
(19) *DE202008017916U120101209*
(10) DE 20 2008 017 916 U1 2010.12.09
 

(12) Gebrauchsmusterschrift

(21) Aktenzeichen: 20 2008 017 916.5
(22) Anmeldetag: 22.01.2008
(67) aus Patentanmeldung: 10 2008 005 515.8
(47) Eintragungstag: 04.11.2010
(43) Bekanntmachung im Patentblatt: 09.12.2010

(51) Int Cl.8: G06F 9/46 (2006.01)
G06F 9/45 (2006.01)

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Bezeichnung: Virtuelle Architektur und virtueller Befehlssatz für die Berechnung paralleler Befehlsfolgen

(57) Hauptanspruch: Parallelverarbeitungsarchitektur zum 
Definieren eines Parallelverarbeitungsvorgangs, wobei die 
Parallelverarbeitungsarchitektur einen Parallelprozessor 
und einen Speicher aufweist,  
wobei der Speicher einen ersten Programmcode enthält, 
der eine Abfolge von Operationen definiert, die für jede 
einer Mehrzahl von virtuellen Befehlsfolgen in einer Grup-
pierung zusammenwirkender virtueller Befehlsfolgen aus-
geführt werden sollen,  
wobei der Parallelprozessor betreibbar ist, den ersten Pro-
grammcode in ein Programm virtueller Befehlsfolgen zu 
kompilieren, das eine Abfolge von Befehlen je Befehls-
folge definiert, die für eine repräsentative virtuelle Befehls-
folge der Mehrzahl von virtuellen Befehlsfolgen ausgeführt 
werden sollen, wobei die Abfolge von Befehlen je Befehls-
folge mindestens einen Befehl enthält, der ein Zusammen-
wirkungsverhalten zwischen der repräsentativen virtuellen 
Befehlsfolge und einer oder mehreren anderen virtuellen 
Befehlsfolgen der Mehrzahl von virtuellen Befehlsfolgen 
definiert; und  
wobei der Speicher das Programm virtueller Befehlsfolgen 
enthält.

(30) Unionspriorität:
11/627,892 26.01.2007 US

(73) Name und Wohnsitz des Inhabers: 
Nvidia Corp., Santa Clara, Calif., US

(74) Name und Wohnsitz des Vertreters: 
Dilg Haeusler Schindelmann 
Patentanwaltsgesellschaft mbH, 80636 München
1/43



DE 20 2008 017 916 U1    2010.12.09
Beschreibung

[0001] Die vorliegende Erfindung betrifft allgemein 
die Parallelverarbeitung und insbesondere eine virtu-
elle Architektur und einen virtuellen Befehlssatz für 
die Berechnung paralleler Befehlsfolgen.

[0002] Bei der Parallelverarbeitung arbeiten mehre-
re Verarbeitungseinheiten (zum Beispiel mehrere 
Prozessorchips oder mehrere Verarbeitungskerne in-
nerhalb eines einzelnen Chips) gleichzeitig, um Da-
ten zu verarbeiten. Solche Systeme können verwen-
det werden, um Probleme zu lösen, die sich zur Zer-
legung in mehrere Teile anbieten. Ein Beispiel ist die 
Bildfilterung, wobei jedes Pixel eines ausgegebenen 
Bildes (oder von ausgegebenen Bildern) aus einer 
Anzahl von Pixeln eines eingegebenen Bildes (oder 
von eingegebenen Bildern) berechnet wird. Die Be-
rechnung jedes ausgegebenen Pixels ist allgemein 
unabhängig von allen anderen, so dass verschiede-
ne Verarbeitungseinheiten verschiedene ausgegebe-
ne Pixel parallel berechnen können. Viele andere Ar-
ten von Problemen eignen sich ebenfalls für die par-
allele Zerlegung. Allgemein kann eine parallele 
N-Wege-Ausführung die Lösung solcher Probleme 
um ungefähr einen Faktor N beschleunigen.

[0003] Eine weitere Klasse von Problemen eignet 
sich zur Parallelverarbeitung, wenn die parallelen 
Ausführungsbefehlsfolgen miteinander koordiniert 
werden können. Ein Beispiel ist die Schnelle Fourier-
transformation (Fast Fourier Transform – FFT), ein re-
kursiver Algorithmus, bei dem auf jeder Stufe eine 
Berechnung an den Ergebnissen einer vorherigen 
Stufe ausgeführt wird, um neue Werte zu generieren, 
die als Eingaben in die nächste Stufe verwendet wer-
den, bis die Ausgabestufe erreicht ist. Eine einzelne 
Ausführungsbefehlsfolge kann mehrere Stufen aus-
führen, solange diese Befehlsfolge verlässlich die 
Ausgabedaten von vorherigen Stufen erhalten kann. 
Wenn die Aufgabe zwischen mehreren Befehlsfolgen 
aufgeteilt werden soll, so muss ein Koordinationsme-
chanismus vorhanden sein, damit zum Beispiel eine 
Befehlsfolge nicht versucht, Eingabedaten zu lesen, 
die noch gar nicht geschrieben wurden. (Eine Lösung 
dieses Problems ist in der gemeinsam abgetretenen, 
gleichzeitig anhängigen US-Patentanmeldung Nr. 
11/303,780, eingereicht am 15. Dezember 2005, be-
schrieben).

[0004] Das Programmieren von Parallelverarbei-
tungssystemen kann jedoch schwierig sein. Der Pro-
grammierer muss in der Regel die Anzahl der verfüg-
baren Verarbeitungseinheiten und ihre Fähigkeiten 
kennen (Befehlssätze, Anzahl der Datenregister, 
Zwischenverbindungen usw.), um einen Code zu er-
zeugen, den die Verarbeitungseinheiten überhaupt 
ausführen können. Obgleich maschinenspezifische 
Kompilierer eine große Hilfe auf diesem Gebiet sein 
können, ist es immer noch erforderlich, den Code je-

des Mal neu zu kompilieren, wenn der Code zu einem 
anderen Prozessor portiert wird.

[0005] Darüber hinaus werden verschiedene As-
pekte von Parallelverarbeitungsarchitekturen in ra-
scher Folge hervorgebracht. Zum Beispiel werden 
ständig neue Plattformarchitekturen, Befehlssätze 
und Programmiermodelle entwickelt. Wenn sich ver-
schiedene Aspekte der Parallelarchitektur (zum Bei-
spiel das Programmiermodell oder der Befehlssatz) 
von einer Generation zur nächsten ändern, so müs-
sen auch Anwendungsprogramme, Softwarebiblio-
theken, Kompilierer und andere Software und Tools 
entsprechend verändert werden. Diese Instabilität 
kann einen erheblichen zusätzlichen administrativen 
Aufwand für die Entwicklung und Pflege von Parallel-
verarbeitungscode mit sich bringen.

[0006] Wenn eine Koordination zwischen Befehls-
folgen benötigt wird, so wird das parallele Program-
mieren schwieriger. Der Programmierer muss fest-
stellen, welche Mechanismen in einem bestimmten 
Prozessor oder Computersystem zur Verfügung ste-
hen, um eine Kommunikation zwischen Befehlsfol-
gen zu unterstützen (oder zu emulieren), und muss 
einen Code schreiben, der die verfügbaren Mecha-
nismen ausnutzt. Da die verfügbaren und/oder opti-
malen Mechanismen auf verschiedenen Computer-
systemen allgemein verschieden sind, ist ein paralle-
ler Code dieser Art allgemein nicht portierbar. Er 
muss für jede Hardwareplattform, auf der er läuft, neu 
geschrieben werden.

[0007] Des Weiteren muss der Programmierer zu-
sätzlich zum Bereitstellen von ausführbarem Code 
für die Prozessoren noch einen Steuercode für einen 
”Master”-Prozessor bereitstellen, der die Abläufe der 
verschiedenen Verarbeitungseinheiten koordiniert, 
der zum Beispiel jede Verarbeitungseinheit anweist, 
welches Programm auszuführen ist und welche Ein-
gabedaten zu verarbeiten sind. Ein solcher Steuer-
code ist in der Regel für einen bestimmten Mas-
ter-Prozessor und ein bestimmtes Protokoll für die 
Kommunikation zwischen Prozessoren spezifisch 
und muss in der Regel neu geschrieben werden, 
wenn ein anderer Master-Prozessor verwendet wer-
den soll.

[0008] Die Schwierigkeiten beim Kompilieren und 
Neukompilieren von Parallelverarbeitungscode kön-
nen Nutzer davon abschrecken, ihre Systeme ent-
sprechend den Fortschritten der Computertechnolo-
gie auf dem modernsten Stand zu halten. Es wäre 
darum wünschenswert, kompilierten Parallelverar-
beitungscode von einer bestimmten Hardwareplatt-
form abzukoppeln und eine stabile Parallelverarbei-
tungsarchitektur und einen Befehlssatz für interessie-
rende parallele Anwendungen und Tools bereitzustel-
len.
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KURZDARSTELLUNG DER ERFINDUNG

[0009] Ausführungsformen der vorliegenden Erfin-
dung stellen eine virtuelle Architektur und einen virtu-
ellen Befehlssatz für die Berechnung paralleler Be-
fehlsfolgen bereit. Die virtuelle Parallelarchitektur de-
finiert einen virtuellen Prozessor, der die gleichzeitige 
Ausführung mehrerer virtueller Befehlsfolgen mit 
mehreren Graden gemeinsamer Datennutzung und 
Koordination (zum Beispiel Synchronisation) zwi-
schen verschiedenen virtuellen Befehlsfolgen unter-
stützt, sowie einen virtuellen Ausführungstreiber, der 
den virtuellen Prozessor steuert. Eine virtuelle Be-
fehlssatzarchitektur für den virtuellen Prozessor wird 
verwendet, um das Verhalten einer virtuellen Be-
fehlsfolge zu definieren, und enthält Befehle, die sich 
auf das Verhalten paralleler Befehlsfolgen beziehen, 
zum Beispiel gemeinsame Datennutzung und Syn-
chronisation. Mit Hilfe der virtuellen parallelen Platt-
form können Programmierer Anwendungsprogram-
me entwickeln, in denen virtuelle Befehlsfolgen 
gleichzeitig ausgeführt werden, um Daten zu verar-
beiten. Anwendungsprogramme können in einer 
hoch-portierbaren Zwischenform gespeichert und 
verteilt werden, zum Beispiel als Programmcode, der 
auf die virtuelle parallele Plattform gerichtet ist. Zum 
Installationszeitpunkt oder Ausführungszeitpunkt 
passen hardwarespezifische virtuelle Befehlsüber-
setzer und virtuelle Ausführungstreiber den in einer 
Zwischenform vorliegenden Anwendungscode an 
bestimmte Hardware an, auf der er ausgeführt wer-
den soll. Infolge dessen sind Anwendungsprogram-
me besser portierbar und einfacher zu entwickeln, da 
der Entwicklungsprozess unabhängig von bestimm-
ter Verarbeitungshardware ist.

[0010] Gemäß einem Aspekt der vorliegenden Er-
findung enthält ein Verfahren zum Definieren eines 
Parallelverarbeitungsvorgangs das Bereitstellen von 
erstem Programmcode, der eine Abfolge von Opera-
tionen definiert, die für jede einer Anzahl virtueller Be-
fehlsfolgen in einer Gruppierung zusammenwirken-
der virtueller Befehlsfolgen auszuführen sind. Der 
erste Programmcode wird zu einem Programm virtu-
eller Befehlsfolgen kompiliert, das eine Abfolge von 
Befehlen je Befehlsfolge definiert, die für eine reprä-
sentative virtuelle Befehlsfolge der Gruppierung aus-
zuführen sind, und die Abfolge von Befehlen je Be-
fehlsfolge enthält mindestens einen Befehl, der ein 
Zusammenwirkungsverhalten zwischen der reprä-
sentativen virtuellen Befehlsfolge und einer oder 
mehreren anderen virtuellen Befehlsfolgen der Grup-
pierung definiert. Das Programm virtueller Befehlsfol-
gen wird gespeichert (zum Beispiel im Speicher oder 
auf einer Festplatte) und kann anschließend in eine 
Abfolge von Befehlen übersetzt werde, die einer Ziel-
plattformarchitektur entspricht.

[0011] Außerdem kann noch ein zweiter Programm-
code bereitgestellt werden, um eine Gruppierung zu-

sammenwirkender virtueller Befehlsfolgen zu definie-
ren, die dafür geeignet sind, einen Eingabedatensatz 
zu verarbeiten, um einen Ausgabedatensatz zu er-
zeugen, wobei jede virtuelle Befehlsfolge in der Grup-
pierung gleichzeitig das Programm virtueller Befehls-
folgen ausführt. Der zweite Programmcode wird auf 
vorteilhafte Weise in eine Abfolge von Funktionsauf-
rufen in einer Bibliothek virtueller Funktionen umge-
wandelt, wobei die Bibliothek virtuelle Funktionen 
enthält, welche die Gruppierung zusammenwirken-
der virtueller Befehlsfolgen initialisieren und deren 
Ausführung veranlassen. Diese Abfolge von Funkti-
onsaufrufen kann ebenfalls gespeichert werden. Das 
gespeicherte Programm virtueller Befehlsfolgen und 
die Abfolge von Funktionsaufrufen kann dann in ei-
nen Programmcode übersetzt werden, der auf einer 
Zielplattformarchitektur ausführbar ist, wobei der 
ausführbare Programmcode eine oder mehrere Platt-
formbefehlsfolgen definiert, welche die Gruppierung 
zusammenwirkender virtueller Befehlsfolgen ausfüh-
ren. Der ausführbare Programmcode kann auf einem 
Computersystem ausgeführt werden, das mit der 
Zielplattformarchitektur kompatibel ist, wodurch der 
Ausgabedatensatz erzeugt wird, der in einem Spei-
chermedium gespeichert werden kann (zum Beispiel 
Computerspeicher, Festplatte oder dergleichen).

[0012] Wie angemerkt, enthält die Abfolge von Be-
fehlen je Befehlsfolge in dem Code des Programms 
virtueller Befehlsfolgen vorteilhafterweise mindes-
tens einen Befehl, der ein Zusammenwirkungsver-
halten zwischen der repräsentativen virtuellen Be-
fehlsfolge und einer oder mehreren anderen virtuel-
len Befehlsfolgen der Gruppierung definiert. Zum 
Beispiel könnte die Abfolge von Befehlen je Befehls-
folge aufweisen einen Befehl, die Ausführung von 
Operationen für die repräsentative virtuelle Befehls-
folge an einen bestimmten Punkt in der Abfolge aus-
zusetzen, bis eine oder mehrere der anderen virtuel-
len Befehlsfolgen jenen bestimmten Punkt erreichen, 
einen Befehl für die repräsentative virtuelle Befehls-
folge, Daten in einem gemeinsam genutzten Spei-
cher zu speichern, auf den eine oder mehrere der an-
deren virtuellen Befehlsfolgen Zugriff haben, einen 
Befehl für die repräsentative virtuelle Befehlsfolge, 
nicht unterbrechbar (atomically) Daten zu lesen und 
zu aktualisieren, die in einem gemeinsam genutzten 
Speicher gespeichert sind, auf den eine oder mehre-
re der anderen virtuellen Befehlsfolgen Zugriff haben, 
oder dergleichen.

[0013] Das Programm virtueller Befehlsfolgen kann 
auch eine Variablendefinitionsaussage enthalten, die 
eine Variable in einem aus einer Anzahl von virtuellen 
Zustandsräumen definiert, wobei verschiedene virtu-
elle Zustandsräume verschiedenen Modi der ge-
meinsamen Datennutzung zwischen den virtuellen 
Befehlsfolgen entsprechen. In einer Ausführungs-
form werden mindestens ein je Befehlsfolge nicht ge-
meinsam genutzter Modus und ein global gemein-
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sam genutzter Modus unterstützt. In anderen Ausfüh-
rungsformen können auch zusätzliche Modi unter-
stützt werden, wie zum Beispiel ein gemeinsam ge-
nutzter Modus innerhalb einer Gruppierung virtueller 
Befehlsfolgen und/oder ein gemeinsam genutzter 
Modus zwischen mehreren Gruppierungen virtueller 
Befehlsfolgen.

[0014] Gemäß einem weiteren Aspekt der vorlie-
genden Erfindung enthält ein Verfahren zum Betrei-
ben eines Zielprozessors das Bereitstellen von ei-
nem Eingabeprogrammcode. Der Eingabepro-
grammcode enthält einen ersten Abschnitt, der eine 
Abfolge von Operationen definiert, die für jede einer 
Anzahl virtueller Befehlsfolgen in einer Gruppierung 
virtueller Befehlsfolgen auszuführen sind, die dafür 
geeignet sind, einen Eingabedatensatz zu verarbei-
ten, um einen Ausgabedatensatz zu erzeugen, und 
enthält auch einen zweiten Abschnitt, der eine Di-
mension der Gruppierung virtueller Befehlsfolgen de-
finiert. Der erste Abschnitt des Eingabeprogramm-
code wird zu einem Programm virtueller Befehlsfol-
gen kompiliert, das eine Abfolge von Befehlen je Be-
fehlsfolge definiert, die für eine repräsentative virtuel-
le Befehlsfolge der Gruppierung ausgeführt werden 
sollen. Die Abfolge von Befehlen je Befehlsfolge ent-
hält mindestens einen Befehl, der ein Zusammenwir-
kungsverhalten zwischen der repräsentativen virtuel-
len Befehlsfolge und einer oder mehreren anderen 
virtuellen Befehlsfolgen der Gruppierung definiert. 
Der zweite Abschnitt des Eingabeprogrammcode 
wird in eine Abfolge von Funktionsaufrufen an eine 
Bibliothek virtueller Funktionen umgewandelt, wobei 
die Bibliothek virtuelle Funktionen enthält, welche die 
Gruppierung zusammenwirkender virtueller Befehls-
folgen initialisieren und deren Ausführung veranlas-
sen. Das Programm virtueller Befehlsfolgen und die 
Abfolge von Funktionsaufrufen werden in einen Pro-
grammcode übersetzt, der auf einer Zielplattformar-
chitektur ausführbar ist, wobei der ausführbare Pro-
grammcode eine oder mehrere reale Befehlsfolgen 
definiert, welche die Gruppierung zusammenwirken-
der virtueller Befehlsfolgen ausführt. Der ausführbare 
Programmcode wird auf einem Computersystem 
ausgeführt, das mit der Zielplattformarchitektur kom-
patibel ist, wodurch der Ausgabedatensatz erzeugt 
wird, der in einem Speichermedium gespeichert 
kann.

[0015] In einigen Ausführungsformen können Grup-
pierungen virtueller Befehlsfolgen in zwei oder mehr 
Dimensionen definiert werden. Des Weiteren kann 
der zweite Abschnitt des Eingabeprogrammcode 
auch einen Funktionsaufruf enthalten, der eine oder 
mehrere Dimensionen eines Gitters aus Gruppierun-
gen virtueller Befehlsfolgen definiert, wobei jede 
Gruppierung in dem Gitter ausgeführt werden soll.

[0016] Es kann jede beliebige Zielplattformarchitek-
tur verwendet werden. In einigen Ausführungsformen 

enthält die Zielplattformarchitektur einen Master-Pro-
zessor und einen Koprozessor. Während der Über-
setzung kann das Programm virtueller Befehlsfolgen 
in Programmcode übersetzt werden, der parallel 
durch eine Anzahl von Befehlsfolgen ausführbar ist, 
die in dem Koprozessor definiert werden, während 
die Abfolge von Funktionsaufrufen in eine Abfolge 
von Rufen an ein Treiberprogramm für den Kopro-
zessor, das auf dem Master-Prozessor ausgeführt 
wird, übersetzt wird. In anderen Ausführungsformen 
enthält die Zielplattformarchitektur eine zentrale Ver-
arbeitungseinheit (CPU). Während der Übersetzung 
werden das Programm virtueller Befehlsfolgen und 
mindestens ein Abschnitt der Abfolge von Funktions-
aufrufen in einen Zielprogrammcode übersetzt, der 
die Gruppierung virtueller Befehlsfolgen mit Hilfe ei-
nen Anzahl von CPU-Befehlsfolgen ausführt, die we-
niger sind als die Anzahl virtueller Befehlsfolgen.

[0017] Gemäß einer weiteren Ausführungsform der 
vorliegenden Erfindung enthält ein Verfahren zum 
Betreiben eines Zielprozessors das Erlangen eines 
Programms virtueller Befehlsfolgen, die eine Abfolge 
von Befehlen je Befehlsfolge definieren, die für eine 
repräsentative virtuelle Befehlsfolge einer Anzahl vir-
tueller Befehlsfolgen in einer Gruppierung virtueller 
Befehlsfolgen ausgeführt werden sollen, die dafür 
geeignet sind, einen Eingabedatensatz zu verarbei-
ten, um einen Ausgabedatensatz zu erzeugen. Die 
Abfolge von Befehlen je Befehlsfolge enthält mindes-
tens einen Befehl, der ein Zusammenwirkungsver-
halten zwischen der repräsentativen virtuellen Be-
fehlsfolge und einer oder mehreren anderen virtuel-
len Befehlsfolgen der Gruppierung definiert. Ein zu-
sätzlicher Programmcode, der Dimensionen der 
Gruppierung virtueller Befehlsfolgen definiert, wird 
ebenfalls erhalten. Das Programm virtueller Befehls-
folgen und der zusätzliche Programmcode werden in 
einen Programmcode übersetzt, der auf der Zielplatt-
formarchitektur ausführbar ist, wobei der ausführbare 
Programmcode eine oder mehrere Plattformbefehls-
folgen definiert, welche die Gruppierung virtueller Be-
fehlsfolgen ausführen. Der ausführbare Programm-
code wird auf einem Computersystem ausgeführt, 
das mit der Zielplattformarchitektur kompatibel ist, 
wodurch der Ausgabedatensatz erzeugt wird und der 
Ausgabedatensatz in einem Speicher gespeichert 
wird.

[0018] In einigen Ausführungsformen kann das Pro-
gramm virtueller Befehlsfolgen erhalten werden, in-
dem ein Quellprogrammcode empfangen wird, der in 
einer höheren Programmiersprache geschrieben 
wurde, und der Quellprogrammcode kompiliert wird, 
um das Programm virtueller Befehlsfolgen zu gene-
rieren. Alternativ kann das Programm virtueller Be-
fehlsfolgen von einem Speichermedium gelesen wer-
den oder von einem räumlich abgesetzten Computer-
system über ein Netzwerk empfangen werden. Es 
versteht sich, dass der Code virtueller Befehlsfolgen, 
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der gelesen oder empfangen wird, zuvor aus einer 
höheren Sprache kompiliert worden sein könnte oder 
direkt als Code generiert worden sein könnte, der mit 
einer virtuellen Befehlssatzarchitektur kompatibel ist.

[0019] Die folgende detaillierte Beschreibung zu-
sammen mit den begleitenden Zeichnungen ermög-
licht ein besseres Verstehen der Art und der Vorteile 
der vorliegenden Erfindung.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0020] Fig. 1 ist ein Blockschaubild eines Compu-
tersystems gemäß einer Ausführungsform der vorlie-
genden Erfindung.

[0021] Fig. 2A und Fig. 2B veranschaulichen die 
Beziehung zwischen Gittern, Befehlsfolgen-Gruppie-
rungen und Befehlsfolgen in einem Programmiermo-
dell, das in Ausführungsformen der vorliegenden Er-
findung verwendet wird.

[0022] Fig. 3 ist ein Blockschaubild einer virtuellen 
Architektur gemäß einer Ausführungsform der vorlie-
genden Erfindung.

[0023] Fig. 4 ist ein Konzeptmodell der Verwendung 
einer virtuellen Architektur zum Betreiben eines Ziel-
prozessors gemäß einer Ausführungsform der vorlie-
genden Erfindung.

[0024] Fig. 5 ist eine Tabelle, die spezielle Variablen 
auflistet, die durch eine virtuelle Befehlssatzarchitek-
tur (Instruction Set Architecture – ISA) gemäß einer 
Ausführungsform der vorliegenden Erfindung defi-
niert wird.

[0025] Fig. 6 ist eine Tabelle, die Typen von Variab-
len auflistet, die in einer virtuellen ISA gemäß einer 
Ausführungsform der vorliegenden Erfindung unter-
stützt werden.

[0026] Fig. 7 ist eine Tabelle, die virtuelle Zustands-
räume auflistet, die in einer virtuellen ISA gemäß ei-
ner Ausführungsform der vorliegenden Erfindung un-
terstützt werden.

[0027] Fig. 8A–Fig. 8H sind Tabellen, die virtuelle 
Befehle auflisten, die in einer virtuellen ISA gemäß ei-
ner Ausführungsform der vorliegenden Erfindung de-
finiert werden.

[0028] Fig. 9 ist ein Flussdiagramm eines Prozes-
ses zur Verwendung eines virtuellen Befehlsüberset-
zers gemäß einer Ausführungsform der vorliegenden 
Erfindung.

[0029] Fig. 10 ist eine Tabelle, die Funktionen auf-
listet, die in einer virtuellen Bibliothek für einen virtu-
ellen Ausführungstreiber gemäß einer Ausführungs-

form der vorliegenden Erfindung verfügbar sind.

DETAILLIERTE BESCHREIBUNG DER ERFIN-
DUNG

[0030] Ausführungsformen der vorliegenden Erfin-
dung stellen eine virtuelle Architektur und einen virtu-
ellen Befehlssatz zur Berechnung paralleler Befehls-
folgen bereit. Die virtuelle Architektur stellt ein Modell 
eines Prozessors, der die gleichzeitige Ausführung 
mehrerer Befehlsfolgen mit mehreren Graden ge-
meinsamer Datennutzung und Koordination (zum 
Beispiel Synchronisation) zwischen verschiedenen 
Befehlsfolgen unterstützt, sowie einen virtuellen Aus-
führungstreiber, der den Modell-Prozessor steuert, 
bereit. Der virtuelle Befehlssatz, der dafür verwendet 
wird, das Verhalten einer Verarbeitungsbefehlsfolge 
zu definieren, enthält Befehle, die sich auf das Ver-
halten paralleler Befehlsfolgen beziehen, zum Bei-
spiel Befehle, die eine gemeinsame Nutzung von Da-
ten über bestimmte Befehlsfolgen hinweg gestatten, 
und Befehle, die verlangen, dass unterschiedliche 
Befehlsfolgen an bestimmten vom Programmierer 
angegebenen Punkten innerhalb eines Programms 
synchronisiert werden. Mit Hilfe der virtuellen Platt-
form können Programmierer Anwendungsprogram-
me entwickeln, in denen gleichzeitige, zusammenwir-
kende Befehlsfolgen ausgeführt werden, um Daten 
zu verarbeiten. Hardware-spezifische virtuelle Be-
fehlsübersetzer und virtuelle Ausführungstreiber pas-
sen den Anwendungscode an bestimmte Hardware 
an, auf der er ausgeführt werden soll. Infolge dessen 
sind Anwendungsprogramme besser portierbar und 
einfacher zu entwickeln, da der Entwicklungsprozess 
unabhängig von bestimmter Verarbeitungshardware 
ist.

1. Systemüberblick

[0031] Fig. 1 ist ein Blockschaubild eines Compu-
tersystems 100 gemäß einer Ausführungsform der 
vorliegenden Erfindung. Das Computersystem 100
enthält eine zentrale Verarbeitungseinheit (CPU) 102
und einen Systemspeicher 104, der über einen Bus-
pfad kommuniziert, der eine Speicherbrücke 105 ent-
hält. Die Speicherbrücke 105, die zum Beispiel ein 
Northbridge-Chip sein kann, ist über einen Bus oder 
einen anderen Kommunikationspfad 106 (zum Bei-
spiel einen HyperTransport-Link) mit einer E/A (Ein-
gabe/Ausgabe)-Brücke 107 verbunden. Die E/A-Brü-
cke 107, die zum Beispiel ein Southbridge-Chip sein 
kann, empfängt Benutzereingaben von einem oder 
mehreren Benutzereingabegeräten 108 (zum Bei-
spiel Tastatur, Maus) und leitet die Eingabe über den 
Pfad 106 und die Speicherbrücke 105 an die CPU 
102 weiter. Ein Parallelverarbeitungsteilsystem 112
ist über einen Bus oder einen anderen Kommunikati-
onspfad 113 (zum Beispiel einen PCI Express- oder 
Accelerated Graphics Port-Link) an die Speicherbrü-
cke 105 gekoppelt. In einer Ausführungsform ist das 
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Parallelverarbeitungsteilsystem 112 ein Grafik-Teil-
system, das Pixel an ein Anzeigegerät 110 (zum Bei-
spiel einen herkömmlichen Kathodenstrahlröhren- 
oder Flüssigkristallmonitor) ausgibt. Eine System-
festplatte 114 ist ebenfalls mit der E/A-Brücke 107
verbunden. Ein Schalter 116 stellt Verbindungen zwi-
schen der E/A-Brücke 107 und anderen Komponen-
ten her, wie zum Beispiel einem Netzwerkadapter 
118 und verschiedenen Einsteckkarten 120 und 121. 
Es können noch andere (nicht ausdrücklich gezeigte) 
Komponenten, darunter USB- oder andere Portver-
bindungen, CD-Laufwerke, DVD-Laufwerke und der-
gleichen, mit der E/A-Brücke 107 verbunden werden. 
Kommunikationspfade, welche die verschiedenen 
Komponenten in Fig. 1 untereinander verbinden, 
können mit Hilfe beliebiger geeigneter Protokolle, wie 
zum Beispiel PCI (Peripheral Component Intercon-
nect), PCI Express (PCI-E), AGP (Accelerated Gra-
phics Port), HyperTransport oder sonstiger anderer 
Bus- oder Punkt-zu-Punkt-Kommunikationsprotokol-
le implementiert werden, und Verbindungen zwi-
schen verschiedenen Geräten können mit verschie-
denen Protokollen arbeiten, wie es dem Fachmann 
bekannt ist.

[0032] Das Parallelverarbeitungsteilsystem 112 ent-
hält eine Parallelverarbeitungseinheit (Parallel Pro-
cessing Unit – PPU) 122 und einen Parallelverarbei-
tungs (Parallel Processing – PP)-Speicher 124, die 
zum Beispiel unter Verwendung einer oder mehrerer 
integrierter Schaltkreiselemente implementiert wer-
den können, wie zum Beispiel programmierbare Pro-
zessoren, anwendungsspezifische integrierte Schalt-
kreise (Application-Specific Integrated Circuits – ASI-
Cs) und Speicherbausteine. Die PPU 122 implemen-
tiert vorteilhafterweise einen hoch-parallelen Prozes-
sor, der einen oder mehrere Verarbeitungskerne ent-
hält, von denen jeder in der Lage ist, eine große An-
zahl (zum Beispiel Hunderte) von Befehlsfolgen 
gleichzeitig auszuführen. Die PPU 122 kann dafür 
programmiert werden, ein weites Feld von Berech-
nungen auszuführen, zum Beispiel lineare und 
nicht-lineare Datentransformierungen, Filterung von 
Video- und/oder Audiodaten, Modellierung (zum Bei-
spiel Anwendung physikalischer Gesetze zum Be-
stimmen von Position, Geschwindigkeit und anderen 
Attributen von Objekten), Bildrendern und so weiter. 
Die PPU 122 kann Daten aus dem Systemspeicher 
104 und/oder dem PP-Speicher 124 in einen internen 
Speicher übertragen, die Daten verarbeiten und Er-
gebnisdaten zurück in den Systemspeicher 104
und/oder PP-Speicher 124 schreiben, wo andere 
Systemkomponenten, einschließlich beispielsweise 
der CPU 102, auf solche Daten zugreifen können. In 
einigen Ausführungsformen ist die PPU 122 ein Gra-
fikprozessor, der auch dafür konfiguriert werden 
kann, verschiedene Aufgaben auszuführen, die im 
Zusammenhang stehen mit: der Generierung von Pi-
xeldaten aus Grafikdaten, die durch die CPU 102
und/oder den Systemspeicher 104 über die 

Speicherbrücke 105 und den Bus 113 herangeführt 
werden; der Interaktion mit dem PP-Speicher 124
(der als Grafikspeicher verwendet werden kann, ein-
schließlich beispielsweise als herkömmlicher Fra-
me-Puffer) zum Speichern und Aktualisieren von Pi-
xeldaten; der Zuführung von Pixeldaten zum Anzei-
gegerät 110 und dergleichen. In einigen Ausfüh-
rungsformen kann das PP-Teilsystem 112 eine PPU 
122, die als ein Grafikprozessor fungiert, und eine 
weitere PPU 122, die für Allzweckberechnungen ver-
wendet wird, enthalten. Die PPUs können identisch 
oder verschieden sein, und jede PPU kann ihre eige-
nen dedizierten PP-Speicherbausteine haben.

[0033] Die CPU 102 fungiert als der Master-Prozes-
sor des Systems 100 und steuert und koordiniert die 
Operationen anderer Systemkomponenten. Insbe-
sondere gibt die CPU 102 Befehle aus, welche die 
Funktion der PPU 122 steuern. In einigen Ausfüh-
rungsformen schreibt die CPU 102 einen Befehls-
strom für die PPU 122 in einen Befehlspuffer, der sich 
im Systemspeicher 104, im PP-Speicher 124 oder ei-
nem anderen Speicherort befinden kann, auf den so-
wohl die CPU 102 als auch die PPU 122 zugreifen 
kann. Die PPU 122 liest den Befehlsstrom aus dem 
Befehlspuffer und führt Befehle asynchron mit dem 
Betrieb der CPU 102 aus.

[0034] Es versteht sich, dass das im vorliegenden 
Text gezeigte System veranschaulichend ist und 
dass Variationen und Modifikationen möglich sind. 
Die Verbindungstopologie, einschließlich der Anzahl 
und Anordnung von Brücken, kann nach Wunsch mo-
difiziert werden. Zum Beispiel ist in einigen Ausfüh-
rungsformen der Systemspeicher 104 mit der CPU 
102 direkt anstatt über eine Brücke verbunden, und 
andere Geräte kommunizieren mit dem Systemspei-
cher 104 über die Speicherbrücke 105 und die CPU 
102. In anderen alternativen Topologien ist das 
PP-Teilsystem 112 mit der E/A-Brücke 107 anstatt mit 
der Speicherbrücke 105 verbunden. In wieder ande-
ren Ausführungsformen könnten die E/A-Brücke 107
und die Speicherbrücke 105 in einen einzelnen Chip 
integriert werden. Die im vorliegenden Text gezeigten 
konkreten Komponenten sind optional. Zum Beispiel 
könnte eine beliebige Anzahl von Einsteckkarten 
oder Peripheriegeräten unterstützt werden. In eini-
gen Ausführungsformen wird der Schalter 116 weg-
gelassen, und der Netzwerkadapter 118 und die Ein-
steckkarten 120, 121 sind direkt mit der E/A-Brücke 
107 verbunden.

[0035] Die Verbindung der PPU 122 mit dem Rest 
des Systems 100 kann auch variiert werden. In eini-
gen Ausführungsformen ist das PP-System 112 als 
eine Einsteckkarte implementiert, die in einen Erwei-
terungsschlitz des Systems 100 eingesteckt werden 
kann. In anderen Ausführungsformen kann eine PPU 
auf einem einzelnen Chip mit einer Busbrücke, wie 
zum Beispiel einer Speicherbrücke 105 oder 
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E/A-Brücke 107, integriert sein. In wieder anderen 
Ausführungsformen können einige oder alle Elemen-
te der PPU 122 in die CPU 102 integriert sein.

[0036] Eine PPU kann mit einer beliebigen Menge 
lokalem PP-Speicher versehen sein, einschließlich 
ohne lokalem Speicher, und kann lokalen Speicher 
und Systemspeicher in jeder beliebigen Kombination 
verwenden. Zum Beispiel kann die PPU 122 ein Gra-
fikprozessor in einer Ausführungsform mit einer ver-
einigten Speicherarchitektur (Unified Memory Ar-
chitecture – UMA) sein. In solchen Ausführungsfor-
men wird wenig oder gar kein dedizierter Grafikspei-
cher bereitgestellt, und die PPU 122 würde aus-
schließlich oder fast ausschließlich Systemspeicher 
verwenden. In UMA-Ausführungsformen kann die 
PPU in einen Brückenchip integriert sein oder kann 
als ein diskreter Chip mit einem Hochgeschwindig-
keitslink (zum Beispiel PCI-E) vorhanden sein, der 
die PPU mit dem Brückenchip und dem Systemspei-
cher verbindet.

[0037] Es versteht sich des Weiteren, dass eine be-
liebige Anzahl von PPUs in ein System aufgenom-
men werden kann, zum Beispiel durch Einbinden 
mehrerer PPUs auf einer einzelnen Einsteckkarte, in-
dem mehrere Einsteckkarten mit dem Pfad 113 ver-
bunden werden und/oder indem eine oder mehrere 
PPUs direkt mit der Hauptplatine eines System ver-
bunden werden. Mehrere PPUs können parallel be-
trieben werden, um Daten mit einem höheren Durch-
satz zu verarbeiten, als es mit einer einzelnen PPU 
möglich ist.

[0038] Dem Fachmann ist auch klar, dass eine CPU 
und eine PPU in einem einzelnen Baustein integriert 
sein können und dass die CPU und die PPU ver-
schiedene Ressourcen gemeinsam nutzen können, 
wie zum Beispiel Befehlslogik, Puffer, Cachespei-
cher, Hauptspeicher, Verarbeitungsmaschinen und 
so weiter, oder dass separate Ressourcen für die Pa-
rallelverarbeitung und andere Operationen bereitge-
stellt werden können. Dementsprechend könnten be-
liebige oder alle der Schaltkreise und/oder Funktio-
nen, die im vorliegenden Text als zu der PPU gehö-
rend beschrieben werden, auch in einer in geeigneter 
Weise ausgestatteten CPU implementiert und durch 
diese ausgeführt werden.

[0039] Systeme, die PPUs enthalten, können in ei-
ner Vielzahl verschiedener Konfigurationen und 
Formfaktoren implementiert werden, darunter Desk-
top-, Laptop- oder handgehaltene (handheld) Perso-
nalcomputer, Server, Arbeitsplatzrechner, Spielekon-
solen, eingebettete Systeme und so weiter.

[0040] Der Fachmann erkennt auch, dass ein Vorteil 
der vorliegenden Erfindung in einer größeren Unab-
hängigkeit von bestimmter Computerhardware be-
steht. Dementsprechend versteht es sich, dass Aus-

führungsformen der vorliegenden Erfindung mit Hilfe 
jedes beliebigen Computersystems praktiziert wer-
den können, einschließlich Systemen, die keine PPU 
enthalten.

2. Überblick – virtuelles Programmiermodell

[0041] In Ausführungsformen der vorliegenden Er-
findung ist es wünschenswert, die PPU 122 oder ei-
nen oder mehrere andere Prozessoren eines Com-
putersystems einzusetzen, um Allzweckberechnun-
gen unter Verwendung von Befehlsfolgen-Gruppie-
rungen auszuführen. Im Sinne des vorliegenden Tex-
tes ist eine ”Befehlsfolge-Gruppierung” eine Gruppe, 
die aus einer Anzahl (n0) von Befehlsfolgen besteht, 
die gleichzeitig dasselbe Programm an einem Einga-
bedatensatz ausführen, um einen Ausgabedatensatz 
zu erzeugen. Jeder Befehlsfolge in der Befehlsfol-
ge-Gruppierung ist ein eindeutiger Befehlsfolge-Iden-
tifikator (eine ”Befehlsfolge-ID”) zugewiesen, auf den 
die Befehlsfolge während ihrer Ausführung zugreifen 
kann. Die Befehlsfolge-ID, die als ein eindimensiona-
ler oder mehrdimensionaler numerischer Wert defi-
niert sein kann (zum Beispiel 0 bis n0-1), steuert ver-
schiedene Aspekte des Verarbeitungsverhaltens der 
Befehlsfolge. Zum Beispiel kann eine Befehlsfolge-ID 
verwendet werden, um zu bestimmen, welcher Ab-
schnitt des Eingabedatensatzes eine Befehlsfolge 
verarbeiten soll, und/oder um zu bestimmen, wel-
chen Abschnitt eines Ausgabedatensatzes eine Be-
fehlsfolge erzeugen oder schreiben soll.

[0042] In einigen Ausführungsformen sind die Be-
fehlsfolgen-Gruppierungen ”zusammenwirkende”
Befehlsfolgen-Gruppierungen oder CTAs (Cooperati-
ve Thread Arrays). Wie bei anderen Arten von Be-
fehlsfolgen-Gruppierungen ist eine CTA eine Gruppe 
mehrerer Befehlsfolgen, die gleichzeitig dasselbe 
Programm (im vorliegenden Text als ein ”CTA-Pro-
gramm” bezeichnet) an einem Eingabedatensatz 
ausführen, um einen Ausgabedatensatz zu erzeu-
gen. In einer CTA können die Befehlsfolgen zusam-
menwirken, indem sie Daten in einer Weise gemein-
sam nutzen, die von der Befehlsfolge-ID abhängt. 
Zum Beispiel können in einer CTA Daten durch eine 
Befehlsfolge erzeugt und durch eine andere ver-
braucht werden. In einigen Ausführungsformen kön-
nen Synchronisationsbefehle in den CTA-Programm-
code an Punkten eingefügt werden, wo Daten ge-
meinsam genutzt werden sollen, um zu gewährleis-
ten, dass die Daten tatsächlich durch die erzeugende 
Befehlsfolge erzeugt wurden, bevor die verbrauchen-
de Befehlsfolge versucht, darauf zuzugreifen. Das 
Ausmaß der gemeinsamen Datennutzung (sofern 
eine solche stattfindet) zwischen Befehlsfolgen einer 
CTA wird durch das CTA-Programm bestimmt. Es 
versteht sich somit, dass in einer bestimmten Anwen-
dung, die CTAs verwendet, die Befehlsfolgen einer 
CTA je nach dem CTA-Programm Daten gemeinsam 
nutzen könnten, aber nicht müssen, und die Begriffe 
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”CTA” und ”Befehlsfolge-Gruppierung” werden im 
vorliegenden Text synonym verwendet.

[0043] In einigen Ausführungsformen nutzen Be-
fehlsfolgen in einer CTA Eingabedaten und/oder Zwi-
schenergebnisse gemeinsam mit anderen Befehls-
folgen in derselben CTA. Zum Beispiel könnte ein 
CTA-Programm einen Befehl enthalten, um eine 
Adresse in einem gemeinsam genutzten Speicher zu 
berechnen, in den bestimmte Daten geschrieben 
werden sollen, wobei die Adresse eine Funktion der 
Befehlsfolge-ID ist. Jede Befehlsfolge berechnet die 
Funktion unter Verwendung ihrer eigenen Befehlsfol-
ge-ID und schreibt in den entsprechenden Ort. Die 
Adressfunktion wird vorteilhafterweise so definiert, 
dass verschiedene Befehlsfolgen in verschiedene 
Orte schreiben. Solange die Funktion deterministisch 
ist, ist der Ort, in den eine Befehlsfolge schreibt, vor-
hersagbar. Das CTA-Programm kann auch einen Be-
fehl enthalten, eine Adresse in dem gemeinsam ge-
nutzten Speicher zu berechnen, aus dem Daten ge-
lesen werden sollen, wobei die Adresse eine Funkti-
on der Befehlsfolge-ID ist. Durch Definieren geeigne-
ter Funktionen und Bereitstellen von Synchronisati-
onstechniken können Daten in einer vorhersagbaren 
Weise durch eine Befehlsfolge einer CTA in einen be-
stimmten Ort im gemeinsam genutzten Speicher ge-
schrieben werden und durch eine andere Befehlsfol-
ge derselben CTA von diesem Ort gelesen werden. 
Folglich kann jedes beliebige gewünschte Muster ei-
ner gemeinsamen Datennutzung zwischen Befehls-
folgen unterstützt werden, und eine beliebige Be-
fehlsfolge in einer CTA kann Daten mit jeder anderen 
Befehlsfolge in derselben CTA gemeinsam nutzen.

[0044] CTAs (oder andere Arten von Befehlsfol-
gen-Gruppierungen) werden vorteilhafterweise ver-
wendet, um Berechnungen auszuführen, die sich für 
eine datenparallele Zerlegung anbieten. Im Sinne 
des vorliegenden Textes beinhaltet eine ”datenparal-
lele Zerlegung” jede Situation, bei der ein Rechenpro-
blem durch mehrmaliges paralleles Ausführen des-
selben Algorithmus an Eingabedaten gelöst wird, um 
Ausgabedaten zu erzeugen. Zum Beispiel beinhaltet 
ein häufiger Fall einer datenparallelen Zerlegung das 
Anwenden desselben Verarbeitungsalgorithmus auf 
verschiedene Abschnitte eines Eingabedatensatzes, 
um verschiedene Abschnitte eines Ausgabedaten-
satzes zu erzeugen. Zu Beispielen von Problemen, 
die sich für eine datenparallele Zerlegung eignen, ge-
hören Matrixalgebra, lineare und/oder nicht-lineare 
Transformationen in jeder beliebigen Anzahl von Di-
mensionen (zum Beispiel Schnelle Fourier-Transfor-
mationen) und verschiedenen Filterungsalgorithmen, 
einschließlich Faltungsfilter in jeder beliebigen An-
zahl von Dimensionen, abtrennbare Filter in mehre-
ren Dimensionen und so weiter. Der Verarbeitungsal-
gorithmus, der auf jeden Abschnitt des Eingabeda-
tensatzes anzuwenden ist, ist in dem CTA-Programm 
spezifiziert, und jede Befehlsfolge in einer CTA führt 

dasselbe CTA-Programm an einem einzelnen Ab-
schnitt des Eingabedatensatzes aus. Ein CTA-Pro-
gramm kann Algorithmen unter Verwendung eines 
weiten Bereichs mathematischer und logischer Ope-
rationen implementieren, und das Programm kann 
bedingte oder verzweigende Ausführungspfade und 
direkten und/oder indirekten Speicherzugriff enthal-
ten.

[0045] CTAs und ihre Ausführung sind in weiterer 
Ausführlichkeit in der oben angesprochenen Anmel-
dung Nr. 11/303,780 beschrieben.

[0046] In einigen Situationen ist es auch nützlich, 
ein ”Gitter” aus zueinander in Beziehung stehenden 
CTAs (oder allgemeiner ausgedrückt: Befehlsfol-
gen-Gruppierungen) zu definieren. Im Sinne des vor-
liegenden Textes ist ein ”Gitter” aus CTAs eine Zu-
sammenstellung einer Anzahl (n1) von CTAs, in der 
alle CTAs die gleiche Größe (d. h. Anzahl von Be-
fehlsfolgen) haben und dasselbe CTA-Programm 
ausführen. Die n1 CTAs innerhalb eines Gitters sind 
vorteilhafterweise unabhängig voneinander, was be-
deutet, dass die Ausführung einer beliebigen CTA in 
dem Gitter nicht durch die Ausführung einer anderen 
CTA in dem Gitter beeinflusst wird. Wie noch deutlich 
werden wird, ermöglicht dieses Merkmal eine signifi-
kante Flexibilität bei der Verteilung von CTAs zwi-
schen verfügbaren Verarbeitungskernen.

[0047] Um verschiedene CTAs innerhalb eines Git-
ters voneinander zu unterscheiden, wird jeder CTA 
des Gitters vorteilhafterweise ein ”CTA-Identifikator”
(oder eine CTA-ID) zugewiesen. Wie bei Befehlsfol-
ge-IDs kann jeder beliebige eindeutige Identifikator 
(einschließlich beispielsweise numerischer Identifika-
toren) als eine CTA-ID verwendet werden. In einer 
Ausführungsform sind CTA-IDs einfach sequenzielle 
(eindimensionale) Indexwerte von 0 bis n1-1. In ande-
ren Ausführungsformen können mehrdimensionale 
Indexierungsschemas verwendet werden. Die 
CTA-ID ist für alle Befehlsfolgen einer CTA gleich, 
und eine Befehlsfolge einer bestimmten CTA inner-
halb des Gitters kann ihre CTA-ID in Verbindung mit 
ihrer Befehlsfolge-ID verwenden, um zum Beispiel ei-
nen Quellenort zum Lesen von Eingabedaten 
und/oder einen Zielort zum Schreiben von Ausgabe-
daten zu bestimmen. Auf diese Weise können Be-
fehlsfolgen in verschiedenen CTAs desselben Gitters 
gleichzeitig am selben Datensatz arbeiten, obgleich 
in einigen Ausführungsformen die gemeinsame Nut-
zung von Daten zwischen verschiedenen CTAs in ei-
nem Gitter nicht unterstützt wird.

[0048] Das Definieren eines Gitters aus CTAs kann 
nützlich sein, zum Beispiel wenn es gewünscht wird, 
mehrere CTAs zu verwenden, um verschiedene Ab-
schnitte eines einzelnen großen Problems zu lösen. 
Zum Beispiel könnte es wünschenswert sein, einen 
Filterungsalgorithmus auszuführen, um ein hochauf-
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lösendes Fernsehbild (HDTV) zu erzeugen. Wie dem 
Fachmann bekannt ist, könnte ein HDTV-Bild über 2 
Millionen Pixel enthalten. Wenn jede Befehlsfolge ein 
Pixel erzeugt, so würde die Anzahl der auszuführen-
den Befehlsfolgen die Anzahl der Befehlsfolgen, die 
in einer einzelnen CTA verarbeitet werden können, 
übersteigen (unter der Annahme einer Verarbei-
tungsplattform mit angemessener Größe und von 
sinnvollen Kosten, die unter Verwendung herkömmli-
cher Techniken hergestellt ist).

[0049] Diese große Verarbeitungsaufgabe kann 
verwaltet werden, indem man das Bild zwischen 
mehreren CTAs aufteilt, wobei jede CTA einen ande-
ren Abschnitt (zum Beispiel ein 16 × 16-Feld) der 
ausgegebenen Pixel erzeugt. Alle CTAs führen das-
selbe Programm aus, und die Befehlsfolgen verwen-
den eine Kombination aus der CTA-ID und der Be-
fehlsfolge-ID zum Bestimmen von Orten zum Lesen 
von Eingabedaten und Schreiben von Ausgabeda-
ten, so dass jede CTA an dem richtigen Abschnitt des 
Eingabedatensatzes arbeitet und ihren Abschnitt des 
Ausgabedatensatzes in den richtigen Ort schreibt.

[0050] Es ist anzumerken, dass im Gegensatz zu 
Befehlsfolgen innerhalb einer CTA (die Daten ge-
meinsam nutzen können) CTAs innerhalb eines Git-
ters vorteilhafterweise keine Daten gemeinsam nut-
zen oder auf sonstige Weise voneinander abhängig 
sind. Das heißt, zwei CTAs desselben Gitters können 
sequenziell (in beliebiger Reihenfolge) oder gleich-
zeitig ausgeführt werden und trotzdem identische Er-
gebnisse hervorbringen. Folglich kann eine Verarbei-
tungsplattform (zum Beispiel das System 100 von 
Fig. 1) ein Gitter aus CTAs ausführen und ein Ergeb-
nis erhalten, indem sie zuerst eine CTA ausführt, 
dann die nächste CTA, und so weiter, bis alle CTAs 
des Gitters ausgeführt wurden. Alternativ kann, wenn 
genügend Ressourcen verfügbar sind, eine Verarbei-
tungsplattform dasselbe Gitter ausführen und dassel-
be Ergebnis erhalten, indem sie mehrere CTAs paral-
lel ausführt.

[0051] In einigen Fällen kann es wünschenswert 
sein, mehrere (n2) Gitter aus CTAs zu definieren, wo-
bei jedes Gitter einen anderen Abschnitt eines Daten-
verarbeitungsprogramms oder einer Datenverarbei-
tungsaufgabe ausführt. Zum Beispiel könnte die Da-
tenverarbeitungsaufgabe in eine Anzahl von ”Lö-
sungsschritten” unterteilt werden, wobei jeder Lö-
sungsschritt durch Ausführen eines Gitters aus CTAs 
ausgeführt wird. Als ein weiteres Beispiel könnte die 
Datenverarbeitungsaufgabe das Ausführen der glei-
chen oder ähnlichen Operationen an einer Abfolge 
von Eingabedatensätzen (zum Beispiel aufeinander-
folgenden Frames von Video-Daten) enthalten. Ein 
Gitter aus CTAs kann für jeden Eingabedatensatz 
ausgeführt werden. Das virtuelle Programmiermodell 
unterstützt vorteilhafterweise mindestens diese drei 
Stufen der Arbeitsdefinition (d. h. Befehlsfolgen, 

CTAs und Gitter aus CTAs). Gewünschtenfalls könn-
ten auch weitere Stufen unterstützt werden.

[0052] Es versteht sich, dass die Größe (Anzahl n0

von Befehlsfolgen) einer CTA, die Größe (Anzahl n1

von CTAs) eines Gitters und die Anzahl (n2) von Git-
tern, die zur Lösung eines bestimmten Problems ver-
wendet werden, von den Parametern des Problems 
und von den Präferenzen des Programmierers oder 
des automatisierten Agenten, der die Problemzerle-
gung definiert, abhängen. Somit wird in einigen Aus-
führungsformen die Größe einer CTA, die Größe ei-
nes Gitters und die Anzahl von Gittern vorteilhafter-
weise durch einen Programmierer definiert.

[0053] Die Probleme, die von dem CTA-Ansatz pro-
fitieren, sind in der Regel durch das Vorhandensein 
einer großen Anzahl von Datenelementen gekenn-
zeichnet, die parallel verarbeitet werden können. In 
einigen Fällen sind die Datenelemente Ausgabeele-
mente, von denen jedes durch Ausführen desselben 
Algorithmus an verschiedenen (eventuell überlap-
penden) Abschnitten eines Eingabedatensatzes er-
zeugt wird. In anderen Fällen können die Datenele-
mente Eingabeelemente sein, die jeweils unter Ver-
wendung desselben Algorithmus zu verarbeiten sind.

[0054] Solche Probleme können immer in mindes-
tens zwei Stufen zerlegt und auf die oben beschrie-
benen Befehlsfolgen, CTAs und Gitter abgebildet 
werden. Zum Beispiel könnte jedes Gitter das Ergeb-
nis eines Lösungsschrittes in einer komplexen Da-
tenverarbeitungsaufgabe darstellen. Jedes Gitter ist 
vorteilhafterweise in eine Anzahl von ”Blöcken” unter-
teilt, von denen jeder als eine einzelne CTA verarbei-
tet werden kann. Jeder Block enthält vorteilhafterwei-
se mehrere ”Elemente”, d. h. elementare Abschnitte 
des zu lösenden Problems (zum Beispiel einen ein-
zelnen Eingabedatenpunkt oder einen einzelnen 
Ausgabedatenpunkt). Innerhalb der CTA verarbeitet 
jede Befehlsfolge ein oder mehrere Elemente.

[0055] Die Fig. 2A und Fig. 2B veranschaulichen 
die Beziehung zwischen Gittern, CTAs und Befehls-
folgen in einem virtuellen Programmiermodell, das in 
Ausführungsformen der vorliegenden Erfindung ver-
wendet wird. Fig. 2A zeigt eine Anzahl von Gittern 
200, wobei jedes Gitter aus einer zweidimensionalen 
(2-D) Gruppierung von CTAs 202 hergestellt ist. (Im 
vorliegenden Text werden mehrere Instanzen glei-
cher Objekte mit Bezugszahlen bezeichnet, die das 
Objekt identifizieren, und in Klammern gesetzte Zah-
len identifizieren, wo erforderlich, die Instanz.) Wie in 
Fig. 2B für die CTA 202 (0,0) gezeigt, enthält jede 
CTA 202 eine 2-D-Gruppierung von Befehlsfolgen 
(⊝) 204. Für jede Befehlsfolge 204 in jeder CTA 202
jedes Gitter 200 kann ein eindeutiger Identifikator der 
Form I = [ig, ic, it] definiert werden, wobei ein Gitteri-
dentifikator ig das Gitter eindeutig identifiziert, eine 
CTA-ID ic die CTA innerhalb des Gitters eindeutig 
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identifiziert und eine Befehlsfolge-ID it die Befehlsfol-
ge innerhalb der CTA eindeutig identifiziert. In dieser 
Ausführungsform könnte der Identifikator I aus einem 
eindimensionalen Gitteridentifikator ig, einem zweidi-
mensionalen CTA-Identifikator ic und einem zweidi-
mensionalen Befehlsfolge-Identifikator it aufgebaut 
sein. In anderen Ausführungsformen ist der eindeuti-
ge Identifikator I eine Dreiergruppe aus ganzen Zah-
len, wobei 0 ≤ ig < n2; 0 ≤ ic < n1; und 0 ≤ it < n0. In wie-
der anderen Ausführungsformen könnten beliebige 
oder alle des Gitters, der CTA und der Befehlsfol-
ge-Identifikatoren als eine eindimensionale ganze 
Zahl, ein 2D-Koordinatenpaar, eine 3D-Dreiergruppe 
oder dergleichen ausgedrückt werden. Der eindeuti-
ge Befehlsfolge-Identifikator I kann zum Beispiel da-
für verwendet werden, einen Quellenort für Eingabe-
daten innerhalb einer Gruppierung zu bestimmen, die 
einen Eingabedatensatz für ein ganzes Gitter oder 
mehrere Gitter umfasst, und/oder um einen Zielort 
zum Speichern von Ausgabedaten innerhalb einer 
Gruppierung zu bestimmen, die einen Ausgabeda-
tensatz für ein ganzes Gitter oder mehrere Gitter um-
fasst.

[0056] Zum Beispiel könnte im Fall eines HDTV-Bil-
des jede Befehlsfolge 204 einem Pixel des ausgege-
benen Bildes entsprechen. Die Größe (Anzahl von 
Befehlsfolgen 204) einer CTA 202 kann bei der Pro-
blemzerlegung frei entschieden werden und ist nur 
durch eine Beschränkung auf die Höchstzahl von Be-
fehlsfolgen in einer einzelnen CTA 202 begrenzt (was 
die endliche Natur der Prozessorressourcen wider-
spiegelt). Ein Gitter 200 könnte einem ganzen Frame 
von HDTV-Daten entsprechen, oder mehrere Gitter 
könnten auf einen einzelnen Frame abgebildet wer-
den.

[0057] In einigen Ausführungsformen ist die Pro-
blemzerlegung gleichförmig, was bedeutet, dass alle 
Gitter 200 die gleiche Anzahl und Anordnung von 
CTAs 202 haben und alle CTAs 202 die gleiche An-
zahl und Anordnung von Befehlsfolgen 204 haben. In 
anderen Ausführungsformen kann die Zerlegung un-
gleichförmig sein. Zum Beispiel könnten verschiede-
ne Gitter verschiedene Anzahlen von CTAs enthal-
ten, und verschiedene CTAs (in demselben Gitter 
oder in verschiedenen Gittern) könnten verschiedene 
Anzahlen von Befehlsfolgen enthalten.

[0058] Eine CTA, wie oben definiert, kann Dutzende 
oder sogar Hunderte gleichzeitiger Befehlsfolgen 
enthalten. Ein Parallelverarbeitungssystem, auf dem 
eine CTA ausgeführt werden soll, könnte gegebenen-
falls eine solche große Anzahl gleichzeitiger Befehls-
folgen unterstützen. In einem Aspekt entkoppelt die 
vorliegende Erfindung den Programmierer von sol-
chen Hardwarebeschränkungen, indem sie es dem 
Programmierer gestattet, eine Verarbeitungsaufgabe 
unter Verwendung des Modells von CTAs und von 
Gittern aus CTAs unabhängig von den tatsächlichen 

Fähigkeiten der Hardware zu definieren. Zum Bei-
spiel kann der Programmierer Code (ein ”CTA-Pro-
gramm”) schreiben, der die eine oder die mehreren 
Verarbeitungsaufgaben, die auszuführen sind, durch 
eine einzelne repräsentative Befehlsfolge der CTA 
definieren; der eine CTA als eine Anzahl solcher Be-
fehlsfolgen definiert, die jeweils einen eindeutigen 
Identifikator haben; und der ein Gitter als eine Anzahl 
von CTAs definiert, die jeweils einen eindeutigen 
Identifikator haben. Wie unten beschrieben, wird ein 
solcher Code automatisch in einen Code übersetzt, 
der auf einer bestimmten Plattform ausgeführt wer-
den kann. Wenn zum Beispiel die CTA so definiert ist, 
dass sie eine Anzahl n0 gleichzeitiger Befehlsfolgen 
enthält, aber die Zielplattform nur eine einzige Be-
fehlsfolge unterstützt, so kann der Übersetzer eine 
einzelne reale Befehlsfolge definieren, welche die 
Aufgaben ausführt, die allen der n0 Befehlsfolgen zu-
gewiesen sind. Wenn die Zielplattform mehr als eine, 
aber weniger als n0 gleichzeitige Befehlsfolgen unter-
stützt, so können die Aufgaben nach Wunsch zwi-
schen der Anzahl verfügbarer Befehlsfolgen aufge-
teilt werden.

[0059] Dementsprechend ist das Programmiermo-
dell von CTAs und Gittern als ein virtuelles Modell zu 
verstehen, d. h. ein Modell, das eine Konzepthilfe für 
den Programmierer ist und von jeder konkreten phy-
sischen Realisierung abgekoppelt ist. Das virtuelle 
Modell von CTAs und Gittern kann in einer Vielzahl 
verschiedener Zielplattformen mit variierenden Gra-
den von Hardwareunterstützung für die Parallelverar-
beitung realisiert werden. Genauer gesagt, bezieht 
sich der Begriff ”CTA-Befehlsfolge” im Sinne des vor-
liegenden Textes auf ein virtuelles Modell einer dis-
kreten Verarbeitungsaufgabe (die eventuell mit einer 
oder mehreren anderen Verarbeitungsaufgaben zu-
sammenwirkt), und es versteht sich, dass CTA-Be-
fehlsfolgen gegebenenfalls eins zu eins auf Befehls-
folgen auf der Zielplattform abgebildet werden könn-
ten.

3. Virtuelle Architektur

[0060] Gemäß einem Aspekt der vorliegenden Er-
findung wird eine virtuelle Parallelarchitektur zum 
Ausführen von CTAs und Gittern aus CTAs definiert. 
Die virtuelle Parallelarchitektur ist eine Darstellung ei-
nes Parallelprozessors und zugehöriger Speicher-
räume, welche die Ausführung einer großen Anzahl 
gleichzeitiger CTA-Befehlsfolgen unterstützen, die zu 
einem Zusammenwirkungsverhalten befähigt sind, 
wie zum Beispiel der gemeinsamen Nutzung von Da-
ten und der Synchronisierung miteinander an ge-
wünschten Zeitpunkten. Diese virtuelle Parallelarchi-
tektur kann auf eine Vielzahl verschiedener realer 
Prozessoren und/oder Verarbeitungssysteme abge-
bildet werden, einschließlich beispielsweise der PPU 
122 des Systems 100 von Fig. 1. Die virtuelle Archi-
tektur definiert vorteilhafterweise eine Anzahl virtuel-
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ler Speicherräume, die verschiedene Grade gemein-
samer Datennutzung und Arten des Zugriffs unter-
stützen, sowie eine virtuelle Befehlssatzarchitektur 
(Instruction Set Architecture – ISA), die alle Funktio-
nen identifiziert, die durch einen virtuellen Prozessor 
ausgeführt werden können. Die virtuelle Architektur 
definiert vorteilhafterweise auch einen virtuellen Aus-
führungstreiber, der dafür verwendet werden kann, 
die CTA-Ausführung zu steuern, zum Beispiel durch 
Definieren und Starten einer CTA oder eines Gitters 
aus CTAs.

[0061] Fig. 3 ist ein Blockschaubild einer virtuellen 
Architektur 300 gemäß einer Ausführungsform der 
vorliegenden Erfindung. Die virtuelle Architektur 300
enthält einen virtuellen Prozessor 302 mit einem vir-
tuellen Kern 308, der dafür konfiguriert ist, eine große 
Anzahl von CTA-Befehlsfolgen parallel auszuführen. 
Die virtuelle Architektur 300 enthält auch einen globa-
len Speicher 304, auf den der virtuelle Prozessor 302
zugreifen kann, und einen virtuellen Treiber 320, der 
Befehle ausgibt, um den Betrieb des virtuellen Pro-
zessors 302 zu steuern. Der virtuelle Treiber 320
kann auch auf den globalen Speicher 304 zugreifen.

[0062] Der virtuelle Prozessor 302 enthält ein 
Front-End 306, das Befehle von dem virtuellen Trei-
ber 320 empfängt und interpretiert, und einen Aus-
führungskern 308, der in der Lage ist, alle n0 Befehls-
folgen einer einzelnen CTA gleichzeitig auszuführen. 
Der virtuelle Kern 308 enthält eine große Anzahl (n0

oder mehr) virtueller Verarbeitungsmaschinen 310. In 
einer Ausführungsform führt jede virtuelle Verarbei-
tungsmaschine 310 eine einzelne CTA-Befehlsfolge 
aus. Die virtuellen Verarbeitungsmaschinen 310 füh-
ren ihre jeweiligen CTA-Befehlsfolgen gleichzeitig 
aus, wenn auch nicht unbedingt parallel. In einer Aus-
führungsform spezifiziert die virtuelle Architektur 300
eine Anzahl T (zum Beispiel 384, 500, 768 usw.) vir-
tueller Verarbeitungsmaschinen 310. Diese Anzahl 
setzt der Anzahl n0 von Befehlsfolgen in einer CTA 
eine Obergrenze. Es versteht sich, dass eine Reali-
sierung der virtuellen Architektur 300 auch weniger 
physische Verarbeitungsmaschinen als die spezifi-
zierte Anzahl T enthalten kann und dass eine einzel-
ne Verarbeitungsmaschine mehrere CTA-Befehlsfol-
gen ausführen kann, entweder als eine einzelne ”re-
ale” (d. h. Plattform-unterstützte) Befehlsfolge oder 
als mehrere gleichzeitige reale Befehlsfolgen.

[0063] Der virtuelle Prozessor 302 enthält auch eine 
virtuelle Befehlseinheit 312, die dafür sorgt, dass die 
virtuellen Verarbeitungsmaschinen 310 mit Befehlen 
für ihre jeweiligen CTA-Befehlsfolgen versorgt wer-
den. Die Befehle werden durch eine virtuelle ISA de-
finiert, die Teil der virtuellen Architektur 300 ist. Ein 
Beispiel einer virtuellen ISA zur Berechnung paralle-
ler Befehlsfolgen ist unten beschrieben. Die Befehls-
einheit 312 verwaltet die Synchronisation der 
CTA-Befehlsfolgen und andere Zusammenwirkungs-

aspekte des Verhaltens von CTA-Befehlsfolgen im 
Verlauf des Sendens von Befehlen an die virtuellen 
Verarbeitungsmaschinen 310.

[0064] Der virtuelle Kern 308 stellt eine interne Da-
tenspeicherung mit verschiedenen Zugänglichkeits-
graden bereit. Die speziellen Register 311 können 
durch die virtuellen Verarbeitungsmaschinen 310 be-
schrieben, aber nicht gelesen werden, und werden 
dafür verwendet, Parameter zu speichern, welche die 
”Position” jeder CTA-Befehlsfolge innerhalb des Pro-
blemzerlegungsmodells von Fig. 2 definieren. In ei-
ner Ausführungsform enthalten die speziellen Regis-
ter 311 ein Register je CTA-Befehlsfolge (oder je vir-
tueller Verarbeitungsmaschine 310), das eine Be-
fehlsfolge-ID speichert. Jedes Befehlsfolge-ID-Re-
gister ist nur für eine jeweilige der virtuellen Verarbei-
tungsmaschinen 310 zugänglich. Die speziellen Re-
gister 311 können auch zusätzliche Register enthal-
ten, die durch alle CTA-Befehlsfolgen (oder durch alle 
virtuellen Verarbeitungsmaschinen 310) gelesen 
werden können, die einen CTA-Identifikator, die 
CTA-Dimensionen, die Dimensionen eines Gitters, zu 
dem die CTA gehört, und einen Identifikator eines 
Gitters, zu dem die CTA gehört, speichern. Die spezi-
ellen Register 311 werden während der Initialisierung 
in Reaktion auf Befehle beschrieben, die über das 
Front-End 306 von dem virtuellen Treiber 320 emp-
fangen werden, und ändern sich während der 
CTA-Ausführung nicht.

[0065] Lokale virtuelle Register 314 werden durch 
jede CTA-Befehlsfolge als Arbeitsraum verwendet. 
Jedes Register wird für die ausschließlich Verwen-
dung einer einzelnen CTA-Befehlsfolge (oder einer 
einzelnen virtuellen Verarbeitungsmaschine 310) zu-
gewiesen, und die Daten in jedem der lokalen Regis-
ter 314 sind nur für die CTA-Befehlsfolge zugänglich, 
der sie zugewiesen sind. Der gemeinsam genutzte 
Speicher 316 ist für alle CTA-Befehlsfolgen (inner-
halb einer einzelnen CTA) zugänglich. Jeder Ort in 
dem gemeinsam genutzten Speicher 316 ist für jede 
CTA-Befehlsfolge innerhalb derselben CTA (oder für 
jede virtuelle Verarbeitungsmaschine 310 innerhalb 
des virtuellen Kerns 308) zugänglich. Der Parameter-
speicher 318 speichert Laufzeitparameter (Konstan-
ten), die durch jede CTA-Befehlsfolge (oder jede vir-
tuelle Verarbeitungsmaschine 310) gelesen, aber 
nicht beschrieben werden können. In einer Ausfüh-
rungsform gibt der virtuelle Treiber 320 Parameter an 
den Parameterspeicher 318 aus, bevor er den virtu-
ellen Prozessor 302 anweist, die Ausführung einer 
CTA zu beginnen, die diese Parameter verwendet. 
Jede CTA-Befehlsfolge innerhalb einer CTA (oder ei-
ner virtuellen Verarbeitungsmaschine 310 innerhalb 
des virtuellen Kerns 308) kann über eine Speicher-
schnittstelle 322 auf den globalen Speicher 304 zu-
greifen.

[0066] In der virtuellen Architektur 300 wird der vir-
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tuelle Prozessor 302 als ein Koprozessor unter der 
Steuerung des virtuellen Treibers 320 betrieben. Die 
Spezifikation der virtuellen Architektur enthält vorteil-
hafterweise eine virtuelle Anwendungsprogramm-
schnittstelle (Application Program Interface – API), 
die Funktionsaufrufe identifiziert, die durch den virtu-
ellen Treiber 320 erkannt werden, und das Verhalten 
identifiziert, von dem erwartet wird, dass jeder Funk-
tionsaufruf es hervorruft,. Beispielhafte Funktionsauf-
rufe für eine virtuelle API für die Berechnung paralle-
ler Befehlsfolgen werden unten beschrieben.

[0067] Die virtuelle Architektur 300 kann auf einer 
Vielzahl verschiedener Hardwareplattformen reali-
siert werden. In einer Ausführungsform ist die virtuel-
le Architektur 300 im System 100 von Fig. 1 realisiert, 
wobei die PPU 122 den virtuellen Prozessor 302 im-
plementiert und ein PPU-Treiberprogramm, das auf 
der CPU 102 ausgeführt wird, den virtuellen Treiber 
320 implementiert. Der globale Speicher 304 kann im 
Systemspeicher 104 und/oder im PP-Speicher 124
implementiert werden.

[0068] In einer Ausführungsform enthält die PPU 
122 einen oder mehrere Verarbeitungskerne, die mit 
Einzelbefehls-Mehrfachdaten (Single-Instruction, 
Multiple-Data – SIMD)- und Nebenläufigkeitstechni-
ken arbeiten, um die gleichzeitige Ausführung einer 
großen Anzahl (zum Beispiel 384 oder 768) von Be-
fehlsfolgen von einer einzelnen Befehlseinheit (wel-
che die virtuelle Befehlseinheit 312 implementiert) zu 
unterstützen. Jeder Kern enthält eine Gruppierung P 
(zum Beispiel 8, 16 usw.) von Parallelverarbeitungs-
maschinen 302, die dafür konfiguriert sind, SIMD-Be-
fehle von der Befehlseinheit zu empfangen und aus-
zuführen, wodurch Gruppen von bis zu P Befehlsfol-
gen parallel verarbeitet werden können. Der Kern ar-
beitet mit Nebenläufigkeit (multithreaded), wobei jede 
Verarbeitungsmaschine in der Lage ist, bis zu einer 
Anzahl G (zum Beispiel 24) von Befehlsfolgegruppen 
gleichzeitig auszuführen, zum Beispiel durch Führen 
von aktuellen Zustandsinformation, die zu jeder Be-
fehlsfolge gehören, dergestalt, dass die Verarbei-
tungsmaschine rasch von einer Befehlsfolge zu einer 
anderen umschalten kann. Somit führt der Kern 
gleichzeitig G SIMD-Gruppen von jeweils P Befehls-
folgen aus, also insgesamt P × G gleichzeitige Be-
fehlsfolgen. In dieser Realisierung kann es, solange 
P × G ≥ n0, eine Eins-zu-eins-Entsprechung zwischen 
den (virtuellen) CTA-Befehlsfolgen und gleichzeitigen 
Befehlsfolgen geben, die auf der realen PPU 122
ausgeführt werden.

[0069] Spezielle Register 311 können in der PPU 
122 implementiert werden, indem man jeden Verar-
beitungskern mit einer Registerdatei aus P × G Ein-
trägen versieht, wobei jeder Eintrag in der Lage ist, 
eine Befehlsfolge-ID zu speichern, und indem man 
einen Satz global auslesbarer Register zum Spei-
chern einer CTA-ID, einer Gitter-ID und von CTA- und 

Gitterdimensionen bereitstellt. Alternativ können die 
speziellen Register 311 auch unter Verwendung an-
derer Speicherorte implementiert werden.

[0070] Lokale Register 314 können in der PPU 122
als eine Lokalregisterdatei implementiert werden, die 
physisch oder logisch in P Bahnen unterteilt ist, die 
jeweils eine Anzahl von Einträgen aufweisen (wobei 
jeder Eintrag zum Beispiel ein 32-Bit-Wort speichern 
könnte). Jeder der P Verarbeitungsmaschinen ist 
eine Bahn zugewiesen, und entsprechende Einträge 
in verschiedenen Bahnen können mit Daten für ver-
schiedene Befehlsfolgen, die dasselbe Programm 
ausführen, gefüllt werden, um die SIMD-Ausführung 
zu ermöglichen. Verschiedene Abschnitte der Bah-
nen können verschiedenen der G gleichzeitigen Be-
fehlsfolgegruppen zugewiesen werden, so dass ein 
bestimmter Eintrag in der Lokalregisterdatei nur für 
eine bestimmte Befehlsfolge zugänglich ist. In einer 
Ausführungsform sind bestimmte Einträge innerhalb 
der Lokalregisterdatei für das Speichern von Befehls-
folge-Identifikatoren reserviert, die eines der speziel-
len Register 311 implementieren.

[0071] Der gemeinsam genutzte Speicher 316 kann 
in der PPU 122 als eine gemeinsam genutzte Regis-
terdatei oder als ein gemeinsam genutzter 
On-Chip-Cachespeicher mit einer Zwischenverbin-
dung implementiert werden, die es jeder Verarbei-
tungsmaschine gestattet, jeden beliebigen Ort in dem 
gemeinsam genutzten Speicher zu lesen oder zu be-
schreiben. Der Parameterspeicher 318 kann in der 
PPU 122 als eine bezeichnete Sektion innerhalb der-
selben gemeinsam genutzten Registerdatei oder 
desselben gemeinsam genutzten Cachespeichers, 
der den gemeinsam genutzten Speicher 316 imple-
mentiert, oder als eine separate gemeinsam genutzte 
Registerdatei oder ein separater gemeinsam genutz-
ter On-Chip-Cachespeicher implementiert werden, 
auf den die Verarbeitungsmaschinen einen Nurlese-
zugriff haben. In einer Ausführungsform wird der Be-
reich, der den Parameterspeicher implementiert, 
auch dafür verwendet, die CTA-ID und die Gitter-ID 
sowie die CTA- und Gitterdimensionen zu speichern, 
die Abschnitte der speziellen Register 311 implemen-
tieren.

[0072] In einer Ausführungsform reagiert ein 
PPU-Treiberprogramm, das auf der CPU 102 von 
Fig. 1 ausgeführt wird, auf Funktionsaufrufe der virtu-
ellen API durch Schreiben von Befehlen in einen 
(nicht ausdrücklich gezeigten) Einspeicherungspuffer 
im Speicher (zum Beispiel Systemspeicher 104), aus 
dem die Befehle durch die PPU 122 ausgelesen wer-
den. Die Befehle sind vorteilhafterweise mit Zu-
standsparametern verbunden, wie zum Beispiel der 
Anzahl von Befehlsfolgen in der CTA; dem Ort eines 
Eingabedatensatzes, der unter Verwendung der CTA 
zu verarbeiten ist, im globalen Speicher; dem Ort des 
auszuführenden CTA-Programms im globalen Spei-
12/43



DE 20 2008 017 916 U1    2010.12.09
cher; und dem Ort im globalen Speicher, in den die 
Ausgabedaten geschrieben werden sollen. In Reakti-
on auf die Befehle und Zustandsparameter lädt die 
PPU 122 Zustandsparameter in einen ihrer Kerne 
und beginnt dann mit dem Starten von Befehlsfolgen, 
bis die Anzahl von Befehlsfolgen, die in den CTA-Pa-
rametern spezifiziert sind, gestartet wurden. In einer 
Ausführungsform enthält die PPU 122 eine Steuerlo-
gik, die Befehlsfolge-IDs sequenziell zu Befehlsfol-
gen in der Reihenfolge zuweist, wie sie gestartet wur-
den. Die Befehlsfolge-ID kann zum Beispiel an einem 
bezeichneten Ort innerhalb der Lokalregisterdatei 
oder in einem speziellen Register, das speziell die-
sem Zweck dient, gespeichert werden.

[0073] In einer alternativen Ausführungsform ist die 
virtuelle Architektur 300 in einem einfach-gereihten 
Verarbeitungskern (zum Beispiel in einigen CPUs) 
realisiert, der alle CTA-Befehlsfolgen unter Verwen-
dung von weniger als n0 realen Befehlsfolgen aus-
führt. Verarbeitungsaufgaben, die das virtuelle Pro-
grammiermodell verschiedenen CTA-Befehlsfolgen 
zuordnet, können zu einer einzelnen Befehlsfolge 
kombiniert werden, zum Beispiel durch Ausführen 
der Aufgabe (oder eines Abschnitts der Aufgabe) für 
eine CTA-Befehlsfolge, dann für die nächste CTA-Be-
fehlsfolge, und so weiter. Vektorausführung, 
SIMD-Ausführung und/oder sonstige Formen von 
Parallelismus, die in der Maschine verfügbar sind, 
können genutzt werden, um Verarbeitungsaufgaben, 
die mit mehreren CTA-Befehlsfolgen verbunden sind, 
parallel auszuführen oder um mehrere Verarbei-
tungsaufgaben, die mit derselben CTA-Befehlsfolge 
verbunden sind, parallel auszuführen. Somit kann 
eine CTA unter Verwendung einer einzelnen Befehls-
folge, von n0 Befehlsfolgen oder einer sonstigen An-
zahl von Befehlsfolgen realisiert werden. Wie unten 
beschrieben, übersetzt ein virtueller Befehlsüberset-
zer vorteilhafterweise Code, der in die virtuelle Zielar-
chitektur 300 geschrieben wurde, in Befehle, die für 
eine Zielplattform spezifisch sind.

[0074] Es versteht sich, dass die im vorliegenden 
Text beschriebene virtuelle Architektur veranschauli-
chend ist und dass Variationen und Modifikationen 
möglich sind. Zum Beispiel kann in einer alternativen 
Ausführungsform jede virtuelle Verarbeitungsmaschi-
ne ein dediziertes Befehlsfolge-ID-Register haben, 
das die eindeutige Befehlsfolge-ID, die ihrer Befehls-
folge zugewiesen ist, speichert, anstatt Raum in loka-
len virtuellen Registern für diesen Zweck zu verwen-
den.

[0075] Als ein weiteres Beispiel kann die virtuelle 
Architektur mehr oder weniger Details bezüglich der 
internen Struktur des virtuellen Kerns 308 spezifizie-
ren. Zum Beispiel könnte spezifiziert werden, dass 
der virtuelle Kern 308 P nebenläufige virtuelle Verar-
beitungsmaschinen enthält, die verwendet werden, 
um CTA-Befehlsfolgen in P-Wege-SIMD-Gruppen 

auszuführen, wobei bis zu G SIMD-Gruppen im Kern 
308 nebeneinander existieren, dergestalt, dass P × G 
T bestimmt (die Höchstzahl von Befehlsfolgen in ei-
ner CTA). Verschiedene Arten von Speicher und Gra-
de der gemeinsamen Nutzung können ebenfalls spe-
zifiziert werden.

[0076] Die virtuelle Architektur kann in einer Vielzahl 
verschiedener Computersysteme unter Verwendung 
einer beliebigen Kombination von Hardware- 
und/oder Software-Elementen zum Definieren und 
Steuern jeder Komponente realisiert werden. Ob-
gleich eine Realisierung unter Verwendung von 
Hardware-Komponenten beispielhaft beschrieben 
wurde, versteht es sich, dass die vorliegende Erfin-
dung das Abkoppeln von Programmieraufgaben von 
einer bestimmten Hardware-Realisierung betrifft.

4. Programmieren der virtuellen Architektur

[0077] Fig. 4 ist ein Konzeptmodell 400 der Verwen-
dung der virtuellen Architektur 300 zum Betreiben ei-
nes Zielprozessors oder einer Zielplattform 440 ge-
mäß einer Ausführungsform der vorliegenden Erfin-
dung. Wie das Modell 400 zeigt, entkoppelt das Vor-
handensein der virtuellen Architektur 300 kompilierte 
Anwendungen und APIs von der Hardware-Imple-
mentierung des Zielprozessors oder der Zielplatt-
form.

[0078] Ein Anwendungsprogramm 402 definiert 
eine Datenverarbeitungsanwendung, die das oben 
beschriebene virtuelle Programmiermodell, ein-
schließlich einzelner CTAs und/oder Gitter aus CTAs, 
nutzt. Allgemein weist das Anwendungsprogramm 
402 mehrere Aspekte auf. Als erstes definiert das 
Programm das Verhalten einer einzelnen CTA-Be-
fehlsfolge. Zweitens definiert das Programm die Di-
mensionen einer CTA (als Anzahl von CTA-Befehls-
folgen) und, wenn Gitter verwendet werden sollen, 
die Dimensionen eines Gitters (als Anzahl von 
CTAs). Drittens definiert das Programm einen Einga-
bedatensatz, der durch die CTA (oder das Gitter) ver-
arbeitet werden soll, und einen Ort, an dem der Aus-
gabedatensatz gespeichert werden soll. Viertens de-
finiert das Programm ein Gesamt-Verarbeitungsver-
halten, einschließlich beispielsweise, wann jede CTA 
oder jedes Gitter gestartet werden soll. Das Pro-
gramm kann zusätzlichen Code enthalten, der dyna-
misch die Dimensionen einer CTA oder eines Gitters 
bestimmt; der bestimmt, ob neue CTAs oder Gitter 
weiter gestartet werden sollen, und so weiter.

[0079] Das Anwendungsprogramm 402 kann in ei-
ner höheren Programmiersprache, wie zum Beispiel 
C/C++, FORTRAN oder dergleichen, geschrieben 
werden. In einer Ausführungsform spezifiziert ein 
”C/C++”-Anwendungsprogramm direkt das Verhalten 
einer (virtuellen) CTA-Befehlsfolge. In einer weiteren 
Ausführungsform wird ein Anwendungsprogramm 
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unter Verwendung einer datenparallelen Sprache ge-
schrieben (zum Beispiel Fortran 90, C* oder Data-Pa-
rallel C) und spezifiziert datenparallele Operationen 
an Gruppierungen und aggregierten Datenstruktu-
ren. Ein solches Programm kann zu virtuellem 
ISA-Programmcode kompiliert werden, der das Ver-
halten einer (virtuellen) CTA-Befehlsfolge spezifiziert. 
Um das Definieren des Verhaltens einer CTA-Be-
fehlsfolge zu ermöglichen, können Spracherweite-
rungen oder eine Funktionsbibliothek bereitgestellt 
werden, über die der Programmierer das Verhalten 
paralleler CTA-Befehlsfolgen spezifizieren kann. 
Zum Beispiel können spezielle Symbole oder Variab-
len definiert werden, die der Befehlsfolge-ID, der 
CTA-ID und der Gitter-ID entsprechen, und es kön-
nen Funktionen bereitgestellt werden, über die der 
Programmierer angeben kann, wann die CTA-Be-
fehlsfolge mit anderen CTA-Befehlsfolgen synchroni-
siert werden sollte.

[0080] Wenn das Anwendungsprogramm 402 kom-
piliert wird, so erzeugt der Kompilierer 408 einen vir-
tuellen ISA-Code 410 für jene Abschnitte des Anwen-
dungsprogramms 402, die das Verhalten von 
CTA-Befehlsfolgen definieren. In einer Ausführungs-
form wird virtueller ISA-Code 410 in der virtuellen ISA 
der virtuellen Architektur 300 von Fig. 3 ausgedrückt. 
Der virtuelle ISA-Code 410 ist Programmcode, wenn 
auch nicht unbedingt Code in einer Form, der auf ei-
ner bestimmten Zielplattform ausgeführt werden 
kann. Als solches kann der virtuelle ISA-Code 410
wie jeder andere Programmcode gespeichert 
und/oder verteilt werden. In anderen Ausführungsfor-
men können Anwendungsprogramme ganz oder teil-
weise als virtueller ISA-Code 410 spezifiziert werden, 
und der Kompilierer 408 kann ganz oder teilweise 
umgangen werden.

[0081] Ein virtueller Befehlsübersetzer 412 konver-
tiert virtuellen ISA-Code 410 in einen Ziel-ISA-Code 
414. In einigen Ausführungsformen ist der 
Ziel-ISA-Code 414 ein Code, der direkt durch eine 
Zielplattform 440 ausgeführt werden kann. Zum Bei-
spiel kann, wie durch die in gestrichelter Linie Kästen 
in Fig. 4 gezeigt, in einer Ausführungsform der 
Ziel-ISA-Code 414 durch eine Befehlseinheit 430 in 
der PPU 122 empfangen und korrekt decodiert wer-
den. Je nach den Spezifika der Zielplattform 440
könnte der virtuelle ISA-Code 410 in Code je Befehls-
folge übersetzt werden, um durch jede von n0 Be-
fehlsfolgen auf der Zielplattform 440 ausgeführt zu 
werden. Alternativ könnte der virtuelle ISA-Code 410
in einen Programmcode übersetzt werden, um in we-
niger als n0 Befehlsfolgen ausgeführt zu werden, wo-
bei jede Befehlsfolge Verarbeitungsaufgaben enthält, 
die zu mehr als einer der CTA-Befehlsfolgen in Bezie-
hung stehen.

[0082] In einigen Ausführungsformen werden die 
Definition von Dimensionen von CTAs und/oder Git-

tern sowie das Definieren von Eingabedatensätzen 
und Ausgabedatensätzen durch eine virtuelle API ge-
handhabt. Das Anwendungsprogramm 402 kann 
Rufe an eine Bibliothek 404 aus virtuellen API-Funk-
tionen enthalten. In einer Ausführungsform wird dem 
Programmierer eine Spezifikation der virtuellen API 
(einschließlich beispielsweise Funktionsnamen, Ein-
gaben, Ausgaben und Effekte, aber keine Implemen-
tierungsdetails) zur Verfügung gestellt, und der Pro-
grammierer arbeitet virtuelle API-Rufe direkt in das 
Anwendungsprogramm 402 ein, wodurch direkt virtu-
eller API-Code 406 erzeugt wird. In einer weiteren 
Ausführungsform wird der virtuelle API-Code 406
durch Kompilieren eines Anwendungsprogramms 
402 erzeugt, das eine andere Syntax zum Definieren 
von CTAs und Gittern verwendet.

[0083] Virtueller API-Code 406 wird zum Teil durch 
Bereitstellen eines virtuellen Ausführungstreibers 
416 realisiert, der die virtuellen API-Befehle aus 
Code 406 in Ziel-API-Befehle 418 übersetzt, die 
durch die Zielplattform 440 verarbeitet werden kön-
nen. Zum Beispiel können, wie durch die in Strichlinie 
dargestellten Kästen in Fig. 4 gezeigt, in einer Aus-
führungsform die Ziel-API-Befehle 418 durch einen 
PPU-Treiber 432 empfangen und verarbeitet werden, 
der entsprechende Befehle an das Front-End 434 der 
PPU 122 übermittelt. (In dieser Ausführungsform 
kann der virtuelle Ausführungstreiber 416 ein Aspekt 
oder Abschnitt des PPU-Treibers 432 sein.) In einer 
weiteren Ausführungsform braucht der virtuelle Aus-
führungstreiber nicht einem Treiber für einen Kopro-
zessor zu entsprechen; er könnte einfach ein Steuer-
programm sein, das andere Programme oder Be-
fehlsfolgen auf demselben Prozessor startet, auf 
dem der virtuelle Ausführungstreiber läuft.

[0084] Es versteht sich, dass ein virtueller Befehlsü-
bersetzer 412 und ein virtueller Ausführungstreiber 
416 für jede beliebige Plattform oder Architektur er-
zeugt werden können, die in der Lage ist, eine 
CTA-Ausführung zu unterstützen. Insofern virtuelle 
Befehlsübersetzer 412 für verschiedene Plattformen 
oder Architekturen aus derselben virtuellen ISA über-
setzen können, kann derselbe virtuelle ISA-Code 410
mit jeder beliebigen Plattform oder Architektur ver-
wendet werden. Somit braucht das Anwendungspro-
gramm 402 nicht für jede mögliche Plattform oder Ar-
chitektur rekompiliert zu werden.

[0085] Des Weiteren ist es nicht notwendig, dass 
die Zielplattform 440 eine PPU und/oder einen 
PPU-Treiber, wie in Fig. 4 gezeigt, enthält. Zum Bei-
spiel ist in einer alternativen Ausführungsform die 
Zielplattform eine CPU, die Software-Techniken ver-
wendet, um eine gleichzeitige Ausführung einer gro-
ßen Anzahl von Befehlsfolgen zu emulieren, und der 
Ziel-ISA-Code und die Ziel-API-Befehle entsprechen 
Befehlen in einem Programm (oder einer Gruppe von 
untereinander kommunizierenden Programme), um 
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durch die Ziel-CPU ausgeführt zu werden, bei der es 
sich zum Beispiel um eine Einzelkern- oder eine 
Mehrkern-CPU handeln kann.

5. Beispiel einer virtuellen ISA

[0086] Ein Beispiel einer virtuellen ISA gemäß einer 
Ausführungsform der vorliegenden Erfindung wird 
nun beschrieben. Wie oben angemerkt, entspricht 
die virtuelle ISA vorteilhafterweise dem oben be-
schriebenen virtuellen Programmiermodell (CTAs 
und Gittern). Dementsprechend definiert in dieser 
Ausführungsform der virtuelle ISA-Code 410, der 
durch den Kompilierer 408 erzeugt wird, das Verhal-
ten einer einzelnen CTA-Befehlsfolge, um durch eine 
der virtuellen Verarbeitungsmaschinen 310 im virtuel-
len Kern 308 von Fig. 3 ausgeführt zu werden. Das 
Verhalten kann zusammenwirkende Interaktionen mit 
anderen CTA-Befehlsfolgen enthalten, wie zum Bei-
spiel Synchronisation und/oder gemeinsame Daten-
nutzung.

[0087] Es versteht sich, dass die im vorliegenden 
Text beschriebene virtuelle ISA allein dem Zweck der 
Veranschaulichung dient und dass die im vorliegen-
den Text beschriebenen konkreten Elemente oder 
Kombinationen von Elementen nicht den Geltungs-
bereich der Erfindung einschränken. In einigen Aus-
führungsformen kann ein Programmierer Code in der 
virtuellen ISA schreiben. In anderen Ausführungsfor-
men schreibt der Programmierer Code in einer ande-
ren höheren Sprache (zum Beispiel FORTRAN, C, 
C++), und der Kompilierer 408 erzeugt virtuellen 
ISA-Code. Ein Programmierer kann auch ”gemisch-
ten” Code schreiben, wobei einige Abschnitte des 
Codes in einer höheren Sprache und andere Ab-
schnitte in der virtuellen ISA geschrieben sind.

5.1 Spezielle Variablen

[0088] Fig. 5 ist eine Tabelle 500, die ”spezielle” Va-
riablen auflistet, die durch die beispielhafte virtuelle 
ISA definiert werden (das Präfix ”%” wird im vorlie-
genden Text verwendet, um eine spezielle Variable 
zu kennzeichnen). Diese Variablen beziehen sich auf 
das Programmiermodell von Fig. 2, wobei jede Be-
fehlsfolge 204 anhand ihrer Position innerhalb einer 
CTA 202 identifiziert wird, die sich wiederum inner-
halb eines bestimmten aus einer Anzahl von Gittern 
200 befindet. In einigen Ausführungsformen entspre-
chen die speziellen Variablen der Tabelle 500 spezi-
ellen Registern 311 in der virtuellen Architektur 300
von Fig. 3.

[0089] In Tabelle 500 wird angenommen, dass 
CTAs und Gitter jeweils in einem dreidimensionalen 
Raum definiert sind und dass verschiedene Gitter in 
einem eindimensionalen Raum fortlaufend numme-
riert sind. Die virtuelle ISA erwartet, dass die speziel-
len Variablen von Fig. 5 initialisiert werden, wenn die 

CTA gestartet wird, und der virtuelle ISA-Code kann 
einfach diese Variablen ohne Initialisierung verwen-
den. Die Initialisierung von speziellen Variablen wird 
unten unter Bezug auf die virtuelle API besprochen.

[0090] Wie in Fig. 5 gezeigt, definiert ein erster 
3-Vektor aus speziellen Variablen %ntid = (%ntid.x, 
%ntid.y, %ntid.z) die Dimensionen (als Anzahl von 
Befehlsfolgen) einer CTA. Alle Befehlsfolgen einer 
CTA teilen sich denselben %ntid-Vektor. In der virtu-
ellen Architektur 300 wird erwartet, dass Werte für 
den %ntid-Vektor an den virtuellen Prozessor 302
über einen Funktionsaufruf einer virtuellen API über-
mittelt werden, der die Dimensionen einer CTA fest-
legt, wie unten beschrieben.

[0091] Wie in Fig. 5 gezeigt, bezieht sich ein zweiter 
3-Vektor aus speziellen Variablen %tid = (%tid.x, 
%tid.y, %tid.z) auf die Befehlsfolge-ID einer bestimm-
ten Befehlsfolge innerhalb einer CTA. In der virtuellen 
Architektur 300 von Fig. 3 wird erwartet, dass der vir-
tuelle Prozessor 302 einen eindeutigen %tid-Vektor 
zuweist, der die Vorgaben 0 ≤ %tid.x < %ntid.x, 0 ≤
%tid.y < %ntid.y und 0 ≤ %tid.z < %ntid.z erfüllt, wenn 
jede Befehlsfolge der CTA gestartet wird. In einer 
Ausführungsform kann der %tid-Vektor so definiert 
werden, dass er in einem gepackten 32-Bit-Wort ge-
speichert werden kann (zum Beispiel 16 Bits für 
%tid.x, 10 Bits für %tid.y und 6 Bits für %tid.z).

[0092] Wie in Fig. 5 gezeigt, definiert ein dritter 
3-Vektor aus speziellen Variablen %nctaid = (%nc-
taid.x, %nctaid.y, %nctaid.z) die Dimensionen (als 
Anzahl von CTAs) eines Gitters. In der virtuellen Ar-
chitektur 300 von Fig. 3 wird erwartet, dass die Werte 
für den %nctaid-Vektor an den virtuellen Prozessor 
302 über einen Funktionsaufruf einer virtuellen API 
übermittelt werden, der die Dimensionen eines Git-
ters aus CTAs festlegt.

[0093] Wie in Fig. 5 gezeigt, bezieht sich ein vierter 
3-Vektor auf spezielle Variablen %ctaid = (%ctaid.x, 
%ctaid.y, %ctaid.z) auf die CTA-ID einer bestimmten 
CTA innerhalb eines Gitters. In der virtuellen Archi-
tektur 300 von Fig. 3 wird erwartet, dass ein eindeu-
tiger %ctaid-Vektor, der die Vorgaben 0 ≤ %ctaid.x <
%nctaid.x, 0 ≤ %ctaid.y < %nctaid.y und 0 ≤ %ctaid.z 
< %nctaid.z für die CTA erfüllt, an den virtuellen Pro-
zessor 302 übermittelt wird, wenn die CTA gestartet 
wird.

[0094] Die speziellen Variablen enthalten auch eine 
skalare %gridid-Variable, die einen Gitteridentifikator 
für das Gitter bildet, zu dem eine CTA gehört. In der 
virtuellen Architektur 300 von Fig. 3 wird erwartet, 
dass ein %gridid-Wert an den virtuellen Prozessor 
302 übermittelt wird, um das Gitter zu identifizieren, 
von dem die momentane CTA ein Teil ist. Der %gri-
did-Wert wird vorteilhafterweise in virtuellem ISA-Co-
de verwendet, zum Beispiel wenn mehrere Gitter ver-
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wendet werden, um verschiedene Abschnitte eines 
großen Problems zu lösen.

5.2. Programmdefinierte Variablen und virtuelle Zu-
standsräume

[0095] Die virtuelle ISA ermöglicht es dem Program-
mierer (oder Kompilierer), eine willkürliche Anzahl 
von Variablen zu definieren, um in Verarbeitung be-
findliche Datenelemente darzustellen. Eine Variable 
wird durch einen Typ und einen ”virtuellen Zustands-
raum” definiert, der anzeigt, wie die Variable verwen-
det wird und in welchem Umfang sie gemeinsam ge-
nutzt wird. Variablen werden unter Verwendung von 
Registern oder anderen Speicherstrukturen realisiert, 
die auf einer Zielplattform verfügbar sind. Auf vielen 
Zielplattformen kann der Zustandsraum die Wahl der 
Speicherstruktur beeinflussen, die zum Realisieren 
einer bestimmten Variable verwendet werden soll.

[0096] Fig. 6 ist eine Tabelle 600, welche die Vari-
ablentypen auflistet, die in der beispielhaften virtuel-
len ISA-Ausführungsform unterstützt werden. Es 
werden vier Typen unterstützt: nicht-typisierte Bits, 
signierte ganze Zahl, unsignierte ganze Zahl und 
Gleitkomma. Nicht-typisierte Variablen sind einfach 
einzelne Bits oder Gruppen von Bits der spezifizier-
ten Länge. Signierte und unsignierte ganzzahlige 
Formate sowie Gleitkommaformate können gemäß 
herkömmlichen Formaten (zum Beispiel IEEE 
754-Standards) definiert werden.

[0097] In dieser Ausführungsform werden mehrere 
Breiten für jeden Typ unterstützt, wobei der Parame-
ter <n> verwendet wird, um die Breite zu spezifizie-
ren. So zeigt zum Beispiel .s16 eine signierte ganze 
16-Bit-Zahl an; .f32 zeigt eine 32-Bit-Gleitkommazahl 
an; und so weiter. Wie in Tabelle 600 gezeigt, sind ei-
nige Variablentypen auf bestimmte Breiten be-
schränkt. Zum Beispiel müssen Gleitkomma-Variab-
len mindestens 16 Bits haben, und ganzzahlige Ty-
pen müssen mindestens 8 Bits haben. Es wird erwar-
tet, dass eine Realisierung der virtuellen ISA alle spe-
zifizierten Breiten unterstützt. Wenn die Datenpfade 
und/oder Register des Prozessors schmaler sind als 
die größte Breite, so können mehrere Register und 
Prozessorzyklen verwendet werden, um die breiteren 
Typen zu handhaben, wie dem Fachmann bekannt 
ist.

[0098] Es versteht sich, dass die im vorliegenden 
Text verwendeten Datentypen und Breiten veran-
schaulichend sind und die Erfindung nicht einschrän-
ken.

[0099] Fig. 7 ist eine Tabelle, welche die virtuellen 
Zustandräume auflistet, die in der beispielhaften vir-
tuellen ISA unterstützt werden. Es werden neun Zu-
standsräume definiert, die verschiedenen Graden 
der gemeinsamen Nutzung und möglichen Speicher-

orten in der virtuellen Architektur 300 von Fig. 3 ent-
sprechen.

[0100] Die ersten drei Zustandsräume werden auf 
der Befehlsfolge-Ebene gemeinsam genutzt, was be-
deutet, dass jede CTA-Befehlsfolge eine separate In-
stanz der Variable hat und keine CTA-Befehlsfolge 
Zugriff auf die Instanz einer anderen CTA-Befehlsfol-
ge hat. Der Zustandsraum des virtuellen Registers 
(.reg) wird vorteilhafterweise verwendet, um Operan-
den, temporäre Werte und/oder Ergebnisse von Be-
rechnungen, die durch jede CTA-Befehlsfolge auszu-
führen sind, zu definieren. Ein Programm kann jede 
beliebige Anzahl virtueller Register deklarieren. Virtu-
elle Register können nur durch einen statischen 
Kompilierzeitnamen und nicht durch eine berechnete 
Adresse adressiert werden. Dieser Zustandsraum 
entspricht lokalen virtuellen Registern 314 in der vir-
tuellen Architektur 300 von Fig. 3.

[0101] Der Zustandsraum des speziellen Registers 
(.sreg) entspricht den vorgegebenen speziellen Vari-
ablen von Fig. 5, die in speziellen Registern 311 in 
der virtuellen Architektur 300 gespeichert werden. In 
einigen Ausführungsformen braucht der virtuelle 
ISA-Code keine anderen Variablen in dem 
.sreg-Raum zu deklarieren, sondern kann die spezi-
ellen Variablen als Eingaben in Berechnungen ver-
wenden. Alle CTA-Befehlsfolgen können alle Variab-
len in dem .sreg-Zustandsraum lesen. Für %tid (oder 
seine Komponenten) liest jede CTA-Befehlsfolge ih-
ren eindeutigen Befehlsfolge-Identifikator. Für die an-
deren Variablen in dem .sreg-Zustandsraum lesen 
alle CTA-Befehlsfolgen in derselben CTA dieselben 
Werte.

[0102] Variablen von lokalem Speicher je Befehls-
folge (.local) entsprechen einer Region von globalem 
Speicher 304, der für jede CTA-Befehlsfolge einzeln 
zugewiesen und adressiert wird. Oder anders ausge-
drückt: Wenn eine CTA-Befehlsfolge auf eine .lo-
cal-Variable zugreift, so greift sie auf ihre eigene In-
stanz der Variable zu, und Änderungen zu einer .lo-
cal-Variable, die in einer CTA-Befehlsfolge vorge-
nommen werden, beeinflussen keine anderen 
CTA-Befehlsfolgen. Im Gegensatz zu den .reg- und 
.sreg-Zustandsräumen kann lokaler Speicher je Be-
fehlsfolge unter Verwendung berechneter Adressen 
adressiert werden.

[0103] Die nächsten zwei Zustandsräume definie-
ren Variablen je CTA, was bedeutet, dass jede CTA 
eine einzelne Instanz der Variable hat, auf die jede ih-
rer (virtuellen) Befehlsfolgen zugreifen kann. Ge-
meinsam genutzte (.shared) Variablen können durch 
jede der CTA-Befehlsfolgen gelesen oder geschrie-
ben werden. In einigen Ausführungsformen wird die-
ser Zustandsraum auf virtuellen gemeinsam genutz-
ten Speicher 316 der virtuellen Architektur 300
(Fig. 3) abgebildet. In einer Realisierung der virtuel-
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len Architektur 300 könnte der .shared-Zustands-
raum auf eine Implementierung eines auf dem Chip 
befindlichen, gemeinsam genutzten Speichers (zum 
Beispiel eine gemeinsam genutzte Registerdatei 
oder einen gemeinsam genutzten Cachespeicher) 
abgebildet werden, während in anderen Realisierun-
gen der .shared-Zustandsraum auf eine Region je 
CTA von Off-Chip-Speicher abgebildet werden könn-
te, die wie jeder andere global zugängliche Speicher 
zugewiesen und adressiert wird.

[0104] Parameter (.param)-Variablen können nur 
gelesen werden und können durch jede beliebige 
(virtuelle) Befehlsfolge in der CTA gelesen werden. 
Dieser Zustandsraum bildet den Parameterspeicher 
318 der virtuellen Architektur 300 und kann zum Bei-
spiel in einem auf dem Chip angeordneten gemein-
sam genutzten Parameterspeicher oder Cachespei-
cher oder in einer Region auf global zugänglichem 
Off-Chip-Speicher realisiert werden, der wie jeder an-
dere global zugängliche Speicher zugewiesen und 
adressiert wird. Es wird erwartet, dass diese Variab-
len in Reaktion auf Treiberbefehle vom virtuellen Trei-
ber 320 initialisiert werden.

[0105] Der Konstanten (.const)-Zustandsraum wird 
zum Definieren von Konstanten je Gitter verwendet, 
die durch jede beliebige (virtuelle) Befehlsfolge in je-
der beliebigen CTA in dem Gitter gelesen (aber nicht 
modifiziert) werden können. In der virtuellen Architek-
tur 300 kann der .const-Zustandsraum auf eine Regi-
on im globalen Speicher abgebildet werden, auf die 
die CTA-Befehlsfolgen einen Nurlesezugriff haben. 
Der .const-Zustandsraum kann in einem auf dem 
Chip befindlichen gemeinsam genutzten Parameter-
speicher oder Cachespeicher oder in einer Region je 
Gitter von global zugänglichem Off-Chip-Speicher 
realisiert werden, die wie jeder andere global zugäng-
liche Speicher zugewiesen und adressiert wird. Wie 
beim .param-Zustandsraum wird erwartet, dass Vari-
ablen in dem .const-Zustandsraum in Reaktion auf 
Treiberbefehle vom virtuellen Treiber 320 initialisiert 
werden.

[0106] Die übrigen drei Zustandsräume definieren 
”Kontext”-Variablen, die für jede (virtuelle) Befehlsfol-
ge in jeder CTA, die zu der Anwendung gehört, zu-
gänglich sind. Diese Zustandsräume werden auf ei-
nem globalen Speicher 304 in der virtuellen Architek-
tur 300 abgebildet. Globale (.global) Variablen kön-
nen für allgemeine Zwecke verwendet werden. In ei-
nigen Ausführungsformen können auch spezifische 
Zustandsräume für gemeinsam genutzte Texturen 
(.tex) und Oberflächen (.surf) definiert werden. Diese 
Zustandsräume, die zum Beispiel für Grafik-bezoge-
ne Anwendungen nützlich sein können, können dafür 
verwendet werden, Zugang zu Grafiktextur- und Pi-
xeloberflächendatenstrukturen zu definieren und zu 
ermöglichen, die Datenwerte bereitstellen, die jedem 
Pixel einer 2-D-(oder in einigen Ausführungsformen 

einer 3-D-)Gruppierung entsprechen.

[0107] In dem virtuellen ISA-Code 410 von Fig. 4
werden Variablen deklariert, indem der Zustands-
raum, der Typ und ein Name spezifiziert werden. Der 
Name ist ein Platzhalter und durch den Programmie-
rer oder Kompilierer ausgewählt werden. So dekla-
riert zum Beispiel:  
.reg .b32 vrl  
eine nicht-typisierte Variable von 32 Bits in dem Zu-
standsraum des virtuellen Registers mit der Bezeich-
nung vrl. Nachfolgende Zeilen aus virtuellem ISA-Co-
de können sich auf vrl zum Beispiel als eine Quelle 
oder einen Zielort für eine Operation beziehen.

[0108] Die beispielhafte virtuelle ISA unterstützt 
auch Gruppierungen und Vektoren virtueller Variab-
len. Zum Beispiel deklariert  
.global .f32 resultArray[1000][1000]  
eine virtuelle, global zugängliche 
1000-mal-1000-Gruppierung aus 32-Bit-Gleitkom-
mazahlen. Der virtuelle Befehlsübersetzer 412 kann 
Gruppierungen in adressierbare Speicherregionen 
abbilden, die dem zugewiesen Zustandsraum ent-
sprechen.

[0109] Vektoren können in einer Ausführungsform 
unter Verwendung eines Vektor-Prefix .v<w> definiert 
werden, wobei m die Anzahl der Komponenten des 
Vektors ist. Zum Beispiel deklariert:  
.reg .v3 J32 vpos  
einen 3-Komponenten-Vektor aus 32-Bit-Gleitkom-
mazahlen in dem Zustandsraum des virtuellen Regis-
ters je Befehlsfolge. Nachdem ein Vektor deklariert 
wurde, können seine Komponenten mit Hilfe von Suf-
fixen identifiziert werden, zum Beispiel vpos.x, 
vpos.y, vpos.z. In einer Ausführungsform ist m = 2, 3 
oder 4 zulässig, und Suffixe wie zum Beispiel (.x, .y, 
.z, .w), (.0, .1, .2, .3) oder (.r, .g, .b, .a) werden zum 
Identifizieren von Komponenten verwendet.

[0110] Da die Variablen virtuell sind, kann virtueller 
ISA-Code 410 jede beliebige Anzahl von Variablen in 
jedem der Zustandsräume definieren oder sich auf 
jede beliebige Anzahl von Variablen in jedem der Zu-
standsräume beziehen (außer .sreg, wobei die Vari-
ablen vorgegeben sind). Es ist möglich, dass die An-
zahl von Variablen, die für einen bestimmten Zu-
standsraum in virtuellem ISA-Code 410 definiert sind, 
die Menge an Speicher des entsprechenden Typs in 
einer bestimmten Hardware-Implementierung über-
schreiten kann. Der virtuelle Befehlsübersetzer 412
ist vorteilhafterweise so konfiguriert, dass er geeigne-
te Speicherverwaltungsbefehle enthält (zum Beispiel 
Bewegen von Daten zwischen Register und 
Off-Chip-Speicher), um Variablen bei Bedarf verfüg-
bar zu machen. Der virtuelle Befehlsübersetzer 412
kann auch in der Lage sein, Fälle zu detektieren, wo 
eine temporäre Variable nicht mehr benötigt wird und 
ihr zugewiesener Raum zur Verwendung durch eine 
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andere Variable freigegeben wird. Es können her-
kömmliche Kompilierertechniken zum Zuweisen von 
Registern verwendet werden.

[0111] Obgleich die beispielhafte virtuelle ISA Vek-
torvariablentypen definiert, ist es des Weiteren nicht 
erforderlich, dass die Zielplattform Vektorvariablen 
unterstützt. Der virtuelle Befehlsübersetzer 412 kann 
jede beliebige Vektorvariable als eine Zusammen-
stellung einer zweckmäßigen Anzahl (zum Beispiel 2, 
3 oder 4) von Skalaren implementieren.

5.3. Virtuelle Befehle

[0112] Die Fig. 8A–Fig. 8H sind Tabellen, die virtu-
elle Befehle auflisten, die in einer beispielhaften virtu-
ellen ISA definiert sind. Ein Befehl wird anhand seiner 
Wirkung definiert, zum Beispiel Berechnen eines be-
stimmten Ergebnisses unter Verwendung eines oder 
mehrerer Operanden und Anordnen dieses Ergeb-
nisses in einem Zielortregister, Einstellen eines Re-
gisterwertes und so weiter. Die meisten virtuellen Be-
fehle sind typifiziert, um das Format von Eingaben 
und/oder Ausgaben zu identifizieren, und Aspekte 
der Befehlsausführung können vom Typ abhängen. 
Das allgemeine Format eines Befehls ist  
Name.<Typ> Ergebnis, Operanden  
wobei ”Name” der Name des Befehls ist; ”.<Typ>” ein 
Platzhalter für jeden der Typen ist, die in Fig. 6 auf-
gelistet sind; ”Ergebnis” eine Variable ist, in der das 
Ergebnis gespeichert wird; und ”Operanden” eine 
oder mehrere Variablen sind, die als Eingaben in den 
Befehl bereitgestellt werden. In einer Ausführungs-
form ist die virtuelle Architektur 300 ein Regis-
ter-zu-Register-Prozessor, und ”Ergebnis” und ”Ope-
randen” für andere Operationen als Speicherzugriffe 
(Fig. 8F) müssen Variablen in dem Zustandsraum 
des virtuellen Registers .reg (oder dem Zustands-
raum des speziellen Registers .sreg im Fall einiger 
Operanden) sein.

[0113] Von einer Zielplattform wird erwartet, dass 
sie jeden der Befehle in der virtuellen ISA realisiert. 
Ein Befehl kann entweder als ein entsprechender 
Maschinenbefehl, der den spezifizierten Effekt her-
vorruft (im vorliegenden Text als ”Hardware-Unter-
stützung” bezeichnet), oder als eine Abfolge von Ma-
schinenbefehlen, die, wenn sie ausgeführt werden, 
den spezifizierten Effekt hervorrufen (im vorliegen-
den Text als ”Software-Unterstützung” bezeichnet), 
realisiert werden. Der virtuelle Befehlsübersetzer 412
für eine bestimmte Zielplattform ist vorteilhafterweise 
dafür konfiguriert, den Maschinenbefehl oder die Ma-
schinenbefehl-Abfolge entsprechend jedem virtuel-
len Befehl zu identifizieren.

[0114] Die folgenden Unterabschnitte beschreiben 
die verschiedenen Klassen von Befehlen, die in den 
Fig. 8A–Fig. 8H aufgelistet sind. Es versteht sich, 
dass die im vorliegenden Text vorgestellte Liste von 

Befehlen der Veranschaulichung dient und dass eine 
virtuelle ISA zusätzliche Befehle enthalten kann, die 
nicht ausdrücklich im vorliegenden Text beschrieben 
sind, und einige oder alle der im vorliegenden Text 
beschriebenen Befehle ausschließen kann.

5.3.1. Virtuelle Befehle – Arithmetik

[0115] Fig. 8A ist eine Tabelle 800, die arithmeti-
sche Operationen auflistet, die in der beispielhaften 
virtuellen ISA definiert sind. In dieser Ausführungs-
form unterstützt die virtuelle Architektur nur Regis-
ter-zu-Register-Arithmetik, und alle arithmetischen 
Operationen bearbeiten ein oder mehrere Operan-
den virtueller Register (in Fig. 8A als a, b, c darge-
stellt), um ein Ergebnis (d) hervorzubringen, das in 
ein virtuelles Register geschrieben wird. Somit befin-
den sich Operanden und Zielorte für arithmetische 
Operationen immer im Zustandsraum des virtuellen 
Registers .reg, außer dass die speziellen Register 
von Fig. 5 (im Zustandsraum des speziellen Regis-
ters .sreg) als Operanden verwendet werden können.

[0116] Die Liste der arithmetischen Operationen in 
Tabelle 800 enthält die vier arithmetischen Grundre-
chenarten: Addition (add), Subtraktion (sub), Multipli-
kation (mul) und Division (div). Diese Operationen 
können an allen ganzzahligen und Gleitkommada-
tentypen ausgeführt werden und erbringen ein Er-
gebnis des gleichen Typs wie die Eingaben. In eini-
gen Ausführungsformen kann auch ein Rundungs-
modusqualifikator zu dem Befehl hinzugefügt wer-
den, um es dem Programmierer zu ermöglichen zu 
spezifizieren, wie das Ergebnis zu runden ist und ob 
im Fall ganzzahliger Operanden Sättigungsgrenzen 
auferlegt werden sollen.

[0117] Es werden auch drei zusammengesetzte 
arithmetische Operationen mit Operanden a, b, und c 
unterstützt: Multiplikation-Addition (mad), fusionierte 
Multiplikation-Addition (fma) und Summe der absolu-
ten Differenz (sad). Multiplikation-Addition berechnet 
das Produkt a × b (mit Runden, durch Klammern an-
gezeigt) und addiert c zu dem Ergebnis. Fusionierte 
Multiplikation-Addition unterscheidet sich von mad 
dadurch, dass das Produkt a × b nicht vor dem Addie-
ren von c gerundet wird. Die Summe der absoluten 
Differenz berechnet den absoluten Wert |a – b| und 
addiert dann c.

[0118] Die restliche (rem) Operation wird nur an 
ganzzahligen Operanden ausgeführt und berechnet 
den Rest (a mod b), wenn der Operand a ist durch 
den Operanden b geteilt wird. Absoluter Wert (abs) 
und Negation (neg) sind einstellige Operationen, die 
in einem Gleitkomma- oder signierten ganzzahligen 
Format auf einen Operanden a angewendet werden 
können. Minimum-(min) und Maximum-(max)Opera-
tionen, die auf ganzzahlige oder Gleitkomma-Ope-
randen angewendet werden können, setzen das 
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Zielortregister auf den kleineren Operanden oder 
größeren Operanden. Der Umgang mit Sonderfällen, 
in denen ein oder beide Operanden eine nicht-nor-
male Zahl sind (zum Beispiel gemäß den IEEE 
754-Standards), können ebenfalls spezifiziert wer-
den.

[0119] Die übrigen Operationen in Tabelle 800 wer-
den nur für Gleitkomma-Typen ausgeführt. Eine 
Bruch(frc)-Operation gibt den Bruchteil ihrer Eingabe 
als Ergebnis aus. Sinus (sin), Kosinus (cos) und Ar-
kustangens des Verhältnisses (atan2) bilden zweck-
mäßige Befehle entsprechend trigonometrischen 
Funktionen. Basis-2-Logarithmus (lg2) und Potenzie-
rung (ex2) werden ebenfalls unterstützt. Reziprokes 
(rep), Quadratwurzel (sqrt) und reziproke Quadrat-
wurzel (rsqrt) werden ebenfalls unterstützt.

[0120] Es ist zu beachten, dass diese Liste von 
arithmetischen Operationen veranschaulichend ist 
und die Erfindung nicht einschränkt. Es könnten noch 
weitere Operationen oder Kombinationen von Opera-
tionen unterstützt werden, einschließlich jeglicher 
Operationen, von denen erwartet wird, dass sie mit 
genügender Häufigkeit aufgerufen werden.

[0121] In einigen Ausführungsformen definiert die 
virtuelle ISA auch Vektoroperationen. Fig. 8B ist eine 
Tabelle 810, die Vektoroperationen auflistet, die 
durch eine beispielhafte virtuelle ISA unterstützt wer-
den. Die Vektoroperationen enthalten eine Skalarpro-
dukt(dot)-Operation, die das Skalarprodukt d der 
Operandenvektoren a und b berechnet; eine Kreuz-
produkt(cross)-Operation, die das Vektor-Kreuzpro-
dukt d der Operandenvektoren a und b berechnet; 
und eine Größenordnungs(mag)-Operation, welche 
die skalare Länge d eines Operandenvektors a be-
rechnet. Die Vektorreduktions(vred)-Operation be-
rechnet ein skalares Ergebnis d durch iteratives Aus-
führen der spezifizierten Operation <op> an den Ele-
menten des Vektoroperanden a. In einer Ausfüh-
rungsform werden nur die Reduktionsoperationen 
add, mul, min und max für Gleitkomma-Vektoren un-
terstützt. Für ganzzahlige Vektoren können auch zu-
sätzliche Reduktionsoperationen (zum Beispiel und, 
oder und xoder, wie unten beschrieben) unterstützt 
werden.

[0122] Zusätzlich zu diesen Operationen können 
auch andere Vektoroperationen wie zum Beispiel 
Vektoraddition, Vektorskalierung und dergleichen (in 
Fig. 8B nicht angeführt) in der virtuellen ISA definiert 
werden.

[0123] Wie oben angemerkt, könnte es sein, dass 
einige Hardware-Realisierungen der virtuellen Archi-
tektur 300 keine Vektorverarbeitung unterstützen. 
Der virtuelle Befehlsübersetzer 412 für solche Reali-
sierungen ist vorteilhafterweise dafür geeignet, 
zweckmäßige Abfolgen skalarer Maschinenbefehle 

zu erzeugen, um diese Operationen auszuführen. 
Der Fachmann ist in der Lage, zweckmäßige Abfol-
gen zu erstellen.

5.3.2 Virtuelle Befehle – Auswahl und Registerein-
stellung

[0124] Fig. 8C ist eine Tabelle 820, die Auswahl- 
und Registereinstell-Operationen auflistet, die in der 
beispielhaften virtuellen ISA definiert werden. Diese 
Operationen, die an jedem beliebigen numerischen 
Datentyp ausgeführt können werden, stellen ein 
Zielortregister auf der Grundlage des Ergebnisses ei-
ner Vergleichsoperation ein. Die elementare Aus-
wahl(sel)-Operation wählt den Operanden a, wenn c 
ungleich null ist, und den Operanden b, wenn c gleich 
null ist. Vergleichen und Einstellen (set) führt eine 
Vergleichsoperation <cmp> an den Operanden a und 
b aus, um ein Vergleichsergebnis t zu erzeugen, und 
setzt dann das Zielortregister d auf ein Boolesches 
wahr (~0) oder falsch (0), je nachdem, ob das Ver-
gleichsergebnis t wahr (~0) oder falsch (0) ist. Die zu-
lässigen Vergleichsoperationen <cmp> beinhalten in 
einer Ausführungsform gleich (t ist wahr, wenn a = b), 
größer als (t ist wahr, wenn a > b), kleiner als (t ist 
wahr, wenn a < b), größer-gleich (t ist wahr, wenn a ≥
b), kleiner-gleich (t ist wahr, wenn a ≤ b), und andere 
Vergleiche, die zum Beispiel beinhalten, ob a 
und/oder b numerische oder undefinierte Werte sind.

[0125] Die setb-Operation ist eine Variante des Ver-
gleichen-und-Einstellens, die eine weitere Boolesche 
Operation <bop> zwischen dem Ergebnis t der Ver-
gleichsoperation <cmp> und einem dritten Operan-
den c ausführt. Das Ergebnis der Booleschen Opera-
tion t <bop> c bestimmt, ob das Zielortregister d auf 
ein Boolesches wahr oder falsch gesetzt wird. Die zu-
lässigen Booleschen Operationen <bop> beinhalten 
in einer Ausführungsform und, oder und xoder (siehe 
Fig. 8C, die unten beschrieben wird). Die setp-Ope-
ration ähnelt setb, außer dass zwei 1-Bit-”Prädi-
kat”-Zielortregister eingestellt werden: Das Zielortre-
gister d1 wird auf das Ergebnis von t <bop> c einge-
stellt, während das Zielortregister d2 auf das Ergeb-
nis von (!t) <bop> c eingestellt wird.

5.3.3. Virtuelle Befehle – Logische und Bit-Manipula-
tion

[0126] Fig. 8D ist eine Tabelle 830, die logische und 
Bit-Manipulationsoperationen auflistet, die in der bei-
spielhaften virtuellen ISA definiert sind. Die Bit-wei-
sen Booleschen Operationen und, oder und xoder 
werden ausgeführt, indem die spezifizierte Operation 
an jedem Bit der Operanden a und b ausgeführt wird 
und das entsprechende Bit im Register d auf das Er-
gebnis eingestellt wird. Die Bit-weise Negations 
(not)-Operation invertiert jedes Bit des Operanden a, 
während die logische Negations(cnot)-Operation das 
Zielortregister auf 1 (Boolesches wahr) einstellt, 
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wenn a null ist (Boolesches falsch), und anderenfalls 
auf 0 (Boolesches falsch).

[0127] Bit-Verschiebungen werden durch Linksver-
schiebe(shl)- und Rechtsverschiebe(shr)-Operatio-
nen unterstützt, die das Bit-Feld im Operanden a um 
die Anzahl von Bits, die durch den Operanden b spe-
zifiziert wird, nach links oder nach rechts verschie-
ben. Für signierte Formate füllt die Rechtsverschie-
bung vorteilhafterweise vorangestellte Bits auf der 
Grundlage des Signier-Bits auf. Für unsignierte For-
mate füllt die Rechtsverschiebung vorangestellte Bits 
mit Nullen auf.

5.3.4. Virtuelle Befehle – Formatkonvertierung

[0128] Fig. 8E ist eine Tabelle 840, die Formatkon-
vertierungsoperationen auflistet, die in der beispiel-
haften virtuellen ISA definiert sind. Der Formatkon-
vertierungs(cvt)-Befehl konvertiert einen Operanden 
a eines ersten Typs <aTyp> zu einem äquivalenten 
Wert in einem Zieltyp <dTyp> und speichert das Er-
gebnis im Zielortregister d. Gültige Typen in einer 
Ausführungsform sind in Fig. 6 aufgelistet. Nicht-typi-
sierte Werte (.b<n>) können nicht in ganzzahlige 
oder Gleitkomma-Typen oder aus ganzzahligen oder 
Gleitkomma-Typen konvertiert werden. Eine Variante 
des Formatkonvertierungsbefehls gestattet es dem 
Programmierer, einen Rundungsmodus <mode> zu 
spezifizieren. Der Umgang mit Zahlen, die gesättigt 
werden, wenn sie als der Zieltyp ausgedrückt wer-
den, können ebenfalls spezifiziert werden.

5.3.5. Virtuelle Befehle – Datenbewegung und ge-
meinsame Nutzung von Daten

[0129] Fig. 8F ist eine Tabelle 850, die Datenbewe-
gungs- und Datengemeinschaftsnutzungsbefehle 
auflistet, die in der beispielhaften virtuellen ISA defi-
niert werden. Die Bewegungs(mov)-Operation setzt 
das Zielortregister d auf den Wert des unmittelbaren 
Operanden a oder, wenn der Operand a ein Register 
ist, auf den Inhalt des Registers a. Die Bewegungso-
peration kann auf Zustandsräume vom virtuellen Re-
gister-Typ beschränkt werden, zum Beispiel .reg und 
.sreg in Fig. 7.

[0130] Der Lade(ld)-Befehl lädt einen Wert von ei-
nem Quellenort im Speicher in das Zielortregister d, 
das sich in einer Ausführungsform im Zustandsraum 
des virtuellen Registers .reg befinden muss. Der 
.<space>-Qualifikator spezifiziert den Zustandsraum 
des Quellenortes und kann auf adressierbare Zu-
standsräume in Fig. 7 beschränkt sein, zum Beispiel 
andere Räume als .reg und .sreg (wo stattdessen die 
Bewegungsoperation verwendet werden kann). Da 
die virtuelle Architektur 300 in dieser Ausführungs-
form ein Register-zu-Register-Prozessor ist, wird der 
Ladebefehl vorteilhafterweise verwendet, um Variab-
len aus adressierbaren Zustandsräumen in den Zu-

standsraum des virtuellen Registers .reg zu übertra-
gen, so dass sie als Operanden verwendet werden 
können.

[0131] Der spezifische Quellenort wird unter Ver-
wendung eines Quellenparameters <src> identifi-
ziert, der auf verschiedene Weise definiert werden 
kann, um verschiedene Adressierungsmodi zu unter-
stützen. Zum Beispiel kann in einigen Ausführungs-
formen der Quellenparameter <src> eines von Fol-
genden sein: eine benannte adressierbare Variable, 
deren Wert in d gespeichert werden soll; ein Verweis 
auf ein Register, in dem sich die Quellenadresse be-
findet; ein Verweis auf ein Register, in dem sich eine 
Adresse befindet, die einem Versatzwert hinzugefügt 
werden soll (als ein unmittelbarer Operand übermit-
telt); oder eine unmittelbare absolute Adresse.

[0132] Gleichermaßen speichert die Spei-
cher(st)-Operation den Wert in einem Quellenregister 
a an einem Speicherort, der durch den Zielortpara-
meter <dst> identifiziert wird. Das Quellenregister a 
muss sich in einer Ausführungsform in dem .reg-Zu-
standsraum befinden. Der Zielort muss sich in einem 
beschreibbaren und adressierbaren Zustandsraum 
befinden (zum Beispiel .local, .global oder .shared in 
Fig. 7). Der Zielortparameter <dst> kann auf ver-
schiedene Weise definiert werden, um verschiedene 
Adressierungsmodi zu unterstützen, ähnlich dem 
Quellenparameter <src> in dem Ladebefehl. Der 
Speicherbefehl kann zum Beispiel verwendet wer-
den, um ein Operationsergebnis von einem Register 
zu einem adressierbaren Zustandsraum zu übertra-
gen.

[0133] In Ausführungsformen, wo Textur- und Ober-
flächenzustandsräume bereitgestellt sind, können 
zusätzliche virtuelle Befehle verwendet werden, um 
aus dem Texturspeicherzustandsraum (tex) zu lesen 
und um aus dem Oberflächenspeicherzustandsraum 
zu lesen (suld) und in den Oberflächenspeicherzu-
standsraum zu schreiben (sust). Die Operanden (t, x, 
y) für einen Texturlesevorgang spezifizieren den Tex-
turidentifikator (t) und die Koordinaten (x, y). Glei-
chermaßen spezifizieren die Operanden (s, x, y) für 
einen Oberflächenlese- oder -schreibvorgang den 
Oberflächenidentifikator (s) und die Koordinaten (x, 
y).

[0134] Eine CTA-Befehlsfolge kann mit anderen 
CTA-Befehlsfolgen durch gemeinsame Nutzung von 
Daten mit anderen CTA-Befehlsfolgen zusammen-
wirken. Um zum Beispiel Daten innerhalb einer CTA 
gemeinsam zu nutzen, können die CTA-Befehlsfol-
gen virtuelle Lade- und Speicherbefehle (sowie den 
unten beschriebenen Befehl für eine nicht unter-
brechbare (atomic) Aktualisierung ”atom”) verwen-
den, um Daten in die virtuellen Zustandräume je CTA 
zu schreiben und Daten aus den virtuellen Zu-
standräumen je CTA zu lesen. So kann eine CTA-Be-
20/43



DE 20 2008 017 916 U1    2010.12.09
fehlsfolge Daten unter Verwendung eines 
st.shared-Befehls mit einer in geeigneter Weise defi-
nierten Zielortadresse in den .shared-Zustandsraum 
schreiben. Eine weitere CTA-Befehlsfolge innerhalb 
derselben CTA kann anschließend die Daten unter 
Verwendung derselben Adresse in einem 
ld.shared-Befehl lesen. Die unten beschriebenen 
Synchronisationsbefehle (zum Beispiel bar und 
membar) können verwendet werden, um die richtige 
Abfolge von Datengemeinschaftsnutzungsoperatio-
nen in CTA-Befehlsfolgen zu gewährleisten, zum Bei-
spiel, dass eine Daten erzeugende CTA-Befehlsfolge 
die Daten schreibt, bevor einen Datenverbrauchende 
CTA-Befehlsfolge sie liest. Gleichermaßen können 
st.global- und ld.global-Befehle für das Zusammen-
wirken und die gemeinsame Nutzung von Daten zwi-
schen CTA-Befehlsfolgen in derselben CTA, CTAs in 
demselben Gitter und/oder verschiedenen Gittern in 
derselben Anwendung verwendet werden.

5.3.6. Virtuelle Befehle – Programmsteuerung

[0135] Fig. 8G ist eine Tabelle 860, die Programm-
steuerungsoperationen auflistet, in der beispielhaften 
virtuellen ISA bereitgestellt werden. Diese Steue-
rungsoperationen, mit denen der Fachmann vertraut 
ist, ermöglichen es einem Programmierer, die Pro-
grammausführung umzulenken. Ein Abzweig (bra) 
lenkt den Programmfluss zu einem Zielort <target>. 
In einigen Ausführungsformen wird ein Abzweigziel 
definiert, indem eine alphanumerische Markierung 
(label) vor den Zielbefehl in dem virtuellen ISA-Code 
gesetzt wird und diese Markierung als der Zielidenti-
fikator <target> eines Abzweigbefehls verwendet 
wird. Zum Beispiel identifiziert in einer Ausführungs-
form:  
label: add.int32 d, vrl, vr2  
den ”add”-Befehl als ein Abzweigziel mit der Markie-
rung ”label”. Der Befehl  
bra label  
an einer anderen Stelle in dem Code lenkt die Aus-
führung des markierten Befehls um.

[0136] Die call- und return(ret)-Befehle unterstützen 
Funktions- und Subroutinen-Aufrufe; fname identifi-
ziert die Funktion oder Subroutine. (In einer Ausfüh-
rungsform ist eine ”Subroutine” einfach eine Funkti-
on, deren Rückmeldungswert ignoriert wird.) Die 
Funktion fname kann unter Verwendung einer 
func-Anweisung deklariert werden, und virtueller 
ISA-Code, der die Funktion definiert, kann ebenfalls 
bereitgestellt werden. Geschwungene Klammern {} 
oder andere Gruppierungssymbole können verwen-
det werden, um einen Code, der eine Funktion oder 
Subroutine definiert, von einem anderem virtuellen 
ISA-Code abzutrennen.

[0137] Für Funktionen kann eine Parameterliste 
<rv> spezifiziert werden, um zu identifizieren, wo 
Rückmeldungswerte zu speichern sind. Sowohl für 

Funktionen als auch für Subroutinen werden Einga-
beargumente in Argumentlisten <args> spezifiziert. 
Wenn ”call” ausgeführt wird, so wird die Adresse des 
nächsten Befehls gespeichert. Wenn ”ret” ausgeführt 
wird, so wird ein Abzweig zu der gespeicherten 
Adresse genommen.

[0138] Der ”exit”-Befehl bricht eine CTA-Befehlsfol-
ge, die auf ihn trifft, ab. Der Unterbrechungsbefehl 
ruft eine Prozessor-definierte oder Benutzer-definier-
te Unterbrechungsroutine auf. Der Halte-
punkt(brkpt)-Befehl setzt die Ausführung aus und ist 
zum Beispiel für Fehlerbeseitigungszwecke nützlich. 
Der Funktionslos(nop)-Befehl ist ein Befehl, der bei 
Ausführung keinen Effekt hat. Er kann zum Beispiel 
verwendet werden, um zu steuern, wie schnell eine 
nächste Operation ausgeführt werden kann.

5.3.7. Virtuelle Befehle – Parallele Befehlsfolgen

[0139] Fig. 8H ist eine Tabelle 870, die explizit par-
allele virtuelle Befehle auflistet, die in der beispielhaf-
ten virtuellen ISA gemäß einer Ausführungsform der 
vorliegenden Erfindung bereitgestellt werden. Diese 
Befehle unterstützen das zusammenwirkende Be-
fehlsfolgenverhalten, das für die CTA-Ausführung ge-
wünscht wird, wie zum Beispiel das Austauschen von 
Daten zwischen CTA-Befehlsfolgen.

[0140] Der Sperr(bar)-Befehl zeigt an, dass eine 
CTA-Befehlsfolge, die ihn erreicht, vor dem Ausfüh-
ren weiterer Befehle so lange warten muss, bis alle 
anderen CTA-Befehlsfolgen (in derselben CTA) 
ebenfalls denselben Sperrbefehl erreicht haben. Es 
kann jede beliebige Anzahl von Sperrbefehlen in ei-
nem CTA-Programm verwendet werden. In einer 
Ausführungsform benötigt der Sperrbefehl keine Pa-
rameter (unabhängig davon, wie viele Sperren ver-
wendet werden), da alle CTA-Befehlsfolgen die n-te 
Sperre erreichen müssen, bevor eine Befehlsfolge 
zur (n + 1)-ten Sperre voranschreiten kann, und so 
weiter.

[0141] In anderen Ausführungsformen kann der 
Sperrbefehl parametrisiert werden, zum Beispiel 
durch Spezifizieren einer Anzahl von CTA-Befehlsfol-
gen (oder Identifikatoren bestimmter CTA-Befehlsfol-
gen), die an einer bestimmten Sperre warten müs-
sen.

[0142] Wieder andere Ausführungsformen stellen 
sowohl ”Warte”- als auch ”Nicht-warte”-Sperrbefehle 
bereit. Bei einem Warte-Sperrbefehl wartet die 
CTA-Befehlsfolge, bis die anderen relevanten 
CTA-Befehlsfolgen ebenfalls die Sperre erreicht ha-
ben. Bei einem Nicht-warte-Befehl zeigt die CTA-Be-
fehlsfolge an, dass sie angekommen ist, aber sie 
kann fortgesetzt werden, bevor andere CTA-Befehls-
folgen eintreffen. An einer bestimmten Sperre kön-
nen einige CTA-Befehlsfolgen warten, während an-
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dere nicht warten.

[0143] In einigen Ausführungsformen kann der vir-
tuelle bar-Befehl verwendet werden, um CTA-Be-
fehlsfolgen zu synchronisieren, die zusammenwirken 
oder Daten unter Verwendung von Zustandsräumen 
gemeinsam genutzten Speichers gemeinsam nut-
zen. Nehmen wir zum Beispiel an, dass ein Satz von 
CTA-Befehlsfolgen (der einige oder alle Befehlsfol-
gen der CTA enthalten kann) jeweils einige Daten in 
einer Variable je Befehlsfolge erzeugt (zum Beispiel 
eine Variable ”myData” eines virtuellen .fp32-Regis-
ters) und dann die Daten liest, die durch eine andere 
CTA-Befehlsfolge in dem Satz erzeugt werden. Die 
Abfolge von Befehlen:  
st.shared.fp32 myWriteAddress, myData; bar;  
ld.shared.fp32 myData, myReadAddress;  
wobei myWriteAddress und myReadAddress Variab-
len je Befehlsfolge sind, die Adressen in dem 
.shared-Zustandsraum entsprechen, sorgt für das 
gewünschte Verhalten. Nachdem jede CTA-Befehls-
folge ihre erzeugten Daten in den gemeinsam ge-
nutzten Speicher geschrieben hat, wartet sie, bis alle 
CTA-Befehlsfolgen ihre Daten gespeichert haben. 
Dann geht sie zum Lesen von Daten (die durch eine 
andere CTA-Befehlsfolge geschrieben worden sein 
können) aus dem gemeinsam genutzten Speicher 
über.

[0144] Der Speichersperr(membar)-Befehl zeigt an, 
dass jede CTA-Befehlsfolge zu warten hat, bis ihre 
zuvor angeforderten Speicheroperationen (oder min-
destens alle Schreiboperationen) vollendet sind. Die-
ser Befehl garantiert, dass ein Speicherzugriff, der 
nach dem membar-Befehl erfolgt, das Ergebnis aller 
vor ihm erfolgten Schreiboperationen sieht. Der 
membar-Befehl verwendet in einer Ausführungsform 
einen optionalen Zustandsraum-Namen <space>, 
um seine Reichweite auf Speicheroperationen zu be-
schränken, die sich auf den spezifizierten Zustands-
raum richten, der ein Speicherzustandsraum sein 
muss (zum Beispiel nicht die .reg- oder .sreg-Zu-
standsräume). Wenn kein Zustandsraum-Name spe-
zifiziert ist, so wartet die CTA-Befehlsfolge, bis alle 
ausstehenden Operationen vollendet sind, die sich 
auf alle Speicherzustandsräume richten.

[0145] Der atomische-Aktualisierungs(atom)-Befehl 
veranlasst eine nicht unterbrechbare Aktualisierung 
(Lesen-Modifizieren-Schreiben) an einer gemeinsam 
genutzten Variable a, die durch einen Verweis <ref>
identifiziert wird. Die gemeinsam genutzte Variable a 
kann sich in jedem beliebigen gemeinsam genutzten 
Zustandsraum befinden, und wie bei anderen Spei-
cherverweisen können verschiedene Adressierungs-
modi verwendet werden. Zum Beispiel kann <ref> ei-
nes von Folgenden sein: eine benannte adressierba-
re Variable a; ein Verweis auf ein Register, in dem 
sich die Adresse der Variable a befindet; ein Verweis 
auf ein Register, in dem sich eine Adresse befindet, 

die einem Versatzwert hinzugefügt werden soll (als 
ein unmittelbarer Operand übermittelt), um die Vari-
able a zu lokalisieren; oder eine unmittelbare absolu-
te Adresse der Variable a. Die CTA-Befehlsfolge lädt 
die Variable a von dem Ort des gemeinsam genutz-
ten Zustandsraums in ein Zielortregister d und aktua-
lisiert dann die Variable a unter Verwendung einer 
spezifizierten Operation <op>, die an einem Operan-
den a und (je nach der Operation) an einem zweiten 
und einem dritten Operanden b und c ausgeführt 
wird, wobei das Ergebnis an den Ort zurückgespei-
chert wird, der durch <ref> identifiziert wird. Das 
Zielortregister d behält den ursprünglich geladenen 
Wert von a. Die Lade-, Aktualisierungs- und Speiche-
roperationen werden nicht unterbrechbar ausgeführt, 
wodurch garantiert wird, dass keine andere CTA-Be-
fehlsfolge auf die Variable a zugreift, während eine 
erste CTA-Befehlsfolge eine nicht unterbrechbare 
(atomic) Aktualisierung ausführt. In einer Ausfüh-
rungsform ist die Variable a auf den .global- oder 
.shared-Zustandsraum beschränkt und kann in der 
gleichen Weise wie für die oben beschriebenen La-
de- und Speicheroperationen spezifiziert werden.

[0146] In einigen Ausführungsformen brauchen nur 
bestimmte Operationen als nicht unterbrechbare Ak-
tualisierungen ausgeführt zu werden. Zum Beispiel 
werden in einer Ausführungsform möglicherweise 
nur die folgenden Operationen <op> spezifiziert, 
wenn a vom Gleitkomma-Typ ist: Addieren von a zu 
b; Ersetzen von a durch das Minimum oder Maximum 
von a und b; und eine ternäre Ver-
gleich-und-Tausch-Operation, die a durch c ersetzt, 
wenn a gleich b ist, und a ansonsten unverändert 
lässt. Für ein ganzzahliges a können zusätzliche 
Operationen unterstützt werden, zum Beispiel 
Bit-weises und, oder und xoder zwischen Operanden 
a und b sowie Inkrementieren oder Dekrementieren 
des Operanden a. Es könnten noch weitere nicht un-
terbrechbare Operationen oder Kombinationen von 
Operationen unterstützt werden.

[0147] Der vote-Befehl führt eine Reduktionsopera-
tion <op> an einem Booleschen (zum Beispiel Typ 
.b1) Operanden a in einer vorgegebenen Gruppe von 
CTA-Befehlsfolgen aus. In einer Ausführungsform 
spezifiziert die virtuelle Architektur, dass CTA-Be-
fehlsfolgen in SIMD-Gruppen ausgeführt werden und 
dass die vorgegebene Gruppe einer SIMD-Gruppe 
entspricht. In anderen Ausführungsformen können 
andere Gruppen von CTA-Befehlsfolgen durch die 
virtuelle Architektur oder den Programmierer definiert 
werden. Die Reduktionsoperation <op> bringt es mit 
sich, dass der Ergebniswert d auf der Basis der Re-
duktion des Operanden a in den CTA-Befehlsfolgen 
in der Gruppe und der durch den .<op>-Qualifikator 
spezifizierten Reduktionsoperation auf einen Boole-
schen Wahr- oder Falsch-Zustand eingestellt wird. In 
einer Ausführungsform sind die zulässigen Redukti-
onsoperationen: (1) .all, wobei d wahr ist, wenn a für 
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alle CTA-Befehlsfolgen in der Gruppe wahr und an-
sonsten falsch ist; (2) .any, wobei d wahr ist, wenn a 
für jede CTA-Befehlsfolge in der Gruppe wahr ist; und 
(3) .uni, wobei d wahr ist, wenn a für alle aktiven 
CTA-Befehlsfolgen in der Gruppe den gleichen Wert 
(entweder wahr oder falsch) hat.

5.3.8. Virtuelle Befehle – Bedingte Ausführung

[0148] In einigen Ausführungsformen unterstützt die 
virtuelle ISA die bedingte Ausführung jedes Befehls. 
Bei der bedingten Ausführung wird dem Befehl ein 
Boolescher ”Schutzprädikat”-Wert zugeordnet, und 
der Befehl wird nur ausgeführt, wenn zum Zeitpunkt 
der Ausführung das Schutzprädikat als wahr beurteilt 
wird.

[0149] In der beispielhaften virtuellen ISA kann ein 
Schutzprädikat jede beliebige 1 Bit große Boolesche 
Variable eines virtuellen Registers sein (im vorliegen-
den Text mit P bezeichnet). Eine bedingte Ausfüh-
rung wird durch Ersetzen eines Prädikatschutzes @P 
oder eines Nicht-Prädikatschutzes @!P vor dem op-
code eines Befehls angezeigt. Ein Wert wird in dem 
Prädikatregister festgesetzt, zum Beispiel durch 
Identifizieren von P als das Zielortregister für einen 
Befehl, der ein Boolesches Ergebnis hervorbringt, 
wie zum Beispiel den setp-Befehl in der Tabelle 820
(Fig. 8C). Bei Antreffen des Schutzprädikats @P 
oder @!P liest der virtuelle Prozessor das P-Register. 
Für den Schutz @P wird, wenn P wahr ist, der Befehl 
ausgeführt; wenn nicht, so wird er übersprungen. Für 
den Schutz @!P wird der Befehl ausgeführt, wenn P 
falsch ist, und anderenfalls übersprungen. Das Prädi-
kat P wird zum Ausführungszeitpunkt für jede 
CTA-Befehlsfolge beurteilt, die auf den bedingten Be-
fehl trifft. Somit könnten einige CTA-Befehlsfolgen ei-
nen bedingten Befehl ausführen, während andere 
CTA-Befehlsfolgen dies nicht tun.

[0150] In einigen Ausführungsformen können Prädi-
kate gesetzt werden, während Befehle ausgeführt 
werden. Zum Beispiel können bestimmte der virtuel-
len Befehle in den Tabellen 800–870
(Fig. 8A–Fig. 8H) einen Parameter entgegenneh-
men, der ein Prädikatregister als eine Ausgabe spe-
zifiziert. Solche Befehle aktualisieren das spezifizier-
te Prädikatregister auf der Grundlage einer Eigen-
schaft des Befehlsergebnisses. Zum Beispiel könnte 
ein Prädikatregister verwendet werden, um anzuzei-
gen, ob das Ergebnis einer arithmetischen Operation 
eine spezielle Zahl (zum Beispiel null, unendlich oder 
keine Zahl in Gleitkomma-Operationen nach IEEE 
754) ist, und so weiter.

6. Virtueller Befehlsübersetzer

[0151] Wie oben mit Bezug auf Fig. 4 angemerkt, 
richtet sich ein virtueller Befehlsübersetzer 412 auf 
eine bestimmte Plattformarchitektur. Der virtuelle Be-

fehlsübersetzer 412, der zum Beispiel als ein Softwa-
re-Programm implementiert werden könnte, das auf 
einem Prozessor wie zum Beispiel der CPU 102 von 
Fig. 1 ausgeführt wird, empfängt einen virtuellen 
ISA-Code 410 und übersetzt ihn in Ziel-ISA-Code 
414, der auf der bestimmten Plattformarchitektur 
ausgeführt werden kann, auf die sich der virtuelle Be-
fehlsübersetzer 412 richtet (zum Beispiel durch die 
PPU 122 von Fig. 1). Der virtuelle Befehlsübersetzer 
412 bildet die virtuellen Variablen, die in dem virtuel-
len ISA-Code 410 deklariert werden, auf verfügbare 
Speicherorte ab, einschließlich Prozessorregister, 
On-Chip-Speicher, Off-Chip-Speicher und so weiter. 
In einigen Ausführungsformen bildet der virtuelle Be-
fehlsübersetzer 412 jeden der virtuellen Zustandräu-
me auf einen bestimmten Speichertyp ab. Zum Bei-
spiel kann der .reg-Zustandsraum auf Befehlsfol-
ge-spezifische Datenregister abgebildet werden, der 
.shared-Zustandsraum auf gemeinsam nutzbaren 
Speicher des Prozessors, der .global-Zustandsraum 
auf eine Region des virtuellen Speichers, die dem 
Anwendungsprogramm zugewiesen ist, und so wei-
ter. Es sind noch weitere Abbildungen möglich.

[0152] Die virtuellen Befehle in dem virtuellen 
ISA-Code 410 werden in Maschinenbefehle über-
setzt. In einer Ausführungsform ist der virtuelle Be-
fehlsübersetzer 412 dafür konfiguriert, jeden virtuel-
len ISA-Befehl auf einen entsprechenden Maschi-
nenbefehl oder eine entsprechende Abfolge von Ma-
schinenbefehlen abzubilden, je nachdem, ob ein ent-
sprechender Maschinenbefehl in dem Befehlssatz 
des Prozessors existiert, der die CTA-Befehlsfolgen 
ausführt.

[0153] Der virtuelle Befehlsübersetzer 412 bildet 
auch die CTA-Befehlsfolgen auf ”physische” Befehls-
folgen oder Prozesse in der Zielplattformarchitektur 
ab. Wenn zum Beispiel die Zielplattformarchitektur 
mindestens n0 gleichzeitige Befehlsfolgen unter-
stützt, so kann jede CTA-Befehlsfolge auf eine physi-
sche Befehlsfolge abgebildet werden, und der virtuel-
le Befehlsübersetzer 412 kann einen virtuellen Be-
fehlscode für eine einzelne CTA-Befehlsfolge mit der 
Erwartung erzeugen, dass die Zielplattform 440 den 
Code für n0 Befehlsfolgen mit n0 eindeutige Identifika-
toren ausführt. Wenn die Zielplattformarchitektur we-
niger als n0 Befehlsfolgen unterstützt, so kann der vir-
tuelle Befehlsübersetzer 412 virtuellen ISA-Code 
410, der Befehle enthält, die mehreren CTA-Befehls-
folgen entsprechen, mit der Erwartung erzeugen, 
dass dieser Code einmal je CTA ausgeführt wird, wo-
durch mehrere CTA-Befehlsfolgen auf eine einzelne 
physische Befehlsfolge oder einen einzelnen physi-
schen Prozess abgebildet werden.

[0154] Insbesondere werden virtuelle Befehle, die 
sich auf eine gemeinsame Datennutzung beziehen 
(zum Beispiel Last-, Speicher- und nicht unterbrech-
bare(atomic)-Aktualisierungs-Befehle, die auf 
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.shared- oder .global-Zustandsraum zugreifen), 
und/oder zusammenwirkendes Befehlsfolge-Verhal-
ten (zum Beispiel Sperr-, atomische-Aktualisierungs- 
und andere Befehle in Fig. 8H) in Maschinenbefehle 
oder Abfolgen von Maschinenbefehle übersetzt. Ziel-
plattformarchitekturen, die für eine CTA-Ausführung 
optimiert sind, enthalten vorteilhafterweise Hard-
ware-unterstützte Sperrbefehle, zum Beispiel mit 
Zählern und/oder Registern in der Befehlseinheit 
zum Zählen der Anzahl von Befehlsfolgen, die an 
dem Sperrbefehl angekommen sind, und zum Setzen 
von Markierungen, die verhindern, dass weitere Be-
fehle für eine Befehlsfolge ausgegeben werden, wäh-
rend die Befehlsfolge an einer Sperre wartet. Andere 
Zielarchitekturen bieten möglicherweise keine direkte 
Hardware-Unterstützung für eine Befehlsfolgensyn-
chronisation, wobei in diesem Fall andere Techniken 
zur Kommunikation zwischen Befehlsfolgen (zum 
Beispiel Semaphoren, Statusgruppierungen im Spei-
cher oder dergleichen) verwendet werden können, 
um das gewünschte Verhalten hervorzurufen.

[0155] Bedingte Befehle werden ebenfalls in Ma-
schinenbefehle übersetzt. In einigen Fällen unter-
stützt die Ziel-Hardware direkt eine bedingte Ausfüh-
rung. In anderen Fällen können Prädikate gespei-
chert werden, zum Beispiel in Prozessorregistern, 
wobei bedingte Abzweigbefehle oder dergleichen 
verwendet werden, um die Register abzufragen und 
das gewünschte Laufzeitverhalten hervorzurufen, in-
dem bedingte Befehle bedingt umher verzweigt wer-
den.

[0156] Fig. 9 ist ein Flussdiagramm eines Prozes-
ses 900 zur Verwendung eines virtuellen Befehlsü-
bersetzers gemäß einer Ausführungsform der vorlie-
genden Erfindung. Bei Schritt 902 schreibt ein Pro-
grammierer CTA-Programmcode in einer höheren 
Sprache. In einer Ausführungsform definiert der 
CTA-Programmcode das gewünschte Verhalten ei-
ner einzelnen CTA-Befehlsfolge und kann die Be-
fehlsfolge-ID (einschließlich der CTA-ID und/oder Git-
ter-ID) als einen Parameter verwenden, um Aspekte 
des Verhaltens der CTA-Befehlsfolge zu definieren 
oder zu steuern. Zum Beispiel kann ein Ort in einem 
gemeinsam genutzten Speicher, der zu lesen oder zu 
beschreiben ist, als eine Funktion der Befehlsfol-
ge-ID bestimmt werden, so dass verschiedene 
CTA-Befehlsfolgen in derselben CTA aus verschiede-
nen Speicherorten in dem gemeinsam genutzten 
Speicher lesen und/oder in verschiedene Speicheror-
te in dem gemeinsam genutzten Speicher schreiben. 
In einer Ausführungsform ist CTA-Programmcode als 
Teil von einem Anwendungsprogrammcode enthal-
ten (zum Beispiel Programmcode 402 von Fig. 4). 
Zusätzlich zum Definieren des Verhaltens von 
CTA-Befehlsfolgen kann der Anwendungsprogramm-
code auch CTAs und/oder Gitter, Einricht-Eingabe- 
und -Ausgabedatensätze usw. definieren.

[0157] Bei Schritt 904 erzeugt ein Kompilierer (zum 
Beispiel der Kompilierer 408 von Fig. 4) einen virtuel-
len ISA-Code, der das Verhalten einer einzelnen (vir-
tuellen) CTA-Befehlsfolge definiert, aus dem höher-
sprachigen Code. Wenn der Code sowohl CTA-Pro-
grammcode als auch anderen Code enthält, so kann 
der Kompilierer 408 den CTA-Programmcode von 
dem übrigen Code trennen, so dass nur der CTA-Pro-
grammcode verwendet wird, um virtuellen ISA-Code 
zu erzeugen. Es können herkömmliche Techniken 
zum Kompilieren von Programmcode, der in einer 
Sprache geschrieben wurde, in eine andere (virtuel-
le) Sprache verwendet werden. Es ist anzumerken, 
dass, da der erzeugte Code in einer virtuellen Spra-
che vorliegt, der Kompilierer nicht an eine bestimmte 
Hardware gebunden oder für eine bestimmte Hard-
ware optimiert zu werden braucht. Der Kompilierer 
kann den virtuellen ISA-Code optimieren, der aus ei-
ner bestimmten Abfolge von einem eingegebenem 
Code erzeugt wurde (so dass zum Beispiel kürzere 
Abfolgen von virtuellen ISA-Befehlen bevorzugt wer-
den). Programmcode in der virtuellen ISA kann im 
Speicher auf einer Festplatte gespeichert und/oder 
an eine große Vielzahl verschiedener Plattformarchi-
tekturen verteilt werden, einschließlich Architekturen, 
die physisch anders als die virtuelle Architektur 300
von Fig. 3 aufgebaut sind. Der Code in der virtuellen 
ISA ist maschinenunabhängig und kann auf jeder 
Zielplattform ausgeführt werden, für die ein virtueller 
Befehlsübersetzer verfügbar ist. In alternativen Aus-
führungsformen kann ein Programmierer CTA-Pro-
grammcode direkt in die virtuelle ISA schreiben, oder 
virtueller ISA-Code kann durch ein Programm auto-
matisch erzeugt werden. Wenn der Programmcode 
anfänglich als virtueller ISA-Code erzeugt wird, so 
kann der Kompilierungsschritt 904 weggelassen wer-
den.

[0158] Bei Schritt 906 liest ein virtueller Befehlsü-
bersetzer (zum Beispiel der Übersetzer 412 von 
Fig. 4) den virtuellen ISA-Code und erzeugt Code in 
einer Ziel-ISA, der auf einer Zielplattform ausgeführt 
werden kann. Im Gegensatz zu dem Kompilierer rich-
tet sich der virtuelle Befehlsübersetzer auf eine be-
stimmte (reale) Plattformarchitektur und ist vorteilhaf-
terweise so konfiguriert, den Ziel-ISA-Code für die 
beste Leistung auf dieser Architektur anzupassen 
und zu optimieren. In einer Ausführungsform, wo die 
Zielarchitektur mindestens n0 Befehlsfolgen unter-
stützt, erzeugt der virtuelle Befehlsübersetzer ein 
Zielbefehlsfolgenprogramm, das gleichzeitig durch 
jede von no Befehlsfolgen ausgeführt werden kann, 
um eine CTA zu realisieren. In einer weiteren Ausfüh-
rungsform erzeugt der virtuelle Befehlsübersetzer ein 
Zielprogramm, das Software-Techniken (zum Bei-
spiel Befehlsabfolgen) verwendet, um n0 gleichzeiti-
ge Befehlsfolgen zu emulieren, von denen jede Be-
fehle ausführt, die dem virtuellen ISA-Code entspre-
chen. Der Übersetzer kann zum Zeitpunkt der Pro-
gramminstallation, während der Programminitialisie-
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rung oder an genau festgelegten Zeitpunkten wäh-
rend der Programmausführung aktiv sein.

[0159] Bei Schritt 908 führt ein Prozessor auf der 
Zielplattform (zum Beispiel die PPU 122 von Fig. 1) 
den Ziel-ISA-Code aus, um Daten zu verarbeiten. In 
einigen Ausführungsformen kann der Schritt 908 ent-
halten, Befehle und Zustandsparameter in den Pro-
zessor einzuspeisen, um sein Verhalten zu steuern, 
wie weiter unten noch beschrieben wird.

[0160] Es versteht sich, dass der Prozess 900 ver-
anschaulichend ist und dass Variationen und Modifi-
kationen möglich sind. Schritte, die als sequenziell 
beschrieben sind, können parallel ausgeführt wer-
den, die Reihenfolge der Schritte kann variiert wer-
den, und Schritte können modifiziert oder kombiniert 
werden. Zum Beispiel kann in einigen Ausführungs-
formen ein Programmierer CTA-Programmcode un-
ter Verwendung der virtuellen ISA direkt schreiben, 
wodurch die Notwendigkeit eines Kompilierers ent-
fällt, der virtuellen ISA-Code erzeugt. In anderen Aus-
führungsformen wird der CTA-Programmcode als Teil 
eines großen Anwendungsprogramms geschrieben, 
das zum Beispiel auch Code enthält, der die Dimen-
sionen einer CTA und/oder eines Gitters aus CTAs 
definiert, die ausgeführt werden sollen, um ein be-
stimmtes Problem zu lösen. In einer Ausführungs-
form werden nur jene Abschnitte des Codes, die das 
CTA-Programm darstellen, in virtuellen ISA-Code 
kompiliert. Andere Abschnitte können in andere (rea-
le oder virtuelle) Befehlssätze kompiliert werden.

[0161] In anderen Ausführungsformen kann ein ein-
zelner virtueller Befehlsübersetzer dafür konfiguriert 
sein, mehrere Versionen des Zielcodes zu erzeugen, 
die für verschiedene Zielplattformen geeignet sind. 
Zum Beispiel könnte der Übersetzer einen Pro-
grammcode in einer höheren Sprache (zum Beispiel 
C), Maschinencode für eine PPU und/oder Maschi-
nencode für eine Einzelkern- oder Mehrkern-CPU, 
der ein PPU-Verhalten emuliert, unter Verwendung 
von Software-Techniken erzeugen.

7. Virtueller Ausführungstreiber

[0162] In einigen Ausführungsformen werden der 
virtuelle ISA-Code 410 und der virtuelle Befehlsüber-
setzer 412 dafür verwendet, den CTA-Programm-
code zu erzeugen, der für jede Befehlsfolge einer 
CTA ausgeführt werden soll. Im Hinblick auf das Pro-
grammiermodell der Fig. 2A–Fig. 2B definiert das 
Spezifizieren des CTA-Programms eine Verarbei-
tungsaufgabe für jede CTA-Befehlsfolge 204. Um das 
Modell zu vervollständigen, ist es auch notwendig, 
die Dimensionen einer CTA 202, die Anzahl von 
CTAs in dem Gitter, den zu verarbeitenden Eingabe-
datensatz und so weiter zu definieren. Solche Infor-
mationen werden im vorliegenden Text als 
”CTA-Steuerungsinformationen” bezeichnet.

[0163] Wie in Fig. 4 gezeigt, spezifiziert in einigen 
Ausführungsformen das Anwendungsprogramm 402
CTA-Steuerungsinformationen durch Verwenden von 
Rufen an Funktionen in einer virtuellen Bibliothek 
404. In einer Ausführungsform enthält die virtuelle Bi-
bliothek 404 verschiedene Funktionsaufrufe, über die 
ein Programmierer eine CTA oder ein Gitter aus 
CTAs definieren und angeben kann, wann die Aus-
führung beginnen soll.

[0164] Fig. 10 ist eine Tabelle 1000, die Funktionen 
auflistet, die in einer beispielhaften virtuellen Biblio-
thek 404 verfügbar sind. Die erste Gruppe von Funk-
tionen bezieht sich auf das Definieren einer CTA. Ge-
nauer gesagt, ist die initCTA-Funktion die erste Funk-
tion, die aufgerufen wird, um eine neue CTA zu er-
zeugen. Diese Funktion gestattet es dem Program-
mierer, die Dimensionen (ntid.x, ntid.y, ntid.z) einer 
CTA zu definieren und der neuen CTA einen Identifi-
kator cname zuzuweisen. Die setCTAProgram-Funk-
tion spezifiziert ein CTA-Programm, das durch jede 
Befehlsfolge des CTA-cname ausgeführt werden soll. 
Der Parameter pname ist ein logischer Programmi-
dentifikator, der dem gewünschten CTA-Programm 
entspricht (zum Beispiel einem Programm in virtuel-
lem ISA-Code). Die setCTAInputArray-Funktion ge-
stattet es dem Programmierer, einen Quellenort 
(Startadresse und Größe) im globalen Speicher zu 
spezifizieren, von wo aus der CTA-cname Eingabe-
daten liest; und die setCTAOutputArray-Funktion ge-
stattet es dem Programmierer, einen Zielort (Startad-
resse und Größe) im globalen Speicher zu spezifizie-
ren, an den der CTA-cname Ausgabedaten schreibt. 
Die setCTAParams-Funktion wird verwendet, um 
Laufzeitkonstantenparameter für den CTA-cname 
einzustellen. Der Programmierer stellt der Funktion 
die Liste der Parameter – zum Beispiel als (Name, 
Wert)-Paare – zur Verfügung.

[0165] In einer Ausführungsform kann die setCTA-
Params-Funktion auch durch den Kompilierer 408
verwendet werden, wenn er einen virtuellen ISA-Co-
de 410 erzeugt. Da die setCTAParams-Funktion die 
Laufzeitparameter für die CTA definiert, kann der 
Kompilierer 408 diese Funktion so interpretieren, 
dass jeder Parameter als eine virtuelle Variable in 
dem .param-Zustandsraum definiert wird.

[0166] Die Tabelle 1000 listet auch Funktionen auf, 
die mit dem Definieren von Gittern aus CTAs zu tun 
haben. Die initGrid-Funktion ist die erste Funktion, 
die aufgerufen wird, um ein neues Gitter zu erzeu-
gen. Diese Funktion gestattet es dem Programmie-
rer, die Dimensionen (nctaid.x, nctaid.y, nctaid.z) ei-
nes Gitters zu definieren, den CTA-cname zu identifi-
zieren, der in dem Gitter ausgeführt wird, und dem 
neu definierten Gitter einen Identifikator gname zuzu-
weisen. Die setGridInputArray- und die setGridOut-
putArray-Funktion ähneln den Funktionen auf 
CTA-Ebene und ermöglichen es, eine einzelne Ein-
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gabe- und/oder Ausgabe-Gruppierung für alle Be-
fehlsfolgen aller CTAs in einem Gitter zu definieren. 
Die setGridParams-Funktion wird dafür verwendet, 
Laufzeitkonstantenparameter für alle CTAs in dem 
Gitter gname einzustellen. Der Kompilierer 408 kann 
diese Funktion so interpretieren, dass jeder Parame-
ter als eine virtuelle Variable in dem .const-Zustands-
raum definiert wird.

[0167] Die launchCTA- und die launchGrid-Funktion 
signalisieren, dass die Ausführung des spezifizierten 
CTA-cname oder Gitter-gname beginnen soll.

[0168] Die virtuelle API kann auch andere Funktio-
nen enthalten. Zum Beispiel bieten einige Ausfüh-
rungsformen Synchronisationsfunktionen, die dafür 
verwendet werden können, die Ausführung mehrerer 
CTAs zu koordinieren. Wenn zum Beispiel die Ausga-
be einer ersten CTA (oder eines ersten Gitters) als 
die Eingabe einer zweiten CTA (oder eines zweiten 
Gitters) verwendet werden soll, so kann die API eine 
Funktion (oder einen Parameter für die Startfunktion) 
enthalten, über die der virtuelle Ausführungstreiber 
angewiesen werden kann, dass die zweite CTA (oder 
das zweite Gitter) erst gestartet werden darf, wenn 
die Ausführung der ersten CTA (oder des ersten Git-
ters) vollendet ist.

[0169] Gemäß einer Ausführungsform der vorlie-
genden Erfindung können beliebige oder alle der 
Funktionsaufrufe in der Tabelle 1000 in ein Anwen-
dungsprogramm aufgenommen werden, das auch 
das CTA-Programm (oder die CTA-Programme, 
wenn es mehrere CTAs in der Anwendung gibt) defi-
niert, das auszuführen ist. Zum Kompilierungszeit-
punkt werden die Funktionsaufrufe als Rufe an eine 
Anwendungsprogrammschnittstelle(Application Pro-
gram Interface – API)-Bibliothek 404 behandelt, wo-
durch virtueller API-Code 406 erzeugt wird.

[0170] Der virtuelle API-Code wird unter Verwen-
dung eines virtuellen Ausführungstreibers 418 reali-
siert, der jede Funktion in der virtuellen Bibliothek im-
plementiert. In einer Ausführungsform ist der virtuelle 
Ausführungstreiber 418 ein Treiberprogramm, das in 
der CPU 102 von Fig. 1 ausgeführt wird und die PPU 
122 steuert, welche die CTA-Befehlsfolgen realisiert. 
Die verschiedenen Funktionsaufrufe in der Tabelle 
1000 von Fig. 10 werden so implementiert, dass sie 
dazu führen, dass der Treiber Befehle über einen Ein-
speicherungspuffer in der PPU 122 ausgibt. In einer 
weiteren Ausführungsform führt eine CPU ein oder 
mehrere Programme aus, um eine CTA zu realisie-
ren, und der virtuelle Ausführungstreiber 418 stellt 
Parameter ein und steuert die Ausführung solcher 
Programme durch die CPU.

[0171] Es versteht sich, dass die im vorliegenden 
Text beschriebene virtuelle API veranschaulichend 
ist und dass Variationen und Modifikationen möglich 

sind. Es können auch andere Funktionen oder Kom-
binationen von Funktionen unterstützt werden. Tech-
niken für virtuelle API, die dem Fachmann bekannt 
sind, können für die Zwecke der vorliegenden Erfin-
dung angepasst werden.

Weitere Ausführungsformen

[0172] Obgleich die Erfindung anhand konkreter 
Ausführungsformen beschrieben wurde, erkennt der 
Fachmann, dass zahlreiche Modifikationen möglich 
sind. Zum Beispiel sind die konkrete virtuelle Archi-
tektur, die konkreten virtuellen Befehle und die virtu-
ellen API-Funktionen, die im vorliegenden Text be-
schrieben sind, nicht erforderlich. An ihre Stelle kön-
nen auch andere virtuelle Architekturen, Befehle 
und/oder Funktionen treten, die gleichzeitige, zusam-
menwirkende Befehlsfolgen unterstützen. Außerdem 
können sich die oben beschriebenen Ausführungs-
formen auf Fälle beziehen, wo alle Blöcke die gleiche 
Anzahl von Elementen haben, alle CTAs die gleiche 
Anzahl von Befehlsfolgen haben und dasselbe 
CTA-Programm ausführen, und so weiter. In einigen 
Anwendungen, zum Beispiel wo mehrere abhängige 
Gitter verwendet werden, kann es wünschenswert 
sein, CTAs in verschiedenen Gittern verschiedene 
CTA-Programme ausführen zu lassen oder verschie-
dene Anzahlen und/oder Größen von Gittern zu ha-
ben.

[0173] Obgleich im vorliegenden Text von ”zusam-
menwirkenden Befehlsfolgen-Gruppierungen” ge-
sprochen wird, versteht es sich, dass einige Ausfüh-
rungsformen Befehlsfolgen-Gruppierungen verwen-
den können, bei denen eine gemeinsame Datennut-
zung zwischen gleichzeitigen Befehlsfolgen nicht un-
terstützt wird. In anderen Ausführungsformen, in de-
nen eine solche gemeinsame Datennutzung unter-
stützt wird, können die Befehlsfolgen, die für eine be-
stimmte Anwendung definiert sind, Daten gemein-
sam nutzen, müssen es aber nicht.

[0174] Obgleich in den oben beschriebenen Aus-
führungsformen davon gesprochen werden kann, 
dass Befehlsfolge-Gruppierungen mehrere Befehls-
folgen haben, versteht es sich des Weiteren, dass in 
einem ”entarteten” Fall eine Befehlsfolge-Gruppie-
rung auch nur eine einzige Befehlsfolge haben könn-
te. Somit könnte die vorliegende Erfindung dafür ver-
wendet werden, eine Skalierbarkeit in Programmen 
bereitzustellen, die in einer CPU mit einem oder meh-
reren einfach-gereihten oder nebenläufigen Kernen 
ausgeführt werden sollen. Unter Verwendung der im 
vorliegenden Text beschriebenen Techniken könnte 
ein Programm in einer solchen Weise geschrieben 
werden, dass die Befehlsfolgen über eine beliebige 
Anzahl verfügbarer CPU-Kerne verteilt werden könn-
ten (zum Beispiel unter Verwendung von Betriebs-
system-Funktionalität), ohne dass eine Modifikation 
oder Rekompilierung des virtuellen ISA-Codes erfor-
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derlich ist.

[0175] Die Begriffe ”virtuell” und ”real” werden im 
vorliegenden Text verwendet, um das Entkoppeln ei-
nes konzeptuellen Programmiermodells, das von ei-
nem Programmierer verwendet wird, um eine Pro-
blemlösung zu beschreiben, von einem echten Com-
putersystem, auf dem das Programm letztendlich 
ausgeführt werden kann, widerzuspiegeln. Das ”vir-
tuelle” Programmiermodell und seine zugehörige Ar-
chitektur ermöglichen es einem Programmierer, eine 
höhere Sicht auf eine Parallelverarbeitungsaufgabe 
zu erlangen, und es versteht sich, dass es eventuell 
ein echtes Computersystem oder -gerät geben könn-
te, dessen Komponenten eins-zu-eins auf die im vor-
liegenden Text beschriebenen Komponenten der vir-
tuellen Architektur abgebildet werden können. Der 
virtuelle Code, einschließlich virtuellem ISA-Code 
und virtuellem API-Code, wird vorteilhafterweise als 
Code in einer Sprache realisiert, die eins-zu-eins 
dem Befehlssatz eines echten Verarbeitungsgerätes 
entsprechen kann, aber nicht muss. Wie aller Pro-
grammcode kann der im vorliegenden Text ange-
sprochene virtuelle Code auf einem greifbaren Medi-
um (zum Beispiel einem Hauptspeicher oder einer 
Festplatte) gespeichert werden, über ein Netzwerk 
übertragen werden, und so weiter.

[0176] Computerprogramme, die verschiedene 
Merkmale der vorliegenden Erfindung enthalten –
einschließlich beispielsweise virtuellen ISA- und/oder 
virtuellen API-Code, virtuelle Befehlsübersetzer, vir-
tuelle Treiber, Kompilierer, Bibliotheken virtueller 
Funktionen und dergleichen –, können auf verschie-
denen computerlesbaren Medien zum Speichern 
und/oder Übertragen codiert werden. Zu geeigneten 
Medien gehören magnetische Platten oder Magnet-
band, optische Speichermedien wie zum Beispiel 
Compact-Disk (CD) oder DVD (Digital Versati-
le-Disk), Flashspeicher und dergleichen. Solche Pro-
gramme können auch codiert und unter Verwendung 
von Trägersignalen übertragen werden, die für eine 
Übertragung über drahtgebundene, optische 
und/oder Drahtlos-Netze geeignet sind, die mit einer 
Vielzahl verschiedener Protokolle, einschließlich 
dem Internet, kompatibel sind. Computerlesbare 
Speichermedien, die mit dem Programmcode codiert 
sind, können mit einem kompatiblen Gerät gebündelt 
werden, oder der Programmcode kann separat von 
anderen Geräten bereitgestellt werden (zum Beispiel 
über einen Download aus dem Internet).

[0177] Des Weiteren können bestimmte Aktionen im 
vorliegenden Text so beschrieben werden, dass sie 
von einem ”Programmierer” unternommen werden. 
Es wird in Betracht gezogen, dass der Programmie-
rer ein Mensch, ein automatisierter Prozess, der Pro-
grammcode mit allenfalls geringem menschlichen 
Eingreifen erzeugt, oder eine Kombination aus 
menschlicher Interaktion mit automatisierten oder 

teilweise automatisierten Prozessen zum Erzeugen 
von Programmcode sein kann.

[0178] Obgleich des Weiteren im vorliegenden Text 
beschriebene Ausführungsformen auf Merkmale be-
stimmter Zielplattformen Bezug nehmen können, ist 
die Erfindung nicht auf diese Plattformen beschränkt. 
Genau genommen, kann eine virtuelle Architektur in 
jeder beliebigen Kombination von Hardware- 
und/oder Software-Komponenten realisiert werden. 
Dem Fachmann ist klar, dass man davon ausgehen 
kann, dass verschiedene Realisierungen der glei-
chen virtuellen Architektur sich in der Effizienz 
und/oder im Durchsatz unterscheiden. Solche Unter-
schiede sind jedoch für die vorliegende Erfindung 
nicht von Bedeutung.

[0179] Obgleich also die Erfindung anhand konkre-
ter Ausführungsformen beschrieben wurde, versteht 
es sich, dass die Erfindung alle Modifikationen und 
Äquivalente innerhalb des Geltungsbereichs der fol-
genden Ansprüche mit erfassen soll.

[0180] Die Erfindung weist des Weiteren die folgen-
den Konzepte auf: 

Konzept 1 zum Definieren eines Parallelverarbei-
tungsvorgangs, das Konzept aufweisend: Bereit-
stellen von einem ersten Programmcode, der eine 
Abfolge von Operationen definiert, die für jede ei-
ner Mehrzahl von virtuellen Befehlsfolgen in einer 
Gruppierung zusammenwirkender virtueller Be-
fehlsfolgen ausgeführt werden sollen; Kompilie-
ren des ersten Programmcodes in ein Programm 
virtueller Befehlsfolgen, das eine Abfolge von Be-
fehlen je Befehlsfolge definiert, die für eine reprä-
sentative virtuelle Befehlsfolge der Mehrzahl von 
virtuellen Befehlsfolgen ausgeführt werden sollen, 
wobei die Abfolge von Befehlen je Befehlsfolge 
mindestens einen Befehl enthält, der ein Zusam-
menwirkungsverhalten zwischen der repräsentati-
ven virtuellen Befehlsfolge und einer oder mehre-
ren anderen virtuellen Befehlsfolgen der Mehrzahl 
von virtuellen Befehlsfolgen definiert; und Spei-
chern des Programms virtueller Befehlsfolgen.
Konzept 2 nach Konzept 1, ferner aufweisend: 
Übersetzen des gespeicherten Programms virtu-
eller Befehlsfolgen in eine Abfolge von Befehlen, 
die mit einer Zielplattformarchitektur kompatibel 
sind.
Konzept 3 nach Konzept 1, ferner aufweisend: 
Bereitstellen von einem zweiten Programmcode, 
der eine Gruppierung zusammenwirkender virtu-
eller Befehlsfolgen definiert, die dafür geeignet 
sind, einen Eingabedatensatz zu verarbeiten um 
einen Ausgabedatensatz zu erzeugen, wobei jede 
virtuelle Befehlsfolge in der Gruppierung gleich-
zeitig das Programm virtueller Befehlsfolgen aus-
führt; Konvertieren des zweiten Programmcodes 
in eine Abfolge von Funktionsaufrufen in einer Bi-
bliothek virtueller Funktionen, wobei die Bibliothek 
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virtuelle Funktionen enthält, welche die Gruppie-
rung zusammenwirkender virtueller Befehlsfolgen 
initialisieren und die Ausführung der Gruppierung 
zusammenwirkender virtueller Befehlsfolgen ver-
anlassen; und Speichern der Abfolge von Funkti-
onsaufrufen.
Konzept 4 nach Konzept 3, ferner aufweisend: 
Übersetzen des gespeicherten Programms virtu-
eller Befehlsfolgen und der Abfolge von Funkti-
onsaufrufen in einen Programmcode, der auf ei-
ner Zielplattformarchitektur ausgeführt werden 
kann, wobei der ausführbare Programmcode eine 
oder mehrere Plattformbefehlsfolgen definiert, 
welche die Gruppierung zusammenwirkender vir-
tueller Befehlsfolgen ausführen.
Konzept 5 nach Konzept 4, ferner aufweisend: 
Ausführen des ausführbaren Programmcodes auf 
einem Computersystem, das mit der Zielplattfor-
marchitektur kompatibel ist, wodurch der Ausga-
bedatensatz erzeugt wird; und Speichern des 
Ausgabedatensatzes in einem Speichermedium.
Konzept 6 nach Konzept 1, wobei die Abfolge von 
Befehlen je Befehlsfolge einen Befehl enthält, die 
Ausführung von Operationen für die repräsentati-
ve virtuelle Befehlsfolge an einen bestimmten 
Punkt in der Abfolge so lange auszusetzen, bis 
eine oder mehrere der anderen virtuellen Befehls-
folgen diesen bestimmten Punkt erreichen.
Konzept 7 nach Konzept 1, wobei die Abfolge von 
Befehlen je Befehlsfolge einen Befehl für die re-
präsentative virtuelle Befehlsfolge enthält, Daten 
in einem gemeinsam genutzten Speicher zu spei-
chern, auf den eine oder mehrere der anderen vir-
tuellen Befehlsfolgen Zugriff haben.
Konzept 8 nach Konzept 1, wobei die Abfolge von 
Befehlen je Befehlsfolge einen Befehl für die re-
präsentative virtuelle Befehlsfolge enthält, nicht 
unterbrechbar Daten zu lesen und zu aktualisie-
ren, die in einem gemeinsam genutzten Speicher 
gespeichert sind, auf den eine oder mehrere der 
anderen virtuellen Befehlsfolgen Zugriff haben.
Konzept 9 nach Konzept 1, wobei das Programm 
virtueller Befehlsfolgen eine Variablendefinitions-
aussage enthält, die eine Variable in einem aus ei-
ner Mehrzahl von virtuellen Zustandsräumen defi-
niert, wobei verschiedene der Mehrzahl von virtu-
ellen Zustandräumen verschiedenen Modi ge-
meinsamer Datennutzung zwischen den virtuellen 
Befehlsfolgen entsprechen.
Konzept 10 nach Konzept 9, wobei die Modi der 
gemeinsamen Datennutzung einen nicht gemein-
sam genutzten Modus je Befehlsfolge und einen 
global gemeinsam genutzten Modus enthalten.
Konzept 11 nach Konzept 9, wobei die Modi der 
gemeinsamen Datennutzung einen nicht gemein-
sam genutzten Modus je Befehlsfolge, einen ge-
meinsam genutzten Modus innerhalb einer Grup-
pierung virtueller Befehlsfolgen und einen global 
gemeinsam genutzten Modus enthalten.
Konzept 12 nach Konzept 9, wobei die Modi der 

gemeinsamen Datennutzung einen nicht gemein-
sam genutzten Modus je Befehlsfolge, einen ge-
meinsam genutzten Modus innerhalb einen Grup-
pierung virtueller Befehlsfolgen, einen gemein-
sam genutzten Modus zwischen mehreren Grup-
pierungen virtueller Befehlsfolgen und einen glo-
bal gemeinsam genutzten Modus enthalten.
Konzept 13 zum Betreiben eines Zielprozessors, 
das Konzept aufweisend: Bereitstellen von einem 
Eingabeprogrammcode, der einen ersten Ab-
schnitt enthält, der eine Abfolge von Operationen 
definiert, die für jede einer Mehrzahl von virtuellen 
Befehlsfolgen in einer Gruppierung virtueller Be-
fehlsfolgen auszuführen sind, die dafür geeignet 
sind, einen Eingabedatensatz zu verarbeiten um 
einen Ausgabedatensatz zu erzeugen, wobei der 
Eingabeprogrammcode ferner einen zweiten Ab-
schnitt enthält, der eine Dimension der Gruppie-
rung virtueller Befehlsfolgen definiert; Kompilieren 
des ersten Abschnitts des Eingabeprogramm-
codes in ein Programm virtueller Befehlsfolgen, 
das eine Abfolge von Befehlen je Befehlsfolge de-
finiert, die für eine repräsentative virtuelle Befehls-
folge der Mehrzahl von virtuellen Befehlsfolgen 
ausgeführt werden sollen, wobei die Abfolge von 
Befehlen je Befehlsfolge mindestens einen Befehl 
enthält, der ein Zusammenwirkungsverhalten zwi-
schen der repräsentativen virtuellen Befehlsfolge 
und einer oder mehreren anderen virtuellen Be-
fehlsfolgen der Mehrzahl von virtuellen Befehlsfol-
gen definiert; Konvertieren des zweiten Abschnitts 
des Eingabeprogrammcodes in eine Abfolge von 
Funktionsaufrufen an eine Bibliothek virtueller 
Funktionen, wobei die Bibliothek virtuelle Funktio-
nen enthält, welche die Gruppierung zusammen-
wirkender virtueller Befehlsfolgen initialisieren 
und die Ausführung der Gruppierung zusammen-
wirkender virtueller Befehlsfolgen veranlassen; 
Übersetzen des Programms virtueller Befehlsfol-
gen und der Abfolge von Funktionsaufrufen in ei-
nen Programmcode, der auf einer Zielplattformar-
chitektur ausgeführt werden kann, wobei der aus-
führbare Programmcode eine oder mehrere reale 
Befehlsfolgen definiert, welche die Gruppierung 
zusammenwirkender virtueller Befehlsfolgen aus-
führen; Ausführen des ausführbaren Programm-
codes auf einem Computersystem, das mit der 
Zielplattformarchitektur kompatibel ist, wodurch 
der Ausgabedatensatz erzeugt wird; und Spei-
chern des Ausgabedatensatzes auf einem Spei-
chermedium.
Konzept 14 nach Konzept 13, wobei der zweite 
Abschnitt des Eingabeprogrammcodes einen Pro-
grammcode enthält, der zwei oder mehr Dimensi-
onen für die Gruppierung virtueller Befehlsfolgen 
definiert.
Konzept 15 nach Konzept 14, wobei der zweite 
Abschnitt des Eingabeprogrammcodes ferner ent-
hält: einen Funktionsaufruf, der eine oder mehrere 
Dimensionen eines Gitters aus Gruppierungen 
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virtueller Befehlsfolgen definiert, wobei jede Grup-
pierung in dem Gitter ausgeführt werden soll.
Konzept 16 nach Konzept 13, wobei die Zielplatt-
formarchitektur einen Master-Prozessor und ei-
nen Koprozessor enthält und wobei die Aktion des 
Übersetzens Folgendes enthält: Übersetzen des 
Programms virtueller Befehlsfolgen in einen Pro-
grammcode, der parallel durch mehrere Befehls-
folgen, die in dem Koprozessor definiert sind, aus-
geführt werden kann; und Übersetzen der Abfolge 
von Funktionsaufrufen in eine Abfolge von Aufru-
fen an ein Treiberprogramm für den Koprozessor, 
wobei das Treiberprogramm in dem Master-Pro-
zessor ausgeführt wird.
Konzept 17 nach Konzept 13, wobei die Zielplatt-
formarchitektur eine zentrale Verarbeitungsein-
heit (CPU) enthält und wobei die Aktion des Über-
setzens Folgendes enthält: Übersetzen des Pro-
gramms virtueller Befehlsfolgen und mindestens 
eines Abschnitts der Abfolge von Funktionsaufru-
fen in einen Zielprogrammcode, der die Gruppie-
rung virtueller Befehlsfolgen unter Verwendung ei-
ner Anzahl von CPU-Befehlsfolgen ausführt, die 
kleiner als die Anzahl virtueller Befehlsfolgen ist.
Konzept 18 zum Betreiben eines Zielprozessors, 
das Konzept aufweisend: Erhalten eines Pro-
gramms virtueller Befehlsfolgen, das eine Abfolge 
von Befehlen je Befehlsfolge definiert, die für eine 
repräsentative virtuelle Befehlsfolge aus einer 
Mehrzahl von virtuellen Befehlsfolgen in einer 
Gruppierung virtueller Befehlsfolgen ausgeführt 
werden sollen, die dafür geeignet sind, einen Ein-
gabedatensatz zu verarbeiten um einen Ausgabe-
datensatz zu erzeugen, wobei die Abfolge von Be-
fehlen je Befehlsfolge mindestens einen Befehl 
enthält, der ein Zusammenwirkungsverhalten zwi-
schen der repräsentativen virtuellen Befehlsfolge 
und einer oder mehreren anderen virtuellen Be-
fehlsfolgen der Mehrzahl von virtuellen Befehlsfol-
gen definiert; Erhalten eines zusätzlichen Pro-
grammcodes, der Dimensionen der Gruppierung 
virtueller Befehlsfolgen definiert; Übersetzen des 
Programms virtueller Befehlsfolgen und des zu-
sätzlichen Programmcodes in einen Programm-
code, der auf der Zielplattformarchitektur ausge-
führt werden kann, wobei der ausführbare Pro-
grammcode eine oder mehrere Plattformbefehls-
folgen definiert, welche die Gruppierung virtueller 
Befehlsfolgen ausführen; Ausführen des ausführ-
baren Programmcodes auf einem Computersys-
tem, das mit der Zielplattformarchitektur kompati-
bel ist, wodurch der Ausgabedatensatz erzeugt 
wird, und Speichern des Ausgabedatensatzes in 
einem Speicher.
Konzept 19 nach Konzept 18, wobei die Aktion 
des Erhaltens des Programms virtueller Befehls-
folgen enthält: Empfangen von einem Quellpro-
grammcode, der in einer höheren Programmier-
sprache geschrieben ist; und Kompilieren des 
Quellprogrammcodes um das Programm virtueller 

Befehlsfolgen zu erzeugen.
Konzept 20 nach Konzept 18, wobei die Aktion 
des Erhaltens des Programms virtueller Befehls-
folgen enthält: Lesen des Programms virtueller 
Befehlsfolgen von einem Speichermedium.
Konzept 21 nach Konzept 18, wobei die Aktion 
des Erhaltens des Programms virtueller Befehls-
folgen enthält: Empfangen des Programms virtu-
eller Befehlsfolgen von einem räumlich abgesetz-
ten Computersystem über ein Netzwerk.
29/43



DE 20 2008 017 916 U1    2010.12.09
ZITATE ENTHALTEN IN DER BESCHREIBUNG

Diese Liste der vom Anmelder aufgeführten Doku-
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genommen. Die Liste ist nicht Bestandteil der deut-
schen Patent- bzw. Gebrauchsmusteranmeldung. 
Das DPMA übernimmt keinerlei Haftung für etwaige 
Fehler oder Auslassungen.
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Schutzansprüche

1.  Parallelverarbeitungsarchitektur zum Definie-
ren eines Parallelverarbeitungsvorgangs, wobei die 
Parallelverarbeitungsarchitektur einen Parallelpro-
zessor und einen Speicher aufweist,  
wobei der Speicher einen ersten Programmcode ent-
hält, der eine Abfolge von Operationen definiert, die 
für jede einer Mehrzahl von virtuellen Befehlsfolgen 
in einer Gruppierung zusammenwirkender virtueller 
Befehlsfolgen ausgeführt werden sollen,  
wobei der Parallelprozessor betreibbar ist, den ers-
ten Programmcode in ein Programm virtueller Be-
fehlsfolgen zu kompilieren, das eine Abfolge von Be-
fehlen je Befehlsfolge definiert, die für eine repräsen-
tative virtuelle Befehlsfolge der Mehrzahl von virtuel-
len Befehlsfolgen ausgeführt werden sollen, wobei 
die Abfolge von Befehlen je Befehlsfolge mindestens 
einen Befehl enthält, der ein Zusammenwirkungsver-
halten zwischen der repräsentativen virtuellen Be-
fehlsfolge und einer oder mehreren anderen virtuel-
len Befehlsfolgen der Mehrzahl von virtuellen Be-
fehlsfolgen definiert; und  
wobei der Speicher das Programm virtueller Befehls-
folgen enthält.

2.  Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei der Parallelprozessor betreibbar ist, 
das gespeicherte Programm virtueller Befehlsfolgen 
in eine Abfolge von Befehlen, die mit einer Zielplatt-
formarchitektur kompatibel sind, zu übersetzen.

3.  Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei der Speichereinen zweiten Pro-
grammcode enthält, der eine Gruppierung zusam-
menwirkender virtueller Befehlsfolgen definiert, die 
dafür geeignet sind, einen Eingabedatensatz zu ver-
arbeiten um einen Ausgabedatensatz zu erzeugen, 
wobei jede virtuelle Befehlsfolge in der Gruppierung 
gleichzeitig das Programm virtueller Befehlsfolgen 
ausführt,  
wobei der Parallelprozessor betreibbar ist, den zwei-
ten Programmcode in eine Abfolge von Funktionsauf-
rufen in einer Bibliothek virtueller Funktionen zu kon-
vertieren, wobei die Bibliothek virtuelle Funktionen 
enthält, welche die Gruppierung zusammenwirken-
der virtueller Befehlsfolgen initialisieren und die Aus-
führung der Gruppierung zusammenwirkender virtu-
eller Befehlsfolgen veranlassen; und  
wobei der Speicher die Abfolge von Funktionsaufru-
fen enthält.

4.  Parallelverarbeitungsarchitektur nach An-
spruch 3, wobei der Parallelprozessor ferner betreib-
bar ist, das gespeicherte Programm virtueller Be-
fehlsfolgen und die Abfolge von Funktionsaufrufen in 
einen Programmcode zu übersetzen, der auf einer 
Zielplattformarchitektur ausgeführt werden kann, wo-
bei der ausführbare Programmcode eine oder meh-
rere Plattformbefehlsfolgen definiert, welche die 

Gruppierung zusammenwirkender virtueller Befehls-
folgen ausführen.

5.  Parallelverarbeitungsarchitektur nach An-
spruch 4, wobei die Parallelverarbeitungsarchitektur 
ferner ferner ein Computersystem aufweist, das mit 
der Zielplattformarchitektur kompatibel ist, wobei das 
Computersystem betreibbar ist, den ausführbaren 
Programmcode auszuführen, wodurch der Ausgabe-
datensatz erzeugt wird, und um den Ausgabedaten-
satz in einem Speichermedium zu speichern.

6.  Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei die Abfolge von Befehlen je Befehls-
folge einen Befehl enthält, die Ausführung von Ope-
rationen für die repräsentative virtuelle Befehlsfolge 
an einen bestimmten Punkt in der Abfolge so lange 
auszusetzen, bis eine oder mehrere der anderen vir-
tuellen Befehlsfolgen diesen bestimmten Punkt errei-
chen.

7.  Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei die Abfolge von Befehlen je Befehls-
folge einen Befehl für die repräsentative virtuelle Be-
fehlsfolge enthält, Daten in einem gemeinsam ge-
nutzten Speicher zu speichern, auf den eine oder 
mehrere der anderen virtuellen Befehlsfolgen Zugriff 
haben.

8.  Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei die Abfolge von Befehlen je Befehls-
folge einen Befehl für die repräsentative virtuelle Be-
fehlsfolge enthält, nicht unterbrechbar Daten zu le-
sen und zu aktualisieren, die in einem gemeinsam 
genutzten Speicher gespeichert sind, auf den eine 
oder mehrere der anderen virtuellen Befehlsfolgen 
Zugriff haben.

9.  Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei das Programm virtueller Befehlsfol-
gen eine Variablendefinitionsaussage enthält, die 
eine Variable in einem aus einer Mehrzahl von virtu-
ellen Zustandsräumen definiert, wobei verschiedene 
der Mehrzahl von virtuellen Zustandräumen ver-
schiedenen Modi gemeinsamer Datennutzung zwi-
schen den virtuellen Befehlsfolgen entsprechen.

10.  Parallelverarbeitungsarchitektur nach An-
spruch 9, wobei die Modi der gemeinsamen Daten-
nutzung einen nicht gemeinsam genutzten Modus je 
Befehlsfolge und einen global gemeinsam genutzten 
Modus enthalten.

11.  Parallelverarbeitungsarchitektur nach An-
spruch 9, wobei die Modi der gemeinsamen Daten-
nutzung einen nicht gemeinsam genutzten Modus je 
Befehlsfolge, einen gemeinsam genutzten Modus in-
nerhalb einer Gruppierung virtueller Befehlsfolgen 
und einen global gemeinsam genutzten Modus ent-
halten.
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12.  Parallelverarbeitungsarchitektur nach An-
spruch 9, wobei die Modi der gemeinsamen Daten-
nutzung einen nicht gemeinsam genutzten Modus je 
Befehlsfolge, einen gemeinsam genutzten Modus in-
nerhalb einen Gruppierung virtueller Befehlsfolgen, 
einen gemeinsam genutzten Modus zwischen meh-
reren Gruppierungen virtueller Befehlsfolgen und ei-
nen global gemeinsam genutzten Modus enthalten.

13.  Parallelverarbeitungsarchitektur zum Betrei-
ben eines Zielprozessors,  
wobei die Parallelverarbeitungsarchitektur einen Pa-
rallelprozessor, einen Speicher und ein Computer-
system, das mit der Zielplattformarchitektur kompati-
bel ist, aufweist,  
wobei der Speicher einen Eingabeprogrammcode 
enthält, der einen ersten Abschnitt enthält, der eine 
Abfolge von Operationen definiert, die für jede einer 
Mehrzahl von virtuellen Befehlsfolgen in einer Grup-
pierung virtueller Befehlsfolgen auszuführen sind, die 
dafür geeignet sind, einen Eingabedatensatz zu ver-
arbeiten um einen Ausgabedatensatz zu erzeugen,  
wobei der Eingabeprogrammcode ferner einen zwei-
ten Abschnitt enthält, der eine Dimension der Grup-
pierung virtueller Befehlsfolgen definiert;  
wobei der Parallelprozessor betreibbar ist, den ers-
ten Abschnitt des Eingabeprogrammcodes in ein 
Programm virtueller Befehlsfolgen zu kompilieren, 
das eine Abfolge von Befehlen je Befehlsfolge defi-
niert, die für eine repräsentative virtuelle Befehlsfolge 
der Mehrzahl von virtuellen Befehlsfolgen ausgeführt 
werden sollen, wobei die Abfolge von Befehlen je Be-
fehlsfolge mindestens einen Befehl enthält, der ein 
Zusammenwirkungsverhalten zwischen der reprä-
sentativen virtuellen Befehlsfolge und einer oder 
mehreren anderen virtuellen Befehlsfolgen der Mehr-
zahl von virtuellen Befehlsfolgen definiert;  
wobei der Parallelprozessor betreibbar ist, den zwei-
ten Abschnitt des Eingabeprogrammcodes in eine 
Abfolge von Funktionsaufrufen an eine Bibliothek vir-
tueller Funktionen zu konvertieren, wobei die Biblio-
thek virtuelle Funktionen enthält, welche die Gruppie-
rung zusammenwirkender virtueller Befehlsfolgen in-
itialisieren und die Ausführung der Gruppierung zu-
sammenwirkender virtueller Befehlsfolgen veranlas-
sen;  
wobei der Parallelprozessor betreibbar ist, das Pro-
gramm virtueller Befehlsfolgen und die Abfolge von 
Funktionsaufrufen in einen Programmcode zu über-
setzen, der auf einer Zielplattformarchitektur ausge-
führt werden kann, wobei der ausführbare Pro-
grammcode eine oder mehrere reale Befehlsfolgen 
definiert, welche die Gruppierung zusammenwirken-
der virtueller Befehlsfolgen ausführen;  
wobei das Computersystem betreibbar ist, den aus-
führbaren Programmcode auszuführen, wodurch der 
Ausgabedatensatz erzeugt wird, und um den Ausga-
bedatensatz auf einem Speichermedium zu spei-
chern.

14.  Parallelverarbeitungsarchitektur nach An-
spruch 13, wobei der zweite Abschnitt des Eingabe-
programmcodes einen Programmcode enthält, der 
zwei oder mehr Dimensionen für die Gruppierung vir-
tueller Befehlsfolgen definiert.

15.  Parallelverarbeitungsarchitektur nach An-
spruch 14, wobei der zweite Abschnitt des Eingabe-
programmcodes ferner enthält:  
einen Funktionsaufruf, der eine oder mehrere Dimen-
sionen eines Gitters aus Gruppierungen virtueller Be-
fehlsfolgen definiert, wobei jede Gruppierung in dem 
Gitter ausgeführt werden soll.

16.  Parallelverarbeitungsarchitektur nach An-
spruch 13, wobei die Zielplattformarchitektur einen 
Master-Prozessor und einen Koprozessor enthält 
und wobei der Parallelprozessor betreibbar ist, das 
Programm virtueller Befehlsfolgen in einen Pro-
grammcode zu übersetzen, der parallel durch mehre-
re Befehlsfolgen, die in dem Koprozessor definiert 
sind, ausgeführt werden kann, und die Abfolge von 
Funktionsaufrufen in eine Abfolge von Aufrufen an 
ein Treiberprogramm für den Koprozessor zu über-
setzen, wobei das Treiberprogramm in dem Mas-
ter-Prozessor ausgeführt wird.

17.  Parallelverarbeitungsarchitektur nach An-
spruch 13, wobei die Zielplattformarchitektur eine 
zentrale Verarbeitungseinheit (CPU) enthält und wo-
bei der Parallelprozessor betreibbar ist, das Pro-
gramm virtueller Befehlsfolgen und mindestens einen 
Abschnitt der Abfolge von Funktionsaufrufen in einen 
Zielprogrammcode zu übersetzen, der die Gruppie-
rung virtueller Befehlsfolgen unter Verwendung einer 
Anzahl von CPU-Befehlsfolgen ausführt, die kleiner 
als die Anzahl virtueller Befehlsfolgen ist.

18.  Parallelverarbeitungsarchitektur zum Betrei-
ben eines Zielprozessors,  
wobei die Parallelverarbeitungsarchitektur einen Pa-
rallelprozessor, einen Speicher und ein Computer-
system, das mit der Zielplattform kompatibel ist, auf-
weist,  
wobei die Parallelverarbeitungsarchitektur betreibbar 
ist, ein Programm virtueller Befehlsfolgen zu erhal-
ten, das eine Abfolge von Befehlen je Befehlsfolge 
definiert, die für eine repräsentative virtuelle Befehls-
folge aus einer Mehrzahl von virtuellen Befehlsfolgen 
in einer Gruppierung virtueller Befehlsfolgen ausge-
führt werden sollen, die dafür geeignet sind, einen 
Eingabedatensatz zu verarbeiten um einen Ausgabe-
datensatz zu erzeugen,  
wobei die Abfolge von Befehlen je Befehlsfolge min-
destens einen Befehl enthält, der ein Zusammenwir-
kungsverhalten zwischen der repräsentativen virtuel-
len Befehlsfolge und einer oder mehreren anderen 
virtuellen Befehlsfolgen der Mehrzahl von virtuellen 
Befehlsfolgen definiert;  
wobei die Parallelverarbeitungsarchitektur betreibbar 
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ist, einen zusätzlichen Programmcode zu erhalten, 
der Dimensionen der Gruppierung virtueller Befehls-
folgen definiert;  
wobei der Parallelprozessor betreibbar ist, das Pro-
gramm virtueller Befehlsfolgen und den zusätzlichen 
Programmcode in einen Programmcode zu überset-
zen, der auf der Zielplattformarchitektur ausgeführt 
werden kann, wobei der ausführbare Programmcode 
eine oder mehrere Plattformbefehlsfolgen definiert, 
welche die Gruppierung virtueller Befehlsfolgen aus-
führen;  
wobei das Computersystem betreibbar ist, den aus-
führbaren Programmcode auszuführen, wodurch der 
Ausgabedatensatz erzeugt wird, und  
wobei der Speicher den Ausgabedatensatz enthält.

19.  Parallelverarbeitungsarchitektur nach An-
spruch 18, wobei die Parallelverarbeitungsarchitektur 
betreibbar ist, einen Quellprogrammcode zu empfan-
gen, der in einer höheren Programmiersprache ge-
schrieben ist und den Quellprogrammcode zu kompi-
lieren, um das Programm virtueller Befehlsfolgen zu 
erzeugen.

20.  Parallelverarbeitungsarchitektur nach An-
spruch 18, wobei die Parallelverarbeitungsarchitektur 
betreibbar ist, das Programm virtueller Befehlsfolgen 
von einem Speichermedium zu lesen.

21.  Parallelverarbeitungsarchitektur nach An-
spruch 18, wobei die Parallelverarbeitungsarchitektur 
betreibbar ist, das Programm virtueller Befehlsfolgen 
von einem räumlich abgesetzten Computersystem 
über ein Netzwerk zu empfangen.

Es folgen 10 Blatt Zeichnungen
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Anhängende Zeichnungen
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