WO 02/084944 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 October 2002 (24.10.2002)

PCT

(10) International Publication Number

WO 02/084944 Al

(51) International Patent Classification’s HO04L 9/28, 9/30

(21) International Application Number: PCT/US02/11658

(22) International Filing Date: 15 April 2002 (15.04.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
60/284,001
09/969,833

16 April 2001 (16.04.2001)
3 October 2001 (03.10.2001)

Us
Us

(71) Applicant and
(72) Inventor: JAKOBSSON, Bjorn, Markus [US/US]; 1203
Garden Street, Hoboken, NJ 07030 (US).

(74) Agent: RYAN, Joseph, B.; Ryan, Mason & Lewis, LLP,
90 Forest Avenue, Locust Valley, NY 11560 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SIL, SK, SL, T], TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Titlee METHODS AND APPARATUS FOR EFFICIENT COMPUTATION OF ONE-WAY CHAINS IN CRYPTOGRAPHIC

APPLICATIONS

DETERMINE ENDPQINT AND
STARTING POINT OF CHAIN

\

DETERMINE INITIAL PEG
POSITIONS AND COMPUTE
CORRESPONDING HELPER VALUES

Y

TO OUTPUT A GIVEN CHAIN
VALUE AT A POSITION OTHER
THAN A CURRENT PEG POSITION,
COMPUTE THAT VALUE USING
APPROPRIATE HELPER VALUE

i

RELOCATE PEGS AND COMPUTE
NEW HELPER VALUES

~10

—~ 12

(57) Abstract: Techniques are disclosed for efficient com-
putation of consecutive values of one-way chains and other
one-way graphs in cryptographic applications. The one-way
chain or graph may be a chain of length s having positions
v i=1, 2, ...s each having a corresponding value v; associ-
ated therewith, wherein the value v; is given by vi=his),
for a given hash function or other one-way function 4. An
initial distribution of helper values may be stored for the
one-way chain of length s, e.g., at positions given by =2
for 0<j<log, s (12). A given one of the output values v; at
a current position in the one-chain may be computed utiliz-
ing a first helper value previously stored for another position
in the one-way chain between the current position and an
endpoint of the chain (14). After computation of the given
output value, the positions of the helper values are adjusted
so as to facilitate computation of subsequent output values
(16). Advantageously, a storage-computation product asso-
ciated with generation of the output values of the one-way
chain has a complexity O((logs)?).

10

15

20

25

30

WO 02/084944 PCT/US02/11658

METHODS AND APPARATUS FOR EFFICTENT COMPUTATION
OF ONE-WAY CHAINS IN CRYPTOGRAPHIC APPLICATIONS

Priority Claim
The present application claims the priority of U.S. Provisional Application Serial No.

60/284,001, filed April 16,2001 in the name of inventor Bjorn Markus Jakobsson and entitled

~ “Method and Apparatus for Efficiently Representing and Computing One-Way Chains,” the

disclosure of which is hereby incorporated by reference herein.

Field of the Invention

The present invention relates generally to the field of cryptography, and more
particularly to techniques for computing consecutive values of one-way chains and other types
of one-way graphs in cryptographic applications such as encryption, decryption, digital

signatures, message authentication, user and device authentication, micro-payments, etc.

Background of the Invention

A one-way function is a function f for which one can compute the value y = f{x) given
the value x, but for which it is computationally infeasible to compute the value x given y, unless
a so-called “trap door” is known, where only particular one-way functions have trap doors. In
the above context, the value x is called the pre-image of y, and the value y is called the image
of x, both relative to the function . Examples of one-way functions include hash functions,
such as the well-known SHA-1 and MD35 hashing algorithms, and functions for generating
message authentication codes (MACs). For additional details regarding these and other one-
way functions, see A.J. Menezes et al., “Handbook of Applied Cryptography,” CRC Press,
1997, which is incorporated by reference herein.

For many cryptographic applications, it is desirable to compute a so-called one-way
chain. This is a sequence of values v, . . . v, such that v, =f{v,). More generally, v, =f(g(v),
where g is a function that maps input of the size of the output of a hash chain or other one-way
function % to the size of the input of the function 4. In particular, g could be a truncation of
information to the right length, a padding of information to the right length, or other similar
mapping function, as is well known to those skilled in the art. It is also known that if 2 is a
function that accepts input of arbitrary length, as hash functions do, then there is no need to use

the function g. Alternatively, one could say that g in such a situation is the identity function.

10

15

20

25

30

WO 02/084944 PCT/US02/11658

In order to simplify the notation used herein, the potential use of the function g will not be
shown explicitly, as this can be understood to be appropriately built into the functionality of the
one-way function 4, if needed.

It should also be noted that one may use different functions for different steps in the
chain, where a “step” of the chain refers to generation of a given chain output value from a
previous chain value. Similarly, one could allow auxiliary inputs to the various steps. For
simplicity of illustration, these particular variants are not explicitly described herein, but those
skilled in the art will recognize that one-way chains may be configured using these and other
variants.

A one-way chain of the type described above can be computed by starting with value
v, and from that value computing v,, by application of the one-way function to v, then
computing v, , by application of the one-way function to v, and so on. This is a general case
of computation of the above value y = f{x), since the value y is used as input to the one-way
function, in the next “link” of the chain. One important reason for using such chains is to
represent time. For example, if a one-way éhain Vv, ...V, is computed by a first party from an
endpoint value v,, and the value v, of the chain is given to a second party, then the first party
can “increment time” by showing consecutive pre-images v,, v;, etc. to the second party. Note
that the second party cannot compute these consecutive pre-images from v, on its own.
However, given a pre-image v,, the second party can verify the correctness of that pre-image
by checking if v; = f{v,). For v,, this verification would have two steps, a first in which v, is
computed, and a second in which v, is computed and compared to the known value v;.

Another known use of one-way chains is as a representation of money or other payment
mechanism in a micro-payments application. For example, if a first party generates a one-way
chain and has it authenticated by a bank, e.g., via a digital signature on the endpoint v, of the
chain, then the first party can pay a second party one unit of payment by revealing v,. The
second party can take this value to the bank to obtain funds for it. The first party can pay a
second unit to the second party by revealing v,, and so on. Note that this simple example is
applicable to only a single payee.

One-way chains are also used in computing keys for verifying the authenticity of
messages having MACs. See A. Perrig et al., “Efficient and Secure Source Authentication for
Multicast,” Proceedings of Network and Distributed System Security Symposium NDSS 2001,
February 2001, A. Perrig et al., “Efficient Authentication and Signing of Multicast Streams over

2

10

15

20

25

30

WO 02/084944 PCT/US02/11658

Lossy Channels,” Proc. of IEEE Security and Privacy Symposium SP 2000, May 2000, and A.
Perrig et al., “TESLA: Multicast Source Authentication Transform,” Proposed IRTF draft,
http://paris.cs.berkeley.edu/~perrig, all of which are incorporated by reference herein, In this
approach, a device would compute and broadcast a message and its corresponding MAC during
a first time interval, and then release the key during a later time interval. Recipients could
verify the MAC after the key is released, and would trust the authenticity of the message based
on the knowledge that only the sender could have known the key at the time the MAC was
broadcast. The key is verified by applying a hash function to that key and comparing the result
to a less recent key associated with the same chain, and therefore with the sender.

The conventional use of one-way chains in these and other applications suffers from a
significant drawback, in that in order to output consecutive chain values, those values must be
either stored or computed. If the values are to be output directly from storage without
computation, the party generally must store all of the values. Alternatively, if the values are to
be computed as needed, the party must compute a given value from the endpoint v, by iterated
application of the function f; assuming f'is not a trap door function for which the party knows
the trap door or wishes to use the trap door. In the case of storage without computation, the
party needs to use storage proportional to the length s of the chain, or in other words, storage
O(s), where O() denotes “on the order of.” In the case of computation as needed, the first party
needs to use computation O(s).

This excessive storage-computation product associated with conventional one-way
chain computation is particularly problematic in so-called “lightweight” processing devices,
such as mobile telephones, smart cards, personal digital assistants (PDAs), and other types of
wireless or portable devices, which generally have limited storage or computational resources,
often due at least in part to the use of battery power in such devices. Other examples include
so-called “smart dust” or “dust computers,” which refer to very small computational devices
which can be used to collectively cover a large area for purposes of surveillance, e.g., seismic
or military.

In these and many other cases, the storage or computational costs associated with
conventional one-way chain computations make it difficult or impossible to implement standard
cryptographic techniques in such devices.

A need therefore exists for improved techniques for computing consecutive pre-image

values of one-way chains and other ohc-way graphs, such that the above-noted storage and

3

10

15

20

25

30

WO 02/084944 PCT/US02/11658

computational costs are substantially reduced, thereby improving the efficiency of
cryptographic techniques and permitting implementation of such techniques in lightweight

processing devices.

Summary of the Invention

The present invention meets the above-described need by providing methods and
apparatus for efficient computation of consecutive values of one-way chains and other one-way
graphs. In accordance with one aspect of the invention, helper values are positioned and
utilized in a manner which substantially reduces a storage-computation product associated with
generating chain values. More particularly, the storage-computation product is reduced using
the techniques of the invention such that it is on the order of the square of the logarithm of the
chain length s, i.e., O((log s)?), rather than on the order of the chain length itself, i.e., O(s), as
in the conventional approaches previously described.

. In an illustrative embodiment of the invention, the one-way chain is a chain of length
s having positions i = 1, 2, . . . s each having a corresponding value v, associated therewith,
wherein the value v, is given by v, = & (v,,,), for a particular hash function or other one-way
function 4. An initial distribution of helper values may be stored for the one-way chain of
length s, e.g., at positions given by i =2/ for 0 < j < log, s. A given one of the output values
v; at a current position in the one-way chain may be computed utilizing a first helper value
previously stored for another position in the one-way chain between the current position and
an endpoint of the chain. After computation of the given output value, the positions of the
helper values are adjusted so as to facilitate computation of subsequent output values.

In accordance with another aspect of the invention, each of the helper values in the
initial disicribution of helper values within the one-way chain corresponds to a peg, the peg
having éssociated therewith other information in addition to the helper value. This other
information may include a destination position in the chain, a priority indicator, and a state.
Upon computation of a given one of the output values, one or more of the pegs are relocated
to new positions in the one-way chain, and for any of the relocated pegs, new helper values are
computed.

The peg 1'elocatfon process is preferably configured such that for each position 7 in the
chain a corresponding output value v; can be computed and any pegs relocated within a

specified computational budget. For example, the number of pegs utilized in the one-way chain

4

10

15

20

25

30

WO 02/084944 PCT/US02/11658

in an illustrative embodiment may be given approximately by ¢ +[log, (6 +1)], where s =2°
is the length of the chain, and the specified computational budget may be given approximately
by abudget 5=| 6/2 |. As a more particular numerical example, if 6 =31, s =2 =2.147 x
10°, and the budget b will be 15, indicating that each chain value will require a maximum of
15 hash function applications to compute. There are n =36 pegs required in this example, each
of which can be implemented using 20 bytes to store the helper value, assuming use ofthe well-
known SHA-1 hash function, plus an additional 8 bytes for storing state information. This
results in a total required storage of only 36 x (20 + 8) = 1008 bytes. Ifthis example one-way
chain is implemented in an application which requires the output of one chain value per second,

the chain would last for more than 68 years.

Brief Description of the Drawings
FIG. 1 illustrates an example one-way chain for which consecutive output values may

be computed in an efficient manner utilizing the techniques of the invention.

FIG. 2A shows an example of an initial setup of stored helper values in an illustrative
embodiment of the invention.

FIG. 2B is a flow diagram of an example one-way chain computation process in
accordance with the invention.

FIG. 3 shows a simplified block diagram of an illustrative processing device in which
the present invention may be wholly or partially implemented.

FIG. 4 shows an example network-based embodiment of the present invention.

Detailed Description of the Invention

The present invention will be illustrated herein using particular example one-way
chains. It should be understood, however, that the techniques of the invention are more broadly
applicable to other types of one-way chains, e.g., chains constructed using other types of one-
way functions, with or without trap doors. As indicated above, one may use different functions
for different steps in the chain, or may allow auxiliary inputs to one or more of the steps. In
addition, the techniques of the invention may also be applied to sequences of values arranged
in the form of a tree or other graph, rather than a linear sequence of chain values. Moreover,

the particular illustrative embodiments shown and described are by way of example only, and

10

15

20

25

30

WO 02/084944 PCT/US02/11658

can be reconfigured or otherwise modified to accommodate the specific needs of a given
application.

The term “one-way function” as used herein is intended to include, by way of example
and without limitation, any function for which it is substantially more efficient to compute
images from pre-images, than it is to compute pre-images from images, e.g., a function for
which inversion is computationally expensive, infeasible or otherwise difficult to achieve.

The term “chain” as used herein is intended to be construed generally so as to include
not only linear sequences of values, but also tree or graph structures having multiple branches,
each of which may itself correspond to a linear sequence of values.

The term “one-way chain” refers to a chain in which at least one pair of values are
related to one another via a one-way function.

FIG. 1 shows an example one-way chain for which"a sequence of consecutive values
may be computed in an efficient manner utilizing the techniques of the invention. The one-way
chain in this example is assumed to be a one-way chain including a total of s elements, eéch
associated with a corresponding position in the chain. The first element of the chain is the
element at position 1, and is also referred to herein as the starting point of the chain. The last
element of the chain, also referred to herein as the endpoint of the chain, is the element at
position s, where s denotes the span or length of the chain. Associated with each of the
positions i = 1, 2,. ... s is a corresponding value v; as shown. The one-way chain in this

example is configured such that the value v, is given by:
V;=h (Vi)

for a given function 4, where it should be understood that # may denote a hash function or
another type of one-way function. A given current value v, in the one-way chain is thus
computed by applying the function 4 to the next value in the chain, where the term “next” in
this context refers to the value v;,;. As indicated previously, computing each value in the chain
starting from the endpoint value at pdsition s is unduly computation intensive, and storing each
value along the chain is unduly storage intensive. The problem is exacerbated for the above-
noted “lightweight” processing devices, i.e., those devices having limited computational or

memory résources.

10

15

20

25

30

WO 02/084944 PCT/US02/11658

The present invention in an illustrative embodiment provides techniques for improving
the efficiency of computing a given value v; of the FIG. 1 one-way chain. In accordance with
the invention, so-called helper values are positioned and utilized in a manner which
substantially reduces the storage-computation product associated with generating chain values.
More particularly, the storage-computation product is reduced using the techniques of the
invention such that it is on the order of the square of the logarithm of the chain length, rather

than on the order of the chain length itself as in the conventional approaches previously

. described.

By way of introducing the invention, assume initially that one wants to compute a value
for an element close to the beginning of the FIG. 1 chain. If no values along the chain are
stored, then the computation requires an amount of work proportional to the length s of the
chain. Ifa helper value is introduced at some distance d from a current chain element for which
the value is to be computed, the cost of computing that value is d-1 hash function evaluations.
The cost for the next value to be computed, in turn, will be d-2 such evaluations. However,
once the helper value is reached, the cost of the next value will be that of reaching the endpoint
of the chain, assuming only one helper value is used. In this simple example, the total cost is
minimized if d = s/2, i.e., the helper value is located at the midpoint of the chain.

If one uses two helper values instead of one, then the entire interval may be split into
three equally long intervals, in which case the cost of computing the next element would be
upper bounded by s/3 hash function evaluations. Various other linear combinations of storage
and computation are also possible. For example, if one stores every 100th value of a hash chain
oflength s, where s » 100, one only needs storage O(s/100), and only needs computation O(100)
in a worst case setting, where, as noted previously herein, O() denotes “on the order of.”
However, the storage-computation product SxC, where S denotes the amount of storage
needed, and C denotes the worst case amount of computation needed per output value, is still
proportional to the length s of the chain, i.e., SxC is O(s).

If the entire interval is split into two equally long intervals, and then the first of these
two is itself split into two, the initial computatioﬁ cost is upper bounded at s/4 hash function
evaluations. This lower initial cost applies for the first half of the entire interval, after which
the distance to the next element, i.e., the endpoint, would be s/2. However, if upon reaching
the first helper value one relocates that helper value to a new midpoint between the initial or

global midpoint and the endpoint, an upper bound of s/4 can be maintained, assuming there are

7

10

15

20

25

30

WO 02/084944 PCT/US02/11658

sufficient remaining computational resources to perform the relocation operation. Note now
that if there are three helper values, there are more values to relocate, but the computational
upper bound is reduced for each element since the intervals decrease in length with an
increasing number. Using approximately log s helper values will maximize the benefits of the
helper values, since in this case for every element for which a value is to be computed, there
will be a helper value at a maximum distance of two positions away.

FIG. 2A illustrates an initial distribution of the above-described helper values in
accordance with the invention. These helper values are also generally referred to herein as
“pegs,” although a given peg may include not only the particular helper value, but also certain
additional information, as will be described in more detail below. Each peg may therefore be
viewed as having a single helper value associated therewith, the helper value being the value
v; of the chain at the peg position. In the FIG. 2A diagram, which shows an initial distribution
of helper values for the FIG. 1 hash chain of length s, helper values or pegs are determined for

positions s, s/2, s/4, s/8, etc. More generally, the pegs are initially placed at positions
i=2/ for0<j<log,s.

In addition to these pegs starting at positions 2, it is generally desirable to include a small
number of additional pegs in order to be able to start moving pegs immediately during the
computation process, before any particular peg is “reached” in the process and thus available
for relocation. The total number of required pegs is O(log).

It is to be appreciated that the particular initial peg placement illustrated and described
in conjunction with FIG. 2A is by way of example only. It is possible for one to place the pegs
at other initial locations similar to those in the example given above, e.g., to place the pegs at
initial positions i = 2/ + 1, or to otherwise initially place the pegs so as to provide a different
tradeoff between storage and computation. For example, instead of dividing intervals into two
equally long portions as in the above example, one could divide each interval into three equal
portions, and then further divide one of the three into three pieces, and so on, which would
result in additional storage cost but reduced computation cost. Other types of interval splitting
can also be used when implementing the present invention.

In operation, the chain values v, for the FIG. 1 one-way chain are typically computed and

output one at a time, with a single value being computed and output for each time interval i.

8

10

15

20

25

30

WO 02/084944 PCT/US02/11658

The pegs described in conjunction with FIG. 2A facilitate this computation. More particularly,
for each time interval 7, the value v, for that interval is output, and one or more of the pegs are
relocated so as to facilitate subsequent computations. The peg relocation process ensures that
for each interval i the required output value v; and the appropriate relocation can be determined
within a certain budget which is also O(log s).

FIG. 2B shows a flow diagram of a hash chain computation process in accordance with
the invention. In step 10, the endpoint and starting point of the chain are determined. . This step
may be implemented by selecting an endpoint value at random, and computing the starting
point value by repeated application of the appropriate hash function until the desired length is
reached. In step 12, initial peg positions are determined and corresponding helper values are
computed. Then, in step 14, the process outputs a given chain value at a position other than a
current position of one of the pegs by computing that value using the appropriate helper value,
i.e., that helper value closest to the position of the given chain value in the direction of the chain
endpoint. After the given chain value is output, step 16 indicates that the pegs are relocated,
and new helper values are computed. More detailed examples of the FIG. 2B process will be
described below.

Relocation of a given peg requires computing its corresponding helper value v, at the
new location. The cost for computing the helper value at the new location is proportional to
the distance that the associated peg is moved. Thus, if a new peg is placed on top of an existing
peg at a position 7, and then moved to a position i-7, the cost is proportional to the distance ;.
Similarly, if a peg is located at position i (whether there is another peg at this position or not),
the cost of moving it to position i-f is also proportional to the distancej. The distancej in Both
of these cases corresponds to the number of one-way function evaluations required to compute
the value at'position i-j from the value at position .

However, the cost metric to be minimized in the illustrative embodiment is not
computation alone, but the previously-described storage-computation product SxC, where S
denotes the amount of storage needed, and C denotes the worst case amount of computation
needed per output value. This is because the helper value at the new location is obtained by
iterated hash function evaluation of the next known value from the new location, just as the
value to be output from that location would be computed. While one could clearly lower the

cost of relocating helper values by increasing the number of such values, thereby decreasing the

10

15

20

25

30

WO 02/084944 PCT/US02/11658

distance between them, the results described herein will generally be evaluated in terms of the
above-noted storage-computation product.

A budget is preferably assigned for each value v, to be computed and output. The
budget corresponds to the computational upper bound per element. The computation of the
current chain element has the highest priority to access this budget, since for each position in
the hash chain, one has to compute and output the appropriate value v,. Any remaining budget
is assigned to the computation of helper values. .

These helper values may be advantageously partitioned into high priority helper values
and low priority helper values. In the illustrative embodiment, high priority helper values are
generally relocated into already relatively small intervals, located close to the current element,
while low priority helper values, in contrast, generally traverse larger distances, and are further
from the current element. The low priority helper values are only assigned those portions of
the above-noted budget that remain after the current element has been computed, and the high
priority helper values have exhausted their needs, i.e., arrived at their respective destinations.

It is also possible to have more than two priority levels. The illustrative embodiments
described herein utilize two priority levels, but further prioritize elements within a given level
based on their distance to the current position, with decreasing priority with an increasing
distance. Here, the current position éorresponds to the position in the chain for which a value
has just been output, or will just be output.

As indicated previously in conjunction with FIG. 2B, during an initialization or sefup
phase of the chain computation process, the value v, at the endpoint of the chain may be
randomly selected, and the desired start point obtained by iterated hash function evaluation.
This function may be performed by a device with fewer computational limitations than the
device that later will compute and output the consecutive values v, for the hash chain elements.
Alternatively, the same device may be used for both initialization of the hash chain and
generation of the outputs v,. The initialization also preferably includes the above-noted initial
placement of pegs, as illustrated in FIG. 2A. Thus, each peg will have a position and a helper
value associated therewith, where the value is obtained for a given peg position by iterated hash
function application of the endpoint value v, or a helper value in the direction of the endpoint.

An example processing device and corresponding system implementation will now be
described with reference to FIGS. 3 and 4, respectively, followed by a more detailed description

of the particular one-way chain computation protocols of the illustrative embodiments.

10

10

15

20

25

30

WO 02/084944 PCT/US02/11658

FIG. 3 shows én example processing device 100 that may be used to implement at least
a portion of a one-way chain computation process in accordance with the invention. The
processing device 100 in this example includes a processor 102, a memory 104, a network
interface 106 and one or more input/output (I/O) devices 108. The device 100 may represent
a lightweight processing device such as a mobile telephone, smart card, personal digital
assistants (PDAs), dust computer, video camera, surveillance device, motion detector, heat
detector, or other type of wireless or portable device, or a portion or combination of these or
other devices. The processor 102 executes one or more software programs stored in memory
104 in order to implement at least a portion of a one-way chain computation protocol in
accordance with the invention. For example, the processor 102 may be configured to receive
a starting point and endpoint of a given chain from one or more other sources, and to compute
consecutive chain values v, in the manner described herein. The processor 102 may also be
configured to randomly select the endpoint value v, and compute the starting point therefrom,
as indicated previously.

FIG. 4 shows an example system configuration which incorporates a number of client
devices 110-1, 110-2, . . . 110-N each being connectable via a network 112 to one or more
server devices 114-1, 114-2, ... 114-M. One or more of the clients 110 or the servers 114 may
be implemented as device 100 of FIG. 3 or using a similar arrangement of elements. In this
type of system configuration, one-way chain values may be generated by one or more of the
clients 110 and sent to one or more of the servers, or vice versa. Other types of communication
between the various elements of FIG. 4 are also possible using the techniques of the invention,
as will be apparent to those skilled in the art.

It should be emphasized that the particular arrangements of elements shown in FIGS.
3 and 4 are by way of example only, and should not be construed as limiting the scope of the
invention in any way. The invention can be implemented in whole or in part using any type of
processing device(s) having a processor and associated memory, regardless of the particular
implementation of these elements within the device(s).

A first illustrative embodiment of a one-way chain computation protocol in accordance
with the invention will now be described. This example protocol is correct, meaning that it can
be shown that the correct value will be output, regardless of the length of the chain or the
particular values on the chain. It is also complete, which means that the computation can be

performed without exceeding the specified computational limitations.

11

10

15

20

25

30

WO 02/084944 PCT/US02/11658

In this embodiment, a hash chain H is given by a sequence of values {v;,...,V,...
v,}, such as that previously described in conjunction with FIG. 1, where v, is a value chosen
uniformly at random from {0,1}*, and v,= h(v,,), where & : {0,1}" - {0,1}*is a hash function,
such as the above-noted SHA-1 or MD5 hash function, or another type of one-way function or
other function for which it is substantially more efficient to compute images from pre-images
than it is to compute pre-images from images. The function 4 is assumed in this embodiment
to be publicly computable, i.e., computable with access to public information only, although
it is also possible to used keyed functions, in which case a portion of the input is generally not
public. The value v, is the starting point of the chain, the value v, is the endpoint of the chain,
and the span s denotes the length of the chain, e.g., the number of consecutive elements to be
generated. It is assumed for this embodiment that s = 2° for an integer ¢ > 2. If other chain
lengths are desired, s may be selected as the smallest value of the above form that is greater
than the desired length.

The budget b is defined as the number of computational units allowed per element of
the hash chain that is output. Here, only hash function evaluations are counted and not other
computational steps associated with the protocol execution. This is reasonable given the fact
that the computational effort of performing one hash function evaluation far exceeds the
remaining work per element.

Each helper value, and the chain endpoint, is associated with a peg p,. Each peg p; has
a position in the chain and a value associated with it. If position is the position of a peg, then

itsvalueisv Additionally, each peg is associated with a destination (the position to which

‘position*
itis going), a priority (high or low), and an activity status or state (free, ready, active, arrived).

The variable n will be used in this embodiment to denote the number of pegs used. The
amount of storage needed is 7 times the amount needed per peg, plus the amount needed for the
execution of the protocol.

After performing a setup phase of the type described previously, the computation
protocol in this embodiment will generate the sequence of values comprising the hash chain H,
element by element, starting from v,, using a minimal budget and a minimal number of pegs.
The protocol has a required budget b =| ¢/2 | and uses n= o + | log, (c +1) | pegs, where, as
indicated above, s = 2° is the number of elements of the hash chain H.

If a peg is located at the position corresponding to the current output, it is said that this

peg has been “reached,” at which time it enters the fiee state. All pegs in the fiee state are

12

10

15

20

25

30

WO 02/084944 PCT/US02/11658

assigned a new position, destination, state and priority, according o guidelines that are set up
to guarantee protocol completeness. These guidelines are described below.

At each step, the appropriate hash chain value, i.e., the current hash chain value, is
computed and output. Then, any remaining budget is assigned to active high-priority pegs,
starting with the peg with the lowest position value, i.e., the peg closest to the starting point.
Any still remaining budget is assigned to active low-priority pegs. This is to ensure that
computational results will be available when needed.

If several pegs have the same priority level, the peg with the smallest distance to the
current position is selected. One could assign different priorities based on distance in this
manner, but for simplicity two levels are used, with prioritization within a given level based on
distance to the current position.

High-priority pegs are started at the “far end” of the first interval after the current value,
only counting intervals that are larger than two. High-priority pegs are only allowed to be in
the active state in positions lower than the active low-priority peg, and are otherwise kept in the
free state. This is to make sure that high-priority pegs do not take too much of the available
budget, i.e., it slows high-priority pegs down to the benefit of low-priority pegs when the
former complete their imminent tasks.

Low-priority pegs are started at a position such that they cannot complete, i.e., arrive
at their destinations, before the next peg is reached. Thus, only one active low-priority peg is
needed at a time, since one will suffice to absorb any leftover computational units. In addition
to the active low-priority peg, there is preferably one “backup” low-priority peg (in the ready
state). This backup low-priority peg is activated as soon as the previously active peg has
arrived at its destination. When a peg is reached, its priority is set to low if there is currently
no backup low-priority peg; otherwise, it is made a high-priority peg. These rules guarantee that
there always is a low-priority peg to consume leftover computational units, even right after an
active peg has reached its destination.

The initialization phase in this illustrative embodiment is as follows. As indicated
above, the endpoint v, is chosen uniformly at random from {0,1}¥, where k is assumed in this
embodiment to be set to 160, although other values could also be used. The sequence H= {v,,

.5 V..., v} is computed by iterated application of the hash function %, where v, = h(v,,,),
1<i<s.

Pegp;, 1 <j <o, for 6 =log, s, is initialized as follows:

13

10

15

20

25

WO 02/084944 PCT/US02/11658

r position < 2/

destination « 2’
ﬂ

value < v,

| status « arrived.

The remaining pegs, p;, 6 </ < n, have their status set to fiee. All\the peg information
is stored on the device that is to generate the desired output sequence. This device also stores
a pair of counters, current - 0 and backup ~ 0, along with the span or length s. At the
conclusion of the initialization phase, a pair (startpoint, current) = (v,,0) may be output.

In the following, it is assumed that the pegs p;, 1 <j < n, are kept sorted with respect
to their destination, with the lowest destination value first, and that pegs that do not have a
destination assigned appear last in the sorted list. Consequently, the next peg to be reached
(from the current position) will always be p,. When the status of the pegs is changed at any
point, the altered item is inserted at the appropriate place in this sorted list. The notation LP
(short for low priority) is used as an alias of the active low-priority peg. Thus, LP.position is
the current position of the active low-priority peg, independently of what peg number this
corresponds to. Similarly, BU refers to the backup low-priority peg, and BU.position is the
current position of the backup low-priority peg.

| The following protocol is performed in order to compute the hash chain in the manner
indicated above. Each iteration of the protocol causes the next hash chain value to be generated
and output. The protocol makes use of two routines, placeHP and placeLP. These routines

assign values to high priority and low priority pegs, respectively, and are also described below.

L. Set available - b. (Set the remaining budget)

2, Increase current by 1. (Current is position of output value)

3. If current is odd then (No peg at this position)
output A(p,.value), (Compute and output)
decrease available by 1,

else (A peg at this position)
output p,.value, (Output value, set peg state to
free)

14

10

15

20

25

30

WO 02/084944

set p,.status - free,
if current = s, then halt
4. For all free pegs p; do
if backup = 0 then
Dp;priority < low,

D;-status - ready,

BU - p,
backup ~ 1,
else
call placeHP (p;).
5. Sort pegs.
6. Setj«- 1.

7. ‘While available > 0 do

decrease available by 1,

decrease p;position by 1,
p;value - h(p,value),
if p,.position = p;.destination then
D;-Status - arrived,
if p,.priority = low then
LP ~ BU,
backup - 0,
call placeLP,
sort pegs,
increase j by 1.
8. Sort pegs.
9. Goto 1.

PCT/US02/11658

(Last value in sequence)
(Reassign free pegs)
(Backup low-priority needed)

(Make it high priority)

(First peg first)

(Decrease remaining budget by
one)

(Move peg)

(and compute its value)

(Peg arrived)

(A low-priority peg arrived)
(Backup becomes low priority)

(Activate new low priority peg)

(Next peg)

(Next element now)

The routine placeLP willnow be described. Initially, it will be described how one could

compute the sequence of values assigned to variables during calls to placeLP. It will later be

described how just one such assignment can be computed, as opposed to an entire sequence.

An approach which minimizes usage of stack space will also be described. The desired

15

10

15

20

25

30

WO 02/084944 PCT/US02/11658

functionality of the placeLP routine is to compute the next starting point for a low-priority peg,
along with the associated destination.

Inthe following, “normalized” positions are used for ease of illustration and to provide
uniformity over different chain lengths. To obtain an actual position from a normalized
position, one multiples the latter by a value A, where A is the smallest power of two not smaller
than 25, and where b is the budget. Thus, the series of normalized starting points, starting with
“4,8,6,8,16,12, 10, 12, 16, 14, 16), corresponds to a series (32, 64, 48, 64, 128, 96, 80, 96,
128,112, 128) for b= 4, A= 8. Similarly, the destination points and the distances between the
starting points for the pegs and their destinations are described in normalized terms.

Over time, pegs are placed at appropriate positions in the chain, each such position
being in an interval whose endpoints correspond to other pegs and/or the current position. In
the above illustrative embodiment, a given peg splits an interval into two equally large
intervals. The resulting portions are then split again, always splitting the largest portion, and
breaking ties between equally large intervals by selecting that which is located closest to the
starting point of the chain, i.e., closest to the current position, but between this position and the
endpoint of the chain.

The first split of an interval may be viewed as being associated with the root of a tree.
The children of the root correspond to the splits of the resulting two intervals, and their children
by their respective splits. The leaves correspond to the smallest splits of the intervals. With
eachnode of the tree, there is associated a starting point, a distance and a destination, where the
destination is the difference between the starting point and the distance.

The starting point for the root of a tree of height j is start = 2*!. The distance of a node
at height 7 in the tree is dist = 2"'. Thus, the distance of the root is 2!, and leaves of the tree
all have normalized distance dist = 1. The destination dest of any node (and the root in
particular) is the difference between its starting point and distance, i.e., dest = start - dist.
Finally, the starting point for a left child is its parent’s destination value, parent.dest, while it
is the parent’s starting value parent.start for a right child.

Consider the sequence of assignments of start and dest that one obtains from performing
a depth-first search (with the left child always traversed before the right child). That is the
sequence of assignments corresponding to the associated initial interval, i.e., the interval before

splitting. Consider further the sequence of such assignments one gets from traversing a “forest”

16

10

15

20

25

WO 02/084944 PCT/US02/11658

of such trees, where the first tree has height one, and each tree is one level higher than its
predecessor. That is the needed sequence of normalized assignments.
Each call to placeLP first computes such a pair of normalized values, all from the above

described sequence, then multiplies these by A and returns the result. Thus, it sets

LP. priority < low
LP.status < active

LP. position « \ start
LP.destination <)\ dest

As soon as A start > s, no assignment is performed, since there is no longer any need for
low priority pegs. Any calls to placeLP after that return without any assignment.

The routine placeLP generates a sequence of elements, where the ith element of the
sequence corresponds to the pair of starting position and destination on the hash chain H, of the
ith low-priority peg to be activated. The starting point corresponds to that of a peg already
placed on the hash chain, and the destination corresponds to the middle point between this same
peg and the closest peg in the direction of the current pointer. The distance between starting
point and destination is at least twice the budget per element that is available for moving pegs,
which guarantees that the low priority peg does not reach its destination before another peg has
been activated.

The routine for computing the next location for a high-priority peg is similar to the
above, its main differences being that (1) the real and normalized values coincide, and (2) after
the trees in the forest have reached height /og, A, they stop growing.

Thus, the starting position of the ith tree is start = 2*! for i < log, A, and start =2 (i -
log,A) for i >log, \. Asbefore, the starting point for a left child is its parent’s destination value,
parent.dest, while it is the parent’s starting value parent.start for a right child. The distance
of anode atheight i in the tree is dist=2"1, The destination, as before, is the difference between
its starting point and distance, i.e., dest = start - dist.

. Before any assignment is made, it is verified that start < LP.position, i.e., that the

assignment in question is to a position before the active low-priority peg. Ifthis is not the case,

17

10

15

20

25

WO 02/084944 PCT/US02/11658

no assignment is made at this point, and the comparison is re-performed at the next call to the

routine. Otherwise, the following assignment is made to peg p; in the routine:

p,-priority < high
D;-Status « active
D;-position « start
p;-destination « dest

The routine placeHP will now be described. This routine generates a sequence of
elements, where the ith element of the sequence corresponds to the pair (start, dest) of the ith
high-priority peg to be activated. The starting point start corresponds to that of a peg already
placed on the hash chain, and the destination dest corresponds to the middle point between this
same peg and the closest peg in the direction of the current pointer. The starting point is chosen
as a point between the current pointer and the active low-priority peg, as close to the current
pointer as possible, such that the distance between the starting point and the destination is at
least two.

A number of issues relating to the storage complexity of the above-described placeLP
and placeHP routines will now be addressed. A memory stack may be used to facilitate the
above-described processing, as will be readily appreciated by those skilled in the art.
Alternatively, in order to conserve working space, one can opt for a solution that does not use

a stack, but which recomputes the state from scratch when needed. One variable would store

‘the height of the tree, and another would store the number of steps (using depth-first search)

from the root. Additionally, yariables are needed for start, dist and dest. To compute these
values, one would (at each time) begin with their starting assignments, and then modify them
according to the tree traversals leading to the wanted number of steps from the root. This is
done in accordance with the respective assignments, as above. It should be noted that none of
these operations require any hash function evaluation.

The maximum tree height for placeLP is o - log, A-1, since this corresponds to a
normalized starting point of 2°* and a starting point of 2°. Thus, this variable needs | log, ¢

| bits. For placeHP, the maximum height is log, A, requiring log, [log, [A | bits of storage.

A tree of the maximum height has 2°°**"' - 1 nodes for placeLP, and 2*- 1 nodes for

18

10

15

20

25

30

WO 02/084944 PCT/US02/11658

placeHP. Thus, the distances from the root can be represented with o - log, A -1 respective A
bits. Finally, the maximum value of the last three variables is o bits for each one of them, since
the maximum value they can be assigned is 2°. These only keep state within a computation, and
so it is not necessary to have one set for each routine.

Therefore, the storage requirements of placeLP and placeHP are less than 46 + log,c
+A-1 bits. This is dwarfed by the storage requirements for the pegs, which require 160 bits to
store the value, and some low number of bits (depending on the length of the chain) for the
remaining state information, e.g., counters, etc. In particular, o bits are needed for each of the
position and the destination. In this embodiment, a total of about (160 + 26)(c + [log, (6 +1)]
) bits are required.

Consider a one-way chain of length s = 2°, a budget b = | 6/2 | and n pegs, for n = ¢ +
[log, (6 +1)]. The sum of the budgets from the setup stage until a particular element is referred
to as the cumulative budget at the element in question.

As a more particular numerical example, if 6=31,s=2%"=2. 147 x 10°, and the budget
b will be 15, indicating that each chain value will require a maximum of 15 hash function
applications to compute. There are # =36 pegs required in this example, each of which can be
implemented using 20 bytes to store the helper value, assuming use of the well-known SHA-1
hash function, described in FIPS PUB 180-1, “Secure Hash Standard, SHA-1,”
www.itl.nist.gov/fipspubs/fip180-1.htm, which is incorporated by reference herein, plus an
additional 8 bytes for storing state information. This results in a total required storage of 36 x
(20 + 8) = 1008 bytes. Ifthis one-way chain is implemented in an application which requires
the output of one chain value per second, the chain would last for more than 68 years.

As indicated above, the one-way chain computation protocol in this illustrative
embodiment exhibits the property of completeness. The protocol with a budget restriction of
b and a storage restriction of # may be said to succeed at element j if and only if it outputs the
Jth value v; of the hash sequence, and if it succeeded at element j-1. The protocol is said to
succeed automatically at element 1, which corresponds to the setup phase, on which in the
illustrative embodiment there are no strict restrictions placed in terms of computation and
storage.

It can be shown that the protocol succeeds at element j, 2 < j < s, for a chain span or

length s = 2°, budget b =|0/2 | and n = o + [log, (o +1) | pegs.

19

10

15

20

25

30

WO 02/084944 PCT/US02/11658

The above-described protocol is a presently preferred embodiment of the present
invention. An example of one possible variant of the protocol is described below. Those

skilled in the art will recognize that numerous other variants are also possible.

A. Initiation
L. Select v, and set temp « v,.
2 Compute v1 ... v, from v, in the manner previously described.
3 Set counters k « s, m < n.
4 Letj, < &, FIX(j,)+« v
5. Set k ~ trunc(k/2) (i.e., divide in two, round down), and m « m-1.
6 Repeat & times: temp ~ h(temp).
7 If £>1 then go to 4.
8

Set current < 1.

The above initiation process positions pegs at the locations s, /2, s/4, . . . 2, and
therefore corresponds generally to the FIG. 2A initial peg setup described in conjunction with
the preferred embodiment. As indicated previously, the pegs are computed and stored for a
given device, and the computations may but need not be performed by an auxiliary device.
Once the given device is initialized in the manner described above, the one-way chain

computation process in operation is as follows.

B. Operation

1. Increase current by one. Set available «~ b.

2. If, for any p;.current= p;position then output p;.value. Thenrelocate this value
p; according to the placeHP or placeLP routine, depending on which one is needed.

3. Otherwise, set femp = p; for the p; with smallest p;position (in the preferred
embodiment, this is always p, due to the sorting). Then, repeat the following until
temp.position = current:

decrease available by one,
decrease temp.position by one,

set temp.value = h(temp.value).

20

10

15

20

25

30

WO 02/084944 PCT/US02/11658

4, Select the next peg to be moved. In the preferred embodiment, there are already
two priorities. Here, the priority is given to (1) the closest value if it is not where it needs to
be next time (i.e., the difference between p,.destination and p;.position > b), and otherwise (2)
the value with the largest position. It should be noted that although this is not an optimal
strategy for assigning priority, it is acceptable for many chains.

5. Move the selected peg p; as follows:

decrease p;.position by one,
D;-value < h(p;position).
6. If p,position = p,.destination then p;.status « arrived.

7. Decrement available by one, and then if available > 1, go to 4.

The above computation process corresponds to steps 1-8 of the computation process in
the preferred embodiment, and is repeated for each chain output value to be generated. As
indicated above, numerous other variants of the illustrative protocols can be used to implement
the techniques of the present invention.

The above-described illustrative one-way chain computation protocols provide
significant advantages over conventional techniques. More particularly, the above protocols
have a storage-computation product that is on the order of the square of the logarithm of the
chain length, i.e., is O((log 5)*), rather than O(s) as it would be using the conventional
techniques. The one-way chain computation of the present invention is suitable for use in
numerous cryptographic applications, such as digital signatures, message authentication, user
and device authentication, and micro-payments, and its storage and computational efficiency
allows these and other cryptographic applications to be implemented on lightweight devicgs.

By way of example, the invention can be used to generate publicly verifiable signatures
in a particularly efficient manner, using otherwise conventional techniques based on one-way
chain computation. The resulting signatures are generated far more efficiently than
conventional Merkle and Lamport signatures, which are generally considered among the most
efficient of conventional signatures, and are described in L. Lamport, “Constructing Digital
Signatures from a One Way Function,” SRI International Technical Report CSL-98 (October
1979), and R. Merkle, “A digital signature based on a conventional encryption function,”

Proceedings of Crypto ‘87, respectively, both of which are incorporated by reference herein.

21

10

15

20

25

30

WO 02/084944 PCT/US02/11658

More particularly, a digital signature application of the invention can make use of
techniques similar to those described in the previously-cited A. Perrig et al. references. In this
case, a receiving party time-stamps a message authentication code (MAC) once it is received
from another party, using conventional time-stamping techniques, and then verifies the MAC
once the corresponding key is received, where the key is a value computed on a hash chain.
Then, given the key and the time-stamp, along with the message and the MAC, a third party can
verify the correctness of the MAC and the fact that it was receiveduprior to the time when the
key was released. This Would constitute a binding digital signature.

The present invention can also be used in secure login applications, e.g., applications
in which it does not matter if a password is compromised during or after a login session, since
the password is used only once. In particular, one can use the consecutive values in the hash
chain as passwords, starting with v,.

With reference to the FIG. 4 system, such a secure login process may be implemented
as follows. Assume client 110-1 wants to login to the set of servers 114 using passwords that
are sent either encrypted or unencrypted over the network 112. The client 110-1 wants to
prevent an attacker from reusing a given transmitted password. Therefore, the passwords are
generated as values on a hash chain, in the manner described herein, such that chain value v,
is sent as the first password, v, as the second password, etc. Another party, which may be
another client 110 or a particular one of the servers 114, registers the client 110-1 with the
servers 114, and then transmits to the client 110-1 the endpoint value v, of the hash chain plus
any additional registration information, prior to the first login attempt by the client 110-1. For
a given login attempt, the client 110-1 sends to the servers 114 identifying information,
registration information, the appropriate chain value v,, v,, etc., and a counter identifying how
many login attempts have been performed or otherwise specifying which chain value has been
transmitted. In a case in which the login attempts are inherently time based, the counter may
be implicit. For additional details regarding this particular application, see L. Lamport,
“Password authentication with insecure communication,” Communications of the ACM,
24(11):770-772, November 1981, which is incorporated by reference herein.

The invention is generally useful in any application which utilizes one-way chain
computation. Inasmuch as the invention substantially improves the storage and computational

efficiency of the one-way chain computation process, it improves the efficiency of any

22

10

15

20

25

30

WO 02/084944 PCT/US02/11658

application that requires one-way chain computation. The invention can be implemented in any
type of processing device capable of computing one or more one-way chain values.

As indicated previously, the invention can be applied to an arrangement of elements in
the form of a tree or other type of graph. Such arrangements fall within the general definition
of “chain” given above. Two examples will now be provided illustrating the application of the
techniques of the invention to tree or graph structures. Note that it is merely a matter of
modifying the update strategy to suit the application and the particular tree or graph topology,
and that the principles otherwise remain the same as those previously described.

Example 1: Tree structure. In such a structure, the endpoint value v, corresponds to the
root node of the tree. For simplicity of notation, this node will be referred to asR. Let V1 and
V2 be the two children of R, and V11 and V12 be the two children of V1. Similarly, one can
name all the nodes in the tree. It will be clear to one skilled in the art that the invention relates
not only to binary trees, as above, but to trees with any fan-out of the vertices. Let s be the
height of the tree. The value associated with the root is R.val, and may be randomly chosen,
and let Vx.val be the value associated with the node Vx, where x denotes a particular path, such
as “1112.” Then, the value of the first child of Vx is Vx1.val = A(Vx.val,1), and the value of
the second child of Vx is Vx2.val = A(Vx.val,2). Other assignments may be chosen as well, as
will be appreciated by one skilled in the art. From this, it can be seen that given the value
associated with a node Vx1 or Vx2, it is infeasible to determine the value associated with its
parent, VX, without knowledge of a value associated with one of its ancestors. Now, let some
portion of the leaves of the tree be known, and let pegs be located at some vertices of the tree.
For example, assume that one peg is located at position V1. This allows a sped-up computation
of all of the nodes to whom V1 is an ancestor. In order to compute a node value in the other
half of the tree, one would have to go up to R. Instead, the peg may be located on the “all-one”
path, half-way from the root to the leaves. This allows the sped-up computation of a smaller
portion of the tree, but with a greater speed-up. A second peg may be located on another
portion of the tree. For example, a second peg may be located on the half-distance between the
first peg and the leaves, on the “all-one” path. This would further speed up the computation
of nodes below this second peg, and would allow other nodes, on the path below the first but
not the second peg to be computed somewhat faster. Still other nodes could still be computed,
but requiring the path all the way from the root to be followed. Now, once a node has been

computed, the pegs may be relocated in accordance with the probability distribution of the next

23

10

15

20

25

30

WO 02/084944 PCT/US02/11658

access. Thus, if an access in one part of the tree makes an access in a second part of the tree
more likely, one or more pegs may be relocated to this part. This will be done, as for the
illustrative embodiments previously described, by spending any available budget, according to
a specified prioritization, and computing new values as the consecutive one-way images of
ancestor values.

Example 2: Two linked chains. Consider a situation in which there are two linked
chains, each having its own endpoint, and where some fraction of the chain values are functions
not only of the values of their corresponding chain, but also of values of the other chain. Note
that the different chains may use different one-way functions, and may operate on different
portibns of the input. This situation therefore describes a particular form of a directed acyclic
graph (DAG), and it will be appreciated by those skilled in the art that other such examples can
be constructed. In a simple case, one can let every element at distance 7 from the endpoint of
its chain be a function of both its predecessor (element -1 of that chain) and of the other
element at that distance from the endpoint of the other chain (element i-1 of the other chain).
Let the lengths of each of the chains be s, and assume that pegs have been placed at distances
s/2, s/4, /3, etc., from the starting point of one of the chains, with no pegs placed on the other
chain. By allowing the efficient computation of all values of one chain, one can also compute
all values of the other chain, since these are interlinked. As will be appreciated by one skilled
in the art, any number of chains can be interlinked in this manner, and could utilize the
techniques of the invention to allow efficient computation of output values.

It should again be emphasized that the exemplary one-way chain computation
techniques described herein are intended to illustrate the operation of the invention, and
therefore should not be construed as limiting the invention to any particular embodiment or
group of embodiments. For example, although illustrated using particular types of one-way
chains, the invention can be applied to other types of one-way functions, and to arrangements
of elements in other forms, such as trees or other types of graphs, as was indicated previously.
In addition, the particular number of helper values used, their initial distribution, and the
manner in which the corresponding pegs are relocated upon computation and output of a given
chain value can be varied in alternative embodiments. These and numerous other alternative
embodiments within the scope of the following claims will be apparent to those skilled in the

art.

24

10

15

20

25

30

WO 02/084944 PCT/US02/11658

Claims
What is claimed is:

1. A method for generating one or more output values of a one-way chain, the one-way
chain having at least one starting point and at least one endpoint, the method comprising the
steps of:

computing a given one of the output values at a current position in the one-way
chain utilizing a first helper value previously stored for another position in the one-way chain
between the current position and the endpoint of the chain; and

computing at least a second helper value for a new position in the chain between
the current position and the endpoint of the chain, the second helper value being utilizable to

facilitate subsequent computation of another one of the output values.

2. The method of claim 1 wherein the one-way chain comprises a linear chain of values

having a single starting point and a single endpoint.

3. The method of claim 1 wherein the one-way chain comprises a tree or graph structure

having at least one of multiple starting points and multiple endpoints.

4. The method of claim 1 wherein the one-way chain comprises a chain of length s
having positions i = 1, 2, . . . s each having a corresponding value v; associated therewith,
wherein the value v, is given by:

vi = h (vi-)-l),
for a given one-way function A.
5. The method of claim 4 wherein the function 4 comprises a hash function.
6. The method of claim 1 wherein a storage-computation product associated with

generation of the output values of the one-way chain has a complexity O((log s)?) where s

denotes the length of the chain.

25

10

15

20

25

30

WO 02/084944 PCT/US02/11658

7. The method of claim 1 further including the step of determining the endpoint and
starting point of the one-way chain, by selecting an endpoint value at random from a designated
space and computing the starting point by repeated application of a one-way function to the

selected endpoint value. .

8. The method of claim 1 further including the step of storing an initial distribution of

helper values for the one-way chain, wherein the helper values are at positions given by:

i=2/ for0<j<log,s,

‘where s is the length of the chain.

9. The method of claim 1 further including the step of outputting a particular helper

value as the output value for the position in the chain that corresponds to that helper value.

10. The method of claim 1 further including the step of overwriting with a new helper
value a memory location of a previous helper value when at least one specified condition is

met.

11. The method of claim 10 wherein the specified condition is met when the position
of the previous helper value in the chain is reached or a peg corresponding to the previous

helper value is relocated to a new position.

12. The method of claim 1 wherein each of the helper values in an initial distribution
of helper values within the one-way chain corresponds to a peg, the peg having other
information in addition to the helper value associated therewith, wherein upon computation of
a given one of the output values, one or more of the pegs are relocated to new positions in the

one-way chain, and for any of the relocated pegs, new helper values are computed.

13. The method of claim 12 wherein the peg relocation process is configured such that
for each position 7 in the chain a corresponding output value v, can be computed and one or

more pegs relocated within a specified computational budget.

26

10

15

20

25

30

WO 02/084944 PCT/US02/11658

14. The method of claim 12 wherein the additional information associated with a given

peg includes a destination position in the chain, a priority, and a state.

15. The method of claim 14 wherein the priority may be one of a plurality of priority

levels including at least a high priority and a low priority.

16. The method of claim 15 wherein pegs are further prioritized within a given one of

the priority levels based on distance from the current position in the chain.

17. The method of claim 14 wherein the state may be one of a free state, a ready state,

an active state and an arrived state.

18. The method of claim 12 wherein the number of pegs utilized in the one-way chain

is given approximately by:
c+[log,(c+1)7],
where s = 2° is the length of the chain.

19. The method of claim 13 wherein the specified computational budget is given

approximately by:
b=|0a/2],
where s = 2° is the length of the chain.

20. An apparatus for generating one or more output values of a one-way chain, the one-
way chain having at least one starting point and at least one éndpoint, the apparatus comprising:
a memory; and |
a processor coupled to the memory;
the processor being operative to compute a given one of the output values at a

current position in the one-way chain utilizing a first helper value previously stored in the

27

10

15

20

WO 02/084944 PCT/US02/11658

memory for another position in the one-way chain between the current position and the
endpoint of the chain; and to compute at least a second helper value for a new position in the
chain between the current position and the endpoint of the chain, the second helper value being

utilizable to facilitate subsequent computation of another one of the output values.

21. A machine-readable medium storing one or more programs for generating one or
more output values of a one-way chain, the one-way chain having at least one starting point and
at least one endpoint, the one or more programs when executed performing the steps of:

computing a given one of the output values at a current position in the one-way
chain utilizing a first helper value previously stored for another position in the one-way chain
between the current position and the endpoint of the chain; and

computing at least a second helper value for a new position in the chain between
the current position and the endpoint of the chain, the second helper value being utilizable to

facilitate subsequent computation of another one of the output values.

22. A method for generating one or more output values of a one-way chain, the method
comprising the steps of:
computing output values in the one-way chain utilizing one or more helper
values stored for designated positions in the chain; and
repositioning one or more of the helper values after computation of a given one

of the output values to facilitate subsequent computation of another one of the output values.

28

WO 02/084944

1/2

PCT/US02/11658

V1 v V3 4 Vg—1 v
[B h @ = h [B h [] s.<—h——'.s
1 2 3 1 5-1 s
FIG. 24
Py ' |
@ 0—@ — L 9
's/i63/s S/ $/y S
FIG. 2B
DETERMINE ENDPOINT AND |___ o
STARTING POINT OF CHAIN
DETERMINE INITIAL PEG
POSITIONS AND COMPUTE |~ 12
CORRESPONDING HELPER VALUES
T0 OUTPUT A GIVEN CHAIN
VALUE AT A POSITION OTHER
THAN A CURRENT PEG POSITION, | 14

COMPUTE THAT VALUE USING
APPROPRIATE HELPER VALUE

y

RELOCATE PEGS AND COMPUTE
NEW HELPER VALUES

WO 02/084944

2/2

FIG. 3

106 —

100
J

PCT/US02/11658

108~

110-1~~y CLIENT

110-2~~ CLIENT

110-N~~ CLIENT

NETWORK INTERFACE

PROCESSOR [~ 102

1/0 DEVICE(S)
MEMORY |~ 104
FIG. 4
112

SERVER |~ 114-1
m SERVER |~ 114-2
» SERVER |-~ 114-M

INTERNATIONAL SEARCH REPORT

International application No.

, PCT/US02/11658
A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) HO4L 9/28, 9/30

USCL 380/28, 30

|_According to International Patent Classifjcation (IPC) or to both national classification and I[PC

B. FIELDS SEARCHED

U.S. : Please See Continuation Sheet

Minimmm documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
A.J. Menezes et al., "Handbook of Applied Cryptography," CRC Press, 16 October 1997.

Please See Continuation Sheet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,434,919 A (CHAUM) 18 July 1995 (18.07.1995), column 6, lines 5-9; column 10, 1-5, 7-18, 20-22
-— lines 11-17 and 28-55; column 11, lines 14-46; figure 3, items 311-314, 321%-324%, 331*%- | = cooemmeeeee
A 334%, 321-324, 331-334, 371, and 381; and figure 4e. 6, 19
X US 6,097,811 A (MICALI) 1 August 2000 (01.08.2000), column 4, lines 4-29 and 45-57; 1-5, 7-10, 12, 14-18,
--- and figure 1. 20, 21
A1
6, 11, 13, 19,22
X JP 2000-259611 A (MITSUBISHI ELECTRIC CORP.) 22 September 2000 (22.09.2000), 1-5, 7-12, 14-18, 20-
- Machine Translation of Detailed Description into English, page 8, paragraphs {0084]- 22
A [0087]; page 9, paragraphs [0088}-[0097}; and figures 8-11. | eeem
6, 13, 19

Further documents are listed in the continnation of Box C.

L]

See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art whickh is not considered to be
of particular relevance

“E” earlier application or patent published on or after the internarional filing date

“L” document which may throw doubts cn priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the

priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step

when the document is taken alone

“xY” document of particular re} s the claimed i ion cannot be
considered to involve an fnventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

01 July 2002 (01.07.2002)

Date of @123 g W{Zﬁﬂ?‘ﬂ search report

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Authorized officer A—’ Lm-::\

o. (703) 305-3900

Justin T,

Tel

Form PCT/ISA/210 (second sheet) (July 1998)

7

International application No.
INTERNATIONAL SEARCH REPORT
PCT/US02/11658

Continuation of B. FIELDS SEARCHED Item 1:
IPC(7) : HO4L 9/32; GOGF 7/08, 7/38, 17/60

US CL : 380/28, 30; 713/ 176; 708/290, 491, 492, 494; 705/40, 50, 64, 75

Continuation of B. FIELDS SEARCHED Item 3:

EAST(USPAT, EPO, JPO, DERWENT, USPGPUT), IEEE Xplore, DIALOG, Advances in Cryptology

search terms: one-way, hash, chain, graph, tree, verfy, validate, confirm, authenticate, identify, temporal, time, stage, increment,
order, sign, signature, digest, money, payment, currency, transaction, SET, calculate, compute, derive, determine, obtain, output,
value, number, point, helper, known, given, another, second, alternate, different, additional

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

