Patent- und Markenamt

R ‘ Deutsches e

(1 DE 20 2008 017 916 U1 2010.12.09

(12) Gebrauchsmusterschrift

(21) Aktenzeichen: 20 2008 017 916.5 s1yntc:: GO6F 9/46 (2006.01)
(22) Anmeldetag: 22.01.2008 GOG6F 9/45 (2006.01)

(67) aus Patentanmeldung: 10 2008 005 515.8

(47) Eintragungstag: 04.11.2010

(43) Bekanntmachung im Patentblatt: 09.12.2010

(30) Unionsprioritat: (74) Name und Wohnsitz des Vertreters:

11/627,892 26.01.2007 uUs Dilg Haeusler Schindelmann
Patentanwaltsgesellschaft mbH, 80636 Miinchen
(73) Name und Wohnsitz des Inhabers:

Nvidia Corp., Santa Clara, Calif., US

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen enthommen

(54) Bezeichnung: Virtuelle Architektur und virtueller Befehlssatz fiir die Berechnung paralleler Befehisfolgen

(57) Hauptanspruch: Parallelverarbeitungsarchitektur zum
Definieren eines Parallelverarbeitungsvorgangs, wobei die
Parallelverarbeitungsarchitektur einen Parallelprozessor
und einen Speicher aufweist, oo

wobei der Speicher einen ersten Programmcode enthalt, 104 | System- / 12
der eine Abfolge von Operationen definiert, die fiir jede Speicher

einer Mehrzahl von virtuellen Befehlsfolgen in einer Grup- 102 1 Parallelverarbeitungs-
pierung zusammenwirkender virtueller Befehlsfolgen aus- / . 12;e|lsystem124
gefiihrt werden sollen, U | Spocher £ Jpp-
wobei der Parallelprozessor betreibbar ist, den ersten Pro- / PPU 1 speicher
grammcode in ein Programm virtueller Befehlsfolgen zu e

kompilieren, das eine Abfolge von Befehlen je Befehls- 105 -

folge definiert, die fir eine reprasentative virtuelle Befehls- ¢ 108 o "0
folge der Mehrzahl von virtuellen Befehlsfolgen ausgefihrt \ B 4 m—
werden sollen, wobei die Abfolge von Befehlen je Befehls- |ohomue|— Bricke

folge mindestens einen Befehl enthalt, der ein Zusammen-

wirkungsverhalten zwischen der reprasentativen virtuellen 120]

Befehlsfolge und einer oder mehreren anderen virtuellen Eins{eck_ _ 108
Befehlsfolgen der Mehrzahl von virtuellen Befehlsfolgen karte Schalter E'ﬂ:ten:k'

definiert; und / I

wobei der Speicher das Programm virtueller Befehlsfolgen 118 PY——— 121

enthalt. adapter [~~~ 418

DE 20 2008 017 916 U1

Beschreibung

[0001] Die vorliegende Erfindung betrifft allgemein
die Parallelverarbeitung und insbesondere eine virtu-
elle Architektur und einen virtuellen Befehlssatz fir
die Berechnung paralleler Befehlsfolgen.

[0002] Bei der Parallelverarbeitung arbeiten mehre-
re Verarbeitungseinheiten (zum Beispiel mehrere
Prozessorchips oder mehrere Verarbeitungskerne in-
nerhalb eines einzelnen Chips) gleichzeitig, um Da-
ten zu verarbeiten. Solche Systeme kdnnen verwen-
det werden, um Probleme zu I8sen, die sich zur Zer-
legung in mehrere Teile anbieten. Ein Beispiel ist die
Bildfilterung, wobei jedes Pixel eines ausgegebenen
Bildes (oder von ausgegebenen Bildern) aus einer
Anzahl von Pixeln eines eingegebenen Bildes (oder
von eingegebenen Bildern) berechnet wird. Die Be-
rechnung jedes ausgegebenen Pixels ist allgemein
unabhangig von allen anderen, so dass verschiede-
ne Verarbeitungseinheiten verschiedene ausgegebe-
ne Pixel parallel berechnen kénnen. Viele andere Ar-
ten von Problemen eignen sich ebenfalls fir die par-
allele Zerlegung. Allgemein kann eine parallele
N-Wege-Ausfihrung die Lésung solcher Probleme
um ungefahr einen Faktor N beschleunigen.

[0003] Eine weitere Klasse von Problemen eignet
sich zur Parallelverarbeitung, wenn die parallelen
Ausfuhrungsbefehlsfolgen miteinander koordiniert
werden kénnen. Ein Beispiel ist die Schnelle Fourier-
transformation (Fast Fourier Transform — FFT), einre-
kursiver Algorithmus, bei dem auf jeder Stufe eine
Berechnung an den Ergebnissen einer vorherigen
Stufe ausgefiihrt wird, um neue Werte zu generieren,
die als Eingaben in die nachste Stufe verwendet wer-
den, bis die Ausgabestufe erreicht ist. Eine einzelne
Ausfuhrungsbefehisfolge kann mehrere Stufen aus-
fuhren, solange diese Befehlsfolge verlasslich die
Ausgabedaten von vorherigen Stufen erhalten kann.
Wenn die Aufgabe zwischen mehreren Befehlsfolgen
aufgeteilt werden soll, so muss ein Koordinationsme-
chanismus vorhanden sein, damit zum Beispiel eine
Befehlsfolge nicht versucht, Eingabedaten zu lesen,
die noch gar nicht geschrieben wurden. (Eine Lésung
dieses Problems ist in der gemeinsam abgetretenen,
gleichzeitig anhangigen US-Patentanmeldung Nr.
11/303,780, eingereicht am 15. Dezember 2005, be-
schrieben).

[0004] Das Programmieren von Parallelverarbei-
tungssystemen kann jedoch schwierig sein. Der Pro-
grammierer muss in der Regel die Anzahl der verflig-
baren Verarbeitungseinheiten und ihre Fahigkeiten
kennen (Befehlssatze, Anzahl der Datenregister,
Zwischenverbindungen usw.), um einen Code zu er-
zeugen, den die Verarbeitungseinheiten tberhaupt
ausfuhren kénnen. Obgleich maschinenspezifische
Kompilierer eine grof3e Hilfe auf diesem Gebiet sein
kénnen, ist es immer noch erforderlich, den Code je-

2010.12.09

des Mal neu zu kompilieren, wenn der Code zu einem
anderen Prozessor portiert wird.

[0005] Dartber hinaus werden verschiedene As-
pekte von Parallelverarbeitungsarchitekturen in ra-
scher Folge hervorgebracht. Zum Beispiel werden
standig neue Plattformarchitekturen, Befehlssatze
und Programmiermodelle entwickelt. Wenn sich ver-
schiedene Aspekte der Parallelarchitektur (zum Bei-
spiel das Programmiermodell oder der Befehlssatz)
von einer Generation zur nachsten andern, so mus-
sen auch Anwendungsprogramme, Softwarebiblio-
theken, Kompilierer und andere Software und Tools
entsprechend verandert werden. Diese Instabilitat
kann einen erheblichen zusatzlichen administrativen
Aufwand fur die Entwicklung und Pflege von Parallel-
verarbeitungscode mit sich bringen.

[0006] Wenn eine Koordination zwischen Befehls-
folgen bendtigt wird, so wird das parallele Program-
mieren schwieriger. Der Programmierer muss fest-
stellen, welche Mechanismen in einem bestimmten
Prozessor oder Computersystem zur Verfligung ste-
hen, um eine Kommunikation zwischen Befehlsfol-
gen zu unterstitzen (oder zu emulieren), und muss
einen Code schreiben, der die verfigbaren Mecha-
nismen ausnutzt. Da die verfligbaren und/oder opti-
malen Mechanismen auf verschiedenen Computer-
systemen allgemein verschieden sind, ist ein paralle-
ler Code dieser Art allgemein nicht portierbar. Er
muss fur jede Hardwareplattform, auf der er lauft, neu
geschrieben werden.

[0007] Des Weiteren muss der Programmierer zu-
satzlich zum Bereitstellen von ausfihrbarem Code
fur die Prozessoren noch einen Steuercode fiir einen
"Master’-Prozessor bereitstellen, der die Ablaufe der
verschiedenen Verarbeitungseinheiten koordiniert,
der zum Beispiel jede Verarbeitungseinheit anweist,
welches Programm auszufiihren ist und welche Ein-
gabedaten zu verarbeiten sind. Ein solcher Steuer-
code ist in der Regel flr einen bestimmten Mas-
ter-Prozessor und ein bestimmtes Protokoll fir die
Kommunikation zwischen Prozessoren spezifisch
und muss in der Regel neu geschrieben werden,
wenn ein anderer Master-Prozessor verwendet wer-
den soll.

[0008] Die Schwierigkeiten beim Kompilieren und
Neukompilieren von Parallelverarbeitungscode kdén-
nen Nutzer davon abschrecken, ihre Systeme ent-
sprechend den Fortschritten der Computertechnolo-
gie auf dem modernsten Stand zu halten. Es ware
darum winschenswert, kompilierten Parallelverar-
beitungscode von einer bestimmten Hardwareplatt-
form abzukoppeln und eine stabile Parallelverarbei-
tungsarchitektur und einen Befehlssatz fir interessie-
rende parallele Anwendungen und Tools bereitzustel-
len.

2/43

DE 20 2008 017 916 U1

KURZDARSTELLUNG DER ERFINDUNG

[0009] Ausflihrungsformen der vorliegenden Erfin-
dung stellen eine virtuelle Architektur und einen virtu-
ellen Befehlssatz fiir die Berechnung paralleler Be-
fehlsfolgen bereit. Die virtuelle Parallelarchitektur de-
finiert einen virtuellen Prozessor, der die gleichzeitige
Ausfuhrung mehrerer virtueller Befehlsfolgen mit
mehreren Graden gemeinsamer Datennutzung und
Koordination (zum Beispiel Synchronisation) zwi-
schen verschiedenen virtuellen Befehlsfolgen unter-
stuitzt, sowie einen virtuellen Ausfihrungstreiber, der
den virtuellen Prozessor steuert. Eine virtuelle Be-
fehlssatzarchitektur fir den virtuellen Prozessor wird
verwendet, um das Verhalten einer virtuellen Be-
fehlsfolge zu definieren, und enthalt Befehle, die sich
auf das Verhalten paralleler Befehlsfolgen beziehen,
zum Beispiel gemeinsame Datennutzung und Syn-
chronisation. Mit Hilfe der virtuellen parallelen Platt-
form kénnen Programmierer Anwendungsprogram-
me entwickeln, in denen virtuelle Befehlsfolgen
gleichzeitig ausgefihrt werden, um Daten zu verar-
beiten. Anwendungsprogramme koénnen in einer
hoch-portierbaren Zwischenform gespeichert und
verteilt werden, zum Beispiel als Programmcode, der
auf die virtuelle parallele Plattform gerichtet ist. Zum
Installationszeitpunkt oder Ausfihrungszeitpunkt
passen hardwarespezifische virtuelle Befehlslber-
setzer und virtuelle Ausfihrungstreiber den in einer
Zwischenform vorliegenden Anwendungscode an
bestimmte Hardware an, auf der er ausgeflihrt wer-
den soll. Infolge dessen sind Anwendungsprogram-
me besser portierbar und einfacher zu entwickeln, da
der Entwicklungsprozess unabhangig von bestimm-
ter Verarbeitungshardware ist.

[0010] Gemal einem Aspekt der vorliegenden Er-
findung enthalt ein Verfahren zum Definieren eines
Parallelverarbeitungsvorgangs das Bereitstellen von
erstem Programmcode, der eine Abfolge von Opera-
tionen definiert, die firr jede einer Anzahl virtueller Be-
fehlsfolgen in einer Gruppierung zusammenwirken-
der virtueller Befehlsfolgen auszufihren sind. Der
erste Programmcode wird zu einem Programm virtu-
eller Befehlsfolgen kompiliert, das eine Abfolge von
Befehlen je Befehlsfolge definiert, die fur eine repra-
sentative virtuelle Befehlsfolge der Gruppierung aus-
zufiihren sind, und die Abfolge von Befehlen je Be-
fehlsfolge enthalt mindestens einen Befehl, der ein
Zusammenwirkungsverhalten zwischen der repra-
sentativen virtuellen Befehlsfolge und einer oder
mehreren anderen virtuellen Befehlsfolgen der Grup-
pierung definiert. Das Programm virtueller Befehlsfol-
gen wird gespeichert (zum Beispiel im Speicher oder
auf einer Festplatte) und kann anschlieRend in eine
Abfolge von Befehlen libersetzt werde, die einer Ziel-
plattformarchitektur entspricht.

[0011] Auferdem kann noch ein zweiter Programm-
code bereitgestellt werden, um eine Gruppierung zu-

2010.12.09

sammenwirkender virtueller Befehlsfolgen zu definie-
ren, die dafur geeignet sind, einen Eingabedatensatz
zu verarbeiten, um einen Ausgabedatensatz zu er-
zeugen, wobei jede virtuelle Befehlsfolge in der Grup-
pierung gleichzeitig das Programm virtueller Befehls-
folgen ausfuhrt. Der zweite Programmcode wird auf
vorteilhafte Weise in eine Abfolge von Funktionsauf-
rufen in einer Bibliothek virtueller Funktionen umge-
wandelt, wobei die Bibliothek virtuelle Funktionen
enthalt, welche die Gruppierung zusammenwirken-
der virtueller Befehlsfolgen initialisieren und deren
Ausfuhrung veranlassen. Diese Abfolge von Funkti-
onsaufrufen kann ebenfalls gespeichert werden. Das
gespeicherte Programm virtueller Befehlsfolgen und
die Abfolge von Funktionsaufrufen kann dann in ei-
nen Programmcode Ubersetzt werden, der auf einer
Zielplattformarchitektur ausfiuhrbar ist, wobei der
ausflihrbare Programmcode eine oder mehrere Platt-
formbefehlsfolgen definiert, welche die Gruppierung
zusammenwirkender virtueller Befehlsfolgen ausfih-
ren. Der ausfiihrbare Programmcode kann auf einem
Computersystem ausgefiihrt werden, das mit der
Zielplattformarchitektur kompatibel ist, wodurch der
Ausgabedatensatz erzeugt wird, der in einem Spei-
chermedium gespeichert werden kann (zum Beispiel
Computerspeicher, Festplatte oder dergleichen).

[0012] Wie angemerkt, enthalt die Abfolge von Be-
fehlen je Befehlsfolge in dem Code des Programms
virtueller Befehlsfolgen vorteilhafterweise mindes-
tens einen Befehl, der ein Zusammenwirkungsver-
halten zwischen der reprasentativen virtuellen Be-
fehlsfolge und einer oder mehreren anderen virtuel-
len Befehlsfolgen der Gruppierung definiert. Zum
Beispiel kdnnte die Abfolge von Befehlen je Befehls-
folge aufweisen einen Befehl, die Ausfiihrung von
Operationen fir die reprasentative virtuelle Befehls-
folge an einen bestimmten Punkt in der Abfolge aus-
zusetzen, bis eine oder mehrere der anderen virtuel-
len Befehlsfolgen jenen bestimmten Punkt erreichen,
einen Befehl fir die reprasentative virtuelle Befehls-
folge, Daten in einem gemeinsam genutzten Spei-
cher zu speichern, auf den eine oder mehrere der an-
deren virtuellen Befehlsfolgen Zugriff haben, einen
Befehl fur die reprasentative virtuelle Befehlsfolge,
nicht unterbrechbar (atomically) Daten zu lesen und
zu aktualisieren, die in einem gemeinsam genutzten
Speicher gespeichert sind, auf den eine oder mehre-
re der anderen virtuellen Befehlsfolgen Zugriff haben,
oder dergleichen.

[0013] Das Programm virtueller Befehlsfolgen kann
auch eine Variablendefinitionsaussage enthalten, die
eine Variable in einem aus einer Anzahl von virtuellen
Zustandsraumen definiert, wobei verschiedene virtu-
elle Zustandsrdume verschiedenen Modi der ge-
meinsamen Datennutzung zwischen den virtuellen
Befehlsfolgen entsprechen. In einer Ausfihrungs-
form werden mindestens ein je Befehlsfolge nicht ge-
meinsam genutzter Modus und ein global gemein-

3/43

DE 20 2008 017 916 U1

sam genutzter Modus unterstitzt. In anderen Ausflh-
rungsformen kénnen auch zusatzliche Modi unter-
stutzt werden, wie zum Beispiel ein gemeinsam ge-
nutzter Modus innerhalb einer Gruppierung virtueller
Befehlsfolgen und/oder ein gemeinsam genutzter
Modus zwischen mehreren Gruppierungen virtueller
Befehlsfolgen.

[0014] Gemal einem weiteren Aspekt der vorlie-
genden Erfindung enthalt ein Verfahren zum Betrei-
ben eines Zielprozessors das Bereitstellen von ei-
nem Eingabeprogrammcode. Der Eingabepro-
grammcode enthalt einen ersten Abschnitt, der eine
Abfolge von Operationen definiert, die fir jede einer
Anzahl virtueller Befehlsfolgen in einer Gruppierung
virtueller Befehlsfolgen auszufiihren sind, die daflr
geeignet sind, einen Eingabedatensatz zu verarbei-
ten, um einen Ausgabedatensatz zu erzeugen, und
enthalt auch einen zweiten Abschnitt, der eine Di-
mension der Gruppierung virtueller Befehlsfolgen de-
finiert. Der erste Abschnitt des Eingabeprogramm-
code wird zu einem Programm virtueller Befehlsfol-
gen kompiliert, das eine Abfolge von Befehlen je Be-
fehlsfolge definiert, die flr eine reprasentative virtuel-
le Befehlsfolge der Gruppierung ausgefihrt werden
sollen. Die Abfolge von Befehlen je Befehlsfolge ent-
halt mindestens einen Befehl, der ein Zusammenwir-
kungsverhalten zwischen der reprasentativen virtuel-
len Befehlsfolge und einer oder mehreren anderen
virtuellen Befehlsfolgen der Gruppierung definiert.
Der zweite Abschnitt des Eingabeprogrammcode
wird in eine Abfolge von Funktionsaufrufen an eine
Bibliothek virtueller Funktionen umgewandelt, wobei
die Bibliothek virtuelle Funktionen enthalt, welche die
Gruppierung zusammenwirkender virtueller Befehls-
folgen initialisieren und deren Ausfiuhrung veranlas-
sen. Das Programm virtueller Befehlsfolgen und die
Abfolge von Funktionsaufrufen werden in einen Pro-
grammcode Ubersetzt, der auf einer Zielplattformar-
chitektur ausfihrbar ist, wobei der ausfuhrbare Pro-
grammcode eine oder mehrere reale Befehlsfolgen
definiert, welche die Gruppierung zusammenwirken-
der virtueller Befehlsfolgen ausfiihrt. Der ausfihrbare
Programmcode wird auf einem Computersystem
ausgefihrt, das mit der Zielplattformarchitektur kom-
patibel ist, wodurch der Ausgabedatensatz erzeugt
wird, der in einem Speichermedium gespeichert
kann.

[0015] In einigen Ausfihrungsformen kdnnen Grup-
pierungen virtueller Befehlsfolgen in zwei oder mehr
Dimensionen definiert werden. Des Weiteren kann
der zweite Abschnitt des Eingabeprogrammcode
auch einen Funktionsaufruf enthalten, der eine oder
mehrere Dimensionen eines Gitters aus Gruppierun-
gen virtueller Befehlsfolgen definiert, wobei jede
Gruppierung in dem Gitter ausgefuhrt werden soll.

[0016] Es kann jede beliebige Zielplattformarchitek-
tur verwendet werden. In einigen Ausfiihrungsformen

2010.12.09

enthalt die Zielplattformarchitektur einen Master-Pro-
zessor und einen Koprozessor. Wahrend der Uber-
setzung kann das Programm virtueller Befehlsfolgen
in Programmcode uUbersetzt werden, der parallel
durch eine Anzahl von Befehlsfolgen ausfihrbar ist,
die in dem Koprozessor definiert werden, wahrend
die Abfolge von Funktionsaufrufen in eine Abfolge
von Rufen an ein Treiberprogramm fiir den Kopro-
zessor, das auf dem Master-Prozessor ausgefiihrt
wird, Ubersetzt wird. In anderen Ausflihrungsformen
enthalt die Zielplattformarchitektur eine zentrale Ver-
arbeitungseinheit (CPU). Wahrend der Ubersetzung
werden das Programm virtueller Befehlsfolgen und
mindestens ein Abschnitt der Abfolge von Funktions-
aufrufen in einen Zielprogrammcode Ubersetzt, der
die Gruppierung virtueller Befehlsfolgen mit Hilfe ei-
nen Anzahl von CPU-Befehlsfolgen ausfihrt, die we-
niger sind als die Anzabhl virtueller Befehlsfolgen.

[0017] Gemal einer weiteren Ausfihrungsform der
vorliegenden Erfindung enthalt ein Verfahren zum
Betreiben eines Zielprozessors das Erlangen eines
Programms virtueller Befehlsfolgen, die eine Abfolge
von Befehlen je Befehlsfolge definieren, die fir eine
reprasentative virtuelle Befehlsfolge einer Anzahl vir-
tueller Befehlsfolgen in einer Gruppierung virtueller
Befehlsfolgen ausgefiihrt werden sollen, die dafur
geeignet sind, einen Eingabedatensatz zu verarbei-
ten, um einen Ausgabedatensatz zu erzeugen. Die
Abfolge von Befehlen je Befehlsfolge enthalt mindes-
tens einen Befehl, der ein Zusammenwirkungsver-
halten zwischen der reprasentativen virtuellen Be-
fehlsfolge und einer oder mehreren anderen virtuel-
len Befehlsfolgen der Gruppierung definiert. Ein zu-
satzlicher Programmcode, der Dimensionen der
Gruppierung virtueller Befehlsfolgen definiert, wird
ebenfalls erhalten. Das Programm virtueller Befehls-
folgen und der zusatzliche Programmcode werden in
einen Programmcode Ubersetzt, der auf der Zielplatt-
formarchitektur ausfihrbar ist, wobei der ausfuhrbare
Programmcode eine oder mehrere Plattformbefehls-
folgen definiert, welche die Gruppierung virtueller Be-
fehlsfolgen ausfihren. Der ausfihrbare Programm-
code wird auf einem Computersystem ausgefihrt,
das mit der Zielplattformarchitektur kompatibel ist,
wodurch der Ausgabedatensatz erzeugt wird und der
Ausgabedatensatz in einem Speicher gespeichert
wird.

[0018] In einigen Ausfuhrungsformen kann das Pro-
gramm virtueller Befehlsfolgen erhalten werden, in-
dem ein Quellprogrammcode empfangen wird, der in
einer hoheren Programmiersprache geschrieben
wurde, und der Quellprogrammcode kompiliert wird,
um das Programm virtueller Befehlsfolgen zu gene-
rieren. Alternativ kann das Programm virtueller Be-
fehlsfolgen von einem Speichermedium gelesen wer-
den oder von einem radumlich abgesetzten Computer-
system Uber ein Netzwerk empfangen werden. Es
versteht sich, dass der Code virtueller Befehlsfolgen,

4/43

DE 20 2008 017 916 U1

der gelesen oder empfangen wird, zuvor aus einer
héheren Sprache kompiliert worden sein kdnnte oder
direkt als Code generiert worden sein kdnnte, der mit
einer virtuellen Befehlssatzarchitektur kompatibel ist.

[0019] Die folgende detaillierte Beschreibung zu-
sammen mit den begleitenden Zeichnungen ermdg-
licht ein besseres Verstehen der Art und der Vorteile
der vorliegenden Erfindung.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0020] Fig. 1 ist ein Blockschaubild eines Compu-
tersystems gemaR einer Ausflihrungsform der vorlie-
genden Erfindung.

[0021] Fig. 2A und Fig. 2B veranschaulichen die
Beziehung zwischen Gittern, Befehlsfolgen-Gruppie-
rungen und Befehlsfolgen in einem Programmiermo-
dell, das in Ausfiuihrungsformen der vorliegenden Er-
findung verwendet wird.

[0022] Fig. 3 ist ein Blockschaubild einer virtuellen
Architektur gemaR einer Ausfiihrungsform der vorlie-
genden Erfindung.

[0023] FEiq. 4 ist ein Konzeptmodell der Verwendung
einer virtuellen Architektur zum Betreiben eines Ziel-
prozessors gemal einer Ausfihrungsform der vorlie-
genden Erfindung.

[0024] Fig. 5ist eine Tabelle, die spezielle Variablen
auflistet, die durch eine virtuelle Befehlssatzarchitek-
tur (Instruction Set Architecture — ISA) gemaR einer
Ausfuhrungsform der vorliegenden Erfindung defi-
niert wird.

[0025] FEig. 6 ist eine Tabelle, die Typen von Variab-
len auflistet, die in einer virtuellen ISA gemaR einer
Ausfuhrungsform der vorliegenden Erfindung unter-
stutzt werden.

[0026] Fig. 7 ist eine Tabelle, die virtuelle Zustands-
raume auflistet, die in einer virtuellen ISA geman ei-
ner Ausfiuhrungsform der vorliegenden Erfindung un-
terstutzt werden.

[0027] Fig. 8A-Fig. 8H sind Tabellen, die virtuelle
Befehle auflisten, die in einer virtuellen ISA gemaR ei-
ner Ausfuhrungsform der vorliegenden Erfindung de-
finiert werden.

[0028] Fig.9 ist ein Flussdiagramm eines Prozes-
ses zur Verwendung eines virtuellen Befehlstiberset-
zers gemal einer Ausflihrungsform der vorliegenden
Erfindung.

[0029] Fig. 10 ist eine Tabelle, die Funktionen auf-
listet, die in einer virtuellen Bibliothek fiir einen virtu-
ellen Ausfiihrungstreiber gemaf einer Ausfiihrungs-

2010.12.09

form der vorliegenden Erfindung verfugbar sind.

DETAILLIERTE BESCHREIBUNG DER ERFIN-
DUNG

[0030] Ausfiihrungsformen der vorliegenden Erfin-
dung stellen eine virtuelle Architektur und einen virtu-
ellen Befehlssatz zur Berechnung paralleler Befehls-
folgen bereit. Die virtuelle Architektur stellt ein Modell
eines Prozessors, der die gleichzeitige Ausflihrung
mehrerer Befehlsfolgen mit mehreren Graden ge-
meinsamer Datennutzung und Koordination (zum
Beispiel Synchronisation) zwischen verschiedenen
Befehlsfolgen unterstitzt, sowie einen virtuellen Aus-
fuhrungstreiber, der den Modell-Prozessor steuert,
bereit. Der virtuelle Befehlssatz, der dafir verwendet
wird, das Verhalten einer Verarbeitungsbefehlsfolge
zu definieren, enthalt Befehle, die sich auf das Ver-
halten paralleler Befehlsfolgen beziehen, zum Bei-
spiel Befehle, die eine gemeinsame Nutzung von Da-
ten Uber bestimmte Befehlsfolgen hinweg gestatten,
und Befehle, die verlangen, dass unterschiedliche
Befehlsfolgen an bestimmten vom Programmierer
angegebenen Punkten innerhalb eines Programms
synchronisiert werden. Mit Hilfe der virtuellen Platt-
form kénnen Programmierer Anwendungsprogram-
me entwickeln, in denen gleichzeitige, zusammenwir-
kende Befehlsfolgen ausgefuhrt werden, um Daten
zu verarbeiten. Hardware-spezifische virtuelle Be-
fehlslibersetzer und virtuelle Ausflihrungstreiber pas-
sen den Anwendungscode an bestimmte Hardware
an, auf der er ausgefuhrt werden soll. Infolge dessen
sind Anwendungsprogramme besser portierbar und
einfacher zu entwickeln, da der Entwicklungsprozess
unabhéangig von bestimmter Verarbeitungshardware
ist.

1. Systemuberblick

[0031] Fig. 1 ist ein Blockschaubild eines Compu-
tersystems 100 gemaR einer Ausfihrungsform der
vorliegenden Erfindung. Das Computersystem 100
enthalt eine zentrale Verarbeitungseinheit (CPU) 102
und einen Systemspeicher 104, der Uber einen Bus-
pfad kommuniziert, der eine Speicherbriicke 105 ent-
halt. Die Speicherbriicke 105, die zum Beispiel ein
Northbridge-Chip sein kann, ist Uber einen Bus oder
einen anderen Kommunikationspfad 106 (zum Bei-
spiel einen HyperTransport-Link) mit einer E/A (Ein-
gabe/Ausgabe)-Briicke 107 verbunden. Die E/A-Bri-
cke 107, die zum Beispiel ein Southbridge-Chip sein
kann, empfangt Benutzereingaben von einem oder
mehreren Benutzereingabegeraten 108 (zum Bei-
spiel Tastatur, Maus) und leitet die Eingabe tber den
Pfad 106 und die Speicherbriicke 105 an die CPU
102 weiter. Ein Parallelverarbeitungsteilsystem 112
ist Uber einen Bus oder einen anderen Kommunikati-
onspfad 113 (zum Beispiel einen PCI Express- oder
Accelerated Graphics Port-Link) an die Speicherbrii-
cke 105 gekoppelt. In einer Ausfihrungsform ist das

5/43

DE 20 2008 017 916 U1

Parallelverarbeitungsteilsystem 112 ein Grafik-Teil-
system, das Pixel an ein Anzeigegerat 110 (zum Bei-
spiel einen herkdmmlichen Kathodenstrahlréhren-
oder Flissigkristallmonitor) ausgibt. Eine System-
festplatte 114 ist ebenfalls mit der E/A-Briicke 107
verbunden. Ein Schalter 116 stellt Verbindungen zwi-
schen der E/A-Bricke 107 und anderen Komponen-
ten her, wie zum Beispiel einem Netzwerkadapter
118 und verschiedenen Einsteckkarten 120 und 121.
Es kénnen noch andere (nicht ausdriicklich gezeigte)
Komponenten, darunter USB- oder andere Portver-
bindungen, CD-Laufwerke, DVD-Laufwerke und der-
gleichen, mit der E/A-Briicke 107 verbunden werden.
Kommunikationspfade, welche die verschiedenen
Komponenten in Fig. 1 untereinander verbinden,
kénnen mit Hilfe beliebiger geeigneter Protokolle, wie
zum Beispiel PCI (Peripheral Component Intercon-
nect), PCl Express (PCI-E), AGP (Accelerated Gra-
phics Port), HyperTransport oder sonstiger anderer
Bus- oder Punkt-zu-Punkt-Kommunikationsprotokol-
le implementiert werden, und Verbindungen zwi-
schen verschiedenen Geraten kénnen mit verschie-
denen Protokollen arbeiten, wie es dem Fachmann
bekannt ist.

[0032] Das Parallelverarbeitungsteilsystem 112 ent-
halt eine Parallelverarbeitungseinheit (Parallel Pro-
cessing Unit — PPU) 122 und einen Parallelverarbei-
tungs (Parallel Processing — PP)-Speicher 124, die
zum Beispiel unter Verwendung einer oder mehrerer
integrierter Schaltkreiselemente implementiert wer-
den kénnen, wie zum Beispiel programmierbare Pro-
zessoren, anwendungsspezifische integrierte Schalt-
kreise (Application-Specific Integrated Circuits — ASI-
Cs) und Speicherbausteine. Die PPU 122 implemen-
tiert vorteilhafterweise einen hoch-parallelen Prozes-
sor, der einen oder mehrere Verarbeitungskerne ent-
halt, von denen jeder in der Lage ist, eine grof3e An-
zahl (zum Beispiel Hunderte) von Befehlsfolgen
gleichzeitig auszufthren. Die PPU 122 kann daflr
programmiert werden, ein weites Feld von Berech-
nungen auszufuhren, zum Beispiel lineare und
nicht-lineare Datentransformierungen, Filterung von
Video- und/oder Audiodaten, Modellierung (zum Bei-
spiel Anwendung physikalischer Gesetze zum Be-
stimmen von Position, Geschwindigkeit und anderen
Attributen von Objekten), Bildrendern und so weiter.
Die PPU 122 kann Daten aus dem Systemspeicher
104 und/oder dem PP-Speicher 124 in einen internen
Speicher Ubertragen, die Daten verarbeiten und Er-
gebnisdaten zurlick in den Systemspeicher 104
und/oder PP-Speicher 124 schreiben, wo andere
Systemkomponenten, einschlie3lich beispielsweise
der CPU 102, auf solche Daten zugreifen kénnen. In
einigen Ausfuhrungsformen ist die PPU 122 ein Gra-
fikprozessor, der auch dafiur konfiguriert werden
kann, verschiedene Aufgaben auszufiihren, die im
Zusammenhang stehen mit: der Generierung von Pi-
xeldaten aus Grafikdaten, die durch die CPU 102
und/oder den Systemspeicher 104 (ber die

2010.12.09

Speicherbriicke 105 und den Bus 113 herangefuhrt
werden; der Interaktion mit dem PP-Speicher 124
(der als Grafikspeicher verwendet werden kann, ein-
schliellich beispielsweise als herkdmmlicher Fra-
me-Puffer) zum Speichern und Aktualisieren von Pi-
xeldaten; der Zuflihrung von Pixeldaten zum Anzei-
gegerat 110 und dergleichen. In einigen Ausflih-
rungsformen kann das PP-Teilsystem 112 eine PPU
122, die als ein Grafikprozessor fungiert, und eine
weitere PPU 122, die fir Allzweckberechnungen ver-
wendet wird, enthalten. Die PPUs kdnnen identisch
oder verschieden sein, und jede PPU kann ihre eige-
nen dedizierten PP-Speicherbausteine haben.

[0033] Die CPU 102 fungiert als der Master-Prozes-
sor des Systems 100 und steuert und koordiniert die
Operationen anderer Systemkomponenten. Insbe-
sondere gibt die CPU 102 Befehle aus, welche die
Funktion der PPU 122 steuern. In einigen Ausflh-
rungsformen schreibt die CPU 102 einen Befehls-
strom fir die PPU 122 in einen Befehlspuffer, der sich
im Systemspeicher 104, im PP-Speicher 124 oder ei-
nem anderen Speicherort befinden kann, auf den so-
wohl die CPU 102 als auch die PPU 122 zugreifen
kann. Die PPU 122 liest den Befehlsstrom aus dem
Befehlspuffer und fiihrt Befehle asynchron mit dem
Betrieb der CPU 102 aus.

[0034] Es versteht sich, dass das im vorliegenden
Text gezeigte System veranschaulichend ist und
dass Variationen und Modifikationen mdglich sind.
Die Verbindungstopologie, einschlieBlich der Anzahl
und Anordnung von Bricken, kann nach Wunsch mo-
difiziert werden. Zum Beispiel ist in einigen Ausfiih-
rungsformen der Systemspeicher 104 mit der CPU
102 direkt anstatt Gber eine Briicke verbunden, und
andere Gerate kommunizieren mit dem Systemspei-
cher 104 Uiber die Speicherbriicke 105 und die CPU
102. In anderen alternativen Topologien ist das
PP-Teilsystem 112 mit der E/A-Briicke 107 anstatt mit
der Speicherbriicke 105 verbunden. In wieder ande-
ren Ausfihrungsformen kénnten die E/A-Briicke 107
und die Speicherbriicke 105 in einen einzelnen Chip
integriert werden. Die im vorliegenden Text gezeigten
konkreten Komponenten sind optional. Zum Beispiel
kénnte eine beliebige Anzahl von Einsteckkarten
oder Peripheriegeraten unterstitzt werden. In eini-
gen Ausfihrungsformen wird der Schalter 116 weg-
gelassen, und der Netzwerkadapter 118 und die Ein-
steckkarten 120, 121 sind direkt mit der E/A-Briicke
107 verbunden.

[0035] Die Verbindung der PPU 122 mit dem Rest
des Systems 100 kann auch variiert werden. In eini-
gen Ausfihrungsformen ist das PP-System 112 als
eine Einsteckkarte implementiert, die in einen Erwei-
terungsschlitz des Systems 100 eingesteckt werden
kann. In anderen Ausfiihrungsformen kann eine PPU
auf einem einzelnen Chip mit einer Busbricke, wie
zum Beispiel einer Speicherbricke 105 oder

6/43

DE 20 2008 017 916 U1

E/A-Brucke 107, integriert sein. In wieder anderen
Ausfuhrungsformen kdnnen einige oder alle Elemen-
te der PPU 122 in die CPU 102 integriert sein.

[0036] Eine PPU kann mit einer beliebigen Menge
lokalem PP-Speicher versehen sein, einschlief3lich
ohne lokalem Speicher, und kann lokalen Speicher
und Systemspeicher in jeder beliebigen Kombination
verwenden. Zum Beispiel kann die PPU 122 ein Gra-
fikprozessor in einer Ausfuhrungsform mit einer ver-
einigten Speicherarchitektur (Unified Memory Ar-
chitecture — UMA) sein. In solchen Ausfuhrungsfor-
men wird wenig oder gar kein dedizierter Grafikspei-
cher bereitgestellt, und die PPU 122 wirde aus-
schliel3lich oder fast ausschlieBlich Systemspeicher
verwenden. In UMA-Ausfihrungsformen kann die
PPU in einen Brickenchip integriert sein oder kann
als ein diskreter Chip mit einem Hochgeschwindig-
keitslink (zum Beispiel PCI-E) vorhanden sein, der
die PPU mit dem Briickenchip und dem Systemspei-
cher verbindet.

[0037] Es versteht sich des Weiteren, dass eine be-
liebige Anzahl von PPUs in ein System aufgenom-
men werden kann, zum Beispiel durch Einbinden
mehrerer PPUs auf einer einzelnen Einsteckkarte, in-
dem mehrere Einsteckkarten mit dem Pfad 113 ver-
bunden werden und/oder indem eine oder mehrere
PPUs direkt mit der Hauptplatine eines System ver-
bunden werden. Mehrere PPUs koénnen parallel be-
trieben werden, um Daten mit einem hoéheren Durch-
satz zu verarbeiten, als es mit einer einzelnen PPU
moglich ist.

[0038] Dem Fachmann ist auch klar, dass eine CPU
und eine PPU in einem einzelnen Baustein integriert
sein kénnen und dass die CPU und die PPU ver-
schiedene Ressourcen gemeinsam nutzen kdnnen,
wie zum Beispiel Befehlslogik, Puffer, Cachespei-
cher, Hauptspeicher, Verarbeitungsmaschinen und
so weiter, oder dass separate Ressourcen fir die Pa-
rallelverarbeitung und andere Operationen bereitge-
stellt werden kénnen. Dementsprechend kénnten be-
liebige oder alle der Schaltkreise und/oder Funktio-
nen, die im vorliegenden Text als zu der PPU gehé-
rend beschrieben werden, auch in einer in geeigneter
Weise ausgestatteten CPU implementiert und durch
diese ausgefiihrt werden.

[0039] Systeme, die PPUs enthalten, kénnen in ei-
ner Vielzahl verschiedener Konfigurationen und
Formfaktoren implementiert werden, darunter Desk-
top-, Laptop- oder handgehaltene (handheld) Perso-
nalcomputer, Server, Arbeitsplatzrechner, Spielekon-
solen, eingebettete Systeme und so weiter.

[0040] Der Fachmann erkennt auch, dass ein Vorteil
der vorliegenden Erfindung in einer gréReren Unab-
hangigkeit von bestimmter Computerhardware be-
steht. Dementsprechend versteht es sich, dass Aus-

2010.12.09

fuhrungsformen der vorliegenden Erfindung mit Hilfe
jedes beliebigen Computersystems praktiziert wer-
den kénnen, einschliellich Systemen, die keine PPU
enthalten.

2. Uberblick — virtuelles Programmiermodell

[0041] In Ausfuhrungsformen der vorliegenden Er-
findung ist es wiinschenswert, die PPU 122 oder ei-
nen oder mehrere andere Prozessoren eines Com-
putersystems einzusetzen, um Allzweckberechnun-
gen unter Verwendung von Befehlsfolgen-Gruppie-
rungen auszufuhren. Im Sinne des vorliegenden Tex-
tes ist eine "Befehlsfolge-Gruppierung” eine Gruppe,
die aus einer Anzahl (n,) von Befehlsfolgen besteht,
die gleichzeitig dasselbe Programm an einem Einga-
bedatensatz ausflihren, um einen Ausgabedatensatz
zu erzeugen. Jeder Befehlsfolge in der Befehlsfol-
ge-Gruppierung ist ein eindeutiger Befehlsfolge-Iden-
tifikator (eine "Befehlsfolge-ID”) zugewiesen, auf den
die Befehlsfolge wahrend ihrer Ausfiihrung zugreifen
kann. Die Befehlsfolge-ID, die als ein eindimensiona-
ler oder mehrdimensionaler numerischer Wert defi-
niert sein kann (zum Beispiel 0 bis n,-1), steuert ver-
schiedene Aspekte des Verarbeitungsverhaltens der
Befehlsfolge. Zum Beispiel kann eine Befehlsfolge-ID
verwendet werden, um zu bestimmen, welcher Ab-
schnitt des Eingabedatensatzes eine Befehlsfolge
verarbeiten soll, und/oder um zu bestimmen, wel-
chen Abschnitt eines Ausgabedatensatzes eine Be-
fehlsfolge erzeugen oder schreiben soll.

[0042] In einigen Ausfihrungsformen sind die Be-
fehlsfolgen-Gruppierungen "zusammenwirkende”
Befehlsfolgen-Gruppierungen oder CTAs (Cooperati-
ve Thread Arrays). Wie bei anderen Arten von Be-
fehlsfolgen-Gruppierungen ist eine CTA eine Gruppe
mehrerer Befehlsfolgen, die gleichzeitig dasselbe
Programm (im vorliegenden Text als ein "CTA-Pro-
gramm” bezeichnet) an einem Eingabedatensatz
ausfiuihren, um einen Ausgabedatensatz zu erzeu-
gen. In einer CTA kdénnen die Befehlsfolgen zusam-
menwirken, indem sie Daten in einer Weise gemein-
sam nutzen, die von der Befehlsfolge-ID abhangt.
Zum Beispiel kénnen in einer CTA Daten durch eine
Befehlsfolge erzeugt und durch eine andere ver-
braucht werden. In einigen Ausfihrungsformen kén-
nen Synchronisationsbefehle in den CTA-Programm-
code an Punkten eingefiigt werden, wo Daten ge-
meinsam genutzt werden sollen, um zu gewahrleis-
ten, dass die Daten tatsachlich durch die erzeugende
Befehlsfolge erzeugt wurden, bevor die verbrauchen-
de Befehlsfolge versucht, darauf zuzugreifen. Das
Ausmall der gemeinsamen Datennutzung (sofern
eine solche stattfindet) zwischen Befehlsfolgen einer
CTA wird durch das CTA-Programm bestimmt. Es
versteht sich somit, dass in einer bestimmten Anwen-
dung, die CTAs verwendet, die Befehlsfolgen einer
CTA je nach dem CTA-Programm Daten gemeinsam
nutzen kénnten, aber nicht missen, und die Begriffe

7/43

DE 20 2008 017 916 U1

"CTA” und ’"Befehlsfolge-Gruppierung” werden im
vorliegenden Text synonym verwendet.

[0043] In einigen Ausfihrungsformen nutzen Be-
fehlsfolgen in einer CTA Eingabedaten und/oder Zwi-
schenergebnisse gemeinsam mit anderen Befehls-
folgen in derselben CTA. Zum Beispiel kdnnte ein
CTA-Programm einen Befehl enthalten, um eine
Adresse in einem gemeinsam genutzten Speicher zu
berechnen, in den bestimmte Daten geschrieben
werden sollen, wobei die Adresse eine Funktion der
Befehlsfolge-ID ist. Jede Befehlsfolge berechnet die
Funktion unter Verwendung ihrer eigenen Befehlsfol-
ge-ID und schreibt in den entsprechenden Ort. Die
Adressfunktion wird vorteilhafterweise so definiert,
dass verschiedene Befehlsfolgen in verschiedene
Orte schreiben. Solange die Funktion deterministisch
ist, ist der Ort, in den eine Befehlsfolge schreibt, vor-
hersagbar. Das CTA-Programm kann auch einen Be-
fehl enthalten, eine Adresse in dem gemeinsam ge-
nutzten Speicher zu berechnen, aus dem Daten ge-
lesen werden sollen, wobei die Adresse eine Funkti-
on der Befehlsfolge-ID ist. Durch Definieren geeigne-
ter Funktionen und Bereitstellen von Synchronisati-
onstechniken kdnnen Daten in einer vorhersagbaren
Weise durch eine Befehlsfolge einer CTA in einen be-
stimmten Ort im gemeinsam genutzten Speicher ge-
schrieben werden und durch eine andere Befehlsfol-
ge derselben CTA von diesem Ort gelesen werden.
Folglich kann jedes beliebige gewlinschte Muster ei-
ner gemeinsamen Datennutzung zwischen Befehls-
folgen unterstitzt werden, und eine beliebige Be-
fehlsfolge in einer CTA kann Daten mit jeder anderen
Befehlsfolge in derselben CTA gemeinsam nutzen.

[0044] CTAs (oder andere Arten von Befehlsfol-
gen-Gruppierungen) werden vorteilhafterweise ver-
wendet, um Berechnungen auszufiihren, die sich fur
eine datenparallele Zerlegung anbieten. Im Sinne
des vorliegenden Textes beinhaltet eine "datenparal-
lele Zerlegung” jede Situation, bei der ein Rechenpro-
blem durch mehrmaliges paralleles Ausfihren des-
selben Algorithmus an Eingabedaten geldst wird, um
Ausgabedaten zu erzeugen. Zum Beispiel beinhaltet
ein haufiger Fall einer datenparallelen Zerlegung das
Anwenden desselben Verarbeitungsalgorithmus auf
verschiedene Abschnitte eines Eingabedatensatzes,
um verschiedene Abschnitte eines Ausgabedaten-
satzes zu erzeugen. Zu Beispielen von Problemen,
die sich fur eine datenparallele Zerlegung eignen, ge-
héren Matrixalgebra, lineare und/oder nicht-lineare
Transformationen in jeder beliebigen Anzahl von Di-
mensionen (zum Beispiel Schnelle Fourier-Transfor-
mationen) und verschiedenen Filterungsalgorithmen,
einschlieRlich Faltungsfilter in jeder beliebigen An-
zahl von Dimensionen, abtrennbare Filter in mehre-
ren Dimensionen und so weiter. Der Verarbeitungsal-
gorithmus, der auf jeden Abschnitt des Eingabeda-
tensatzes anzuwenden ist, istin dem CTA-Programm
spezifiziert, und jede Befehlsfolge in einer CTA flhrt

2010.12.09

dasselbe CTA-Programm an einem einzelnen Ab-
schnitt des Eingabedatensatzes aus. Ein CTA-Pro-
gramm kann Algorithmen unter Verwendung eines
weiten Bereichs mathematischer und logischer Ope-
rationen implementieren, und das Programm kann
bedingte oder verzweigende Ausfiihrungspfade und
direkten und/oder indirekten Speicherzugriff enthal-
ten.

[0045] CTAs und ihre Ausfiihrung sind in weiterer
Ausfuhrlichkeit in der oben angesprochenen Anmel-
dung Nr. 11/303,780 beschrieben.

[0046] In einigen Situationen ist es auch nutzlich,
ein "Gitter” aus zueinander in Beziehung stehenden
CTAs (oder allgemeiner ausgedrickt: Befehlsfol-
gen-Gruppierungen) zu definieren. Im Sinne des vor-
liegenden Textes ist ein "Gitter” aus CTAs eine Zu-
sammenstellung einer Anzahl (n,) von CTAs, in der
alle CTAs die gleiche GroéRe (d. h. Anzahl von Be-
fehlsfolgen) haben und dasselbe CTA-Programm
ausfiihren. Die n, CTAs innerhalb eines Gitters sind
vorteilhafterweise unabhangig voneinander, was be-
deutet, dass die Ausfiihrung einer beliebigen CTA in
dem Gitter nicht durch die Ausflhrung einer anderen
CTA in dem Gitter beeinflusst wird. Wie noch deutlich
werden wird, ermdglicht dieses Merkmal eine signifi-
kante Flexibilitdat bei der Verteilung von CTAs zwi-
schen verfugbaren Verarbeitungskernen.

[0047] Um verschiedene CTAs innerhalb eines Git-
ters voneinander zu unterscheiden, wird jeder CTA
des Gitters vorteilhafterweise ein "CTA-ldentifikator”
(oder eine CTA-ID) zugewiesen. Wie bei Befehlsfol-
ge-IDs kann jeder beliebige eindeutige Identifikator
(einschlief3lich beispielsweise numerischer Identifika-
toren) als eine CTA-ID verwendet werden. In einer
Ausfuhrungsform sind CTA-IDs einfach sequenzielle
(eindimensionale) Indexwerte von 0 bis n,-1. In ande-
ren Ausfuhrungsformen kénnen mehrdimensionale
Indexierungsschemas verwendet werden. Die
CTA-ID ist fur alle Befehlsfolgen einer CTA gleich,
und eine Befehlsfolge einer bestimmten CTA inner-
halb des Gitters kann ihre CTA-ID in Verbindung mit
ihrer Befehlsfolge-ID verwenden, um zum Beispiel ei-
nen Quellenort zum Lesen von Eingabedaten
und/oder einen Zielort zum Schreiben von Ausgabe-
daten zu bestimmen. Auf diese Weise kénnen Be-
fehlsfolgen in verschiedenen CTAs desselben Gitters
gleichzeitig am selben Datensatz arbeiten, obgleich
in einigen Ausfuhrungsformen die gemeinsame Nut-
zung von Daten zwischen verschiedenen CTAs in ei-
nem Gitter nicht unterstitzt wird.

[0048] Das Definieren eines Gitters aus CTAs kann
nutzlich sein, zum Beispiel wenn es gewunscht wird,
mehrere CTAs zu verwenden, um verschiedene Ab-
schnitte eines einzelnen groRen Problems zu l6sen.
Zum Beispiel kdnnte es wiinschenswert sein, einen
Filterungsalgorithmus auszuflihren, um ein hochauf-

8/43

DE 20 2008 017 916 U1

I6sendes Fernsehbild (HDTV) zu erzeugen. Wie dem
Fachmann bekannt ist, kdnnte ein HDTV-Bild tber 2
Millionen Pixel enthalten. Wenn jede Befehlsfolge ein
Pixel erzeugt, so wirde die Anzahl der auszufiihren-
den Befehlsfolgen die Anzahl der Befehlsfolgen, die
in einer einzelnen CTA verarbeitet werden kénnen,
Ubersteigen (unter der Annahme einer Verarbei-
tungsplattform mit angemessener GréRe und von
sinnvollen Kosten, die unter Verwendung herkémmli-
cher Techniken hergestellt ist).

[0049] Diese groRe Verarbeitungsaufgabe kann
verwaltet werden, indem man das Bild zwischen
mehreren CTAs aufteilt, wobei jede CTA einen ande-
ren Abschnitt (zum Beispiel ein 16 x 16-Feld) der
ausgegebenen Pixel erzeugt. Alle CTAs flhren das-
selbe Programm aus, und die Befehlsfolgen verwen-
den eine Kombination aus der CTA-ID und der Be-
fehlsfolge-ID zum Bestimmen von Orten zum Lesen
von Eingabedaten und Schreiben von Ausgabeda-
ten, so dass jede CTA an dem richtigen Abschnitt des
Eingabedatensatzes arbeitet und ihren Abschnitt des
Ausgabedatensatzes in den richtigen Ort schreibt.

[0050] Es ist anzumerken, dass im Gegensatz zu
Befehlsfolgen innerhalb einer CTA (die Daten ge-
meinsam nutzen kdnnen) CTAs innerhalb eines Git-
ters vorteilhafterweise keine Daten gemeinsam nut-
zen oder auf sonstige Weise voneinander abhangig
sind. Das heil’t, zwei CTAs desselben Gitters kbnnen
sequenziell (in beliebiger Reihenfolge) oder gleich-
zeitig ausgefuhrt werden und trotzdem identische Er-
gebnisse hervorbringen. Folglich kann eine Verarbei-
tungsplattform (zum Beispiel das System 100 von
Eig. 1) ein Gitter aus CTAs ausfihren und ein Ergeb-
nis erhalten, indem sie zuerst eine CTA ausfihrt,
dann die nachste CTA, und so weiter, bis alle CTAs
des Gitters ausgefiihrt wurden. Alternativ kann, wenn
genlgend Ressourcen verflgbar sind, eine Verarbei-
tungsplattform dasselbe Gitter ausfuhren und dassel-
be Ergebnis erhalten, indem sie mehrere CTAs paral-
lel ausfihrt.

[0051] In einigen Fallen kann es wiinschenswert
sein, mehrere (n,) Gitter aus CTAs zu definieren, wo-
bei jedes Gitter einen anderen Abschnitt eines Daten-
verarbeitungsprogramms oder einer Datenverarbei-
tungsaufgabe ausfiihrt. Zum Beispiel kénnte die Da-
tenverarbeitungsaufgabe in eine Anzahl von "L6-
sungsschritten” unterteilt werden, wobei jeder L6-
sungsschritt durch Ausfiihren eines Gitters aus CTAs
ausgefuhrt wird. Als ein weiteres Beispiel kdnnte die
Datenverarbeitungsaufgabe das Ausfihren der glei-
chen oder ahnlichen Operationen an einer Abfolge
von Eingabedatensatzen (zum Beispiel aufeinander-
folgenden Frames von Video-Daten) enthalten. Ein
Gitter aus CTAs kann fir jeden Eingabedatensatz
ausgefuhrt werden. Das virtuelle Programmiermodell
unterstitzt vorteilhafterweise mindestens diese drei
Stufen der Arbeitsdefinition (d. h. Befehlsfolgen,

2010.12.09

CTAs und Gitter aus CTAs). Gewtinschtenfalls kénn-
ten auch weitere Stufen unterstltzt werden.

[0052] Es versteht sich, dass die GroRe (Anzahl n,
von Befehlsfolgen) einer CTA, die GroRe (Anzahl n,
von CTAs) eines Gitters und die Anzahl (n,) von Git-
tern, die zur Lésung eines bestimmten Problems ver-
wendet werden, von den Parametern des Problems
und von den Praferenzen des Programmierers oder
des automatisierten Agenten, der die Problemzerle-
gung definiert, abhangen. Somit wird in einigen Aus-
fuhrungsformen die GréRe einer CTA, die Grole ei-
nes Gitters und die Anzahl von Gittern vorteilhafter-
weise durch einen Programmierer definiert.

[0053] Die Probleme, die von dem CTA-Ansatz pro-
fitieren, sind in der Regel durch das Vorhandensein
einer groRen Anzahl von Datenelementen gekenn-
zeichnet, die parallel verarbeitet werden kdénnen. In
einigen Fallen sind die Datenelemente Ausgabeele-
mente, von denen jedes durch Ausfiihren desselben
Algorithmus an verschiedenen (eventuell Uberlap-
penden) Abschnitten eines Eingabedatensatzes er-
zeugt wird. In anderen Fallen kénnen die Datenele-
mente Eingabeelemente sein, die jeweils unter Ver-
wendung desselben Algorithmus zu verarbeiten sind.

[0054] Solche Probleme kdénnen immer in mindes-
tens zwei Stufen zerlegt und auf die oben beschrie-
benen Befehlsfolgen, CTAs und Gitter abgebildet
werden. Zum Beispiel konnte jedes Gitter das Ergeb-
nis eines Ldsungsschrittes in einer komplexen Da-
tenverarbeitungsaufgabe darstellen. Jedes Gitter ist
vorteilhafterweise in eine Anzahl von "Blécken” unter-
teilt, von denen jeder als eine einzelne CTA verarbei-
tet werden kann. Jeder Block enthalt vorteilhafterwei-
se mehrere "Elemente”, d. h. elementare Abschnitte
des zu lésenden Problems (zum Beispiel einen ein-
zelnen Eingabedatenpunkt oder einen einzelnen
Ausgabedatenpunkt). Innerhalb der CTA verarbeitet
jede Befehlsfolge ein oder mehrere Elemente.

[0055] Die Fig. 2A und Fig. 2B veranschaulichen
die Beziehung zwischen Gittern, CTAs und Befehls-
folgen in einem virtuellen Programmiermodell, das in
Ausfuhrungsformen der vorliegenden Erfindung ver-
wendet wird. Fig. 2A zeigt eine Anzahl von Gittern
200, wobei jedes Gitter aus einer zweidimensionalen
(2-D) Gruppierung von CTAs 202 hergestellt ist. (Im
vorliegenden Text werden mehrere Instanzen glei-
cher Objekte mit Bezugszahlen bezeichnet, die das
Objekt identifizieren, und in Klammern gesetzte Zah-
len identifizieren, wo erforderlich, die Instanz.) Wie in
Fig. 2B fir die CTA 202 (0,0) gezeigt, enthalt jede
CTA 202 eine 2-D-Gruppierung von Befehlsfolgen
(©) 204. Fir jede Befehlsfolge 204 in jeder CTA 202
jedes Gitter 200 kann ein eindeutiger Identifikator der
Form | = [iy, i., i] definiert werden, wobei ein Gitteri-
dentifikator i, das Gitter eindeutig identifiziert, eine
CTA-ID i, die CTA innerhalb des Gitters eindeutig

9/43

DE 20 2008 017 916 U1

identifiziert und eine Befehlsfolge-ID i, die Befehlsfol-
ge innerhalb der CTA eindeutig identifiziert. In dieser
Ausfuhrungsform kénnte der Identifikator | aus einem
eindimensionalen Gitteridentifikator i,, einem zweidi-
mensionalen CTA-Identifikator i, und einem zweidi-
mensionalen Befehlsfolge-ldentifikator i, aufgebaut
sein. In anderen Ausfiihrungsformen ist der eindeuti-
ge ldentifikator | eine Dreiergruppe aus ganzen Zah-
len, wobei 0 < i; <ny 0 <i,<n;; und 0 <i < n,. In wie-
der anderen Ausfihrungsformen kdnnten beliebige
oder alle des Gitters, der CTA und der Befehlsfol-
ge-ldentifikatoren als eine eindimensionale ganze
Zahl, ein 2D-Koordinatenpaar, eine 3D-Dreiergruppe
oder dergleichen ausgedriickt werden. Der eindeuti-
ge Befehlsfolge-ldentifikator | kann zum Beispiel da-
fur verwendet werden, einen Quellenort fur Eingabe-
daten innerhalb einer Gruppierung zu bestimmen, die
einen Eingabedatensatz flir ein ganzes Gitter oder
mehrere Gitter umfasst, und/oder um einen Zielort
zum Speichern von Ausgabedaten innerhalb einer
Gruppierung zu bestimmen, die einen Ausgabeda-
tensatz fir ein ganzes Gitter oder mehrere Gitter um-
fasst.

[0056] Zum Beispiel kdnnte im Fall eines HDTV-Bil-
des jede Befehlsfolge 204 einem Pixel des ausgege-
benen Bildes entsprechen. Die GréRRe (Anzahl von
Befehlsfolgen 204) einer CTA 202 kann bei der Pro-
blemzerlegung frei entschieden werden und ist nur
durch eine Beschrankung auf die Hochstzahl von Be-
fehlsfolgen in einer einzelnen CTA 202 begrenzt (was
die endliche Natur der Prozessorressourcen wider-
spiegelt). Ein Gitter 200 kénnte einem ganzen Frame
von HDTV-Daten entsprechen, oder mehrere Gitter
konnten auf einen einzelnen Frame abgebildet wer-
den.

[0057] In einigen Ausfihrungsformen ist die Pro-
blemzerlegung gleichférmig, was bedeutet, dass alle
Gitter 200 die gleiche Anzahl und Anordnung von
CTAs 202 haben und alle CTAs 202 die gleiche An-
zahl und Anordnung von Befehlsfolgen 204 haben. In
anderen Ausfuhrungsformen kann die Zerlegung un-
gleichférmig sein. Zum Beispiel kdnnten verschiede-
ne Gitter verschiedene Anzahlen von CTAs enthal-
ten, und verschiedene CTAs (in demselben Gitter
oder in verschiedenen Gittern) konnten verschiedene
Anzahlen von Befehlsfolgen enthalten.

[0058] Eine CTA, wie oben definiert, kann Dutzende
oder sogar Hunderte gleichzeitiger Befehlsfolgen
enthalten. Ein Parallelverarbeitungssystem, auf dem
eine CTA ausgefuhrt werden soll, kdnnte gegebenen-
falls eine solche groRe Anzahl gleichzeitiger Befehls-
folgen unterstitzen. In einem Aspekt entkoppelt die
vorliegende Erfindung den Programmierer von sol-
chen Hardwarebeschrankungen, indem sie es dem
Programmierer gestattet, eine Verarbeitungsaufgabe
unter Verwendung des Modells von CTAs und von
Gittern aus CTAs unabhéangig von den tatsachlichen

2010.12.09

Fahigkeiten der Hardware zu definieren. Zum Bei-
spiel kann der Programmierer Code (ein "CTA-Pro-
gramm”) schreiben, der die eine oder die mehreren
Verarbeitungsaufgaben, die auszufihren sind, durch
eine einzelne reprasentative Befehlsfolge der CTA
definieren; der eine CTA als eine Anzahl solcher Be-
fehlsfolgen definiert, die jeweils einen eindeutigen
Identifikator haben; und der ein Gitter als eine Anzahl
von CTAs definiert, die jeweils einen eindeutigen
Identifikator haben. Wie unten beschrieben, wird ein
solcher Code automatisch in einen Code ubersetzt,
der auf einer bestimmten Plattform ausgefiihrt wer-
den kann. Wenn zum Beispiel die CTA so definiert ist,
dass sie eine Anzahl n, gleichzeitiger Befehlsfolgen
enthalt, aber die Zielplattform nur eine einzige Be-
fehlsfolge unterstiitzt, so kann der Ubersetzer eine
einzelne reale Befehlsfolge definieren, welche die
Aufgaben ausfiihrt, die allen der n, Befehlsfolgen zu-
gewiesen sind. Wenn die Zielplattform mehr als eine,
aber weniger als n, gleichzeitige Befehlsfolgen unter-
stutzt, so kdnnen die Aufgaben nach Wunsch zwi-
schen der Anzahl verfiigbarer Befehlsfolgen aufge-
teilt werden.

[0059] Dementsprechend ist das Programmiermo-
dell von CTAs und Gittern als ein virtuelles Modell zu
verstehen, d. h. ein Modell, das eine Konzepthilfe fir
den Programmierer ist und von jeder konkreten phy-
sischen Realisierung abgekoppelt ist. Das virtuelle
Modell von CTAs und Gittern kann in einer Vielzahl
verschiedener Zielplattformen mit variierenden Gra-
den von Hardwareunterstiitzung fir die Parallelverar-
beitung realisiert werden. Genauer gesagt, bezieht
sich der Begriff "CTA-Befehlsfolge” im Sinne des vor-
liegenden Textes auf ein virtuelles Modell einer dis-
kreten Verarbeitungsaufgabe (die eventuell mit einer
oder mehreren anderen Verarbeitungsaufgaben zu-
sammenwirkt), und es versteht sich, dass CTA-Be-
fehlsfolgen gegebenenfalls eins zu eins auf Befehls-
folgen auf der Zielplattform abgebildet werden kénn-
ten.

3. Virtuelle Architektur

[0060] GemalR einem Aspekt der vorliegenden Er-
findung wird eine virtuelle Parallelarchitektur zum
Ausfuhren von CTAs und Gittern aus CTAs definiert.
Die virtuelle Parallelarchitektur ist eine Darstellung ei-
nes Parallelprozessors und zugehdriger Speicher-
rdume, welche die Ausfuhrung einer gro3en Anzahl
gleichzeitiger CTA-Befehlsfolgen unterstutzen, die zu
einem Zusammenwirkungsverhalten befahigt sind,
wie zum Beispiel der gemeinsamen Nutzung von Da-
ten und der Synchronisierung miteinander an ge-
wlinschten Zeitpunkten. Diese virtuelle Parallelarchi-
tektur kann auf eine Vielzahl verschiedener realer
Prozessoren und/oder Verarbeitungssysteme abge-
bildet werden, einschlie3lich beispielsweise der PPU
122 des Systems 100 von Eig. 1. Die virtuelle Archi-
tektur definiert vorteilhafterweise eine Anzahl virtuel-

10/43

DE 20 2008 017 916 U1

ler Speicherrdume, die verschiedene Grade gemein-
samer Datennutzung und Arten des Zugriffs unter-
stltzen, sowie eine virtuelle Befehlssatzarchitektur
(Instruction Set Architecture — ISA), die alle Funktio-
nen identifiziert, die durch einen virtuellen Prozessor
ausgefuhrt werden kénnen. Die virtuelle Architektur
definiert vorteilhafterweise auch einen virtuellen Aus-
fuhrungstreiber, der dafir verwendet werden kann,
die CTA-Ausflhrung zu steuern, zum Beispiel durch
Definieren und Starten einer CTA oder eines Gitters
aus CTAs.

[0061] Fig. 3 ist ein Blockschaubild einer virtuellen
Architektur 300 gemal einer Ausfiihrungsform der
vorliegenden Erfindung. Die virtuelle Architektur 300
enthalt einen virtuellen Prozessor 302 mit einem vir-
tuellen Kern 308, der dafir konfiguriert ist, eine groRe
Anzahl von CTA-Befehlsfolgen parallel auszufiihren.
Die virtuelle Architektur 300 enthalt auch einen globa-
len Speicher 304, auf den der virtuelle Prozessor 302
zugreifen kann, und einen virtuellen Treiber 320, der
Befehle ausgibt, um den Betrieb des virtuellen Pro-
zessors 302 zu steuern. Der virtuelle Treiber 320
kann auch auf den globalen Speicher 304 zugreifen.

[0062] Der virtuelle Prozessor 302 enthalt ein
Front-End 306, das Befehle von dem virtuellen Trei-
ber 320 empfangt und interpretiert, und einen Aus-
fihrungskern 308, der in der Lage ist, alle n, Befehls-
folgen einer einzelnen CTA gleichzeitig auszufiihren.
Der virtuelle Kern 308 enthalt eine gro3e Anzahl (n,
oder mehr) virtueller Verarbeitungsmaschinen 310. In
einer Ausflihrungsform flihrt jede virtuelle Verarbei-
tungsmaschine 310 eine einzelne CTA-Befehlsfolge
aus. Die virtuellen Verarbeitungsmaschinen 310 fih-
ren ihre jeweiligen CTA-Befehlsfolgen gleichzeitig
aus, wenn auch nicht unbedingt parallel. In einer Aus-
fuhrungsform spezifiziert die virtuelle Architektur 300
eine Anzahl T (zum Beispiel 384, 500, 768 usw.) vir-
tueller Verarbeitungsmaschinen 310. Diese Anzahl
setzt der Anzahl n, von Befehlsfolgen in einer CTA
eine Obergrenze. Es versteht sich, dass eine Reali-
sierung der virtuellen Architektur 300 auch weniger
physische Verarbeitungsmaschinen als die spezifi-
zierte Anzahl T enthalten kann und dass eine einzel-
ne Verarbeitungsmaschine mehrere CTA-Befehlsfol-
gen ausfuhren kann, entweder als eine einzelne "re-
ale” (d. h. Plattform-unterstltzte) Befehlsfolge oder
als mehrere gleichzeitige reale Befehlsfolgen.

[0063] Der virtuelle Prozessor 302 enthalt auch eine
virtuelle Befehlseinheit 312, die dafir sorgt, dass die
virtuellen Verarbeitungsmaschinen 310 mit Befehlen
fur ihre jeweiligen CTA-Befehlsfolgen versorgt wer-
den. Die Befehle werden durch eine virtuelle ISA de-
finiert, die Teil der virtuellen Architektur 300 ist. Ein
Beispiel einer virtuellen ISA zur Berechnung paralle-
ler Befehlsfolgen ist unten beschrieben. Die Befehls-
einheit 312 verwaltet die Synchronisation der
CTA-Befehlsfolgen und andere Zusammenwirkungs-

2010.12.09

aspekte des Verhaltens von CTA-Befehlsfolgen im
Verlauf des Sendens von Befehlen an die virtuellen
Verarbeitungsmaschinen 310.

[0064] Der virtuelle Kern 308 stellt eine interne Da-
tenspeicherung mit verschiedenen Zugéanglichkeits-
graden bereit. Die speziellen Register 311 kdnnen
durch die virtuellen Verarbeitungsmaschinen 310 be-
schrieben, aber nicht gelesen werden, und werden
daflrr verwendet, Parameter zu speichern, welche die
"Position” jeder CTA-Befehlsfolge innerhalb des Pro-
blemzerlegungsmodells von Fig. 2 definieren. In ei-
ner Ausfuhrungsform enthalten die speziellen Regis-
ter 311 ein Register je CTA-Befehlsfolge (oder je vir-
tueller Verarbeitungsmaschine 310), das eine Be-
fehlsfolge-ID speichert. Jedes Befehlsfolge-ID-Re-
gister ist nur fir eine jeweilige der virtuellen Verarbei-
tungsmaschinen 310 zuganglich. Die speziellen Re-
gister 311 kdnnen auch zusétzliche Register enthal-
ten, die durch alle CTA-Befehlsfolgen (oder durch alle
virtuellen Verarbeitungsmaschinen 310) gelesen
werden konnen, die einen CTA-Identifikator, die
CTA-Dimensionen, die Dimensionen eines Gitters, zu
dem die CTA gehoért, und einen ldentifikator eines
Gitters, zu dem die CTA gehort, speichern. Die spezi-
ellen Register 311 werden wahrend der Initialisierung
in Reaktion auf Befehle beschrieben, die Uber das
Front-End 306 von dem virtuellen Treiber 320 emp-
fangen werden, und &ndern sich wahrend der
CTA-Ausfiihrung nicht.

[0065] Lokale virtuelle Register 314 werden durch
jede CTA-Befehlsfolge als Arbeitsraum verwendet.
Jedes Register wird fir die ausschlieBlich Verwen-
dung einer einzelnen CTA-Befehlsfolge (oder einer
einzelnen virtuellen Verarbeitungsmaschine 310) zu-
gewiesen, und die Daten in jedem der lokalen Regis-
ter 314 sind nur fur die CTA-Befehlsfolge zuganglich,
der sie zugewiesen sind. Der gemeinsam genutzte
Speicher 316 ist fur alle CTA-Befehlsfolgen (inner-
halb einer einzelnen CTA) zuganglich. Jeder Ort in
dem gemeinsam genutzten Speicher 316 ist fur jede
CTA-Befehlsfolge innerhalb derselben CTA (oder fur
jede virtuelle Verarbeitungsmaschine 310 innerhalb
des virtuellen Kerns 308) zuganglich. Der Parameter-
speicher 318 speichert Laufzeitparameter (Konstan-
ten), die durch jede CTA-Befehlsfolge (oder jede vir-
tuelle Verarbeitungsmaschine 310) gelesen, aber
nicht beschrieben werden kdnnen. In einer Ausfih-
rungsform gibt der virtuelle Treiber 320 Parameter an
den Parameterspeicher 318 aus, bevor er den virtu-
ellen Prozessor 302 anweist, die Ausfuhrung einer
CTA zu beginnen, die diese Parameter verwendet.
Jede CTA-Befehlsfolge innerhalb einer CTA (oder ei-
ner virtuellen Verarbeitungsmaschine 310 innerhalb
des virtuellen Kerns 308) kann Uber eine Speicher-
schnittstelle 322 auf den globalen Speicher 304 zu-
greifen.

[0066] In der virtuellen Architektur 300 wird der vir-

11/43

DE 20 2008 017 916 U1

tuelle Prozessor 302 als ein Koprozessor unter der
Steuerung des virtuellen Treibers 320 betrieben. Die
Spezifikation der virtuellen Architektur enthalt vorteil-
hafterweise eine virtuelle Anwendungsprogramm-
schnittstelle (Application Program Interface — API),
die Funktionsaufrufe identifiziert, die durch den virtu-
ellen Treiber 320 erkannt werden, und das Verhalten
identifiziert, von dem erwartet wird, dass jeder Funk-
tionsaufruf es hervorruft,. Beispielhafte Funktionsauf-
rufe fur eine virtuelle API fir die Berechnung paralle-
ler Befehlsfolgen werden unten beschrieben.

[0067] Die virtuelle Architektur 300 kann auf einer
Vielzahl verschiedener Hardwareplattformen reali-
siert werden. In einer Ausfuihrungsform ist die virtuel-
le Architektur 300 im System 100 von Fig. 1 realisiert,
wobei die PPU 122 den virtuellen Prozessor 302 im-
plementiert und ein PPU-Treiberprogramm, das auf
der CPU 102 ausgefihrt wird, den virtuellen Treiber
320 implementiert. Der globale Speicher 304 kann im
Systemspeicher 104 und/oder im PP-Speicher 124
implementiert werden.

[0068] In einer Ausfihrungsform enthalt die PPU
122 einen oder mehrere Verarbeitungskerne, die mit
Einzelbefehls-Mehrfachdaten (Single-Instruction,
Multiple-Data — SIMD)- und Nebenlaufigkeitstechni-
ken arbeiten, um die gleichzeitige Ausfiihrung einer
groRen Anzahl (zum Beispiel 384 oder 768) von Be-
fehlsfolgen von einer einzelnen Befehlseinheit (wel-
che die virtuelle Befehlseinheit 312 implementiert) zu
unterstutzen. Jeder Kern enthalt eine Gruppierung P
(zum Beispiel 8, 16 usw.) von Parallelverarbeitungs-
maschinen 302, die daftr konfiguriert sind, SIMD-Be-
fehle von der Befehlseinheit zu empfangen und aus-
zufiihren, wodurch Gruppen von bis zu P Befehlsfol-
gen parallel verarbeitet werden kénnen. Der Kern ar-
beitet mit Nebenlaufigkeit (multithreaded), wobei jede
Verarbeitungsmaschine in der Lage ist, bis zu einer
Anzahl G (zum Beispiel 24) von Befehlsfolgegruppen
gleichzeitig auszuflihren, zum Beispiel durch Fiihren
von aktuellen Zustandsinformation, die zu jeder Be-
fehlsfolge gehdren, dergestalt, dass die Verarbei-
tungsmaschine rasch von einer Befehlsfolge zu einer
anderen umschalten kann. Somit fihrt der Kern
gleichzeitig G SIMD-Gruppen von jeweils P Befehls-
folgen aus, also insgesamt P x G gleichzeitige Be-
fehisfolgen. In dieser Realisierung kann es, solange
P x G z n,, eine Eins-zu-eins-Entsprechung zwischen
den (virtuellen) CTA-Befehlsfolgen und gleichzeitigen
Befehlsfolgen geben, die auf der realen PPU 122
ausgefiihrt werden.

[0069] Spezielle Register 311 kénnen in der PPU
122 implementiert werden, indem man jeden Verar-
beitungskern mit einer Registerdatei aus P x G Ein-
tragen versieht, wobei jeder Eintrag in der Lage ist,
eine Befehlsfolge-ID zu speichern, und indem man
einen Satz global auslesbarer Register zum Spei-
chern einer CTA-ID, einer Gitter-ID und von CTA- und

2010.12.09

Gitterdimensionen bereitstellt. Alternativ kdnnen die
speziellen Register 311 auch unter Verwendung an-
derer Speicherorte implementiert werden.

[0070] Lokale Register 314 kdnnen in der PPU 122
als eine Lokalregisterdatei implementiert werden, die
physisch oder logisch in P Bahnen unterteilt ist, die
jeweils eine Anzahl von Eintragen aufweisen (wobei
jeder Eintrag zum Beispiel ein 32-Bit-Wort speichern
kénnte). Jeder der P Verarbeitungsmaschinen ist
eine Bahn zugewiesen, und entsprechende Eintrage
in verschiedenen Bahnen kdnnen mit Daten fur ver-
schiedene Befehlsfolgen, die dasselbe Programm
ausfihren, gefullt werden, um die SIMD-Ausflhrung
zu ermdglichen. Verschiedene Abschnitte der Bah-
nen kénnen verschiedenen der G gleichzeitigen Be-
fehlsfolgegruppen zugewiesen werden, so dass ein
bestimmter Eintrag in der Lokalregisterdatei nur fir
eine bestimmte Befehlsfolge zuganglich ist. In einer
Ausfuhrungsform sind bestimmte Eintrage innerhalb
der Lokalregisterdatei fiir das Speichern von Befehls-
folge-Identifikatoren reserviert, die eines der speziel-
len Register 311 implementieren.

[0071] Der gemeinsam genutzte Speicher 316 kann
in der PPU 122 als eine gemeinsam genutzte Regis-
terdatei oder als ein gemeinsam genutzter
On-Chip-Cachespeicher mit einer Zwischenverbin-
dung implementiert werden, die es jeder Verarbei-
tungsmaschine gestattet, jeden beliebigen Ortin dem
gemeinsam genutzten Speicher zu lesen oder zu be-
schreiben. Der Parameterspeicher 318 kann in der
PPU 122 als eine bezeichnete Sektion innerhalb der-
selben gemeinsam genutzten Registerdatei oder
desselben gemeinsam genutzten Cachespeichers,
der den gemeinsam genutzten Speicher 316 imple-
mentiert, oder als eine separate gemeinsam genutzte
Registerdatei oder ein separater gemeinsam genutz-
ter On-Chip-Cachespeicher implementiert werden,
auf den die Verarbeitungsmaschinen einen Nurlese-
zugriff haben. In einer Ausfihrungsform wird der Be-
reich, der den Parameterspeicher implementiert,
auch dafir verwendet, die CTA-ID und die Gitter-ID
sowie die CTA- und Gitterdimensionen zu speichern,
die Abschnitte der speziellen Register 311 implemen-
tieren.

[0072] In einer Ausflihrungsform reagiert ein
PPU-Treiberprogramm, das auf der CPU 102 von
Fig. 1 ausgefuhrt wird, auf Funktionsaufrufe der virtu-
ellen API durch Schreiben von Befehlen in einen
(nicht ausdricklich gezeigten) Einspeicherungspuffer
im Speicher (zum Beispiel Systemspeicher 104), aus
dem die Befehle durch die PPU 122 ausgelesen wer-
den. Die Befehle sind vorteilhafterweise mit Zu-
standsparametern verbunden, wie zum Beispiel der
Anzahl von Befehlsfolgen in der CTA; dem Ort eines
Eingabedatensatzes, der unter Verwendung der CTA
zu verarbeiten ist, im globalen Speicher; dem Ort des
auszufihrenden CTA-Programms im globalen Spei-

12/43

DE 20 2008 017 916 U1

cher; und dem Ort im globalen Speicher, in den die
Ausgabedaten geschrieben werden sollen. In Reakti-
on auf die Befehle und Zustandsparameter Iadt die
PPU 122 Zustandsparameter in einen ihrer Kerne
und beginnt dann mit dem Starten von Befehlsfolgen,
bis die Anzahl von Befehlsfolgen, die in den CTA-Pa-
rametern spezifiziert sind, gestartet wurden. In einer
Ausfuhrungsform enthalt die PPU 122 eine Steuerlo-
gik, die Befehlsfolge-IDs sequenziell zu Befehlsfol-
gen in der Reihenfolge zuweist, wie sie gestartet wur-
den. Die Befehlsfolge-ID kann zum Beispiel an einem
bezeichneten Ort innerhalb der Lokalregisterdatei
oder in einem speziellen Register, das speziell die-
sem Zweck dient, gespeichert werden.

[0073] In einer alternativen Ausflihrungsform ist die
virtuelle Architektur 300 in einem einfach-gereihten
Verarbeitungskern (zum Beispiel in einigen CPUs)
realisiert, der alle CTA-Befehlsfolgen unter Verwen-
dung von weniger als n, realen Befehlsfolgen aus-
fuhrt. Verarbeitungsaufgaben, die das virtuelle Pro-
grammiermodell verschiedenen CTA-Befehlsfolgen
zuordnet, kénnen zu einer einzelnen Befehlsfolge
kombiniert werden, zum Beispiel durch Ausfihren
der Aufgabe (oder eines Abschnitts der Aufgabe) fur
eine CTA-Befehlsfolge, dann flir die nachste CTA-Be-
fehisfolge, und so weiter. Vektorausfuhrung,
SIMD-Ausfuhrung und/oder sonstige Formen von
Parallelismus, die in der Maschine verfugbar sind,
kénnen genutzt werden, um Verarbeitungsaufgaben,
die mit mehreren CTA-Befehlsfolgen verbunden sind,
parallel auszufihren oder um mehrere Verarbei-
tungsaufgaben, die mit derselben CTA-Befehlsfolge
verbunden sind, parallel auszufihren. Somit kann
eine CTA unter Verwendung einer einzelnen Befehls-
folge, von n, Befehlsfolgen oder einer sonstigen An-
zahl von Befehlsfolgen realisiert werden. Wie unten
beschrieben, Ubersetzt ein virtueller Befehlsliberset-
zer vorteilhafterweise Code, der in die virtuelle Zielar-
chitektur 300 geschrieben wurde, in Befehle, die fur
eine Zielplattform spezifisch sind.

[0074] Es versteht sich, dass die im vorliegenden
Text beschriebene virtuelle Architektur veranschauli-
chend ist und dass Variationen und Modifikationen
moglich sind. Zum Beispiel kann in einer alternativen
Ausfuhrungsform jede virtuelle Verarbeitungsmaschi-
ne ein dediziertes Befehlsfolge-ID-Register haben,
das die eindeutige Befehlsfolge-ID, die ihrer Befehls-
folge zugewiesen ist, speichert, anstatt Raum in loka-
len virtuellen Registern fir diesen Zweck zu verwen-
den.

[0075] Als ein weiteres Beispiel kann die virtuelle
Architektur mehr oder weniger Details bezlglich der
internen Struktur des virtuellen Kerns 308 spezifizie-
ren. Zum Beispiel kdnnte spezifiziert werden, dass
der virtuelle Kern 308 P nebenlaufige virtuelle Verar-
beitungsmaschinen enthalt, die verwendet werden,
um CTA-Befehlsfolgen in P-Wege-SIMD-Gruppen

2010.12.09

auszufuhren, wobei bis zu G SIMD-Gruppen im Kern
308 nebeneinander existieren, dergestalt, dass P x G
T bestimmt (die Héchstzahl von Befehlsfolgen in ei-
ner CTA). Verschiedene Arten von Speicher und Gra-
de der gemeinsamen Nutzung kénnen ebenfalls spe-
zifiziert werden.

[0076] Die virtuelle Architektur kann in einer Vielzahl
verschiedener Computersysteme unter Verwendung
einer beliebigen Kombination von Hardware-
und/oder Software-Elementen zum Definieren und
Steuern jeder Komponente realisiert werden. Ob-
gleich eine Realisierung unter Verwendung von
Hardware-Komponenten beispielhaft beschrieben
wurde, versteht es sich, dass die vorliegende Erfin-
dung das Abkoppeln von Programmieraufgaben von
einer bestimmten Hardware-Realisierung betrifft.

4. Programmieren der virtuellen Architektur

[0077] Fig. 4 ist ein Konzeptmodell 400 der Verwen-
dung der virtuellen Architektur 300 zum Betreiben ei-
nes Zielprozessors oder einer Zielplattform 440 ge-
mal einer Ausfuhrungsform der vorliegenden Erfin-
dung. Wie das Modell 400 zeigt, entkoppelt das Vor-
handensein der virtuellen Architektur 300 kompilierte
Anwendungen und APIls von der Hardware-Imple-
mentierung des Zielprozessors oder der Zielplatt-
form.

[0078] Ein Anwendungsprogramm 402 definiert
eine Datenverarbeitungsanwendung, die das oben
beschriebene virtuelle Programmiermodell, ein-
schlie3lich einzelner CTAs und/oder Gitter aus CTAs,
nutzt. Allgemein weist das Anwendungsprogramm
402 mehrere Aspekte auf. Als erstes definiert das
Programm das Verhalten einer einzelnen CTA-Be-
fehlsfolge. Zweitens definiert das Programm die Di-
mensionen einer CTA (als Anzahl von CTA-Befehls-
folgen) und, wenn Gitter verwendet werden sollen,
die Dimensionen eines Gitters (als Anzahl von
CTAs). Drittens definiert das Programm einen Einga-
bedatensatz, der durch die CTA (oder das Gitter) ver-
arbeitet werden soll, und einen Ort, an dem der Aus-
gabedatensatz gespeichert werden soll. Viertens de-
finiert das Programm ein Gesamt-Verarbeitungsver-
halten, einschlief3lich beispielsweise, wann jede CTA
oder jedes Gitter gestartet werden soll. Das Pro-
gramm kann zusatzlichen Code enthalten, der dyna-
misch die Dimensionen einer CTA oder eines Gitters
bestimmt; der bestimmt, ob neue CTAs oder Gitter
weiter gestartet werden sollen, und so weiter.

[0079] Das Anwendungsprogramm 402 kann in ei-
ner héheren Programmiersprache, wie zum Beispiel
C/C++, FORTRAN oder dergleichen, geschrieben
werden. In einer Ausfuhrungsform spezifiziert ein
*C/C++"-Anwendungsprogramm direkt das Verhalten
einer (virtuellen) CTA-Befehlsfolge. In einer weiteren
Ausfuhrungsform wird ein Anwendungsprogramm

13/43

DE 20 2008 017 916 U1

unter Verwendung einer datenparallelen Sprache ge-
schrieben (zum Beispiel Fortran 90, C* oder Data-Pa-
rallel C) und spezifiziert datenparallele Operationen
an Gruppierungen und aggregierten Datenstruktu-
ren. Ein solches Programm kann zu virtuellem
ISA-Programmcode kompiliert werden, der das Ver-
halten einer (virtuellen) CTA-Befehlsfolge spezifiziert.
Um das Definieren des Verhaltens einer CTA-Be-
fehlsfolge zu ermdéglichen, kdénnen Spracherweite-
rungen oder eine Funktionsbibliothek bereitgestellt
werden, uber die der Programmierer das Verhalten
paralleler CTA-Befehlsfolgen spezifizieren kann.
Zum Beispiel kdnnen spezielle Symbole oder Variab-
len definiert werden, die der Befehisfolge-ID, der
CTA-ID und der Gitter-ID entsprechen, und es kon-
nen Funktionen bereitgestellt werden, Uber die der
Programmierer angeben kann, wann die CTA-Be-
fehlsfolge mit anderen CTA-Befehlsfolgen synchroni-
siert werden sollte.

[0080] Wenn das Anwendungsprogramm 402 kom-
piliert wird, so erzeugt der Kompilierer 408 einen vir-
tuellen ISA-Code 410 fur jene Abschnitte des Anwen-
dungsprogramms 402, die das Verhalten von
CTA-Befehlsfolgen definieren. In einer Ausflihrungs-
form wird virtueller ISA-Code 410 in der virtuellen ISA
der virtuellen Architektur 300 von Eig. 3 ausgedruckt.
Der virtuelle ISA-Code 410 ist Programmcode, wenn
auch nicht unbedingt Code in einer Form, der auf ei-
ner bestimmten Zielplattform ausgefihrt werden
kann. Als solches kann der virtuelle ISA-Code 410
wie jeder andere Programmcode gespeichert
und/oder verteilt werden. In anderen Ausflhrungsfor-
men kénnen Anwendungsprogramme ganz oder teil-
weise als virtueller ISA-Code 410 spezifiziert werden,
und der Kompilierer 408 kann ganz oder teilweise
umgangen werden.

[0081] Ein virtueller Befehlstubersetzer 412 konver-
tiert virtuellen ISA-Code 410 in einen Ziel-ISA-Code
414. In einigen Ausfuhrungsformen ist der
Ziel-ISA-Code 414 ein Code, der direkt durch eine
Zielplattform 440 ausgefiihrt werden kann. Zum Bei-
spiel kann, wie durch die in gestrichelter Linie Kasten
in Fig.4 gezeigt, in einer Ausfihrungsform der
Ziel-ISA-Code 414 durch eine Befehlseinheit 430 in
der PPU 122 empfangen und korrekt decodiert wer-
den. Je nach den Spezifika der Zielplattform 440
konnte der virtuelle ISA-Code 410 in Code je Befehls-
folge Ubersetzt werden, um durch jede von n, Be-
fehisfolgen auf der Zielplattform 440 ausgefiihrt zu
werden. Alternativ kénnte der virtuelle ISA-Code 410
in einen Programmcode ubersetzt werden, um in we-
niger als n, Befehlsfolgen ausgefiihrt zu werden, wo-
bei jede Befehlsfolge Verarbeitungsaufgaben enthalt,
die zu mehr als einer der CTA-Befehlsfolgen in Bezie-
hung stehen.

[0082] In einigen Ausfiihrungsformen werden die
Definition von Dimensionen von CTAs und/oder Git-

2010.12.09

tern sowie das Definieren von Eingabedatensatzen
und Ausgabedatensatzen durch eine virtuelle API ge-
handhabt. Das Anwendungsprogramm 402 kann
Rufe an eine Bibliothek 404 aus virtuellen API-Funk-
tionen enthalten. In einer Ausfihrungsform wird dem
Programmierer eine Spezifikation der virtuellen API
(einschlief3lich beispielsweise Funktionsnamen, Ein-
gaben, Ausgaben und Effekte, aber keine Implemen-
tierungsdetails) zur Verfiigung gestellt, und der Pro-
grammierer arbeitet virtuelle API-Rufe direkt in das
Anwendungsprogramm 402 ein, wodurch direkt virtu-
eller API-Code 406 erzeugt wird. In einer weiteren
Ausfuhrungsform wird der virtuelle API-Code 406
durch Kompilieren eines Anwendungsprogramms
402 erzeugt, das eine andere Syntax zum Definieren
von CTAs und Gittern verwendet.

[0083] Virtueller API-Code 406 wird zum Teil durch
Bereitstellen eines virtuellen Ausflihrungstreibers
416 realisiert, der die virtuellen API-Befehle aus
Code 406 in Ziel-AP|-Befehle 418 Ubersetzt, die
durch die Zielplattform 440 verarbeitet werden kon-
nen. Zum Beispiel kdnnen, wie durch die in Strichlinie
dargestellten Kasten in Fig. 4 gezeigt, in einer Aus-
fuhrungsform die Ziel-API-Befehle 418 durch einen
PPU-Treiber 432 empfangen und verarbeitet werden,
der entsprechende Befehle an das Front-End 434 der
PPU 122 Ubermittelt. (In dieser Ausfuhrungsform
kann der virtuelle Ausflihrungstreiber 416 ein Aspekt
oder Abschnitt des PPU-Treibers 432 sein.) In einer
weiteren Ausflihrungsform braucht der virtuelle Aus-
fuhrungstreiber nicht einem Treiber fur einen Kopro-
zessor zu entsprechen; er kdnnte einfach ein Steuer-
programm sein, das andere Programme oder Be-
fehlsfolgen auf demselben Prozessor startet, auf
dem der virtuelle Ausfihrungstreiber lauft.

[0084] Es versteht sich, dass ein virtueller Befehls-
bersetzer 412 und ein virtueller Ausflihrungstreiber
416 fur jede beliebige Plattform oder Architektur er-
zeugt werden konnen, die in der Lage ist, eine
CTA-Ausfuhrung zu unterstitzen. Insofern virtuelle
Befehlsubersetzer 412 fir verschiedene Plattformen
oder Architekturen aus derselben virtuellen ISA Uber-
setzen kénnen, kann derselbe virtuelle ISA-Code 410
mit jeder beliebigen Plattform oder Architektur ver-
wendet werden. Somit braucht das Anwendungspro-
gramm 402 nicht fir jede mogliche Plattform oder Ar-
chitektur rekompiliert zu werden.

[0085] Des Weiteren ist es nicht notwendig, dass
die Zielplattform 440 eine PPU und/oder einen
PPU-Treiber, wie in Fig. 4 gezeigt, enthalt. Zum Bei-
spiel ist in einer alternativen Ausfihrungsform die
Zielplattform eine CPU, die Software-Techniken ver-
wendet, um eine gleichzeitige Ausfiihrung einer gro-
Ren Anzahl von Befehlsfolgen zu emulieren, und der
Ziel-ISA-Code und die Ziel-API-Befehle entsprechen
Befehlen in einem Programm (oder einer Gruppe von
untereinander kommunizierenden Programme), um

14/43

DE 20 2008 017 916 U1

durch die Ziel-CPU ausgefiihrt zu werden, bei der es
sich zum Beispiel um eine Einzelkern- oder eine
Mehrkern-CPU handeln kann.

5. Beispiel einer virtuellen ISA

[0086] Ein Beispiel einer virtuellen ISA gemaR einer
Ausfuhrungsform der vorliegenden Erfindung wird
nun beschrieben. Wie oben angemerkt, entspricht
die virtuelle ISA vorteilhafterweise dem oben be-
schriebenen virtuellen Programmiermodell (CTAs
und Gittern). Dementsprechend definiert in dieser
Ausfuhrungsform der virtuelle ISA-Code 410, der
durch den Kompilierer 408 erzeugt wird, das Verhal-
ten einer einzelnen CTA-Befehlsfolge, um durch eine
der virtuellen Verarbeitungsmaschinen 310 im virtuel-
len Kern 308 von Fig. 3 ausgefihrt zu werden. Das
Verhalten kann zusammenwirkende Interaktionen mit
anderen CTA-Befehlsfolgen enthalten, wie zum Bei-
spiel Synchronisation und/oder gemeinsame Daten-
nutzung.

[0087] Es versteht sich, dass die im vorliegenden
Text beschriebene virtuelle ISA allein dem Zweck der
Veranschaulichung dient und dass die im vorliegen-
den Text beschriebenen konkreten Elemente oder
Kombinationen von Elementen nicht den Geltungs-
bereich der Erfindung einschranken. In einigen Aus-
fuhrungsformen kann ein Programmierer Code in der
virtuellen ISA schreiben. In anderen Ausflihrungsfor-
men schreibt der Programmierer Code in einer ande-
ren héheren Sprache (zum Beispiel FORTRAN, C,
C++), und der Kompilierer 408 erzeugt virtuellen
ISA-Code. Ein Programmierer kann auch "gemisch-
ten” Code schreiben, wobei einige Abschnitte des
Codes in einer hoéheren Sprache und andere Ab-
schnitte in der virtuellen ISA geschrieben sind.

5.1 Spezielle Variablen

[0088] FEiq.5 ist eine Tabelle 500, die "spezielle” Va-
riablen auflistet, die durch die beispielhafte virtuelle
ISA definiert werden (das Prafix "%” wird im vorlie-
genden Text verwendet, um eine spezielle Variable
zu kennzeichnen). Diese Variablen beziehen sich auf
das Programmiermodell von Fig. 2, wobei jede Be-
fehlsfolge 204 anhand ihrer Position innerhalb einer
CTA 202 identifiziert wird, die sich wiederum inner-
halb eines bestimmten aus einer Anzahl von Gittern
200 befindet. In einigen Ausfihrungsformen entspre-
chen die speziellen Variablen der Tabelle 500 spezi-
ellen Registern 311 in der virtuellen Architektur 300

von Fig. 3.

[0089] In Tabelle 500 wird angenommen, dass
CTAs und Gitter jeweils in einem dreidimensionalen
Raum definiert sind und dass verschiedene Gitter in
einem eindimensionalen Raum fortlaufend numme-
riert sind. Die virtuelle ISA erwartet, dass die speziel-
len Variablen von Fig. 5 initialisiert werden, wenn die

2010.12.09

CTA gestartet wird, und der virtuelle ISA-Code kann
einfach diese Variablen ohne Initialisierung verwen-
den. Die Initialisierung von speziellen Variablen wird
unten unter Bezug auf die virtuelle API besprochen.

[0090] Wie in Fig.5 gezeigt, definiert ein erster
3-Vektor aus speziellen Variablen %ntid = (%ntid.x,
%ntid.y, %ntid.z) die Dimensionen (als Anzahl von
Befehlsfolgen) einer CTA. Alle Befehlsfolgen einer
CTA teilen sich denselben %ntid-Vektor. In der virtu-
ellen Architektur 300 wird erwartet, dass Werte flr
den %ntid-Vektor an den virtuellen Prozessor 302
Uber einen Funktionsaufruf einer virtuellen API tber-
mittelt werden, der die Dimensionen einer CTA fest-
legt, wie unten beschrieben.

[0091] Wiein Fig. 5 gezeigt, bezieht sich ein zweiter
3-Vektor aus speziellen Variablen %tid = (%tid.x,
%tid.y, %tid.z) auf die Befehlsfolge-ID einer bestimm-
ten Befehlsfolge innerhalb einer CTA. In der virtuellen
Architektur 300 von Fig. 3 wird erwartet, dass der vir-
tuelle Prozessor 302 einen eindeutigen %tid-Vektor
zuweist, der die Vorgaben 0 < %tid.x < %ntid.x, 0 <
Y%tid.y < %ntid.y und 0 < %tid.z < %ntid.z erfillt, wenn
jede Befehlsfolge der CTA gestartet wird. In einer
Ausfuhrungsform kann der %tid-Vektor so definiert
werden, dass er in einem gepackten 32-Bit-Wort ge-
speichert werden kann (zum Beispiel 16 Bits fur
%tid.x, 10 Bits fur %tid.y und 6 Bits fiir %tid.z).

[0092] Wie in Fig.5 gezeigt, definiert ein dritter
3-Vektor aus speziellen Variablen %nctaid = (%nc-
taid.x, %nctaid.y, %nctaid.z) die Dimensionen (als
Anzahl von CTAs) eines Gitters. In der virtuellen Ar-
chitektur 300 von Fig. 3 wird erwartet, dass die Werte
fur den %nctaid-Vektor an den virtuellen Prozessor
302 (ber einen Funktionsaufruf einer virtuellen API
Ubermittelt werden, der die Dimensionen eines Git-
ters aus CTAs festlegt.

[0093] Wie in Fig. 5 gezeigt, bezieht sich ein vierter
3-Vektor auf spezielle Variablen %ctaid = (%ctaid.x,
%ctaid.y, %ctaid.z) auf die CTA-ID einer bestimmten
CTA innerhalb eines Gitters. In der virtuellen Archi-
tektur 300 von Fig. 3 wird erwartet, dass ein eindeu-
tiger %ctaid-Vektor, der die Vorgaben 0 < %ctaid.x <
%nctaid.x, 0 < %ctaid.y < %nctaid.y und 0 < %ctaid.z
< %nctaid.z fur die CTA erfiillt, an den virtuellen Pro-
zessor 302 Ubermittelt wird, wenn die CTA gestartet
wird.

[0094] Die speziellen Variablen enthalten auch eine
skalare %gridid-Variable, die einen Gitteridentifikator
fur das Gitter bildet, zu dem eine CTA gehort. In der
virtuellen Architektur 300 von Fig. 3 wird erwartet,
dass ein %gridid-Wert an den virtuellen Prozessor
302 Gbermittelt wird, um das Gitter zu identifizieren,
von dem die momentane CTA ein Teil ist. Der %gri-
did-Wert wird vorteilhafterweise in virtuellem ISA-Co-
de verwendet, zum Beispiel wenn mehrere Gitter ver-

15/43

DE 20 2008 017 916 U1

wendet werden, um verschiedene Abschnitte eines
grofRen Problems zu Iésen.

5.2. Programmdefinierte Variablen und virtuelle Zu-
standsrdume

[0095] Die virtuelle ISA ermoglicht es dem Program-
mierer (oder Kompilierer), eine willkirliche Anzahl
von Variablen zu definieren, um in Verarbeitung be-
findliche Datenelemente darzustellen. Eine Variable
wird durch einen Typ und einen "virtuellen Zustands-
raum” definiert, der anzeigt, wie die Variable verwen-
det wird und in welchem Umfang sie gemeinsam ge-
nutzt wird. Variablen werden unter Verwendung von
Registern oder anderen Speicherstrukturen realisiert,
die auf einer Zielplattform verfugbar sind. Auf vielen
Zielplattformen kann der Zustandsraum die Wahl der
Speicherstruktur beeinflussen, die zum Realisieren
einer bestimmten Variable verwendet werden soll.

[0096] Fig. 6 ist eine Tabelle 600, welche die Vari-
ablentypen auflistet, die in der beispielhaften virtuel-
len ISA-Ausfihrungsform unterstiitzt werden. Es
werden vier Typen unterstutzt: nicht-typisierte Bits,
signierte ganze Zahl, unsignierte ganze Zahl und
Gleitkomma. Nicht-typisierte Variablen sind einfach
einzelne Bits oder Gruppen von Bits der spezifizier-
ten Lange. Signierte und unsignierte ganzzahlige
Formate sowie Gleitkommaformate kénnen gemaf
herkdmmlichen Formaten (zum Beispiel |EEE
754-Standards) definiert werden.

[0097] In dieser Ausflihrungsform werden mehrere
Breiten fur jeden Typ unterstitzt, wobei der Parame-
ter <n> verwendet wird, um die Breite zu spezifizie-
ren. So zeigt zum Beispiel .s16 eine signierte ganze
16-Bit-Zahl an; .f32 zeigt eine 32-Bit-Gleitkommazahl
an; und so weiter. Wie in Tabelle 600 gezeigt, sind ei-
nige Variablentypen auf bestimmte Breiten be-
schrankt. Zum Beispiel mussen Gleitkomma-Variab-
len mindestens 16 Bits haben, und ganzzahlige Ty-
pen mussen mindestens 8 Bits haben. Es wird erwar-
tet, dass eine Realisierung der virtuellen ISA alle spe-
zifizierten Breiten unterstitzt. Wenn die Datenpfade
und/oder Register des Prozessors schmaler sind als
die grofite Breite, so kbnnen mehrere Register und
Prozessorzyklen verwendet werden, um die breiteren
Typen zu handhaben, wie dem Fachmann bekannt
ist.

[0098] Es versteht sich, dass die im vorliegenden
Text verwendeten Datentypen und Breiten veran-
schaulichend sind und die Erfindung nicht einschran-
ken.

[0099] Fig. 7 ist eine Tabelle, welche die virtuellen
Zustandrdume auflistet, die in der beispielhaften vir-
tuellen ISA unterstlitzt werden. Es werden neun Zu-
standsrdume definiert, die verschiedenen Graden
der gemeinsamen Nutzung und méglichen Speicher-

2010.12.09

orten in der virtuellen Architektur 300 von Fig. 3 ent-
sprechen.

[0100] Die ersten drei Zustandsrdume werden auf
der Befehlsfolge-Ebene gemeinsam genutzt, was be-
deutet, dass jede CTA-Befehlsfolge eine separate In-
stanz der Variable hat und keine CTA-Befehlsfolge
Zugriff auf die Instanz einer anderen CTA-Befehlsfol-
ge hat. Der Zustandsraum des virtuellen Registers
(.reg) wird vorteilhafterweise verwendet, um Operan-
den, temporare Werte und/oder Ergebnisse von Be-
rechnungen, die durch jede CTA-Befehlsfolge auszu-
fuhren sind, zu definieren. Ein Programm kann jede
beliebige Anzahl virtueller Register deklarieren. Virtu-
elle Register kdnnen nur durch einen statischen
Kompilierzeitnamen und nicht durch eine berechnete
Adresse adressiert werden. Dieser Zustandsraum
entspricht lokalen virtuellen Registern 314 in der vir-
tuellen Architektur 300 von Fig. 3.

[0101] Der Zustandsraum des speziellen Registers
(.sreg) entspricht den vorgegebenen speziellen Vari-
ablen von Fig. 5, die in speziellen Registern 311 in
der virtuellen Architektur 300 gespeichert werden. In
einigen Ausfihrungsformen braucht der virtuelle
ISA-Code keine anderen Variablen in dem
.sreg-Raum zu deklarieren, sondern kann die spezi-
ellen Variablen als Eingaben in Berechnungen ver-
wenden. Alle CTA-Befehlsfolgen kénnen alle Variab-
len in dem .sreg-Zustandsraum lesen. Fur %tid (oder
seine Komponenten) liest jede CTA-Befehlsfolge ih-
ren eindeutigen Befehlsfolge-ldentifikator. Fir die an-
deren Variablen in dem .sreg-Zustandsraum lesen
alle CTA-Befehlsfolgen in derselben CTA dieselben
Werte.

[0102] Variablen von lokalem Speicher je Befehls-
folge (.local) entsprechen einer Region von globalem
Speicher 304, der fir jede CTA-Befehlsfolge einzeln
zugewiesen und adressiert wird. Oder anders ausge-
druckt: Wenn eine CTA-Befehlsfolge auf eine .lo-
cal-Variable zugreift, so greift sie auf ihre eigene In-
stanz der Variable zu, und Anderungen zu einer .lo-
cal-Variable, die in einer CTA-Befehlsfolge vorge-
nommen werden, beeinflussen keine anderen
CTA-Befehlsfolgen. Im Gegensatz zu den .reg- und
.sreg-Zustandsrdumen kann lokaler Speicher je Be-
fehlsfolge unter Verwendung berechneter Adressen
adressiert werden.

[0103] Die nachsten zwei Zustandsraume definie-
ren Variablen je CTA, was bedeutet, dass jede CTA
eine einzelne Instanz der Variable hat, auf die jede ih-
rer (virtuellen) Befehlsfolgen zugreifen kann. Ge-
meinsam genutzte (.shared) Variablen kénnen durch
jede der CTA-Befehlsfolgen gelesen oder geschrie-
ben werden. In einigen Ausfiihrungsformen wird die-
ser Zustandsraum auf virtuellen gemeinsam genutz-
ten Speicher 316 der virtuellen Architektur 300
(Eig. 3) abgebildet. In einer Realisierung der virtuel-

16/43

DE 20 2008 017 916 U1

len Architektur 300 koénnte der .shared-Zustands-
raum auf eine Implementierung eines auf dem Chip
befindlichen, gemeinsam genutzten Speichers (zum
Beispiel eine gemeinsam genutzte Registerdatei
oder einen gemeinsam genutzten Cachespeicher)
abgebildet werden, wahrend in anderen Realisierun-
gen der .shared-Zustandsraum auf eine Region je
CTA von Off-Chip-Speicher abgebildet werden kénn-
te, die wie jeder andere global zugangliche Speicher
zugewiesen und adressiert wird.

[0104] Parameter (.param)-Variablen kdénnen nur
gelesen werden und koénnen durch jede beliebige
(virtuelle) Befehlsfolge in der CTA gelesen werden.
Dieser Zustandsraum bildet den Parameterspeicher
318 der virtuellen Architektur 300 und kann zum Bei-
spiel in einem auf dem Chip angeordneten gemein-
sam genutzten Parameterspeicher oder Cachespei-
cher oder in einer Region auf global zuganglichem
Off-Chip-Speicher realisiert werden, der wie jeder an-
dere global zugangliche Speicher zugewiesen und
adressiert wird. Es wird erwartet, dass diese Variab-
len in Reaktion auf Treiberbefehle vom virtuellen Trei-
ber 320 initialisiert werden.

[0105] Der Konstanten (.const)-Zustandsraum wird
zum Definieren von Konstanten je Gitter verwendet,
die durch jede beliebige (virtuelle) Befehlsfolge in je-
der beliebigen CTA in dem Gitter gelesen (aber nicht
modifiziert) werden kdnnen. In der virtuellen Architek-
tur 300 kann der .const-Zustandsraum auf eine Regi-
on im globalen Speicher abgebildet werden, auf die
die CTA-Befehlsfolgen einen Nurlesezugriff haben.
Der .const-Zustandsraum kann in einem auf dem
Chip befindlichen gemeinsam genutzten Parameter-
speicher oder Cachespeicher oder in einer Region je
Gitter von global zuganglichem Off-Chip-Speicher
realisiert werden, die wie jeder andere global zugang-
liche Speicher zugewiesen und adressiert wird. Wie
beim .param-Zustandsraum wird erwartet, dass Vari-
ablen in dem .const-Zustandsraum in Reaktion auf
Treiberbefehle vom virtuellen Treiber 320 initialisiert
werden.

[0106] Die Ubrigen drei Zustandsraume definieren
"Kontext’-Variablen, die fir jede (virtuelle) Befehlsfol-
ge in jeder CTA, die zu der Anwendung gehort, zu-
ganglich sind. Diese Zustandsrdume werden auf ei-
nem globalen Speicher 304 in der virtuellen Architek-
tur 300 abgebildet. Globale (.global) Variablen kon-
nen fir allgemeine Zwecke verwendet werden. In ei-
nigen Ausfuhrungsformen kénnen auch spezifische
Zustandsraume fur gemeinsam genutzte Texturen
(.tex) und Oberflachen (.surf) definiert werden. Diese
Zustandsraume, die zum Beispiel fur Grafik-bezoge-
ne Anwendungen nutzlich sein kénnen, kénnen dafur
verwendet werden, Zugang zu Grafiktextur- und Pi-
xeloberflachendatenstrukturen zu definieren und zu
ermdglichen, die Datenwerte bereitstellen, die jedem
Pixel einer 2-D-(oder in einigen Ausflihrungsformen

2010.12.09

einer 3-D-)Gruppierung entsprechen.

[0107] In dem virtuellen ISA-Code 410 von Fig. 4
werden Variablen deklariert, indem der Zustands-
raum, der Typ und ein Name spezifiziert werden. Der
Name ist ein Platzhalter und durch den Programmie-
rer oder Kompilierer ausgewahlt werden. So dekla-
riert zum Beispiel:

.reg .b32 vrl

eine nicht-typisierte Variable von 32 Bits in dem Zu-
standsraum des virtuellen Registers mit der Bezeich-
nung vrl. Nachfolgende Zeilen aus virtuellem ISA-Co-
de kénnen sich auf vrl zum Beispiel als eine Quelle
oder einen Zielort fir eine Operation beziehen.

[0108] Die beispielhafte virtuelle ISA unterstitzt
auch Gruppierungen und Vektoren virtueller Variab-
len. Zum Beispiel deklariert

.global .f32 resultArray[1000][1000]

eine virtuelle, global zugangliche
1000-mal-1000-Gruppierung aus 32-Bit-Gleitkom-
mazahlen. Der virtuelle Befehlslibersetzer 412 kann
Gruppierungen in adressierbare Speicherregionen
abbilden, die dem zugewiesen Zustandsraum ent-
sprechen.

[0109] Vektoren kénnen in einer Ausfiihrungsform
unter Verwendung eines Vektor-Prefix .v<w> definiert
werden, wobei m die Anzahl der Komponenten des
Vektors ist. Zum Beispiel deklariert:

.reg .v3 J32 vpos

einen 3-Komponenten-Vektor aus 32-Bit-Gleitkom-
mazahlen in dem Zustandsraum des virtuellen Regis-
ters je Befehlsfolge. Nachdem ein Vektor deklariert
wurde, kénnen seine Komponenten mit Hilfe von Suf-
fixen identifiziert werden, zum Beispiel vpos.x,
vpos.y, vpos.z. In einer Ausfihrungsform istm =2, 3
oder 4 zulassig, und Suffixe wie zum Beispiel (.x, .y,
.z, .w), (.0, .1, .2, .3) oder (., .g, .b, .a) werden zum
Identifizieren von Komponenten verwendet.

[0110] Da die Variablen virtuell sind, kann virtueller
ISA-Code 410 jede beliebige Anzahl von Variablen in
jedem der Zustandsraume definieren oder sich auf
jede beliebige Anzahl von Variablen in jedem der Zu-
standsrdume beziehen (auler .sreg, wobei die Vari-
ablen vorgegeben sind). Es ist mdglich, dass die An-
zahl von Variablen, die fir einen bestimmten Zu-
standsraum in virtuellem ISA-Code 410 definiert sind,
die Menge an Speicher des entsprechenden Typs in
einer bestimmten Hardware-Implementierung Uber-
schreiten kann. Der virtuelle Befehlstbersetzer 412
ist vorteilhafterweise so konfiguriert, dass er geeigne-
te Speicherverwaltungsbefehle enthalt (zum Beispiel
Bewegen von Daten zwischen Register und
Off-Chip-Speicher), um Variablen bei Bedarf verflig-
bar zu machen. Der virtuelle Befehlstbersetzer 412
kann auch in der Lage sein, Falle zu detektieren, wo
eine temporare Variable nicht mehr benétigt wird und
ihr zugewiesener Raum zur Verwendung durch eine

17/43

DE 20 2008 017 916 U1

andere Variable freigegeben wird. Es kénnen her-
kdmmliche Kompilierertechniken zum Zuweisen von
Registern verwendet werden.

[0111] Obgleich die beispielhafte virtuelle ISA Vek-
torvariablentypen definiert, ist es des Weiteren nicht
erforderlich, dass die Zielplattform Vektorvariablen
unterstutzt. Der virtuelle Befehlstibersetzer 412 kann
jede beliebige Vektorvariable als eine Zusammen-
stellung einer zweckmaRigen Anzahl (zum Beispiel 2,
3 oder 4) von Skalaren implementieren.

5.3. Virtuelle Befehle

[0112] Die Fig. 8A-Fig. 8H sind Tabellen, die virtu-
elle Befehle auflisten, die in einer beispielhaften virtu-
ellen ISA definiert sind. Ein Befehl wird anhand seiner
Wirkung definiert, zum Beispiel Berechnen eines be-
stimmten Ergebnisses unter Verwendung eines oder
mehrerer Operanden und Anordnen dieses Ergeb-
nisses in einem Zielortregister, Einstellen eines Re-
gisterwertes und so weiter. Die meisten virtuellen Be-
fehle sind typifiziert, um das Format von Eingaben
und/oder Ausgaben zu identifizieren, und Aspekte
der Befehlsausfihrung kénnen vom Typ abhangen.
Das allgemeine Format eines Befehls ist
Name.<Typ> Ergebnis, Operanden

wobei "Name” der Name des Befehls ist; ”.<Typ>" ein
Platzhalter fur jeden der Typen ist, die in Fig. 6 auf-
gelistet sind; "Ergebnis” eine Variable ist, in der das
Ergebnis gespeichert wird; und "Operanden” eine
oder mehrere Variablen sind, die als Eingaben in den
Befehl bereitgestellt werden. In einer Ausfuhrungs-
form ist die virtuelle Architektur 300 ein Regis-
ter-zu-Register-Prozessor, und "Ergebnis” und "Ope-
randen” fur andere Operationen als Speicherzugriffe
(Eig. 8F) mussen Variablen in dem Zustandsraum
des virtuellen Registers .reg (oder dem Zustands-
raum des speziellen Registers .sreg im Fall einiger
Operanden) sein.

[0113] Von einer Zielplattform wird erwartet, dass
sie jeden der Befehle in der virtuellen ISA realisiert.
Ein Befehl kann entweder als ein entsprechender
Maschinenbefehl, der den spezifizierten Effekt her-
vorruft (im vorliegenden Text als "Hardware-Unter-
stlitzung” bezeichnet), oder als eine Abfolge von Ma-
schinenbefehlen, die, wenn sie ausgefihrt werden,
den spezifizierten Effekt hervorrufen (im vorliegen-
den Text als "Software-Unterstiitzung” bezeichnet),
realisiert werden. Der virtuelle Befehlsliibersetzer 412
fur eine bestimmte Zielplattform ist vorteilhafterweise
daflr konfiguriert, den Maschinenbefehl oder die Ma-
schinenbefehl-Abfolge entsprechend jedem virtuel-
len Befehl zu identifizieren.

[0114] Die folgenden Unterabschnitte beschreiben
die verschiedenen Klassen von Befehlen, die in den
Fig. 8A-Fig. 8H aufgelistet sind. Es versteht sich,
dass die im vorliegenden Text vorgestellte Liste von

2010.12.09

Befehlen der Veranschaulichung dient und dass eine
virtuelle ISA zusatzliche Befehle enthalten kann, die
nicht ausdricklich im vorliegenden Text beschrieben
sind, und einige oder alle der im vorliegenden Text
beschriebenen Befehle ausschlief3en kann.

5.3.1. Virtuelle Befehle — Arithmetik

[0115] Fig. 8A ist eine Tabelle 800, die arithmeti-
sche Operationen auflistet, die in der beispielhaften
virtuellen ISA definiert sind. In dieser Ausfiihrungs-
form unterstutzt die virtuelle Architektur nur Regis-
ter-zu-Register-Arithmetik, und alle arithmetischen
Operationen bearbeiten ein oder mehrere Operan-
den virtueller Register (in Fig. 8A als a, b, c darge-
stellt), um ein Ergebnis (d) hervorzubringen, das in
ein virtuelles Register geschrieben wird. Somit befin-
den sich Operanden und Zielorte fir arithmetische
Operationen immer im Zustandsraum des virtuellen
Registers .reg, aulier dass die speziellen Register
von Fig. 5 (im Zustandsraum des speziellen Regis-
ters .sreg) als Operanden verwendet werden kénnen.

[0116] Die Liste der arithmetischen Operationen in
Tabelle 800 enthalt die vier arithmetischen Grundre-
chenarten: Addition (add), Subtraktion (sub), Multipli-
kation (mul) und Division (div). Diese Operationen
kénnen an allen ganzzahligen und Gleitkommada-
tentypen ausgeflihrt werden und erbringen ein Er-
gebnis des gleichen Typs wie die Eingaben. In eini-
gen Ausfuhrungsformen kann auch ein Rundungs-
modusqualifikator zu dem Befehl hinzugefiigt wer-
den, um es dem Programmierer zu erméglichen zu
spezifizieren, wie das Ergebnis zu runden ist und ob
im Fall ganzzahliger Operanden Sattigungsgrenzen
auferlegt werden sollen.

[0117] Es werden auch drei zusammengesetzte
arithmetische Operationen mit Operanden a, b, und ¢
unterstitzt: Multiplikation-Addition (mad), fusionierte
Multiplikation-Addition (fma) und Summe der absolu-
ten Differenz (sad). Multiplikation-Addition berechnet
das Produkt a x b (mit Runden, durch Klammern an-
gezeigt) und addiert c zu dem Ergebnis. Fusionierte
Multiplikation-Addition unterscheidet sich von mad
dadurch, dass das Produkt a x b nicht vor dem Addie-
ren von ¢ gerundet wird. Die Summe der absoluten
Differenz berechnet den absoluten Wert |a — b| und
addiert dann c.

[0118] Die restliche (rem) Operation wird nur an
ganzzahligen Operanden ausgefuhrt und berechnet
den Rest (a mod b), wenn der Operand a ist durch
den Operanden b geteilt wird. Absoluter Wert (abs)
und Negation (neg) sind einstellige Operationen, die
in einem Gleitkomma- oder signierten ganzzahligen
Format auf einen Operanden a angewendet werden
kénnen. Minimum-(min) und Maximum-(max)Opera-
tionen, die auf ganzzahlige oder Gleitkomma-Ope-
randen angewendet werden kdnnen, setzen das

18/43

DE 20 2008 017 916 U1

Zielortregister auf den kleineren Operanden oder
gréReren Operanden. Der Umgang mit Sonderfallen,
in denen ein oder beide Operanden eine nicht-nor-
male Zahl sind (zum Beispiel gemafl den IEEE
754-Standards), kénnen ebenfalls spezifiziert wer-
den.

[0119] Die Ubrigen Operationen in Tabelle 800 wer-
den nur fiur Gleitkomma-Typen ausgeflihrt. Eine
Bruch(frc)-Operation gibt den Bruchteil ihrer Eingabe
als Ergebnis aus. Sinus (sin), Kosinus (cos) und Ar-
kustangens des Verhéaltnisses (atan2) bilden zweck-
mafige Befehle entsprechend trigonometrischen
Funktionen. Basis-2-Logarithmus (Ig2) und Potenzie-
rung (ex2) werden ebenfalls unterstitzt. Reziprokes
(rep), Quadratwurzel (sqrt) und reziproke Quadrat-
wurzel (rsqrt) werden ebenfalls unterstutzt.

[0120] Es ist zu beachten, dass diese Liste von
arithmetischen Operationen veranschaulichend ist
und die Erfindung nicht einschrankt. Es kdnnten noch
weitere Operationen oder Kombinationen von Opera-
tionen unterstutzt werden, einschlie8lich jeglicher
Operationen, von denen erwartet wird, dass sie mit
genligender Haufigkeit aufgerufen werden.

[0121] In einigen Ausfuhrungsformen definiert die
virtuelle ISA auch Vektoroperationen. Fig. 8B ist eine
Tabelle 810, die Vektoroperationen auflistet, die
durch eine beispielhafte virtuelle ISA unterstitzt wer-
den. Die Vektoroperationen enthalten eine Skalarpro-
dukt(dot)-Operation, die das Skalarprodukt d der
Operandenvektoren a und b berechnet; eine Kreuz-
produkt(cross)-Operation, die das Vektor-Kreuzpro-
dukt d der Operandenvektoren a und b berechnet;
und eine GréRenordnungs(mag)-Operation, welche
die skalare Lange d eines Operandenvektors a be-
rechnet. Die Vektorreduktions(vred)-Operation be-
rechnet ein skalares Ergebnis d durch iteratives Aus-
fuhren der spezifizierten Operation <op> an den Ele-
menten des Vektoroperanden a. In einer Ausflh-
rungsform werden nur die Reduktionsoperationen
add, mul, min und max fur Gleitkomma-Vektoren un-
terstitzt. FUr ganzzahlige Vektoren kénnen auch zu-
satzliche Reduktionsoperationen (zum Beispiel und,
oder und xoder, wie unten beschrieben) unterstutzt
werden.

[0122] Zusatzlich zu diesen Operationen kdnnen
auch andere Vektoroperationen wie zum Beispiel
Vektoraddition, Vektorskalierung und dergleichen (in
Fig. 8B nicht angeflhrt) in der virtuellen ISA definiert
werden.

[0123] Wie oben angemerkt, kdnnte es sein, dass
einige Hardware-Realisierungen der virtuellen Archi-
tektur 300 keine Vektorverarbeitung unterstitzen.
Der virtuelle Befehlsubersetzer 412 fir solche Reali-
sierungen ist vorteilhafterweise dafir geeignet,
zweckmafige Abfolgen skalarer Maschinenbefehle

2010.12.09

zu erzeugen, um diese Operationen auszufiihren.
Der Fachmann ist in der Lage, zweckmafige Abfol-
gen zu erstellen.

5.3.2 Virtuelle Befehle — Auswahl und Registerein-
stellung

[0124] Fig. 8C ist eine Tabelle 820, die Auswahl-
und Registereinstell-Operationen auflistet, die in der
beispielhaften virtuellen ISA definiert werden. Diese
Operationen, die an jedem beliebigen numerischen
Datentyp ausgefuihrt kénnen werden, stellen ein
Zielortregister auf der Grundlage des Ergebnisses ei-
ner Vergleichsoperation ein. Die elementare Aus-
wahl(sel)-Operation wahlt den Operanden a, wenn ¢
ungleich null ist, und den Operanden b, wenn c gleich
null ist. Vergleichen und Einstellen (set) fuhrt eine
Vergleichsoperation <cmp> an den Operanden a und
b aus, um ein Vergleichsergebnis t zu erzeugen, und
setzt dann das Zielortregister d auf ein Boolesches
wahr (~0) oder falsch (0), je nhachdem, ob das Ver-
gleichsergebnis t wahr (~0) oder falsch (0) ist. Die zu-
I&ssigen Vergleichsoperationen <cmp> beinhalten in
einer Ausfuhrungsform gleich (tist wahr, wenn a = b),
groBer als (t ist wahr, wenn a > b), kleiner als (t ist
wahr, wenn a < b), gréRer-gleich (t ist wahr, wenn a 2
b), kleiner-gleich (t ist wahr, wenn a < b), und andere
Vergleiche, die zum Beispiel beinhalten, ob a
und/oder b numerische oder undefinierte Werte sind.

[0125] Die setb-Operation ist eine Variante des Ver-
gleichen-und-Einstellens, die eine weitere Boolesche
Operation <bop> zwischen dem Ergebnis t der Ver-
gleichsoperation <cmp> und einem dritten Operan-
den c ausfiihrt. Das Ergebnis der Booleschen Opera-
tion t <bop> c bestimmt, ob das Zielortregister d auf
ein Boolesches wahr oder falsch gesetzt wird. Die zu-
I&ssigen Booleschen Operationen <bop> beinhalten
in einer Ausfuhrungsform und, oder und xoder (siehe
Fig. 8C, die unten beschrieben wird). Die setp-Ope-
ration ahnelt setb, auller dass zwei 1-Bit-"Pradi-
kat"-Zielortregister eingestellt werden: Das Zielortre-
gister d1 wird auf das Ergebnis von t <bop> ¢ einge-
stellt, wahrend das Zielortregister d2 auf das Ergeb-
nis von (!t) <bop> c eingestellt wird.

5.3.3. Virtuelle Befehle — Logische und Bit-Manipula-
tion

[0126] Fig. 8D ist eine Tabelle 830, die logische und
Bit-Manipulationsoperationen auflistet, die in der bei-
spielhaften virtuellen ISA definiert sind. Die Bit-wei-
sen Booleschen Operationen und, oder und xoder
werden ausgeflhrt, indem die spezifizierte Operation
an jedem Bit der Operanden a und b ausgefiihrt wird
und das entsprechende Bit im Register d auf das Er-
gebnis eingestellt wird. Die Bit-weise Negations
(not)-Operation invertiert jedes Bit des Operanden a,
wahrend die logische Negations(cnot)-Operation das
Zielortregister auf 1 (Boolesches wahr) einstellt,

19/43

DE 20 2008 017 916 U1

wenn a null ist (Boolesches falsch), und anderenfalls
auf 0 (Boolesches falsch).

[0127] Bit-Verschiebungen werden durch Linksver-
schiebe(shl)- und Rechtsverschiebe(shr)-Operatio-
nen unterstitzt, die das Bit-Feld im Operanden a um
die Anzahl von Bits, die durch den Operanden b spe-
zifiziert wird, nach links oder nach rechts verschie-
ben. Fur signierte Formate fillt die Rechtsverschie-
bung vorteilhafterweise vorangestellte Bits auf der
Grundlage des Signier-Bits auf. Fur unsignierte For-
mate fillt die Rechtsverschiebung vorangestellte Bits
mit Nullen auf.

5.3.4. Virtuelle Befehle — Formatkonvertierung

[0128] Fig. 8E ist eine Tabelle 840, die Formatkon-
vertierungsoperationen auflistet, die in der beispiel-
haften virtuellen ISA definiert sind. Der Formatkon-
vertierungs(cvt)-Befehl konvertiert einen Operanden
a eines ersten Typs <aTyp> zu einem &aquivalenten
Wert in einem Zieltyp <dTyp> und speichert das Er-
gebnis im Zielortregister d. Giiltige Typen in einer
Ausfuhrungsform sind in Eig. 6 aufgelistet. Nicht-typi-
sierte Werte (.b<n>) kénnen nicht in ganzzahlige
oder Gleitkomma-Typen oder aus ganzzahligen oder
Gleitkomma-Typen konvertiert werden. Eine Variante
des Formatkonvertierungsbefehls gestattet es dem
Programmierer, einen Rundungsmodus <mode> zu
spezifizieren. Der Umgang mit Zahlen, die gesattigt
werden, wenn sie als der Zieltyp ausgedriickt wer-
den, kénnen ebenfalls spezifiziert werden.

5.3.5. Virtuelle Befehle — Datenbewegung und ge-
meinsame Nutzung von Daten

[0129] Eiq. 8F ist eine Tabelle 850, die Datenbewe-
gungs- und Datengemeinschaftsnutzungsbefehle
auflistet, die in der beispielhaften virtuellen ISA defi-
niert werden. Die Bewegungs(mov)-Operation setzt
das Zielortregister d auf den Wert des unmittelbaren
Operanden a oder, wenn der Operand a ein Register
ist, auf den Inhalt des Registers a. Die Bewegungso-
peration kann auf Zustandsrdume vom virtuellen Re-
gister-Typ beschrankt werden, zum Beispiel .reg und

.sreg in Fig. 7.

[0130] Der Lade(ld)-Befehl ladt einen Wert von ei-
nem Quellenort im Speicher in das Zielortregister d,
das sich in einer Ausfihrungsform im Zustandsraum
des virtuellen Registers .reg befinden muss. Der
.<space>-Qualifikator spezifiziert den Zustandsraum
des Quellenortes und kann auf adressierbare Zu-
standsrdume in Fig. 7 beschrankt sein, zum Beispiel
andere Raume als .reg und .sreg (wo stattdessen die
Bewegungsoperation verwendet werden kann). Da
die virtuelle Architektur 300 in dieser Ausfiihrungs-
form ein Register-zu-Register-Prozessor ist, wird der
Ladebefehl vorteilhafterweise verwendet, um Variab-
len aus adressierbaren Zustandsrdumen in den Zu-

2010.12.09

standsraum des virtuellen Registers .reg zu Ubertra-
gen, so dass sie als Operanden verwendet werden
kénnen.

[0131] Der spezifische Quellenort wird unter Ver-
wendung eines Quellenparameters <src> identifi-
ziert, der auf verschiedene Weise definiert werden
kann, um verschiedene Adressierungsmodi zu unter-
stutzen. Zum Beispiel kann in einigen Ausfihrungs-
formen der Quellenparameter <src> eines von Fol-
genden sein: eine benannte adressierbare Variable,
deren Wert in d gespeichert werden soll; ein Verweis
auf ein Register, in dem sich die Quellenadresse be-
findet; ein Verweis auf ein Register, in dem sich eine
Adresse befindet, die einem Versatzwert hinzugefluigt
werden soll (als ein unmittelbarer Operand uUbermit-
telt); oder eine unmittelbare absolute Adresse.

[0132] GleichermalRen speichert die Spei-
cher(st)-Operation den Wert in einem Quellenregister
a an einem Speicherort, der durch den Zielortpara-
meter <dst> identifiziert wird. Das Quellenregister a
muss sich in einer Ausfihrungsform in dem .reg-Zu-
standsraum befinden. Der Zielort muss sich in einem
beschreibbaren und adressierbaren Zustandsraum
befinden (zum Beispiel .local, .global oder .shared in
Fig. 7). Der Zielortparameter <dst> kann auf ver-
schiedene Weise definiert werden, um verschiedene
Adressierungsmodi zu unterstitzen, ahnlich dem
Quellenparameter <src> in dem Ladebefehl. Der
Speicherbefehl kann zum Beispiel verwendet wer-
den, um ein Operationsergebnis von einem Register
zu einem adressierbaren Zustandsraum zu Ubertra-
gen.

[0133] In Ausfihrungsformen, wo Textur- und Ober-
flachenzustandsrdume bereitgestellt sind, kdnnen
zusatzliche virtuelle Befehle verwendet werden, um
aus dem Texturspeicherzustandsraum (tex) zu lesen
und um aus dem Oberflachenspeicherzustandsraum
zu lesen (suld) und in den Oberflachenspeicherzu-
standsraum zu schreiben (sust). Die Operanden (t, x,
y) fur einen Texturlesevorgang spezifizieren den Tex-
turidentifikator (t) und die Koordinaten (x, y). Glei-
chermalen spezifizieren die Operanden (s, Xx, y) fur
einen Oberflachenlese- oder -schreibvorgang den
Oberflachenidentifikator (s) und die Koordinaten (x,

y):

[0134] Eine CTA-Befehlsfolge kann mit anderen
CTA-Befehlsfolgen durch gemeinsame Nutzung von
Daten mit anderen CTA-Befehlsfolgen zusammen-
wirken. Um zum Beispiel Daten innerhalb einer CTA
gemeinsam zu nutzen, kénnen die CTA-Befehlsfol-
gen virtuelle Lade- und Speicherbefehle (sowie den
unten beschriebenen Befehl fir eine nicht unter-
brechbare (atomic) Aktualisierung "atom”) verwen-
den, um Daten in die virtuellen Zustandraume je CTA
zu schreiben und Daten aus den virtuellen Zu-
standraumen je CTA zu lesen. So kann eine CTA-Be-

20/43

DE 20 2008 017 916 U1

fehilsfolge Daten unter Verwendung eines
st.shared-Befehls mit einer in geeigneter Weise defi-
nierten Zielortadresse in den .shared-Zustandsraum
schreiben. Eine weitere CTA-Befehlsfolge innerhalb
derselben CTA kann anschlielend die Daten unter
Verwendung derselben Adresse in einem
Id.shared-Befehl lesen. Die unten beschriebenen
Synchronisationsbefehle (zum Beispiel bar und
membar) kénnen verwendet werden, um die richtige
Abfolge von Datengemeinschaftsnutzungsoperatio-
nen in CTA-Befehlsfolgen zu gewahrleisten, zum Bei-
spiel, dass eine Daten erzeugende CTA-Befehlsfolge
die Daten schreibt, bevor einen Datenverbrauchende
CTA-Befehlisfolge sie liest. Gleichermalien kdénnen
st.global- und Id.global-Befehle fir das Zusammen-
wirken und die gemeinsame Nutzung von Daten zwi-
schen CTA-Befehlsfolgen in derselben CTA, CTAs in
demselben Gitter und/oder verschiedenen Gittern in
derselben Anwendung verwendet werden.

5.3.6. Virtuelle Befehle — Programmsteuerung

[0135] Fig. 8G ist eine Tabelle 860, die Programm-
steuerungsoperationen auflistet, in der beispielhaften
virtuellen ISA bereitgestellt werden. Diese Steue-
rungsoperationen, mit denen der Fachmann vertraut
ist, ermdglichen es einem Programmierer, die Pro-
grammausflihrung umzulenken. Ein Abzweig (bra)
lenkt den Programmfluss zu einem Zielort <target>.
In einigen Ausfihrungsformen wird ein Abzweigziel
definiert, indem eine alphanumerische Markierung
(label) vor den Zielbefehl in dem virtuellen ISA-Code
gesetzt wird und diese Markierung als der Zielidenti-
fikator <target> eines Abzweigbefehls verwendet
wird. Zum Beispiel identifiziert in einer Ausfuhrungs-
form:

label: add.int32 d, vrl, vr2

den "add’-Befehl als ein Abzweigziel mit der Markie-
rung "label”. Der Befehl

bra label

an einer anderen Stelle in dem Code lenkt die Aus-
fuhrung des markierten Befehls um.

[0136] Die call- und return(ret)-Befehle unterstitzen
Funktions- und Subroutinen-Aufrufe; fname identifi-
ziert die Funktion oder Subroutine. (In einer Ausfih-
rungsform ist eine "Subroutine” einfach eine Funkti-
on, deren Ruckmeldungswert ignoriert wird.) Die
Funktion fname kann unter Verwendung einer
func-Anweisung deklariert werden, und virtueller
ISA-Code, der die Funktion definiert, kann ebenfalls
bereitgestellt werden. Geschwungene Klammern {}
oder andere Gruppierungssymbole kdnnen verwen-
det werden, um einen Code, der eine Funktion oder
Subroutine definiert, von einem anderem virtuellen
ISA-Code abzutrennen.

[0137] Fur Funktionen kann eine Parameterliste
<rv> spezifiziert werden, um zu identifizieren, wo
Ruckmeldungswerte zu speichern sind. Sowohl fir

2010.12.09

Funktionen als auch fiir Subroutinen werden Einga-
beargumente in Argumentlisten <args> spezifiziert.
Wenn call” ausgefihrt wird, so wird die Adresse des
nachsten Befehls gespeichert. Wenn "ret” ausgefihrt
wird, so wird ein Abzweig zu der gespeicherten
Adresse genommen.

[0138] Der "exit’-Befehl bricht eine CTA-Befehlsfol-
ge, die auf ihn trifft, ab. Der Unterbrechungsbefehl
ruft eine Prozessor-definierte oder Benutzer-definier-
te Unterbrechungsroutine auf. Der Halte-
punkt(brkpt)-Befehl setzt die Ausflihrung aus und ist
zum Beispiel fur Fehlerbeseitigungszwecke nitzlich.
Der Funktionslos(nop)-Befehl ist ein Befehl, der bei
Ausfuhrung keinen Effekt hat. Er kann zum Beispiel
verwendet werden, um zu steuern, wie schnell eine
nachste Operation ausgefiihrt werden kann.

5.3.7. Virtuelle Befehle — Parallele Befehlsfolgen

[0139] Fig. 8H ist eine Tabelle 870, die explizit par-
allele virtuelle Befehle auflistet, die in der beispielhaf-
ten virtuellen ISA gemalf einer Ausfihrungsform der
vorliegenden Erfindung bereitgestellt werden. Diese
Befehle unterstitzen das zusammenwirkende Be-
fehlsfolgenverhalten, das fiir die CTA-Ausflihrung ge-
wulinscht wird, wie zum Beispiel das Austauschen von
Daten zwischen CTA-Befehlsfolgen.

[0140] Der Sperr(bar)-Befehl zeigt an, dass eine
CTA-Befehlsfolge, die ihn erreicht, vor dem Ausfih-
ren weiterer Befehle so lange warten muss, bis alle
anderen CTA-Befehlsfolgen (in derselben CTA)
ebenfalls denselben Sperrbefehl erreicht haben. Es
kann jede beliebige Anzahl von Sperrbefehlen in ei-
nem CTA-Programm verwendet werden. In einer
Ausfuhrungsform benétigt der Sperrbefehl keine Pa-
rameter (unabhangig davon, wie viele Sperren ver-
wendet werden), da alle CTA-Befehlsfolgen die n-te
Sperre erreichen mussen, bevor eine Befehlsfolge
zur (n + 1)-ten Sperre voranschreiten kann, und so
weiter.

[0141] In anderen Ausflihrungsformen kann der
Sperrbefehl parametrisiert werden, zum Beispiel
durch Spezifizieren einer Anzahl von CTA-Befehlsfol-
gen (oder Identifikatoren bestimmter CTA-Befehlsfol-
gen), die an einer bestimmten Sperre warten mus-
sen.

[0142] Wieder andere Ausfiihrungsformen stellen
sowohl "Warte”- als auch "Nicht-warte”-Sperrbefehle
bereit. Bei einem Warte-Sperrbefehl wartet die
CTA-Befehisfolge, bis die anderen relevanten
CTA-Befehlsfolgen ebenfalls die Sperre erreicht ha-
ben. Bei einem Nicht-warte-Befehl zeigt die CTA-Be-
fehlsfolge an, dass sie angekommen ist, aber sie
kann fortgesetzt werden, bevor andere CTA-Befehls-
folgen eintreffen. An einer bestimmten Sperre kon-
nen einige CTA-Befehlsfolgen warten, wahrend an-

21/43

DE 20 2008 017 916 U1

dere nicht warten.

[0143] In einigen Ausfiihrungsformen kann der vir-
tuelle bar-Befehl verwendet werden, um CTA-Be-
fehlsfolgen zu synchronisieren, die zusammenwirken
oder Daten unter Verwendung von Zustandsraumen
gemeinsam genutzten Speichers gemeinsam nut-
zen. Nehmen wir zum Beispiel an, dass ein Satz von
CTA-Befehlsfolgen (der einige oder alle Befehlsfol-
gen der CTA enthalten kann) jeweils einige Daten in
einer Variable je Befehlsfolge erzeugt (zum Beispiel
eine Variable "myData” eines virtuellen .fp32-Regis-
ters) und dann die Daten liest, die durch eine andere
CTA-Befehlsfolge in dem Satz erzeugt werden. Die
Abfolge von Befehlen:

st.shared.fp32 myWriteAddress, myData; bar;
Id.shared.fp32 myData, myReadAddress;

wobei myWriteAddress und myReadAddress Variab-
len je Befehlsfolge sind, die Adressen in dem
.shared-Zustandsraum entsprechen, sorgt flr das
gewunschte Verhalten. Nachdem jede CTA-Befehls-
folge ihre erzeugten Daten in den gemeinsam ge-
nutzten Speicher geschrieben hat, wartet sie, bis alle
CTA-Befehlsfolgen ihre Daten gespeichert haben.
Dann geht sie zum Lesen von Daten (die durch eine
andere CTA-Befehlsfolge geschrieben worden sein
kdnnen) aus dem gemeinsam genutzten Speicher
Uber.

[0144] Der Speichersperr(membar)-Befehl zeigt an,
dass jede CTA-Befehlsfolge zu warten hat, bis ihre
zuvor angeforderten Speicheroperationen (oder min-
destens alle Schreiboperationen) vollendet sind. Die-
ser Befehl garantiert, dass ein Speicherzugriff, der
nach dem membar-Befehl erfolgt, das Ergebnis aller
vor ihm erfolgten Schreiboperationen sieht. Der
membar-Befehl verwendet in einer Ausfihrungsform
einen optionalen Zustandsraum-Namen <space>,
um seine Reichweite auf Speicheroperationen zu be-
schranken, die sich auf den spezifizierten Zustands-
raum richten, der ein Speicherzustandsraum sein
muss (zum Beispiel nicht die .reg- oder .sreg-Zu-
standsraume). Wenn kein Zustandsraum-Name spe-
zifiziert ist, so wartet die CTA-Befehlsfolge, bis alle
ausstehenden Operationen vollendet sind, die sich
auf alle Speicherzustandsraume richten.

[0145] Der atomische-Aktualisierungs(atom)-Befehl
veranlasst eine nicht unterbrechbare Aktualisierung
(Lesen-Modifizieren-Schreiben) an einer gemeinsam
genutzten Variable a, die durch einen Verweis <ref>
identifiziert wird. Die gemeinsam genutzte Variable a
kann sich in jedem beliebigen gemeinsam genutzten
Zustandsraum befinden, und wie bei anderen Spei-
cherverweisen kénnen verschiedene Adressierungs-
modi verwendet werden. Zum Beispiel kann <ref> ei-
nes von Folgenden sein: eine benannte adressierba-
re Variable a; ein Verweis auf ein Register, in dem
sich die Adresse der Variable a befindet; ein Verweis
auf ein Register, in dem sich eine Adresse befindet,

2010.12.09

die einem Versatzwert hinzugefligt werden soll (als
ein unmittelbarer Operand Ubermittelt), um die Vari-
able a zu lokalisieren; oder eine unmittelbare absolu-
te Adresse der Variable a. Die CTA-Befehlsfolge ladt
die Variable a von dem Ort des gemeinsam genutz-
ten Zustandsraums in ein Zielortregister d und aktua-
lisiert dann die Variable a unter Verwendung einer
spezifizierten Operation <op>, die an einem Operan-
den a und (je nach der Operation) an einem zweiten
und einem dritten Operanden b und c ausgefihrt
wird, wobei das Ergebnis an den Ort zurlickgespei-
chert wird, der durch <ref> identifiziert wird. Das
Zielortregister d behalt den urspriinglich geladenen
Wert von a. Die Lade-, Aktualisierungs- und Speiche-
roperationen werden nicht unterbrechbar ausgefihrt,
wodurch garantiert wird, dass keine andere CTA-Be-
fehlsfolge auf die Variable a zugreift, wahrend eine
erste CTA-Befehlsfolge eine nicht unterbrechbare
(atomic) Aktualisierung ausfuhrt. In einer Ausfih-
rungsform ist die Variable a auf den .global- oder
.shared-Zustandsraum beschrankt und kann in der
gleichen Weise wie fir die oben beschriebenen La-
de- und Speicheroperationen spezifiziert werden.

[0146] In einigen Ausflihrungsformen brauchen nur
bestimmte Operationen als nicht unterbrechbare Ak-
tualisierungen ausgefiihrt zu werden. Zum Beispiel
werden in einer Ausflihrungsform moglicherweise
nur die folgenden Operationen <op> spezifiziert,
wenn a vom Gleitkomma-Typ ist: Addieren von a zu
b; Ersetzen von a durch das Minimum oder Maximum
von a wund b; wund eine terndare Ver-
gleich-und-Tausch-Operation, die a durch c ersetzt,
wenn a gleich b ist, und a ansonsten unverandert
lasst. FUr ein ganzzahliges a kdénnen zusatzliche
Operationen unterstitzt werden, zum Beispiel
Bit-weises und, oder und xoder zwischen Operanden
a und b sowie Inkrementieren oder Dekrementieren
des Operanden a. Es kénnten noch weitere nicht un-
terbrechbare Operationen oder Kombinationen von
Operationen unterstitzt werden.

[0147] Der vote-Befehl fuhrt eine Reduktionsopera-
tion <op> an einem Booleschen (zum Beispiel Typ
.b1) Operanden a in einer vorgegebenen Gruppe von
CTA-Befehlsfolgen aus. In einer Ausfuhrungsform
spezifiziert die virtuelle Architektur, dass CTA-Be-
fehlsfolgen in SIMD-Gruppen ausgefihrt werden und
dass die vorgegebene Gruppe einer SIMD-Gruppe
entspricht. In anderen Ausfuhrungsformen kénnen
andere Gruppen von CTA-Befehlsfolgen durch die
virtuelle Architektur oder den Programmierer definiert
werden. Die Reduktionsoperation <op> bringt es mit
sich, dass der Ergebniswert d auf der Basis der Re-
duktion des Operanden a in den CTA-Befehlsfolgen
in der Gruppe und der durch den .<op>-Qualifikator
spezifizierten Reduktionsoperation auf einen Boole-
schen Wahr- oder Falsch-Zustand eingestellt wird. In
einer Ausflhrungsform sind die zuldssigen Redukti-
onsoperationen: (1) .all, wobei d wahr ist, wenn a fir

22/43

DE 20 2008 017 916 U1

alle CTA-Befehlsfolgen in der Gruppe wahr und an-
sonsten falsch ist; (2) .any, wobei d wahr ist, wenn a
fur jede CTA-Befehlsfolge in der Gruppe wahr ist; und
(3) .uni, wobei d wahr ist, wenn a fir alle aktiven
CTA-Befehlsfolgen in der Gruppe den gleichen Wert
(entweder wahr oder falsch) hat.

5.3.8. Virtuelle Befehle — Bedingte Ausfiihrung

[0148] In einigen Ausfihrungsformen unterstutzt die
virtuelle ISA die bedingte Ausfliihrung jedes Befehls.
Bei der bedingten Ausfiihrung wird dem Befehl ein
Boolescher "Schutzpradikat’-Wert zugeordnet, und
der Befehl wird nur ausgefihrt, wenn zum Zeitpunkt
der Ausfiihrung das Schutzpradikat als wahr beurteilt
wird.

[0149] In der beispielhaften virtuellen ISA kann ein
Schutzpradikat jede beliebige 1 Bit grofle Boolesche
Variable eines virtuellen Registers sein (im vorliegen-
den Text mit P bezeichnet). Eine bedingte Ausfih-
rung wird durch Ersetzen eines Pradikatschutzes @P
oder eines Nicht-Pradikatschutzes @!P vor dem op-
code eines Befehls angezeigt. Ein Wert wird in dem
Pradikatregister festgesetzt, zum Beispiel durch
Identifizieren von P als das Zielortregister fir einen
Befehl, der ein Boolesches Ergebnis hervorbringt,
wie zum Beispiel den setp-Befehl in der Tabelle 820
(Eig. 8C). Bei Antreffen des Schutzpradikats @P
oder @!P liest der virtuelle Prozessor das P-Register.
Fir den Schutz @P wird, wenn P wabhr ist, der Befehl
ausgefuhrt; wenn nicht, so wird er GUbersprungen. Fur
den Schutz @!P wird der Befehl ausgefiihrt, wenn P
falsch ist, und anderenfalls Ubersprungen. Das Pradi-
kat P wird zum Ausfiuhrungszeitpunkt fir jede
CTA-Befehlsfolge beurteilt, die auf den bedingten Be-
fehl trifft. Somit kdnnten einige CTA-Befehlsfolgen ei-
nen bedingten Befehl ausflihren, wahrend andere
CTA-Befehlsfolgen dies nicht tun.

[0150] In einigen Ausflihrungsformen kdnnen Pradi-
kate gesetzt werden, wahrend Befehle ausgefuhrt
werden. Zum Beispiel kdbnnen bestimmte der virtuel-
len Befehle in den Tabellen 800-870
(Fig. 8A-Fig. 8H) einen Parameter entgegenneh-
men, der ein Pradikatregister als eine Ausgabe spe-
zifiziert. Solche Befehle aktualisieren das spezifizier-
te Pradikatregister auf der Grundlage einer Eigen-
schaft des Befehlsergebnisses. Zum Beispiel konnte
ein Pradikatregister verwendet werden, um anzuzei-
gen, ob das Ergebnis einer arithmetischen Operation
eine spezielle Zahl (zum Beispiel null, unendlich oder
keine Zahl in Gleitkomma-Operationen nach |IEEE
754) ist, und so weiter.

6. Virtueller Befehlslibersetzer

[0151] Wie oben mit Bezug auf Eig. 4 angemerkt,
richtet sich ein virtueller Befehlstibersetzer 412 auf
eine bestimmte Plattformarchitektur. Der virtuelle Be-

2010.12.09

fehlslibersetzer 412, der zum Beispiel als ein Softwa-
re-Programm implementiert werden kénnte, das auf
einem Prozessor wie zum Beispiel der CPU 102 von
Fig. 1 ausgeflihrt wird, empfangt einen virtuellen
ISA-Code 410 und Ubersetzt ihn in Ziel-ISA-Code
414, der auf der bestimmten Plattformarchitektur
ausgeflihrt werden kann, auf die sich der virtuelle Be-
fehlslibersetzer 412 richtet (zum Beispiel durch die
PPU 122 von Fig. 1). Der virtuelle Befehlslibersetzer
412 bildet die virtuellen Variablen, die in dem virtuel-
len ISA-Code 410 deklariert werden, auf verfligbare
Speicherorte ab, einschlieRlich Prozessorregister,
On-Chip-Speicher, Off-Chip-Speicher und so weiter.
In einigen Ausfuhrungsformen bildet der virtuelle Be-
fehlslibersetzer 412 jeden der virtuellen Zustandrau-
me auf einen bestimmten Speichertyp ab. Zum Bei-
spiel kann der .reg-Zustandsraum auf Befehlsfol-
ge-spezifische Datenregister abgebildet werden, der
.shared-Zustandsraum auf gemeinsam nutzbaren
Speicher des Prozessors, der .global-Zustandsraum
auf eine Region des virtuellen Speichers, die dem
Anwendungsprogramm zugewiesen ist, und so wei-
ter. Es sind noch weitere Abbildungen mdglich.

[0152] Die virtuellen Befehle in dem virtuellen
ISA-Code 410 werden in Maschinenbefehle Uber-
setzt. In einer Ausfiihrungsform ist der virtuelle Be-
fehlsubersetzer 412 daflr konfiguriert, jeden virtuel-
len ISA-Befehl auf einen entsprechenden Maschi-
nenbefehl oder eine entsprechende Abfolge von Ma-
schinenbefehlen abzubilden, je nachdem, ob ein ent-
sprechender Maschinenbefehl in dem Befehlssatz
des Prozessors existiert, der die CTA-Befehlsfolgen
ausflhrt.

[0153] Der virtuelle Befehlsibersetzer 412 bildet
auch die CTA-Befehlsfolgen auf "physische” Befehls-
folgen oder Prozesse in der Zielplattformarchitektur
ab. Wenn zum Beispiel die Zielplattformarchitektur
mindestens n, gleichzeitige Befehlsfolgen unter-
stutzt, so kann jede CTA-Befehlsfolge auf eine physi-
sche Befehlsfolge abgebildet werden, und der virtuel-
le Befehlslibersetzer 412 kann einen virtuellen Be-
fehlscode fir eine einzelne CTA-Befehlsfolge mit der
Erwartung erzeugen, dass die Zielplattform 440 den
Code fiir n, Befehlsfolgen mit n, eindeutige Identifika-
toren ausfuhrt. Wenn die Zielplattformarchitektur we-
niger als n, Befehlsfolgen unterstiitzt, so kann der vir-
tuelle Befehlstbersetzer 412 virtuellen ISA-Code
410, der Befehle enthalt, die mehreren CTA-Befehls-
folgen entsprechen, mit der Erwartung erzeugen,
dass dieser Code einmal je CTA ausgefiihrt wird, wo-
durch mehrere CTA-Befehlsfolgen auf eine einzelne
physische Befehlsfolge oder einen einzelnen physi-
schen Prozess abgebildet werden.

[0154] Insbesondere werden virtuelle Befehle, die
sich auf eine gemeinsame Datennutzung beziehen
(zum Beispiel Last-, Speicher- und nicht unterbrech-
bare(atomic)-Aktualisierungs-Befehle, die auf

23/43

DE 20 2008 017 916 U1

.shared- oder .global-Zustandsraum zugreifen),
und/oder zusammenwirkendes Befehlsfolge-Verhal-
ten (zum Beispiel Sperr-, atomische-Aktualisierungs-
und andere Befehle in Fig. 8H) in Maschinenbefehle
oder Abfolgen von Maschinenbefehle Ubersetzt. Ziel-
plattformarchitekturen, die fur eine CTA-Ausfihrung
optimiert sind, enthalten vorteilhafterweise Hard-
ware-unterstitzte Sperrbefehle, zum Beispiel mit
Zahlern und/oder Registern in der Befehlseinheit
zum Zahlen der Anzahl von Befehlsfolgen, die an
dem Sperrbefehl angekommen sind, und zum Setzen
von Markierungen, die verhindern, dass weitere Be-
fehle fur eine Befehlsfolge ausgegeben werden, wah-
rend die Befehlsfolge an einer Sperre wartet. Andere
Zielarchitekturen bieten moglicherweise keine direkte
Hardware-Unterstitzung fir eine Befehlsfolgensyn-
chronisation, wobei in diesem Fall andere Techniken
zur Kommunikation zwischen Befehlsfolgen (zum
Beispiel Semaphoren, Statusgruppierungen im Spei-
cher oder dergleichen) verwendet werden kdnnen,
um das gewlinschte Verhalten hervorzurufen.

[0155] Bedingte Befehle werden ebenfalls in Ma-
schinenbefehle Ubersetzt. In einigen Fallen unter-
stutzt die Ziel-Hardware direkt eine bedingte Ausfuh-
rung. In anderen Fallen kénnen Pradikate gespei-
chert werden, zum Beispiel in Prozessorregistern,
wobei bedingte Abzweigbefehle oder dergleichen
verwendet werden, um die Register abzufragen und
das gewinschte Laufzeitverhalten hervorzurufen, in-
dem bedingte Befehle bedingt umher verzweigt wer-
den.

[0156] FEiq.9 ist ein Flussdiagramm eines Prozes-
ses 900 zur Verwendung eines virtuellen Befehlsi-
bersetzers gemaR einer Ausfihrungsform der vorlie-
genden Erfindung. Bei Schritt 902 schreibt ein Pro-
grammierer CTA-Programmcode in einer hdheren
Sprache. In einer Ausflihrungsform definiert der
CTA-Programmcode das gewlinschte Verhalten ei-
ner einzelnen CTA-Befehlsfolge und kann die Be-
fehlsfolge-ID (einschlief3lich der CTA-ID und/oder Git-
ter-ID) als einen Parameter verwenden, um Aspekte
des Verhaltens der CTA-Befehlsfolge zu definieren
oder zu steuern. Zum Beispiel kann ein Ort in einem
gemeinsam genutzten Speicher, der zu lesen oder zu
beschreiben ist, als eine Funktion der Befehlsfol-
ge-ID bestimmt werden, so dass verschiedene
CTA-Befehlsfolgen in derselben CTA aus verschiede-
nen Speicherorten in dem gemeinsam genutzten
Speicher lesen und/oder in verschiedene Speicheror-
te in dem gemeinsam genutzten Speicher schreiben.
In einer Ausfihrungsform ist CTA-Programmcode als
Teil von einem Anwendungsprogrammcode enthal-
ten (zum Beispiel Programmcode 402 von Fig. 4).
Zusatzlich zum Definieren des Verhaltens von
CTA-Befehlsfolgen kann der Anwendungsprogramm-
code auch CTAs und/oder Gitter, Einricht-Eingabe-
und -Ausgabedatensatze usw. definieren.

2010.12.09

[0157] Bei Schritt 904 erzeugt ein Kompilierer (zum
Beispiel der Kompilierer 408 von Fig. 4) einen virtuel-
len ISA-Code, der das Verhalten einer einzelnen (vir-
tuellen) CTA-Befehlsfolge definiert, aus dem hdher-
sprachigen Code. Wenn der Code sowohl CTA-Pro-
grammcode als auch anderen Code enthalt, so kann
der Kompilierer 408 den CTA-Programmcode von
dem Ubrigen Code trennen, so dass nur der CTA-Pro-
grammcode verwendet wird, um virtuellen ISA-Code
zu erzeugen. Es koénnen herkdmmliche Techniken
zum Kompilieren von Programmcode, der in einer
Sprache geschrieben wurde, in eine andere (virtuel-
le) Sprache verwendet werden. Es ist anzumerken,
dass, da der erzeugte Code in einer virtuellen Spra-
che vorliegt, der Kompilierer nicht an eine bestimmte
Hardware gebunden oder fiir eine bestimmte Hard-
ware optimiert zu werden braucht. Der Kompilierer
kann den virtuellen ISA-Code optimieren, der aus ei-
ner bestimmten Abfolge von einem eingegebenem
Code erzeugt wurde (so dass zum Beispiel kiirzere
Abfolgen von virtuellen ISA-Befehlen bevorzugt wer-
den). Programmcode in der virtuellen ISA kann im
Speicher auf einer Festplatte gespeichert und/oder
an eine grofRe Vielzahl verschiedener Plattformarchi-
tekturen verteilt werden, einschliellich Architekturen,
die physisch anders als die virtuelle Architektur 300
von Fig. 3 aufgebaut sind. Der Code in der virtuellen
ISA ist maschinenunabhangig und kann auf jeder
Zielplattform ausgeflihrt werden, fur die ein virtueller
Befehlslibersetzer verfiigbar ist. In alternativen Aus-
fuhrungsformen kann ein Programmierer CTA-Pro-
grammcode direkt in die virtuelle ISA schreiben, oder
virtueller ISA-Code kann durch ein Programm auto-
matisch erzeugt werden. Wenn der Programmcode
anfanglich als virtueller ISA-Code erzeugt wird, so
kann der Kompilierungsschritt 904 weggelassen wer-
den.

[0158] Bei Schritt 906 liest ein virtueller Befehlsi-
bersetzer (zum Beispiel der Ubersetzer 412 von
Eig. 4) den virtuellen ISA-Code und erzeugt Code in
einer Ziel-ISA, der auf einer Zielplattform ausgefiihrt
werden kann. Im Gegensatz zu dem Kompilierer rich-
tet sich der virtuelle Befehlslibersetzer auf eine be-
stimmte (reale) Plattformarchitektur und ist vorteilhaf-
terweise so konfiguriert, den Ziel-ISA-Code fir die
beste Leistung auf dieser Architektur anzupassen
und zu optimieren. In einer Ausfihrungsform, wo die
Zielarchitektur mindestens n, Befehlsfolgen unter-
stutzt, erzeugt der virtuelle Befehlsibersetzer ein
Zielbefehlsfolgenprogramm, das gleichzeitig durch
jede von no Befehlsfolgen ausgefiihrt werden kann,
um eine CTA zu realisieren. In einer weiteren Ausflh-
rungsform erzeugt der virtuelle Befehlslibersetzer ein
Zielprogramm, das Software-Techniken (zum Bei-
spiel Befehlsabfolgen) verwendet, um n, gleichzeiti-
ge Befehlsfolgen zu emulieren, von denen jede Be-
fehle ausfiihrt, die dem virtuellen ISA-Code entspre-
chen. Der Ubersetzer kann zum Zeitpunkt der Pro-
gramminstallation, wahrend der Programminitialisie-

24/43

DE 20 2008 017 916 U1

rung oder an genau festgelegten Zeitpunkten wah-
rend der Programmausfuhrung aktiv sein.

[0159] Bei Schritt 908 fihrt ein Prozessor auf der
Zielplattform (zum Beispiel die PPU 122 von Fig. 1)
den Ziel-ISA-Code aus, um Daten zu verarbeiten. In
einigen Ausfuhrungsformen kann der Schritt 908 ent-
halten, Befehle und Zustandsparameter in den Pro-
zessor einzuspeisen, um sein Verhalten zu steuern,
wie weiter unten noch beschrieben wird.

[0160] Es versteht sich, dass der Prozess 900 ver-
anschaulichend ist und dass Variationen und Modifi-
kationen moglich sind. Schritte, die als sequenziell
beschrieben sind, kénnen parallel ausgefihrt wer-
den, die Reihenfolge der Schritte kann variiert wer-
den, und Schritte kdnnen modifiziert oder kombiniert
werden. Zum Beispiel kann in einigen Ausfihrungs-
formen ein Programmierer CTA-Programmcode un-
ter Verwendung der virtuellen ISA direkt schreiben,
wodurch die Notwendigkeit eines Kompilierers ent-
fallt, der virtuellen ISA-Code erzeugt. In anderen Aus-
fuhrungsformen wird der CTA-Programmcode als Teil
eines groflen Anwendungsprogramms geschrieben,
das zum Beispiel auch Code enthalt, der die Dimen-
sionen einer CTA und/oder eines Gitters aus CTAs
definiert, die ausgeflihrt werden sollen, um ein be-
stimmtes Problem zu lésen. In einer Ausfiihrungs-
form werden nur jene Abschnitte des Codes, die das
CTA-Programm darstellen, in virtuellen ISA-Code
kompiliert. Andere Abschnitte kbnnen in andere (rea-
le oder virtuelle) Befehlssatze kompiliert werden.

[0161] In anderen Ausfiihrungsformen kann ein ein-
zelner virtueller Befehlsibersetzer dafir konfiguriert
sein, mehrere Versionen des Zielcodes zu erzeugen,
die fur verschiedene Zielplattformen geeignet sind.
Zum Beispiel kénnte der Ubersetzer einen Pro-
grammcode in einer héheren Sprache (zum Beispiel
C), Maschinencode fir eine PPU und/oder Maschi-
nencode flr eine Einzelkern- oder Mehrkern-CPU,
der ein PPU-Verhalten emuliert, unter Verwendung
von Software-Techniken erzeugen.

7. Virtueller Ausfihrungstreiber

[0162] In einigen Ausfiihrungsformen werden der
virtuelle ISA-Code 410 und der virtuelle Befehlstber-
setzer 412 dafiir verwendet, den CTA-Programm-
code zu erzeugen, der fiir jede Befehlsfolge einer
CTA ausgefuhrt werden soll. Im Hinblick auf das Pro-
grammiermodell der Fig. 2A-Fig. 2B definiert das
Spezifizieren des CTA-Programms eine Verarbei-
tungsaufgabe fiir jede CTA-Befehlsfolge 204. Um das
Modell zu vervollstandigen, ist es auch notwendig,
die Dimensionen einer CTA 202, die Anzahl von
CTAs in dem Gitter, den zu verarbeitenden Eingabe-
datensatz und so weiter zu definieren. Solche Infor-
mationen werden im vorliegenden Text als
"CTA-Steuerungsinformationen” bezeichnet.

2010.12.09

[0163] Wie in Fig. 4 gezeigt, spezifiziert in einigen
Ausfuhrungsformen das Anwendungsprogramm 402
CTA-Steuerungsinformationen durch Verwenden von
Rufen an Funktionen in einer virtuellen Bibliothek
404. In einer Ausflihrungsform enthalt die virtuelle Bi-
bliothek 404 verschiedene Funktionsaufrufe, Uber die
ein Programmierer eine CTA oder ein Gitter aus
CTAs definieren und angeben kann, wann die Aus-
fuhrung beginnen soll.

[0164] Fig. 10 ist eine Tabelle 1000, die Funktionen
auflistet, die in einer beispielhaften virtuellen Biblio-
thek 404 verfiigbar sind. Die erste Gruppe von Funk-
tionen bezieht sich auf das Definieren einer CTA. Ge-
nauer gesagt, ist die initCTA-Funktion die erste Funk-
tion, die aufgerufen wird, um eine neue CTA zu er-
zeugen. Diese Funktion gestattet es dem Program-
mierer, die Dimensionen (ntid.x, ntid.y, ntid.z) einer
CTA zu definieren und der neuen CTA einen Identifi-
kator cname zuzuweisen. Die setCTAProgram-Funk-
tion spezifiziert ein CTA-Programm, das durch jede
Befehlsfolge des CTA-cname ausgefihrt werden soll.
Der Parameter pname ist ein logischer Programmi-
dentifikator, der dem gewinschten CTA-Programm
entspricht (zum Beispiel einem Programm in virtuel-
lem ISA-Code). Die setCTAlnputArray-Funktion ge-
stattet es dem Programmierer, einen Quellenort
(Startadresse und GréfRRe) im globalen Speicher zu
spezifizieren, von wo aus der CTA-cname Eingabe-
daten liest; und die setCTAOutputArray-Funktion ge-
stattet es dem Programmierer, einen Zielort (Startad-
resse und GroRRe) im globalen Speicher zu spezifizie-
ren, an den der CTA-cname Ausgabedaten schreibt.
Die setCTAParams-Funktion wird verwendet, um
Laufzeitkonstantenparameter fir den CTA-cname
einzustellen. Der Programmierer stellt der Funktion
die Liste der Parameter — zum Beispiel als (Name,
Wert)-Paare — zur Verfligung.

[0165] In einer Ausflihrungsform kann die setCTA-
Params-Funktion auch durch den Kompilierer 408
verwendet werden, wenn er einen virtuellen ISA-Co-
de 410 erzeugt. Da die setCTAParams-Funktion die
Laufzeitparameter flr die CTA definiert, kann der
Kompilierer 408 diese Funktion so interpretieren,
dass jeder Parameter als eine virtuelle Variable in
dem .param-Zustandsraum definiert wird.

[0166] Die Tabelle 1000 listet auch Funktionen auf,
die mit dem Definieren von Gittern aus CTAs zu tun
haben. Die initGrid-Funktion ist die erste Funktion,
die aufgerufen wird, um ein neues Gitter zu erzeu-
gen. Diese Funktion gestattet es dem Programmie-
rer, die Dimensionen (nctaid.x, nctaid.y, nctaid.z) ei-
nes Gitters zu definieren, den CTA-cname zu identifi-
zieren, der in dem Gitter ausgefihrt wird, und dem
neu definierten Gitter einen Identifikator gname zuzu-
weisen. Die setGridinputArray- und die setGridOut-
putArray-Funktion ahneln den Funktionen auf
CTA-Ebene und ermdglichen es, eine einzelne Ein-

25/43

DE 20 2008 017 916 U1

gabe- und/oder Ausgabe-Gruppierung fir alle Be-
fehisfolgen aller CTAs in einem Gitter zu definieren.
Die setGridParams-Funktion wird dafiir verwendet,
Laufzeitkonstantenparameter fiir alle CTAs in dem
Gitter gname einzustellen. Der Kompilierer 408 kann
diese Funktion so interpretieren, dass jeder Parame-
ter als eine virtuelle Variable in dem .const-Zustands-
raum definiert wird.

[0167] Die launchCTA- und die launchGrid-Funktion
signalisieren, dass die Ausflihrung des spezifizierten
CTA-cname oder Gitter-gname beginnen soll.

[0168] Die virtuelle APl kann auch andere Funktio-
nen enthalten. Zum Beispiel bieten einige Ausfih-
rungsformen Synchronisationsfunktionen, die dafir
verwendet werden kénnen, die Ausflihrung mehrerer
CTAs zu koordinieren. Wenn zum Beispiel die Ausga-
be einer ersten CTA (oder eines ersten Gitters) als
die Eingabe einer zweiten CTA (oder eines zweiten
Gitters) verwendet werden soll, so kann die API eine
Funktion (oder einen Parameter fur die Startfunktion)
enthalten, uber die der virtuelle Ausfihrungstreiber
angewiesen werden kann, dass die zweite CTA (oder
das zweite Gitter) erst gestartet werden darf, wenn
die Ausfuihrung der ersten CTA (oder des ersten Git-
ters) vollendet ist.

[0169] GemalR einer Ausfuhrungsform der vorlie-
genden Erfindung kénnen beliebige oder alle der
Funktionsaufrufe in der Tabelle 1000 in ein Anwen-
dungsprogramm aufgenommen werden, das auch
das CTA-Programm (oder die CTA-Programme,
wenn es mehrere CTAs in der Anwendung gibt) defi-
niert, das auszufiihren ist. Zum Kompilierungszeit-
punkt werden die Funktionsaufrufe als Rufe an eine
Anwendungsprogrammschnittstelle(Application Pro-
gram Interface — API)-Bibliothek 404 behandelt, wo-
durch virtueller API-Code 406 erzeugt wird.

[0170] Der virtuelle API-Code wird unter Verwen-
dung eines virtuellen Ausflihrungstreibers 418 reali-
siert, der jede Funktion in der virtuellen Bibliothek im-
plementiert. In einer Ausfiihrungsform ist der virtuelle
Ausfuhrungstreiber 418 ein Treiberprogramm, das in
der CPU 102 von Fig. 1 ausgefiihrt wird und die PPU
122 steuert, welche die CTA-Befehlsfolgen realisiert.
Die verschiedenen Funktionsaufrufe in der Tabelle
1000 von Fig. 10 werden so implementiert, dass sie
dazu fuhren, dass der Treiber Befehle tUber einen Ein-
speicherungspuffer in der PPU 122 ausgibt. In einer
weiteren Ausfuhrungsform fihrt eine CPU ein oder
mehrere Programme aus, um eine CTA zu realisie-
ren, und der virtuelle Ausfiihrungstreiber 418 stellt
Parameter ein und steuert die Ausflihrung solcher
Programme durch die CPU.

[0171] Es versteht sich, dass die im vorliegenden
Text beschriebene virtuelle API veranschaulichend
ist und dass Variationen und Modifikationen mdglich

2010.12.09

sind. Es konnen auch andere Funktionen oder Kom-
binationen von Funktionen unterstitzt werden. Tech-
niken fir virtuelle API, die dem Fachmann bekannt
sind, kénnen fur die Zwecke der vorliegenden Erfin-
dung angepasst werden.

Weitere Ausflihrungsformen

[0172] Obgleich die Erfindung anhand konkreter
Ausfuhrungsformen beschrieben wurde, erkennt der
Fachmann, dass zahlreiche Modifikationen mdglich
sind. Zum Beispiel sind die konkrete virtuelle Archi-
tektur, die konkreten virtuellen Befehle und die virtu-
ellen API-Funktionen, die im vorliegenden Text be-
schrieben sind, nicht erforderlich. An ihre Stelle kon-
nen auch andere virtuelle Architekturen, Befehle
und/oder Funktionen treten, die gleichzeitige, zusam-
menwirkende Befehlsfolgen unterstitzen. AulRerdem
kénnen sich die oben beschriebenen Ausflihrungs-
formen auf Falle beziehen, wo alle Blocke die gleiche
Anzahl von Elementen haben, alle CTAs die gleiche
Anzahl von Befehlsfolgen haben und dasselbe
CTA-Programm ausfiihren, und so weiter. In einigen
Anwendungen, zum Beispiel wo mehrere abhangige
Gitter verwendet werden, kann es winschenswert
sein, CTAs in verschiedenen Gittern verschiedene
CTA-Programme ausfiihren zu lassen oder verschie-
dene Anzahlen und/oder Gréf3en von Gittern zu ha-
ben.

[0173] Obgleich im vorliegenden Text von "zusam-
menwirkenden Befehlsfolgen-Gruppierungen” ge-
sprochen wird, versteht es sich, dass einige Ausfih-
rungsformen Befehlsfolgen-Gruppierungen verwen-
den kénnen, bei denen eine gemeinsame Datennut-
zung zwischen gleichzeitigen Befehlsfolgen nicht un-
terstutzt wird. In anderen Ausflihrungsformen, in de-
nen eine solche gemeinsame Datennutzung unter-
stutzt wird, kdnnen die Befehlsfolgen, die fur eine be-
stimmte Anwendung definiert sind, Daten gemein-
sam nutzen, mussen es aber nicht.

[0174] Obgleich in den oben beschriebenen Aus-
fuhrungsformen davon gesprochen werden kann,
dass Befehlsfolge-Gruppierungen mehrere Befehls-
folgen haben, versteht es sich des Weiteren, dass in
einem “entarteten” Fall eine Befehlsfolge-Gruppie-
rung auch nur eine einzige Befehlsfolge haben kénn-
te. Somit kénnte die vorliegende Erfindung dafir ver-
wendet werden, eine Skalierbarkeit in Programmen
bereitzustellen, die in einer CPU mit einem oder meh-
reren einfach-gereihten oder nebenlaufigen Kernen
ausgefihrt werden sollen. Unter Verwendung der im
vorliegenden Text beschriebenen Techniken konnte
ein Programm in einer solchen Weise geschrieben
werden, dass die Befehlsfolgen Uber eine beliebige
Anzahl verfiigbarer CPU-Kerne verteilt werden kénn-
ten (zum Beispiel unter Verwendung von Betriebs-
system-Funktionalitat), ohne dass eine Modifikation
oder Rekompilierung des virtuellen ISA-Codes erfor-

26/43

DE 20 2008 017 916 U1

derlich ist.

[0175] Die Begriffe "virtuell” und "real” werden im
vorliegenden Text verwendet, um das Entkoppeln ei-
nes konzeptuellen Programmiermodells, das von ei-
nem Programmierer verwendet wird, um eine Pro-
blemlésung zu beschreiben, von einem echten Com-
putersystem, auf dem das Programm letztendlich
ausgefuhrt werden kann, widerzuspiegeln. Das "vir-
tuelle” Programmiermodell und seine zugehorige Ar-
chitektur ermoglichen es einem Programmierer, eine
héhere Sicht auf eine Parallelverarbeitungsaufgabe
zu erlangen, und es versteht sich, dass es eventuell
ein echtes Computersystem oder -gerat geben kénn-
te, dessen Komponenten eins-zu-eins auf die im vor-
liegenden Text beschriebenen Komponenten der vir-
tuellen Architektur abgebildet werden kénnen. Der
virtuelle Code, einschlieBlich virtuellem ISA-Code
und virtuellem API-Code, wird vorteilhafterweise als
Code in einer Sprache realisiert, die eins-zu-eins
dem Befehlssatz eines echten Verarbeitungsgerates
entsprechen kann, aber nicht muss. Wie aller Pro-
grammcode kann der im vorliegenden Text ange-
sprochene virtuelle Code auf einem greifbaren Medi-
um (zum Beispiel einem Hauptspeicher oder einer
Festplatte) gespeichert werden, Uber ein Netzwerk
Ubertragen werden, und so weiter.

[0176] Computerprogramme, die verschiedene
Merkmale der vorliegenden Erfindung enthalten —
einschlieRlich beispielsweise virtuellen ISA- und/oder
virtuellen API-Code, virtuelle Befehlsubersetzer, vir-
tuelle Treiber, Kompilierer, Bibliotheken virtueller
Funktionen und dergleichen —, kénnen auf verschie-
denen computerlesbaren Medien zum Speichern
und/oder Ubertragen codiert werden. Zu geeigneten
Medien gehéren magnetische Platten oder Magnet-
band, optische Speichermedien wie zum Beispiel
Compact-Disk (CD) oder DVD (Digital Versati-
le-Disk), Flashspeicher und dergleichen. Solche Pro-
gramme koénnen auch codiert und unter Verwendung
von Tragersignalen Ubertragen werden, die fir eine
Ubertragung lber drahtgebundene, optische
und/oder Drahtlos-Netze geeignet sind, die mit einer
Vielzahl verschiedener Protokolle, einschlieBlich
dem |Internet, kompatibel sind. Computerlesbare
Speichermedien, die mit dem Programmcode codiert
sind, kdnnen mit einem kompatiblen Gerat gebiindelt
werden, oder der Programmcode kann separat von
anderen Geraten bereitgestellt werden (zum Beispiel
Uber einen Download aus dem Internet).

[0177] Des Weiteren kdnnen bestimmte Aktionen im
vorliegenden Text so beschrieben werden, dass sie
von einem “Programmierer” unternommen werden.
Es wird in Betracht gezogen, dass der Programmie-
rer ein Mensch, ein automatisierter Prozess, der Pro-
grammcode mit allenfalls geringem menschlichen
Eingreifen erzeugt, oder eine Kombination aus
menschlicher Interaktion mit automatisierten oder

2010.12.09

teilweise automatisierten Prozessen zum Erzeugen
von Programmcode sein kann.

[0178] Obgleich des Weiteren im vorliegenden Text
beschriebene Ausfliihrungsformen auf Merkmale be-
stimmter Zielplattformen Bezug nehmen kénnen, ist
die Erfindung nicht auf diese Plattformen beschrankt.
Genau genommen, kann eine virtuelle Architektur in
jeder Dbeliebigen Kombination von Hardware-
und/oder Software-Komponenten realisiert werden.
Dem Fachmann ist klar, dass man davon ausgehen
kann, dass verschiedene Realisierungen der glei-
chen virtuellen Architektur sich in der Effizienz
und/oder im Durchsatz unterscheiden. Solche Unter-
schiede sind jedoch fir die vorliegende Erfindung
nicht von Bedeutung.

[0179] Obgleich also die Erfindung anhand konkre-
ter Ausfiihrungsformen beschrieben wurde, versteht
es sich, dass die Erfindung alle Modifikationen und
Aquivalente innerhalb des Geltungsbereichs der fol-
genden Anspriiche mit erfassen soll.

[0180] Die Erfindung weist des Weiteren die folgen-

den Konzepte auf:
Konzept 1 zum Definieren eines Parallelverarbei-
tungsvorgangs, das Konzept aufweisend: Bereit-
stellen von einem ersten Programmcode, der eine
Abfolge von Operationen definiert, die fur jede ei-
ner Mehrzahl von virtuellen Befehlsfolgen in einer
Gruppierung zusammenwirkender virtueller Be-
fehlsfolgen ausgefiihrt werden sollen; Kompilie-
ren des ersten Programmcodes in ein Programm
virtueller Befehlsfolgen, das eine Abfolge von Be-
fehlen je Befehlsfolge definiert, die fur eine repra-
sentative virtuelle Befehlsfolge der Mehrzahl von
virtuellen Befehlsfolgen ausgefihrt werden sollen,
wobei die Abfolge von Befehlen je Befehlsfolge
mindestens einen Befehl enthalt, der ein Zusam-
menwirkungsverhalten zwischen der reprasentati-
ven virtuellen Befehlsfolge und einer oder mehre-
ren anderen virtuellen Befehlsfolgen der Mehrzahl
von virtuellen Befehlsfolgen definiert; und Spei-
chern des Programms virtueller Befehlsfolgen.
Konzept 2 nach Konzept 1, ferner aufweisend:
Ubersetzen des gespeicherten Programms virtu-
eller Befehlsfolgen in eine Abfolge von Befehlen,
die mit einer Zielplattformarchitektur kompatibel
sind.
Konzept 3 nach Konzept 1, ferner aufweisend:
Bereitstellen von einem zweiten Programmcode,
der eine Gruppierung zusammenwirkender virtu-
eller Befehlsfolgen definiert, die dafir geeignet
sind, einen Eingabedatensatz zu verarbeiten um
einen Ausgabedatensatz zu erzeugen, wobei jede
virtuelle Befehlsfolge in der Gruppierung gleich-
zeitig das Programm virtueller Befehlsfolgen aus-
fuhrt; Konvertieren des zweiten Programmcodes
in eine Abfolge von Funktionsaufrufen in einer Bi-
bliothek virtueller Funktionen, wobei die Bibliothek

27/43

DE 20 2008 017 916 U1

virtuelle Funktionen enthalt, welche die Gruppie-
rung zusammenwirkender virtueller Befehlsfolgen
initialisieren und die Ausflihrung der Gruppierung
zusammenwirkender virtueller Befehlsfolgen ver-
anlassen; und Speichern der Abfolge von Funkti-
onsaufrufen.

Konzept 4 nach Konzept 3, ferner aufweisend:
Ubersetzen des gespeicherten Programms virtu-
eller Befehlsfolgen und der Abfolge von Funkti-
onsaufrufen in einen Programmcode, der auf ei-
ner Zielplattformarchitektur ausgefuhrt werden
kann, wobei der ausfiihrbare Programmcode eine
oder mehrere Plattformbefehlsfolgen definiert,
welche die Gruppierung zusammenwirkender vir-
tueller Befehlsfolgen ausfihren.

Konzept 5 nach Konzept 4, ferner aufweisend:
Ausfuhren des ausfihrbaren Programmcodes auf
einem Computersystem, das mit der Zielplattfor-
marchitektur kompatibel ist, wodurch der Ausga-
bedatensatz erzeugt wird; und Speichern des
Ausgabedatensatzes in einem Speichermedium.
Konzept 6 nach Konzept 1, wobei die Abfolge von
Befehlen je Befehlsfolge einen Befehl enthalt, die
Ausfuhrung von Operationen flr die reprasentati-
ve virtuelle Befehlsfolge an einen bestimmten
Punkt in der Abfolge so lange auszusetzen, bis
eine oder mehrere der anderen virtuellen Befehls-
folgen diesen bestimmten Punkt erreichen.
Konzept 7 nach Konzept 1, wobei die Abfolge von
Befehlen je Befehlsfolge einen Befehl fir die re-
prasentative virtuelle Befehlsfolge enthalt, Daten
in einem gemeinsam genutzten Speicher zu spei-
chern, auf den eine oder mehrere der anderen vir-
tuellen Befehlsfolgen Zugriff haben.

Konzept 8 nach Konzept 1, wobei die Abfolge von
Befehlen je Befehlsfolge einen Befehl fir die re-
prasentative virtuelle Befehlsfolge enthalt, nicht
unterbrechbar Daten zu lesen und zu aktualisie-
ren, die in einem gemeinsam genutzten Speicher
gespeichert sind, auf den eine oder mehrere der
anderen virtuellen Befehlsfolgen Zugriff haben.
Konzept 9 nach Konzept 1, wobei das Programm
virtueller Befehlsfolgen eine Variablendefinitions-
aussage enthalt, die eine Variable in einem aus ei-
ner Mehrzahl von virtuellen Zustandsraumen defi-
niert, wobei verschiedene der Mehrzahl von virtu-
ellen Zustandraumen verschiedenen Modi ge-
meinsamer Datennutzung zwischen den virtuellen
Befehlsfolgen entsprechen.

Konzept 10 nach Konzept 9, wobei die Modi der
gemeinsamen Datennutzung einen nicht gemein-
sam genutzten Modus je Befehlsfolge und einen
global gemeinsam genutzten Modus enthalten.
Konzept 11 nach Konzept 9, wobei die Modi der
gemeinsamen Datennutzung einen nicht gemein-
sam genutzten Modus je Befehlsfolge, einen ge-
meinsam genutzten Modus innerhalb einer Grup-
pierung virtueller Befehlsfolgen und einen global
gemeinsam genutzten Modus enthalten.

Konzept 12 nach Konzept 9, wobei die Modi der

28/43

2010.12.09

gemeinsamen Datennutzung einen nicht gemein-
sam genutzten Modus je Befehlsfolge, einen ge-
meinsam genutzten Modus innerhalb einen Grup-
pierung virtueller Befehlsfolgen, einen gemein-
sam genutzten Modus zwischen mehreren Grup-
pierungen virtueller Befehlsfolgen und einen glo-
bal gemeinsam genutzten Modus enthalten.
Konzept 13 zum Betreiben eines Zielprozessors,
das Konzept aufweisend: Bereitstellen von einem
Eingabeprogrammcode, der einen ersten Ab-
schnitt enthalt, der eine Abfolge von Operationen
definiert, die flr jede einer Mehrzahl von virtuellen
Befehlsfolgen in einer Gruppierung virtueller Be-
fehlsfolgen auszufiihren sind, die dafiir geeignet
sind, einen Eingabedatensatz zu verarbeiten um
einen Ausgabedatensatz zu erzeugen, wobei der
Eingabeprogrammcode ferner einen zweiten Ab-
schnitt enthalt, der eine Dimension der Gruppie-
rung virtueller Befehlsfolgen definiert; Kompilieren
des ersten Abschnitts des Eingabeprogramm-
codes in ein Programm virtueller Befehlsfolgen,
das eine Abfolge von Befehlen je Befehlsfolge de-
finiert, die fUr eine reprasentative virtuelle Befehls-
folge der Mehrzahl von virtuellen Befehlsfolgen
ausgefihrt werden sollen, wobei die Abfolge von
Befehlen je Befehlsfolge mindestens einen Befehl
enthalt, der ein Zusammenwirkungsverhalten zwi-
schen der reprasentativen virtuellen Befehlsfolge
und einer oder mehreren anderen virtuellen Be-
fehlsfolgen der Mehrzahl von virtuellen Befehlsfol-
gen definiert; Konvertieren des zweiten Abschnitts
des Eingabeprogrammcodes in eine Abfolge von
Funktionsaufrufen an eine Bibliothek virtueller
Funktionen, wobei die Bibliothek virtuelle Funktio-
nen enthalt, welche die Gruppierung zusammen-
wirkender virtueller Befehlsfolgen initialisieren
und die Ausflihrung der Gruppierung zusammen-
wirkender virtueller Befehlsfolgen veranlassen;
Ubersetzen des Programms virtueller Befehlsfol-
gen und der Abfolge von Funktionsaufrufen in ei-
nen Programmcode, der auf einer Zielplattformar-
chitektur ausgefiihrt werden kann, wobei der aus-
fuhrbare Programmcode eine oder mehrere reale
Befehlsfolgen definiert, welche die Gruppierung
zusammenwirkender virtueller Befehlsfolgen aus-
fuhren; Ausfiihren des ausfiihrbaren Programm-
codes auf einem Computersystem, das mit der
Zielplattformarchitektur kompatibel ist, wodurch
der Ausgabedatensatz erzeugt wird; und Spei-
chern des Ausgabedatensatzes auf einem Spei-
chermedium.

Konzept 14 nach Konzept 13, wobei der zweite
Abschnitt des Eingabeprogrammcodes einen Pro-
grammcode enthalt, der zwei oder mehr Dimensi-
onen fir die Gruppierung virtueller Befehlsfolgen
definiert.

Konzept 15 nach Konzept 14, wobei der zweite
Abschnitt des Eingabeprogrammcodes ferner ent-
halt: einen Funktionsaufruf, der eine oder mehrere
Dimensionen eines Gitters aus Gruppierungen

DE 20 2008 017 916 U1

virtueller Befehlsfolgen definiert, wobei jede Grup-
pierung in dem Gitter ausgefiihrt werden soll.
Konzept 16 nach Konzept 13, wobei die Zielplatt-
formarchitektur einen Master-Prozessor und ei-
nen Koprozessor enthalt und wobei die Aktion des
Ubersetzens Folgendes enthalt: Ubersetzen des
Programms virtueller Befehlsfolgen in einen Pro-
grammcode, der parallel durch mehrere Befehls-
folgen, die in dem Koprozessor definiert sind, aus-
geflhrt werden kann; und Ubersetzen der Abfolge
von Funktionsaufrufen in eine Abfolge von Aufru-
fen an ein Treiberprogramm fiir den Koprozessor,
wobei das Treiberprogramm in dem Master-Pro-
zessor ausgefihrt wird.

Konzept 17 nach Konzept 13, wobei die Zielplatt-
formarchitektur eine zentrale Verarbeitungsein-
heit (CPU) enthalt und wobei die Aktion des Uber-
setzens Folgendes enthalt: Ubersetzen des Pro-
gramms virtueller Befehlsfolgen und mindestens
eines Abschnitts der Abfolge von Funktionsaufru-
fen in einen Zielprogrammcode, der die Gruppie-
rung virtueller Befehlsfolgen unter Verwendung ei-
ner Anzahl von CPU-Befehlsfolgen ausflihrt, die
kleiner als die Anzahl virtueller Befehlsfolgen ist.
Konzept 18 zum Betreiben eines Zielprozessors,
das Konzept aufweisend: Erhalten eines Pro-
gramms virtueller Befehlsfolgen, das eine Abfolge
von Befehlen je Befehlsfolge definiert, die fir eine
reprasentative virtuelle Befehlsfolge aus einer
Mehrzahl von virtuellen Befehlsfolgen in einer
Gruppierung virtueller Befehlsfolgen ausgefihrt
werden sollen, die dafiir geeignet sind, einen Ein-
gabedatensatz zu verarbeiten um einen Ausgabe-
datensatz zu erzeugen, wobei die Abfolge von Be-
fehlen je Befehlsfolge mindestens einen Befehl
enthalt, der ein Zusammenwirkungsverhalten zwi-
schen der reprasentativen virtuellen Befehlsfolge
und einer oder mehreren anderen virtuellen Be-
fehlsfolgen der Mehrzahl von virtuellen Befehlsfol-
gen definiert; Erhalten eines zusatzlichen Pro-
grammcodes, der Dimensionen der Gruppierung
virtueller Befehlsfolgen definiert; Ubersetzen des
Programms virtueller Befehlsfolgen und des zu-
satzlichen Programmcodes in einen Programm-
code, der auf der Zielplattformarchitektur ausge-
fuhrt werden kann, wobei der ausfuhrbare Pro-
grammcode eine oder mehrere Plattformbefehls-
folgen definiert, welche die Gruppierung virtueller
Befehlsfolgen ausfiihren; Ausfiihren des ausfihr-
baren Programmcodes auf einem Computersys-
tem, das mit der Zielplattformarchitektur kompati-
bel ist, wodurch der Ausgabedatensatz erzeugt
wird, und Speichern des Ausgabedatensatzes in
einem Speicher.

Konzept 19 nach Konzept 18, wobei die Aktion
des Erhaltens des Programms virtueller Befehls-
folgen enthalt: Empfangen von einem Quellpro-
grammcode, der in einer hoheren Programmier-
sprache geschrieben ist; und Kompilieren des
Quellprogrammcodes um das Programm virtueller

29/43

2010.12.09

Befehlsfolgen zu erzeugen.

Konzept 20 nach Konzept 18, wobei die Aktion
des Erhaltens des Programms virtueller Befehls-
folgen enthalt: Lesen des Programms virtueller
Befehlsfolgen von einem Speichermedium.
Konzept 21 nach Konzept 18, wobei die Aktion
des Erhaltens des Programms virtueller Befehls-
folgen enthalt: Empfangen des Programms virtu-
eller Befehlsfolgen von einem rdumlich abgesetz-
ten Computersystem Uber ein Netzwerk.

DE 20 2008 017 916 U1
ZITATE ENTHALTEN IN DER BESCHREIBUNG

Diese Liste der vom Anmelder aufgefiihrten Doku-
mente wurde automatisiert erzeugt und ist aus-
schlieSlich zur besseren Information des Lesers auf-
genommen. Die Liste ist nicht Bestandfeil der deut-
schen Pafent- bzw. Gebrauchsmusteranmeldung.
Das DPMA dbernimmt keinerlei Hafiung fir etwaige
Fehler oder Auslassungen.

Zitierte Nicht-Patentliteratur
- [EEE 754-Standards [0096]

- |EEE 754-Standards [0118]
- IEEE 754 [0150]

30/43

2010.12.09

DE 20 2008 017 916 U1

Schutzanspriiche

1. Parallelverarbeitungsarchitektur zum Definie-
ren eines Parallelverarbeitungsvorgangs, wobei die
Parallelverarbeitungsarchitektur einen Parallelpro-
zessor und einen Speicher aufweist,
wobei der Speicher einen ersten Programmcode ent-
halt, der eine Abfolge von Operationen definiert, die
fur jede einer Mehrzahl von virtuellen Befehlsfolgen
in einer Gruppierung zusammenwirkender virtueller
Befehlsfolgen ausgefiihrt werden sollen,
wobei der Parallelprozessor betreibbar ist, den ers-
ten Programmcode in ein Programm virtueller Be-
fehlsfolgen zu kompilieren, das eine Abfolge von Be-
fehlen je Befehlsfolge definiert, die fur eine reprasen-
tative virtuelle Befehlsfolge der Mehrzahl von virtuel-
len Befehlsfolgen ausgefuhrt werden sollen, wobei
die Abfolge von Befehlen je Befehlsfolge mindestens
einen Befehl enthalt, der ein Zusammenwirkungsver-
halten zwischen der reprasentativen virtuellen Be-
fehlsfolge und einer oder mehreren anderen virtuel-
len Befehlsfolgen der Mehrzahl von virtuellen Be-
fehlsfolgen definiert; und
wobei der Speicher das Programm virtueller Befehls-
folgen enthalt.

2. Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei der Parallelprozessor betreibbar ist,
das gespeicherte Programm virtueller Befehlsfolgen
in eine Abfolge von Befehlen, die mit einer Zielplatt-
formarchitektur kompatibel sind, zu Ubersetzen.

3. Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei der Speichereinen zweiten Pro-
grammcode enthalt, der eine Gruppierung zusam-
menwirkender virtueller Befehlsfolgen definiert, die
dafir geeignet sind, einen Eingabedatensatz zu ver-
arbeiten um einen Ausgabedatensatz zu erzeugen,
wobei jede virtuelle Befehlsfolge in der Gruppierung
gleichzeitig das Programm virtueller Befehlsfolgen
ausfuhrt,
wobei der Parallelprozessor betreibbar ist, den zwei-
ten Programmcode in eine Abfolge von Funktionsauf-
rufen in einer Bibliothek virtueller Funktionen zu kon-
vertieren, wobei die Bibliothek virtuelle Funktionen
enthalt, welche die Gruppierung zusammenwirken-
der virtueller Befehlsfolgen initialisieren und die Aus-
fuhrung der Gruppierung zusammenwirkender virtu-
eller Befehlsfolgen veranlassen; und
wobei der Speicher die Abfolge von Funktionsaufru-
fen enthalt.

4. Parallelverarbeitungsarchitektur nach An-
spruch 3, wobei der Parallelprozessor ferner betreib-
bar ist, das gespeicherte Programm virtueller Be-
fehlsfolgen und die Abfolge von Funktionsaufrufen in
einen Programmcode zu Ubersetzen, der auf einer
Zielplattformarchitektur ausgefihrt werden kann, wo-
bei der ausfiihrbare Programmcode eine oder meh-
rere Plattformbefehlsfolgen definiert, welche die

2010.12.09

Gruppierung zusammenwirkender virtueller Befehls-
folgen ausfihren.

5. Parallelverarbeitungsarchitektur nach An-
spruch 4, wobei die Parallelverarbeitungsarchitektur
ferner ferner ein Computersystem aufweist, das mit
der Zielplattformarchitektur kompatibel ist, wobei das
Computersystem betreibbar ist, den ausfihrbaren
Programmcode auszufiihren, wodurch der Ausgabe-
datensatz erzeugt wird, und um den Ausgabedaten-
satz in einem Speichermedium zu speichern.

6. Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei die Abfolge von Befehlen je Befehls-
folge einen Befehl enthalt, die Ausflihrung von Ope-
rationen fir die reprasentative virtuelle Befehlsfolge
an einen bestimmten Punkt in der Abfolge so lange
auszusetzen, bis eine oder mehrere der anderen vir-
tuellen Befehlsfolgen diesen bestimmten Punkt errei-
chen.

7. Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei die Abfolge von Befehlen je Befehls-
folge einen Befehl fur die reprasentative virtuelle Be-
fehlsfolge enthalt, Daten in einem gemeinsam ge-
nutzten Speicher zu speichern, auf den eine oder
mehrere der anderen virtuellen Befehlsfolgen Zugriff
haben.

8. Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei die Abfolge von Befehlen je Befehls-
folge einen Befehl fur die reprasentative virtuelle Be-
fehlsfolge enthalt, nicht unterbrechbar Daten zu le-
sen und zu aktualisieren, die in einem gemeinsam
genutzten Speicher gespeichert sind, auf den eine
oder mehrere der anderen virtuellen Befehlsfolgen
Zugriff haben.

9. Parallelverarbeitungsarchitektur nach An-
spruch 1, wobei das Programm virtueller Befehlsfol-
gen eine Variablendefinitionsaussage enthalt, die
eine Variable in einem aus einer Mehrzahl von virtu-
ellen Zustandsraumen definiert, wobei verschiedene
der Mehrzahl von virtuellen Zustandraumen ver-
schiedenen Modi gemeinsamer Datennutzung zwi-
schen den virtuellen Befehlsfolgen entsprechen.

10. Parallelverarbeitungsarchitektur nach An-
spruch 9, wobei die Modi der gemeinsamen Daten-
nutzung einen nicht gemeinsam genutzten Modus je
Befehlsfolge und einen global gemeinsam genutzten
Modus enthalten.

11. Parallelverarbeitungsarchitektur nach An-
spruch 9, wobei die Modi der gemeinsamen Daten-
nutzung einen nicht gemeinsam genutzten Modus je
Befehlsfolge, einen gemeinsam genutzten Modus in-
nerhalb einer Gruppierung virtueller Befehlsfolgen
und einen global gemeinsam genutzten Modus ent-
halten.

31/43

DE 20 2008 017 916 U1

12. Parallelverarbeitungsarchitektur nach An-
spruch 9, wobei die Modi der gemeinsamen Daten-
nutzung einen nicht gemeinsam genutzten Modus je
Befehlsfolge, einen gemeinsam genutzten Modus in-
nerhalb einen Gruppierung virtueller Befehlsfolgen,
einen gemeinsam genutzten Modus zwischen meh-
reren Gruppierungen virtueller Befehlsfolgen und ei-
nen global gemeinsam genutzten Modus enthalten.

13. Parallelverarbeitungsarchitektur zum Betrei-
ben eines Zielprozessors,
wobei die Parallelverarbeitungsarchitektur einen Pa-
rallelprozessor, einen Speicher und ein Computer-
system, das mit der Zielplattformarchitektur kompati-
bel ist, aufweist,
wobei der Speicher einen Eingabeprogrammcode
enthalt, der einen ersten Abschnitt enthalt, der eine
Abfolge von Operationen definiert, die fir jede einer
Mehrzahl von virtuellen Befehlsfolgen in einer Grup-
pierung virtueller Befehlsfolgen auszufliihren sind, die
dafir geeignet sind, einen Eingabedatensatz zu ver-
arbeiten um einen Ausgabedatensatz zu erzeugen,
wobei der Eingabeprogrammcode ferner einen zwei-
ten Abschnitt enthalt, der eine Dimension der Grup-
pierung virtueller Befehlsfolgen definiert;
wobei der Parallelprozessor betreibbar ist, den ers-
ten Abschnitt des Eingabeprogrammcodes in ein
Programm virtueller Befehlsfolgen zu kompilieren,
das eine Abfolge von Befehlen je Befehlsfolge defi-
niert, die fur eine reprasentative virtuelle Befehlsfolge
der Mehrzahl von virtuellen Befehlsfolgen ausgefuhrt
werden sollen, wobei die Abfolge von Befehlen je Be-
fehlsfolge mindestens einen Befehl enthalt, der ein
Zusammenwirkungsverhalten zwischen der repra-
sentativen virtuellen Befehlsfolge und einer oder
mehreren anderen virtuellen Befehlsfolgen der Mehr-
zahl von virtuellen Befehlsfolgen definiert;
wobei der Parallelprozessor betreibbar ist, den zwei-
ten Abschnitt des Eingabeprogrammcodes in eine
Abfolge von Funktionsaufrufen an eine Bibliothek vir-
tueller Funktionen zu konvertieren, wobei die Biblio-
thek virtuelle Funktionen enthalt, welche die Gruppie-
rung zusammenwirkender virtueller Befehlsfolgen in-
itialisieren und die Ausfihrung der Gruppierung zu-
sammenwirkender virtueller Befehlsfolgen veranlas-
sen;
wobei der Parallelprozessor betreibbar ist, das Pro-
gramm virtueller Befehlsfolgen und die Abfolge von
Funktionsaufrufen in einen Programmcode zu Uber-
setzen, der auf einer Zielplattformarchitektur ausge-
fuhrt werden kann, wobei der ausfihrbare Pro-
grammcode eine oder mehrere reale Befehlsfolgen
definiert, welche die Gruppierung zusammenwirken-
der virtueller Befehlsfolgen ausfihren;
wobei das Computersystem betreibbar ist, den aus-
fuhrbaren Programmcode auszufiihren, wodurch der
Ausgabedatensatz erzeugt wird, und um den Ausga-
bedatensatz auf einem Speichermedium zu spei-
chern.

2010.12.09

14. Parallelverarbeitungsarchitektur nach An-
spruch 13, wobei der zweite Abschnitt des Eingabe-
programmcodes einen Programmcode enthalt, der
zwei oder mehr Dimensionen fur die Gruppierung vir-
tueller Befehlsfolgen definiert.

15. Parallelverarbeitungsarchitektur nach An-
spruch 14, wobei der zweite Abschnitt des Eingabe-
programmcodes ferner enthalt:
einen Funktionsaufruf, der eine oder mehrere Dimen-
sionen eines Gitters aus Gruppierungen virtueller Be-
fehlsfolgen definiert, wobei jede Gruppierung in dem
Gitter ausgefihrt werden soll.

16. Parallelverarbeitungsarchitektur nach An-
spruch 13, wobei die Zielplattformarchitektur einen
Master-Prozessor und einen Koprozessor enthalt
und wobei der Parallelprozessor betreibbar ist, das
Programm virtueller Befehlsfolgen in einen Pro-
grammcode zu Ubersetzen, der parallel durch mehre-
re Befehlsfolgen, die in dem Koprozessor definiert
sind, ausgefihrt werden kann, und die Abfolge von
Funktionsaufrufen in eine Abfolge von Aufrufen an
ein Treiberprogramm fiir den Koprozessor zu uber-
setzen, wobei das Treiberprogramm in dem Mas-
ter-Prozessor ausgefihrt wird.

17. Parallelverarbeitungsarchitektur nach An-
spruch 13, wobei die Zielplattformarchitektur eine
zentrale Verarbeitungseinheit (CPU) enthalt und wo-
bei der Parallelprozessor betreibbar ist, das Pro-
gramm virtueller Befehlsfolgen und mindestens einen
Abschnitt der Abfolge von Funktionsaufrufen in einen
Zielprogrammcode zu Ubersetzen, der die Gruppie-
rung virtueller Befehlsfolgen unter Verwendung einer
Anzahl von CPU-Befehlsfolgen ausfuhrt, die kleiner
als die Anzahl virtueller Befehlsfolgen ist.

18. Parallelverarbeitungsarchitektur zum Betrei-
ben eines Zielprozessors,
wobei die Parallelverarbeitungsarchitektur einen Pa-
rallelprozessor, einen Speicher und ein Computer-
system, das mit der Zielplattform kompatibel ist, auf-
weist,
wobei die Parallelverarbeitungsarchitektur betreibbar
ist, ein Programm virtueller Befehlsfolgen zu erhal-
ten, das eine Abfolge von Befehlen je Befehlsfolge
definiert, die flr eine reprasentative virtuelle Befehls-
folge aus einer Mehrzahl von virtuellen Befehlsfolgen
in einer Gruppierung virtueller Befehlsfolgen ausge-
fuhrt werden sollen, die dafir geeignet sind, einen
Eingabedatensatz zu verarbeiten um einen Ausgabe-
datensatz zu erzeugen,
wobei die Abfolge von Befehlen je Befehlsfolge min-
destens einen Befehl enthalt, der ein Zusammenwir-
kungsverhalten zwischen der reprasentativen virtuel-
len Befehlsfolge und einer oder mehreren anderen
virtuellen Befehlsfolgen der Mehrzahl von virtuellen
Befehlsfolgen definiert;
wobei die Parallelverarbeitungsarchitektur betreibbar

32/43

DE 20 2008 017 916 U1 2010.12.09

ist, einen zusatzlichen Programmcode zu erhalten,
der Dimensionen der Gruppierung virtueller Befehls-
folgen definiert;

wobei der Parallelprozessor betreibbar ist, das Pro-
gramm virtueller Befehlsfolgen und den zuséatzlichen
Programmcode in einen Programmcode zu berset-
zen, der auf der Zielplattformarchitektur ausgefiihrt
werden kann, wobei der ausfiihrbare Programmcode
eine oder mehrere Plattformbefehlisfolgen definiert,
welche die Gruppierung virtueller Befehlsfolgen aus-
fahren;

wobei das Computersystem betreibbar ist, den aus-
fuhrbaren Programmcode auszufiihren, wodurch der
Ausgabedatensatz erzeugt wird, und

wobei der Speicher den Ausgabedatensatz enthalt.

19. Parallelverarbeitungsarchitektur nach An-
spruch 18, wobei die Parallelverarbeitungsarchitektur
betreibbar ist, einen Quellprogrammcode zu empfan-
gen, der in einer héheren Programmiersprache ge-
schrieben ist und den Quellprogrammcode zu kompi-
lieren, um das Programm virtueller Befehlsfolgen zu
erzeugen.

20. Parallelverarbeitungsarchitektur nach An-
spruch 18, wobei die Parallelverarbeitungsarchitektur
betreibbar ist, das Programm virtueller Befehlsfolgen
von einem Speichermedium zu lesen.

21. Parallelverarbeitungsarchitektur nach An-
spruch 18, wobei die Parallelverarbeitungsarchitektur
betreibbar ist, das Programm virtueller Befehlsfolgen
von einem raumlich abgesetzten Computersystem
Uber ein Netzwerk zu empfangen.

Es folgen 10 Blatt Zeichnungen

33/43

DE 20 2008 017 916 U1

2010.12.09

Anhangende Zeichnungen

100
104 System-
speicher / / 112
v Parallelverarbeitungs-
L teilsystem
Speicher- y 122 124
cPu briicke ° 4 -
/ PPU- M Speicher
113
105
114 106 / 107 —
\ 1o
System- E{A-
festplatte Briicke
120
Ei t/ k 108
insteck- : :
karte Schalter E"‘:tr‘tieCk
118 /
Netzwerk- 124
adapter ~—— 118

FIG. 1

34/43

202(1,0)~——_ CTA CTA

2022.00—] CTA

DE 20 2008 017 916 U1 2010.12.09
Gitter
C 202(0.1) Gitter
Gitter
CTA
T 202(0.2)
T 202(1,1)
% 20\6(2)
200(1)

\
\

200(0)

FIG. 2A

204(0,1) 204(0,2)

\ /

s
204(0,0)~- .. ele
S LR L ™~204(1,1)
204(2,0)—"1

FIG. 2B

35/43

202(0.09)
e
s

DE 20 2008 017 916 U1 2010.12.09

Virtueller 300
Treiber
20

Virtueller Prozessor 302

Front-End 308

¢

Virtueller Kern

208
Parameter-
speicher Befehiseinheit
318 12
Verarbeitungsmaschinen 310
Spezielle f
Register Lokale Register
7 , | \
311 Gemeinsam genutzter Speicher 216 314
y
Speicherschnittstelle 22
> Globaler Speicher
304

FIG. 3

36/43

DE 20 2008 017 916 U1 2010.12.09

Anwendungs-

402 programm

408 ~I'" " Kompilierer | [Bibliothek |40

A

Virtueller API-
Code

Virtueller ISA-
Code

410 406

42 Virtueller Virtueller
~~ Befehistbersetzer ! Ausfihrungstreiber [~ 416

A

; Ziel-API-
414 Ziel-ISA-
Code Befehle 418
Zielplattform f———-- N \
4 ! , i
440 : PPU-Treiber {\ 432
I
T T T PPU|
[T T S |
| } Front-End]
| et 434 }r 122
1
' 1=~ BefeRls- | !
| I S]
: L__eiheit __ 40 1
{ 1
U o o o o Pt e e o e W - - e -

37/43

DE

20 2008 017 916 U1 2010.12.09

Name Beschreibung

%ntid.x,

%ntid.y, CTA-Dimensionen
%ntid.z

%tid.x,

%tid.y, Befehlisfolge-1D

%tid.z innerhalb einer CTA
%nctaid.x,

%nctaid.y, Gitterdimensionen
%inctaid.z

%ctaid.x,

Y%ctaid.y, CTA-ID innerhalb eines
Yctaid.z Gitters
Y%gridid Gitter-1D

FIG. 5

§00

Typ Beschreibung Zulassige <n>
.b<n> Nicht-typisierte Variabie 1, 8, 16, 32, 64
S<n> Signierte ganze Zahl 8, 16, 32, 64
u<n> Unsignierte ganze Zahl 8, 16, 32, 64
f<n> Gleitkommazahl 16, 32, 64

FIG. 6

38/43

2010.12.09

DE 20 2008 017 916 U1

£ o

J8ydadg uaeqo|s ayoreqo 9Nzinuab wesupwab sy u| IX8juo}] yns
1ayoiadg usjeqol|o) 1mxa} 8)zinuab wesupwss sy1o vl 1X9juoH X
Jayoredg usjeqo|s) HaM J8jZInuab wesupwiab sy u| IX3UOM _wno_@.
1eyoladsisjawessd JuBnzesajnN jiw papA Jejzinuab wesulawag BN Jsu0d’
hw:u__mwnbw :mm_ _nm._ .wmwc“m_mm:m ieq Jubnzosapnp Ul HepA J9IZINUSB Wesuaag V10 wesed
us1ZiNuab WesuIBWan Jayieds 191z ::m.m _LMMWQEQS AARY, pateys’
Jayotadg uLjRqolD mEou _mmmeamc_,wsmm oy abjojsjyaseg fexor’
1015160y 8je) 07 (g 614 ayais) Joysibay| ajja1zadg objojsjyasag bars:
1918163y a0} 19)sibaluapueiadQ abjojsiysseg Bar
Jne Bunpiqay Bunqiasyoseg BunzinN ‘sulwan | awep

g/

39/43

DE 20 2008 017 916 U1 2010.12.09
Befehl Effekt 800
add.<type> d, a, b d =a+b /
sub.<type> d, 38, b d=ab
mul.<type>d, a, b d=a*b
div.<type>d, a, b d=a/b
mad.<type> d, a, b, ¢ d=[a*b] + ¢
fma.<type> d, a, b, ¢ d=a*h+c
sad.<type>d, a, b, ¢ d=Jab| +¢
rem.<type>d, a, b d=amodb
abs.<type> d, a d=|a]
neg.<type> d, a d=-a
min.<type> d, a, b d = min(a,b)
max.<type> d, a, b d = max(a,b)
frc.<type> d, a d = a - floor(a)
sin.<type> d, a d=slna
cos.<type> d, a d=cosa
atan2.<type>d, a, b d = tan't (a/b)
lg2.<type> d, a d=log, a
ex2.<type> d, a d=2*
rep.<type> d, a d=1/a
sqrt.<type> d, a d = sgqrt(a)
rsqit.<type> d, a d = 1/sqrt(a)
FIG. 8A
810
Befehl Effekt /
dot.<type> d, a, b d = sum(a[i]*b[i1)
cross.<type>d, a, b d=aXb
mag.<type>d, a d = sart(sum(a(il*a(i]))
d = a[0};
fur § = 1auf Lange
vred.<op>.<type> d, 2 } d= <op§(df alil)

FIG. 88

40/43

DE 20 2008 017 916 U1 2010.12.09

820

Befehl Effekt
sel.<type> d, a, b, c d=c?a:b
t=a<amp>b;

set.<cmp>.<type> d, a, b d=t?~0:0

t=a <cmp> b;

seth.<cmp>.<bop>.<type>d, a, b, ¢ d = (t <bop> c) 7 ~0 ; 0

t=a<cmp> b;
setp.<cmp>,.<bop>.<type> dl1 | d2, 3, b, ¢ di = (t <bop> ¢)
d2 = (i <hop> ¢)

FIG. 8C

830
Befehl Effekt /

and.<type> d, a, b d=a&b
or.<type>d, a, b d=alb
xor.<type>d, a, b d=a~b

not.<type> d, a d=~a

cnot.<type> d, a d=1a
shl,<type>d, a, b d=a<<b
shr.<type>d, a, b d=a>>b

FIG. 8§D

Befehl Effekt
cvt.<dtype>.<atype> d, a d = (dtype) a
d = (dtype) g,
cvt.<mode>.<dtype>.<atype> d, a gerundet je <mode>

41/43

DE 20 2008 017 916 U1 2010.12.09

Befehl Effekt
mov.<type> d, a d=2a
Id. <space>.<type> d. <src> Beladen des Registers d mit Daten,
pa type> d, die durch <src> identifiziert wurden
st.<space>.<type> <dst> Speichern der Daten im Register a
pe typ t>, 2 an dem Ort, der durch <dst> identifiziert wurde
tex d, [t, x, y] d = Textur(t.x.y)
suld d, (s, x, y] d = Oberflache(s.x,y)
sust [s, x, y], a Oberflache(s x,y) =a
FIG. 8F 850
Befehi Effekt
bra <target> gehe zu <target>
call <rv> fame <args> Funktions-/Subroutinenruf
ret Ruckkehr van Funktion/Subroutine
exit Abbrechen der Befehlsfolge
trap Aufrufen der Prozessorunterbrechungsroutine
brkpt Aussetzen der Ausfiihrung
nop Funktionslos (keine Operation)
N
8éo
Befehi Effekt
bar Warten an der Sperre auf alle anderen
Befehisfolgen der CTA
Membar <space> Warten, bis das Schreiben in den Speicher

vollendet ist

atom.<space>.<op>.<type> | Atomisches Lesen, Aktualisieren und Zuriickschreiben
d, <ref>, b, ¢ in einen verfligharen gemeinsam genutzten Speicher

Einstellen von d fur jede Befehisfolge in einer Gruppe auf der Basis
vote.<op> d, a des Umstandes, ob a in den Befehisfolgen wahr oder falsch ist

N
N

870

FIG. 8H

42/43

DE 20 2008 017 916 U1 2010.12.09

800

Programmierer schreibt CTA-Programmcode
in einer héheren Sprache N~ 902

Kompilierer erzeugt virtuellen 1ISA-Code L\ g
04

y
Ubersetzer Ubersetzt virtuellen ISA-Code

in Ziel-ISA-Code fur die PPU
™~ g0s

PPU fhrt Ziel-ISA-Code aus \908

FIG. 9

Funktion Parameter
initCTA cname, ntid.x, ntid.y, ntid.z
setCTAProgram chame, pname
setCTAInputArray cname, baseAddr, GroRe
setCTAQutputArray cname, baseAddr, Grée
setCTAParams cname, np,<list>
initGrid gname, cname, nctaid.x, nctaid.y, nctaid.z
setGridInputArray gname, baseAddr, GréRe
setGridOutputArray gname, baseAddr, GréRe
setGridParams gname, np, <list>
launchCTA cname
launchGrid gname

FIG. 10

43/43

1000

	Titelseite
	Beschreibung
	Schutzansprüche
	Anhängende Zeichnungen

