糖尿病，与糖尿病有关的并发症、高血糖症、高胰岛素血症、肥胖症、高甘油三酯血症、X综合征和动脉硬化的药物中的用途。

14. 根据权利要求13所述的用途，其特征在于，所述糖尿病是II型糖尿病且所述与糖尿病有关的并发症选自下肢关节炎、心肌梗塞、肾功能不全、神经病变和失明。

15. 一种药物组合物，其包含至少一种根据权利要求1至10任一项所述的化合物和至少一种药学上可接受的载体。

16. 一种用于制备根据权利要求1所述的化合物的方法，其包括下式(II)的化合物的氯化:

(II)

其中如权利要求1中所定义，

- R代表CH₂OH、CH₂OŜR⁹R¹⁰R¹¹、CH₂OR¹⁰¹、CH₂OCOR¹⁰¹、CH₂OCOR¹⁰¹、CH₂OCOR¹⁰¹、CH₂OP(0)O(OR¹⁰¹)₂或CH₂OSiR¹⁰¹，
- R¹和R₂彼此独立地代表OH、OSiR⁸R⁹R¹⁰，OR¹⁰¹、OCOR¹⁰¹、OCOR¹⁰¹或OCOR¹⁰¹R¹⁰¹，
- R³和R⁴彼此独立地代表OH、OSiR⁸R⁹R¹⁰，OR¹⁰¹、OCOR¹⁰¹、OCOR¹⁰¹或OCOR¹⁰¹R¹⁰¹，
- 或者R和R⁴在每个或全部时选自仅携带它们的碳原子一起形成具有下式的开环缩醛:
-R¹¹、R¹⁵和R¹⁸彼此独立地代表(C₁-C₆)-烷基、(C₅-C₆)-烯基、(C₃-C₇)-炔基、烷烃基、5至7元环杂环烷基、芳基、芳基-(C₁-C₆)-烷基或(C₁-C₆)-烷基-芳基基团，该基团可能被一个或多个由卤素原子、OH、COOH和CHO基团的基团取代，

-R¹²、R¹³、R¹⁶、R¹⁷、R¹⁹和R²⁰彼此独立地代表氢原子或(C₁-C₆)-烷基或芳基-(C₁-C₆)-烷基基团，

-R¹¹代表氢原子或(C₁-C₆)-烷基基团，

-R²至R¹彼此独立地代表(C₁-C₆)-烷基、芳基或芳基-(C₁-C₆)-烷基基团，

-R²至R³彼此独立地代表氢原子或(C₁-C₆)-烷基基团、芳基或芳基-(C₁-C₆)-烷基基团，和

-芳基代表苯基或萘基，

接着进行脱保护步骤，当适当时以获得根据权利要求1所述的化合物。

17. 一种用于制备根据权利要求1所述的化合物的方法，其包括以下步骤：

(a4) 其中R₁＝OH的式(1)的化合物的溴代，以得到其中R₁＝Br的式(1)的化合物，和

(b4) 在前述步骤(a4)中获得的其中R₁＝Br的式(1)的化合物的还原，以得到其中R₁＝H的式(1)的化合物。

18. 一种用于制备其中的代表基团(1)的根据权利要求1所述的化合物的方法，其包括下列式(XVI)的化合物与下列式(V)的化合物之间的偶联反应：

(XVI)，

其中：

-R₉代表离去基团，

-R₈代表CH₂OH、CH₂OSiR³R⁴R⁵、CH₂OR¹¹、CH₂OCOR¹¹、CH₂OCOR¹²R¹³、CH₂OP(0)(OR¹⁴)₂或CH₂OSO₃H₄，

-R₈和R₁彼此独立地代表OH、OSiR⁴R⁵R⁶、OR¹⁵、OCOR¹⁵、OCOR¹⁵或OCOR¹⁶R¹⁷，

-R₈和Rₓ彼此独立地代表OH、OSiR⁴R⁵R⁶R⁷、OR¹⁸、OCOR¹⁸、OCOR¹⁸或OCOR¹⁹R²⁰，
或者R₅和R₁₉与携带它们的碳原子一起形成具有下式的环状缩醛：

和/或(R₁₅和R₂₃)和/或(R₂₅和R₃₃)与携带它们的碳原子一起形成具有下式的环状缩醛：

- R¹¹、R¹₅和R¹₈彼此独立地代表(C₁–C₆)–烷基、(C₂–C₆)–烯基、(C₃–C₇)–炔基、(C₃–C₇)–环烷基、5至7元环杂环烷基、芳基、芳基–(C₁–C₆)–烷基或(C₁–C₆)–芳基–芳基基团，该基团可能被一个或多个选自卤素原子、OH、COOH和CHO基团的基团取代。
- R¹₂、R¹₃、R¹₆、R¹₇、R¹₉和R²₀彼此独立地代表氢原子或(C₁–C₆)–烷基或芳基–(C₁–C₆)–烷基基团。
- R¹₄代表氢原子或(C₁–C₆)–烷基基团。
- R²至R⁴彼此独立地代表(C₁–C₆)–烷基、芳基或芳基–(C₁–C₆)–烷基基团。
- R⁵至R⁷彼此独立地代表氢原子或(C₁–C₆)–烷基基团、芳基或芳基–(C₁–C₆)–烷基基团，和
- 芳基代表苯基或萘基，

其中\(\left(\frac{O}{U} \right)^n \left(\frac{W}{P} \right)^m \) 如权利要求1中所定义。

接着进行脱保护步骤，当适当时以获得其中\(\left(\frac{O}{U} \right)^n \left(\frac{W}{P} \right)^m \) 代表基团(1)的根据权利要求1所述的化合物。
芳基、杂芳基、O-芳基和O-杂芳基碳环糖家族

[0001] 本申请是申请号为201280022993.1,申请日为2012年5月29日,发明名称为“芳基、杂芳基、O-芳基和O-杂芳基碳环糖家族”的中国专利申请的分案申请。

技术领域
[0002] 本发明涉及氮化的芳基、杂芳基、O-芳基、O-杂芳基类化合物家族，其制备方法，以及其在药物领域的应用，特别是用于治疗或预防糖尿病和肥胖症。

背景技术
[0003] 糖及其衍生物构成了在自然界中最常见的化合物类别之一。基于其化学结构，其表现出各种理化性质并且可以在许多生物过程中发挥关键作用。
[0004] 近年来，对于发现新型糖类的兴趣与日俱增，所述糖类在改善有效性和选择性和稳定性方面具有有利的性质。
[0005] 人们发现这些化合物中，特别是芳基糖或酚苷可用于化妆品领域或者用于治疗或预防疾病如糖尿病、肥胖症、癌症、炎症性疾病、自身免疫性疾病、感染、血栓形成和涉及众多其他治疗领域。关于其生物学性质及其结构，这些化合物引起了众多科研团队的兴趣。

[0007]

[0008] 根皮苷
[0010] 在这种情况下，用于治疗高血糖症的方法之一是促进过量的葡萄糖直接排泄到尿中，例如，通过抑制肾脏近端小管中的钠依赖性葡萄糖共转运蛋白，其效果是抑制葡萄糖的
再吸收，从而促进其排泄到尿液中，进而导致血糖水平的降低。

【0011】目前，存在大量的药物可用于治疗糖尿病，如双胍类、磺酰脲类、胰岛素同性改善剂和α-糖苷酶抑制剂。然而，这些化合物具有许多副作用，因而越来越需要新型药物。

【0012】因此，本发明提供了新型化合物，特别是用于治疗或预防糖尿病和肥胖症。

【0013】这些化合物是芳基、杂芳基、O-芳基、O-杂芳基的CF_{2}ー类化合物，其中环内氮氧被携带2个氟原子的碳原子代替。这些化合物将具有独特的特征，当口服后酶降解过程时，特别是经过糖苷酶酶的降解过程，这些化合物是O-芳基和O-杂芳基的稳定类似物。此外，氟化碳是氧原子的优良模拟物。

【0014】专利申请WO2009/121939中描述了稳定的芳基类类似物，其中异头氧被携带2个氟原子的碳原子代替。

【0015】专利申请WO2009/044256中描述了O-芳基的合成，其中环内氧或异头氧被携带2个氟原子的碳原子代替。特别描述了下列化合物的合成：

![化学结构](image)

【0016】WO2009/076550中同样已经报道了O-芳基和芳基类似物，其中环内氧被携带2个卤素原子的碳原子代替，但是尚未被例举。

发明内容

【0018】因此，本发明人已经开发出新型合成方法，其能够获得新型芳基、杂芳基、O-芳基、O-杂芳基化合物，所述化合物用作SGLT抑制剂，特别是用于治疗或预防糖尿病和肥胖症。

【0019】因此，本发明涉及具有下列式(1)的化合物：

![化学结构](image)

【0020】(I)

【0021】其药学上可接受的盐、可变异构体、立体异构体或任何比例的立体异构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物。

【0022】其中：

【0023】-n和p彼此独立地代表0或1，

【0024】-m代表1，

【0025】-R代表氢原子或氧原子或CH_{3}、CH_{2}F、CH_{2}OH、CH_{2}OSiR^{6}R^{7}R^{8}、CH_{2}OR^{11}、CH_{2}OCOR^{11}、CH_{2}OCO_{2}R^{11}、CH_{2}OCORN(R^{13})_{2}、CH_{2}OP(OR^{14})_{2}或CH_{2}OSO_{2}R^{14}基团。
- R_1 和 R_2 彼此独立地代表氟原子或 OH、$\text{OSiR}^iR^jR^k$、OR^l、OCOR^m、OCO_2R^{n} 或 OCO_2R^{n} R^{o} 基团，
- R_3 代表氢原子或氟原子或 OH、$\text{OSiR}^iR^jR^k$、OR^l、OCOR^m、OCO_2R^{n}、OCO_2R^{n} R^{o}、NR^{p} 或 NR^{p} COR^{q} R^{r} 基团，
- 当 $n = 1$ 时，R_4 代表氢原子，且当 $n = 0$ 时，R_4 代表氢原子、卤素原子或 OH、$\text{OSiR}^iR^jR^k$、OR^l、OCOR^m、OCO_2R^{n}、OCO_2R^{n} R^{o} 或 OCO_2R^{n} R^{o} COR^{q} R^{r} 基团，
- 或者 R 和 R_1 与携带它们的碳原子一起形成具有下式的环状缩醛；

- R_1 和 R_2、R_3 和 R_4 与携带它们的碳原子一起形成具有下式的环状缩醛；

- X_1 代表氢原子、卤素原子、CN、OH、SO_2、$\text{SiR}^iR^jR^k$、CN、C_1-C_6-烷基、C_2-C_6-烯基、C_2-C_6-炔基、C_3-C_7-环烷基、C_8-C_14-烷基、C_8-C_14-烯基、C_8-C_14-炔基、C_8-C_14-环烷基、C_8-C_14-环烯基、C_8-C_14-环炔基、C_8-C_14-环烷基、C_8-C_14-环烯基、C_8-C_14-环炔基、C_8-C_14-环烷基、C_8-C_14-环烯基、C_8-C_14-环炔基

- U、V 和 W 彼此独立地代表苯基、吡啶基、N-(C_1-C_6)烷基-吡啶基或吲哚基环，

- 所述环任选被一个或多个选自卤素原子、CN、OH、SO_2、$\text{SiR}^iR^jR^k$、CN、C_1-C_6-烷基、C_2-C_6-烯基、C_2-C_6-炔基、C_3-C_7-环烷基、C_8-C_14-烷基、C_8-C_14-烯基、C_8-C_14-炔基、C_8-C_14-环烷基、C_8-C_14-环烯基、C_8-C_14-环炔基

- 其中：

- R^1、R^2、R^3 和 R^4 彼此独立地代表 (C_1-C_6)-烷基、(C_2-C_6)-烯基、(C_2-C_6)-炔基、(C_3-C_7)-环烷基、5 至 7 元环杂环烷基、芳基、芳基-(C_1-C_6)-烷基 或 (C_1-C_6)-烷基-芳基团，该基团可被一个或多个选自卤素原子、OH、COOH 和 CHO 基团的取代基取代，

- R^1、R^2、R^3 和 R^4 彼此独立地代表氢原子或 (C_1-C_6)-烷基 或芳基-(C_1-C_6)-烷基 基团，

- R^1、R^2、R^3 和 R^4 彼此独立地代表氢原子或 (C_1-C_6)-烷基 基团，

- R^2 和 R^2 彼此独立地代表 (C_1-C_6)-烷基 基团，芳基或芳基-(C_1-C_6)-烷基 基团，和

- R^2 和 R^2 彼此独立地代表氢原子或 (C_1-C_6)-烷基 基团，芳基或芳基-(C_1-C_6)-烷基 基团。

- 在本发明中，“药学上可接受的” 被理解为是指其用于制备药物组合物，所述组合物一般是安全的，无毒的，在生物学或其他方面满足需要并且所述组合物可以被接受用于兽类和人类药物用途。

- 在本发明中，化合物的“药学上可接受的盐” 被理解为指代下列表，其是药学上可接受的（如本文所定义的）盐并且其具备预期的母体化合物的药理活性。这种盐包括：
(1) 水合物和溶剂化物，如(S)-丙二醇溶剂化物，
(2) 与无机酸如盐酸、氢溴酸、硫酸、磷酸等形成的酸加成盐，或与有机酸如乙酸、苯磺酸、苯甲酸、樟脑磺酸、柠檬酸、乙磺酸、富马酸、丙戊酸、硫酸、谷氨酸、乙醇酸、羟基酸、2-羟基乙磺酸、乳酸、马来酸、苹果酸、扁桃酸、甲磺酸、丙酮酸、2-羟基酸、丙酸、水杨酸、琥珀酸、二苯甲酰基-L-酒石酸、酒石酸、对甲苯磺酸、三甲基乙酸、三氟乙酸等形成的酸加成盐；和
(3) 当母体化合物中存在的酸性质被金属离子，例如，碱金属离子(例如，Na⁺、K⁺或Li⁺)，碱土金属离子(如Ca²⁺或Mg²⁺)或铝离子代替；或者有有机碱或无机碱配位时形成的盐。可接受的有机碱包括二乙醇胺、乙醇胺、N-甲基葡糖胺、三乙醇胺、氢丁三醇等。可接受的无机碱包括氢氧化铝、氢氧化钙、氢氧化钾、碳酸钠和氢氧化钠。
在本发明中，“互变异构体”被理解为指代通过质子转移(即氢原子的迁移和双键位置的变化)获得的异构体。化合物的不同的互变异构体通常是相互转化的并且以各种比例在溶液中达到平衡，这可以取决于所使用的溶剂，温度或pH值。
在本发明中，“立体异构体”是指下同列异构体，其具有相同的分子式和成键原子顺序，但是其原子在空间上的三维取向不同。因此，它们指代E/Z异构体，非对映异构体和对映异构体。E/Z异构体是具有双键的化合物，该双键上存在的取代基不在双键的同一侧，彼此不为镜像的立体异构体因此指代“非对映异构体”，并且非重叠镜像的立体异构体指代“对映异构体”。
特别地，本发明的化合物的糖片段可以属于D或L系列，优选D系列。
被键合至四个不相同的取代基的碳原子被称为“手性中心”。
两个对映异构体的等摩尔混合物被称为外消旋化合物。
“卤素”被理解为是指氟、溴、氯或碘原子。
在本发明的含义中，“(C₁-C₆)-烷基”被理解为是指包含1至6个碳原子的饱和的直链或支链的烃链，特别是甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、正己基基团。
在本发明的含义中，“(C₂-C₆)-烯基”被理解为是指包含至少一个双键且包含2至6个碳原子的直链或支链的烃链，例如，如乙烯基(ethenyl或vinyl)或丙烯基基团。
在本发明的含义中，“(C₃-C₆)-炔基”被理解为是指包含至少一个三键且包含2至6个碳原子的直链或支链的烃链，例如，如炔基或丙炔基基团。
在本发明的含义中，“(C₃-C₇)-烷烃”被理解为是指包含3至7个，有利地是5至7个碳原子的饱和烃环，特别是环己基、环戊基或环庚基基团。
在本发明的含义中，“5至7元环杂环烷基”被理解为是指具有5至7个成员并且含有代替碳原子的一个或多个(有利地是一个或两个)杂原子(例如，硫、氮或氧原子)的饱和烃环，例如，如四氢呋喃基、哌啶基、吡咯烷基、四氢吡喃基、1,3-二氧杂环戊烷基基团。
在本发明的含义中，“芳基”被理解为是指优选包含5至10个碳原子并且包含一个或多个稠合环的芳香烃基团，例如，如苯基或取代苯基。有利的是苯基。
在本发明的含义中，“芳基-(C₁-C₆)-烷基”基团被理解为是指如上所定义的任何芳基基团，其通过如上所定义的(C₁-C₆)-烷基基团被键合至分子。特别地，像这样的基团可以是苯基基团。
在本发明的含义中，“(C₁-C₆)-烷基-芳基”基团被理解为是指如上所定义的(C₁-C₆)-烷基基团，其通过如上所定义的芳基基团被键合至分子。特别地，像这样的基团可以是甲基苯基基团。

在本发明的含义中，“N-(C₁-C₆)烷基-吡啶基”基团是具有下式的基团，其中X代表如上所定义的(C₁-C₆)烷基基团:

该基团通过吡啶基片段中的两个碳原子被键合至分子的剩余部分。

有利地，本发明的化合物基于下列式(Ia)、(Ib)和(Ic)，并且特别是(Ia)和(Ic):

其中R₁、R₂、R₃、R₄、X₁、U、V、W、n、m和p如上所定义。
有利地，R₁和R₂彼此独立地代表氟原子或OH、OSiR₄R₅R₆、OR¹₅、OCOR¹₅、OCO₂R¹₅或OCOR¹₅R¹⁷基团，并且R₃代表氰原子或OH、OSiR₄R₅R₆、OR¹₅、OCOR¹₅、OCO₂R¹₅或OCOR¹₅R¹⁷基团。
更有利地，R₁和R₂彼此独立地代表OH、OR¹₅或OCOR¹₅基团，并且R₃代表OH、OR¹₅或OCOR¹₅基团。
甚至更有利地，R₁、R₂和R₃可以彼此独立地选自OH、-O-(C₁-C₆)-烷基、-O-芳基、-O-(C₁-C₆)-烷基-芳基和-OCO-(C₁-C₆)-烷基基团。
特别地，R₁、R₂和R₃可以彼此独立地选自OH、OSiMe₃和苄氧基(Obn)基团，并且优选
OH和OBN。

【0071】根据一个特定的实施方式，R₁、R₂和R₃是相同的。

【0072】根据另一个特定的实施方式，R₁、R₂和R₃是不同的并且每一个都代表OH基团以及R代表CH₂OH基团。

【0073】有利地，R代表氢原子或CH₂、CH₂OH、CH₂OR₁、CH₂OSiR₄R’R”R”R”、CH₂OP(O)（OH）₂或CH₂OSO₂H基团，并且特别是氢原子或CH₂、CH₂OH、CH₂OR₁、CH₂OCOR₁、CH₂OP(O)（OH）₂或CH₂OSO₂H基团。

【0074】其中R’、R”、R”和R”如上所定义，并且CH₂OR₁有利地代表-C₆H₄-（C₁-C₆）-烷基、CH₂O-芳基和-CH₂O-（C₁-C₆）-烷基-芳基和CH₂OCOR₁基团，更有利地代表-CH₂OCO-（C₁-C₆）-烷基基团。

【0075】甚至更有利地，R代表CH₂OH、CH₂OSiR₄R’R”R”R”、CH₂OR₁或CH₂OCOR₁基团，并且更有利地是CH₂OH、CH₂OR₁或CH₂OCOR₁基团，其中R’、R”、R”和R”如上所定义。

【0076】甚至更有利地，R代表CH₂OH、CH₂O-（C₁-C₆）-烷基、CH₂O-芳基、-CH₂O-（C₁-C₆）-烷基-芳基和-CH₂OCO-（C₁-C₆）-烷基基团。

【0077】特别地，R可以代表CH₂OH、CH₂OSiMe₂或CH₂OBn基团，并且优选CH₂OH或CH₂OBn基团。

【0078】同样，R₁可以有利地代表氢原子或卤素原子或者OH或OR²基团，并且特别是氢原子或者OH或OR²基团，其中R²如上所定义。

【0079】甚至更有利地，R₄代表氢原子或卤素原子或OH，-O-（C₁-C₆）-烷基、-O-芳基、-O-（C₁-C₆）-烷基-芳基基团，并且特别是氢原子或-OH，-O-（C₁-C₆）-烷基、-O-芳基和-O-（C₁-C₆）-烷基-芳基基团。

【0080】特别地，R₄可以代表氢原子或卤素(如Br、Cl、F)原子或者OH基团，并且有利地是氢原子或者OH基团，并且特别是氢原子。

【0081】优选地，当n=1时R₄=H,且当n=0时R₄=H或OH。

【0082】有利地，X选自氢原子、卤素原子、OH、（C₁-C₆）-烷基、（C₂-C₆）-烯基、（C₃-C₇）-环烷基、OR²、COR²、OCOR²、CO₂R²、NR²R²、NR²COR²和CONR²R²基团；更有利地选自氢原子、卤素原子、OH、（C₁-C₆）-烷基、（C₂-C₆）-烯基、（C₃-C₇）-环烷基、OR²、COR²、OCOR²和CO₂R²基团；甚至更有利地选自氮原子、卤素原子、OH、（C₁-C₆）-烷基和OR²基团。

【0083】有利地，U、V和W彼此独立地代表苯基、吡啶基、N-(C₁-C₆)烷基-吡啶基或萘啶基环，所述环任选地被一个或多个取代基取代，所述取代基选自卤素原子、OH、（C₁-C₆）-烷基、（C₂-C₆）-烯基、（C₃-C₇）-环烷基、OR²、COR²、OCOR²、CO₂R²、NR²R²、NR²COR²和CONR²R²基团；更有利地选自卤素原子、OH、（C₁-C₆）-烷基、（C₂-C₆）-烯基、（C₃-C₇）-环烷基、OR²、COR²、OCOR²和CO₂R²基团；甚至更有利地选自卤素原子、OH、（C₁-C₆）-烷基和OR²基团。

【0084】(1)在第一个实施方案中，n为1。

【0085】在该实施方案的第一子类中，m=1，p=0且U和V彼此独立地代表任选被取代的苯基。因此，根据本发明的化合物可以表示为下式(1-2)，并且更特别地是下式(1-2a)和(1-2b)，并且特别是(1-2a)；
[0087] 其或药学上可接受的盐、互变异构体、立体异构体或任何比例的立体异构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物，

[0088] 其中：

[0089] -R、R₁、R₂和R₃如上所定义，和

[0090] -X₁、X₂、X₃、X₄、X₅、X₆、X₇、X₈和X₉彼此独立地代表氢原子、卤素原子、CN、OH、SO₂、SiR²R³R⁴O、(C₁–C₆)–烷基、(C₂–C₆)–烯基、(C₃–C₇)–环烷基、OR²₁、COR²₁、OCOR²₁、CO₂R²₁、NR²₁R²₂、NR²₁COR²₁、CONR²₁R²₂、NR²₁、SO₂R²₁、CSR²₁或OSO₃R²₁基团；有利地选自氢原子、卤素原子、OH、(C₁–C₆)–烷基、(C₂–C₆)–烯基、(C₂–C₆)–炔基、(C₃–C₇)–环烷基、OR²₁、COR²₁、OCOR²₁、
CO₂R²⁴、NR²⁵R²⁶、NR²⁵COR²⁴和CONR²⁵R²⁸基团；更有利地选自氢原子、卤素原子、OH、(C₁-C₆)-烷基、(C₆-C₆)-烯基、(C₆-C₆)-炔基、(C₆-C₆)-环烷基、OR²⁴、COR²⁴、OCOR²⁴和CO₂R²⁴基团；甚至更有利地选自氢原子、卤素原子、OH、(C₁-C₆)-烷基和OR²⁴基团。

[0091] 该第一子类内的实例包括但不限于：

[0092] 和

[0093] 在本实施方案的第二子类中，m=1，p=0，U是吡唑基或N-(C₁-C₆)烷基-吡唑基基团且V是任选取代的苯基。因此，根据本发明的化合物可以表示为下列式(1-3)，并且更特别地是下列式(1-3a)和(1-3b)，并且特别是(1-3a)。

[0094] (I-3)，

(1-3a)，
(I-3b)，

其中：
-X₁,X₂,X₃,X₄,X₅和X₆彼此独立地代表氢原子、卤素原子、CN、OH、SO₂、SiR₃R₄R₅、(C₁-C₆)-烷基、(C₇-C₁₅)-烷基、(C₇-C₁₅)-烯基、(C₇-C₁₅)-炔基、(C₇-C₁₅)-环烷基、OR²₄、COR²₄、OCOR²₄、CO₂R²₄、NR²₅R²₆、NR²₅COR²₄、CONR²₅R²₆、SR²₄、SO₂R²₄、CSR²₄或OSO₂R²₄基团；有利地选自氢原子、卤素原子、OH、(C₁-C₆)-烷基、(C₇-C₁₅)-烷基、(C₇-C₁₅)-烯基、(C₇-C₁₅)-炔基、(C₇-C₁₅)-环烷基；有利地选自氢原子、卤素原子、OH、(C₁-C₆)-烷基、(C₇-C₁₅)-烷基、(C₇-C₁₅)-烯基、(C₇-C₁₅)-炔基、(C₇-C₁₅)-环烷基，OR²₄、COR²₄、OCOR²₄、CO₂R²₄、NR²₅R²₆、NR²₅COR²₄和CONR²₅R²₆基团；有利地选自氢原子、卤素原子、OH、(C₁-C₆)-烷基、(C₇-C₁₅)-烯基、(C₇-C₁₅)-炔基、(C₇-C₁₅)-环烷基，OR²₄、COR²₄、OCOR²₄和CO₂R²₄基团；有利地选自氢原子、卤素原子、OH、(C₁-C₆)-烷基和OR²₄基团，和

-X代表氢原子或(C₁-C₆)-烷基基团。

该第二子类内的实例包括但不限于：

(2)在第二个实施方案中，n是0。

在该实施方案的第一子类中，m=1，p=0，U和V独立地是任选被取代的芳基。因此，根据本发明的化合物可以表示为下列式(I-4)，并且更特别是下列式(I-4a)和(I-4b)，并且特别是(I-4a)：
[0106] 其其药学上可接受的盐、互变异构体、立体异构体或任何比例的立体异构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物，
[0107] 其中：
[0108] -R、R₁、R₂和R₃如上所定义，和
[0109] -X₁、X₂、X₃、X₄、X₅、X₆、X₇和X₈彼此独立地代表氢原子、卤素原子、CN、OH、SO₂、
SiR³⁺R⁴⁻、(C₁-C₅)-烷基、(C₂-C₆)-烯基、(C₃-C₇)-环烷基、OR²₄、COR²₄、OCOR²₄、
CO₂R²₄、NR₂₅⁻R₂₆⁻、NR₂₅⁻COR²₄、CONR²₅⁻R₂₆⁻、SR²₄⁻、SO₂R²₄⁻、CSR²₄⁻或OSO₂R²₄⁻基团；有利地选自氢原子、卤素原子、OH、(C₁-C₆)-烷基、(C₂-C₆)-烯基、(C₃-C₇)-烷基、(C₃-C₇)-环烷基、OR²₄、COR²₄、OCOR²₄、
CO₂R²₄、NR₂₅⁻R₂₆⁻、NR₂₅⁻COR²₄和CONR²₅⁻R₂₆⁻基团；更有利地选自氢原子、卤素原子、OH、(C₁-C₆)-烷基、(C₂-C₆)-烯基、(C₃-C₇)-烷基、(C₃-C₇)-环烷基、OR²₄、COR²₄、OCOR²₄和CO₂R²₄基团；甚至更有利地选自氢原子、卤素原子、OH、(C₁-C₆)-烷基和OR²₄基团。
[0110] 该第一子类内的实例包括但不限于：“
在该实施方案的第二子类中，m=1，p=1，u和w独立地是任选被取代的苯基且v是任选被取代的噻吩基。因此，根据本发明的化合物可以表示为下列式(I-5)，并且更特别是下式(I-5a)和(I-5b)，并且特别是(I-5a):

\[
\text{(I-5)}
\]
[0115] 其或其药学上可接受的盐、互变异构体、立体异构体或任何比例的立体异构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物，

[0116] 其中：

[0117] \[\text{R}, R_1, R_2, R_3 \text{和} R_4 \text{如上所定义，和} \]

[0118] \[\text{X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_{10}, X_{11}} \text{彼此独立地代表氢原子、卤素原子、CN、OH、} \]

\[\text{SO}_2, \text{SiR}^+R^-R^{''}, \text{(C}_1-\text{C}_6)\text{-烷基、(C}_2-\text{C}_6)\text{-烯基、(C}_2-\text{C}_6)\text{-炔基、(C}_3-\text{C}_7)\text{-烷基、(O)}^{24}, \text{COR}^{24}, \]

\[\text{OCOR}^{24}, \text{CO}_2\text{R}^{24}, \text{NR}^{25}R^{26}, \text{NR}^{25}\text{COR}^{24}, \text{CONR}^{25}R^{26}, \text{SR}^{24}, \text{SO}_2\text{R}^{24}, \text{CSR}^{24} \text{或OSO}_3\text{R}^{24} \text{基团；有利地选自氢原子、卤素原子、OH、(C}_1-\text{C}_6)\text{-烷基、(C}_2-\text{C}_6)\text{-烯基、(C}_2-\text{C}_6)\text{-炔基、(C}_3-\text{C}_7)\text{-烷基、(O)}^{24}, \text{COR}^{24}, \]

\[\text{OCOR}^{24}, \text{CO}_2\text{R}^{24}, \text{NR}^{25}R^{26}, \text{NR}^{25}\text{COR}^{24} \text{和CONR}^{25}R^{26} \text{基团；更有利地选自氢原子、卤素原子、OH、(C}_1-\text{C}_6)\text{-烷基、(C}_2-\text{C}_6)\text{-烯基、(C}_2-\text{C}_6)\text{-炔基、(C}_3-\text{C}_7)\text{-烷基、(O)}^{24}, \text{COR}^{24}, \text{OCOR}^{24} \text{和CO}_2\text{R}^{24} \text{基团；甚至更有利地选自氢原子、卤素原子、OH、(C}_1-\text{C}_6)\text{-烷基和OR}^{24} \text{基团。} \]

[0119] 该第二子类内的实例包括但不限于：

\[\text{BnO}^+, \text{BnO}^-\text{和} \text{OH} \]
【0121】因此，根据本发明的化合物可以选自下列化合物：

<table>
<thead>
<tr>
<th>化合物1</th>
<th>化合物2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【0123】本发明的另一个目的是如上所定义的化合物，其用作药物，特别是用作钠依赖性葡萄糖共转运蛋白如SGLT1、SGLT2和SGLT3的抑制剂。

【0124】在本发明的含义中，“钠依赖性葡萄糖共转运蛋白的抑制剂”被理解为是指能够部分地或完全地抑制钠依赖性葡萄糖共转运蛋白的化合物。

【0125】更特别地，本发明的化合物可用于治疗或预防糖尿病，并且更特别是1型糖尿病，与糖尿病有关的并发症如下肢关节炎、心肌梗塞、肾功能不全、神经病变或失明、高血糖症、
说明书

高胰岛素血症、肥胖症、高甘油三酯血症、X综合征和动脉硬化。特别地，本发明的化合物用于治疗或预防糖尿病。

【0126】本发明的化合物同样可以用作抗癌药物、抗感染药物、抗病毒药物、抗血栓形成药物或抗炎药物。

【0127】本发明还涉及本发明的化合物，其用于治疗或预防糖尿病，并且更特别是II型糖尿病，与糖尿病有关的并发症如肢关节炎、心肌梗塞、肾功能不全、神经病变或失明、高血糖症、高胰岛素血症、肥胖症、高甘油三酯血症、X综合征和动脉硬化，以及用作抗癌药物、抗感染药物、抗病毒药物、抗血栓形成药物或抗炎药物，并且特别是用于治疗或预防糖尿病。

【0128】本发明还涉及本发明的化合物在制备用于治疗或预防糖尿病，并且更特别是II型糖尿病，与糖尿病有关的并发症如肢关节炎、心肌梗塞、肾功能不全、神经病变或失明、高血糖症、高胰岛素血症、肥胖症、高甘油三酯血症、X综合征和动脉硬化，以及制备抗癌药物、抗感染药物、抗病毒药物、抗血栓形成药物或抗炎药物的用途，并且特别是在制备用于治疗或预防糖尿病的药物中的用途。

【0129】本发明还涉及一种方法，其用于治疗或预防糖尿病，并且更特别是II型糖尿病，与糖尿病有关的并发症如肢关节炎、心肌梗塞、肾功能不全、神经病变或失明、高血糖症、高胰岛素血症、肥胖症、高甘油三酯血症、X综合征和动脉硬化，以及用于抗癌治疗、抗感染治疗、抗病毒治疗、抗血栓形成治疗或抗炎治疗，并且特别是用于治疗或预防糖尿病，所述方法包括向有其需要的患者施用有效量的至少一种本发明的化合物。

【0130】本发明的甲硅烷基化化合物，以及其中R＝CH2OBn，R1＝OBn，R2＝OBn和/或R3＝OBn的化合物在药物用途方面将不是优选。

【0131】用作药物并且特别是用于治疗或预防糖尿病的化合物更特别地是式(Ia)或(1b)，并且特别是式(Ila)的化合物；特别是式(I-2)至(I-5)，如(I-2a)至(I-5a)和(I-2b)至(I-5b)，并且特别是(1-2a)至(I-5a)的化合物。

【0132】本发明的另一个目的是本药物组合物，其包含至少一种如上所定义的本发明的化合物和至少一种药学上可接受的载体。

【0133】根据本发明的化合物可以被口服施用、舌下施用、肠胃外施用、皮下施用、肌肉施用、静脉内施用、经皮施用、局部施用或直肠施用。

【0134】在本发明的药用组合物中，对于口服施用、舌下施用、肠胃外施用、皮下施用、肌肉施用、静脉内施用、经皮施用、局部施用或直肠施用而言，活性成分可以与常规的药用载体混合在一起，以施用单位的形式施用于动物或人类。适合的施用单位形式包含口服形式如片剂、凝胶胶囊剂、粉剂、颗粒剂和口服的溶液剂或混悬剂，舌下或口腔施用形式，肠胃外、皮下、肌肉、静脉内、鼻内或眼内施用形式和直肠施用形式。

【0135】当固体组合物被制备成片剂形式时，主要活性成分与药用载体如明胶、淀粉、乳糖、硬脂酸镁、滑石、阿拉伯胶等混合。片剂可以采用包衣或其他适合的材料包衣或者以如此的方式处理以至于其具有延长的或延迟的活性并且连续释放预定量的活性成分。

【0136】通过将活性成分与稀释剂混合并通过将获得的混合物倾倒入软质或硬质胶囊中来获得凝胶胶囊制剂。

【0137】糖浆剂或酏剂形式的制剂可以包含活性成分连同甜味剂、防腐剂以及芳香剂和适当的着色剂。
说明书

[0138] 可分散于水中的粉剂或颗粒剂可以包含活性成分，其与分散剂、润滑剂或悬浮剂
以及与矫味剂或甜味剂混合在一起。

[0139] 栓剂用于直肠施用，其采用在直肠温度下熔化的粘合剂，例如，可可脂或聚乙二醇
来制备。

[0140] 水性混悬剂、等渗的生理盐水溶液剂或无菌的且可注射的溶液剂（其包含药理学
上可兼容的分散剂和/或润滑剂）用于肠胃外、鼻内或眼内施用。

[0141] 活性成分（可能与一种或多种添加剂载体一起）也可以被配制成微囊剂。

[0142] 本发明的化合物能够以介于0.01mg/天和1000mg/天之间的剂量来使用，以单一剂
量/天的方式或以全天内若干剂量的方式来施用，例如，相同剂量每天两次。所施
用的日剂量大小地介于0.1mg和100mg之间，甚至更有利地介于2.5mg和50mg之间。使用超出
这些范围的剂量可能不需要的，本领域技术人员自身将会意识到这一点。

[0143] 在本发明的一个特定实施方式中，药物组合物也可以被配制用于外部施用。它可
以被引入到该施用类型的常用形式（即，特别是洗剂、泡沫剂、凝胶剂、分散剂、喷雾剂、香
波，精华液，面膜，体乳或霜剂）中，所述常用形式具有赋形剂，所述赋形剂特别地能够穿透
皮肤，以便于改善活性成分的性质和可接近性。除了根据本发明的组合物之外，这些组合物
通常进一步包含生理上可接受的介质，所述介质通常包含水或溶剂，例如，醇、醚或乙二醇。
所述组合物还可以包含表面活性剂、防腐剂、稳定剂、乳化剂、增稠剂、产生互补效果或可能
的协同效果的其他活性成分、微量元素、精油、香料、着色剂、胶原蛋白、化学或矿物过滤剂，
保湿剂或温泉水。

[0144] 在一个特定实施方式中，除了本发明的化合物以外，本发明的药学组合物可以包
含至少一种其它活性成分。

[0145] 可以举出的活性成分的实例是抗糖尿病剂，如磺酰脲类化合物（其为增加胰岛
素分泌的降血糖磺酰胺）如（例如）氯磺丙脲、甲苯磺丁脲、妥拉磺脲、格列吡嗪、格列齐特、
格列本脲、格列喹酮和格列美脲；减少肝脏糖异生和胰岛素抗性的双胍类如二甲双胍；增加
胰岛素敏感性的噻唑烷二酮类（也被称为格列酮类）如罗格列酮、吡格列酮和环格列酮；减
慢碳水化合物的肠道吸收的α-糖苷酶抑制剂类如阿卡波糖、米格列醇和伏格列波糖；增加
胰岛素胰腺分泌的氯苯二酰胺（也被称为格列奈类）如瑞格列奈和那格列奈；肠降血糖素模
拟物类如艾塞那肽或二肽基肽酶-4（DPP4）抑制剂类如西他列汀、维格列汀和胰岛素；或者
降血脂剂，如通过抑制酶HMG-CoA还原酶来降低胆固醇的他汀类如阿托伐他汀和西立伐他
汀；贝特类如苯扎贝特、吉非贝齐和非诺贝特；或者依折麦布。

[0146] 本发明还涉及用于制备根据本发明的化合物的方法。

[0147] 因此，本发明涉及一种用于制备其中R1＝H的根据本发明所述的式（I）的化合物的
方法，其包括下列式（II）的化合物的氯化：
其中R、R₁、R₂、R₃、R₄、U、V、W、n、m和p如上所定义。

如果有必要，那么可以进行保护、脱保护、取代等额外的步骤，这些步骤是本领域技术人员熟知的。

借助于本领域技术人员熟知的方法，如通过萃取、蒸发溶剂或者通过沉淀或结晶（接着通过过滤），从反应介质中通过分离可以回收获得的式(I)的化合物。

如果有必要，通过本领域技术人员熟知的方法，如通过重结晶、通过蒸馏、通过硅胶柱色谱法或者通过高效液相色谱法(HPLC)也可以纯化化合物。

通过下列式(III)的化合物的氧化可以制备式(II)的化合物:

[0155]

(III)，

其中R、R₁、R₂、R₃、X₁、U、V、W、n、m和p如上所定义。

根据本领域技术人员熟知的方法，将在氧化剂的存在下进行氧化。氧化剂例如可以是戴斯-马丁氧化剂、PCC(氯化酸吡啶缩合)等。

当n=1时，用于制备式(III)的化合物的方法可以包括下列连续的步骤:

(1) 下列式(IV)的化合物:

[0160]

(IV)，

其中R、R₁、R₂和R₃如上所定义，

与下列式(V)的化合物:

[0163]

(V)，

其中X₁、U、V、W、m和p如上所定义，

之间的偶联，以得到下列式(VI)的化合物:
[0166] \[\text{(VI)} \]

[0167] 其中R、R₁、R₂、R₃、X₁、U、V、W、m和p如上所定义，和

[0168] (b1) 在前述步骤(a1)中获得的式(VI)的化合物的硼氢化-氧化反应，以得到其中n = 1的式(III)的化合物。

[0169] 步骤(a1)可以在本领域技术人员熟知的Mitsunobu反应的条件下进行，特别是使用DEAD(偶氮二甲酸二乙酯)、DIAD(偶氮二甲酸二异丙基酯)或ADDP(偶氮二甲酸二哌啶)作偶联剂并且使用PPh₃或P(nBu)₃作为膦配体。

[0170] 步骤(b1)可以在本领域技术人员熟知的条件下进行，特别是通过与硼烷如BH₃，并且特别是BH₃·THF或BH₃·Me₂S, 在溶剂(如THF)中的反应，接着在碱(如氢氧化钠)的存在下加入过氧化氢。

[0171] 当n = 0时，用于制备式(III)的化合物的方法可以包括下列连续的步骤:

[0172] (a2) 下列式(VII)的化合物:

\[\text{(VII)} \]

[0173] 其中R、R₁和R₂如上所定义，

[0174] 与下列式(VIII)的化合物:

\[\text{(VIII)} \]

[0175] 其中X₁、U、V、W、m和p如上所定义且A₁代表-Li或-Mg-Hal, Hal是卤素原子，

[0176] 之间的偶联，以得到下列式(IX)的化合物:

\[\text{(IX)} \]

[0177] 其中R、R₁、R₂、R₃、X₁、U、V、W、m和p如上所定义，

[0178] (b2) 在前述步骤(a2)中获得的式(IX)的化合物的还原，以得到下列式(X)的化合物:
其中R₁、R₂、R₃、X₁、U、V、W、m和p如上所定义，和

步骤(a2)可以通过式(VIII)的化合物与式(VII)的化合物，在溶剂如THF中的反应来进行，所述式(VIII)的化合物可以由卤化衍生物通过与镁反应以形成格氏试剂或者通过卤素交换使用锂碱如正丁基锂以形成相应的锂化的化合物来获得。

步骤(b2)可以在还原剂如Et₂SiH和路易斯酸如BH₃·Et₂O的存在下进行。

步骤(c2)相当于前述步骤(b1)。

在下文和下列实验部分中将更加详细地描述用于制备其中R₁＝H的根据本发明的化合物的方法。

方案1：第一个实施方案的化合物的合成途径(其中n=1)

(a)在第一步骤中，环己烯酮T₁经历涉及标准条件如NaBH₄，NaBH₄/CeCl₃，LiAlH₄或L-三仲丁基硼氢化锂的还原。

(b) 然后在使用DEAD，DIAD或ADDP作为偶联剂且使用PPh₃或P(nBu)₃作为膦配体的标准条件下发生化合物T₂和醇T₃之间的Mitsunobu偶联反应。

(c) 使用BH₃·THF或BH₃·Me₂S的化合物T₄的硼氢化产生化合物T₅。
(d) 根据涉及PCC，戴斯-马丁氧化剂的典型方法，化合物T5的醇官能团被氧化成酮，产生化合物T6。

(e) 使用氯化剂如DAST氯化化合物T6以得到二氟碳环糖(difluorocarbasugar) T7。在最后的步骤中，根据保护基团(Protective groups in organic synthesis, T.W. Greene)中描述的典型方法可以除去保护基团。

更特别地：

(a) 在第一步骤中，环己烯酮T8经历如Can. J. Chem. 2004, 82, 1361-1364中描述的涉及三种丁基硼氢化锂的区域选择性还原。

(b) 然后在使用DEAD、DIAOD或ADDOP作为偶联剂且使用PPh3或P(nBu)3作为膦配体的标准条件下发生化合物T9和醇T3之间的Mitsunobu偶联反应。

(c) 使用BF3·THF或BF3·Me2S的化合物T10的硼氢化产生化合物T11。

(d) 根据涉及PCC，戴斯-马丁氧化剂的典型方法，化合物T11的醇官能团被氧化成酮，产生化合物T12。

(e) 使用氯化剂如DAST氯化化合物T12以得到二氟碳环糖T13。在最后的步骤中，根据Protective groups in organic synthesis, T.W. Greene中描述的典型方法可以除去保护基团。

根据EP0240175或Cumpstey, J. Carbohydrate Research, 2010, 345, 1056-1060制备环己烯酮T8，将合成法应用于来自市售可得的2,3,4,6-甘基-D-吡喃葡萄糖的葡萄糖系列。

化合物T3可以是市售可得的(第一子类)或根据下列方案合成的：

第二子类：
或

(R₅和R₆代表(C₁-C₆)烯基团) (第三子类)

方案B: 第二个实施方案的化合物的合成途径 (其中n＝0, R₄＝H)

(a) 在第一步中，根据典型方法，由相应的卤代化合物制备的格氏试剂或锂化的化合物T14被加入到环己烯酮T11中。

(b) 在合成法的下一个步骤中，在路易斯酸如BF₃·Et₂O的存在下，采用还原剂如Et₃SiH处理化合物T15，生成化合物T16。

(c) 使用BH₃·THF或BH₃·Me₂S的化合物T16的烯氢化生成化合物T17。

(d) 根据涉及PCC，戴斯-马丁氧化剂的典型方法，化合物T17的醇官能团被氧化成酮，生成化合物T18。

(e) 使用氧化剂如DAST氧化化合物T18以得到二氯碳环基T19。在最后的步骤中，根据Protective groups in organic synthesis, T.W.Greene中描述的典型方法可以除去保护基团。

并且更特别地:
[0220]

[0221] (a) 在第一步骤中，根据典型方法，由相应的卤代化合物制备的格氏试剂或锂化的化合物T14被加入到环己烯酮T17中。

[0222] (b) 在合成的下个步骤中，在路易斯酸如BF₃·Et₂O的存在下，采用还原剂如EtsSiH处理化合物T20，产生化合物T21。

[0223] (c) 使用BH₃·THF或BH₃·Me₂S的化合物T21的硼氢化产生化合物T22。

[0224] (d) 根据涉及PCC，戴斯-马丁氧化剂的典型方法，化合物T22的醇官能团被氧化成酮，产生化合物T23。

[0225] (e) 使用氟化剂如DAST氯化化合物T23以得到二氟碳环酮T24。在最后的步骤中，根据Protective groups in organic synthesis, T.W. Greene中描述的典型方法可以除去保护基团。

[0226] 根据下列方案可以合成用于获得化合物T14的卤代化合物：

![合成方案图]

[0227] 本发明还涉及一种用于制备其中n＝0且Rₙ＝H的根据本发明所述的式(1)的化合物的方法，其包括如上所定义的式(V11)的化合物与下列式(XI)的化合物的偶联

![偶联反应式]

[0229] 其中R₁、R₂、R₃和R₄如上所定义。

[0230] 以得到其中n＝0且Rₙ＝OH的式(1)的化合物。

[0231] 任选地，接着进行OH官能团的取代以得到其中n＝0且Rₙ＝卤素、SiR₃R₄R₅R₆、OR₂⁻、OOC₆H₄R₃或OCONR₃R₂⁻的式(1)的化合物。

[0232] 这些偶联和取代的步骤可以在本领域技术人员熟知的条件下进行。

[0233] 如果有必要，那么可以进行保护、脱保护、取代等额外的步骤，这些步骤是本领域
技术人员熟知的。
[0235] 借助本领域技术人员熟知的方法，如通过萃取、蒸发溶剂或者通过沉淀或结晶（接着通过过滤），从反应介质中通过分离可以回收获得的式(Ⅰ)的化合物。
[0236] 如果有必要，通过本领域技术人员熟知的方法，如通过重结晶、通过蒸馏、通过硅胶柱色谱法或者通过高效液相色谱法(HPLC)也可以纯化化合物。
[0237] 用于制备式(XI)的化合物的方法可以包括下列连续的步骤：
[0238] (a3) 式(XII)的化合物的烷氢化-氧化反应

![Diagram](image)

(R1, R2, R3, R4, R5, R6, R7)

（XII）

[0239] 其中R1、R2、R3和R4如上述所定义且R7＝SiR3R7或CH2OCH3(甲氧基甲基-MOM)，其中R1、R2和R3各自独立地代表(C1-C6)-烷基、芳基或芳环-(C1-C6)-烷基基团，
[0240] 以得到下列式(XIII)的化合物

![Diagram](image)

(R1, R2, R3, R4, R5, R6, R7)

（XIII）

[0241] 其中R1、R2、R3和R4如上述所定义且R7＝SiR3R7或CH2OCH3(甲氧基甲基-MOM)，
[0242] (b3) 在前述步骤(a3)中获得的式(XIII)的化合物的氧化，以得到下列式(XIV)的化合物

![Diagram](image)

(R1, R2, R3, R4, R5, R6, R7)

（XIV）

[0243] 其中R1、R2、R3和R4如上述所定义且R7＝SiR3R7或CH2OCH3(甲氧基甲基-MOM)，
[0244] (c3) 当R7＝SiR3R7时，在前述步骤(b3)中获得的式(XIV)的化合物的脱保护，以得到其中R7＝H的式(XIV)的化合物，
[0245] (d3) 当R7＝H时，在前述步骤(c3)中获得的其中R7＝H的式(XIV)的化合物保护，以得到其中R7＝COR8且R8代表(C1-C6)-烷基、芳基或芳环-(C1-C6)-烷基基团的式(XIV)的化合物，
[0246] (e3) 在前述步骤(d3)或(b3)中获得其中R7＝COR8或CH2OCH3的式(XIV)的化合物的氮化，以得到下列式(XV)的化合物，
其中R_1, R_2, R_3和R_4如上述所定义且$R_7 = COOR_8$或CH_2OCH_3，

（f3）在前述步骤（e3）中获得的其中$R_7 = COOR_8$或CH_2OCH_3的式（XV）的化合物的脱保护，以得到其中$R_7 = H$的式（XV）的化合物，和

（g3）在前述步骤（f3）中获得的其中$R_7 = H$的式（XV）的化合物的氧化，以得到式（XI）的化合物。

步骤（a3）相对于前述步骤（b1），通过本领域技术人员熟知的保护步骤，可以由式（IV）的化合物制备式（XII）的化合物。

步骤（b3）和（g3）可以在氧化剂如戴斯-马丁氧化剂，PCC（氯 Merge 酮盐）等的存在下进行。

只有当式（XII）的起始原料中的$R_7 = SiR'^1R'^2R'^3$时，步骤（c3）和（d3）才是任选的和必需的。

步骤（c3）、（d3）和（f3）可以本领域技术人员熟知的条件下进行。

步骤（e3）可以在氧化剂如DAST（二乙氨基三氟化硫）的存在下进行。

本发明还涉及一种用于制备其中$R_4 = H$的根据本发明所述的式（I）的化合物的方法，其包括以下步骤：

（a4）其中$R_4 = OH$的式（I）的化合物的溴代，以得到其中$R_4 = Br$的式（I）的化合物，和

（b4）在前述步骤（a4）中获得的其中$R_4 = Br$的式（I）的化合物的还原，以得到其中$R_4 = H$的式（I）的化合物。

步骤（a4）可以在溴化剂如$SOBr_2$的存在下进行。有利地，反应也可以在碱如吡啶的存在下进行。根据如上所描述的方法可以制备起始原料，以制备其中$R_4 \neq H$的式（I）的化合物。

步骤（b4）可以在氢化物如Bu_3SnH的存在下进行。

在上述和下列实验部分中将更加详细地描述用于制备其中$n = 0$且$R_1 = OH$或H的根据本发明的化合物的方法。

方案C：其中$n = 0$且$R_1 = OH$或H的化合物的合成
（a）在第一步骤中，环己烯酮T1经历涉及标准条件如NaBH4、NaBH4/CeCl3、LiAlH4或L-三氯丁基硼氢化锂的还原。

（b）然后，根据Protective groups in organic synthesis, T.W. Greene中描述的熟知的过程，醇T2被保护为甲硅烷基酯的形式，以得到化合物T25。

（c）使用BH3.THF或BH3.Me2S的化合物T25的硼氢化产生化合物T26。

（d）然后，根据涉及PCC、戴斯-马丁氧化剂等的典型方法，化合物T26被氧化成相应的酮T27。

（e）然后，当T27携带甲硅烷基化保护基团R1时，使用Protective groups in organic synthesis, T.W. Greene中描述的典型方法，在酸性条件下除去化合物T27的该甲硅烷基化保护基团，以得到醇T28。

（f）根据Protective groups in organic synthesis, T.W. Greene中描述的熟知方法，该醇T28被保护成酯，以得到化合物T29。

（g）使用氟化剂如DAST氟化化合物T27（当R1＝MOM时）或T29，以得到氟化的化合物T30。

（h）在Protective groups in organic synthesis, T.W. Greene中描述的典型条件下除去化合物T30的醚或酯保护基团（OR1），以得到醇T31。

（i）然后，使用戴斯-马丁氧化剂氧化该醇T31，以得到化合物T32。

（j）根据典型方法，由相应的卤化化合物制备的格氏试剂或锂化的化合物T14被加
入到化合物T32中，以得到T33。

[0277] (k) 根据包括使用p-nitroSOBr₂，接着加入吲哚的典型方法，化合物T33被溴代，以得到化合物T34。

[0278] (l) 然后，在氢化物如Bu₂SnH的存在下，化合物T34被还原。

[0279] (m) 在最后的步骤中，根据Protective groups in organic synthesis，T.W. Greene中描述的典型方法可以除去保护基。

[0280] 应该指出的是，仅对于其中R₁＝H的式(1)的化合物的制备进行步骤(k)和(l)。

[0281] 并且更具体地：

[0282] (a) 在第一步中，环己烯醇T8在THF和MeOH中经历涉及NaBH₄/CeCl₃的选择性还原。

[0283] (b) 然后，使用咪唑和TBDMSCI保护醇T36，以得到其中R₂＝TBDM的化合物T37；或者使用二甲氧基甲烷和P₂S₅保护醇T36，以得到其中R₂＝CH₂OCH₃的化合物T37。

[0284] (c) 使用BH₃·Me₂S的化合物T37的硼氢化产生化合物T38。

[0285] (d) 然后，根据涉及PCC，戴斯-马丁氧化剂等的典型方法，化合物T38被氧化成相应的酮T39。

[0286] (e) 然后，当R₂＝TBDM时，在酸性条件下（如甲醇和二氯甲烷中的12N HCl）除去化合物T39的供甲硅烷基化保护基团，以得到酮T40。

[0287] (f) 使用Ac₂O，吡啶和催化量的DMAP（二甲氨基吡啶），该酮T40被保护成乙酸酯，以得到化合物T41。

[0288] (g) 使用二氯甲烷中的DAST氟化化合物T41或化合物T39（其中R₂＝CH₂OCH₃），以得
到氯化的化合物T42。

（0290）当R7＝Ac时，使用甲醇中的甲醇钠除去化合物T42的乙酸酯保护基团，以得到醇T43。

（0291）当R7＝CH2OCH3时，使用二氯甲烷中的TFA除去T42的MOM保护基团，以得到醇T43。

（0292）（i）然后，使用戴斯-马丁氧化剂氧化该醇T43，以得到化合物T44。

（0293）根据典型方法，由相应的卤代化合物制备的格氏试剂或锂化的化合物T14被加入到化合物T44中，以得到化合物T45。

（0294）（k）采用二氯甲烷中的SOBr2，化合物T45被溴代，接着加入吡啶，以得到化合物T46。

（0295）（l）然后，在甲苯中的Bu3SnH的存在下，化合物T46被还原，以得到化合物T47。

（0296）（m）在最后的步骤中，根据Protective groups in organic synthesis，T.W.Greene中描述的典型方法可以除去保护基团。

（0297）应该指出的是，仅对于其中R7＝H的式(1)的化合物的制备进行步骤(k)和(l)。

（0298）本发明还涉及一种用于制备其中R7＝H和n＝1的根据本发明所述的式(1)的化合物的方法，其包括下列式(XVI)的化合物与如上所定义的式(V)的化合物之间的偶联反应：

![XVI](image)

（0299）其中R, R1, R2 和R3 如上所定义且R0代表离去基团。

（0300）如本发明中所使用的术语“离去基团”是指一种化学基团，其在亲核取代反应的过程中很容易被亲核试剂代替，在当前的实例中，亲核试剂是醇，即携带0H基团的分子。特别是，这种离去基团可以是卤素原子或磺酸酯。特别是，磺酸酯是-OSO2-R10基团，其中R10代表(C1-C6烷烃基)、芳基、芳基(C1-C6)烃基或(C1-C6)烃基-芳烃基。磺酸酯可以是甲磺酸酯(CH3-S(02)0+)、三氟甲磺酸酯(CF3-S(02)0+)或甲苯磺酸酯(p-Me-C6H4-S(02)0+)。

（0301）该反应可以在本领域技术人员熟知的条件下进行，特别是在碱如NaH, K2CO3或MeONa的存在下进行。

（0302）如果有必要，那么可以进行保护、脱保护、取代等额外的步骤，这些步骤是本领域技术人员熟知的。

（0303）借助于本领域技术人员熟知的方法，如通过萃取、蒸发溶剂或者通过沉淀或结晶（接着通过过滤），从反应介质中通过分离可以回收获得的式(1)的化合物。

（0304）如果有必要，通过本领域技术人员熟知的方法，如通过重结晶、通过蒸馏、通过硅胶柱色谱法或者通过高效液相色谱法(HPLC)也可以纯化化合物。

（0305）根据本领域技术人员熟知的方法，可以由其中R7＝H的式(XV)的化合物制备式（XVI）的化合物。例如，当离去基团是卤素原子时，该反应可以在卤化剂的存在下进行。当离去基团是磺酸酯时，将反应可以在相应的磺酸和碱如吡啶的存在下进行。

（0306）在下文和下列实验部分中将更加详细地描述用于制备其中n＝1和R7＝H的根据本
发明的化合物的方法。

(a) 在第一步骤中，根据本领域技术人员熟知的方法，T31的醇基团被转化为离去基团如卤素或甲磺酰基、甲苯磺酰基或三氟甲磺酰基基团。

(b) 然后，通过使用碱如NaH、K₂CO₃或MeONa，T48被产生自T3的醇化物取代，以得到T7。

(c) 在最后的步骤中，根据Protective groups in organic synthesis, T.W.Greene中描述的典型方法可以除去保护基团。

并且特别地：

(a) 在第一步骤中，在三氟甲磺酸酐和吡啶的存在下，T43的醇基团被转化为其相应的三氟甲磺酰基基团，以得到化合物T49。

(b) 然后，通过使用NaH，T49被产生自T3的醇化物取代，以得到T50。反应在二甲基甲酰胺中进行。

(c) 在最后的步骤中，根据Protective groups in organic synthesis, T.W.Greene中描述的典型方法可以除去保护基团。

附图说明

图1表示在口服施用(3mg/kg po)后0至8小时之间针对化合物16和针对化合物50的尿糖排泄。

图2表示在口服施用(3mg/kg po)后16至28小时之间针对化合物16和针对化合物50的尿糖排泄。

图3表示在1、3和10mg/kg po剂量下针对化合物16的口服葡萄糖耐量试验。

图4表示在口服施用化合物16(3mg/kg po)18小时后针对化合物16的口服葡萄糖耐量试验。

图5表示在口服施用(3mg/kg po)后16至28小时之间针对化合物16和针对化合物50的尿糖排泄。

图6表示在口服施用(3mg/kg po)后16至28小时之间针对化合物16和针对WO2009/1076550的化合物9的尿糖排泄。
具体实施方式

实施例

1. 本发明的化合物的制备

2. 表中遇到的缩写被定义如下：

- Ac: 乙酰基
- ADDP: 偶氮二甲酸二哌啶
- Bn: 苄基
- cat.: 催化量的
- DAST: 二乙氨基三氟化硫
- DCM: 二氯甲烷
- de: 非对映异构体过量
- DMAP: 4-二甲氨基吡啶
- DMF: 二甲基甲酰胺
- DMSO: 二甲亚砜
- eq.: 当量
- ESI: 电喷雾离子化
- g: 克
- Hz: 赫兹
- mg: 毫克
- MHz: 兆赫兹
- min.: 分钟
- mL: 毫升
- mmol: 毫摩尔
- mM: 毫摩尔/升
- μmol: 微摩尔
- nmol: 纳摩尔
- NMR: 核磁共振
- po: 口服
- PEG: 聚乙二醇
- QS: 适量
- Rf: 阻滞因子
- rt: 室温
- TFAA: 三氟乙酸酐
[0361] THF 四氢呋喃
[0362] TLC 薄层色谱法
[0363] TMS 三甲基硅烷基
[0364] TBDMS 叔丁基二甲基硅烷基
[0365] 下文中将说明对本申请中描述的所有化合物进行分析所使用的设备的特征：
[0366] 在BRUKER DPX 300光谱仪上记录^{19}F NMR谱。所使用的内标是一氟三氯甲烷CFCl₃。化学位移(δ)以百万分之一(ppm)表示，并且偶合常数(J)以赫兹(Hz)表示。
[0367] 使用下列缩写：
[0368] S为单峰，bs为宽带峰，d为二重峰，t为三重峰，qdt为四重峰，m为多重峰或大峰，
dd为二重峰等。
[0369] 质谱在偶联至LC Waters Acquity的Waters LCT Premier XE光谱仪上获得。
[0370] GC-MS在Micromass Autospec 8kV上进行，其配备了GC HP 6890，毛细管柱WCOT，
HP 5MS，30m，DI：0.25mm，于50℃(0.5mn)，从50至280℃(10℃/mn)，和280℃(5mn)，其中IE：
70eV。
[0371] 自动柱色谱法在使用Biotage® SNAP小柱的Biotage SP4仪器上进行。通过采用
Kieselgel 60F-254-0.25-mm板的薄层色谱法(TLC)来确保进程的跟踪。化合物在给定支撑
物上的迁移距离与洗脱剂的迁移距离的比值被称为阻滞因子(Rf)。
[0372] 下面将描述根据本发明的示例性化合物的制备，其用于说明而非限制本发明。
[0373] 化合物1的合成
[0374] C₆H₃O₆ M=538.63g·mol⁻¹
[0375] 质谱(ESI⁺):561.2(M+Na)

![化合物1的合成](image)

[0376] 在惰性气氛下，将乙酸酐(420mL)加入到含有DMSO(640mL)中的2,3,4,6-四-O-苄
基-D-吡喃葡萄糖(100g,185mmol)的圆底烧瓶中。将混合物在室温下搅拌过夜，然后冷却至
0℃。加入大量的水并停止搅拌，以便使反应混合物静置3小时(冰醋酸晶体于烧瓶的底部)。
除去上清液，将混合物粗品用EtOH稀释并用水洗涤3次，用饱和的NaHCO₃水溶液中和并用水
再洗涤两次。然后，将有机层用硫酸镁干燥，过滤并浓缩，将混合物粗品经硅胶色谱法(环己
烷/乙酸乙酯8:2；Rf=0.61)纯化，以80％的产率得到无色油状物的预期的内酯1。
[0377] 化合物2的合成
[0378] C₆H₅O₆ M=662.71g·mol⁻¹
[0379] 质谱(ESI⁺):685.33[M+Na⁺];1346.80[2M+Na⁺]⁺
[0382] 在惰性气氛下，将正丁基锂(1.6mol乙烷溶液, 168mL, 0.27mol, 2.9eq)逐滴加入到冷却至-78℃的甲基膦酸二甲酯(42mL, 0.39mol, 1.4eq)的THF(390mL)溶液中。将混合物在该温度下搅拌30分钟，然后将内酯(50g, 93mmol, 1eq)的四氢呋喃(230mL)溶液在相同温度下逐滴加入。将混合物搅拌30分钟，然后在搅拌下温热至0℃。

[0383] 将反应混合物倾倒入10％饱和氯化铵水溶液(100mL)和乙酸乙酯(300mL)的冰冷混合物中。将有机层分离，用水洗涤，用硫酸钠干燥，过滤，然后在减压下浓缩，定量地得到作为微黄色油状物的3,4,5,7-四-O-苄基-1-脱氧-1-(二甲氧基磷酸基)-D-葡萄糖型-2-庚酮吡喃糖(3,4,5,7-tetra-O-benzyl-1-deoxy-1-(dimethoxyphosphoryl)-D-glucopyranose)2(63g)，其随着时间的推移会变为白色晶体。

[0384] 化合物3a/b的合成

[0385] C_{9}H_{16}O_{5}P M=664.72g·mol^{-1}

[0386] 质谱：(ESI^+):665.13(M+H);687.27(M+Na);696.73(M+MeOH)

[0387] 向2(69.5g,105mmol,1eq)的四氢呋喃(600mL)溶液中按份加入硼氢化钠(7.44g,210mmol,2eq)。将混合物在室温下搅拌过夜，然后在减压下浓缩。将残留物在乙酸乙酯和水之间分配并将有机层用水洗涤，用硫酸钠干燥，过滤并在减压下浓缩。化合物3a粗品(非对映异构体a和b的混合物,70.5g,100%)无需进一步纯化即可参与下一个步骤。

[0388] 化合物4的合成

[0389] C_{9}H_{16}O_{5}P M=660.69g·mol^{-1}

[0390] 质谱：(ESI^+):661.00(M+H);683.20(M+Na);1343.0(2M+Na)

[0391] 在惰性气氛下，将冷却至0℃的三氟乙酸酐(27.1mL, 0.19mol, 1eq)的二氯甲烷(130mL)溶液逐滴加入到在环境温度下制备的二氯甲烷(20.8, 0.29mol, 6eq)的二氯甲烷(260mL)溶液中，然后冷却至-75℃。将混合物在-75℃下搅拌45分钟，然后加入冷却至-75℃的3(32.43g, 48.8mmol, 1eq)的二氯甲烷(260mL)溶液。将混合物在相同温度下搅拌1.5小
时，将三乙胺（54.2mL, 0.39mmol, 8eq）逐滴滴入到反应混合物中，然后在搅拌下使其温热至
0℃。将2N盐酸水溶液加入到反应混合物中，有机层分离，用饱和碳酸氢钠溶液洗涤，用硫
酸钠干燥，过滤并在减压下浓缩。以黄色油状物的形式获得的化合物4粗品（36.3g, 100%）
无需进一步纯化即可参与下一个步骤。

[0394] 化合物5a/b的合成

[0395] C_{58}H_{50}O_{8} \quad M=556.69g \cdot mol^{-1}

[0396] 质谱：(ESI')：557.20(M+H);1135.07(2M+Na)

[0397]

\[
\begin{align*}
\text{BnO} & \quad \text{MeMgBr} \\
\text{O} & \quad \text{THF} \\
0^\circ \text{C to 50}^\circ \text{C} \\
\text{O} & \quad \text{Bn}
\end{align*}
\]

[0398] 将2,3,4,6-四-O-苯基-D-吡喃葡萄糖（50g, 92.7mmol, 1eq）溶解于THF（645mL）中
并冷却至0℃。在惰性气氛下，将甲基溴化镁（在THF/甲苯中185mL的1.4M溶液，259.4mmol,
2.8eq）逐滴滴入，并且将反应混合物在0℃下搅拌10分钟并50℃下搅拌3小时30分。薄层色
谱法（环己烷-醋酸乙酯，7:3）显示起始原料完全转化为两种产品（R_f=0.17和R_f=0.25）。
将反应混合物倾倒入饱和的氯化铵溶液中并用乙酸乙酯萃取。将合并的有机萃取
物用硫酸钠干燥，过滤并浓缩，以定量地得到黄色油状物形式的预期的二醇5粗品（非对映体a和b的混合物）。
该化合物无需进一步纯化即可参与下一个步骤。

[0399] 化合物6的合成

[0400] C_{58}H_{48}O_{6} \quad M=552.66g \cdot mol^{-1}

[0401] 质谱：(ESI')：575.40(M+Na);575.40(M+K);1127.07(2M+Na);1142.93(2M+K).

[0402]

\[
\begin{align*}
\text{BnO} & \quad \text{1. (COCl)}_2/\text{DMSO} \text{ then -40}^\circ \text{C} \\
\text{O} & \quad \text{DCM, -78}^\circ \text{C} \text{ then -40}^\circ \text{C} \\
\text{O} & \quad \text{2. NEt_3, -78}^\circ \text{C}
\end{align*}
\]

[0403] 在氮性气氛下，将二甲亚砜（14mL, 0.20mol, 9eq）的二氯甲烷（50mL）溶液逐滴滴入
到冷却至-78℃的草酰氯（12.5mL, 0.13mol, 6eq）的二氯甲烷（50mL）溶液中。将混合物在-78
℃下搅拌30分钟，然后逐滴加入二醇5（12.2g, 21.9mmol, 1eq）的二氯甲烷（50mL）溶液。45分
钟后，沉淀物出现，并且将反应混合物温热至-40℃并搅拌额外的30分钟。然后，将混合物再
次冷却至-78℃并逐滴加入三乙胺（55mL, 0.39mol, 18eq）。15分钟后，将冷却液移除并使反
应混合物达到室温。大量的沉淀物已经形成。另外的2小时后，加入甲苯（400mL）并通过滤
除去沉淀物。将残留物用水甲苯洗涤，将滤液浓缩并经硅胶色谱法（环己烷/乙酸乙酯＝97:3
至70:30）纯化，以得到作为橙色油状物的二醇6（9.92g, 收率76%）。

[0404] 化合物7的合成

[0405] C_{58}H_{46}O_{5} \quad M=552.66g \cdot mol^{-1}

[0406] 质谱：(ESI')：570.27(M+H);575.33(M+Na)
[0408] 将L-脯氨酸(7.35g, 63.8mmol, 1eq)加入到二酮6(35.2g, 63.7mmol, 1eq)的DMSO (561mL)溶液中。将混合物在空气中于50℃搅拌8小时, 然后倾倒入水和盐水的混合物(2:1)中, 用乙酸乙酯萃取, 用硫酸钠干燥, 过滤并浓缩。将混合物粗品经硅胶色谱法(环己烷/乙酸乙酯97:3至35:35)纯化, 以得到作为橙色油状物的化合物7(13.0g, 37%)。

[0409] 化合物8的合成

[0410] C_{13}H_{23}BrO_{6} \quad M=535.64 g/mol

[0411] 质谱：(ESI'): 535.00 (M+H); 552.00 (M+H+2); 785.87; 1086.67 (2M+H2O)

[0412] A.

[0413] 步骤A:

[0414] 向4(10.5g, 15.89mmol, 1eq)的甲苯(400mL)溶液中加入18-冠-6(168mg, 0.64mmol, 0.04eq)和碳酸钾(6.69g, 48.5mmol, 3.05eq)。将混合物在室温下搅拌过夜, 然后将残留的不溶性物质过滤掉并用甲苯洗涤。将滤液和洗液合并, 用2N盐酸水溶液接着是饱和的碳酸氢钠水溶液洗涤, 用硫酸钠干燥, 过滤并在减压下浓缩。将残留物经硅胶色谱法(环己烷/乙酸乙酯98:2至80:20)纯化, 以得到作为浅黄色油状物的环己烯酮8(4.07g, 产率48%)。

[0415] 步骤B:

[0416] 将7(3.27g, 5.92mmol, 1eq)的吡啶(14mL)溶液冷却至0℃, 然后逐滴加入POCl_{3} (2.75mL, 29.6mmol, 1eq)。将混合物在此温度下搅拌10分钟, 然后将冷却液移除。将反应混合物在室温下搅拌过夜, 然后重新冷却至0℃。试图完成反应, 再次加入POCl_{3} (2.75mL, 29.6mmol, 1eq)。将混合物在室温下搅拌额外的20小时, 然后用Et_{2}O(20mL)稀释并倾倒在碎冰上。加入1M HCl水溶液(100mL), 并将混合物用Et_{2}O(200mL和100mL)萃取。将合并的有机萃取液用盐水(100mL)洗涤, 用硫酸钠干燥, 过滤并浓缩。然后经硅胶色谱法(环己烷/乙酸乙酯98:2至80:20)纯化, 以得到作为橙色油状物的化合物9(1.46g, 46%产率)。

[0417] 化合物9的合成

[0418] C_{13}H_{23}BrClO_{2} \quad M=339.61 g/mol
[0419] 质谱:(GC-MS):338-340

[0420]

[0422] 化合物10的合成

[0423] C_{18}H_{14}BrClO \quad M=325.63 \text{ g mol}^{-1}

[0424]

[0426] 化合物11的合成

[0427] C_{50}H_{40}ClO_{6} \quad M=781.37 \text{ g mol}^{-1}

[0428] 质谱: (ESI):798.20 (M+H2O)

[0429]

[0430] 在惰性气氛下, 将均粉(265 mg, 10.9 mmol, 2.4 eq)装入三颈烧瓶中, 接着加入1/3部分的4-溴-1-氯-2-(4-乙基丁基)苯(2.95 g, 9.1 mmol, 2 eq)的干燥THF(25 mL)和1,2-二溴乙烷溶液(10 mol%的Mg, 85 mg, 0.45 mmol), 将混合物加热至回流。反应启动(放热并消耗Mg)后, 逐滴加入剩余的2-(4-乙基丁基)-4-溴-1-氯苯的干燥THF溶液。然后, 在温和的回流下, 使混合物再反应一个小时, 直至大部分的镁被消耗。在惰性气氛下, 于室温(约25 ℃) 将上述格氏试剂逐滴加入到环己烯酮8(2.42 g, 4.53 mmol, 1 eq)的干燥THF(25 mL)溶液中, 然后使其反应3小时。将饱和的氯化铵水溶液加入到该混合物中以淬灭反应。将混合物用EtO萃取, 用盐水洗涤, 用硫酸钠干燥, 过滤并浓缩。将残留物经硅胶色谱法(环己烷/乙酸乙酯100:0至80:20)纯化, 以得到作为黄色油状物的目标化合物11(3.01 g, 86%)。

[0431] 化合物12的合成

[0432] C_{50}H_{40}ClO_{6} \quad M=765.37 \text{ g mol}^{-1}

[0433] 质谱: (ESI):782.13 (M+H2O)
[0435] 在惰性气氛下，于-20℃将三乙基硅烷(0.210mL,1.30mmol,1.3eq)和三氯化硼乙醚化物(48%BF₃·0.110mL,0.866mmol,2eq)依次加入到醇Ⅱ(338mg,0.433mmol,1eq)的二氯甲烷(5mL)溶液中。搅拌2.5小时后，加入饱和的氯化钠水溶液以淬灭反应。将混合物用CH₂Cl₂(10mL×3)萃取并将有机层用盐水洗涤，用Na₂SO₄干燥，过滤并浓缩。将残留物经硅胶色谱法(环己烷/乙酸乙酯9.8:0.2至8:2)纯化，以得到作为白色粉末的目标化合物12 (278mg,0.363mmol,84%)。

[0437] 化合物13的合成

[0438] C₅₀H₅₅ClO₆ M=783.39g.mol⁻¹

[0439] 质谱：(ESI⁺):800(M+H₂O);1581(2M+H₂O)

[0440] 在惰性气氛下，将硼烷-二甲硫醚络合物(2mL THF溶液,16.7mL,33mmol,10.5eq)加入到冷却至0℃的Ⅱ(2.41g;3.15mmol,1eq)的干燥THF(100mL)溶液中。然后将反应混合物回流1小时，冷却至0℃并在室温下(30℃以上)采用氢氧化钠(3mL H₂O溶液,10.5mL,31.5mmol,10eq)接是过氧化氢(30%H₂O溶液,3.2mL,31.5mmol,10eq)小心地处理。使混合物在室温下(～25℃)反应过夜，然后加入饱和的氯化铵水溶液以淬灭反应。将混合物用乙酸乙酯萃取并将有机层用盐水洗涤，用Na₂SO₄干燥，过滤并浓缩。将残留物经硅胶色谱法(环己烷/乙酸乙酯97:3至73:27)纯化，以得到作为浅黄色油状物的预期的化合物13 (1.05g;43%)。

[0442] 化合物14的合成

[0443] C₅₀H₅₅ClO₆ M=781.37g.mol⁻¹

[0444] 质谱：(ESI⁺):798(M+H₂O);1471;1579(2M+H₂O)

[0445] 在0℃下，将戴斯-马丁氧化剂(81mg;1.91mmol,1.5eq)按份加入到醇Ⅲ(1.0g;1.28mmol,1eq)的无水二氯甲烷(20mL)溶液中。然后，将反应在室温下搅拌过夜，然后用1N氢氧化钠水溶液淬灭。将有机层分离并将水层用二氯甲烷萃取。将合并的有机层用硫酸钠干燥，过滤并浓缩。将残留物经硅胶色谱法(环己烷/乙酸乙酯98:2至82:18)纯化，以得到作为无色油状物的目标酯14(783mg,产率79%)。
化合物15的合成

C₆H₅ClF₂O₅ M=803.37g·mol⁻¹

[^F NMR (CDCl₃, 282.5MHz): -100.3 (d, J=254Hz, 1F, CFF); -113.3 (td, J₁=254Hz, J₂=29Hz, 1F, CFF).

质谱 (ESI⁺): 820.00 (M+H₂O)

将酮14 (421mg, 0.539mmol, 1eq) 的DAST (2mL, 16.3mmol, 30eq) 溶液在惰性气氛下于70℃搅拌12小时。然后，将混合物冷却至室温并加入二氯甲烷。将溶液倾倒在水、冰和固体Na₂SO₄的混合物上。保持搅拌30分钟，同时达到室温。将水层用二氯甲烷萃取并将有机相用Na₂SO₄干燥，过滤并浓缩。将粗产物经硅胶色谱法（环己烷/乙酸乙酯98:2至80:20）纯化，以得到作为淡黄色油状物的期望的化合物15 (182mg, 产率42%)

化合物16的合成

C₆H₅ClF₂O₅ M=442.88g·mol⁻¹

[^F NMR (MeOD, 282.5MHz): -96.7 (d, J=254Hz, 1F, CFF); -112.2 (td, J₁=254Hz, J₂=28Hz, 1F, CFF).

质谱 (ESI⁺): 465.3 (M+Na)

将硼22 (228mg, 0.28mmol, 1eq) 加入到THF和MeOH混合溶液 (2:1,v/v, 160mL) 中。将反应物在氢气气氛下于窒温下搅拌2小时。将反应混合物过滤并浓缩，然后经硅胶色谱法（二氯甲烷/甲醇为100:1至90:10）纯化，以得到化合物16 (105mg, 产率83%)

化合物17的合成

C₆H₅ClO₆ M=536.66g·mol⁻¹

质谱 (ESI⁺): 554.13 (M+H₂O); 1095 (2M+Na)

在惰性气氛下，将1M L-三羟丁基硼氢化锂的THF (0.84mL, 0.84mmol, 1.5eq) 溶液逐滴加入到环己烯酮8 (0.30g, 0.56mmol, 1eq) 在THF (14mL) 中的搅拌和冷却的 (0℃) 溶液中，将混合物搅拌18小时，使其逐渐温热至室温。然后加入饱和的氢化铵水溶液并将得到
的混合物搅拌15分钟。加入水，然后将水溶液用乙酸乙酯萃取并将合并的有机层用盐水洗涤，用硫酸钠干燥，过滤并浓缩，以定量地得到作为黄色油状物的预期的化合物17(350mg)。

[0464] 化合物18的合成

[0465] C_{14}H_{12}O_{3} \text{ M} = 228.24 \text{g.mol}^{-1}

[0466] 质谱:(GC-MS): 228(M)

![化学结构图]

[0467] 步骤A.

[0469] 将2-羟基苯甲酸(13.8g, 0.1mol, 1eq)和茴香醚(10.9mL, 0.1mol, 1eq)加入到加热至80℃的石墨(9.6g, 0.8mol, 1eq)和甲磺酸(25mL, 0.4mol, 1eq)的混合物中。将反应混合物在该温度下搅拌12小时，然后冷却至室温。然后，将混合物用氯仿萃取两次并将合并的有机层用饱和的NaHCO₃溶液洗涤，用硫酸钠干燥，过滤并浓缩。获得的残留物经硅胶色谱法(环己烷/乙酸乙酯70:30)纯化，以得到作为橙色油状物的化合物18(4g，产率17%)。

[0470] 步骤B.

[0471] 将BBr₃.DMSO(10.8g, 34.42mmol, 1.1eq)按份加入到冷却至0℃的20(7.58g, 31.29mmol, 1eq)的二氯甲烷(150mL)溶液中。将反应在0℃下搅拌3小时，然后倾倒在水和冰的混合物上，搅拌10分钟后，分离液层并将水层用乙酸乙酯萃取。将合并的有机层用水和盐水洗涤，用硫酸钠干燥，过滤并浓缩，以得到作为红紫色油状物的化合物18(6.78g)。

[0472] 化合物19的合成

[0473] C_{15}H_{14}O_{2} \text{ M} = 244.29 \text{g.mol}^{-1}

![化学结构图]

[0476] 在惰性气氛下，将4-甲氧基苯基溴化镁的溶液(0.5M THF溶液,300mL,0.150mol, 1.1eq)逐滴加入到冷却至0℃的2-甲氧基苯甲醛(18.75g, 0.137mol, 1eq)的THF(188mL)溶液中。将所得混合物在室温下搅拌过夜，然后倾倒在饱和的氯化铵水溶液上。将水层用乙酸乙酯萃取并将合并的有机层用硫酸钠干燥，过滤并浓缩，以得到作为棕色油状物的化合物19(37.5g)。
化合物20的合成

C_{15}H_{14}O
M = 242.27g·mol^{-1}

质谱：(GC-MS): 51; 64; 77; 92; 107; 121; 128; 135; 139; 181; 197; 211; 225; 242

将氯化四吡啶锌盐(34.3g, 159mmol, 2eq)加入到包含分子筛的醇19(19.4g, 79.4mmol, 1eq)的二氯甲烷(210mL)溶液中。将反应混合物在室温下搅拌过夜，过滤以除去PCC残留物和分子筛并浓缩。将残留物粗品经硅胶色谱法（环己烷/乙酸乙酯100:0至85:15）纯化，得到作为淡黄色固体的酮20(12.6g, 产率38%)。

化合物21的合成

C_{14}H_{13}O
M = 214.26g·mol^{-1}

质谱：(GC-MS): 214

步骤A.

将10%的Pd/C加入到18(1.5g, 6.6mmol, 1eq)的乙醇溶液中。将溶液在30巴的氢气气氛下搅拌，直至反应完成。通过过滤除去钯颗粒并将溶液浓缩以得到作为白色粉末的化合物21(1.32g, 产率93%)。

步骤B.

在惰性气氛下，将18(8.1g, 35.5mmol, 1eq)的乙腈(130mL)溶液冷却至0℃。缓慢加入TMSCl(20.7mL, 163.3mmol, 4.6eq)，接着是NaBH₄CN(10.5g, 1667mmol, 4.7eq)(放热反应)，将所得黄色悬浮液在室温下搅拌2小时，然后倾倒在水上。然后，加入二氯甲烷并将有机层分离，用盐水洗涤，用硫酸镁干燥，过滤并浓缩。将残留物粗品经硅胶色谱法（环己烷/乙酸乙酯100:0至83:17）纯化，得到作为淡黄色固体的目标化合物21(产率80%)。

化合物22的合成

C_{49}H_{46}O
M = 732.90g·mol^{-1}

质谱：(ESI⁺): 755.4(M+Na); 771.4(M+K)
[0494] 在惰性气氛下，向冷却至0℃的17（50毫克，0.093毫米摩尔）的甲苯（0.3毫升）溶液中依次加入21（30毫克，0.140毫米摩尔），三丁基膦（0.35毫米摩尔）和1,1’-(二氯甲基)二哌啶（35毫克，0.140毫米摩尔）。将反应混合物在0℃下搅拌30分钟。出现致密的沉淀物，将混合物用氯甲烷溶液并在减压下浓缩以得到白色残留物，将残留物经硅胶色谱法（环己烷/乙酸乙酯100:0至80:20）纯化，以得到作为无色油状物的目标化合物22（63毫克，93%产率）。

[0495] 化合物23的合成

[0496] C_{18}H_{20}O_{7} \quad M=750.92\text{g.mol}^{-1}

[0497] 质谱：(ESI')：773.8（M+Na）；789.7（M+K）

[0499] 向22（62毫克，0.085毫米摩尔）在无水THF（0.837毫升）中的冷却溶液（0℃）中加入BH₃·Me₂S（2M THF溶液，0.169毫升，0.338毫米摩尔）。将所得溶液在室温下搅拌过夜，然后再次冷却至0℃。然后依次加入水（0.107毫升，23.6毫米摩尔），过氧化氢（30%水溶液，0.258毫升，10.1毫米摩尔）和氢氧化钠（2M水溶液，0.338毫升，2.7毫米摩尔），并将混合物在室温下搅拌3小时。加入水和乙酸乙酯并将有机层用盐水洗涤，用硫酸钠干燥，过滤并浓缩。然后，将化合物粗品经硅胶色谱法（环己烷/乙酸乙酯100:0至75:25）纯化，以得到作为白色固体的醇23（34毫克，产率53%）。

[0500] 化合物24的合成

[0501] C_{19}H_{22}O_{7} \quad M=748.90\text{g.mol}^{-1}

[0502] 质谱：(ESI')：771.7（M+Na）；787.7（M+K）
将戴斯马丁氧化剂(29mg, 0.068mmol, 1.5eq)加入到冷却至0℃的醇23(34mg, 0.045mmol, 1eq)的二氯甲烷(0.680mL)溶液中。将所得混合物在室温下搅拌3小时，然后将氢氧化钠(1N水溶液)和二氯甲烷的溶液加入到混合物中。将有机层分离，用硫酸钠干燥，过滤并浓缩，以得到作为白色固体的预期的酮24(36mg, 产率70%)。

化合物25的合成

C_{18}H_{20}F_6\text{O}_6, M=770.90g mol^{-1}

^19F NMR(CDC13, 282.5MHz): -109.3 (d, J=252Hz, 1F, C\text{FF}); -120.3 (ddd, J1 = 252Hz, J2 = 30Hz, J3 = 19Hz, 1F, C\text{FF})。

质谱: (EI’): 773.4 (M+HF); 793.5 (M+Na)

在惰性气氛下，将DAST(0.72mL, 4.96mmol, 20eq)加入到酮24(183mg, 0.244mmol, 1eq)的二氯甲烷(0.720mL)溶液中并将反应混合物在室温下搅拌过夜。将溶液冷却至室温，然后倾倒在水中。加入二氯甲烷并将有机层用饱和的NaHCO3水溶液洗涤，用硫酸钠干燥，过滤并浓缩。将粗产品经硅胶色谱法(环己烷/乙酸乙酯100:0至90:10)纯化，以32%的收率得到作为白色固体的化合物25。

化合物26的合成

C_{18}H_{21}F_6\text{O}_6, M=410.41g mol^{-1}

^19F NMR(MeOD, 282.5MHz): -109.6 (d, J=251Hz, 1F, C\text{FF}); -122.4 (ddd, J1 = 251Hz, J2 = 28Hz, J3 = 20Hz, 1F, C\text{FF})。

质谱: (EI’): 445.2 (M+Cl)
将化合物25（48mg, 0.06mmol, 1eq）溶解在THF（6.3mL）和甲醇（6.3mL）的混合物中。加入10%的Pd/C（48mg, 0.04mmol, 0.7eq），接着是2滴2N盐酸水溶液，然后，将混合物在氢气气氛下于室温搅拌1小时，然后过滤并浓缩，将混合物粗品经硅胶色谱法（二氯甲烷/甲醇100:0至90:10）纯化，以得到作为白色固体的目标化合物26（42mg, 产率67%）。

化合物32的合成

\[C_4H_8O_2 \quad M = 212.24g/mol \]

质谱：(EI⁺): 213 (M+H⁺)

将4-羟基苯甲醛（4g, 32.8mmol, 1eq）和碳酸钾（4.75g, 34.4mmol, 1.05eq）溶解在干燥DMF（30mL）中，缓慢加入苄基溴（4.1mL, 34.4mmol, 1.05eq），将所得混合物在氮气气氛下于室温搅拌过夜，向反应混合物中加入冰水以淬灭反应，然后用大量的水稀释，将混合物过滤，并将残留物用水洗涤并溶解在乙酸乙酯中，将有机层用盐水洗涤，用MgSO₄干燥，过滤并浓缩，以定量地得到作为淡黄色油状物的醛32粗品，其随着时间的推移而缓慢结晶。

化合物33的合成

\[C_4H_8O_2 \quad M = 214.26g/mol \]

质谱：(GC-MS): 91; 197; 214 (M⁺)

将醛32（6.5g, 30.6mmol, 1eq）的干燥四氢呋喃（25mL）溶液逐滴加入到NaBH₄（1.51g, 39.8mmol, 1.3eq）的无水四氢呋喃（25mL）悬浮液中。将所得混合物在氮气气氛下于室温搅拌72小时，然后用冰水淬灭，用乙醚稀释，用4N HCl水溶液酸化，并用乙醚萃取。将有机层用饱和的NaHCO₃水溶液洗涤，用MgSO₄干燥，过滤并浓缩，以得到作为白色无定形固体的
醇33粗品（产率97%）。

[0527] 化合物34的合成

[0528] C_{14}H_{12}BrO_2 M=277.16g.mol^{-1}

[0529] 质谱：(Cl^+):107, 197, 277(M+H)

[0530] ![化合物34合成图](image)

[0531] 以温度不超过8°C的速率，向醇33粗品（6g, 28.0mmol, 2.4eq）在乙醚（50mL）中的冰

[0532] 冷悬浮液中加入PBr₃（1.1mL, 11.67mmol, 1eq）。将所得混合物在室温下于室温搅拌2小

[0533] 时。然后，将反应混合物在冰浴中冷却，用冰水淬灭并用乙醚乙酸乙酯稀释。将有机层用

[0534] 饱和的NaHCO₃水溶液洗涤，用MgSO₄干燥，过滤并浓缩，以得到作为白色无定形固体的化合物

34粗品（产率99%）。

[0535] 化合物35的合成

[0536] C_{30}H_{22}O_4 M=326.39g.mol^{-1}

[0537] 质谱：(ESI^+):349.1(M+Na); 365.1(M+K)

[0538] ![化合物35合成图](image)

[0539] 在惰性气氛下，向95%的NaH（0.61g, 25.26mmol, 1eq）的干燥THF（30mL）悬浮液中

[0540] 加入乙酰乙酸乙酯（3.5mL, 27.79mmol, 1.1eq）的干燥THF（10mL）溶液。将所得混合物在室温

[0541] 下搅拌30分钟，然后逐滴加入34（7g, 25.26mmol, 1eq）的THF（13mL）溶液。然后，将混合物在

[0542] 70°C下搅拌过夜并冷却至室温，然后浓缩，将残留物用Et₂O（60mL）溶解，用H₂O和盐水洗涤，

[0543] 用MgSO₄干燥，过滤并浓缩。将所得混合物粗品经硅胶柱色谱（99/1至85/15环己烷/乙酸乙酯）纯

[0544] 化，以得到作为浅黄色油状物的化合物35（产率77%）。
[0541] 在室温下，向35(6.5g,19.91mmol,1eq)的乙醇(50mL)溶液中加入55%的水合肼 (1.25mL,22.10mmol,1.1eq)。在室温下，将所得混合物回流3小时。然后，将反应介质在冰浴 中冷却并过滤。将沉淀物用冷乙醇洗涤，以得到作为白色固体的化合物36(产率77%)。

[0542] 化合物37的合成

[0543] C_{6}H_{5}SeNaO_{6}, M=812.99g.mol^{-1}

[0544] 质谱:(ESI')：813.5(M+H);835(M+Na);851.4(M+K)。

[0545] 在惰性气氛下，将化合物36(328mg,1.11mmol,1.5eq)加入到17(400mg,0.75mmol, 1eq)的干燥THF(6.4mL)溶液中，接着是三正丁基膦(198mg,0.98mmol,1.3eq)和偶氮三甲酸
二氨啶(376mg,1.49mmol,2.0eq)。将所得黄色悬浮液在30℃下搅拌过夜。将溶剂除去，并将 混合物粗品经硅胶色谱法(环己烷/乙酸乙酯100:0至60:40)纯化，以得到作为黄色油状物 的化合物37(262mg,产率43%)。

[0546] 化合物38的合成

[0547] C_{6}H_{5}SeNaO_{6}, M=855.07g.mol^{-1}

[0548] 质谱(ESI')：854.43(M+Na);893.5(M+K)。

[0550] 在惰性气氛下，将碳酸铯(4.1g,12.5mmol,15eq)，接着是异丙基硒(0.99g, 5.83mmol,7eq)加入到37(0.68g,0.83mmol,1eq)的DMF溶液中。将所得悬浮液在室温下搅拌 3小时。将混合物用乙酸乙酯和水稀释。将有机层用盐水洗涤，用硫酸钠干燥，过滤并浓缩。
将黄色油状物粗品经硅胶色谱法(环己烷/乙酸乙酯100:0至77:23)纯化, 以得到作为淡黄色油状的预期的化合物39(549mg, 收率77%)。

【0552】化合物39的合成

【0553】\(\text{C}_{6} \text{H}_{12} \text{NO}_{4} \cdot \text{Z} \equiv 573.08 \text{g.mol}^{-1} \)

【0554】质谱(ESI')：873.6(M+H)；895.6(M+Na)；911.5(M+K)

【0555】

\[
\begin{align*}
\text{BnO} & \quad \text{BnO} \\
\text{BnO} & \quad \text{BnO} \\
\text{O} & \quad \text{N} \\
\text{N} & \quad \text{N} \\
& \quad \text{BnO}
\end{align*}
\]

1) \(\text{BH}_3 \cdot \text{Me}_2 \text{S} \)
2) \(\text{H}_2 \text{O} \cdot \text{H}_2 \text{O}_2 / \text{NaOH} \)

在惰性气氛下, 将9-BBN(0.5M THF溶液, 0.585mL, 0.29mmol, 1.0eq)加入到38 (25mg, 0.03eq)的干燥THF溶液中。将无色溶液回流过夜, 然后冷却至0℃。依次加入水 (0.047mL)、过氧化氢水溶液 (30% w/w, 0.100mL) 和2N氢氧化钠水溶液 (0.117mL)。将所得白色悬浮液搅拌额外的3小时。然后, 将混合物用乙酸乙酯稀释并倾倒在水上。然后将有机相用硫酸镁干燥, 过滤并浓缩, 以得到淡黄色油状物。经硅胶色谱法(环己烷/乙酸乙酯100:0 至80:20)纯化产生醇39(2mg, 收率8%)。

【0557】化合物40的合成

【0558】\(\text{C}_{6} \text{H}_{12} \text{NO}_{4} \cdot \text{Z} \equiv 871.07 \text{g.mol}^{-1} \)

【0559】质谱(ESI')：871.6(M+H)；893.6(M+Na)；909.5(M+K)

【0560】

\[
\begin{align*}
\text{BnO} & \quad \text{BnO} \\
\text{BnO} & \quad \text{BnO} \\
\text{O} & \quad \text{N} \\
\text{N} & \quad \text{N} \\
\text{O} & \quad \text{N} \\
\text{O} & \quad \text{N}
\end{align*}
\]

在惰性气氛下, 将戴斯-马丁氧化剂(9mg, 0.021mmol, 1.5eq)加入到39(12mg, 0.014mmol, 1.0eq)的干燥二氯甲烷溶液中。将反应混合物在室温下搅拌2小时, 然后用二氯甲烷和1N氢氧化钠水溶液稀释。然后, 将水层用二氯甲烷萃取并将所得有机层用硫酸钠干燥, 过滤并浓缩。然后, 将黄色油状物粗品经硅胶色谱法(环己烷/乙酸乙酯100:0至72:28)纯化, 以得到作为浅黄色油状物的酮40(8mg, 收率67%)。

【0562】化合物41的合成

【0563】\(\text{C}_{6} \text{H}_{12} \text{FeO}_{4} \cdot \text{Z} \equiv 893.07 \text{g.mol}^{-1} \)

【0564】质谱(ESI')：893.4(M+H)；911.5(M+H_{2}O)
在惰性气的气氛下，将 DAST (0.05 mL, 0.410 mmol, 45 eq) 加入到 40 (8 mg, 0.009 mmol, 1 eq) 的干燥二氯甲烷 (0.05 mL) 溶液中。将反应混合物在室温下搅拌过夜并在 35°C 下搅拌 3 小时。使反应混合物达到室温，然后用二氯甲烷稀释并倾倒在水上。然后，将有机层用饱和的 NaHCO₃ 水溶液洗涤，用硫酸镁干燥，过滤并浓缩，以得到作为橙色残留物的化合物 41 混合物。化合物 42 的合成

C₁₀H₁₈F₂S M = 178.23 g·mol⁻¹

¹⁹F NMR (CDCl₃, 282.5 MHz): -109.8 (m, 1F, Ar-F).

质谱 (GC-MS): 133 (41%), 178 (100%)

向新鲜脱气的 EtOH (69 mL) 和 H₂O (9 mL) 的混合物中加入 Pd₂dba₃ (534 mg, 0.58 mmol, 0.025 eq), PCy₃ (660 mg, 2.35 mmol, 0.1 eq), 2-噻吩硼酸 (3.00 g, 23.4 mmol, 1 eq), K₂CO₃ (6.48 g, 46.9 mmol, 2 eq) 和 4-溴苯 (5.17 mL, 47.0 mmol, 2 eq)。将所得混合物在 90°C 下搅拌过夜，然后使其达到室温。加入 MgSO₄ 以去除水并使用乙酸乙酯将混合物在 Celite 垫上过滤，将滤液浓缩并经硅胶色谱法 (环己烷/乙酸乙酯 100:0 至 95:5) 纯化，以得到作为白色固体的化合物 42 (3.84 g, 产率 92%)。

化合物 43 的合成

C₁₈H₁₈BrFOS M = 375.25 g·mol⁻¹

¹⁹F NMR (CDCl₃, 282.5 MHz): -111.3 (m, 1F, Ar-F).

质谱 (GC-MS): 375.0 (97%); 376.0 (28%); 377.0 (100%); 416.0 (23%); 418.0 (23%)

将 5-溴-2-甲基苯甲酸 (725 mg, 3.37 mmol, 1 eq) 悬浮在干燥二氯甲烷 (9.7 mL) 中。然后，在室温下加入草酰氯 (0.32 mL, 3.74 mmol, 1.1 eq) 和 N,N-二甲基甲酰胺 (0.013 mL, 0.17 mmol, 0.05 eq) 并将混合物搅拌 6 小时。然后将溶剂蒸发以得到作为黄色油状物的 5-溴-
2-甲基苯甲酰氯。将该粗产物溶解在干燥二氯甲烷(19.3mL)中，然后，在0℃(内部温度)下加入AlCl₃(49.5mg, 3.7mmol, 1.1eq)和42(600mg,在3.37mmol,1.1eq)。将所得混合物在该温度下搅拌30分钟，然后在室温下搅拌过夜。将反应混合物倾倒在冰和水土，将有机层分离并将水层用二氯甲烷萃取。将有机层收集，用MgSO₄干燥，过滤并浓缩。将残留物用正己烷吸收以形成沉淀物，将沉淀物经过滤收集，用正己烷洗涤并干燥，以得到作为浅黄色晶体的化合物43(产率69%)。

【0579】化合物44的合成

【0580】C₁₇H₁₂BrFS \(M = 361.27 \text{g} \cdot \text{mol}^{-1} \)

【0581】\(^{19}F\text{ NMR}(\text{CDCl}_3, 282.5 \text{MHz})\): -115.0 (m, IF, Ar-F)

【0582】质谱(ESI): 133(29%); 177(49%); 182(55%); 184(70%); 191(72%); 281(39%); 360(95%); 362(100%)

【0583】

在室温下，将Et₃SiH(0.99mL, 6.18mmol, 2.9eq)加入到酮43(800mg, 2.13mmol, 1eq)的无水二氯甲烷-乙腈(1:1, v/v, 16mL)溶液中。将所得混合物冷却至0℃并缓慢加入BF₃·Et₂O(0.75mL, 5.97mmol, 2.8eq)。然后，将反应混合物在室温下搅拌3小时。在0℃下，缓慢地加入饱和的NaHCO₃水溶液。将水层用二氯甲烷萃取并将所得有机层用MgSO₄干燥，过滤并浓缩。然后，将混合物粗品用MeOH重结晶，以得到作为浅黄色晶体的化合物44(产率70%)。

【0585】化合物45的合成

【0586】C₃₁H₂₅FO₅S \(M = 417.02 \text{g} \cdot \text{mol}^{-1} \)

【0587】\(^{19}F\text{ NMR}(\text{CDCl}_3, 282.5 \text{MHz})\): -115.2 (m, IF, Ar-F)

【0588】质谱(ESI): 839.5[M+Na]⁺; 855.4[M+K]⁺

【0589】

在惰性气氛下，将正丁基锂(1.4M正己烷溶液，0.30mL, 0.412mmol, 1.1eq)缓慢加入到44(149mg, 0.412mmol, 1.1eq)在无水THF-甲苯(1:1, v/v, 4.8mL)中的冷却溶液(-70℃)中。将所得深蓝色溶液在相同温度下搅拌5分钟，然后缓慢加入环己烯酮8的冷却溶液(-70℃)。将反应混合物在-70℃下搅拌15分钟，然后倾倒在水中。然后，将有机层用硫酸钠干燥，过滤并浓缩，以得到作为黄色油状物的45粗品(300mg, 产率98%)，其无需进一步纯化即可用于下一个步骤。

【0591】化合物46的合成

53
[0592] \(\text{C}_9\text{H}_{10}\text{F}_2\text{O}_4\text{S} \quad M=801.02\text{g}\cdot\text{mol}^{-1} \)

[0593] \(^{19}\text{F} \text{ NMR}(\text{CDCl}_3, 282.5\text{MHz}): -115.3(\text{m}, 1\text{F}, \text{Ar-F}) \)

[0594] 质谱 (ESI\(^{+}\)): 823.5[M+Na]\(^{+}\); 839.4[M+K]\(^{+}\)

[0595] 在惰性气氛下，将Et\(_3\)SiH (0.025mL, 0.157mmol, 3eq) 和BFS.Et\(_2\)O (0.013mL, 0.105mmol, 2eq) 依次加入到45 (43mg, 0.052mmol, 1eq) 在无水二氯甲烷 (0.55mL) 中的冷却溶液中 (-20°C)。将所得溶液在-20°C下搅拌1小时45分钟，用二氯甲烷稀释并倾倒在盐水中，将有机层用硫酸钠干燥，过滤并浓缩，以得到绿色油状物，然后将油状物经硅胶色谱法（环己烷/乙酸乙酯100:0至82:18）纯化，以得到作为绿色油状物的化合物46 (27mg, 64%产率)。

[0596] 化合物47的合成

[0597] \(\text{C}_9\text{H}_{10}\text{F}_2\text{O}_4\text{S} \quad M=819.03\text{g}\cdot\text{mol}^{-1} \)

[0598] \(^{19}\text{F} \text{ NMR}(\text{CDCl}_3, 282.5\text{MHz}): -115.3(\text{m}, 1\text{F}, \text{Ar-F}) \)

[0599] 质谱 (ESI\(^{+}\)): 841.4[M+Na]\(^{+}\); 857.4[M+K]\(^{+}\)

[0600] 在惰性气氛下，将BH\(_3\).Me\(_2\)S (2M THF溶液, 0.065mL, 0.130mmol, 4eq) 加入到46 (26mg, 0.032mmol, 1eq) 在干燥THF (0.335mL) 中的冷却溶液 (0°C) 中。将所得溶液在室温下搅拌过夜，然后冷却至0°C。然后，小心地加入水 (0.041mL, 2.27mmol, 70eq)，接着是过氧化氢 (30% w/v, 0.011mL, 0.97mmol, 30eq) 和2N氢氧化钠溶液 (0.13mL, 0.26mmol, 8eq)，将白色悬浮液在室温下搅拌4小时。然后，将反应混合物用乙酸乙酯稀释并倾倒在水上，将有机层用硫酸钠干燥，过滤并浓缩，以产生无色残留物，然后将残留物经硅胶色谱法（环己烷/乙酸乙酯100:0至77:23）纯化，以得到作为淡黄色残留物的醇47 (7mg, 产率26%)。
将戴斯-马丁氧化剂（5mg，0.013mmol，1.5eq）加入到醇47（7mg，0.009mmol，1eq）的二氯甲烷溶液（0.150mL）中。将所得混合物在室温下搅拌1小时30分钟，然后倾倒在1N氢氧化钠水溶液中。将有机层分离并将水层用二氯甲烷萃取。将合并的有机层用硫酸钠干燥，过滤并浓缩。然后，将残留物粗品经硅胶色谱法（环己烷/乙酸乙酯100:0至80:20）纯化，以得到作为浅黄色残留物的酯48（6mg，产率86%）。

化合物49的合成

C₅H₆F₅O₂S M = 839.01g.mol⁻¹

¹⁹F NMR (CDCl₃, 282.5 MHz): -115.3 (m, 1F, Ar-F); 113.75 (dt, J₁ = 254Hz, J₂ = 29Hz, 1F, CFF); -100.4 (d, J = 254Hz, 1F, CFF)。

质谱（ESI⁺）: 861.3[M+Na]⁺; 877.4[M+K]⁺

将酯48（316mg，0.39mmol，1eq）溶解在DAST（1.4mL, 11.4mmol, 30eq）中并将反应混合物在惰性气氛下于70℃搅拌过夜。在室温下加入二氯甲烷并将反应倾倒在水中。将水相用二氯甲烷萃取并将有机相用Na₂SO₄干燥，过滤并浓缩。将粗产物经硅胶色谱法（环己烷/乙酸乙酯100:0至78:12）, 接着是制备型HPLC（Kromasil C18柱，MeOH/H₂O 95:5）纯化，以得到作为无色油的49（84mg，产率26%）。

化合物50的合成

C₅H₆F₅O₂S M = 478.52g.mol⁻¹

¹⁹F NMR (CDCl₃, 282.5 MHz): -100.2 (d, J = 254Hz, 1F, CFF); -116.2 (dt, J₁ = 254Hz, J₂ = 28Hz, 1F, CFF); -117.6 (m, 1F, Ar-F)。

质谱（ESI⁺）: 501.2[M+Na]⁺

质谱（ESI⁻）: 513.2[M+Cl]⁻
在惰性气氛下，将化合物49（48mg,0.057mmol,1eq）溶解在THF-MeOH(1:1,v/v,4.2mL)中。将10%的Pd/C（96mg,0.02mmol,0.35eq）和5滴12N盐酸水溶液加入到混合物中，并将混合物用H₂脱气5次。将所得黑色悬浮液在H₂气氛下于室温搅拌72小时。将反应混合物在Celite 545垫上过滤并将滤液浓缩。将粗产物经硅胶色谱法（二氯甲烷/甲醇100:0至91:9）接着制备型HPLC（5-甲基化C18,MeCN/H₂O 38:62）纯化，以27%的产率得到作为白色固体的化合物50。

化合物51的合成

C₁₃H₁₃O₅ M=356.66g·mol⁻¹

质谱：(ESI⁻):554.13[M+H₂O]⁻

在惰性气氛下，将氯化铈七水合物（167mg,0.449mmol,1.2eq）加入到冷却至-23℃的环己烯烷8（200mg,0.374mmol,1eq）的MeOH-THF(3:1,v/v,5mL)溶液中。将反应混合物在该温度下搅拌20分钟并加入硼氢化钠（21mg,0.561mmol,1.5eq）。另外，将氯化铵（15mL）和氯化钠（15mL）的饱和的水溶液将所需含乙酸乙酯萃取并将合并的萃取液用硫酸钠干燥，过滤并浓缩。将残留物经硅胶色谱法（乙酸乙酯/环己烷1:3至97:35)纯化，以得到作为白色固体的醇51（137mg,产率68%）。

化合物52的合成

C₁₃H₁₃O₅Si M=650.92g·mol⁻¹

质谱（ESI⁻):673.5[M+Na]⁻;689.3[M+K]⁺

在惰性气氛下，向51（3.80g,7.09mmol,1eq）的干燥二甲基甲酰胺（25mL）溶液中加入冰醋酸（1.45g,21.3mmol,1.3eq）。将反应混合物在室温下搅拌30分钟，然后加入叔丁基二甲基硅烷（1.70g,11.3mmol,1.6eq）。将混合物在40℃下加热12小时，然后用水淬灭并用乙酸乙酯萃取。将有机层合并，用盐水洗涤，用硫酸钠干燥，过滤并浓缩，以得到作为黄色油状
物的化合物52(4.57g，产率99%)。该化合物无需进一步纯化即可参与下一个步骤。

0632 化合物53的合成
0633 C₁₆H₃₅O₇Si M=668.93g·mol⁻¹
0634 质谱(ESI⁺):691.4[M+Na]⁺;707.4[M+K]⁺

![化合物53的合成示意图]

0635 在惰性气氛下，于0℃向52(4g,6.15mmol,1eq)的干燥THF(60mL)溶液中加入硼烷-二甲硫醚络合物(12.3mL;2M THF溶液;24.6mmol;4eq)。将反应介质在室温下搅拌过夜，然后于0℃依次加入水(7.8mL;0.43mol;70eq)、0.3%的过氧化氢水溶液(21.0mL;0.19mol;30eq)和3M的氢氧化钠水溶液(16.4mL;49.2mmol;8eq)。将混合物在室温下搅拌2小时，然后用饱和的氯化铵水溶液(300mL)淬灭。将水层用乙酸乙酯萃取，并将合并的有机层用盐水洗涤，用硫酸钠干燥，滤过并浓缩。将残留物经硅胶色谱法(环己烷/乙酸乙酯)纯化，以得到作为黄色油状物的醇53(754mg，产率63%)。(53晶品也能够无需进一步纯化即可参与下一个步骤)。

0637 化合物54的合成
0638 C₁₆H₃₅O₇Si M=666.92g·mol⁻¹
0639 质谱(ESI⁺):689.5[M+Na]⁺;705.4[M+K]⁺

![化合物54的合成示意图]

0640 在惰性气氛下，于0℃向53(1.51g;2.26mmol;1eq)的干燥二氯甲烷(23mL)溶液中加入戴斯-马丁氧化剂(1.44g;3.39mmol;1.5eq)。将混合物在室温下搅拌过夜，然后加入1M氢氧化钠水溶液(50mL)。将水层用二氯甲烷(2×100mL)萃取并将合并的有机层用硫酸钠干燥，滤过并浓缩。将残留物经硅胶色谱法(乙酸乙酯/环己烷1/99至1/89)以得到作为黄色油状物的酰54(1.13g，产率75%)。可替换地，酰54可以由51经过3个步骤以55%的产率获得，仅在最后的步骤中进行一次纯化。

0642 化合物55的合成
0643 C₈H₁₈O₆ M=552.66g·mol⁻¹
0644 质谱(ESI⁺):575.3[M+Na]⁺;591.3[M+K]⁺
向54(560mg,0.84mmol)的二氯甲烷(4mL)溶液中加入12N HCl的甲醇溶液(2%v/v,4mL),将反应混合物在室温下搅拌过夜。然后加入水,接着是饱和的碳酸氢钠水溶液,直至中和。将混合物用二氯甲烷萃取,用硫酸钠干燥,过滤并浓缩。将残留物在乙醇中研磨并过滤,以得到作为白色固体的化合物55(337mg,产率73%)。

化合物56的合成

C₅H₁₀O₂, M=94.69g.mol⁻¹

质谱(ESI⁺):617.6[M+Na]⁺;633.6[M+K]⁺

在惰性气氛下,于0℃向55(1.27g;2.30mmol;1eq)的干燥二氯甲烷(3mL)溶液中依次加入吡啶(0.93mL;11.5mmol;5eq),4-二甲氨基吡啶(60mg;0.46mmol;0.2eq)和乙酸酐(0.44mL;4.60mmol;2eq)。将混合物在相同温度下搅拌45分钟。然后加入水,接着是1N盐酸水溶液。将水层用二氯甲烷萃取,并将合并的有机层用盐水洗涤,用硫酸钠干燥,过滤并浓缩,以定量化地得到作为浅黄色油状物的酮56(1.39g)。56粗品无需进一步纯化即可参与下一个步骤。

化合物57的合成

C₅H₁οF₀, M=616.69g.mol⁻¹

¹⁹F NMR(CDC₁₃,282.5MHz) : -110.0(d,J=250Hz,1F,CFF); -119.4(ddd,J₁=249Hz,J₂=21Hz,J₃=29Hz,1F,CF₃)。

质谱(ESI⁺):603.4[M+HF+Li]⁺;619.3[M+HF+Li]⁺;623.3[M+Li]⁺;639.3[M+Na]⁺;655.3[M+K]⁺

在惰性气氛下,向56(1.30g;2.19mmol;1eq)的干燥二氯甲烷(5.2mL)的溶液中加入二乙氨基三氯化硫(5.2mL;42.4mmol;19eq)。将反应介质在室温下搅拌16小时。然后,将溶液用二氯甲烷稀释并加入固体碳酸氢钠,将混合物在0℃下搅拌额外的30分钟,然后逐滴加入水。将水层用二氯甲烷萃取并将合并的有机层用硫酸钠干燥,过滤并浓缩。将残留物经
硅胶色谱法（乙酸乙酯/环己烷2/98至12/88）纯化，以得到浅黄色油状物形式的化合物57（471mg，产率35%）。

【0668】化合物58的合成
【0659】C₇H₁₂O₆ M=580.71 g·mol⁻¹
【0660】质谱（ESI⁺）: 603.3 (M+Na)⁺; 619.3 (M+K)⁺

【0661】在惰性气氛下，将51粗品（53.7g）溶解在干燥的氯仿（500mL）和二甲氧基甲烷（292mL, 3.3mol, 33eq）的混合物中。加入P₂O₅（73.9g, 521mol, 5.2eq），在机械搅拌下，将反应物在室温下保持1小时。然后将混合物在Celite® 545垫上过滤（用二氯甲烷洗脱）并用饱和的碳酸氢钠水溶液（700mL）洗涤。然后加入水（1L），并且将混合物用二氯甲烷（2×300mL）萃取，用盐水洗涤，用Na₂SO₄干燥，过滤并浓缩，以得到棕色油状物形式的58（57.7g），其缓慢地结晶。58无需进一步纯化即可参与下一个步骤。

【0663】化合物59的合成
【0664】C₇H₁₄O₇ M=598.73 g·mol⁻¹
【0665】质谱（ESI⁺）: 621.3 (M+Na)⁺; 637.3 (M+K)⁺

【0666】在惰性气氛下，将硼烷-二甲基硫醚络合物（2M THF溶液，199mL, 397mol, 4eq）加入到冷却至0℃的58（57.7g）的干燥THF（297mL）溶液中。然后，将反应混合物在室温下搅拌过夜，然后冷却至0℃并用水（125mL, 6.96mol, 70eq）。接着是过氧化氢（30%w/v的水溶液，338mL, 2.98mol, 30eq）和氢氧化钠（2M水溶液，397mL, 0.79mol, 18eq）小心地处理。使混合物在室温下（～25℃）反应2小时，然后加入饱和的氯化铵水溶液（700mL）和水（300mL）以淬灭反应。将混合物用乙酸乙酯（3×500mL）萃取并将合并的有机层用水（600mL）和盐水（600mL）洗涤，用Na₂SO₄干燥，过滤并浓缩，以得到黄色油状物形式的59粗品（59.5g）。59无需进一步纯化即可参与下一个步骤。

【0668】化合物60的合成
【0669】C₇H₁₂O₇ M=596.71 g·mol⁻¹
【0670】质谱（ESI⁺）: 619.3 (M+Na)⁺; 635.3 (M+K)⁺
[0672] 将戴斯-马丁氧化剂（84.3g；199mmol；2eq）按份加入到0℃的59样品（59.5g）的干燥二氯甲烷（1L）溶液中，将反应物在室温下搅拌18小时，然后加入氢氧化钠（1N水溶液，1L）和水（500mL）。然后将水层用二氯甲烷（2×400mL）萃取并将合并的有机层用硫酸钠干燥，过滤并浓缩。将残留物经硅胶色谱法（环己烷/乙酸乙酯98:2至86:14,v/v在Biotage SNAP 750g小柱上），以得到作为黄色固体的目标酮60（32g，经过4个步骤的产率48%）。

[0673] 化合物61的合成

[0674] $C_{3}H_{6}O_{2}F_{2}O_{6}M=618.71g.mol^{-1}$

[0675] $^{19}{F}_{NMR}(CDCl_{3}, 282.5MHz): -108.5(d, J=252Hz, 1F, CFF); -121.0(ddd, J1 = 252Hz, J2 = 30Hz, J3 = 20Hz, 1F, CFF)$。

[0676] 质谱(ESI^+): 641.3(M+Na)^+; 657.3(M+K)^+

[0677] 将DAST(125mL, 1.02mol, 19eq)缓慢地加入到60（32g, 53.6mmol, 1eq）在干燥二氯甲烷（145mL）中的冷却溶液（0℃）中，然后使反应混合物达到室温并搅拌过夜。然后加入二氯甲烷（400mL）并将混合物缓慢倾倒在冰（1L）、二氯甲烷（300mL）和NaHCO₃（400g）的混合物中，将混合物剧烈搅拌15分钟。加入水（500mL）并将水层用二氯甲烷（2×300mL）萃取。将合并的有机萃取液用Na₂SO₄干燥，过滤并浓缩，以得到黄色油状物形式的61粗品（32.6g），61无需进一步纯化即可参与下一个步骤。

[0679] 化合物62的合成

[0680] $C_{3}H_{6}F_{2}O_{6}M=574.65g.mol^{-1}$

[0681] $^{19}{F}_{NMR}(CDCl_{3}, 282.5MHz): -110.7(d, J=249Hz, 1F, CFF); -123.7(ddd, J1 = 248Hz, J2 = 29Hz, J3 = 19Hz, 1F, CFF)$。

A. 在惰性气氛下，向57（70mg；0.114mmol；1eq）的干燥甲醇溶液中加入甲醇钠（8mg；0.122mmol；1.25eq）。将反应介质在室温下搅拌过夜。然后加入水，接着加入1N盐酸水溶液直至pH=6。将混合物用乙酸乙酯萃取，用盐水洗涤，用硫酸钠干燥，过滤并浓缩，以定量的产率得到浅棕色固体形式的62（65mg）。

B. 在惰性气氛下，将三氯乙酸（98.0mL；1.32mol；2.5eq）加入到61（32.6g）的干燥二氯甲烷（260mL）溶液中。将反应混合物在室温下搅拌过夜。将混合物冷却至0°C并加入水（500mL）。分液层并用水（500mL）洗涤有机层。将合并的水层合并并用二氯甲烷（2×100mL）萃取。将合并的有机层用饱和的NaHCO3（250mL）洗涤，用硫酸钠干燥，过滤并浓缩。将混合物粗晶经硅胶色谱法（环己烷/乙酸乙酯98:2至82:18，v/v）在Biotage SNAP 750g小柱上）纯化，以得到作为白色固体的62（13.6g，经过2个步骤的产率30%）。

化合物63的合成

C₅H₅N₃F₂O₆/C₅H₅N₃F₂O₆M = 590.65g·mol⁻¹ / 572.64g·mol⁻¹

¹⁹F NMR (CDCl₃, 282.5 MHz):

水合物形式：-117.3 (dd, J₁ = 257Hz, J₂ = 30Hz, 1F, CFF); -125.6 (d, J₁ = 258Hz, 1F, CFF).

酮形式：-112.1 (ddd, J₁ = 260Hz, J₂ = 32Hz, J₃ = 6Hz, 1F, CFF); -119.4 (dd, J₁ = 260Hz, J₂ = 4Hz, 1F, CFF).

质谱（ESI⁺）：608.4 [M+H₂O]⁺；613.5 [M+Na]⁺；619.5 [M+K]⁺

在惰性气氛下，向62（200mg；0.335mmol；1eq）的干燥二氯甲烷溶液中加入戴斯-马丁氧化剂（295mg；0.70mol；2eq）。将反应介质在室温下搅拌3小时，然后加入1N氢氧化钠水溶液（10mL）。将水层用二氯甲烷萃取，并用硫酸钠干燥，过滤并浓缩，得到作为浅橙色固体的酮63（158mg，产率77%），其迅速向着形成水合物形式的方向发展，直至达到平衡。

化合物64的合成

C₅H₅N₃ClF₂O₆ M = 819.37g·mol⁻¹
在惰性气氛下,在包含氢氟酸(50mg, 0.24mmol, 1.2eq)的Schlenk管中加入2mL(自选于5mL)10(552mg, 1.70mmol, 1eq)和1,2-二溴乙烷(15μL, 0.17mmol, 0.1eq)的干燥THF(5mL)溶液。将混合物在75℃下加热5分钟以启动反应,然后在室温下逐滴加入剩余3mL 10和1,2-二溴乙烷的溶液。然后,将该溶液在75℃下搅拌1小时。

然后,将预先冷却至室温的2.4mL该格氏溶液加入到63(158mg, 0.27mmol)的干燥THF(2mL)溶液中。将反应混合物在室温下搅拌2小时,然后加入饱和的氯化钠溶液。将水层用乙醚萃取并合并的有机层用盐水洗涤,用硫酸钠干燥,过滤并浓缩。将残留物经硅胶色谱法(环己烷/乙酸乙酯100:0至73:23)纯化,以69%的产率得到作为两种非对映异构体的混合物的化合物64(152mg),这些非对映异构体可以通过半制备型HPLC分离。

化合物65的合成

C₂H₂BrClF₂O₂ M=458.88g·mol⁻¹

19F NMR(MeOD, 282.5MHz): -114.0 (dd, J₁=262Hz, J₂=7Hz, 1F, CFF); -115.4 (dd, J₁=262Hz, J₂=26Hz, 1F, CFF).

质谱(ESI⁺): 481.3[M+Na⁺]; 497.3[M+K⁺]

将邻二氯苯(53μL, 0.47mmol, 1.0eq),接着是10%的Pd/C(56.0mg, 53.3μmol, 1.0eq)加入到64(38.0mg, 46.4μmol, 1eq)的THF和MeOH混合溶液(2:1, v/v, 26mL)中。将反应放置在氢气气氛下并在室温下搅拌2小时。将反应混合物过滤并浓缩,然后经硅胶色谱法纯化,以得到目标化合物65。

化合物66的合成

C₅H₆BrClF₂O₂ M=882.27g·mol⁻¹

19F NMR(CDCl₃, 282.5MHz): 主要端基异构体: -97.8 (dd, J₁=246Hz, J₂=30Hz, CFF); -102.6 (d, J=246Hz, CFF).

质谱(ESI⁺): 4881.2(M+H⁺); 898.3(M+H₂O)⁺.
[0712] 在惰性气氛下，于-40℃将SOBr₂(85μl,1.10mmol,15eq)加入到65(60mg,0.07mmol,leq)的干燥二氯甲烷(0.73ml)溶液中，搅拌混合物，同时温度在5小时内逐渐升至0℃。然后加入吡啶(89μl,1.10mmol,15eq)并搅拌在0℃下搅拌额外的1小时。加入1M HCl水溶液并使溶液达到室温，收集有机层并将水层用二氯甲烷萃取。然后，将合并的有机层用硫酸钠干燥，过滤并浓缩。将混合物样品经硅胶柱色谱法(Biotage SNAP 10g,环己烷/乙酸乙酯100:0至29/8)纯化，以得到作为无色油状物的66(15mg,23%)。收集的馏分包含一个主要的异构体。

[0713] 化合物15的合成

[0714] C₆H₅BrC₆F₇O₅S M=803.37g·mol⁻¹

[0715] ¹⁹F NMR(CDCl₃,282.5MHz): -100.3(d,J=254Hz,1F,CF₂);-113.3(td,J₁=254Hz,J₂=29Hz,1F,CF₂)。

[0716] 质谱: (ESI⁺): 820.00(M+H₂O)

[0717] 在室温下，将Bu₃SnH(7μl,25.5mmol,1.5eq)加入到65(15mg,17.0mmol)在干燥甲苯(170μl)溶液中，然后将混合物在110℃下加热并搅拌3小时。然后加入额外的一份Bu₃SnH(7μl,25.5mmol,1.5eq)并将混合物在110℃下搅拌额外的3小时。再次重复该步骤，直至TLC上不再观察到变化。将混合物浓缩并经制备型TLC(环己烷/乙酸乙酯90:10,v/v)纯化，以得到15(2mg,17%,β-端基异构体和4mg包含α-端基异构体)。

[0719] 化合物67的合成

[0720] C₇H₅BrC₆F₇O₅S M=706.72g·mol⁻¹

[0721] ¹⁹F NMR(CDCl₃,282.5MHz): -74.0(d,J=12Hz,CF₃);-108.2(dq,J₁=252Hz,J₂=12Hz,CF₂);-119.5(ddd,J₁=253Hz,J₂=31Hz,J₃=18Hz,CF₂)。

[0722] 质谱(ESI⁺): 724.3(M+H₂O)⁺; 729.2(M+Na)⁺; 745.2(M+K)⁺

[0724] 在惰性气氛下，将三氟甲磺酸酐(9.5ml,57.4mmol,3eq)和吡啶(4.6ml,57.4mmol,3eq)加入到62(11.0g,19.1mmol,leq)在干燥二氯甲烷(190ml)中的冷却溶液(0℃)中。使溶液温热至室温并搅拌过夜。然后将水(400ml)加入到冷却混合物(0℃)中，然后用二氯甲烷
(2×150mL)萃取，用硫酸钠干燥，过滤和浓缩，以得到作为棕色固体的67粗品（13.6g）。67无需进一步纯化即可参与下列一个步骤。

[0725] 2. 生物活性

[0726] a) 关于对葡萄糖排泄的易化作用（facilitatory effect）的试验。

[0727] 使用雌性CD1小鼠（CDM或Charles River）作为实验动物。将测试化合物以1mg/mL的浓度溶解在载体（5%的N-甲基吡咯烷酮, 20%的PEG 400, 75%的20mM NaH2PO4缓冲液, v/v）中。在测定小鼠体重并对其随机分组之后，以1mg/kg、3mg/kg和10mg/kg的剂量口服施用供试品。对于对照，只口服施用载体（5%的N-甲基吡咯烷酮, 20%的PEG 400, 75%的20mM NaH2PO4缓冲液, v/v/v）。采用用于小鼠的胃管和1mL注射器来进行口服施用。一组中的最小计数为3，但是对于一些组而言能够达到12。手动进行尿液的采集：通过温和地按摩腹部，以便通过校准的移液管来采集尿液（3μL）。在1, 2, 4, 6, 8和随后的16, 18, 20, 22, 24, 26和28小时采集尿液。使用Wako葡萄糖试剂盒按照如下方式测定尿糖浓度：将3μL的尿液置于96孔微板中用于光谱测定的读出。将尿液等分试样用350μL的Wako工作溶液稀释。对于可能超过Wako葡萄糖试剂盒量程的葡萄糖浓度而言，将最终溶液的等分试样（35μL）置于另一块96孔微板中并用315μL的Wako工作溶液进一步稀释（10×）。然后，使用BioTek Synergy MX平板荧光计/吸光光度计在505nm处读取96孔板的吸光度并计算葡萄糖浓度。使用Excel 2007来计算对照和供试品在不同时间点的葡萄糖浓度的平均值并使用GraphPad Prism 5绘制。

[0728] 图1和2中显示出采用16和50所获得的结果。因此，看起来是16（3mg/kg）触发了持久性糖尿（高达26小时，图2）。

[0729] b) 通过研究对葡萄糖排泄的易化作用来比较根据本发明的化合物与现有技术中的化合物之一的作用的持续时间的试验

[0730] 试验如a)所述地进行。

[0731] 当葡萄糖片段的环内氧原子被CF3片段代替时，已经比较了根据本发明的化合物16和达格列净（Dapagliflozin）来突出强调化合物的作用的持续时间的改善，即更长的糖尿持续时间。

[0732] ![化合物16](image)

[0733] 该试验已经在3mg/kg的剂量下进行。

[0734] 图5中显示出获得的结果。因此，与达格列净相比，看起来是16（3mg/kg）触发了糖尿，其持续了超过24小时。

[0735] 当携带CH-OH片段而非环内氧的葡萄糖模拟物被携带代替CH-OH片段的CF3的葡萄糖模拟物代替时，已经比较了根据本发明的化合物16和WO2009/1076550中的化合物9来突出强调化合物的作用的持续时间的改善。
该试验已经在3mg/kg的剂量下进行。
图6中显示出获得的结果。因此，当WO 2009/1076550的化合物9在相同的时期内没有检测到情况时，看起来是16(3mg/kg)触发了更长的持续性糖尿(高达24小时)。

关于在葡萄糖负荷后减少血糖波动的易化作用的试验。
使用禁食12小时的雌性CD1小鼠(CDM或Charles River)作为实验动物。将测试化合物以1mg/mL的浓度溶解在载体(5%的N-甲基吡咯烷酮,20%的PEG400,75%的20mM NaHPO₄缓冲液)中。在测定小鼠体重并对其随机分组之后，以1mg/kg、3mg/kg和10mg/kg的剂量口服施用供试品。对于对照，只口服施用载体(5%的N-甲基吡咯烷酮,20%的PEG400,75%的20mM NaHPO₄缓冲液)。该口服施用后15分钟，将去离子水中的20%葡萄糖溶液口服施用于所有小鼠。采用用于小鼠的胃管和1ml注射器来进行口服施用。一组中的最少计数为3，但是对于一些组而言能够达到5。通过静脉血进行血液的采集。在葡萄糖负荷后的5, 10, 30, 45, 60和120分钟采集血样。一项试验在于在葡萄糖负荷之前18小时施用供试品，即口服供试品之后18小时进行葡萄糖负荷。使用Johnson and Johnson’s OneTouch® Ultra Blood Glucose Monitoring System测定血糖浓度。使用Excel 2007来计算对照和供试品在不同时点的葡萄糖浓度的平均值并使用GraphPad Prism 5绘制。

图3和4中显示出采用16所获得的结果。
因此，看起来是16在葡萄糖负荷之后于正常小鼠体内以剂量依赖性方式降低了血糖水平(图3)。此外，在葡萄糖负荷之前18小时口服施用的16(3mg/kg)在血糖负荷之后仍然减少了血糖波动(图4)。

d) 评价和比较根据本发明的化合物26与现有技术的化合物(合格列净-A)对抗糖苷酶的稳定性的试验。
已经采用根据本发明的化合物26和用作控制β-糖苷酶有效性的参照化合物的化合物A来进行酶稳定性试验。也已经评价了合格列净-A稳定性，以便比较通过葡萄糖片段的环内氧原子被CF₃片段代替而获得的代谢稳定性的改善。
所有的化合物均已经用β-糖苷酶处理。在用β-糖苷酶孵育后，通过HPLC分析已经评价了化合物26和合格列净-A的稳定性。

将100μL的4.5×10^-3mol·L^{-1}下的化合物26的乙腈溶液加入到含有800μL的磷酸盐缓冲液（pH 7）的溶液中，并在37℃下保持4小时，所述溶液中存在来自Amonds的β-糖苷酶（10U, 100μL的5.6mg·ml^{-1}下的磷酸盐缓冲液溶液，（G4511sigma 18.7U/mg））。

按照相同的方法，在β-糖苷酶的存在下，已经处理了100μL的4.5×10^{-4}mol·L^{-1}下的合格列净-A乙腈溶液。

平行地，将100μL的4.5×10^{-4}mol·L^{-1}下的对硝基苯基-β-葡萄糖苷（化合物A）的磷酸盐缓冲液（pH 7）溶液加入到含有700μL的磷酸盐缓冲液和100μL的乙腈的溶液中并在37℃下保持4小时，所述溶液中存在来自于Amonds的β-糖苷酶（10U, 100μL的5.6mg·ml^{-1}下的磷酸盐缓冲液溶液，（G4511sigma 18.7U/mg））。在β-糖苷酶存在的过程中，观察到黄色染色，这突出强调了化合物A的分解。

已经进行了化合物21（图7）、化合物26（图8）和合格列净-A（图10）的HPLC，以便在实验中监视化合物21（糖苷配基部分）的形成，这意味着原料的降解。

已经进行了化合物26在β-糖苷酶的存在下的HPLC（图9）并突出强调了由于没有观
察到化合物21的形成，所以没有发生降解。

[0756] 已经进行了化合物A在β-糖苷酶的存在下的HPLC（图11）并突出强调了由于观察到化合物21的形成，所以发生了降解。

[0757] 为了评价降解的百分比，已经对化合物21进行了校准，其结果如下表所示：

<table>
<thead>
<tr>
<th>浓度g/L</th>
<th>面积%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>260</td>
</tr>
<tr>
<td>0.01</td>
<td>506</td>
</tr>
<tr>
<td>0.05</td>
<td>2962</td>
</tr>
<tr>
<td>0.1</td>
<td>5226</td>
</tr>
</tbody>
</table>

[0759] 数据已经被绘制（面积%相比浓度）并且获得的线性回归的特征在于以下方程y = 53629x和R² = 0.994。

[0760] 在图11中，化合物A在β-糖苷酶的存在下的HPLC谱突出强调了伴随着化合物21的形成，发生了降解（面积%=416%）。

[0761] 前述方程使我们能够确定化合物21的浓度为7.76×10⁻³g/L，相当于3.6×10⁻⁸mol。

[0762] 这等于采用β-糖苷酶在37℃下孵育4小时后，80%的化合物A发生了降解，然而在相同的条件下，化合物26不发生降解。
图3

图4
图5

图6
保留时间=13.805 分钟
图8
图9