
(19) *DE202008017916U120101209*
(10) DE 20 2008 017 916 U1 2010.12.09

(12) Gebrauchsmusterschrift

(21) Aktenzeichen: 20 2008 017 916.5
(22) Anmeldetag: 22.01.2008
(67) aus Patentanmeldung: 10 2008 005 515.8
(47) Eintragungstag: 04.11.2010
(43) Bekanntmachung im Patentblatt: 09.12.2010

(51) Int Cl.8: G06F 9/46 (2006.01)
G06F 9/45 (2006.01)

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Bezeichnung: Virtuelle Architektur und virtueller Befehlssatz für die Berechnung paralleler Befehlsfolgen

(57) Hauptanspruch: Parallelverarbeitungsarchitektur zum
Definieren eines Parallelverarbeitungsvorgangs, wobei die
Parallelverarbeitungsarchitektur einen Parallelprozessor
und einen Speicher aufweist,
wobei der Speicher einen ersten Programmcode enthält,
der eine Abfolge von Operationen definiert, die für jede
einer Mehrzahl von virtuellen Befehlsfolgen in einer Grup-
pierung zusammenwirkender virtueller Befehlsfolgen aus-
geführt werden sollen,
wobei der Parallelprozessor betreibbar ist, den ersten Pro-
grammcode in ein Programm virtueller Befehlsfolgen zu
kompilieren, das eine Abfolge von Befehlen je Befehls-
folge definiert, die für eine repräsentative virtuelle Befehls-
folge der Mehrzahl von virtuellen Befehlsfolgen ausgeführt
werden sollen, wobei die Abfolge von Befehlen je Befehls-
folge mindestens einen Befehl enthält, der ein Zusammen-
wirkungsverhalten zwischen der repräsentativen virtuellen
Befehlsfolge und einer oder mehreren anderen virtuellen
Befehlsfolgen der Mehrzahl von virtuellen Befehlsfolgen
definiert; und
wobei der Speicher das Programm virtueller Befehlsfolgen
enthält.

(30) Unionspriorität:
11/627,892 26.01.2007 US

(73) Name und Wohnsitz des Inhabers:
Nvidia Corp., Santa Clara, Calif., US

(74) Name und Wohnsitz des Vertreters:
Dilg Haeusler Schindelmann
Patentanwaltsgesellschaft mbH, 80636 München
1/43

DE 20 2008 017 916 U1 2010.12.09
Beschreibung

[0001] Die vorliegende Erfindung betrifft allgemein
die Parallelverarbeitung und insbesondere eine virtu-
elle Architektur und einen virtuellen Befehlssatz für
die Berechnung paralleler Befehlsfolgen.

[0002] Bei der Parallelverarbeitung arbeiten mehre-
re Verarbeitungseinheiten (zum Beispiel mehrere
Prozessorchips oder mehrere Verarbeitungskerne in-
nerhalb eines einzelnen Chips) gleichzeitig, um Da-
ten zu verarbeiten. Solche Systeme können verwen-
det werden, um Probleme zu lösen, die sich zur Zer-
legung in mehrere Teile anbieten. Ein Beispiel ist die
Bildfilterung, wobei jedes Pixel eines ausgegebenen
Bildes (oder von ausgegebenen Bildern) aus einer
Anzahl von Pixeln eines eingegebenen Bildes (oder
von eingegebenen Bildern) berechnet wird. Die Be-
rechnung jedes ausgegebenen Pixels ist allgemein
unabhängig von allen anderen, so dass verschiede-
ne Verarbeitungseinheiten verschiedene ausgegebe-
ne Pixel parallel berechnen können. Viele andere Ar-
ten von Problemen eignen sich ebenfalls für die par-
allele Zerlegung. Allgemein kann eine parallele
N-Wege-Ausführung die Lösung solcher Probleme
um ungefähr einen Faktor N beschleunigen.

[0003] Eine weitere Klasse von Problemen eignet
sich zur Parallelverarbeitung, wenn die parallelen
Ausführungsbefehlsfolgen miteinander koordiniert
werden können. Ein Beispiel ist die Schnelle Fourier-
transformation (Fast Fourier Transform – FFT), ein re-
kursiver Algorithmus, bei dem auf jeder Stufe eine
Berechnung an den Ergebnissen einer vorherigen
Stufe ausgeführt wird, um neue Werte zu generieren,
die als Eingaben in die nächste Stufe verwendet wer-
den, bis die Ausgabestufe erreicht ist. Eine einzelne
Ausführungsbefehlsfolge kann mehrere Stufen aus-
führen, solange diese Befehlsfolge verlässlich die
Ausgabedaten von vorherigen Stufen erhalten kann.
Wenn die Aufgabe zwischen mehreren Befehlsfolgen
aufgeteilt werden soll, so muss ein Koordinationsme-
chanismus vorhanden sein, damit zum Beispiel eine
Befehlsfolge nicht versucht, Eingabedaten zu lesen,
die noch gar nicht geschrieben wurden. (Eine Lösung
dieses Problems ist in der gemeinsam abgetretenen,
gleichzeitig anhängigen US-Patentanmeldung Nr.
11/303,780, eingereicht am 15. Dezember 2005, be-
schrieben).

[0004] Das Programmieren von Parallelverarbei-
tungssystemen kann jedoch schwierig sein. Der Pro-
grammierer muss in der Regel die Anzahl der verfüg-
baren Verarbeitungseinheiten und ihre Fähigkeiten
kennen (Befehlssätze, Anzahl der Datenregister,
Zwischenverbindungen usw.), um einen Code zu er-
zeugen, den die Verarbeitungseinheiten überhaupt
ausführen können. Obgleich maschinenspezifische
Kompilierer eine große Hilfe auf diesem Gebiet sein
können, ist es immer noch erforderlich, den Code je-

des Mal neu zu kompilieren, wenn der Code zu einem
anderen Prozessor portiert wird.

[0005] Darüber hinaus werden verschiedene As-
pekte von Parallelverarbeitungsarchitekturen in ra-
scher Folge hervorgebracht. Zum Beispiel werden
ständig neue Plattformarchitekturen, Befehlssätze
und Programmiermodelle entwickelt. Wenn sich ver-
schiedene Aspekte der Parallelarchitektur (zum Bei-
spiel das Programmiermodell oder der Befehlssatz)
von einer Generation zur nächsten ändern, so müs-
sen auch Anwendungsprogramme, Softwarebiblio-
theken, Kompilierer und andere Software und Tools
entsprechend verändert werden. Diese Instabilität
kann einen erheblichen zusätzlichen administrativen
Aufwand für die Entwicklung und Pflege von Parallel-
verarbeitungscode mit sich bringen.

[0006] Wenn eine Koordination zwischen Befehls-
folgen benötigt wird, so wird das parallele Program-
mieren schwieriger. Der Programmierer muss fest-
stellen, welche Mechanismen in einem bestimmten
Prozessor oder Computersystem zur Verfügung ste-
hen, um eine Kommunikation zwischen Befehlsfol-
gen zu unterstützen (oder zu emulieren), und muss
einen Code schreiben, der die verfügbaren Mecha-
nismen ausnutzt. Da die verfügbaren und/oder opti-
malen Mechanismen auf verschiedenen Computer-
systemen allgemein verschieden sind, ist ein paralle-
ler Code dieser Art allgemein nicht portierbar. Er
muss für jede Hardwareplattform, auf der er läuft, neu
geschrieben werden.

[0007] Des Weiteren muss der Programmierer zu-
sätzlich zum Bereitstellen von ausführbarem Code
für die Prozessoren noch einen Steuercode für einen
”Master”-Prozessor bereitstellen, der die Abläufe der
verschiedenen Verarbeitungseinheiten koordiniert,
der zum Beispiel jede Verarbeitungseinheit anweist,
welches Programm auszuführen ist und welche Ein-
gabedaten zu verarbeiten sind. Ein solcher Steuer-
code ist in der Regel für einen bestimmten Mas-
ter-Prozessor und ein bestimmtes Protokoll für die
Kommunikation zwischen Prozessoren spezifisch
und muss in der Regel neu geschrieben werden,
wenn ein anderer Master-Prozessor verwendet wer-
den soll.

[0008] Die Schwierigkeiten beim Kompilieren und
Neukompilieren von Parallelverarbeitungscode kön-
nen Nutzer davon abschrecken, ihre Systeme ent-
sprechend den Fortschritten der Computertechnolo-
gie auf dem modernsten Stand zu halten. Es wäre
darum wünschenswert, kompilierten Parallelverar-
beitungscode von einer bestimmten Hardwareplatt-
form abzukoppeln und eine stabile Parallelverarbei-
tungsarchitektur und einen Befehlssatz für interessie-
rende parallele Anwendungen und Tools bereitzustel-
len.
2/43

DE 20 2008 017 916 U1 2010.12.09
KURZDARSTELLUNG DER ERFINDUNG

[0009] Ausführungsformen der vorliegenden Erfin-
dung stellen eine virtuelle Architektur und einen virtu-
ellen Befehlssatz für die Berechnung paralleler Be-
fehlsfolgen bereit. Die virtuelle Parallelarchitektur de-
finiert einen virtuellen Prozessor, der die gleichzeitige
Ausführung mehrerer virtueller Befehlsfolgen mit
mehreren Graden gemeinsamer Datennutzung und
Koordination (zum Beispiel Synchronisation) zwi-
schen verschiedenen virtuellen Befehlsfolgen unter-
stützt, sowie einen virtuellen Ausführungstreiber, der
den virtuellen Prozessor steuert. Eine virtuelle Be-
fehlssatzarchitektur für den virtuellen Prozessor wird
verwendet, um das Verhalten einer virtuellen Be-
fehlsfolge zu definieren, und enthält Befehle, die sich
auf das Verhalten paralleler Befehlsfolgen beziehen,
zum Beispiel gemeinsame Datennutzung und Syn-
chronisation. Mit Hilfe der virtuellen parallelen Platt-
form können Programmierer Anwendungsprogram-
me entwickeln, in denen virtuelle Befehlsfolgen
gleichzeitig ausgeführt werden, um Daten zu verar-
beiten. Anwendungsprogramme können in einer
hoch-portierbaren Zwischenform gespeichert und
verteilt werden, zum Beispiel als Programmcode, der
auf die virtuelle parallele Plattform gerichtet ist. Zum
Installationszeitpunkt oder Ausführungszeitpunkt
passen hardwarespezifische virtuelle Befehlsüber-
setzer und virtuelle Ausführungstreiber den in einer
Zwischenform vorliegenden Anwendungscode an
bestimmte Hardware an, auf der er ausgeführt wer-
den soll. Infolge dessen sind Anwendungsprogram-
me besser portierbar und einfacher zu entwickeln, da
der Entwicklungsprozess unabhängig von bestimm-
ter Verarbeitungshardware ist.

[0010] Gemäß einem Aspekt der vorliegenden Er-
findung enthält ein Verfahren zum Definieren eines
Parallelverarbeitungsvorgangs das Bereitstellen von
erstem Programmcode, der eine Abfolge von Opera-
tionen definiert, die für jede einer Anzahl virtueller Be-
fehlsfolgen in einer Gruppierung zusammenwirken-
der virtueller Befehlsfolgen auszuführen sind. Der
erste Programmcode wird zu einem Programm virtu-
eller Befehlsfolgen kompiliert, das eine Abfolge von
Befehlen je Befehlsfolge definiert, die für eine reprä-
sentative virtuelle Befehlsfolge der Gruppierung aus-
zuführen sind, und die Abfolge von Befehlen je Be-
fehlsfolge enthält mindestens einen Befehl, der ein
Zusammenwirkungsverhalten zwischen der reprä-
sentativen virtuellen Befehlsfolge und einer oder
mehreren anderen virtuellen Befehlsfolgen der Grup-
pierung definiert. Das Programm virtueller Befehlsfol-
gen wird gespeichert (zum Beispiel im Speicher oder
auf einer Festplatte) und kann anschließend in eine
Abfolge von Befehlen übersetzt werde, die einer Ziel-
plattformarchitektur entspricht.

[0011] Außerdem kann noch ein zweiter Programm-
code bereitgestellt werden, um eine Gruppierung zu-

sammenwirkender virtueller Befehlsfolgen zu definie-
ren, die dafür geeignet sind, einen Eingabedatensatz
zu verarbeiten, um einen Ausgabedatensatz zu er-
zeugen, wobei jede virtuelle Befehlsfolge in der Grup-
pierung gleichzeitig das Programm virtueller Befehls-
folgen ausführt. Der zweite Programmcode wird auf
vorteilhafte Weise in eine Abfolge von Funktionsauf-
rufen in einer Bibliothek virtueller Funktionen umge-
wandelt, wobei die Bibliothek virtuelle Funktionen
enthält, welche die Gruppierung zusammenwirken-
der virtueller Befehlsfolgen initialisieren und deren
Ausführung veranlassen. Diese Abfolge von Funkti-
onsaufrufen kann ebenfalls gespeichert werden. Das
gespeicherte Programm virtueller Befehlsfolgen und
die Abfolge von Funktionsaufrufen kann dann in ei-
nen Programmcode übersetzt werden, der auf einer
Zielplattformarchitektur ausführbar ist, wobei der
ausführbare Programmcode eine oder mehrere Platt-
formbefehlsfolgen definiert, welche die Gruppierung
zusammenwirkender virtueller Befehlsfolgen ausfüh-
ren. Der ausführbare Programmcode kann auf einem
Computersystem ausgeführt werden, das mit der
Zielplattformarchitektur kompatibel ist, wodurch der
Ausgabedatensatz erzeugt wird, der in einem Spei-
chermedium gespeichert werden kann (zum Beispiel
Computerspeicher, Festplatte oder dergleichen).

[0012] Wie angemerkt, enthält die Abfolge von Be-
fehlen je Befehlsfolge in dem Code des Programms
virtueller Befehlsfolgen vorteilhafterweise mindes-
tens einen Befehl, der ein Zusammenwirkungsver-
halten zwischen der repräsentativen virtuellen Be-
fehlsfolge und einer oder mehreren anderen virtuel-
len Befehlsfolgen der Gruppierung definiert. Zum
Beispiel könnte die Abfolge von Befehlen je Befehls-
folge aufweisen einen Befehl, die Ausführung von
Operationen für die repräsentative virtuelle Befehls-
folge an einen bestimmten Punkt in der Abfolge aus-
zusetzen, bis eine oder mehrere der anderen virtuel-
len Befehlsfolgen jenen bestimmten Punkt erreichen,
einen Befehl für die repräsentative virtuelle Befehls-
folge, Daten in einem gemeinsam genutzten Spei-
cher zu speichern, auf den eine oder mehrere der an-
deren virtuellen Befehlsfolgen Zugriff haben, einen
Befehl für die repräsentative virtuelle Befehlsfolge,
nicht unterbrechbar (atomically) Daten zu lesen und
zu aktualisieren, die in einem gemeinsam genutzten
Speicher gespeichert sind, auf den eine oder mehre-
re der anderen virtuellen Befehlsfolgen Zugriff haben,
oder dergleichen.

[0013] Das Programm virtueller Befehlsfolgen kann
auch eine Variablendefinitionsaussage enthalten, die
eine Variable in einem aus einer Anzahl von virtuellen
Zustandsräumen definiert, wobei verschiedene virtu-
elle Zustandsräume verschiedenen Modi der ge-
meinsamen Datennutzung zwischen den virtuellen
Befehlsfolgen entsprechen. In einer Ausführungs-
form werden mindestens ein je Befehlsfolge nicht ge-
meinsam genutzter Modus und ein global gemein-
3/43

DE 20 2008 017 916 U1 2010.12.09
sam genutzter Modus unterstützt. In anderen Ausfüh-
rungsformen können auch zusätzliche Modi unter-
stützt werden, wie zum Beispiel ein gemeinsam ge-
nutzter Modus innerhalb einer Gruppierung virtueller
Befehlsfolgen und/oder ein gemeinsam genutzter
Modus zwischen mehreren Gruppierungen virtueller
Befehlsfolgen.

[0014] Gemäß einem weiteren Aspekt der vorlie-
genden Erfindung enthält ein Verfahren zum Betrei-
ben eines Zielprozessors das Bereitstellen von ei-
nem Eingabeprogrammcode. Der Eingabepro-
grammcode enthält einen ersten Abschnitt, der eine
Abfolge von Operationen definiert, die für jede einer
Anzahl virtueller Befehlsfolgen in einer Gruppierung
virtueller Befehlsfolgen auszuführen sind, die dafür
geeignet sind, einen Eingabedatensatz zu verarbei-
ten, um einen Ausgabedatensatz zu erzeugen, und
enthält auch einen zweiten Abschnitt, der eine Di-
mension der Gruppierung virtueller Befehlsfolgen de-
finiert. Der erste Abschnitt des Eingabeprogramm-
code wird zu einem Programm virtueller Befehlsfol-
gen kompiliert, das eine Abfolge von Befehlen je Be-
fehlsfolge definiert, die für eine repräsentative virtuel-
le Befehlsfolge der Gruppierung ausgeführt werden
sollen. Die Abfolge von Befehlen je Befehlsfolge ent-
hält mindestens einen Befehl, der ein Zusammenwir-
kungsverhalten zwischen der repräsentativen virtuel-
len Befehlsfolge und einer oder mehreren anderen
virtuellen Befehlsfolgen der Gruppierung definiert.
Der zweite Abschnitt des Eingabeprogrammcode
wird in eine Abfolge von Funktionsaufrufen an eine
Bibliothek virtueller Funktionen umgewandelt, wobei
die Bibliothek virtuelle Funktionen enthält, welche die
Gruppierung zusammenwirkender virtueller Befehls-
folgen initialisieren und deren Ausführung veranlas-
sen. Das Programm virtueller Befehlsfolgen und die
Abfolge von Funktionsaufrufen werden in einen Pro-
grammcode übersetzt, der auf einer Zielplattformar-
chitektur ausführbar ist, wobei der ausführbare Pro-
grammcode eine oder mehrere reale Befehlsfolgen
definiert, welche die Gruppierung zusammenwirken-
der virtueller Befehlsfolgen ausführt. Der ausführbare
Programmcode wird auf einem Computersystem
ausgeführt, das mit der Zielplattformarchitektur kom-
patibel ist, wodurch der Ausgabedatensatz erzeugt
wird, der in einem Speichermedium gespeichert
kann.

[0015] In einigen Ausführungsformen können Grup-
pierungen virtueller Befehlsfolgen in zwei oder mehr
Dimensionen definiert werden. Des Weiteren kann
der zweite Abschnitt des Eingabeprogrammcode
auch einen Funktionsaufruf enthalten, der eine oder
mehrere Dimensionen eines Gitters aus Gruppierun-
gen virtueller Befehlsfolgen definiert, wobei jede
Gruppierung in dem Gitter ausgeführt werden soll.

[0016] Es kann jede beliebige Zielplattformarchitek-
tur verwendet werden. In einigen Ausführungsformen

enthält die Zielplattformarchitektur einen Master-Pro-
zessor und einen Koprozessor. Während der Über-
setzung kann das Programm virtueller Befehlsfolgen
in Programmcode übersetzt werden, der parallel
durch eine Anzahl von Befehlsfolgen ausführbar ist,
die in dem Koprozessor definiert werden, während
die Abfolge von Funktionsaufrufen in eine Abfolge
von Rufen an ein Treiberprogramm für den Kopro-
zessor, das auf dem Master-Prozessor ausgeführt
wird, übersetzt wird. In anderen Ausführungsformen
enthält die Zielplattformarchitektur eine zentrale Ver-
arbeitungseinheit (CPU). Während der Übersetzung
werden das Programm virtueller Befehlsfolgen und
mindestens ein Abschnitt der Abfolge von Funktions-
aufrufen in einen Zielprogrammcode übersetzt, der
die Gruppierung virtueller Befehlsfolgen mit Hilfe ei-
nen Anzahl von CPU-Befehlsfolgen ausführt, die we-
niger sind als die Anzahl virtueller Befehlsfolgen.

[0017] Gemäß einer weiteren Ausführungsform der
vorliegenden Erfindung enthält ein Verfahren zum
Betreiben eines Zielprozessors das Erlangen eines
Programms virtueller Befehlsfolgen, die eine Abfolge
von Befehlen je Befehlsfolge definieren, die für eine
repräsentative virtuelle Befehlsfolge einer Anzahl vir-
tueller Befehlsfolgen in einer Gruppierung virtueller
Befehlsfolgen ausgeführt werden sollen, die dafür
geeignet sind, einen Eingabedatensatz zu verarbei-
ten, um einen Ausgabedatensatz zu erzeugen. Die
Abfolge von Befehlen je Befehlsfolge enthält mindes-
tens einen Befehl, der ein Zusammenwirkungsver-
halten zwischen der repräsentativen virtuellen Be-
fehlsfolge und einer oder mehreren anderen virtuel-
len Befehlsfolgen der Gruppierung definiert. Ein zu-
sätzlicher Programmcode, der Dimensionen der
Gruppierung virtueller Befehlsfolgen definiert, wird
ebenfalls erhalten. Das Programm virtueller Befehls-
folgen und der zusätzliche Programmcode werden in
einen Programmcode übersetzt, der auf der Zielplatt-
formarchitektur ausführbar ist, wobei der ausführbare
Programmcode eine oder mehrere Plattformbefehls-
folgen definiert, welche die Gruppierung virtueller Be-
fehlsfolgen ausführen. Der ausführbare Programm-
code wird auf einem Computersystem ausgeführt,
das mit der Zielplattformarchitektur kompatibel ist,
wodurch der Ausgabedatensatz erzeugt wird und der
Ausgabedatensatz in einem Speicher gespeichert
wird.

[0018] In einigen Ausführungsformen kann das Pro-
gramm virtueller Befehlsfolgen erhalten werden, in-
dem ein Quellprogrammcode empfangen wird, der in
einer höheren Programmiersprache geschrieben
wurde, und der Quellprogrammcode kompiliert wird,
um das Programm virtueller Befehlsfolgen zu gene-
rieren. Alternativ kann das Programm virtueller Be-
fehlsfolgen von einem Speichermedium gelesen wer-
den oder von einem räumlich abgesetzten Computer-
system über ein Netzwerk empfangen werden. Es
versteht sich, dass der Code virtueller Befehlsfolgen,
4/43

DE 20 2008 017 916 U1 2010.12.09
der gelesen oder empfangen wird, zuvor aus einer
höheren Sprache kompiliert worden sein könnte oder
direkt als Code generiert worden sein könnte, der mit
einer virtuellen Befehlssatzarchitektur kompatibel ist.

[0019] Die folgende detaillierte Beschreibung zu-
sammen mit den begleitenden Zeichnungen ermög-
licht ein besseres Verstehen der Art und der Vorteile
der vorliegenden Erfindung.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0020] Fig. 1 ist ein Blockschaubild eines Compu-
tersystems gemäß einer Ausführungsform der vorlie-
genden Erfindung.

[0021] Fig. 2A und Fig. 2B veranschaulichen die
Beziehung zwischen Gittern, Befehlsfolgen-Gruppie-
rungen und Befehlsfolgen in einem Programmiermo-
dell, das in Ausführungsformen der vorliegenden Er-
findung verwendet wird.

[0022] Fig. 3 ist ein Blockschaubild einer virtuellen
Architektur gemäß einer Ausführungsform der vorlie-
genden Erfindung.

[0023] Fig. 4 ist ein Konzeptmodell der Verwendung
einer virtuellen Architektur zum Betreiben eines Ziel-
prozessors gemäß einer Ausführungsform der vorlie-
genden Erfindung.

[0024] Fig. 5 ist eine Tabelle, die spezielle Variablen
auflistet, die durch eine virtuelle Befehlssatzarchitek-
tur (Instruction Set Architecture – ISA) gemäß einer
Ausführungsform der vorliegenden Erfindung defi-
niert wird.

[0025] Fig. 6 ist eine Tabelle, die Typen von Variab-
len auflistet, die in einer virtuellen ISA gemäß einer
Ausführungsform der vorliegenden Erfindung unter-
stützt werden.

[0026] Fig. 7 ist eine Tabelle, die virtuelle Zustands-
räume auflistet, die in einer virtuellen ISA gemäß ei-
ner Ausführungsform der vorliegenden Erfindung un-
terstützt werden.

[0027] Fig. 8A–Fig. 8H sind Tabellen, die virtuelle
Befehle auflisten, die in einer virtuellen ISA gemäß ei-
ner Ausführungsform der vorliegenden Erfindung de-
finiert werden.

[0028] Fig. 9 ist ein Flussdiagramm eines Prozes-
ses zur Verwendung eines virtuellen Befehlsüberset-
zers gemäß einer Ausführungsform der vorliegenden
Erfindung.

[0029] Fig. 10 ist eine Tabelle, die Funktionen auf-
listet, die in einer virtuellen Bibliothek für einen virtu-
ellen Ausführungstreiber gemäß einer Ausführungs-

form der vorliegenden Erfindung verfügbar sind.

DETAILLIERTE BESCHREIBUNG DER ERFIN-
DUNG

[0030] Ausführungsformen der vorliegenden Erfin-
dung stellen eine virtuelle Architektur und einen virtu-
ellen Befehlssatz zur Berechnung paralleler Befehls-
folgen bereit. Die virtuelle Architektur stellt ein Modell
eines Prozessors, der die gleichzeitige Ausführung
mehrerer Befehlsfolgen mit mehreren Graden ge-
meinsamer Datennutzung und Koordination (zum
Beispiel Synchronisation) zwischen verschiedenen
Befehlsfolgen unterstützt, sowie einen virtuellen Aus-
führungstreiber, der den Modell-Prozessor steuert,
bereit. Der virtuelle Befehlssatz, der dafür verwendet
wird, das Verhalten einer Verarbeitungsbefehlsfolge
zu definieren, enthält Befehle, die sich auf das Ver-
halten paralleler Befehlsfolgen beziehen, zum Bei-
spiel Befehle, die eine gemeinsame Nutzung von Da-
ten über bestimmte Befehlsfolgen hinweg gestatten,
und Befehle, die verlangen, dass unterschiedliche
Befehlsfolgen an bestimmten vom Programmierer
angegebenen Punkten innerhalb eines Programms
synchronisiert werden. Mit Hilfe der virtuellen Platt-
form können Programmierer Anwendungsprogram-
me entwickeln, in denen gleichzeitige, zusammenwir-
kende Befehlsfolgen ausgeführt werden, um Daten
zu verarbeiten. Hardware-spezifische virtuelle Be-
fehlsübersetzer und virtuelle Ausführungstreiber pas-
sen den Anwendungscode an bestimmte Hardware
an, auf der er ausgeführt werden soll. Infolge dessen
sind Anwendungsprogramme besser portierbar und
einfacher zu entwickeln, da der Entwicklungsprozess
unabhängig von bestimmter Verarbeitungshardware
ist.

1. Systemüberblick

[0031] Fig. 1 ist ein Blockschaubild eines Compu-
tersystems 100 gemäß einer Ausführungsform der
vorliegenden Erfindung. Das Computersystem 100
enthält eine zentrale Verarbeitungseinheit (CPU) 102
und einen Systemspeicher 104, der über einen Bus-
pfad kommuniziert, der eine Speicherbrücke 105 ent-
hält. Die Speicherbrücke 105, die zum Beispiel ein
Northbridge-Chip sein kann, ist über einen Bus oder
einen anderen Kommunikationspfad 106 (zum Bei-
spiel einen HyperTransport-Link) mit einer E/A (Ein-
gabe/Ausgabe)-Brücke 107 verbunden. Die E/A-Brü-
cke 107, die zum Beispiel ein Southbridge-Chip sein
kann, empfängt Benutzereingaben von einem oder
mehreren Benutzereingabegeräten 108 (zum Bei-
spiel Tastatur, Maus) und leitet die Eingabe über den
Pfad 106 und die Speicherbrücke 105 an die CPU
102 weiter. Ein Parallelverarbeitungsteilsystem 112
ist über einen Bus oder einen anderen Kommunikati-
onspfad 113 (zum Beispiel einen PCI Express- oder
Accelerated Graphics Port-Link) an die Speicherbrü-
cke 105 gekoppelt. In einer Ausführungsform ist das
5/43

DE 20 2008 017 916 U1 2010.12.09
Parallelverarbeitungsteilsystem 112 ein Grafik-Teil-
system, das Pixel an ein Anzeigegerät 110 (zum Bei-
spiel einen herkömmlichen Kathodenstrahlröhren-
oder Flüssigkristallmonitor) ausgibt. Eine System-
festplatte 114 ist ebenfalls mit der E/A-Brücke 107
verbunden. Ein Schalter 116 stellt Verbindungen zwi-
schen der E/A-Brücke 107 und anderen Komponen-
ten her, wie zum Beispiel einem Netzwerkadapter
118 und verschiedenen Einsteckkarten 120 und 121.
Es können noch andere (nicht ausdrücklich gezeigte)
Komponenten, darunter USB- oder andere Portver-
bindungen, CD-Laufwerke, DVD-Laufwerke und der-
gleichen, mit der E/A-Brücke 107 verbunden werden.
Kommunikationspfade, welche die verschiedenen
Komponenten in Fig. 1 untereinander verbinden,
können mit Hilfe beliebiger geeigneter Protokolle, wie
zum Beispiel PCI (Peripheral Component Intercon-
nect), PCI Express (PCI-E), AGP (Accelerated Gra-
phics Port), HyperTransport oder sonstiger anderer
Bus- oder Punkt-zu-Punkt-Kommunikationsprotokol-
le implementiert werden, und Verbindungen zwi-
schen verschiedenen Geräten können mit verschie-
denen Protokollen arbeiten, wie es dem Fachmann
bekannt ist.

[0032] Das Parallelverarbeitungsteilsystem 112 ent-
hält eine Parallelverarbeitungseinheit (Parallel Pro-
cessing Unit – PPU) 122 und einen Parallelverarbei-
tungs (Parallel Processing – PP)-Speicher 124, die
zum Beispiel unter Verwendung einer oder mehrerer
integrierter Schaltkreiselemente implementiert wer-
den können, wie zum Beispiel programmierbare Pro-
zessoren, anwendungsspezifische integrierte Schalt-
kreise (Application-Specific Integrated Circuits – ASI-
Cs) und Speicherbausteine. Die PPU 122 implemen-
tiert vorteilhafterweise einen hoch-parallelen Prozes-
sor, der einen oder mehrere Verarbeitungskerne ent-
hält, von denen jeder in der Lage ist, eine große An-
zahl (zum Beispiel Hunderte) von Befehlsfolgen
gleichzeitig auszuführen. Die PPU 122 kann dafür
programmiert werden, ein weites Feld von Berech-
nungen auszuführen, zum Beispiel lineare und
nicht-lineare Datentransformierungen, Filterung von
Video- und/oder Audiodaten, Modellierung (zum Bei-
spiel Anwendung physikalischer Gesetze zum Be-
stimmen von Position, Geschwindigkeit und anderen
Attributen von Objekten), Bildrendern und so weiter.
Die PPU 122 kann Daten aus dem Systemspeicher
104 und/oder dem PP-Speicher 124 in einen internen
Speicher übertragen, die Daten verarbeiten und Er-
gebnisdaten zurück in den Systemspeicher 104
und/oder PP-Speicher 124 schreiben, wo andere
Systemkomponenten, einschließlich beispielsweise
der CPU 102, auf solche Daten zugreifen können. In
einigen Ausführungsformen ist die PPU 122 ein Gra-
fikprozessor, der auch dafür konfiguriert werden
kann, verschiedene Aufgaben auszuführen, die im
Zusammenhang stehen mit: der Generierung von Pi-
xeldaten aus Grafikdaten, die durch die CPU 102
und/oder den Systemspeicher 104 über die

Speicherbrücke 105 und den Bus 113 herangeführt
werden; der Interaktion mit dem PP-Speicher 124
(der als Grafikspeicher verwendet werden kann, ein-
schließlich beispielsweise als herkömmlicher Fra-
me-Puffer) zum Speichern und Aktualisieren von Pi-
xeldaten; der Zuführung von Pixeldaten zum Anzei-
gegerät 110 und dergleichen. In einigen Ausfüh-
rungsformen kann das PP-Teilsystem 112 eine PPU
122, die als ein Grafikprozessor fungiert, und eine
weitere PPU 122, die für Allzweckberechnungen ver-
wendet wird, enthalten. Die PPUs können identisch
oder verschieden sein, und jede PPU kann ihre eige-
nen dedizierten PP-Speicherbausteine haben.

[0033] Die CPU 102 fungiert als der Master-Prozes-
sor des Systems 100 und steuert und koordiniert die
Operationen anderer Systemkomponenten. Insbe-
sondere gibt die CPU 102 Befehle aus, welche die
Funktion der PPU 122 steuern. In einigen Ausfüh-
rungsformen schreibt die CPU 102 einen Befehls-
strom für die PPU 122 in einen Befehlspuffer, der sich
im Systemspeicher 104, im PP-Speicher 124 oder ei-
nem anderen Speicherort befinden kann, auf den so-
wohl die CPU 102 als auch die PPU 122 zugreifen
kann. Die PPU 122 liest den Befehlsstrom aus dem
Befehlspuffer und führt Befehle asynchron mit dem
Betrieb der CPU 102 aus.

[0034] Es versteht sich, dass das im vorliegenden
Text gezeigte System veranschaulichend ist und
dass Variationen und Modifikationen möglich sind.
Die Verbindungstopologie, einschließlich der Anzahl
und Anordnung von Brücken, kann nach Wunsch mo-
difiziert werden. Zum Beispiel ist in einigen Ausfüh-
rungsformen der Systemspeicher 104 mit der CPU
102 direkt anstatt über eine Brücke verbunden, und
andere Geräte kommunizieren mit dem Systemspei-
cher 104 über die Speicherbrücke 105 und die CPU
102. In anderen alternativen Topologien ist das
PP-Teilsystem 112 mit der E/A-Brücke 107 anstatt mit
der Speicherbrücke 105 verbunden. In wieder ande-
ren Ausführungsformen könnten die E/A-Brücke 107
und die Speicherbrücke 105 in einen einzelnen Chip
integriert werden. Die im vorliegenden Text gezeigten
konkreten Komponenten sind optional. Zum Beispiel
könnte eine beliebige Anzahl von Einsteckkarten
oder Peripheriegeräten unterstützt werden. In eini-
gen Ausführungsformen wird der Schalter 116 weg-
gelassen, und der Netzwerkadapter 118 und die Ein-
steckkarten 120, 121 sind direkt mit der E/A-Brücke
107 verbunden.

[0035] Die Verbindung der PPU 122 mit dem Rest
des Systems 100 kann auch variiert werden. In eini-
gen Ausführungsformen ist das PP-System 112 als
eine Einsteckkarte implementiert, die in einen Erwei-
terungsschlitz des Systems 100 eingesteckt werden
kann. In anderen Ausführungsformen kann eine PPU
auf einem einzelnen Chip mit einer Busbrücke, wie
zum Beispiel einer Speicherbrücke 105 oder
6/43

DE 20 2008 017 916 U1 2010.12.09
E/A-Brücke 107, integriert sein. In wieder anderen
Ausführungsformen können einige oder alle Elemen-
te der PPU 122 in die CPU 102 integriert sein.

[0036] Eine PPU kann mit einer beliebigen Menge
lokalem PP-Speicher versehen sein, einschließlich
ohne lokalem Speicher, und kann lokalen Speicher
und Systemspeicher in jeder beliebigen Kombination
verwenden. Zum Beispiel kann die PPU 122 ein Gra-
fikprozessor in einer Ausführungsform mit einer ver-
einigten Speicherarchitektur (Unified Memory Ar-
chitecture – UMA) sein. In solchen Ausführungsfor-
men wird wenig oder gar kein dedizierter Grafikspei-
cher bereitgestellt, und die PPU 122 würde aus-
schließlich oder fast ausschließlich Systemspeicher
verwenden. In UMA-Ausführungsformen kann die
PPU in einen Brückenchip integriert sein oder kann
als ein diskreter Chip mit einem Hochgeschwindig-
keitslink (zum Beispiel PCI-E) vorhanden sein, der
die PPU mit dem Brückenchip und dem Systemspei-
cher verbindet.

[0037] Es versteht sich des Weiteren, dass eine be-
liebige Anzahl von PPUs in ein System aufgenom-
men werden kann, zum Beispiel durch Einbinden
mehrerer PPUs auf einer einzelnen Einsteckkarte, in-
dem mehrere Einsteckkarten mit dem Pfad 113 ver-
bunden werden und/oder indem eine oder mehrere
PPUs direkt mit der Hauptplatine eines System ver-
bunden werden. Mehrere PPUs können parallel be-
trieben werden, um Daten mit einem höheren Durch-
satz zu verarbeiten, als es mit einer einzelnen PPU
möglich ist.

[0038] Dem Fachmann ist auch klar, dass eine CPU
und eine PPU in einem einzelnen Baustein integriert
sein können und dass die CPU und die PPU ver-
schiedene Ressourcen gemeinsam nutzen können,
wie zum Beispiel Befehlslogik, Puffer, Cachespei-
cher, Hauptspeicher, Verarbeitungsmaschinen und
so weiter, oder dass separate Ressourcen für die Pa-
rallelverarbeitung und andere Operationen bereitge-
stellt werden können. Dementsprechend könnten be-
liebige oder alle der Schaltkreise und/oder Funktio-
nen, die im vorliegenden Text als zu der PPU gehö-
rend beschrieben werden, auch in einer in geeigneter
Weise ausgestatteten CPU implementiert und durch
diese ausgeführt werden.

[0039] Systeme, die PPUs enthalten, können in ei-
ner Vielzahl verschiedener Konfigurationen und
Formfaktoren implementiert werden, darunter Desk-
top-, Laptop- oder handgehaltene (handheld) Perso-
nalcomputer, Server, Arbeitsplatzrechner, Spielekon-
solen, eingebettete Systeme und so weiter.

[0040] Der Fachmann erkennt auch, dass ein Vorteil
der vorliegenden Erfindung in einer größeren Unab-
hängigkeit von bestimmter Computerhardware be-
steht. Dementsprechend versteht es sich, dass Aus-

führungsformen der vorliegenden Erfindung mit Hilfe
jedes beliebigen Computersystems praktiziert wer-
den können, einschließlich Systemen, die keine PPU
enthalten.

2. Überblick – virtuelles Programmiermodell

[0041] In Ausführungsformen der vorliegenden Er-
findung ist es wünschenswert, die PPU 122 oder ei-
nen oder mehrere andere Prozessoren eines Com-
putersystems einzusetzen, um Allzweckberechnun-
gen unter Verwendung von Befehlsfolgen-Gruppie-
rungen auszuführen. Im Sinne des vorliegenden Tex-
tes ist eine ”Befehlsfolge-Gruppierung” eine Gruppe,
die aus einer Anzahl (n0) von Befehlsfolgen besteht,
die gleichzeitig dasselbe Programm an einem Einga-
bedatensatz ausführen, um einen Ausgabedatensatz
zu erzeugen. Jeder Befehlsfolge in der Befehlsfol-
ge-Gruppierung ist ein eindeutiger Befehlsfolge-Iden-
tifikator (eine ”Befehlsfolge-ID”) zugewiesen, auf den
die Befehlsfolge während ihrer Ausführung zugreifen
kann. Die Befehlsfolge-ID, die als ein eindimensiona-
ler oder mehrdimensionaler numerischer Wert defi-
niert sein kann (zum Beispiel 0 bis n0-1), steuert ver-
schiedene Aspekte des Verarbeitungsverhaltens der
Befehlsfolge. Zum Beispiel kann eine Befehlsfolge-ID
verwendet werden, um zu bestimmen, welcher Ab-
schnitt des Eingabedatensatzes eine Befehlsfolge
verarbeiten soll, und/oder um zu bestimmen, wel-
chen Abschnitt eines Ausgabedatensatzes eine Be-
fehlsfolge erzeugen oder schreiben soll.

[0042] In einigen Ausführungsformen sind die Be-
fehlsfolgen-Gruppierungen ”zusammenwirkende”
Befehlsfolgen-Gruppierungen oder CTAs (Cooperati-
ve Thread Arrays). Wie bei anderen Arten von Be-
fehlsfolgen-Gruppierungen ist eine CTA eine Gruppe
mehrerer Befehlsfolgen, die gleichzeitig dasselbe
Programm (im vorliegenden Text als ein ”CTA-Pro-
gramm” bezeichnet) an einem Eingabedatensatz
ausführen, um einen Ausgabedatensatz zu erzeu-
gen. In einer CTA können die Befehlsfolgen zusam-
menwirken, indem sie Daten in einer Weise gemein-
sam nutzen, die von der Befehlsfolge-ID abhängt.
Zum Beispiel können in einer CTA Daten durch eine
Befehlsfolge erzeugt und durch eine andere ver-
braucht werden. In einigen Ausführungsformen kön-
nen Synchronisationsbefehle in den CTA-Programm-
code an Punkten eingefügt werden, wo Daten ge-
meinsam genutzt werden sollen, um zu gewährleis-
ten, dass die Daten tatsächlich durch die erzeugende
Befehlsfolge erzeugt wurden, bevor die verbrauchen-
de Befehlsfolge versucht, darauf zuzugreifen. Das
Ausmaß der gemeinsamen Datennutzung (sofern
eine solche stattfindet) zwischen Befehlsfolgen einer
CTA wird durch das CTA-Programm bestimmt. Es
versteht sich somit, dass in einer bestimmten Anwen-
dung, die CTAs verwendet, die Befehlsfolgen einer
CTA je nach dem CTA-Programm Daten gemeinsam
nutzen könnten, aber nicht müssen, und die Begriffe
7/43

DE 20 2008 017 916 U1 2010.12.09
”CTA” und ”Befehlsfolge-Gruppierung” werden im
vorliegenden Text synonym verwendet.

[0043] In einigen Ausführungsformen nutzen Be-
fehlsfolgen in einer CTA Eingabedaten und/oder Zwi-
schenergebnisse gemeinsam mit anderen Befehls-
folgen in derselben CTA. Zum Beispiel könnte ein
CTA-Programm einen Befehl enthalten, um eine
Adresse in einem gemeinsam genutzten Speicher zu
berechnen, in den bestimmte Daten geschrieben
werden sollen, wobei die Adresse eine Funktion der
Befehlsfolge-ID ist. Jede Befehlsfolge berechnet die
Funktion unter Verwendung ihrer eigenen Befehlsfol-
ge-ID und schreibt in den entsprechenden Ort. Die
Adressfunktion wird vorteilhafterweise so definiert,
dass verschiedene Befehlsfolgen in verschiedene
Orte schreiben. Solange die Funktion deterministisch
ist, ist der Ort, in den eine Befehlsfolge schreibt, vor-
hersagbar. Das CTA-Programm kann auch einen Be-
fehl enthalten, eine Adresse in dem gemeinsam ge-
nutzten Speicher zu berechnen, aus dem Daten ge-
lesen werden sollen, wobei die Adresse eine Funkti-
on der Befehlsfolge-ID ist. Durch Definieren geeigne-
ter Funktionen und Bereitstellen von Synchronisati-
onstechniken können Daten in einer vorhersagbaren
Weise durch eine Befehlsfolge einer CTA in einen be-
stimmten Ort im gemeinsam genutzten Speicher ge-
schrieben werden und durch eine andere Befehlsfol-
ge derselben CTA von diesem Ort gelesen werden.
Folglich kann jedes beliebige gewünschte Muster ei-
ner gemeinsamen Datennutzung zwischen Befehls-
folgen unterstützt werden, und eine beliebige Be-
fehlsfolge in einer CTA kann Daten mit jeder anderen
Befehlsfolge in derselben CTA gemeinsam nutzen.

[0044] CTAs (oder andere Arten von Befehlsfol-
gen-Gruppierungen) werden vorteilhafterweise ver-
wendet, um Berechnungen auszuführen, die sich für
eine datenparallele Zerlegung anbieten. Im Sinne
des vorliegenden Textes beinhaltet eine ”datenparal-
lele Zerlegung” jede Situation, bei der ein Rechenpro-
blem durch mehrmaliges paralleles Ausführen des-
selben Algorithmus an Eingabedaten gelöst wird, um
Ausgabedaten zu erzeugen. Zum Beispiel beinhaltet
ein häufiger Fall einer datenparallelen Zerlegung das
Anwenden desselben Verarbeitungsalgorithmus auf
verschiedene Abschnitte eines Eingabedatensatzes,
um verschiedene Abschnitte eines Ausgabedaten-
satzes zu erzeugen. Zu Beispielen von Problemen,
die sich für eine datenparallele Zerlegung eignen, ge-
hören Matrixalgebra, lineare und/oder nicht-lineare
Transformationen in jeder beliebigen Anzahl von Di-
mensionen (zum Beispiel Schnelle Fourier-Transfor-
mationen) und verschiedenen Filterungsalgorithmen,
einschließlich Faltungsfilter in jeder beliebigen An-
zahl von Dimensionen, abtrennbare Filter in mehre-
ren Dimensionen und so weiter. Der Verarbeitungsal-
gorithmus, der auf jeden Abschnitt des Eingabeda-
tensatzes anzuwenden ist, ist in dem CTA-Programm
spezifiziert, und jede Befehlsfolge in einer CTA führt

dasselbe CTA-Programm an einem einzelnen Ab-
schnitt des Eingabedatensatzes aus. Ein CTA-Pro-
gramm kann Algorithmen unter Verwendung eines
weiten Bereichs mathematischer und logischer Ope-
rationen implementieren, und das Programm kann
bedingte oder verzweigende Ausführungspfade und
direkten und/oder indirekten Speicherzugriff enthal-
ten.

[0045] CTAs und ihre Ausführung sind in weiterer
Ausführlichkeit in der oben angesprochenen Anmel-
dung Nr. 11/303,780 beschrieben.

[0046] In einigen Situationen ist es auch nützlich,
ein ”Gitter” aus zueinander in Beziehung stehenden
CTAs (oder allgemeiner ausgedrückt: Befehlsfol-
gen-Gruppierungen) zu definieren. Im Sinne des vor-
liegenden Textes ist ein ”Gitter” aus CTAs eine Zu-
sammenstellung einer Anzahl (n1) von CTAs, in der
alle CTAs die gleiche Größe (d. h. Anzahl von Be-
fehlsfolgen) haben und dasselbe CTA-Programm
ausführen. Die n1 CTAs innerhalb eines Gitters sind
vorteilhafterweise unabhängig voneinander, was be-
deutet, dass die Ausführung einer beliebigen CTA in
dem Gitter nicht durch die Ausführung einer anderen
CTA in dem Gitter beeinflusst wird. Wie noch deutlich
werden wird, ermöglicht dieses Merkmal eine signifi-
kante Flexibilität bei der Verteilung von CTAs zwi-
schen verfügbaren Verarbeitungskernen.

[0047] Um verschiedene CTAs innerhalb eines Git-
ters voneinander zu unterscheiden, wird jeder CTA
des Gitters vorteilhafterweise ein ”CTA-Identifikator”
(oder eine CTA-ID) zugewiesen. Wie bei Befehlsfol-
ge-IDs kann jeder beliebige eindeutige Identifikator
(einschließlich beispielsweise numerischer Identifika-
toren) als eine CTA-ID verwendet werden. In einer
Ausführungsform sind CTA-IDs einfach sequenzielle
(eindimensionale) Indexwerte von 0 bis n1-1. In ande-
ren Ausführungsformen können mehrdimensionale
Indexierungsschemas verwendet werden. Die
CTA-ID ist für alle Befehlsfolgen einer CTA gleich,
und eine Befehlsfolge einer bestimmten CTA inner-
halb des Gitters kann ihre CTA-ID in Verbindung mit
ihrer Befehlsfolge-ID verwenden, um zum Beispiel ei-
nen Quellenort zum Lesen von Eingabedaten
und/oder einen Zielort zum Schreiben von Ausgabe-
daten zu bestimmen. Auf diese Weise können Be-
fehlsfolgen in verschiedenen CTAs desselben Gitters
gleichzeitig am selben Datensatz arbeiten, obgleich
in einigen Ausführungsformen die gemeinsame Nut-
zung von Daten zwischen verschiedenen CTAs in ei-
nem Gitter nicht unterstützt wird.

[0048] Das Definieren eines Gitters aus CTAs kann
nützlich sein, zum Beispiel wenn es gewünscht wird,
mehrere CTAs zu verwenden, um verschiedene Ab-
schnitte eines einzelnen großen Problems zu lösen.
Zum Beispiel könnte es wünschenswert sein, einen
Filterungsalgorithmus auszuführen, um ein hochauf-
8/43

DE 20 2008 017 916 U1 2010.12.09
lösendes Fernsehbild (HDTV) zu erzeugen. Wie dem
Fachmann bekannt ist, könnte ein HDTV-Bild über 2
Millionen Pixel enthalten. Wenn jede Befehlsfolge ein
Pixel erzeugt, so würde die Anzahl der auszuführen-
den Befehlsfolgen die Anzahl der Befehlsfolgen, die
in einer einzelnen CTA verarbeitet werden können,
übersteigen (unter der Annahme einer Verarbei-
tungsplattform mit angemessener Größe und von
sinnvollen Kosten, die unter Verwendung herkömmli-
cher Techniken hergestellt ist).

[0049] Diese große Verarbeitungsaufgabe kann
verwaltet werden, indem man das Bild zwischen
mehreren CTAs aufteilt, wobei jede CTA einen ande-
ren Abschnitt (zum Beispiel ein 16 × 16-Feld) der
ausgegebenen Pixel erzeugt. Alle CTAs führen das-
selbe Programm aus, und die Befehlsfolgen verwen-
den eine Kombination aus der CTA-ID und der Be-
fehlsfolge-ID zum Bestimmen von Orten zum Lesen
von Eingabedaten und Schreiben von Ausgabeda-
ten, so dass jede CTA an dem richtigen Abschnitt des
Eingabedatensatzes arbeitet und ihren Abschnitt des
Ausgabedatensatzes in den richtigen Ort schreibt.

[0050] Es ist anzumerken, dass im Gegensatz zu
Befehlsfolgen innerhalb einer CTA (die Daten ge-
meinsam nutzen können) CTAs innerhalb eines Git-
ters vorteilhafterweise keine Daten gemeinsam nut-
zen oder auf sonstige Weise voneinander abhängig
sind. Das heißt, zwei CTAs desselben Gitters können
sequenziell (in beliebiger Reihenfolge) oder gleich-
zeitig ausgeführt werden und trotzdem identische Er-
gebnisse hervorbringen. Folglich kann eine Verarbei-
tungsplattform (zum Beispiel das System 100 von
Fig. 1) ein Gitter aus CTAs ausführen und ein Ergeb-
nis erhalten, indem sie zuerst eine CTA ausführt,
dann die nächste CTA, und so weiter, bis alle CTAs
des Gitters ausgeführt wurden. Alternativ kann, wenn
genügend Ressourcen verfügbar sind, eine Verarbei-
tungsplattform dasselbe Gitter ausführen und dassel-
be Ergebnis erhalten, indem sie mehrere CTAs paral-
lel ausführt.

[0051] In einigen Fällen kann es wünschenswert
sein, mehrere (n2) Gitter aus CTAs zu definieren, wo-
bei jedes Gitter einen anderen Abschnitt eines Daten-
verarbeitungsprogramms oder einer Datenverarbei-
tungsaufgabe ausführt. Zum Beispiel könnte die Da-
tenverarbeitungsaufgabe in eine Anzahl von ”Lö-
sungsschritten” unterteilt werden, wobei jeder Lö-
sungsschritt durch Ausführen eines Gitters aus CTAs
ausgeführt wird. Als ein weiteres Beispiel könnte die
Datenverarbeitungsaufgabe das Ausführen der glei-
chen oder ähnlichen Operationen an einer Abfolge
von Eingabedatensätzen (zum Beispiel aufeinander-
folgenden Frames von Video-Daten) enthalten. Ein
Gitter aus CTAs kann für jeden Eingabedatensatz
ausgeführt werden. Das virtuelle Programmiermodell
unterstützt vorteilhafterweise mindestens diese drei
Stufen der Arbeitsdefinition (d. h. Befehlsfolgen,

CTAs und Gitter aus CTAs). Gewünschtenfalls könn-
ten auch weitere Stufen unterstützt werden.

[0052] Es versteht sich, dass die Größe (Anzahl n0

von Befehlsfolgen) einer CTA, die Größe (Anzahl n1

von CTAs) eines Gitters und die Anzahl (n2) von Git-
tern, die zur Lösung eines bestimmten Problems ver-
wendet werden, von den Parametern des Problems
und von den Präferenzen des Programmierers oder
des automatisierten Agenten, der die Problemzerle-
gung definiert, abhängen. Somit wird in einigen Aus-
führungsformen die Größe einer CTA, die Größe ei-
nes Gitters und die Anzahl von Gittern vorteilhafter-
weise durch einen Programmierer definiert.

[0053] Die Probleme, die von dem CTA-Ansatz pro-
fitieren, sind in der Regel durch das Vorhandensein
einer großen Anzahl von Datenelementen gekenn-
zeichnet, die parallel verarbeitet werden können. In
einigen Fällen sind die Datenelemente Ausgabeele-
mente, von denen jedes durch Ausführen desselben
Algorithmus an verschiedenen (eventuell überlap-
penden) Abschnitten eines Eingabedatensatzes er-
zeugt wird. In anderen Fällen können die Datenele-
mente Eingabeelemente sein, die jeweils unter Ver-
wendung desselben Algorithmus zu verarbeiten sind.

[0054] Solche Probleme können immer in mindes-
tens zwei Stufen zerlegt und auf die oben beschrie-
benen Befehlsfolgen, CTAs und Gitter abgebildet
werden. Zum Beispiel könnte jedes Gitter das Ergeb-
nis eines Lösungsschrittes in einer komplexen Da-
tenverarbeitungsaufgabe darstellen. Jedes Gitter ist
vorteilhafterweise in eine Anzahl von ”Blöcken” unter-
teilt, von denen jeder als eine einzelne CTA verarbei-
tet werden kann. Jeder Block enthält vorteilhafterwei-
se mehrere ”Elemente”, d. h. elementare Abschnitte
des zu lösenden Problems (zum Beispiel einen ein-
zelnen Eingabedatenpunkt oder einen einzelnen
Ausgabedatenpunkt). Innerhalb der CTA verarbeitet
jede Befehlsfolge ein oder mehrere Elemente.

[0055] Die Fig. 2A und Fig. 2B veranschaulichen
die Beziehung zwischen Gittern, CTAs und Befehls-
folgen in einem virtuellen Programmiermodell, das in
Ausführungsformen der vorliegenden Erfindung ver-
wendet wird. Fig. 2A zeigt eine Anzahl von Gittern
200, wobei jedes Gitter aus einer zweidimensionalen
(2-D) Gruppierung von CTAs 202 hergestellt ist. (Im
vorliegenden Text werden mehrere Instanzen glei-
cher Objekte mit Bezugszahlen bezeichnet, die das
Objekt identifizieren, und in Klammern gesetzte Zah-
len identifizieren, wo erforderlich, die Instanz.) Wie in
Fig. 2B für die CTA 202 (0,0) gezeigt, enthält jede
CTA 202 eine 2-D-Gruppierung von Befehlsfolgen
(⊝) 204. Für jede Befehlsfolge 204 in jeder CTA 202
jedes Gitter 200 kann ein eindeutiger Identifikator der
Form I = [ig, ic, it] definiert werden, wobei ein Gitteri-
dentifikator ig das Gitter eindeutig identifiziert, eine
CTA-ID ic die CTA innerhalb des Gitters eindeutig
9/43

DE 20 2008 017 916 U1 2010.12.09
identifiziert und eine Befehlsfolge-ID it die Befehlsfol-
ge innerhalb der CTA eindeutig identifiziert. In dieser
Ausführungsform könnte der Identifikator I aus einem
eindimensionalen Gitteridentifikator ig, einem zweidi-
mensionalen CTA-Identifikator ic und einem zweidi-
mensionalen Befehlsfolge-Identifikator it aufgebaut
sein. In anderen Ausführungsformen ist der eindeuti-
ge Identifikator I eine Dreiergruppe aus ganzen Zah-
len, wobei 0 ≤ ig < n2; 0 ≤ ic < n1; und 0 ≤ it < n0. In wie-
der anderen Ausführungsformen könnten beliebige
oder alle des Gitters, der CTA und der Befehlsfol-
ge-Identifikatoren als eine eindimensionale ganze
Zahl, ein 2D-Koordinatenpaar, eine 3D-Dreiergruppe
oder dergleichen ausgedrückt werden. Der eindeuti-
ge Befehlsfolge-Identifikator I kann zum Beispiel da-
für verwendet werden, einen Quellenort für Eingabe-
daten innerhalb einer Gruppierung zu bestimmen, die
einen Eingabedatensatz für ein ganzes Gitter oder
mehrere Gitter umfasst, und/oder um einen Zielort
zum Speichern von Ausgabedaten innerhalb einer
Gruppierung zu bestimmen, die einen Ausgabeda-
tensatz für ein ganzes Gitter oder mehrere Gitter um-
fasst.

[0056] Zum Beispiel könnte im Fall eines HDTV-Bil-
des jede Befehlsfolge 204 einem Pixel des ausgege-
benen Bildes entsprechen. Die Größe (Anzahl von
Befehlsfolgen 204) einer CTA 202 kann bei der Pro-
blemzerlegung frei entschieden werden und ist nur
durch eine Beschränkung auf die Höchstzahl von Be-
fehlsfolgen in einer einzelnen CTA 202 begrenzt (was
die endliche Natur der Prozessorressourcen wider-
spiegelt). Ein Gitter 200 könnte einem ganzen Frame
von HDTV-Daten entsprechen, oder mehrere Gitter
könnten auf einen einzelnen Frame abgebildet wer-
den.

[0057] In einigen Ausführungsformen ist die Pro-
blemzerlegung gleichförmig, was bedeutet, dass alle
Gitter 200 die gleiche Anzahl und Anordnung von
CTAs 202 haben und alle CTAs 202 die gleiche An-
zahl und Anordnung von Befehlsfolgen 204 haben. In
anderen Ausführungsformen kann die Zerlegung un-
gleichförmig sein. Zum Beispiel könnten verschiede-
ne Gitter verschiedene Anzahlen von CTAs enthal-
ten, und verschiedene CTAs (in demselben Gitter
oder in verschiedenen Gittern) könnten verschiedene
Anzahlen von Befehlsfolgen enthalten.

[0058] Eine CTA, wie oben definiert, kann Dutzende
oder sogar Hunderte gleichzeitiger Befehlsfolgen
enthalten. Ein Parallelverarbeitungssystem, auf dem
eine CTA ausgeführt werden soll, könnte gegebenen-
falls eine solche große Anzahl gleichzeitiger Befehls-
folgen unterstützen. In einem Aspekt entkoppelt die
vorliegende Erfindung den Programmierer von sol-
chen Hardwarebeschränkungen, indem sie es dem
Programmierer gestattet, eine Verarbeitungsaufgabe
unter Verwendung des Modells von CTAs und von
Gittern aus CTAs unabhängig von den tatsächlichen

Fähigkeiten der Hardware zu definieren. Zum Bei-
spiel kann der Programmierer Code (ein ”CTA-Pro-
gramm”) schreiben, der die eine oder die mehreren
Verarbeitungsaufgaben, die auszuführen sind, durch
eine einzelne repräsentative Befehlsfolge der CTA
definieren; der eine CTA als eine Anzahl solcher Be-
fehlsfolgen definiert, die jeweils einen eindeutigen
Identifikator haben; und der ein Gitter als eine Anzahl
von CTAs definiert, die jeweils einen eindeutigen
Identifikator haben. Wie unten beschrieben, wird ein
solcher Code automatisch in einen Code übersetzt,
der auf einer bestimmten Plattform ausgeführt wer-
den kann. Wenn zum Beispiel die CTA so definiert ist,
dass sie eine Anzahl n0 gleichzeitiger Befehlsfolgen
enthält, aber die Zielplattform nur eine einzige Be-
fehlsfolge unterstützt, so kann der Übersetzer eine
einzelne reale Befehlsfolge definieren, welche die
Aufgaben ausführt, die allen der n0 Befehlsfolgen zu-
gewiesen sind. Wenn die Zielplattform mehr als eine,
aber weniger als n0 gleichzeitige Befehlsfolgen unter-
stützt, so können die Aufgaben nach Wunsch zwi-
schen der Anzahl verfügbarer Befehlsfolgen aufge-
teilt werden.

[0059] Dementsprechend ist das Programmiermo-
dell von CTAs und Gittern als ein virtuelles Modell zu
verstehen, d. h. ein Modell, das eine Konzepthilfe für
den Programmierer ist und von jeder konkreten phy-
sischen Realisierung abgekoppelt ist. Das virtuelle
Modell von CTAs und Gittern kann in einer Vielzahl
verschiedener Zielplattformen mit variierenden Gra-
den von Hardwareunterstützung für die Parallelverar-
beitung realisiert werden. Genauer gesagt, bezieht
sich der Begriff ”CTA-Befehlsfolge” im Sinne des vor-
liegenden Textes auf ein virtuelles Modell einer dis-
kreten Verarbeitungsaufgabe (die eventuell mit einer
oder mehreren anderen Verarbeitungsaufgaben zu-
sammenwirkt), und es versteht sich, dass CTA-Be-
fehlsfolgen gegebenenfalls eins zu eins auf Befehls-
folgen auf der Zielplattform abgebildet werden könn-
ten.

3. Virtuelle Architektur

[0060] Gemäß einem Aspekt der vorliegenden Er-
findung wird eine virtuelle Parallelarchitektur zum
Ausführen von CTAs und Gittern aus CTAs definiert.
Die virtuelle Parallelarchitektur ist eine Darstellung ei-
nes Parallelprozessors und zugehöriger Speicher-
räume, welche die Ausführung einer großen Anzahl
gleichzeitiger CTA-Befehlsfolgen unterstützen, die zu
einem Zusammenwirkungsverhalten befähigt sind,
wie zum Beispiel der gemeinsamen Nutzung von Da-
ten und der Synchronisierung miteinander an ge-
wünschten Zeitpunkten. Diese virtuelle Parallelarchi-
tektur kann auf eine Vielzahl verschiedener realer
Prozessoren und/oder Verarbeitungssysteme abge-
bildet werden, einschließlich beispielsweise der PPU
122 des Systems 100 von Fig. 1. Die virtuelle Archi-
tektur definiert vorteilhafterweise eine Anzahl virtuel-
10/43

DE 20 2008 017 916 U1 2010.12.09
ler Speicherräume, die verschiedene Grade gemein-
samer Datennutzung und Arten des Zugriffs unter-
stützen, sowie eine virtuelle Befehlssatzarchitektur
(Instruction Set Architecture – ISA), die alle Funktio-
nen identifiziert, die durch einen virtuellen Prozessor
ausgeführt werden können. Die virtuelle Architektur
definiert vorteilhafterweise auch einen virtuellen Aus-
führungstreiber, der dafür verwendet werden kann,
die CTA-Ausführung zu steuern, zum Beispiel durch
Definieren und Starten einer CTA oder eines Gitters
aus CTAs.

[0061] Fig. 3 ist ein Blockschaubild einer virtuellen
Architektur 300 gemäß einer Ausführungsform der
vorliegenden Erfindung. Die virtuelle Architektur 300
enthält einen virtuellen Prozessor 302 mit einem vir-
tuellen Kern 308, der dafür konfiguriert ist, eine große
Anzahl von CTA-Befehlsfolgen parallel auszuführen.
Die virtuelle Architektur 300 enthält auch einen globa-
len Speicher 304, auf den der virtuelle Prozessor 302
zugreifen kann, und einen virtuellen Treiber 320, der
Befehle ausgibt, um den Betrieb des virtuellen Pro-
zessors 302 zu steuern. Der virtuelle Treiber 320
kann auch auf den globalen Speicher 304 zugreifen.

[0062] Der virtuelle Prozessor 302 enthält ein
Front-End 306, das Befehle von dem virtuellen Trei-
ber 320 empfängt und interpretiert, und einen Aus-
führungskern 308, der in der Lage ist, alle n0 Befehls-
folgen einer einzelnen CTA gleichzeitig auszuführen.
Der virtuelle Kern 308 enthält eine große Anzahl (n0

oder mehr) virtueller Verarbeitungsmaschinen 310. In
einer Ausführungsform führt jede virtuelle Verarbei-
tungsmaschine 310 eine einzelne CTA-Befehlsfolge
aus. Die virtuellen Verarbeitungsmaschinen 310 füh-
ren ihre jeweiligen CTA-Befehlsfolgen gleichzeitig
aus, wenn auch nicht unbedingt parallel. In einer Aus-
führungsform spezifiziert die virtuelle Architektur 300
eine Anzahl T (zum Beispiel 384, 500, 768 usw.) vir-
tueller Verarbeitungsmaschinen 310. Diese Anzahl
setzt der Anzahl n0 von Befehlsfolgen in einer CTA
eine Obergrenze. Es versteht sich, dass eine Reali-
sierung der virtuellen Architektur 300 auch weniger
physische Verarbeitungsmaschinen als die spezifi-
zierte Anzahl T enthalten kann und dass eine einzel-
ne Verarbeitungsmaschine mehrere CTA-Befehlsfol-
gen ausführen kann, entweder als eine einzelne ”re-
ale” (d. h. Plattform-unterstützte) Befehlsfolge oder
als mehrere gleichzeitige reale Befehlsfolgen.

[0063] Der virtuelle Prozessor 302 enthält auch eine
virtuelle Befehlseinheit 312, die dafür sorgt, dass die
virtuellen Verarbeitungsmaschinen 310 mit Befehlen
für ihre jeweiligen CTA-Befehlsfolgen versorgt wer-
den. Die Befehle werden durch eine virtuelle ISA de-
finiert, die Teil der virtuellen Architektur 300 ist. Ein
Beispiel einer virtuellen ISA zur Berechnung paralle-
ler Befehlsfolgen ist unten beschrieben. Die Befehls-
einheit 312 verwaltet die Synchronisation der
CTA-Befehlsfolgen und andere Zusammenwirkungs-

aspekte des Verhaltens von CTA-Befehlsfolgen im
Verlauf des Sendens von Befehlen an die virtuellen
Verarbeitungsmaschinen 310.

[0064] Der virtuelle Kern 308 stellt eine interne Da-
tenspeicherung mit verschiedenen Zugänglichkeits-
graden bereit. Die speziellen Register 311 können
durch die virtuellen Verarbeitungsmaschinen 310 be-
schrieben, aber nicht gelesen werden, und werden
dafür verwendet, Parameter zu speichern, welche die
”Position” jeder CTA-Befehlsfolge innerhalb des Pro-
blemzerlegungsmodells von Fig. 2 definieren. In ei-
ner Ausführungsform enthalten die speziellen Regis-
ter 311 ein Register je CTA-Befehlsfolge (oder je vir-
tueller Verarbeitungsmaschine 310), das eine Be-
fehlsfolge-ID speichert. Jedes Befehlsfolge-ID-Re-
gister ist nur für eine jeweilige der virtuellen Verarbei-
tungsmaschinen 310 zugänglich. Die speziellen Re-
gister 311 können auch zusätzliche Register enthal-
ten, die durch alle CTA-Befehlsfolgen (oder durch alle
virtuellen Verarbeitungsmaschinen 310) gelesen
werden können, die einen CTA-Identifikator, die
CTA-Dimensionen, die Dimensionen eines Gitters, zu
dem die CTA gehört, und einen Identifikator eines
Gitters, zu dem die CTA gehört, speichern. Die spezi-
ellen Register 311 werden während der Initialisierung
in Reaktion auf Befehle beschrieben, die über das
Front-End 306 von dem virtuellen Treiber 320 emp-
fangen werden, und ändern sich während der
CTA-Ausführung nicht.

[0065] Lokale virtuelle Register 314 werden durch
jede CTA-Befehlsfolge als Arbeitsraum verwendet.
Jedes Register wird für die ausschließlich Verwen-
dung einer einzelnen CTA-Befehlsfolge (oder einer
einzelnen virtuellen Verarbeitungsmaschine 310) zu-
gewiesen, und die Daten in jedem der lokalen Regis-
ter 314 sind nur für die CTA-Befehlsfolge zugänglich,
der sie zugewiesen sind. Der gemeinsam genutzte
Speicher 316 ist für alle CTA-Befehlsfolgen (inner-
halb einer einzelnen CTA) zugänglich. Jeder Ort in
dem gemeinsam genutzten Speicher 316 ist für jede
CTA-Befehlsfolge innerhalb derselben CTA (oder für
jede virtuelle Verarbeitungsmaschine 310 innerhalb
des virtuellen Kerns 308) zugänglich. Der Parameter-
speicher 318 speichert Laufzeitparameter (Konstan-
ten), die durch jede CTA-Befehlsfolge (oder jede vir-
tuelle Verarbeitungsmaschine 310) gelesen, aber
nicht beschrieben werden können. In einer Ausfüh-
rungsform gibt der virtuelle Treiber 320 Parameter an
den Parameterspeicher 318 aus, bevor er den virtu-
ellen Prozessor 302 anweist, die Ausführung einer
CTA zu beginnen, die diese Parameter verwendet.
Jede CTA-Befehlsfolge innerhalb einer CTA (oder ei-
ner virtuellen Verarbeitungsmaschine 310 innerhalb
des virtuellen Kerns 308) kann über eine Speicher-
schnittstelle 322 auf den globalen Speicher 304 zu-
greifen.

[0066] In der virtuellen Architektur 300 wird der vir-
11/43

DE 20 2008 017 916 U1 2010.12.09
tuelle Prozessor 302 als ein Koprozessor unter der
Steuerung des virtuellen Treibers 320 betrieben. Die
Spezifikation der virtuellen Architektur enthält vorteil-
hafterweise eine virtuelle Anwendungsprogramm-
schnittstelle (Application Program Interface – API),
die Funktionsaufrufe identifiziert, die durch den virtu-
ellen Treiber 320 erkannt werden, und das Verhalten
identifiziert, von dem erwartet wird, dass jeder Funk-
tionsaufruf es hervorruft,. Beispielhafte Funktionsauf-
rufe für eine virtuelle API für die Berechnung paralle-
ler Befehlsfolgen werden unten beschrieben.

[0067] Die virtuelle Architektur 300 kann auf einer
Vielzahl verschiedener Hardwareplattformen reali-
siert werden. In einer Ausführungsform ist die virtuel-
le Architektur 300 im System 100 von Fig. 1 realisiert,
wobei die PPU 122 den virtuellen Prozessor 302 im-
plementiert und ein PPU-Treiberprogramm, das auf
der CPU 102 ausgeführt wird, den virtuellen Treiber
320 implementiert. Der globale Speicher 304 kann im
Systemspeicher 104 und/oder im PP-Speicher 124
implementiert werden.

[0068] In einer Ausführungsform enthält die PPU
122 einen oder mehrere Verarbeitungskerne, die mit
Einzelbefehls-Mehrfachdaten (Single-Instruction,
Multiple-Data – SIMD)- und Nebenläufigkeitstechni-
ken arbeiten, um die gleichzeitige Ausführung einer
großen Anzahl (zum Beispiel 384 oder 768) von Be-
fehlsfolgen von einer einzelnen Befehlseinheit (wel-
che die virtuelle Befehlseinheit 312 implementiert) zu
unterstützen. Jeder Kern enthält eine Gruppierung P
(zum Beispiel 8, 16 usw.) von Parallelverarbeitungs-
maschinen 302, die dafür konfiguriert sind, SIMD-Be-
fehle von der Befehlseinheit zu empfangen und aus-
zuführen, wodurch Gruppen von bis zu P Befehlsfol-
gen parallel verarbeitet werden können. Der Kern ar-
beitet mit Nebenläufigkeit (multithreaded), wobei jede
Verarbeitungsmaschine in der Lage ist, bis zu einer
Anzahl G (zum Beispiel 24) von Befehlsfolgegruppen
gleichzeitig auszuführen, zum Beispiel durch Führen
von aktuellen Zustandsinformation, die zu jeder Be-
fehlsfolge gehören, dergestalt, dass die Verarbei-
tungsmaschine rasch von einer Befehlsfolge zu einer
anderen umschalten kann. Somit führt der Kern
gleichzeitig G SIMD-Gruppen von jeweils P Befehls-
folgen aus, also insgesamt P × G gleichzeitige Be-
fehlsfolgen. In dieser Realisierung kann es, solange
P × G ≥ n0, eine Eins-zu-eins-Entsprechung zwischen
den (virtuellen) CTA-Befehlsfolgen und gleichzeitigen
Befehlsfolgen geben, die auf der realen PPU 122
ausgeführt werden.

[0069] Spezielle Register 311 können in der PPU
122 implementiert werden, indem man jeden Verar-
beitungskern mit einer Registerdatei aus P × G Ein-
trägen versieht, wobei jeder Eintrag in der Lage ist,
eine Befehlsfolge-ID zu speichern, und indem man
einen Satz global auslesbarer Register zum Spei-
chern einer CTA-ID, einer Gitter-ID und von CTA- und

Gitterdimensionen bereitstellt. Alternativ können die
speziellen Register 311 auch unter Verwendung an-
derer Speicherorte implementiert werden.

[0070] Lokale Register 314 können in der PPU 122
als eine Lokalregisterdatei implementiert werden, die
physisch oder logisch in P Bahnen unterteilt ist, die
jeweils eine Anzahl von Einträgen aufweisen (wobei
jeder Eintrag zum Beispiel ein 32-Bit-Wort speichern
könnte). Jeder der P Verarbeitungsmaschinen ist
eine Bahn zugewiesen, und entsprechende Einträge
in verschiedenen Bahnen können mit Daten für ver-
schiedene Befehlsfolgen, die dasselbe Programm
ausführen, gefüllt werden, um die SIMD-Ausführung
zu ermöglichen. Verschiedene Abschnitte der Bah-
nen können verschiedenen der G gleichzeitigen Be-
fehlsfolgegruppen zugewiesen werden, so dass ein
bestimmter Eintrag in der Lokalregisterdatei nur für
eine bestimmte Befehlsfolge zugänglich ist. In einer
Ausführungsform sind bestimmte Einträge innerhalb
der Lokalregisterdatei für das Speichern von Befehls-
folge-Identifikatoren reserviert, die eines der speziel-
len Register 311 implementieren.

[0071] Der gemeinsam genutzte Speicher 316 kann
in der PPU 122 als eine gemeinsam genutzte Regis-
terdatei oder als ein gemeinsam genutzter
On-Chip-Cachespeicher mit einer Zwischenverbin-
dung implementiert werden, die es jeder Verarbei-
tungsmaschine gestattet, jeden beliebigen Ort in dem
gemeinsam genutzten Speicher zu lesen oder zu be-
schreiben. Der Parameterspeicher 318 kann in der
PPU 122 als eine bezeichnete Sektion innerhalb der-
selben gemeinsam genutzten Registerdatei oder
desselben gemeinsam genutzten Cachespeichers,
der den gemeinsam genutzten Speicher 316 imple-
mentiert, oder als eine separate gemeinsam genutzte
Registerdatei oder ein separater gemeinsam genutz-
ter On-Chip-Cachespeicher implementiert werden,
auf den die Verarbeitungsmaschinen einen Nurlese-
zugriff haben. In einer Ausführungsform wird der Be-
reich, der den Parameterspeicher implementiert,
auch dafür verwendet, die CTA-ID und die Gitter-ID
sowie die CTA- und Gitterdimensionen zu speichern,
die Abschnitte der speziellen Register 311 implemen-
tieren.

[0072] In einer Ausführungsform reagiert ein
PPU-Treiberprogramm, das auf der CPU 102 von
Fig. 1 ausgeführt wird, auf Funktionsaufrufe der virtu-
ellen API durch Schreiben von Befehlen in einen
(nicht ausdrücklich gezeigten) Einspeicherungspuffer
im Speicher (zum Beispiel Systemspeicher 104), aus
dem die Befehle durch die PPU 122 ausgelesen wer-
den. Die Befehle sind vorteilhafterweise mit Zu-
standsparametern verbunden, wie zum Beispiel der
Anzahl von Befehlsfolgen in der CTA; dem Ort eines
Eingabedatensatzes, der unter Verwendung der CTA
zu verarbeiten ist, im globalen Speicher; dem Ort des
auszuführenden CTA-Programms im globalen Spei-
12/43

DE 20 2008 017 916 U1 2010.12.09
cher; und dem Ort im globalen Speicher, in den die
Ausgabedaten geschrieben werden sollen. In Reakti-
on auf die Befehle und Zustandsparameter lädt die
PPU 122 Zustandsparameter in einen ihrer Kerne
und beginnt dann mit dem Starten von Befehlsfolgen,
bis die Anzahl von Befehlsfolgen, die in den CTA-Pa-
rametern spezifiziert sind, gestartet wurden. In einer
Ausführungsform enthält die PPU 122 eine Steuerlo-
gik, die Befehlsfolge-IDs sequenziell zu Befehlsfol-
gen in der Reihenfolge zuweist, wie sie gestartet wur-
den. Die Befehlsfolge-ID kann zum Beispiel an einem
bezeichneten Ort innerhalb der Lokalregisterdatei
oder in einem speziellen Register, das speziell die-
sem Zweck dient, gespeichert werden.

[0073] In einer alternativen Ausführungsform ist die
virtuelle Architektur 300 in einem einfach-gereihten
Verarbeitungskern (zum Beispiel in einigen CPUs)
realisiert, der alle CTA-Befehlsfolgen unter Verwen-
dung von weniger als n0 realen Befehlsfolgen aus-
führt. Verarbeitungsaufgaben, die das virtuelle Pro-
grammiermodell verschiedenen CTA-Befehlsfolgen
zuordnet, können zu einer einzelnen Befehlsfolge
kombiniert werden, zum Beispiel durch Ausführen
der Aufgabe (oder eines Abschnitts der Aufgabe) für
eine CTA-Befehlsfolge, dann für die nächste CTA-Be-
fehlsfolge, und so weiter. Vektorausführung,
SIMD-Ausführung und/oder sonstige Formen von
Parallelismus, die in der Maschine verfügbar sind,
können genutzt werden, um Verarbeitungsaufgaben,
die mit mehreren CTA-Befehlsfolgen verbunden sind,
parallel auszuführen oder um mehrere Verarbei-
tungsaufgaben, die mit derselben CTA-Befehlsfolge
verbunden sind, parallel auszuführen. Somit kann
eine CTA unter Verwendung einer einzelnen Befehls-
folge, von n0 Befehlsfolgen oder einer sonstigen An-
zahl von Befehlsfolgen realisiert werden. Wie unten
beschrieben, übersetzt ein virtueller Befehlsüberset-
zer vorteilhafterweise Code, der in die virtuelle Zielar-
chitektur 300 geschrieben wurde, in Befehle, die für
eine Zielplattform spezifisch sind.

[0074] Es versteht sich, dass die im vorliegenden
Text beschriebene virtuelle Architektur veranschauli-
chend ist und dass Variationen und Modifikationen
möglich sind. Zum Beispiel kann in einer alternativen
Ausführungsform jede virtuelle Verarbeitungsmaschi-
ne ein dediziertes Befehlsfolge-ID-Register haben,
das die eindeutige Befehlsfolge-ID, die ihrer Befehls-
folge zugewiesen ist, speichert, anstatt Raum in loka-
len virtuellen Registern für diesen Zweck zu verwen-
den.

[0075] Als ein weiteres Beispiel kann die virtuelle
Architektur mehr oder weniger Details bezüglich der
internen Struktur des virtuellen Kerns 308 spezifizie-
ren. Zum Beispiel könnte spezifiziert werden, dass
der virtuelle Kern 308 P nebenläufige virtuelle Verar-
beitungsmaschinen enthält, die verwendet werden,
um CTA-Befehlsfolgen in P-Wege-SIMD-Gruppen

auszuführen, wobei bis zu G SIMD-Gruppen im Kern
308 nebeneinander existieren, dergestalt, dass P × G
T bestimmt (die Höchstzahl von Befehlsfolgen in ei-
ner CTA). Verschiedene Arten von Speicher und Gra-
de der gemeinsamen Nutzung können ebenfalls spe-
zifiziert werden.

[0076] Die virtuelle Architektur kann in einer Vielzahl
verschiedener Computersysteme unter Verwendung
einer beliebigen Kombination von Hardware-
und/oder Software-Elementen zum Definieren und
Steuern jeder Komponente realisiert werden. Ob-
gleich eine Realisierung unter Verwendung von
Hardware-Komponenten beispielhaft beschrieben
wurde, versteht es sich, dass die vorliegende Erfin-
dung das Abkoppeln von Programmieraufgaben von
einer bestimmten Hardware-Realisierung betrifft.

4. Programmieren der virtuellen Architektur

[0077] Fig. 4 ist ein Konzeptmodell 400 der Verwen-
dung der virtuellen Architektur 300 zum Betreiben ei-
nes Zielprozessors oder einer Zielplattform 440 ge-
mäß einer Ausführungsform der vorliegenden Erfin-
dung. Wie das Modell 400 zeigt, entkoppelt das Vor-
handensein der virtuellen Architektur 300 kompilierte
Anwendungen und APIs von der Hardware-Imple-
mentierung des Zielprozessors oder der Zielplatt-
form.

[0078] Ein Anwendungsprogramm 402 definiert
eine Datenverarbeitungsanwendung, die das oben
beschriebene virtuelle Programmiermodell, ein-
schließlich einzelner CTAs und/oder Gitter aus CTAs,
nutzt. Allgemein weist das Anwendungsprogramm
402 mehrere Aspekte auf. Als erstes definiert das
Programm das Verhalten einer einzelnen CTA-Be-
fehlsfolge. Zweitens definiert das Programm die Di-
mensionen einer CTA (als Anzahl von CTA-Befehls-
folgen) und, wenn Gitter verwendet werden sollen,
die Dimensionen eines Gitters (als Anzahl von
CTAs). Drittens definiert das Programm einen Einga-
bedatensatz, der durch die CTA (oder das Gitter) ver-
arbeitet werden soll, und einen Ort, an dem der Aus-
gabedatensatz gespeichert werden soll. Viertens de-
finiert das Programm ein Gesamt-Verarbeitungsver-
halten, einschließlich beispielsweise, wann jede CTA
oder jedes Gitter gestartet werden soll. Das Pro-
gramm kann zusätzlichen Code enthalten, der dyna-
misch die Dimensionen einer CTA oder eines Gitters
bestimmt; der bestimmt, ob neue CTAs oder Gitter
weiter gestartet werden sollen, und so weiter.

[0079] Das Anwendungsprogramm 402 kann in ei-
ner höheren Programmiersprache, wie zum Beispiel
C/C++, FORTRAN oder dergleichen, geschrieben
werden. In einer Ausführungsform spezifiziert ein
”C/C++”-Anwendungsprogramm direkt das Verhalten
einer (virtuellen) CTA-Befehlsfolge. In einer weiteren
Ausführungsform wird ein Anwendungsprogramm
13/43

DE 20 2008 017 916 U1 2010.12.09
unter Verwendung einer datenparallelen Sprache ge-
schrieben (zum Beispiel Fortran 90, C* oder Data-Pa-
rallel C) und spezifiziert datenparallele Operationen
an Gruppierungen und aggregierten Datenstruktu-
ren. Ein solches Programm kann zu virtuellem
ISA-Programmcode kompiliert werden, der das Ver-
halten einer (virtuellen) CTA-Befehlsfolge spezifiziert.
Um das Definieren des Verhaltens einer CTA-Be-
fehlsfolge zu ermöglichen, können Spracherweite-
rungen oder eine Funktionsbibliothek bereitgestellt
werden, über die der Programmierer das Verhalten
paralleler CTA-Befehlsfolgen spezifizieren kann.
Zum Beispiel können spezielle Symbole oder Variab-
len definiert werden, die der Befehlsfolge-ID, der
CTA-ID und der Gitter-ID entsprechen, und es kön-
nen Funktionen bereitgestellt werden, über die der
Programmierer angeben kann, wann die CTA-Be-
fehlsfolge mit anderen CTA-Befehlsfolgen synchroni-
siert werden sollte.

[0080] Wenn das Anwendungsprogramm 402 kom-
piliert wird, so erzeugt der Kompilierer 408 einen vir-
tuellen ISA-Code 410 für jene Abschnitte des Anwen-
dungsprogramms 402, die das Verhalten von
CTA-Befehlsfolgen definieren. In einer Ausführungs-
form wird virtueller ISA-Code 410 in der virtuellen ISA
der virtuellen Architektur 300 von Fig. 3 ausgedrückt.
Der virtuelle ISA-Code 410 ist Programmcode, wenn
auch nicht unbedingt Code in einer Form, der auf ei-
ner bestimmten Zielplattform ausgeführt werden
kann. Als solches kann der virtuelle ISA-Code 410
wie jeder andere Programmcode gespeichert
und/oder verteilt werden. In anderen Ausführungsfor-
men können Anwendungsprogramme ganz oder teil-
weise als virtueller ISA-Code 410 spezifiziert werden,
und der Kompilierer 408 kann ganz oder teilweise
umgangen werden.

[0081] Ein virtueller Befehlsübersetzer 412 konver-
tiert virtuellen ISA-Code 410 in einen Ziel-ISA-Code
414. In einigen Ausführungsformen ist der
Ziel-ISA-Code 414 ein Code, der direkt durch eine
Zielplattform 440 ausgeführt werden kann. Zum Bei-
spiel kann, wie durch die in gestrichelter Linie Kästen
in Fig. 4 gezeigt, in einer Ausführungsform der
Ziel-ISA-Code 414 durch eine Befehlseinheit 430 in
der PPU 122 empfangen und korrekt decodiert wer-
den. Je nach den Spezifika der Zielplattform 440
könnte der virtuelle ISA-Code 410 in Code je Befehls-
folge übersetzt werden, um durch jede von n0 Be-
fehlsfolgen auf der Zielplattform 440 ausgeführt zu
werden. Alternativ könnte der virtuelle ISA-Code 410
in einen Programmcode übersetzt werden, um in we-
niger als n0 Befehlsfolgen ausgeführt zu werden, wo-
bei jede Befehlsfolge Verarbeitungsaufgaben enthält,
die zu mehr als einer der CTA-Befehlsfolgen in Bezie-
hung stehen.

[0082] In einigen Ausführungsformen werden die
Definition von Dimensionen von CTAs und/oder Git-

tern sowie das Definieren von Eingabedatensätzen
und Ausgabedatensätzen durch eine virtuelle API ge-
handhabt. Das Anwendungsprogramm 402 kann
Rufe an eine Bibliothek 404 aus virtuellen API-Funk-
tionen enthalten. In einer Ausführungsform wird dem
Programmierer eine Spezifikation der virtuellen API
(einschließlich beispielsweise Funktionsnamen, Ein-
gaben, Ausgaben und Effekte, aber keine Implemen-
tierungsdetails) zur Verfügung gestellt, und der Pro-
grammierer arbeitet virtuelle API-Rufe direkt in das
Anwendungsprogramm 402 ein, wodurch direkt virtu-
eller API-Code 406 erzeugt wird. In einer weiteren
Ausführungsform wird der virtuelle API-Code 406
durch Kompilieren eines Anwendungsprogramms
402 erzeugt, das eine andere Syntax zum Definieren
von CTAs und Gittern verwendet.

[0083] Virtueller API-Code 406 wird zum Teil durch
Bereitstellen eines virtuellen Ausführungstreibers
416 realisiert, der die virtuellen API-Befehle aus
Code 406 in Ziel-API-Befehle 418 übersetzt, die
durch die Zielplattform 440 verarbeitet werden kön-
nen. Zum Beispiel können, wie durch die in Strichlinie
dargestellten Kästen in Fig. 4 gezeigt, in einer Aus-
führungsform die Ziel-API-Befehle 418 durch einen
PPU-Treiber 432 empfangen und verarbeitet werden,
der entsprechende Befehle an das Front-End 434 der
PPU 122 übermittelt. (In dieser Ausführungsform
kann der virtuelle Ausführungstreiber 416 ein Aspekt
oder Abschnitt des PPU-Treibers 432 sein.) In einer
weiteren Ausführungsform braucht der virtuelle Aus-
führungstreiber nicht einem Treiber für einen Kopro-
zessor zu entsprechen; er könnte einfach ein Steuer-
programm sein, das andere Programme oder Be-
fehlsfolgen auf demselben Prozessor startet, auf
dem der virtuelle Ausführungstreiber läuft.

[0084] Es versteht sich, dass ein virtueller Befehlsü-
bersetzer 412 und ein virtueller Ausführungstreiber
416 für jede beliebige Plattform oder Architektur er-
zeugt werden können, die in der Lage ist, eine
CTA-Ausführung zu unterstützen. Insofern virtuelle
Befehlsübersetzer 412 für verschiedene Plattformen
oder Architekturen aus derselben virtuellen ISA über-
setzen können, kann derselbe virtuelle ISA-Code 410
mit jeder beliebigen Plattform oder Architektur ver-
wendet werden. Somit braucht das Anwendungspro-
gramm 402 nicht für jede mögliche Plattform oder Ar-
chitektur rekompiliert zu werden.

[0085] Des Weiteren ist es nicht notwendig, dass
die Zielplattform 440 eine PPU und/oder einen
PPU-Treiber, wie in Fig. 4 gezeigt, enthält. Zum Bei-
spiel ist in einer alternativen Ausführungsform die
Zielplattform eine CPU, die Software-Techniken ver-
wendet, um eine gleichzeitige Ausführung einer gro-
ßen Anzahl von Befehlsfolgen zu emulieren, und der
Ziel-ISA-Code und die Ziel-API-Befehle entsprechen
Befehlen in einem Programm (oder einer Gruppe von
untereinander kommunizierenden Programme), um
14/43

DE 20 2008 017 916 U1 2010.12.09
durch die Ziel-CPU ausgeführt zu werden, bei der es
sich zum Beispiel um eine Einzelkern- oder eine
Mehrkern-CPU handeln kann.

5. Beispiel einer virtuellen ISA

[0086] Ein Beispiel einer virtuellen ISA gemäß einer
Ausführungsform der vorliegenden Erfindung wird
nun beschrieben. Wie oben angemerkt, entspricht
die virtuelle ISA vorteilhafterweise dem oben be-
schriebenen virtuellen Programmiermodell (CTAs
und Gittern). Dementsprechend definiert in dieser
Ausführungsform der virtuelle ISA-Code 410, der
durch den Kompilierer 408 erzeugt wird, das Verhal-
ten einer einzelnen CTA-Befehlsfolge, um durch eine
der virtuellen Verarbeitungsmaschinen 310 im virtuel-
len Kern 308 von Fig. 3 ausgeführt zu werden. Das
Verhalten kann zusammenwirkende Interaktionen mit
anderen CTA-Befehlsfolgen enthalten, wie zum Bei-
spiel Synchronisation und/oder gemeinsame Daten-
nutzung.

[0087] Es versteht sich, dass die im vorliegenden
Text beschriebene virtuelle ISA allein dem Zweck der
Veranschaulichung dient und dass die im vorliegen-
den Text beschriebenen konkreten Elemente oder
Kombinationen von Elementen nicht den Geltungs-
bereich der Erfindung einschränken. In einigen Aus-
führungsformen kann ein Programmierer Code in der
virtuellen ISA schreiben. In anderen Ausführungsfor-
men schreibt der Programmierer Code in einer ande-
ren höheren Sprache (zum Beispiel FORTRAN, C,
C++), und der Kompilierer 408 erzeugt virtuellen
ISA-Code. Ein Programmierer kann auch ”gemisch-
ten” Code schreiben, wobei einige Abschnitte des
Codes in einer höheren Sprache und andere Ab-
schnitte in der virtuellen ISA geschrieben sind.

5.1 Spezielle Variablen

[0088] Fig. 5 ist eine Tabelle 500, die ”spezielle” Va-
riablen auflistet, die durch die beispielhafte virtuelle
ISA definiert werden (das Präfix ”%” wird im vorlie-
genden Text verwendet, um eine spezielle Variable
zu kennzeichnen). Diese Variablen beziehen sich auf
das Programmiermodell von Fig. 2, wobei jede Be-
fehlsfolge 204 anhand ihrer Position innerhalb einer
CTA 202 identifiziert wird, die sich wiederum inner-
halb eines bestimmten aus einer Anzahl von Gittern
200 befindet. In einigen Ausführungsformen entspre-
chen die speziellen Variablen der Tabelle 500 spezi-
ellen Registern 311 in der virtuellen Architektur 300
von Fig. 3.

[0089] In Tabelle 500 wird angenommen, dass
CTAs und Gitter jeweils in einem dreidimensionalen
Raum definiert sind und dass verschiedene Gitter in
einem eindimensionalen Raum fortlaufend numme-
riert sind. Die virtuelle ISA erwartet, dass die speziel-
len Variablen von Fig. 5 initialisiert werden, wenn die

CTA gestartet wird, und der virtuelle ISA-Code kann
einfach diese Variablen ohne Initialisierung verwen-
den. Die Initialisierung von speziellen Variablen wird
unten unter Bezug auf die virtuelle API besprochen.

[0090] Wie in Fig. 5 gezeigt, definiert ein erster
3-Vektor aus speziellen Variablen %ntid = (%ntid.x,
%ntid.y, %ntid.z) die Dimensionen (als Anzahl von
Befehlsfolgen) einer CTA. Alle Befehlsfolgen einer
CTA teilen sich denselben %ntid-Vektor. In der virtu-
ellen Architektur 300 wird erwartet, dass Werte für
den %ntid-Vektor an den virtuellen Prozessor 302
über einen Funktionsaufruf einer virtuellen API über-
mittelt werden, der die Dimensionen einer CTA fest-
legt, wie unten beschrieben.

[0091] Wie in Fig. 5 gezeigt, bezieht sich ein zweiter
3-Vektor aus speziellen Variablen %tid = (%tid.x,
%tid.y, %tid.z) auf die Befehlsfolge-ID einer bestimm-
ten Befehlsfolge innerhalb einer CTA. In der virtuellen
Architektur 300 von Fig. 3 wird erwartet, dass der vir-
tuelle Prozessor 302 einen eindeutigen %tid-Vektor
zuweist, der die Vorgaben 0 ≤ %tid.x < %ntid.x, 0 ≤
%tid.y < %ntid.y und 0 ≤ %tid.z < %ntid.z erfüllt, wenn
jede Befehlsfolge der CTA gestartet wird. In einer
Ausführungsform kann der %tid-Vektor so definiert
werden, dass er in einem gepackten 32-Bit-Wort ge-
speichert werden kann (zum Beispiel 16 Bits für
%tid.x, 10 Bits für %tid.y und 6 Bits für %tid.z).

[0092] Wie in Fig. 5 gezeigt, definiert ein dritter
3-Vektor aus speziellen Variablen %nctaid = (%nc-
taid.x, %nctaid.y, %nctaid.z) die Dimensionen (als
Anzahl von CTAs) eines Gitters. In der virtuellen Ar-
chitektur 300 von Fig. 3 wird erwartet, dass die Werte
für den %nctaid-Vektor an den virtuellen Prozessor
302 über einen Funktionsaufruf einer virtuellen API
übermittelt werden, der die Dimensionen eines Git-
ters aus CTAs festlegt.

[0093] Wie in Fig. 5 gezeigt, bezieht sich ein vierter
3-Vektor auf spezielle Variablen %ctaid = (%ctaid.x,
%ctaid.y, %ctaid.z) auf die CTA-ID einer bestimmten
CTA innerhalb eines Gitters. In der virtuellen Archi-
tektur 300 von Fig. 3 wird erwartet, dass ein eindeu-
tiger %ctaid-Vektor, der die Vorgaben 0 ≤ %ctaid.x <
%nctaid.x, 0 ≤ %ctaid.y < %nctaid.y und 0 ≤ %ctaid.z
< %nctaid.z für die CTA erfüllt, an den virtuellen Pro-
zessor 302 übermittelt wird, wenn die CTA gestartet
wird.

[0094] Die speziellen Variablen enthalten auch eine
skalare %gridid-Variable, die einen Gitteridentifikator
für das Gitter bildet, zu dem eine CTA gehört. In der
virtuellen Architektur 300 von Fig. 3 wird erwartet,
dass ein %gridid-Wert an den virtuellen Prozessor
302 übermittelt wird, um das Gitter zu identifizieren,
von dem die momentane CTA ein Teil ist. Der %gri-
did-Wert wird vorteilhafterweise in virtuellem ISA-Co-
de verwendet, zum Beispiel wenn mehrere Gitter ver-
15/43

DE 20 2008 017 916 U1 2010.12.09
wendet werden, um verschiedene Abschnitte eines
großen Problems zu lösen.

5.2. Programmdefinierte Variablen und virtuelle Zu-
standsräume

[0095] Die virtuelle ISA ermöglicht es dem Program-
mierer (oder Kompilierer), eine willkürliche Anzahl
von Variablen zu definieren, um in Verarbeitung be-
findliche Datenelemente darzustellen. Eine Variable
wird durch einen Typ und einen ”virtuellen Zustands-
raum” definiert, der anzeigt, wie die Variable verwen-
det wird und in welchem Umfang sie gemeinsam ge-
nutzt wird. Variablen werden unter Verwendung von
Registern oder anderen Speicherstrukturen realisiert,
die auf einer Zielplattform verfügbar sind. Auf vielen
Zielplattformen kann der Zustandsraum die Wahl der
Speicherstruktur beeinflussen, die zum Realisieren
einer bestimmten Variable verwendet werden soll.

[0096] Fig. 6 ist eine Tabelle 600, welche die Vari-
ablentypen auflistet, die in der beispielhaften virtuel-
len ISA-Ausführungsform unterstützt werden. Es
werden vier Typen unterstützt: nicht-typisierte Bits,
signierte ganze Zahl, unsignierte ganze Zahl und
Gleitkomma. Nicht-typisierte Variablen sind einfach
einzelne Bits oder Gruppen von Bits der spezifizier-
ten Länge. Signierte und unsignierte ganzzahlige
Formate sowie Gleitkommaformate können gemäß
herkömmlichen Formaten (zum Beispiel IEEE
754-Standards) definiert werden.

[0097] In dieser Ausführungsform werden mehrere
Breiten für jeden Typ unterstützt, wobei der Parame-
ter <n> verwendet wird, um die Breite zu spezifizie-
ren. So zeigt zum Beispiel .s16 eine signierte ganze
16-Bit-Zahl an; .f32 zeigt eine 32-Bit-Gleitkommazahl
an; und so weiter. Wie in Tabelle 600 gezeigt, sind ei-
nige Variablentypen auf bestimmte Breiten be-
schränkt. Zum Beispiel müssen Gleitkomma-Variab-
len mindestens 16 Bits haben, und ganzzahlige Ty-
pen müssen mindestens 8 Bits haben. Es wird erwar-
tet, dass eine Realisierung der virtuellen ISA alle spe-
zifizierten Breiten unterstützt. Wenn die Datenpfade
und/oder Register des Prozessors schmaler sind als
die größte Breite, so können mehrere Register und
Prozessorzyklen verwendet werden, um die breiteren
Typen zu handhaben, wie dem Fachmann bekannt
ist.

[0098] Es versteht sich, dass die im vorliegenden
Text verwendeten Datentypen und Breiten veran-
schaulichend sind und die Erfindung nicht einschrän-
ken.

[0099] Fig. 7 ist eine Tabelle, welche die virtuellen
Zustandräume auflistet, die in der beispielhaften vir-
tuellen ISA unterstützt werden. Es werden neun Zu-
standsräume definiert, die verschiedenen Graden
der gemeinsamen Nutzung und möglichen Speicher-

orten in der virtuellen Architektur 300 von Fig. 3 ent-
sprechen.

[0100] Die ersten drei Zustandsräume werden auf
der Befehlsfolge-Ebene gemeinsam genutzt, was be-
deutet, dass jede CTA-Befehlsfolge eine separate In-
stanz der Variable hat und keine CTA-Befehlsfolge
Zugriff auf die Instanz einer anderen CTA-Befehlsfol-
ge hat. Der Zustandsraum des virtuellen Registers
(.reg) wird vorteilhafterweise verwendet, um Operan-
den, temporäre Werte und/oder Ergebnisse von Be-
rechnungen, die durch jede CTA-Befehlsfolge auszu-
führen sind, zu definieren. Ein Programm kann jede
beliebige Anzahl virtueller Register deklarieren. Virtu-
elle Register können nur durch einen statischen
Kompilierzeitnamen und nicht durch eine berechnete
Adresse adressiert werden. Dieser Zustandsraum
entspricht lokalen virtuellen Registern 314 in der vir-
tuellen Architektur 300 von Fig. 3.

[0101] Der Zustandsraum des speziellen Registers
(.sreg) entspricht den vorgegebenen speziellen Vari-
ablen von Fig. 5, die in speziellen Registern 311 in
der virtuellen Architektur 300 gespeichert werden. In
einigen Ausführungsformen braucht der virtuelle
ISA-Code keine anderen Variablen in dem
.sreg-Raum zu deklarieren, sondern kann die spezi-
ellen Variablen als Eingaben in Berechnungen ver-
wenden. Alle CTA-Befehlsfolgen können alle Variab-
len in dem .sreg-Zustandsraum lesen. Für %tid (oder
seine Komponenten) liest jede CTA-Befehlsfolge ih-
ren eindeutigen Befehlsfolge-Identifikator. Für die an-
deren Variablen in dem .sreg-Zustandsraum lesen
alle CTA-Befehlsfolgen in derselben CTA dieselben
Werte.

[0102] Variablen von lokalem Speicher je Befehls-
folge (.local) entsprechen einer Region von globalem
Speicher 304, der für jede CTA-Befehlsfolge einzeln
zugewiesen und adressiert wird. Oder anders ausge-
drückt: Wenn eine CTA-Befehlsfolge auf eine .lo-
cal-Variable zugreift, so greift sie auf ihre eigene In-
stanz der Variable zu, und Änderungen zu einer .lo-
cal-Variable, die in einer CTA-Befehlsfolge vorge-
nommen werden, beeinflussen keine anderen
CTA-Befehlsfolgen. Im Gegensatz zu den .reg- und
.sreg-Zustandsräumen kann lokaler Speicher je Be-
fehlsfolge unter Verwendung berechneter Adressen
adressiert werden.

[0103] Die nächsten zwei Zustandsräume definie-
ren Variablen je CTA, was bedeutet, dass jede CTA
eine einzelne Instanz der Variable hat, auf die jede ih-
rer (virtuellen) Befehlsfolgen zugreifen kann. Ge-
meinsam genutzte (.shared) Variablen können durch
jede der CTA-Befehlsfolgen gelesen oder geschrie-
ben werden. In einigen Ausführungsformen wird die-
ser Zustandsraum auf virtuellen gemeinsam genutz-
ten Speicher 316 der virtuellen Architektur 300
(Fig. 3) abgebildet. In einer Realisierung der virtuel-
16/43

DE 20 2008 017 916 U1 2010.12.09
len Architektur 300 könnte der .shared-Zustands-
raum auf eine Implementierung eines auf dem Chip
befindlichen, gemeinsam genutzten Speichers (zum
Beispiel eine gemeinsam genutzte Registerdatei
oder einen gemeinsam genutzten Cachespeicher)
abgebildet werden, während in anderen Realisierun-
gen der .shared-Zustandsraum auf eine Region je
CTA von Off-Chip-Speicher abgebildet werden könn-
te, die wie jeder andere global zugängliche Speicher
zugewiesen und adressiert wird.

[0104] Parameter (.param)-Variablen können nur
gelesen werden und können durch jede beliebige
(virtuelle) Befehlsfolge in der CTA gelesen werden.
Dieser Zustandsraum bildet den Parameterspeicher
318 der virtuellen Architektur 300 und kann zum Bei-
spiel in einem auf dem Chip angeordneten gemein-
sam genutzten Parameterspeicher oder Cachespei-
cher oder in einer Region auf global zugänglichem
Off-Chip-Speicher realisiert werden, der wie jeder an-
dere global zugängliche Speicher zugewiesen und
adressiert wird. Es wird erwartet, dass diese Variab-
len in Reaktion auf Treiberbefehle vom virtuellen Trei-
ber 320 initialisiert werden.

[0105] Der Konstanten (.const)-Zustandsraum wird
zum Definieren von Konstanten je Gitter verwendet,
die durch jede beliebige (virtuelle) Befehlsfolge in je-
der beliebigen CTA in dem Gitter gelesen (aber nicht
modifiziert) werden können. In der virtuellen Architek-
tur 300 kann der .const-Zustandsraum auf eine Regi-
on im globalen Speicher abgebildet werden, auf die
die CTA-Befehlsfolgen einen Nurlesezugriff haben.
Der .const-Zustandsraum kann in einem auf dem
Chip befindlichen gemeinsam genutzten Parameter-
speicher oder Cachespeicher oder in einer Region je
Gitter von global zugänglichem Off-Chip-Speicher
realisiert werden, die wie jeder andere global zugäng-
liche Speicher zugewiesen und adressiert wird. Wie
beim .param-Zustandsraum wird erwartet, dass Vari-
ablen in dem .const-Zustandsraum in Reaktion auf
Treiberbefehle vom virtuellen Treiber 320 initialisiert
werden.

[0106] Die übrigen drei Zustandsräume definieren
”Kontext”-Variablen, die für jede (virtuelle) Befehlsfol-
ge in jeder CTA, die zu der Anwendung gehört, zu-
gänglich sind. Diese Zustandsräume werden auf ei-
nem globalen Speicher 304 in der virtuellen Architek-
tur 300 abgebildet. Globale (.global) Variablen kön-
nen für allgemeine Zwecke verwendet werden. In ei-
nigen Ausführungsformen können auch spezifische
Zustandsräume für gemeinsam genutzte Texturen
(.tex) und Oberflächen (.surf) definiert werden. Diese
Zustandsräume, die zum Beispiel für Grafik-bezoge-
ne Anwendungen nützlich sein können, können dafür
verwendet werden, Zugang zu Grafiktextur- und Pi-
xeloberflächendatenstrukturen zu definieren und zu
ermöglichen, die Datenwerte bereitstellen, die jedem
Pixel einer 2-D-(oder in einigen Ausführungsformen

einer 3-D-)Gruppierung entsprechen.

[0107] In dem virtuellen ISA-Code 410 von Fig. 4
werden Variablen deklariert, indem der Zustands-
raum, der Typ und ein Name spezifiziert werden. Der
Name ist ein Platzhalter und durch den Programmie-
rer oder Kompilierer ausgewählt werden. So dekla-
riert zum Beispiel:
.reg .b32 vrl
eine nicht-typisierte Variable von 32 Bits in dem Zu-
standsraum des virtuellen Registers mit der Bezeich-
nung vrl. Nachfolgende Zeilen aus virtuellem ISA-Co-
de können sich auf vrl zum Beispiel als eine Quelle
oder einen Zielort für eine Operation beziehen.

[0108] Die beispielhafte virtuelle ISA unterstützt
auch Gruppierungen und Vektoren virtueller Variab-
len. Zum Beispiel deklariert
.global .f32 resultArray[1000][1000]
eine virtuelle, global zugängliche
1000-mal-1000-Gruppierung aus 32-Bit-Gleitkom-
mazahlen. Der virtuelle Befehlsübersetzer 412 kann
Gruppierungen in adressierbare Speicherregionen
abbilden, die dem zugewiesen Zustandsraum ent-
sprechen.

[0109] Vektoren können in einer Ausführungsform
unter Verwendung eines Vektor-Prefix .v<w> definiert
werden, wobei m die Anzahl der Komponenten des
Vektors ist. Zum Beispiel deklariert:
.reg .v3 J32 vpos
einen 3-Komponenten-Vektor aus 32-Bit-Gleitkom-
mazahlen in dem Zustandsraum des virtuellen Regis-
ters je Befehlsfolge. Nachdem ein Vektor deklariert
wurde, können seine Komponenten mit Hilfe von Suf-
fixen identifiziert werden, zum Beispiel vpos.x,
vpos.y, vpos.z. In einer Ausführungsform ist m = 2, 3
oder 4 zulässig, und Suffixe wie zum Beispiel (.x, .y,
.z, .w), (.0, .1, .2, .3) oder (.r, .g, .b, .a) werden zum
Identifizieren von Komponenten verwendet.

[0110] Da die Variablen virtuell sind, kann virtueller
ISA-Code 410 jede beliebige Anzahl von Variablen in
jedem der Zustandsräume definieren oder sich auf
jede beliebige Anzahl von Variablen in jedem der Zu-
standsräume beziehen (außer .sreg, wobei die Vari-
ablen vorgegeben sind). Es ist möglich, dass die An-
zahl von Variablen, die für einen bestimmten Zu-
standsraum in virtuellem ISA-Code 410 definiert sind,
die Menge an Speicher des entsprechenden Typs in
einer bestimmten Hardware-Implementierung über-
schreiten kann. Der virtuelle Befehlsübersetzer 412
ist vorteilhafterweise so konfiguriert, dass er geeigne-
te Speicherverwaltungsbefehle enthält (zum Beispiel
Bewegen von Daten zwischen Register und
Off-Chip-Speicher), um Variablen bei Bedarf verfüg-
bar zu machen. Der virtuelle Befehlsübersetzer 412
kann auch in der Lage sein, Fälle zu detektieren, wo
eine temporäre Variable nicht mehr benötigt wird und
ihr zugewiesener Raum zur Verwendung durch eine
17/43

DE 20 2008 017 916 U1 2010.12.09
andere Variable freigegeben wird. Es können her-
kömmliche Kompilierertechniken zum Zuweisen von
Registern verwendet werden.

[0111] Obgleich die beispielhafte virtuelle ISA Vek-
torvariablentypen definiert, ist es des Weiteren nicht
erforderlich, dass die Zielplattform Vektorvariablen
unterstützt. Der virtuelle Befehlsübersetzer 412 kann
jede beliebige Vektorvariable als eine Zusammen-
stellung einer zweckmäßigen Anzahl (zum Beispiel 2,
3 oder 4) von Skalaren implementieren.

5.3. Virtuelle Befehle

[0112] Die Fig. 8A–Fig. 8H sind Tabellen, die virtu-
elle Befehle auflisten, die in einer beispielhaften virtu-
ellen ISA definiert sind. Ein Befehl wird anhand seiner
Wirkung definiert, zum Beispiel Berechnen eines be-
stimmten Ergebnisses unter Verwendung eines oder
mehrerer Operanden und Anordnen dieses Ergeb-
nisses in einem Zielortregister, Einstellen eines Re-
gisterwertes und so weiter. Die meisten virtuellen Be-
fehle sind typifiziert, um das Format von Eingaben
und/oder Ausgaben zu identifizieren, und Aspekte
der Befehlsausführung können vom Typ abhängen.
Das allgemeine Format eines Befehls ist
Name.<Typ> Ergebnis, Operanden
wobei ”Name” der Name des Befehls ist; ”.<Typ>” ein
Platzhalter für jeden der Typen ist, die in Fig. 6 auf-
gelistet sind; ”Ergebnis” eine Variable ist, in der das
Ergebnis gespeichert wird; und ”Operanden” eine
oder mehrere Variablen sind, die als Eingaben in den
Befehl bereitgestellt werden. In einer Ausführungs-
form ist die virtuelle Architektur 300 ein Regis-
ter-zu-Register-Prozessor, und ”Ergebnis” und ”Ope-
randen” für andere Operationen als Speicherzugriffe
(Fig. 8F) müssen Variablen in dem Zustandsraum
des virtuellen Registers .reg (oder dem Zustands-
raum des speziellen Registers .sreg im Fall einiger
Operanden) sein.

[0113] Von einer Zielplattform wird erwartet, dass
sie jeden der Befehle in der virtuellen ISA realisiert.
Ein Befehl kann entweder als ein entsprechender
Maschinenbefehl, der den spezifizierten Effekt her-
vorruft (im vorliegenden Text als ”Hardware-Unter-
stützung” bezeichnet), oder als eine Abfolge von Ma-
schinenbefehlen, die, wenn sie ausgeführt werden,
den spezifizierten Effekt hervorrufen (im vorliegen-
den Text als ”Software-Unterstützung” bezeichnet),
realisiert werden. Der virtuelle Befehlsübersetzer 412
für eine bestimmte Zielplattform ist vorteilhafterweise
dafür konfiguriert, den Maschinenbefehl oder die Ma-
schinenbefehl-Abfolge entsprechend jedem virtuel-
len Befehl zu identifizieren.

[0114] Die folgenden Unterabschnitte beschreiben
die verschiedenen Klassen von Befehlen, die in den
Fig. 8A–Fig. 8H aufgelistet sind. Es versteht sich,
dass die im vorliegenden Text vorgestellte Liste von

Befehlen der Veranschaulichung dient und dass eine
virtuelle ISA zusätzliche Befehle enthalten kann, die
nicht ausdrücklich im vorliegenden Text beschrieben
sind, und einige oder alle der im vorliegenden Text
beschriebenen Befehle ausschließen kann.

5.3.1. Virtuelle Befehle – Arithmetik

[0115] Fig. 8A ist eine Tabelle 800, die arithmeti-
sche Operationen auflistet, die in der beispielhaften
virtuellen ISA definiert sind. In dieser Ausführungs-
form unterstützt die virtuelle Architektur nur Regis-
ter-zu-Register-Arithmetik, und alle arithmetischen
Operationen bearbeiten ein oder mehrere Operan-
den virtueller Register (in Fig. 8A als a, b, c darge-
stellt), um ein Ergebnis (d) hervorzubringen, das in
ein virtuelles Register geschrieben wird. Somit befin-
den sich Operanden und Zielorte für arithmetische
Operationen immer im Zustandsraum des virtuellen
Registers .reg, außer dass die speziellen Register
von Fig. 5 (im Zustandsraum des speziellen Regis-
ters .sreg) als Operanden verwendet werden können.

[0116] Die Liste der arithmetischen Operationen in
Tabelle 800 enthält die vier arithmetischen Grundre-
chenarten: Addition (add), Subtraktion (sub), Multipli-
kation (mul) und Division (div). Diese Operationen
können an allen ganzzahligen und Gleitkommada-
tentypen ausgeführt werden und erbringen ein Er-
gebnis des gleichen Typs wie die Eingaben. In eini-
gen Ausführungsformen kann auch ein Rundungs-
modusqualifikator zu dem Befehl hinzugefügt wer-
den, um es dem Programmierer zu ermöglichen zu
spezifizieren, wie das Ergebnis zu runden ist und ob
im Fall ganzzahliger Operanden Sättigungsgrenzen
auferlegt werden sollen.

[0117] Es werden auch drei zusammengesetzte
arithmetische Operationen mit Operanden a, b, und c
unterstützt: Multiplikation-Addition (mad), fusionierte
Multiplikation-Addition (fma) und Summe der absolu-
ten Differenz (sad). Multiplikation-Addition berechnet
das Produkt a × b (mit Runden, durch Klammern an-
gezeigt) und addiert c zu dem Ergebnis. Fusionierte
Multiplikation-Addition unterscheidet sich von mad
dadurch, dass das Produkt a × b nicht vor dem Addie-
ren von c gerundet wird. Die Summe der absoluten
Differenz berechnet den absoluten Wert |a – b| und
addiert dann c.

[0118] Die restliche (rem) Operation wird nur an
ganzzahligen Operanden ausgeführt und berechnet
den Rest (a mod b), wenn der Operand a ist durch
den Operanden b geteilt wird. Absoluter Wert (abs)
und Negation (neg) sind einstellige Operationen, die
in einem Gleitkomma- oder signierten ganzzahligen
Format auf einen Operanden a angewendet werden
können. Minimum-(min) und Maximum-(max)Opera-
tionen, die auf ganzzahlige oder Gleitkomma-Ope-
randen angewendet werden können, setzen das
18/43

DE 20 2008 017 916 U1 2010.12.09
Zielortregister auf den kleineren Operanden oder
größeren Operanden. Der Umgang mit Sonderfällen,
in denen ein oder beide Operanden eine nicht-nor-
male Zahl sind (zum Beispiel gemäß den IEEE
754-Standards), können ebenfalls spezifiziert wer-
den.

[0119] Die übrigen Operationen in Tabelle 800 wer-
den nur für Gleitkomma-Typen ausgeführt. Eine
Bruch(frc)-Operation gibt den Bruchteil ihrer Eingabe
als Ergebnis aus. Sinus (sin), Kosinus (cos) und Ar-
kustangens des Verhältnisses (atan2) bilden zweck-
mäßige Befehle entsprechend trigonometrischen
Funktionen. Basis-2-Logarithmus (lg2) und Potenzie-
rung (ex2) werden ebenfalls unterstützt. Reziprokes
(rep), Quadratwurzel (sqrt) und reziproke Quadrat-
wurzel (rsqrt) werden ebenfalls unterstützt.

[0120] Es ist zu beachten, dass diese Liste von
arithmetischen Operationen veranschaulichend ist
und die Erfindung nicht einschränkt. Es könnten noch
weitere Operationen oder Kombinationen von Opera-
tionen unterstützt werden, einschließlich jeglicher
Operationen, von denen erwartet wird, dass sie mit
genügender Häufigkeit aufgerufen werden.

[0121] In einigen Ausführungsformen definiert die
virtuelle ISA auch Vektoroperationen. Fig. 8B ist eine
Tabelle 810, die Vektoroperationen auflistet, die
durch eine beispielhafte virtuelle ISA unterstützt wer-
den. Die Vektoroperationen enthalten eine Skalarpro-
dukt(dot)-Operation, die das Skalarprodukt d der
Operandenvektoren a und b berechnet; eine Kreuz-
produkt(cross)-Operation, die das Vektor-Kreuzpro-
dukt d der Operandenvektoren a und b berechnet;
und eine Größenordnungs(mag)-Operation, welche
die skalare Länge d eines Operandenvektors a be-
rechnet. Die Vektorreduktions(vred)-Operation be-
rechnet ein skalares Ergebnis d durch iteratives Aus-
führen der spezifizierten Operation <op> an den Ele-
menten des Vektoroperanden a. In einer Ausfüh-
rungsform werden nur die Reduktionsoperationen
add, mul, min und max für Gleitkomma-Vektoren un-
terstützt. Für ganzzahlige Vektoren können auch zu-
sätzliche Reduktionsoperationen (zum Beispiel und,
oder und xoder, wie unten beschrieben) unterstützt
werden.

[0122] Zusätzlich zu diesen Operationen können
auch andere Vektoroperationen wie zum Beispiel
Vektoraddition, Vektorskalierung und dergleichen (in
Fig. 8B nicht angeführt) in der virtuellen ISA definiert
werden.

[0123] Wie oben angemerkt, könnte es sein, dass
einige Hardware-Realisierungen der virtuellen Archi-
tektur 300 keine Vektorverarbeitung unterstützen.
Der virtuelle Befehlsübersetzer 412 für solche Reali-
sierungen ist vorteilhafterweise dafür geeignet,
zweckmäßige Abfolgen skalarer Maschinenbefehle

zu erzeugen, um diese Operationen auszuführen.
Der Fachmann ist in der Lage, zweckmäßige Abfol-
gen zu erstellen.

5.3.2 Virtuelle Befehle – Auswahl und Registerein-
stellung

[0124] Fig. 8C ist eine Tabelle 820, die Auswahl-
und Registereinstell-Operationen auflistet, die in der
beispielhaften virtuellen ISA definiert werden. Diese
Operationen, die an jedem beliebigen numerischen
Datentyp ausgeführt können werden, stellen ein
Zielortregister auf der Grundlage des Ergebnisses ei-
ner Vergleichsoperation ein. Die elementare Aus-
wahl(sel)-Operation wählt den Operanden a, wenn c
ungleich null ist, und den Operanden b, wenn c gleich
null ist. Vergleichen und Einstellen (set) führt eine
Vergleichsoperation <cmp> an den Operanden a und
b aus, um ein Vergleichsergebnis t zu erzeugen, und
setzt dann das Zielortregister d auf ein Boolesches
wahr (~0) oder falsch (0), je nachdem, ob das Ver-
gleichsergebnis t wahr (~0) oder falsch (0) ist. Die zu-
lässigen Vergleichsoperationen <cmp> beinhalten in
einer Ausführungsform gleich (t ist wahr, wenn a = b),
größer als (t ist wahr, wenn a > b), kleiner als (t ist
wahr, wenn a < b), größer-gleich (t ist wahr, wenn a ≥
b), kleiner-gleich (t ist wahr, wenn a ≤ b), und andere
Vergleiche, die zum Beispiel beinhalten, ob a
und/oder b numerische oder undefinierte Werte sind.

[0125] Die setb-Operation ist eine Variante des Ver-
gleichen-und-Einstellens, die eine weitere Boolesche
Operation <bop> zwischen dem Ergebnis t der Ver-
gleichsoperation <cmp> und einem dritten Operan-
den c ausführt. Das Ergebnis der Booleschen Opera-
tion t <bop> c bestimmt, ob das Zielortregister d auf
ein Boolesches wahr oder falsch gesetzt wird. Die zu-
lässigen Booleschen Operationen <bop> beinhalten
in einer Ausführungsform und, oder und xoder (siehe
Fig. 8C, die unten beschrieben wird). Die setp-Ope-
ration ähnelt setb, außer dass zwei 1-Bit-”Prädi-
kat”-Zielortregister eingestellt werden: Das Zielortre-
gister d1 wird auf das Ergebnis von t <bop> c einge-
stellt, während das Zielortregister d2 auf das Ergeb-
nis von (!t) <bop> c eingestellt wird.

5.3.3. Virtuelle Befehle – Logische und Bit-Manipula-
tion

[0126] Fig. 8D ist eine Tabelle 830, die logische und
Bit-Manipulationsoperationen auflistet, die in der bei-
spielhaften virtuellen ISA definiert sind. Die Bit-wei-
sen Booleschen Operationen und, oder und xoder
werden ausgeführt, indem die spezifizierte Operation
an jedem Bit der Operanden a und b ausgeführt wird
und das entsprechende Bit im Register d auf das Er-
gebnis eingestellt wird. Die Bit-weise Negations
(not)-Operation invertiert jedes Bit des Operanden a,
während die logische Negations(cnot)-Operation das
Zielortregister auf 1 (Boolesches wahr) einstellt,
19/43

DE 20 2008 017 916 U1 2010.12.09
wenn a null ist (Boolesches falsch), und anderenfalls
auf 0 (Boolesches falsch).

[0127] Bit-Verschiebungen werden durch Linksver-
schiebe(shl)- und Rechtsverschiebe(shr)-Operatio-
nen unterstützt, die das Bit-Feld im Operanden a um
die Anzahl von Bits, die durch den Operanden b spe-
zifiziert wird, nach links oder nach rechts verschie-
ben. Für signierte Formate füllt die Rechtsverschie-
bung vorteilhafterweise vorangestellte Bits auf der
Grundlage des Signier-Bits auf. Für unsignierte For-
mate füllt die Rechtsverschiebung vorangestellte Bits
mit Nullen auf.

5.3.4. Virtuelle Befehle – Formatkonvertierung

[0128] Fig. 8E ist eine Tabelle 840, die Formatkon-
vertierungsoperationen auflistet, die in der beispiel-
haften virtuellen ISA definiert sind. Der Formatkon-
vertierungs(cvt)-Befehl konvertiert einen Operanden
a eines ersten Typs <aTyp> zu einem äquivalenten
Wert in einem Zieltyp <dTyp> und speichert das Er-
gebnis im Zielortregister d. Gültige Typen in einer
Ausführungsform sind in Fig. 6 aufgelistet. Nicht-typi-
sierte Werte (.b<n>) können nicht in ganzzahlige
oder Gleitkomma-Typen oder aus ganzzahligen oder
Gleitkomma-Typen konvertiert werden. Eine Variante
des Formatkonvertierungsbefehls gestattet es dem
Programmierer, einen Rundungsmodus <mode> zu
spezifizieren. Der Umgang mit Zahlen, die gesättigt
werden, wenn sie als der Zieltyp ausgedrückt wer-
den, können ebenfalls spezifiziert werden.

5.3.5. Virtuelle Befehle – Datenbewegung und ge-
meinsame Nutzung von Daten

[0129] Fig. 8F ist eine Tabelle 850, die Datenbewe-
gungs- und Datengemeinschaftsnutzungsbefehle
auflistet, die in der beispielhaften virtuellen ISA defi-
niert werden. Die Bewegungs(mov)-Operation setzt
das Zielortregister d auf den Wert des unmittelbaren
Operanden a oder, wenn der Operand a ein Register
ist, auf den Inhalt des Registers a. Die Bewegungso-
peration kann auf Zustandsräume vom virtuellen Re-
gister-Typ beschränkt werden, zum Beispiel .reg und
.sreg in Fig. 7.

[0130] Der Lade(ld)-Befehl lädt einen Wert von ei-
nem Quellenort im Speicher in das Zielortregister d,
das sich in einer Ausführungsform im Zustandsraum
des virtuellen Registers .reg befinden muss. Der
.<space>-Qualifikator spezifiziert den Zustandsraum
des Quellenortes und kann auf adressierbare Zu-
standsräume in Fig. 7 beschränkt sein, zum Beispiel
andere Räume als .reg und .sreg (wo stattdessen die
Bewegungsoperation verwendet werden kann). Da
die virtuelle Architektur 300 in dieser Ausführungs-
form ein Register-zu-Register-Prozessor ist, wird der
Ladebefehl vorteilhafterweise verwendet, um Variab-
len aus adressierbaren Zustandsräumen in den Zu-

standsraum des virtuellen Registers .reg zu übertra-
gen, so dass sie als Operanden verwendet werden
können.

[0131] Der spezifische Quellenort wird unter Ver-
wendung eines Quellenparameters <src> identifi-
ziert, der auf verschiedene Weise definiert werden
kann, um verschiedene Adressierungsmodi zu unter-
stützen. Zum Beispiel kann in einigen Ausführungs-
formen der Quellenparameter <src> eines von Fol-
genden sein: eine benannte adressierbare Variable,
deren Wert in d gespeichert werden soll; ein Verweis
auf ein Register, in dem sich die Quellenadresse be-
findet; ein Verweis auf ein Register, in dem sich eine
Adresse befindet, die einem Versatzwert hinzugefügt
werden soll (als ein unmittelbarer Operand übermit-
telt); oder eine unmittelbare absolute Adresse.

[0132] Gleichermaßen speichert die Spei-
cher(st)-Operation den Wert in einem Quellenregister
a an einem Speicherort, der durch den Zielortpara-
meter <dst> identifiziert wird. Das Quellenregister a
muss sich in einer Ausführungsform in dem .reg-Zu-
standsraum befinden. Der Zielort muss sich in einem
beschreibbaren und adressierbaren Zustandsraum
befinden (zum Beispiel .local, .global oder .shared in
Fig. 7). Der Zielortparameter <dst> kann auf ver-
schiedene Weise definiert werden, um verschiedene
Adressierungsmodi zu unterstützen, ähnlich dem
Quellenparameter <src> in dem Ladebefehl. Der
Speicherbefehl kann zum Beispiel verwendet wer-
den, um ein Operationsergebnis von einem Register
zu einem adressierbaren Zustandsraum zu übertra-
gen.

[0133] In Ausführungsformen, wo Textur- und Ober-
flächenzustandsräume bereitgestellt sind, können
zusätzliche virtuelle Befehle verwendet werden, um
aus dem Texturspeicherzustandsraum (tex) zu lesen
und um aus dem Oberflächenspeicherzustandsraum
zu lesen (suld) und in den Oberflächenspeicherzu-
standsraum zu schreiben (sust). Die Operanden (t, x,
y) für einen Texturlesevorgang spezifizieren den Tex-
turidentifikator (t) und die Koordinaten (x, y). Glei-
chermaßen spezifizieren die Operanden (s, x, y) für
einen Oberflächenlese- oder -schreibvorgang den
Oberflächenidentifikator (s) und die Koordinaten (x,
y).

[0134] Eine CTA-Befehlsfolge kann mit anderen
CTA-Befehlsfolgen durch gemeinsame Nutzung von
Daten mit anderen CTA-Befehlsfolgen zusammen-
wirken. Um zum Beispiel Daten innerhalb einer CTA
gemeinsam zu nutzen, können die CTA-Befehlsfol-
gen virtuelle Lade- und Speicherbefehle (sowie den
unten beschriebenen Befehl für eine nicht unter-
brechbare (atomic) Aktualisierung ”atom”) verwen-
den, um Daten in die virtuellen Zustandräume je CTA
zu schreiben und Daten aus den virtuellen Zu-
standräumen je CTA zu lesen. So kann eine CTA-Be-
20/43

DE 20 2008 017 916 U1 2010.12.09
fehlsfolge Daten unter Verwendung eines
st.shared-Befehls mit einer in geeigneter Weise defi-
nierten Zielortadresse in den .shared-Zustandsraum
schreiben. Eine weitere CTA-Befehlsfolge innerhalb
derselben CTA kann anschließend die Daten unter
Verwendung derselben Adresse in einem
ld.shared-Befehl lesen. Die unten beschriebenen
Synchronisationsbefehle (zum Beispiel bar und
membar) können verwendet werden, um die richtige
Abfolge von Datengemeinschaftsnutzungsoperatio-
nen in CTA-Befehlsfolgen zu gewährleisten, zum Bei-
spiel, dass eine Daten erzeugende CTA-Befehlsfolge
die Daten schreibt, bevor einen Datenverbrauchende
CTA-Befehlsfolge sie liest. Gleichermaßen können
st.global- und ld.global-Befehle für das Zusammen-
wirken und die gemeinsame Nutzung von Daten zwi-
schen CTA-Befehlsfolgen in derselben CTA, CTAs in
demselben Gitter und/oder verschiedenen Gittern in
derselben Anwendung verwendet werden.

5.3.6. Virtuelle Befehle – Programmsteuerung

[0135] Fig. 8G ist eine Tabelle 860, die Programm-
steuerungsoperationen auflistet, in der beispielhaften
virtuellen ISA bereitgestellt werden. Diese Steue-
rungsoperationen, mit denen der Fachmann vertraut
ist, ermöglichen es einem Programmierer, die Pro-
grammausführung umzulenken. Ein Abzweig (bra)
lenkt den Programmfluss zu einem Zielort <target>.
In einigen Ausführungsformen wird ein Abzweigziel
definiert, indem eine alphanumerische Markierung
(label) vor den Zielbefehl in dem virtuellen ISA-Code
gesetzt wird und diese Markierung als der Zielidenti-
fikator <target> eines Abzweigbefehls verwendet
wird. Zum Beispiel identifiziert in einer Ausführungs-
form:
label: add.int32 d, vrl, vr2
den ”add”-Befehl als ein Abzweigziel mit der Markie-
rung ”label”. Der Befehl
bra label
an einer anderen Stelle in dem Code lenkt die Aus-
führung des markierten Befehls um.

[0136] Die call- und return(ret)-Befehle unterstützen
Funktions- und Subroutinen-Aufrufe; fname identifi-
ziert die Funktion oder Subroutine. (In einer Ausfüh-
rungsform ist eine ”Subroutine” einfach eine Funkti-
on, deren Rückmeldungswert ignoriert wird.) Die
Funktion fname kann unter Verwendung einer
func-Anweisung deklariert werden, und virtueller
ISA-Code, der die Funktion definiert, kann ebenfalls
bereitgestellt werden. Geschwungene Klammern {}
oder andere Gruppierungssymbole können verwen-
det werden, um einen Code, der eine Funktion oder
Subroutine definiert, von einem anderem virtuellen
ISA-Code abzutrennen.

[0137] Für Funktionen kann eine Parameterliste
<rv> spezifiziert werden, um zu identifizieren, wo
Rückmeldungswerte zu speichern sind. Sowohl für

Funktionen als auch für Subroutinen werden Einga-
beargumente in Argumentlisten <args> spezifiziert.
Wenn ”call” ausgeführt wird, so wird die Adresse des
nächsten Befehls gespeichert. Wenn ”ret” ausgeführt
wird, so wird ein Abzweig zu der gespeicherten
Adresse genommen.

[0138] Der ”exit”-Befehl bricht eine CTA-Befehlsfol-
ge, die auf ihn trifft, ab. Der Unterbrechungsbefehl
ruft eine Prozessor-definierte oder Benutzer-definier-
te Unterbrechungsroutine auf. Der Halte-
punkt(brkpt)-Befehl setzt die Ausführung aus und ist
zum Beispiel für Fehlerbeseitigungszwecke nützlich.
Der Funktionslos(nop)-Befehl ist ein Befehl, der bei
Ausführung keinen Effekt hat. Er kann zum Beispiel
verwendet werden, um zu steuern, wie schnell eine
nächste Operation ausgeführt werden kann.

5.3.7. Virtuelle Befehle – Parallele Befehlsfolgen

[0139] Fig. 8H ist eine Tabelle 870, die explizit par-
allele virtuelle Befehle auflistet, die in der beispielhaf-
ten virtuellen ISA gemäß einer Ausführungsform der
vorliegenden Erfindung bereitgestellt werden. Diese
Befehle unterstützen das zusammenwirkende Be-
fehlsfolgenverhalten, das für die CTA-Ausführung ge-
wünscht wird, wie zum Beispiel das Austauschen von
Daten zwischen CTA-Befehlsfolgen.

[0140] Der Sperr(bar)-Befehl zeigt an, dass eine
CTA-Befehlsfolge, die ihn erreicht, vor dem Ausfüh-
ren weiterer Befehle so lange warten muss, bis alle
anderen CTA-Befehlsfolgen (in derselben CTA)
ebenfalls denselben Sperrbefehl erreicht haben. Es
kann jede beliebige Anzahl von Sperrbefehlen in ei-
nem CTA-Programm verwendet werden. In einer
Ausführungsform benötigt der Sperrbefehl keine Pa-
rameter (unabhängig davon, wie viele Sperren ver-
wendet werden), da alle CTA-Befehlsfolgen die n-te
Sperre erreichen müssen, bevor eine Befehlsfolge
zur (n + 1)-ten Sperre voranschreiten kann, und so
weiter.

[0141] In anderen Ausführungsformen kann der
Sperrbefehl parametrisiert werden, zum Beispiel
durch Spezifizieren einer Anzahl von CTA-Befehlsfol-
gen (oder Identifikatoren bestimmter CTA-Befehlsfol-
gen), die an einer bestimmten Sperre warten müs-
sen.

[0142] Wieder andere Ausführungsformen stellen
sowohl ”Warte”- als auch ”Nicht-warte”-Sperrbefehle
bereit. Bei einem Warte-Sperrbefehl wartet die
CTA-Befehlsfolge, bis die anderen relevanten
CTA-Befehlsfolgen ebenfalls die Sperre erreicht ha-
ben. Bei einem Nicht-warte-Befehl zeigt die CTA-Be-
fehlsfolge an, dass sie angekommen ist, aber sie
kann fortgesetzt werden, bevor andere CTA-Befehls-
folgen eintreffen. An einer bestimmten Sperre kön-
nen einige CTA-Befehlsfolgen warten, während an-
21/43

DE 20 2008 017 916 U1 2010.12.09
dere nicht warten.

[0143] In einigen Ausführungsformen kann der vir-
tuelle bar-Befehl verwendet werden, um CTA-Be-
fehlsfolgen zu synchronisieren, die zusammenwirken
oder Daten unter Verwendung von Zustandsräumen
gemeinsam genutzten Speichers gemeinsam nut-
zen. Nehmen wir zum Beispiel an, dass ein Satz von
CTA-Befehlsfolgen (der einige oder alle Befehlsfol-
gen der CTA enthalten kann) jeweils einige Daten in
einer Variable je Befehlsfolge erzeugt (zum Beispiel
eine Variable ”myData” eines virtuellen .fp32-Regis-
ters) und dann die Daten liest, die durch eine andere
CTA-Befehlsfolge in dem Satz erzeugt werden. Die
Abfolge von Befehlen:
st.shared.fp32 myWriteAddress, myData; bar;
ld.shared.fp32 myData, myReadAddress;
wobei myWriteAddress und myReadAddress Variab-
len je Befehlsfolge sind, die Adressen in dem
.shared-Zustandsraum entsprechen, sorgt für das
gewünschte Verhalten. Nachdem jede CTA-Befehls-
folge ihre erzeugten Daten in den gemeinsam ge-
nutzten Speicher geschrieben hat, wartet sie, bis alle
CTA-Befehlsfolgen ihre Daten gespeichert haben.
Dann geht sie zum Lesen von Daten (die durch eine
andere CTA-Befehlsfolge geschrieben worden sein
können) aus dem gemeinsam genutzten Speicher
über.

[0144] Der Speichersperr(membar)-Befehl zeigt an,
dass jede CTA-Befehlsfolge zu warten hat, bis ihre
zuvor angeforderten Speicheroperationen (oder min-
destens alle Schreiboperationen) vollendet sind. Die-
ser Befehl garantiert, dass ein Speicherzugriff, der
nach dem membar-Befehl erfolgt, das Ergebnis aller
vor ihm erfolgten Schreiboperationen sieht. Der
membar-Befehl verwendet in einer Ausführungsform
einen optionalen Zustandsraum-Namen <space>,
um seine Reichweite auf Speicheroperationen zu be-
schränken, die sich auf den spezifizierten Zustands-
raum richten, der ein Speicherzustandsraum sein
muss (zum Beispiel nicht die .reg- oder .sreg-Zu-
standsräume). Wenn kein Zustandsraum-Name spe-
zifiziert ist, so wartet die CTA-Befehlsfolge, bis alle
ausstehenden Operationen vollendet sind, die sich
auf alle Speicherzustandsräume richten.

[0145] Der atomische-Aktualisierungs(atom)-Befehl
veranlasst eine nicht unterbrechbare Aktualisierung
(Lesen-Modifizieren-Schreiben) an einer gemeinsam
genutzten Variable a, die durch einen Verweis <ref>
identifiziert wird. Die gemeinsam genutzte Variable a
kann sich in jedem beliebigen gemeinsam genutzten
Zustandsraum befinden, und wie bei anderen Spei-
cherverweisen können verschiedene Adressierungs-
modi verwendet werden. Zum Beispiel kann <ref> ei-
nes von Folgenden sein: eine benannte adressierba-
re Variable a; ein Verweis auf ein Register, in dem
sich die Adresse der Variable a befindet; ein Verweis
auf ein Register, in dem sich eine Adresse befindet,

die einem Versatzwert hinzugefügt werden soll (als
ein unmittelbarer Operand übermittelt), um die Vari-
able a zu lokalisieren; oder eine unmittelbare absolu-
te Adresse der Variable a. Die CTA-Befehlsfolge lädt
die Variable a von dem Ort des gemeinsam genutz-
ten Zustandsraums in ein Zielortregister d und aktua-
lisiert dann die Variable a unter Verwendung einer
spezifizierten Operation <op>, die an einem Operan-
den a und (je nach der Operation) an einem zweiten
und einem dritten Operanden b und c ausgeführt
wird, wobei das Ergebnis an den Ort zurückgespei-
chert wird, der durch <ref> identifiziert wird. Das
Zielortregister d behält den ursprünglich geladenen
Wert von a. Die Lade-, Aktualisierungs- und Speiche-
roperationen werden nicht unterbrechbar ausgeführt,
wodurch garantiert wird, dass keine andere CTA-Be-
fehlsfolge auf die Variable a zugreift, während eine
erste CTA-Befehlsfolge eine nicht unterbrechbare
(atomic) Aktualisierung ausführt. In einer Ausfüh-
rungsform ist die Variable a auf den .global- oder
.shared-Zustandsraum beschränkt und kann in der
gleichen Weise wie für die oben beschriebenen La-
de- und Speicheroperationen spezifiziert werden.

[0146] In einigen Ausführungsformen brauchen nur
bestimmte Operationen als nicht unterbrechbare Ak-
tualisierungen ausgeführt zu werden. Zum Beispiel
werden in einer Ausführungsform möglicherweise
nur die folgenden Operationen <op> spezifiziert,
wenn a vom Gleitkomma-Typ ist: Addieren von a zu
b; Ersetzen von a durch das Minimum oder Maximum
von a und b; und eine ternäre Ver-
gleich-und-Tausch-Operation, die a durch c ersetzt,
wenn a gleich b ist, und a ansonsten unverändert
lässt. Für ein ganzzahliges a können zusätzliche
Operationen unterstützt werden, zum Beispiel
Bit-weises und, oder und xoder zwischen Operanden
a und b sowie Inkrementieren oder Dekrementieren
des Operanden a. Es könnten noch weitere nicht un-
terbrechbare Operationen oder Kombinationen von
Operationen unterstützt werden.

[0147] Der vote-Befehl führt eine Reduktionsopera-
tion <op> an einem Booleschen (zum Beispiel Typ
.b1) Operanden a in einer vorgegebenen Gruppe von
CTA-Befehlsfolgen aus. In einer Ausführungsform
spezifiziert die virtuelle Architektur, dass CTA-Be-
fehlsfolgen in SIMD-Gruppen ausgeführt werden und
dass die vorgegebene Gruppe einer SIMD-Gruppe
entspricht. In anderen Ausführungsformen können
andere Gruppen von CTA-Befehlsfolgen durch die
virtuelle Architektur oder den Programmierer definiert
werden. Die Reduktionsoperation <op> bringt es mit
sich, dass der Ergebniswert d auf der Basis der Re-
duktion des Operanden a in den CTA-Befehlsfolgen
in der Gruppe und der durch den .<op>-Qualifikator
spezifizierten Reduktionsoperation auf einen Boole-
schen Wahr- oder Falsch-Zustand eingestellt wird. In
einer Ausführungsform sind die zulässigen Redukti-
onsoperationen: (1) .all, wobei d wahr ist, wenn a für
22/43

DE 20 2008 017 916 U1 2010.12.09
alle CTA-Befehlsfolgen in der Gruppe wahr und an-
sonsten falsch ist; (2) .any, wobei d wahr ist, wenn a
für jede CTA-Befehlsfolge in der Gruppe wahr ist; und
(3) .uni, wobei d wahr ist, wenn a für alle aktiven
CTA-Befehlsfolgen in der Gruppe den gleichen Wert
(entweder wahr oder falsch) hat.

5.3.8. Virtuelle Befehle – Bedingte Ausführung

[0148] In einigen Ausführungsformen unterstützt die
virtuelle ISA die bedingte Ausführung jedes Befehls.
Bei der bedingten Ausführung wird dem Befehl ein
Boolescher ”Schutzprädikat”-Wert zugeordnet, und
der Befehl wird nur ausgeführt, wenn zum Zeitpunkt
der Ausführung das Schutzprädikat als wahr beurteilt
wird.

[0149] In der beispielhaften virtuellen ISA kann ein
Schutzprädikat jede beliebige 1 Bit große Boolesche
Variable eines virtuellen Registers sein (im vorliegen-
den Text mit P bezeichnet). Eine bedingte Ausfüh-
rung wird durch Ersetzen eines Prädikatschutzes @P
oder eines Nicht-Prädikatschutzes @!P vor dem op-
code eines Befehls angezeigt. Ein Wert wird in dem
Prädikatregister festgesetzt, zum Beispiel durch
Identifizieren von P als das Zielortregister für einen
Befehl, der ein Boolesches Ergebnis hervorbringt,
wie zum Beispiel den setp-Befehl in der Tabelle 820
(Fig. 8C). Bei Antreffen des Schutzprädikats @P
oder @!P liest der virtuelle Prozessor das P-Register.
Für den Schutz @P wird, wenn P wahr ist, der Befehl
ausgeführt; wenn nicht, so wird er übersprungen. Für
den Schutz @!P wird der Befehl ausgeführt, wenn P
falsch ist, und anderenfalls übersprungen. Das Prädi-
kat P wird zum Ausführungszeitpunkt für jede
CTA-Befehlsfolge beurteilt, die auf den bedingten Be-
fehl trifft. Somit könnten einige CTA-Befehlsfolgen ei-
nen bedingten Befehl ausführen, während andere
CTA-Befehlsfolgen dies nicht tun.

[0150] In einigen Ausführungsformen können Prädi-
kate gesetzt werden, während Befehle ausgeführt
werden. Zum Beispiel können bestimmte der virtuel-
len Befehle in den Tabellen 800–870
(Fig. 8A–Fig. 8H) einen Parameter entgegenneh-
men, der ein Prädikatregister als eine Ausgabe spe-
zifiziert. Solche Befehle aktualisieren das spezifizier-
te Prädikatregister auf der Grundlage einer Eigen-
schaft des Befehlsergebnisses. Zum Beispiel könnte
ein Prädikatregister verwendet werden, um anzuzei-
gen, ob das Ergebnis einer arithmetischen Operation
eine spezielle Zahl (zum Beispiel null, unendlich oder
keine Zahl in Gleitkomma-Operationen nach IEEE
754) ist, und so weiter.

6. Virtueller Befehlsübersetzer

[0151] Wie oben mit Bezug auf Fig. 4 angemerkt,
richtet sich ein virtueller Befehlsübersetzer 412 auf
eine bestimmte Plattformarchitektur. Der virtuelle Be-

fehlsübersetzer 412, der zum Beispiel als ein Softwa-
re-Programm implementiert werden könnte, das auf
einem Prozessor wie zum Beispiel der CPU 102 von
Fig. 1 ausgeführt wird, empfängt einen virtuellen
ISA-Code 410 und übersetzt ihn in Ziel-ISA-Code
414, der auf der bestimmten Plattformarchitektur
ausgeführt werden kann, auf die sich der virtuelle Be-
fehlsübersetzer 412 richtet (zum Beispiel durch die
PPU 122 von Fig. 1). Der virtuelle Befehlsübersetzer
412 bildet die virtuellen Variablen, die in dem virtuel-
len ISA-Code 410 deklariert werden, auf verfügbare
Speicherorte ab, einschließlich Prozessorregister,
On-Chip-Speicher, Off-Chip-Speicher und so weiter.
In einigen Ausführungsformen bildet der virtuelle Be-
fehlsübersetzer 412 jeden der virtuellen Zustandräu-
me auf einen bestimmten Speichertyp ab. Zum Bei-
spiel kann der .reg-Zustandsraum auf Befehlsfol-
ge-spezifische Datenregister abgebildet werden, der
.shared-Zustandsraum auf gemeinsam nutzbaren
Speicher des Prozessors, der .global-Zustandsraum
auf eine Region des virtuellen Speichers, die dem
Anwendungsprogramm zugewiesen ist, und so wei-
ter. Es sind noch weitere Abbildungen möglich.

[0152] Die virtuellen Befehle in dem virtuellen
ISA-Code 410 werden in Maschinenbefehle über-
setzt. In einer Ausführungsform ist der virtuelle Be-
fehlsübersetzer 412 dafür konfiguriert, jeden virtuel-
len ISA-Befehl auf einen entsprechenden Maschi-
nenbefehl oder eine entsprechende Abfolge von Ma-
schinenbefehlen abzubilden, je nachdem, ob ein ent-
sprechender Maschinenbefehl in dem Befehlssatz
des Prozessors existiert, der die CTA-Befehlsfolgen
ausführt.

[0153] Der virtuelle Befehlsübersetzer 412 bildet
auch die CTA-Befehlsfolgen auf ”physische” Befehls-
folgen oder Prozesse in der Zielplattformarchitektur
ab. Wenn zum Beispiel die Zielplattformarchitektur
mindestens n0 gleichzeitige Befehlsfolgen unter-
stützt, so kann jede CTA-Befehlsfolge auf eine physi-
sche Befehlsfolge abgebildet werden, und der virtuel-
le Befehlsübersetzer 412 kann einen virtuellen Be-
fehlscode für eine einzelne CTA-Befehlsfolge mit der
Erwartung erzeugen, dass die Zielplattform 440 den
Code für n0 Befehlsfolgen mit n0 eindeutige Identifika-
toren ausführt. Wenn die Zielplattformarchitektur we-
niger als n0 Befehlsfolgen unterstützt, so kann der vir-
tuelle Befehlsübersetzer 412 virtuellen ISA-Code
410, der Befehle enthält, die mehreren CTA-Befehls-
folgen entsprechen, mit der Erwartung erzeugen,
dass dieser Code einmal je CTA ausgeführt wird, wo-
durch mehrere CTA-Befehlsfolgen auf eine einzelne
physische Befehlsfolge oder einen einzelnen physi-
schen Prozess abgebildet werden.

[0154] Insbesondere werden virtuelle Befehle, die
sich auf eine gemeinsame Datennutzung beziehen
(zum Beispiel Last-, Speicher- und nicht unterbrech-
bare(atomic)-Aktualisierungs-Befehle, die auf
23/43

DE 20 2008 017 916 U1 2010.12.09
.shared- oder .global-Zustandsraum zugreifen),
und/oder zusammenwirkendes Befehlsfolge-Verhal-
ten (zum Beispiel Sperr-, atomische-Aktualisierungs-
und andere Befehle in Fig. 8H) in Maschinenbefehle
oder Abfolgen von Maschinenbefehle übersetzt. Ziel-
plattformarchitekturen, die für eine CTA-Ausführung
optimiert sind, enthalten vorteilhafterweise Hard-
ware-unterstützte Sperrbefehle, zum Beispiel mit
Zählern und/oder Registern in der Befehlseinheit
zum Zählen der Anzahl von Befehlsfolgen, die an
dem Sperrbefehl angekommen sind, und zum Setzen
von Markierungen, die verhindern, dass weitere Be-
fehle für eine Befehlsfolge ausgegeben werden, wäh-
rend die Befehlsfolge an einer Sperre wartet. Andere
Zielarchitekturen bieten möglicherweise keine direkte
Hardware-Unterstützung für eine Befehlsfolgensyn-
chronisation, wobei in diesem Fall andere Techniken
zur Kommunikation zwischen Befehlsfolgen (zum
Beispiel Semaphoren, Statusgruppierungen im Spei-
cher oder dergleichen) verwendet werden können,
um das gewünschte Verhalten hervorzurufen.

[0155] Bedingte Befehle werden ebenfalls in Ma-
schinenbefehle übersetzt. In einigen Fällen unter-
stützt die Ziel-Hardware direkt eine bedingte Ausfüh-
rung. In anderen Fällen können Prädikate gespei-
chert werden, zum Beispiel in Prozessorregistern,
wobei bedingte Abzweigbefehle oder dergleichen
verwendet werden, um die Register abzufragen und
das gewünschte Laufzeitverhalten hervorzurufen, in-
dem bedingte Befehle bedingt umher verzweigt wer-
den.

[0156] Fig. 9 ist ein Flussdiagramm eines Prozes-
ses 900 zur Verwendung eines virtuellen Befehlsü-
bersetzers gemäß einer Ausführungsform der vorlie-
genden Erfindung. Bei Schritt 902 schreibt ein Pro-
grammierer CTA-Programmcode in einer höheren
Sprache. In einer Ausführungsform definiert der
CTA-Programmcode das gewünschte Verhalten ei-
ner einzelnen CTA-Befehlsfolge und kann die Be-
fehlsfolge-ID (einschließlich der CTA-ID und/oder Git-
ter-ID) als einen Parameter verwenden, um Aspekte
des Verhaltens der CTA-Befehlsfolge zu definieren
oder zu steuern. Zum Beispiel kann ein Ort in einem
gemeinsam genutzten Speicher, der zu lesen oder zu
beschreiben ist, als eine Funktion der Befehlsfol-
ge-ID bestimmt werden, so dass verschiedene
CTA-Befehlsfolgen in derselben CTA aus verschiede-
nen Speicherorten in dem gemeinsam genutzten
Speicher lesen und/oder in verschiedene Speicheror-
te in dem gemeinsam genutzten Speicher schreiben.
In einer Ausführungsform ist CTA-Programmcode als
Teil von einem Anwendungsprogrammcode enthal-
ten (zum Beispiel Programmcode 402 von Fig. 4).
Zusätzlich zum Definieren des Verhaltens von
CTA-Befehlsfolgen kann der Anwendungsprogramm-
code auch CTAs und/oder Gitter, Einricht-Eingabe-
und -Ausgabedatensätze usw. definieren.

[0157] Bei Schritt 904 erzeugt ein Kompilierer (zum
Beispiel der Kompilierer 408 von Fig. 4) einen virtuel-
len ISA-Code, der das Verhalten einer einzelnen (vir-
tuellen) CTA-Befehlsfolge definiert, aus dem höher-
sprachigen Code. Wenn der Code sowohl CTA-Pro-
grammcode als auch anderen Code enthält, so kann
der Kompilierer 408 den CTA-Programmcode von
dem übrigen Code trennen, so dass nur der CTA-Pro-
grammcode verwendet wird, um virtuellen ISA-Code
zu erzeugen. Es können herkömmliche Techniken
zum Kompilieren von Programmcode, der in einer
Sprache geschrieben wurde, in eine andere (virtuel-
le) Sprache verwendet werden. Es ist anzumerken,
dass, da der erzeugte Code in einer virtuellen Spra-
che vorliegt, der Kompilierer nicht an eine bestimmte
Hardware gebunden oder für eine bestimmte Hard-
ware optimiert zu werden braucht. Der Kompilierer
kann den virtuellen ISA-Code optimieren, der aus ei-
ner bestimmten Abfolge von einem eingegebenem
Code erzeugt wurde (so dass zum Beispiel kürzere
Abfolgen von virtuellen ISA-Befehlen bevorzugt wer-
den). Programmcode in der virtuellen ISA kann im
Speicher auf einer Festplatte gespeichert und/oder
an eine große Vielzahl verschiedener Plattformarchi-
tekturen verteilt werden, einschließlich Architekturen,
die physisch anders als die virtuelle Architektur 300
von Fig. 3 aufgebaut sind. Der Code in der virtuellen
ISA ist maschinenunabhängig und kann auf jeder
Zielplattform ausgeführt werden, für die ein virtueller
Befehlsübersetzer verfügbar ist. In alternativen Aus-
führungsformen kann ein Programmierer CTA-Pro-
grammcode direkt in die virtuelle ISA schreiben, oder
virtueller ISA-Code kann durch ein Programm auto-
matisch erzeugt werden. Wenn der Programmcode
anfänglich als virtueller ISA-Code erzeugt wird, so
kann der Kompilierungsschritt 904 weggelassen wer-
den.

[0158] Bei Schritt 906 liest ein virtueller Befehlsü-
bersetzer (zum Beispiel der Übersetzer 412 von
Fig. 4) den virtuellen ISA-Code und erzeugt Code in
einer Ziel-ISA, der auf einer Zielplattform ausgeführt
werden kann. Im Gegensatz zu dem Kompilierer rich-
tet sich der virtuelle Befehlsübersetzer auf eine be-
stimmte (reale) Plattformarchitektur und ist vorteilhaf-
terweise so konfiguriert, den Ziel-ISA-Code für die
beste Leistung auf dieser Architektur anzupassen
und zu optimieren. In einer Ausführungsform, wo die
Zielarchitektur mindestens n0 Befehlsfolgen unter-
stützt, erzeugt der virtuelle Befehlsübersetzer ein
Zielbefehlsfolgenprogramm, das gleichzeitig durch
jede von no Befehlsfolgen ausgeführt werden kann,
um eine CTA zu realisieren. In einer weiteren Ausfüh-
rungsform erzeugt der virtuelle Befehlsübersetzer ein
Zielprogramm, das Software-Techniken (zum Bei-
spiel Befehlsabfolgen) verwendet, um n0 gleichzeiti-
ge Befehlsfolgen zu emulieren, von denen jede Be-
fehle ausführt, die dem virtuellen ISA-Code entspre-
chen. Der Übersetzer kann zum Zeitpunkt der Pro-
gramminstallation, während der Programminitialisie-
24/43

DE 20 2008 017 916 U1 2010.12.09
rung oder an genau festgelegten Zeitpunkten wäh-
rend der Programmausführung aktiv sein.

[0159] Bei Schritt 908 führt ein Prozessor auf der
Zielplattform (zum Beispiel die PPU 122 von Fig. 1)
den Ziel-ISA-Code aus, um Daten zu verarbeiten. In
einigen Ausführungsformen kann der Schritt 908 ent-
halten, Befehle und Zustandsparameter in den Pro-
zessor einzuspeisen, um sein Verhalten zu steuern,
wie weiter unten noch beschrieben wird.

[0160] Es versteht sich, dass der Prozess 900 ver-
anschaulichend ist und dass Variationen und Modifi-
kationen möglich sind. Schritte, die als sequenziell
beschrieben sind, können parallel ausgeführt wer-
den, die Reihenfolge der Schritte kann variiert wer-
den, und Schritte können modifiziert oder kombiniert
werden. Zum Beispiel kann in einigen Ausführungs-
formen ein Programmierer CTA-Programmcode un-
ter Verwendung der virtuellen ISA direkt schreiben,
wodurch die Notwendigkeit eines Kompilierers ent-
fällt, der virtuellen ISA-Code erzeugt. In anderen Aus-
führungsformen wird der CTA-Programmcode als Teil
eines großen Anwendungsprogramms geschrieben,
das zum Beispiel auch Code enthält, der die Dimen-
sionen einer CTA und/oder eines Gitters aus CTAs
definiert, die ausgeführt werden sollen, um ein be-
stimmtes Problem zu lösen. In einer Ausführungs-
form werden nur jene Abschnitte des Codes, die das
CTA-Programm darstellen, in virtuellen ISA-Code
kompiliert. Andere Abschnitte können in andere (rea-
le oder virtuelle) Befehlssätze kompiliert werden.

[0161] In anderen Ausführungsformen kann ein ein-
zelner virtueller Befehlsübersetzer dafür konfiguriert
sein, mehrere Versionen des Zielcodes zu erzeugen,
die für verschiedene Zielplattformen geeignet sind.
Zum Beispiel könnte der Übersetzer einen Pro-
grammcode in einer höheren Sprache (zum Beispiel
C), Maschinencode für eine PPU und/oder Maschi-
nencode für eine Einzelkern- oder Mehrkern-CPU,
der ein PPU-Verhalten emuliert, unter Verwendung
von Software-Techniken erzeugen.

7. Virtueller Ausführungstreiber

[0162] In einigen Ausführungsformen werden der
virtuelle ISA-Code 410 und der virtuelle Befehlsüber-
setzer 412 dafür verwendet, den CTA-Programm-
code zu erzeugen, der für jede Befehlsfolge einer
CTA ausgeführt werden soll. Im Hinblick auf das Pro-
grammiermodell der Fig. 2A–Fig. 2B definiert das
Spezifizieren des CTA-Programms eine Verarbei-
tungsaufgabe für jede CTA-Befehlsfolge 204. Um das
Modell zu vervollständigen, ist es auch notwendig,
die Dimensionen einer CTA 202, die Anzahl von
CTAs in dem Gitter, den zu verarbeitenden Eingabe-
datensatz und so weiter zu definieren. Solche Infor-
mationen werden im vorliegenden Text als
”CTA-Steuerungsinformationen” bezeichnet.

[0163] Wie in Fig. 4 gezeigt, spezifiziert in einigen
Ausführungsformen das Anwendungsprogramm 402
CTA-Steuerungsinformationen durch Verwenden von
Rufen an Funktionen in einer virtuellen Bibliothek
404. In einer Ausführungsform enthält die virtuelle Bi-
bliothek 404 verschiedene Funktionsaufrufe, über die
ein Programmierer eine CTA oder ein Gitter aus
CTAs definieren und angeben kann, wann die Aus-
führung beginnen soll.

[0164] Fig. 10 ist eine Tabelle 1000, die Funktionen
auflistet, die in einer beispielhaften virtuellen Biblio-
thek 404 verfügbar sind. Die erste Gruppe von Funk-
tionen bezieht sich auf das Definieren einer CTA. Ge-
nauer gesagt, ist die initCTA-Funktion die erste Funk-
tion, die aufgerufen wird, um eine neue CTA zu er-
zeugen. Diese Funktion gestattet es dem Program-
mierer, die Dimensionen (ntid.x, ntid.y, ntid.z) einer
CTA zu definieren und der neuen CTA einen Identifi-
kator cname zuzuweisen. Die setCTAProgram-Funk-
tion spezifiziert ein CTA-Programm, das durch jede
Befehlsfolge des CTA-cname ausgeführt werden soll.
Der Parameter pname ist ein logischer Programmi-
dentifikator, der dem gewünschten CTA-Programm
entspricht (zum Beispiel einem Programm in virtuel-
lem ISA-Code). Die setCTAInputArray-Funktion ge-
stattet es dem Programmierer, einen Quellenort
(Startadresse und Größe) im globalen Speicher zu
spezifizieren, von wo aus der CTA-cname Eingabe-
daten liest; und die setCTAOutputArray-Funktion ge-
stattet es dem Programmierer, einen Zielort (Startad-
resse und Größe) im globalen Speicher zu spezifizie-
ren, an den der CTA-cname Ausgabedaten schreibt.
Die setCTAParams-Funktion wird verwendet, um
Laufzeitkonstantenparameter für den CTA-cname
einzustellen. Der Programmierer stellt der Funktion
die Liste der Parameter – zum Beispiel als (Name,
Wert)-Paare – zur Verfügung.

[0165] In einer Ausführungsform kann die setCTA-
Params-Funktion auch durch den Kompilierer 408
verwendet werden, wenn er einen virtuellen ISA-Co-
de 410 erzeugt. Da die setCTAParams-Funktion die
Laufzeitparameter für die CTA definiert, kann der
Kompilierer 408 diese Funktion so interpretieren,
dass jeder Parameter als eine virtuelle Variable in
dem .param-Zustandsraum definiert wird.

[0166] Die Tabelle 1000 listet auch Funktionen auf,
die mit dem Definieren von Gittern aus CTAs zu tun
haben. Die initGrid-Funktion ist die erste Funktion,
die aufgerufen wird, um ein neues Gitter zu erzeu-
gen. Diese Funktion gestattet es dem Programmie-
rer, die Dimensionen (nctaid.x, nctaid.y, nctaid.z) ei-
nes Gitters zu definieren, den CTA-cname zu identifi-
zieren, der in dem Gitter ausgeführt wird, und dem
neu definierten Gitter einen Identifikator gname zuzu-
weisen. Die setGridInputArray- und die setGridOut-
putArray-Funktion ähneln den Funktionen auf
CTA-Ebene und ermöglichen es, eine einzelne Ein-
25/43

DE 20 2008 017 916 U1 2010.12.09
gabe- und/oder Ausgabe-Gruppierung für alle Be-
fehlsfolgen aller CTAs in einem Gitter zu definieren.
Die setGridParams-Funktion wird dafür verwendet,
Laufzeitkonstantenparameter für alle CTAs in dem
Gitter gname einzustellen. Der Kompilierer 408 kann
diese Funktion so interpretieren, dass jeder Parame-
ter als eine virtuelle Variable in dem .const-Zustands-
raum definiert wird.

[0167] Die launchCTA- und die launchGrid-Funktion
signalisieren, dass die Ausführung des spezifizierten
CTA-cname oder Gitter-gname beginnen soll.

[0168] Die virtuelle API kann auch andere Funktio-
nen enthalten. Zum Beispiel bieten einige Ausfüh-
rungsformen Synchronisationsfunktionen, die dafür
verwendet werden können, die Ausführung mehrerer
CTAs zu koordinieren. Wenn zum Beispiel die Ausga-
be einer ersten CTA (oder eines ersten Gitters) als
die Eingabe einer zweiten CTA (oder eines zweiten
Gitters) verwendet werden soll, so kann die API eine
Funktion (oder einen Parameter für die Startfunktion)
enthalten, über die der virtuelle Ausführungstreiber
angewiesen werden kann, dass die zweite CTA (oder
das zweite Gitter) erst gestartet werden darf, wenn
die Ausführung der ersten CTA (oder des ersten Git-
ters) vollendet ist.

[0169] Gemäß einer Ausführungsform der vorlie-
genden Erfindung können beliebige oder alle der
Funktionsaufrufe in der Tabelle 1000 in ein Anwen-
dungsprogramm aufgenommen werden, das auch
das CTA-Programm (oder die CTA-Programme,
wenn es mehrere CTAs in der Anwendung gibt) defi-
niert, das auszuführen ist. Zum Kompilierungszeit-
punkt werden die Funktionsaufrufe als Rufe an eine
Anwendungsprogrammschnittstelle(Application Pro-
gram Interface – API)-Bibliothek 404 behandelt, wo-
durch virtueller API-Code 406 erzeugt wird.

[0170] Der virtuelle API-Code wird unter Verwen-
dung eines virtuellen Ausführungstreibers 418 reali-
siert, der jede Funktion in der virtuellen Bibliothek im-
plementiert. In einer Ausführungsform ist der virtuelle
Ausführungstreiber 418 ein Treiberprogramm, das in
der CPU 102 von Fig. 1 ausgeführt wird und die PPU
122 steuert, welche die CTA-Befehlsfolgen realisiert.
Die verschiedenen Funktionsaufrufe in der Tabelle
1000 von Fig. 10 werden so implementiert, dass sie
dazu führen, dass der Treiber Befehle über einen Ein-
speicherungspuffer in der PPU 122 ausgibt. In einer
weiteren Ausführungsform führt eine CPU ein oder
mehrere Programme aus, um eine CTA zu realisie-
ren, und der virtuelle Ausführungstreiber 418 stellt
Parameter ein und steuert die Ausführung solcher
Programme durch die CPU.

[0171] Es versteht sich, dass die im vorliegenden
Text beschriebene virtuelle API veranschaulichend
ist und dass Variationen und Modifikationen möglich

sind. Es können auch andere Funktionen oder Kom-
binationen von Funktionen unterstützt werden. Tech-
niken für virtuelle API, die dem Fachmann bekannt
sind, können für die Zwecke der vorliegenden Erfin-
dung angepasst werden.

Weitere Ausführungsformen

[0172] Obgleich die Erfindung anhand konkreter
Ausführungsformen beschrieben wurde, erkennt der
Fachmann, dass zahlreiche Modifikationen möglich
sind. Zum Beispiel sind die konkrete virtuelle Archi-
tektur, die konkreten virtuellen Befehle und die virtu-
ellen API-Funktionen, die im vorliegenden Text be-
schrieben sind, nicht erforderlich. An ihre Stelle kön-
nen auch andere virtuelle Architekturen, Befehle
und/oder Funktionen treten, die gleichzeitige, zusam-
menwirkende Befehlsfolgen unterstützen. Außerdem
können sich die oben beschriebenen Ausführungs-
formen auf Fälle beziehen, wo alle Blöcke die gleiche
Anzahl von Elementen haben, alle CTAs die gleiche
Anzahl von Befehlsfolgen haben und dasselbe
CTA-Programm ausführen, und so weiter. In einigen
Anwendungen, zum Beispiel wo mehrere abhängige
Gitter verwendet werden, kann es wünschenswert
sein, CTAs in verschiedenen Gittern verschiedene
CTA-Programme ausführen zu lassen oder verschie-
dene Anzahlen und/oder Größen von Gittern zu ha-
ben.

[0173] Obgleich im vorliegenden Text von ”zusam-
menwirkenden Befehlsfolgen-Gruppierungen” ge-
sprochen wird, versteht es sich, dass einige Ausfüh-
rungsformen Befehlsfolgen-Gruppierungen verwen-
den können, bei denen eine gemeinsame Datennut-
zung zwischen gleichzeitigen Befehlsfolgen nicht un-
terstützt wird. In anderen Ausführungsformen, in de-
nen eine solche gemeinsame Datennutzung unter-
stützt wird, können die Befehlsfolgen, die für eine be-
stimmte Anwendung definiert sind, Daten gemein-
sam nutzen, müssen es aber nicht.

[0174] Obgleich in den oben beschriebenen Aus-
führungsformen davon gesprochen werden kann,
dass Befehlsfolge-Gruppierungen mehrere Befehls-
folgen haben, versteht es sich des Weiteren, dass in
einem ”entarteten” Fall eine Befehlsfolge-Gruppie-
rung auch nur eine einzige Befehlsfolge haben könn-
te. Somit könnte die vorliegende Erfindung dafür ver-
wendet werden, eine Skalierbarkeit in Programmen
bereitzustellen, die in einer CPU mit einem oder meh-
reren einfach-gereihten oder nebenläufigen Kernen
ausgeführt werden sollen. Unter Verwendung der im
vorliegenden Text beschriebenen Techniken könnte
ein Programm in einer solchen Weise geschrieben
werden, dass die Befehlsfolgen über eine beliebige
Anzahl verfügbarer CPU-Kerne verteilt werden könn-
ten (zum Beispiel unter Verwendung von Betriebs-
system-Funktionalität), ohne dass eine Modifikation
oder Rekompilierung des virtuellen ISA-Codes erfor-
26/43

DE 20 2008 017 916 U1 2010.12.09
derlich ist.

[0175] Die Begriffe ”virtuell” und ”real” werden im
vorliegenden Text verwendet, um das Entkoppeln ei-
nes konzeptuellen Programmiermodells, das von ei-
nem Programmierer verwendet wird, um eine Pro-
blemlösung zu beschreiben, von einem echten Com-
putersystem, auf dem das Programm letztendlich
ausgeführt werden kann, widerzuspiegeln. Das ”vir-
tuelle” Programmiermodell und seine zugehörige Ar-
chitektur ermöglichen es einem Programmierer, eine
höhere Sicht auf eine Parallelverarbeitungsaufgabe
zu erlangen, und es versteht sich, dass es eventuell
ein echtes Computersystem oder -gerät geben könn-
te, dessen Komponenten eins-zu-eins auf die im vor-
liegenden Text beschriebenen Komponenten der vir-
tuellen Architektur abgebildet werden können. Der
virtuelle Code, einschließlich virtuellem ISA-Code
und virtuellem API-Code, wird vorteilhafterweise als
Code in einer Sprache realisiert, die eins-zu-eins
dem Befehlssatz eines echten Verarbeitungsgerätes
entsprechen kann, aber nicht muss. Wie aller Pro-
grammcode kann der im vorliegenden Text ange-
sprochene virtuelle Code auf einem greifbaren Medi-
um (zum Beispiel einem Hauptspeicher oder einer
Festplatte) gespeichert werden, über ein Netzwerk
übertragen werden, und so weiter.

[0176] Computerprogramme, die verschiedene
Merkmale der vorliegenden Erfindung enthalten –
einschließlich beispielsweise virtuellen ISA- und/oder
virtuellen API-Code, virtuelle Befehlsübersetzer, vir-
tuelle Treiber, Kompilierer, Bibliotheken virtueller
Funktionen und dergleichen –, können auf verschie-
denen computerlesbaren Medien zum Speichern
und/oder Übertragen codiert werden. Zu geeigneten
Medien gehören magnetische Platten oder Magnet-
band, optische Speichermedien wie zum Beispiel
Compact-Disk (CD) oder DVD (Digital Versati-
le-Disk), Flashspeicher und dergleichen. Solche Pro-
gramme können auch codiert und unter Verwendung
von Trägersignalen übertragen werden, die für eine
Übertragung über drahtgebundene, optische
und/oder Drahtlos-Netze geeignet sind, die mit einer
Vielzahl verschiedener Protokolle, einschließlich
dem Internet, kompatibel sind. Computerlesbare
Speichermedien, die mit dem Programmcode codiert
sind, können mit einem kompatiblen Gerät gebündelt
werden, oder der Programmcode kann separat von
anderen Geräten bereitgestellt werden (zum Beispiel
über einen Download aus dem Internet).

[0177] Des Weiteren können bestimmte Aktionen im
vorliegenden Text so beschrieben werden, dass sie
von einem ”Programmierer” unternommen werden.
Es wird in Betracht gezogen, dass der Programmie-
rer ein Mensch, ein automatisierter Prozess, der Pro-
grammcode mit allenfalls geringem menschlichen
Eingreifen erzeugt, oder eine Kombination aus
menschlicher Interaktion mit automatisierten oder

teilweise automatisierten Prozessen zum Erzeugen
von Programmcode sein kann.

[0178] Obgleich des Weiteren im vorliegenden Text
beschriebene Ausführungsformen auf Merkmale be-
stimmter Zielplattformen Bezug nehmen können, ist
die Erfindung nicht auf diese Plattformen beschränkt.
Genau genommen, kann eine virtuelle Architektur in
jeder beliebigen Kombination von Hardware-
und/oder Software-Komponenten realisiert werden.
Dem Fachmann ist klar, dass man davon ausgehen
kann, dass verschiedene Realisierungen der glei-
chen virtuellen Architektur sich in der Effizienz
und/oder im Durchsatz unterscheiden. Solche Unter-
schiede sind jedoch für die vorliegende Erfindung
nicht von Bedeutung.

[0179] Obgleich also die Erfindung anhand konkre-
ter Ausführungsformen beschrieben wurde, versteht
es sich, dass die Erfindung alle Modifikationen und
Äquivalente innerhalb des Geltungsbereichs der fol-
genden Ansprüche mit erfassen soll.

[0180] Die Erfindung weist des Weiteren die folgen-
den Konzepte auf:

Konzept 1 zum Definieren eines Parallelverarbei-
tungsvorgangs, das Konzept aufweisend: Bereit-
stellen von einem ersten Programmcode, der eine
Abfolge von Operationen definiert, die für jede ei-
ner Mehrzahl von virtuellen Befehlsfolgen in einer
Gruppierung zusammenwirkender virtueller Be-
fehlsfolgen ausgeführt werden sollen; Kompilie-
ren des ersten Programmcodes in ein Programm
virtueller Befehlsfolgen, das eine Abfolge von Be-
fehlen je Befehlsfolge definiert, die für eine reprä-
sentative virtuelle Befehlsfolge der Mehrzahl von
virtuellen Befehlsfolgen ausgeführt werden sollen,
wobei die Abfolge von Befehlen je Befehlsfolge
mindestens einen Befehl enthält, der ein Zusam-
menwirkungsverhalten zwischen der repräsentati-
ven virtuellen Befehlsfolge und einer oder mehre-
ren anderen virtuellen Befehlsfolgen der Mehrzahl
von virtuellen Befehlsfolgen definiert; und Spei-
chern des Programms virtueller Befehlsfolgen.
Konzept 2 nach Konzept 1, ferner aufweisend:
Übersetzen des gespeicherten Programms virtu-
eller Befehlsfolgen in eine Abfolge von Befehlen,
die mit einer Zielplattformarchitektur kompatibel
sind.
Konzept 3 nach Konzept 1, ferner aufweisend:
Bereitstellen von einem zweiten Programmcode,
der eine Gruppierung zusammenwirkender virtu-
eller Befehlsfolgen definiert, die dafür geeignet
sind, einen Eingabedatensatz zu verarbeiten um
einen Ausgabedatensatz zu erzeugen, wobei jede
virtuelle Befehlsfolge in der Gruppierung gleich-
zeitig das Programm virtueller Befehlsfolgen aus-
führt; Konvertieren des zweiten Programmcodes
in eine Abfolge von Funktionsaufrufen in einer Bi-
bliothek virtueller Funktionen, wobei die Bibliothek
27/43

DE 20 2008 017 916 U1 2010.12.09
virtuelle Funktionen enthält, welche die Gruppie-
rung zusammenwirkender virtueller Befehlsfolgen
initialisieren und die Ausführung der Gruppierung
zusammenwirkender virtueller Befehlsfolgen ver-
anlassen; und Speichern der Abfolge von Funkti-
onsaufrufen.
Konzept 4 nach Konzept 3, ferner aufweisend:
Übersetzen des gespeicherten Programms virtu-
eller Befehlsfolgen und der Abfolge von Funkti-
onsaufrufen in einen Programmcode, der auf ei-
ner Zielplattformarchitektur ausgeführt werden
kann, wobei der ausführbare Programmcode eine
oder mehrere Plattformbefehlsfolgen definiert,
welche die Gruppierung zusammenwirkender vir-
tueller Befehlsfolgen ausführen.
Konzept 5 nach Konzept 4, ferner aufweisend:
Ausführen des ausführbaren Programmcodes auf
einem Computersystem, das mit der Zielplattfor-
marchitektur kompatibel ist, wodurch der Ausga-
bedatensatz erzeugt wird; und Speichern des
Ausgabedatensatzes in einem Speichermedium.
Konzept 6 nach Konzept 1, wobei die Abfolge von
Befehlen je Befehlsfolge einen Befehl enthält, die
Ausführung von Operationen für die repräsentati-
ve virtuelle Befehlsfolge an einen bestimmten
Punkt in der Abfolge so lange auszusetzen, bis
eine oder mehrere der anderen virtuellen Befehls-
folgen diesen bestimmten Punkt erreichen.
Konzept 7 nach Konzept 1, wobei die Abfolge von
Befehlen je Befehlsfolge einen Befehl für die re-
präsentative virtuelle Befehlsfolge enthält, Daten
in einem gemeinsam genutzten Speicher zu spei-
chern, auf den eine oder mehrere der anderen vir-
tuellen Befehlsfolgen Zugriff haben.
Konzept 8 nach Konzept 1, wobei die Abfolge von
Befehlen je Befehlsfolge einen Befehl für die re-
präsentative virtuelle Befehlsfolge enthält, nicht
unterbrechbar Daten zu lesen und zu aktualisie-
ren, die in einem gemeinsam genutzten Speicher
gespeichert sind, auf den eine oder mehrere der
anderen virtuellen Befehlsfolgen Zugriff haben.
Konzept 9 nach Konzept 1, wobei das Programm
virtueller Befehlsfolgen eine Variablendefinitions-
aussage enthält, die eine Variable in einem aus ei-
ner Mehrzahl von virtuellen Zustandsräumen defi-
niert, wobei verschiedene der Mehrzahl von virtu-
ellen Zustandräumen verschiedenen Modi ge-
meinsamer Datennutzung zwischen den virtuellen
Befehlsfolgen entsprechen.
Konzept 10 nach Konzept 9, wobei die Modi der
gemeinsamen Datennutzung einen nicht gemein-
sam genutzten Modus je Befehlsfolge und einen
global gemeinsam genutzten Modus enthalten.
Konzept 11 nach Konzept 9, wobei die Modi der
gemeinsamen Datennutzung einen nicht gemein-
sam genutzten Modus je Befehlsfolge, einen ge-
meinsam genutzten Modus innerhalb einer Grup-
pierung virtueller Befehlsfolgen und einen global
gemeinsam genutzten Modus enthalten.
Konzept 12 nach Konzept 9, wobei die Modi der

gemeinsamen Datennutzung einen nicht gemein-
sam genutzten Modus je Befehlsfolge, einen ge-
meinsam genutzten Modus innerhalb einen Grup-
pierung virtueller Befehlsfolgen, einen gemein-
sam genutzten Modus zwischen mehreren Grup-
pierungen virtueller Befehlsfolgen und einen glo-
bal gemeinsam genutzten Modus enthalten.
Konzept 13 zum Betreiben eines Zielprozessors,
das Konzept aufweisend: Bereitstellen von einem
Eingabeprogrammcode, der einen ersten Ab-
schnitt enthält, der eine Abfolge von Operationen
definiert, die für jede einer Mehrzahl von virtuellen
Befehlsfolgen in einer Gruppierung virtueller Be-
fehlsfolgen auszuführen sind, die dafür geeignet
sind, einen Eingabedatensatz zu verarbeiten um
einen Ausgabedatensatz zu erzeugen, wobei der
Eingabeprogrammcode ferner einen zweiten Ab-
schnitt enthält, der eine Dimension der Gruppie-
rung virtueller Befehlsfolgen definiert; Kompilieren
des ersten Abschnitts des Eingabeprogramm-
codes in ein Programm virtueller Befehlsfolgen,
das eine Abfolge von Befehlen je Befehlsfolge de-
finiert, die für eine repräsentative virtuelle Befehls-
folge der Mehrzahl von virtuellen Befehlsfolgen
ausgeführt werden sollen, wobei die Abfolge von
Befehlen je Befehlsfolge mindestens einen Befehl
enthält, der ein Zusammenwirkungsverhalten zwi-
schen der repräsentativen virtuellen Befehlsfolge
und einer oder mehreren anderen virtuellen Be-
fehlsfolgen der Mehrzahl von virtuellen Befehlsfol-
gen definiert; Konvertieren des zweiten Abschnitts
des Eingabeprogrammcodes in eine Abfolge von
Funktionsaufrufen an eine Bibliothek virtueller
Funktionen, wobei die Bibliothek virtuelle Funktio-
nen enthält, welche die Gruppierung zusammen-
wirkender virtueller Befehlsfolgen initialisieren
und die Ausführung der Gruppierung zusammen-
wirkender virtueller Befehlsfolgen veranlassen;
Übersetzen des Programms virtueller Befehlsfol-
gen und der Abfolge von Funktionsaufrufen in ei-
nen Programmcode, der auf einer Zielplattformar-
chitektur ausgeführt werden kann, wobei der aus-
führbare Programmcode eine oder mehrere reale
Befehlsfolgen definiert, welche die Gruppierung
zusammenwirkender virtueller Befehlsfolgen aus-
führen; Ausführen des ausführbaren Programm-
codes auf einem Computersystem, das mit der
Zielplattformarchitektur kompatibel ist, wodurch
der Ausgabedatensatz erzeugt wird; und Spei-
chern des Ausgabedatensatzes auf einem Spei-
chermedium.
Konzept 14 nach Konzept 13, wobei der zweite
Abschnitt des Eingabeprogrammcodes einen Pro-
grammcode enthält, der zwei oder mehr Dimensi-
onen für die Gruppierung virtueller Befehlsfolgen
definiert.
Konzept 15 nach Konzept 14, wobei der zweite
Abschnitt des Eingabeprogrammcodes ferner ent-
hält: einen Funktionsaufruf, der eine oder mehrere
Dimensionen eines Gitters aus Gruppierungen
28/43

DE 20 2008 017 916 U1 2010.12.09
virtueller Befehlsfolgen definiert, wobei jede Grup-
pierung in dem Gitter ausgeführt werden soll.
Konzept 16 nach Konzept 13, wobei die Zielplatt-
formarchitektur einen Master-Prozessor und ei-
nen Koprozessor enthält und wobei die Aktion des
Übersetzens Folgendes enthält: Übersetzen des
Programms virtueller Befehlsfolgen in einen Pro-
grammcode, der parallel durch mehrere Befehls-
folgen, die in dem Koprozessor definiert sind, aus-
geführt werden kann; und Übersetzen der Abfolge
von Funktionsaufrufen in eine Abfolge von Aufru-
fen an ein Treiberprogramm für den Koprozessor,
wobei das Treiberprogramm in dem Master-Pro-
zessor ausgeführt wird.
Konzept 17 nach Konzept 13, wobei die Zielplatt-
formarchitektur eine zentrale Verarbeitungsein-
heit (CPU) enthält und wobei die Aktion des Über-
setzens Folgendes enthält: Übersetzen des Pro-
gramms virtueller Befehlsfolgen und mindestens
eines Abschnitts der Abfolge von Funktionsaufru-
fen in einen Zielprogrammcode, der die Gruppie-
rung virtueller Befehlsfolgen unter Verwendung ei-
ner Anzahl von CPU-Befehlsfolgen ausführt, die
kleiner als die Anzahl virtueller Befehlsfolgen ist.
Konzept 18 zum Betreiben eines Zielprozessors,
das Konzept aufweisend: Erhalten eines Pro-
gramms virtueller Befehlsfolgen, das eine Abfolge
von Befehlen je Befehlsfolge definiert, die für eine
repräsentative virtuelle Befehlsfolge aus einer
Mehrzahl von virtuellen Befehlsfolgen in einer
Gruppierung virtueller Befehlsfolgen ausgeführt
werden sollen, die dafür geeignet sind, einen Ein-
gabedatensatz zu verarbeiten um einen Ausgabe-
datensatz zu erzeugen, wobei die Abfolge von Be-
fehlen je Befehlsfolge mindestens einen Befehl
enthält, der ein Zusammenwirkungsverhalten zwi-
schen der repräsentativen virtuellen Befehlsfolge
und einer oder mehreren anderen virtuellen Be-
fehlsfolgen der Mehrzahl von virtuellen Befehlsfol-
gen definiert; Erhalten eines zusätzlichen Pro-
grammcodes, der Dimensionen der Gruppierung
virtueller Befehlsfolgen definiert; Übersetzen des
Programms virtueller Befehlsfolgen und des zu-
sätzlichen Programmcodes in einen Programm-
code, der auf der Zielplattformarchitektur ausge-
führt werden kann, wobei der ausführbare Pro-
grammcode eine oder mehrere Plattformbefehls-
folgen definiert, welche die Gruppierung virtueller
Befehlsfolgen ausführen; Ausführen des ausführ-
baren Programmcodes auf einem Computersys-
tem, das mit der Zielplattformarchitektur kompati-
bel ist, wodurch der Ausgabedatensatz erzeugt
wird, und Speichern des Ausgabedatensatzes in
einem Speicher.
Konzept 19 nach Konzept 18, wobei die Aktion
des Erhaltens des Programms virtueller Befehls-
folgen enthält: Empfangen von einem Quellpro-
grammcode, der in einer höheren Programmier-
sprache geschrieben ist; und Kompilieren des
Quellprogrammcodes um das Programm virtueller

Befehlsfolgen zu erzeugen.
Konzept 20 nach Konzept 18, wobei die Aktion
des Erhaltens des Programms virtueller Befehls-
folgen enthält: Lesen des Programms virtueller
Befehlsfolgen von einem Speichermedium.
Konzept 21 nach Konzept 18, wobei die Aktion
des Erhaltens des Programms virtueller Befehls-
folgen enthält: Empfangen des Programms virtu-
eller Befehlsfolgen von einem räumlich abgesetz-
ten Computersystem über ein Netzwerk.
29/43

DE 20 2008 017 916 U1 2010.12.09
ZITATE ENTHALTEN IN DER BESCHREIBUNG

Diese Liste der vom Anmelder aufgeführten Doku-
mente wurde automatisiert erzeugt und ist aus-
schließlich zur besseren Information des Lesers auf-
genommen. Die Liste ist nicht Bestandteil der deut-
schen Patent- bzw. Gebrauchsmusteranmeldung.
Das DPMA übernimmt keinerlei Haftung für etwaige
Fehler oder Auslassungen.

Zitierte Nicht-Patentliteratur

- IEEE 754-Standards [0096]
- IEEE 754-Standards [0118]
- IEEE 754 [0150]
30/43

DE 20 2008 017 916 U1 2010.12.09
Schutzansprüche

1. Parallelverarbeitungsarchitektur zum Definie-
ren eines Parallelverarbeitungsvorgangs, wobei die
Parallelverarbeitungsarchitektur einen Parallelpro-
zessor und einen Speicher aufweist,
wobei der Speicher einen ersten Programmcode ent-
hält, der eine Abfolge von Operationen definiert, die
für jede einer Mehrzahl von virtuellen Befehlsfolgen
in einer Gruppierung zusammenwirkender virtueller
Befehlsfolgen ausgeführt werden sollen,
wobei der Parallelprozessor betreibbar ist, den ers-
ten Programmcode in ein Programm virtueller Be-
fehlsfolgen zu kompilieren, das eine Abfolge von Be-
fehlen je Befehlsfolge definiert, die für eine repräsen-
tative virtuelle Befehlsfolge der Mehrzahl von virtuel-
len Befehlsfolgen ausgeführt werden sollen, wobei
die Abfolge von Befehlen je Befehlsfolge mindestens
einen Befehl enthält, der ein Zusammenwirkungsver-
halten zwischen der repräsentativen virtuellen Be-
fehlsfolge und einer oder mehreren anderen virtuel-
len Befehlsfolgen der Mehrzahl von virtuellen Be-
fehlsfolgen definiert; und
wobei der Speicher das Programm virtueller Befehls-
folgen enthält.

2. Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei der Parallelprozessor betreibbar ist,
das gespeicherte Programm virtueller Befehlsfolgen
in eine Abfolge von Befehlen, die mit einer Zielplatt-
formarchitektur kompatibel sind, zu übersetzen.

3. Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei der Speichereinen zweiten Pro-
grammcode enthält, der eine Gruppierung zusam-
menwirkender virtueller Befehlsfolgen definiert, die
dafür geeignet sind, einen Eingabedatensatz zu ver-
arbeiten um einen Ausgabedatensatz zu erzeugen,
wobei jede virtuelle Befehlsfolge in der Gruppierung
gleichzeitig das Programm virtueller Befehlsfolgen
ausführt,
wobei der Parallelprozessor betreibbar ist, den zwei-
ten Programmcode in eine Abfolge von Funktionsauf-
rufen in einer Bibliothek virtueller Funktionen zu kon-
vertieren, wobei die Bibliothek virtuelle Funktionen
enthält, welche die Gruppierung zusammenwirken-
der virtueller Befehlsfolgen initialisieren und die Aus-
führung der Gruppierung zusammenwirkender virtu-
eller Befehlsfolgen veranlassen; und
wobei der Speicher die Abfolge von Funktionsaufru-
fen enthält.

4. Parallelverarbeitungsarchitektur nach An-
spruch 3, wobei der Parallelprozessor ferner betreib-
bar ist, das gespeicherte Programm virtueller Be-
fehlsfolgen und die Abfolge von Funktionsaufrufen in
einen Programmcode zu übersetzen, der auf einer
Zielplattformarchitektur ausgeführt werden kann, wo-
bei der ausführbare Programmcode eine oder meh-
rere Plattformbefehlsfolgen definiert, welche die

Gruppierung zusammenwirkender virtueller Befehls-
folgen ausführen.

5. Parallelverarbeitungsarchitektur nach An-
spruch 4, wobei die Parallelverarbeitungsarchitektur
ferner ferner ein Computersystem aufweist, das mit
der Zielplattformarchitektur kompatibel ist, wobei das
Computersystem betreibbar ist, den ausführbaren
Programmcode auszuführen, wodurch der Ausgabe-
datensatz erzeugt wird, und um den Ausgabedaten-
satz in einem Speichermedium zu speichern.

6. Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei die Abfolge von Befehlen je Befehls-
folge einen Befehl enthält, die Ausführung von Ope-
rationen für die repräsentative virtuelle Befehlsfolge
an einen bestimmten Punkt in der Abfolge so lange
auszusetzen, bis eine oder mehrere der anderen vir-
tuellen Befehlsfolgen diesen bestimmten Punkt errei-
chen.

7. Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei die Abfolge von Befehlen je Befehls-
folge einen Befehl für die repräsentative virtuelle Be-
fehlsfolge enthält, Daten in einem gemeinsam ge-
nutzten Speicher zu speichern, auf den eine oder
mehrere der anderen virtuellen Befehlsfolgen Zugriff
haben.

8. Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei die Abfolge von Befehlen je Befehls-
folge einen Befehl für die repräsentative virtuelle Be-
fehlsfolge enthält, nicht unterbrechbar Daten zu le-
sen und zu aktualisieren, die in einem gemeinsam
genutzten Speicher gespeichert sind, auf den eine
oder mehrere der anderen virtuellen Befehlsfolgen
Zugriff haben.

9. Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei das Programm virtueller Befehlsfol-
gen eine Variablendefinitionsaussage enthält, die
eine Variable in einem aus einer Mehrzahl von virtu-
ellen Zustandsräumen definiert, wobei verschiedene
der Mehrzahl von virtuellen Zustandräumen ver-
schiedenen Modi gemeinsamer Datennutzung zwi-
schen den virtuellen Befehlsfolgen entsprechen.

10. Parallelverarbeitungsarchitektur nach An-
spruch 9, wobei die Modi der gemeinsamen Daten-
nutzung einen nicht gemeinsam genutzten Modus je
Befehlsfolge und einen global gemeinsam genutzten
Modus enthalten.

11. Parallelverarbeitungsarchitektur nach An-
spruch 9, wobei die Modi der gemeinsamen Daten-
nutzung einen nicht gemeinsam genutzten Modus je
Befehlsfolge, einen gemeinsam genutzten Modus in-
nerhalb einer Gruppierung virtueller Befehlsfolgen
und einen global gemeinsam genutzten Modus ent-
halten.
31/43

DE 20 2008 017 916 U1 2010.12.09
12. Parallelverarbeitungsarchitektur nach An-
spruch 9, wobei die Modi der gemeinsamen Daten-
nutzung einen nicht gemeinsam genutzten Modus je
Befehlsfolge, einen gemeinsam genutzten Modus in-
nerhalb einen Gruppierung virtueller Befehlsfolgen,
einen gemeinsam genutzten Modus zwischen meh-
reren Gruppierungen virtueller Befehlsfolgen und ei-
nen global gemeinsam genutzten Modus enthalten.

13. Parallelverarbeitungsarchitektur zum Betrei-
ben eines Zielprozessors,
wobei die Parallelverarbeitungsarchitektur einen Pa-
rallelprozessor, einen Speicher und ein Computer-
system, das mit der Zielplattformarchitektur kompati-
bel ist, aufweist,
wobei der Speicher einen Eingabeprogrammcode
enthält, der einen ersten Abschnitt enthält, der eine
Abfolge von Operationen definiert, die für jede einer
Mehrzahl von virtuellen Befehlsfolgen in einer Grup-
pierung virtueller Befehlsfolgen auszuführen sind, die
dafür geeignet sind, einen Eingabedatensatz zu ver-
arbeiten um einen Ausgabedatensatz zu erzeugen,
wobei der Eingabeprogrammcode ferner einen zwei-
ten Abschnitt enthält, der eine Dimension der Grup-
pierung virtueller Befehlsfolgen definiert;
wobei der Parallelprozessor betreibbar ist, den ers-
ten Abschnitt des Eingabeprogrammcodes in ein
Programm virtueller Befehlsfolgen zu kompilieren,
das eine Abfolge von Befehlen je Befehlsfolge defi-
niert, die für eine repräsentative virtuelle Befehlsfolge
der Mehrzahl von virtuellen Befehlsfolgen ausgeführt
werden sollen, wobei die Abfolge von Befehlen je Be-
fehlsfolge mindestens einen Befehl enthält, der ein
Zusammenwirkungsverhalten zwischen der reprä-
sentativen virtuellen Befehlsfolge und einer oder
mehreren anderen virtuellen Befehlsfolgen der Mehr-
zahl von virtuellen Befehlsfolgen definiert;
wobei der Parallelprozessor betreibbar ist, den zwei-
ten Abschnitt des Eingabeprogrammcodes in eine
Abfolge von Funktionsaufrufen an eine Bibliothek vir-
tueller Funktionen zu konvertieren, wobei die Biblio-
thek virtuelle Funktionen enthält, welche die Gruppie-
rung zusammenwirkender virtueller Befehlsfolgen in-
itialisieren und die Ausführung der Gruppierung zu-
sammenwirkender virtueller Befehlsfolgen veranlas-
sen;
wobei der Parallelprozessor betreibbar ist, das Pro-
gramm virtueller Befehlsfolgen und die Abfolge von
Funktionsaufrufen in einen Programmcode zu über-
setzen, der auf einer Zielplattformarchitektur ausge-
führt werden kann, wobei der ausführbare Pro-
grammcode eine oder mehrere reale Befehlsfolgen
definiert, welche die Gruppierung zusammenwirken-
der virtueller Befehlsfolgen ausführen;
wobei das Computersystem betreibbar ist, den aus-
führbaren Programmcode auszuführen, wodurch der
Ausgabedatensatz erzeugt wird, und um den Ausga-
bedatensatz auf einem Speichermedium zu spei-
chern.

14. Parallelverarbeitungsarchitektur nach An-
spruch 13, wobei der zweite Abschnitt des Eingabe-
programmcodes einen Programmcode enthält, der
zwei oder mehr Dimensionen für die Gruppierung vir-
tueller Befehlsfolgen definiert.

15. Parallelverarbeitungsarchitektur nach An-
spruch 14, wobei der zweite Abschnitt des Eingabe-
programmcodes ferner enthält:
einen Funktionsaufruf, der eine oder mehrere Dimen-
sionen eines Gitters aus Gruppierungen virtueller Be-
fehlsfolgen definiert, wobei jede Gruppierung in dem
Gitter ausgeführt werden soll.

16. Parallelverarbeitungsarchitektur nach An-
spruch 13, wobei die Zielplattformarchitektur einen
Master-Prozessor und einen Koprozessor enthält
und wobei der Parallelprozessor betreibbar ist, das
Programm virtueller Befehlsfolgen in einen Pro-
grammcode zu übersetzen, der parallel durch mehre-
re Befehlsfolgen, die in dem Koprozessor definiert
sind, ausgeführt werden kann, und die Abfolge von
Funktionsaufrufen in eine Abfolge von Aufrufen an
ein Treiberprogramm für den Koprozessor zu über-
setzen, wobei das Treiberprogramm in dem Mas-
ter-Prozessor ausgeführt wird.

17. Parallelverarbeitungsarchitektur nach An-
spruch 13, wobei die Zielplattformarchitektur eine
zentrale Verarbeitungseinheit (CPU) enthält und wo-
bei der Parallelprozessor betreibbar ist, das Pro-
gramm virtueller Befehlsfolgen und mindestens einen
Abschnitt der Abfolge von Funktionsaufrufen in einen
Zielprogrammcode zu übersetzen, der die Gruppie-
rung virtueller Befehlsfolgen unter Verwendung einer
Anzahl von CPU-Befehlsfolgen ausführt, die kleiner
als die Anzahl virtueller Befehlsfolgen ist.

18. Parallelverarbeitungsarchitektur zum Betrei-
ben eines Zielprozessors,
wobei die Parallelverarbeitungsarchitektur einen Pa-
rallelprozessor, einen Speicher und ein Computer-
system, das mit der Zielplattform kompatibel ist, auf-
weist,
wobei die Parallelverarbeitungsarchitektur betreibbar
ist, ein Programm virtueller Befehlsfolgen zu erhal-
ten, das eine Abfolge von Befehlen je Befehlsfolge
definiert, die für eine repräsentative virtuelle Befehls-
folge aus einer Mehrzahl von virtuellen Befehlsfolgen
in einer Gruppierung virtueller Befehlsfolgen ausge-
führt werden sollen, die dafür geeignet sind, einen
Eingabedatensatz zu verarbeiten um einen Ausgabe-
datensatz zu erzeugen,
wobei die Abfolge von Befehlen je Befehlsfolge min-
destens einen Befehl enthält, der ein Zusammenwir-
kungsverhalten zwischen der repräsentativen virtuel-
len Befehlsfolge und einer oder mehreren anderen
virtuellen Befehlsfolgen der Mehrzahl von virtuellen
Befehlsfolgen definiert;
wobei die Parallelverarbeitungsarchitektur betreibbar
32/43

DE 20 2008 017 916 U1 2010.12.09
ist, einen zusätzlichen Programmcode zu erhalten,
der Dimensionen der Gruppierung virtueller Befehls-
folgen definiert;
wobei der Parallelprozessor betreibbar ist, das Pro-
gramm virtueller Befehlsfolgen und den zusätzlichen
Programmcode in einen Programmcode zu überset-
zen, der auf der Zielplattformarchitektur ausgeführt
werden kann, wobei der ausführbare Programmcode
eine oder mehrere Plattformbefehlsfolgen definiert,
welche die Gruppierung virtueller Befehlsfolgen aus-
führen;
wobei das Computersystem betreibbar ist, den aus-
führbaren Programmcode auszuführen, wodurch der
Ausgabedatensatz erzeugt wird, und
wobei der Speicher den Ausgabedatensatz enthält.

19. Parallelverarbeitungsarchitektur nach An-
spruch 18, wobei die Parallelverarbeitungsarchitektur
betreibbar ist, einen Quellprogrammcode zu empfan-
gen, der in einer höheren Programmiersprache ge-
schrieben ist und den Quellprogrammcode zu kompi-
lieren, um das Programm virtueller Befehlsfolgen zu
erzeugen.

20. Parallelverarbeitungsarchitektur nach An-
spruch 18, wobei die Parallelverarbeitungsarchitektur
betreibbar ist, das Programm virtueller Befehlsfolgen
von einem Speichermedium zu lesen.

21. Parallelverarbeitungsarchitektur nach An-
spruch 18, wobei die Parallelverarbeitungsarchitektur
betreibbar ist, das Programm virtueller Befehlsfolgen
von einem räumlich abgesetzten Computersystem
über ein Netzwerk zu empfangen.

Es folgen 10 Blatt Zeichnungen
33/43

DE 20 2008 017 916 U1 2010.12.09
Anhängende Zeichnungen
34/43

DE 20 2008 017 916 U1 2010.12.09
35/43

DE 20 2008 017 916 U1 2010.12.09
36/43

DE 20 2008 017 916 U1 2010.12.09
37/43

DE 20 2008 017 916 U1 2010.12.09
38/43

DE 20 2008 017 916 U1 2010.12.09
39/43

DE 20 2008 017 916 U1 2010.12.09
40/43

DE 20 2008 017 916 U1 2010.12.09
41/43

DE 20 2008 017 916 U1 2010.12.09
42/43

DE 20 2008 017 916 U1 2010.12.09
43/43

	Titelseite
	Beschreibung
	Schutzansprüche
	Anhängende Zeichnungen

