发明名称
一种新型含锗钙钛矿材料及其太阳能电池

摘要
一种通过液相反应制备的具有钙钛矿结构的含锗材料，化学通式为 AgI_{x+y}, AgGe_{x+y}, 和 AgGe(x,y,2x), 其中 A 为 Cs^{+} 或 NH_{4}^{+} 或 CH_{3}NH_{3}^{+}, Ge 为二价，X, Y, Z 均为卤素。通过下述方法得到：将 GeO_{2} 加入到卤化氢溶液中，加入次磷酸将 GeO_{2} 还原成二价，然后加入卤素的纯盐或铵盐，直接得到含锗钙钛矿材料的沉淀。将材料溶解后旋涂在 FTO/ 电子传输层/ 介孔层上，通过旋涂空穴传输层、蒸镀电极，可以构建基于钙钛矿 AgI_{x+y}, AgGe(x,y,2x) 和 AgGe(x,y,2x), 的太阳能电池器件。材料制备合成简单，成本低，具有良好的光吸收，光电转换和电子空穴传输能力，器件具有较高的稳定性和使用寿命。
1. 一种用于太阳能电池的含钙钛矿物材料，化学通式为 $\text{Ag}_x \text{Ag}_y (\text{X}_m \text{Y}_n \text{Z}_m \text{W}_n)_3$，其中 x 为 Ag^+ 或 NH_4^+，Ge 为二价，X, Y, Z 均为卤素，下述制备步骤得到：

1) 将 GeO_2 加入到 10 mL 氢酸中；
2) 向步骤 1 溶液中加入次磷酸将 GeO_2 还原成二价锗；
3) 向步骤 2 得到的溶液中加入卤素的酸盐或铵盐或甲胺盐，直接得到钙钛矿物材料的沉淀；
4) 将步骤 3 得到的沉淀离心，干燥，于手套箱中保存。

2. 如权利要求 1 所述用于太阳能电池的含钙钛矿物材料，其中，钙钛矿物材料 $\text{AgGe}_x \text{Ag}_y (\text{X}_m \text{Y}_n \text{Z}_m \text{W}_n)_3$ 包含 $\text{CsGeCl}_3, \text{CsGeBr}_3, \text{CsGeI}_3, \text{CsGe} (\text{Cl}_m \text{Br}_n)_3, \text{CsGe} (\text{Cl}_m \text{Br}_n \text{I}_m \text{W}_n)_3, \text{CsGe} (\text{Cl}_m \text{Br}_n \text{I}_m \text{Br}_n)_3, \text{NH}_4 \text{GeCl}_3, \text{NH}_4 \text{GeBr}_3, \text{NH}_4 \text{GeI}_3, \text{NH}_4 \text{Ge} (\text{Cl}_m \text{Br}_n)_3, \text{NH}_4 \text{Ge} (\text{Cl}_m \text{Br}_n \text{I}_m)_3, \text{NH}_4 \text{Ge} (\text{Cl}_m \text{Br}_n \text{Br}_n)_3, \text{NH}_4 \text{Ge} (\text{Cl}_m \text{Br}_n \text{I}_m \text{Br}_n)_3, \text{CH}_3 \text{NH}_4 \text{GeCl}_3, \text{CH}_3 \text{NH}_4 \text{GeBr}_3, \text{CH}_3 \text{NH}_4 \text{GeI}_3, \text{CH}_3 \text{NH}_4 \text{Ge} (\text{Cl}_m \text{Br}_n)_3, \text{CH}_3 \text{NH}_4 \text{Ge} (\text{Cl}_m \text{Br}_n \text{I}_m)_3, \text{CH}_3 \text{NH}_4 \text{Ge} (\text{Cl}_m \text{Br}_n \text{Br}_n)_3, \text{CH}_3 \text{NH}_4 \text{Ge} (\text{Cl}_m \text{Br}_n \text{I}_m \text{Br}_n)_3$。

3. 如权利要求 1 所述用于太阳能电池的含钙钛矿物材料，其中，钙钛矿物材料 $\text{AgGe}_x \text{Ag}_y (\text{X}_m \text{Y}_n \text{Z}_m \text{W}_n)_3$ 中，m 和 n 的值不是固定的，可以通过调整原料的比例来调节卤素的含量，进而调节它们的能带位置和光学吸收范围。

4. 如权利要求 1 所述用于太阳能电池的含钙钛矿物材料，其中，加入次磷酸之前将温度升高至 $90\sim 95^\circ \text{C}$，加入次磷酸之后反应 10 min，加入卤素的酸盐或铵盐或甲胺盐之后反应 10 min。

5. 一种利用权利要求 1 所述含钙钛矿物材料制备太阳能电池的方法，器件的结构是 $\text{FTO}/ \text{电极传输层} / \text{介孔层} / \text{活性材料} / \text{空穴传输层} / \text{电极}$；主要步骤为：
 1) 将含钙钛矿物材料溶于 DMF 中，旋涂在 FTO/电极传输层/介孔层上，静置一天，挥发掉溶剂；
 2) 向步骤 1 得到的钙钛矿物层上旋涂空穴传输层；
 3) 向步骤 2 得到的空穴传输层上蒸镀金电极，组装成太阳能电池器件。

6. 根据权利要求 5 所述的方法，其中，电极传输层所用材料包含 TiO_2, ZnO 和 Nb_2O_5。

7. 根据权利要求 5 所述的方法，其中，介孔层所用材料包括 TiO_2, ZnO 和 Nb_2O_5 或者绝缘体 $\text{Al}_2\text{O}_3, \text{SiO}_2$。

8. 根据权利要求 5 所述的方法，其中，$\text{AgGe}_x, \text{AgGe}(\text{X}_m \text{Y}_n \text{Z}_m)_3$ 和 $\text{AgGe}(\text{X}_m \text{Y}_n \text{Z}_m \text{W}_n)_3$ 型钙钛矿物材料的成膜方式包含旋涂、提拉、喷雾，成膜后通过适当的加热处理得到分散于介孔层中的 $\text{AgGe}_x, \text{AgGe}(\text{X}_m \text{Y}_n \text{Z}_m)_3$ 和 $\text{AgGe}(\text{X}_m \text{Y}_n \text{Z}_m \text{W}_n)_3$ 固相结构。

9. 根据权利要求 5 所述的方法，其中，空穴传输层中 P 型半导体为有机 p 型半导体材料 Spiro-OMeTAD 和 P3HT 或 p 型无机复合物 V_2O_5 和 MoO_3。
一种新型含锗钙钛矿材料及其太阳能电池

技术领域

[0001] 本发明属于光电材料技术领域，具体涉及一种含锗钙钛矿材料。

[0002] 本发明还涉及上述含锗钙钛矿材料在制备太阳能电池中的应用。

背景技术

[0003] 随着社会的向前发展，人类对能源的需求越来越大。能源分为非可再生能源和可再生能源两种，目前我们所使用的能源大都属于非可再生能源。按照 2002 年探明的化石燃料储量计算，石油、天然气和煤分别能够维持 40、60 和 200 年左右。太阳能作为一种可再生能源有着其它能源不可比拟的优势。因此，合理利用好太阳能将是人类解决能源问题的长期发展战略，太阳能电池的研发已成为全球的一个焦点。

[0004] 根据所用材料的不同，太阳能电池可分为：硅太阳能电池、多元化合物薄膜太阳能电池、有机太阳能电池、染料敏化纳米晶太阳能电池。这几种电池各有所长，但同时也存在着造价高，效率低，有毒性，材料稀少，工艺复杂等各种各样存在的危险。为了制作更合适的太阳能电池，我们需要从满足大规模生产，材料易得到，成本较低上下功夫。

[0005] 1991 年，O’Regan 等首次组装出光电转换效率达 7.1%~7.9% 的染料敏化纳米晶太阳能电池（Nano-crystalline Dyesensitized Solar Cells, DSSCs），开创了太阳能电池研究和发展的全新领域。随后，Gratzel 等开发了光电能量转换效率达 10%~11% 的 DSSCs。1998 年，Gratzel 等人进一步研究出固态染料敏化太阳能电池，使用固体有机空穴传输材料代替了液体电解质，单色光光电转换效率达到 33%，从而引起了全世界科学家对染料敏化太阳能电池的关注。目前染料敏化太阳能电池的光电转换效率已稳定在 10% 以上，而成本仅为硅太阳能电池的 1/5 到 1/10，使用寿命可达 15 年以上。由于染料敏化太阳能电池相对于低廉的价格、简单的制作工艺和潜在的高光电转换效率，使它有可能取代传统硅系太阳能电池，成为未来太阳能电池的主导。

发明内容
[0007] 本发明的目的在于提供一种新型的含锗钙钛矿作为光电转换材料。
[0008] 本发明的又一目的在于应用上述含锗钙钛矿材料制备太阳能电池。
[0009] 为实现上述目的，本发明提供的用于太阳能电池的含锗钙钛矿材料，化学通式为
\[
\text{Ag}_{x}\text{Ge}_{y}\text{Sn}_{z}\text{I}_{w}
\]
其中 A 为 Cs 或 NH\text{I} 或 CH\text{I}_{3}NH\text{I}，Ge 为二价，X, Y, Z 均为卤素，由下述制备步骤得到：
1) 将 GeO\text{I} 加入到 10 ml 水溶液中；
2) 向步骤 1 溶液中加入次磷酸将 GeO\text{I} 还原成二价锗；
3) 向步骤 2 得到的溶液中加入卤素的铯盐或铵盐或甲胺盐，直接得到钙钛矿材料的沉淀；
4) 将步骤 3 得到的沉淀离心，干燥，于手套箱中保存。
[0010] 该合成方法中，在加次磷酸之前将温度升高至 90~95℃，加入次磷酸之后反应 10 min，加入卤素的铯盐或铵盐或甲胺盐之后反应 10 min。
[0011] 所合成的含锗钙钛矿材料 Ag\text{I}_{x}\text{Ge}_{y}\text{Sn}_{z}\text{I}_{w} 和 Ag\text{I}_{x}\text{Ge}_{y}\text{Sn}_{z}\text{I}_{w} 包含 CsGeCl\text{I}_{3}，
CsGeBr\text{I}_{3}，CsGeI\text{I}_{3}，CsGe (Cl\text{I}_{x}Br\text{I}_{y})_{z}，CsGe (Cl\text{I}_{x}I\text{y})_{z}，CsGe (Br\text{I}_{x}I\text{y})_{z}，CsGe (Cl\text{I}_{x}Br\text{I}_{y}I\text{z})_{z}，
NH\text{I}_{2}GeCl\text{I}_{3}，NH\text{I}_{2}GeBr\text{I}_{3}，NH\text{I}_{2}GeI\text{I}_{3}，NH\text{I}_{2}Ge (Cl\text{I}_{x}Br\text{I}_{y})_{z}，NH\text{I}_{2}Ge (Cl\text{I}_{x}I\text{y})_{z}，NH\text{I}_{2}Ge (Br\text{I}_{x}I\text{y})_{z}，
NH\text{I}_{2}Ge (Cl\text{I}_{x}Br\text{I}_{y}I\text{z})_{z}，CH\text{I}_{3}NH\text{I}_{2}GeCl\text{I}_{3}，CH\text{I}_{3}NH\text{I}_{2}GeBr\text{I}_{3}，CH\text{I}_{3}NH\text{I}_{2}GeI\text{I}_{3}，CH\text{I}_{3}NH\text{I}_{2}Ge (Cl\text{I}_{x}Br\text{I}_{y})_{z}，
CH\text{I}_{3}NH\text{I}_{2}Ge (Cl\text{I}_{x}I\text{y})_{z}，CH\text{I}_{3}NH\text{I}_{2}Ge (Br\text{I}_{x}I\text{y})_{z}，CH\text{I}_{3}NH\text{I}_{2}Ge (Cl\text{I}_{x}Br\text{I}_{y}I\text{z})_{z}。
[0012] 所合成的含锗钙钛矿材料 Ag\text{I}_{x}\text{Ge}_{y}\text{Sn}_{z}\text{I}_{w} 和 Ag\text{I}_{x}\text{Ge}_{y}\text{Sn}_{z}\text{I}_{w} 中 m 和 n 的值不是固定的，可以通过调节原料的比例来调节卤素的含量，进而调节它们的能带位置和光学吸收范围。
[0013] 采用该合成方法得到的材料，纯度较高，制备过程简单，对设备要求较低。
[0014] 该含锗钙钛矿材料可以在空气中制备，但是由于在溶剂中不太稳定，溶解组件器件时要在氮气环境中进行。
[0015] 本专利提供的利用上述含锗钙钛矿材料制备太阳能电池的方法，主要步骤为：
1) 将含锗钙钛矿材料溶于 DMF 中，旋涂在 FTO/ 电子传输层 / 介孔层上，静置一天，
挥发掉溶剂；
2) 向步骤 1 得到的钙钛矿层上旋涂空穴传输层；
3) 向步骤 2 得到的空穴传输层上蒸镀金电极，组装成太阳能电池器件。
[0016] 采用该方法制备的太阳能电池器件的结构是 FTO/ 电子传输层 / 介孔层 / 活性材料 / 空穴传输层 / 电极。
[0017] 其中，电子传输层所用材料包含 TiO\text{I}_{2}，ZnO 和 Nb\text{I}_{2}O_{5}。
[0018] 其中，介孔层所用材料包括 TiO\text{I}_{2}，ZnO 和 Nb\text{I}_{2}O_{5} 或者绝缘体 AI\text{I}_{2}O_{3}，SiO_{2}。
[0019] 其中，Ag\text{I}_{x}\text{Ge}_{y}\text{Sn}_{z}\text{I}_{w} 和 Ag\text{I}_{x}\text{Ge}_{y}\text{Sn}_{z}\text{I}_{w} 型钙钛矿材料的成膜方式包含旋涂、旋涂、喷雾，成膜后通过适当的条件处理得到分散于介孔层中的 Ag\text{I}_{x}\text{Ge}_{y}\text{Sn}_{z}\text{I}_{w}，Ag\text{I}_{x}\text{Ge}_{y}\text{Sn}_{z}\text{I}_{w} 和
Ag\text{I}_{x}\text{Ge}_{y}\text{Sn}_{z}\text{I}_{w} 固相结构。
[0020] 其中，空穴传输层中 P 型半导体为有机 p 型半导体材料 Spiro OMELTAD 和 P3HT
或 p 型无机化合物 V_2O_5 和 MoO$_3$。

[0021] 该含锗钙钛矿材料可以在空气中制备，但由于在溶剂中不太稳定，溶解组装器件时要在氮气环境中进行。

[0022] 以上制备过程较硅基太阳能电池器件合成简单，成本低，寿命长，效率接近多晶硅器件，有利于大面积推广。

附图说明

[0023] 图 1 钙钛矿太阳能电池的原理结构示意图。

[0024] 图 2 CsGeCl$_3$ 的 XRD。

[0025] 图 3 CsGeCl$_3$ 的紫外可见吸收光谱。

[0026] 图 4 CsGeBr$_3$ 的 XRD。

[0027] 图 5 CsGeBr$_3$ 的紫外可见吸收光谱。

[0028] 图 6 CsGeI$_3$ 的 XRD。

[0029] 图 7 CsGeI$_3$ 的紫外可见吸收光谱。

[0030] 图 8 基于 CsGeI$_3$ 的太阳能电池器件的 IV 曲线。

[0031] 图 9 TiO$_2$ 介孔薄膜的 SEM 照片。

[0032] 图 10 SiO$_2$ 介孔薄膜的 SEM 照片。

具体实施方式

[0033] 通过实施例，对本发明作进一步的说明，但本发明并不限于以下实施例。

[0034] 实施例 1

首先合成钙钛矿材料。将 1 g GeO$_2$ 加入到 10 mL 氢氟酸中，加热至 90~95℃，然后加入 1 mL 次磷酸将 GeO$_2$ 还原成二价，10 min 后加入 2.48 g CsI，即有黑色沉淀产生。将沉淀离心，放入真空干燥器中干燥，最后得到 CsGeI$_3$ 钙钛矿材料。其次用胺酸凝胶法制备 TiO$_2$ 胶体，旋涂于清洗过的 FTO 玻璃上，然后 550℃加热处理 30 min，得到致密的 TiO$_2$ 薄膜。在致密薄膜上旋涂 TiO$_2$ 浆料，TiO$_2$ 的颗粒大小约为 20 nm，然后再进一步 550℃加热处理 30 min，得到 TiO$_2$ 介孔薄膜。将合成的 CsGeI$_3$ 钙钛矿溶于 DMF 中，然后旋涂到 TiO$_2$ 介孔薄膜上，静置一天，挥发掉溶剂。最后在钙钛矿层上旋涂空穴传输层 P3HT，蒸镀金电极，组装成太阳能电池器件，得到 3% 的光电转换效率。

[0035] 实施例 2

首先合成钙钛矿材料。将 1 g GeO$_2$ 加入到 10 mL 氢氟酸溶液中，加热至 90~95℃，加入次磷酸将 GeO$_2$ 还原成二价，10 min 后按照摩尔比 1:1 加入 1.38 g NH$_4$I，即有沉淀产生。将沉淀过滤、放入真空干燥器中干燥，最终得到 NH$_4$I 钙钛矿材料。其次用胺酸凝胶法制备 TiO$_2$ 胶体，旋涂于清洗过的 FTO 玻璃上，然后 550℃加热处理 30 min，得到致密的 TiO$_2$ 薄膜。在致密薄膜上旋涂 TiO$_2$ 浆料，TiO$_2$ 的颗粒大小约为 20 nm，然后再进一步 550℃加热处理 30 min，得到 TiO$_2$ 介孔薄膜。将合成的 CsGeI$_3$ 钙钛矿溶于 DMF 中，然后旋涂到 TiO$_2$ 介孔薄膜上，静置一天，挥发掉溶剂。最后在钙钛矿层上旋涂空穴传输层 P3HT，蒸镀金电极，组装成太阳能电池器件，得到 3% 的光电转换效率。
图 3

图 4
图 5
图 6
图 7
图8

- $I_{sc} = 10.49 \text{ mA/cm}^2$
- $V_{oc} = 0.57 \text{ V}$
- $FF = 0.53$
- $EFF = 3.2$

$CsGel_2$
图 9
图 10