Methods for determining the presence of Btk in a sample are described. Methods for treating patients suffering from certain diseases responsive to inhibition of Btk activity and/or B-cell activity are described. Methods for determining the presence of Btk in a sample are described.
Certain Substituted Amides, Method of Making,
And Method of Use Thereof

This application claims priority to provisional patent application 61/121,409 filed on 10 December 2008.

[0001] Provided herein are certain substituted amides, compositions comprising such compounds, and methods of their use.

[0002] Protein kinases, the largest family of human enzymes, encompass well over 500 proteins. Bruton's Tyrosine Kinase (Btk) is a member of the Tec family of tyrosine kinases, and is a regulator of early B-cell development as well as mature B-cell activation, signaling, and survival.

[0003] B-cell signaling through the B-cell receptor (BCR) can lead to a wide range of biological outputs, which in turn depend on the developmental stage of the B-cell. The magnitude and duration of BCR signals must be precisely regulated. Aberrant BCR-mediated signaling can cause disregulated B-cell activation and/or the formation of pathogenic auto-antibodies leading to multiple autoimmune and/or inflammatory diseases. Mutation of Btk in humans results in X-linked agammaglobulinaemia (XLA). This disease is associated with the impaired maturation of B-cells, diminished immunoglobulin production, compromised T-cell-independent immune responses and marked attenuation of the sustained calcium sign upon BCR stimulation.

[0004] Evidence for the role of Btk in allergic disorders and/or autoimmune disease and/or inflammatory disease has been established in Btk-deficient mouse models. For example, in standard murine preclinical models of systemic lupus erythematosus (SLE), Btk deficiency has been shown to result in a marked amelioration of disease progression. Moreover, Btk deficient mice can also be resistant to developing collagen-induced arthritis and can be less susceptible to Staphylococcus-induced arthritis.

[0005] A large body of evidence supports the role of B-cells and the humoral immune system in the pathogenesis of autoimmune and/or inflammatory diseases. Protein-based therapeutics (such as Rituxan) developed to deplete B-cells, represent
an approach to the treatment of a number of autoimmune and/or inflammatory diseases. Because of Btk’s role in B-cell activation, inhibitors of Btk can be useful as inhibitors of B-cell mediated pathogenic activity (such as autoantibody production).

Btk is also expressed in osteoclasts, mast cells and monocytes and has been shown to be important for the function of these cells. For example, Btk deficiency in mice is associated with impaired IgE-mediated mast cell activation (marked diminution of TNF-alpha and other inflammatory cytokine release), and Btk deficiency in humans is associated with greatly reduced TNF-alpha production by activated monocytes.

Thus, inhibition of Btk activity can be useful for the treatment of allergic disorders and/or autoimmune and/or inflammatory diseases such as: SLE, rheumatoid arthritis, multiple vasculitides, idiopathic thrombocytopenic purpura (ITP), myasthenia gravis, allergic rhinitis, and asthma. In addition, Btk has been reported to play a role in apoptosis; thus, inhibition of Btk activity can be useful for cancer, as well as the treatment of B-cell lymphoma and leukemia. Moreover, given the role of Btk in osteoclast function, the inhibition of Btk activity can be useful for the treatment of bone disorders such as osteoporosis.

Provided is a compound of Formula I:

\[
\begin{array}{c}
\text{O} \\
\text{R}_1 \\
\text{N} \\
\text{Z} \\
\text{W} \\
\text{D}
\end{array}
\]

(Formula I)

and pharmaceutically acceptable salts, solvates, and mixtures thereof, wherein

- \(\text{R}_1 \) is optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkyl, optionally substituted alkoxy, or optionally substituted heterocycloalkyl;
- \(\text{R}_2 \) is H, OH, or \(\text{C}_1-\text{C}_3 \) alkyl optionally substituted with \(\text{N} \)(\(\text{R}_7 \))\(_2\);
- \(\text{Z} \) is \(\text{NR}_3\text{R}_4 \), wherein \(\text{R}_3 \) and \(\text{R}_4 \) are taken together with the nitrogen atom to which they are both attached to form an optionally substituted heterocycloalkyl or optionally substituted heteroaryl, provided that \(\text{Z} \) is not pyridylidene;
is
each of which is optionally substituted with one or two groups chosen from hydroxy, cyano, halo, optionally substituted lower alkyl, and optionally substituted lower alkoxy;
each R_{16} is independently hydrogen, cyano, optionally substituted cycloalkyl, or optionally substituted lower alkyl;
each of R_{17}, R_{18}, and R_{19} is independently hydrogen or optionally substituted lower alkyl;
each R_{20} is independently hydrogen, hydroxy, cyano, halo, optionally substituted lower alkyl, or optionally substituted lower alkoxy;
D is -NHR$_6$;
R$_6$ is optionally substituted aryl, optionally substituted heteroaryl, or optionally
substituted heterocycloalkyl; and
each R$_7$ is independently H or CH$_3$.

[0009] Provided is a pharmaceutical composition, comprising a compound of
Formula I, together with at least one pharmaceutically acceptable vehicle chosen from
carriers, adjuvants, and excipients.

[0010] Provided is a packaged pharmaceutical composition, comprising
a pharmaceutical composition described herein; and
instructions for using the composition to treat a patient suffering from a
disease responsive to inhibition of Btk activity.

[0011] Provided is a method for treating a patient having a disease responsive
to inhibition of Btk activity, comprising administering to the patient an effective
amount of a compound of Formula I.

[0012] Provided is a method for treating a patient having a disease chosen
from cancer, bone disorders, autoimmune diseases, inflammatory diseases, acute
inflammatory reactions, and allergic disorders comprising administering to the patient
an effective amount of a compound of Formula I.

[0013] Provided is a method for increasing sensitivity of cancer cells to
chemotherapy, comprising administering to a patient undergoing chemotherapy with a
chemotherapeutic agent an amount of a compound of Formula I, sufficient to increase
the sensitivity of cancer cells to the chemotherapeutic agent.

[0014] Provided is a method of reducing medication error and enhancing
therapeutic compliance of a patient being treated for a disease responsive to inhibition
of Btk activity, the method comprising providing a packaged pharmaceutical
preparation described herein wherein the instructions additionally include
contraindication and adverse reaction information pertaining to the packaged
pharmaceutical composition.

[0015] Provided is a method for inhibiting ATP hydrolysis, the method
comprising contacting cells expressing Btk with a compound of Formula I in an
amount sufficient to detectably decrease the level of ATP hydrolysis \textit{in vitro}.
Provided is a method for determining the presence of Btk in a sample, comprising contacting the sample with a compound of Formula I under conditions that permit detection of Btk activity, detecting a level of Btk activity in the sample, and therefrom determining the presence or absence of Btk in the sample.

Provided is a method for inhibiting B-cell activity comprising contacting cells expressing Btk with a compound of Formula I in an amount sufficient to detectably decrease B-cell activity in vitro.

As used in the present specification, the following words and phrases are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise. The following abbreviations and terms have the indicated meanings throughout.

As used herein, when any variable occurs more than one time in a chemical formula, its definition on each occurrence is independent of its definition at every other occurrence. In accordance with the usual meaning of "a" and "the" in patents, reference, for example, to "a" kinase or compound or "the" kinase or compound is inclusive of one or more kinases or compounds. The broken bond indicates the point of attachment.

By "optional" or "optionally" is meant that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event or circumstance occurs and instances in which it does not. For example, "optionally substituted alkyl" encompasses both "alkyl" and "substituted alkyl" as defined below. It will be understood by those skilled in the art, with respect to any group containing one or more substituents, that such groups are not intended to introduce any substitution or substitution patterns that are sterically impractical, synthetically non-feasible and/or inherently unstable.

"Alkyl" encompasses straight chain and branched chain having the indicated number of carbon atoms, usually from 1 to 20 carbon atoms, for example 1 to 8 carbon atoms, such as 1 to 6 carbon atoms. For example C₁-C₆ alkyl encompasses both straight and branched chain alkyl of from 1 to 6 carbon atoms. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, penty1, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, 3-methylpentyl, and
the like. Alkylene is another subset of alkyl, referring to the same residues as alkyl, but having two points of attachment. Alkylene groups will usually have from 2 to 20 carbon atoms, for example 2 to 8 carbon atoms, such as from 2 to 6 carbon atoms. For example, C₀ alkylene indicates a covalent bond and Ci alkylene is a methylene group. When an alkyl residue having a specific number of carbons is named, all geometric isomers having that number of carbons are intended to be encompassed; thus, for example, "butyl" is meant to include n-butyl, sec-butyl, isobutyl and t-butyl; "propyl" includes n-propyl and isopropyl. "Lower alkyl" refers to alkyl groups having one to four carbons.

"Cycloalkyl" indicates a saturated hydrocarbon ring group, having the specified number of carbon atoms, usually from 3 to 7 ring carbon atoms. Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl as well as bridged and caged saturated ring groups such as norbornane.

By "alkoxy" is meant an alkyl group of the indicated number of carbon atoms attached through an oxygen bridge such as, for example, methoxy, ethoxy, propoxy, isoproxy, n-butoxy, sec-butoxy, tert-butoxy, pentoxy, 2-pentyloxy, isopentoxy, neopentoxy, hexoxy, 2-hexoxy, 3-hexoxy, 3-methylpentoxy, and the like. Alkoxyl groups will usually have from 1 to 6 carbon atoms attached through the oxygen bridge. "Lower alkoxy" refers to alkoxy groups having one to four carbons.

"Mono- and di-alkylcarboxamide" encompasses a group of the formula -(C=O)NR_aR_b where R_a and R_b are independently chosen from hydrogen and alkyl groups of the indicated number of carbon atoms, provided that R_a and R_b are not both hydrogen.

By "alkylthio" is meant an alkyl group of the indicated number of carbon atoms attached through a sulfur bridge.

"Acyl" refers to the groups (alkyl)-C(O)-; (cycloalkyl)-C(O)-; (aryl)-C(O)-; (heteroaryl)-C(O)-; and (heterocycloalkyl)-C(O)-, wherein the group is attached to the parent structure through the carbonyl functionality and wherein alkyl, cycloalkyl, aryl, heteroaryl, and heterocycloalkyl are as described herein. Acyl groups have the indicated number of carbon atoms, with the carbon of the keto group being included in the numbered carbon atoms. For example a C₂ acyl group is an acetyl group having the formula CH₃(C=O)-.
[0027] By "alkoxycarbonyl" is meant an ester group of the formula (alkoxy)(C=O)- attached through the carbonyl carbon wherein the alkoxy group has the indicated number of carbon atoms. Thus a Ci-C₆ alkoxycarbonyl group is an alkoxy group having from 1 to 6 carbon atoms attached through its oxygen to a carbonyl linker.

[0028] By "amino" is meant the group -NH₂.

[0029] "Mono- and di-(alkyl)amino" encompasses secondary and tertiary alkyl amino groups, wherein the alkyl groups are as defined above and have the indicated number of carbon atoms. The point of attachment of the alkylamino group is on the nitrogen. Examples of mono- and di-alkylamino groups include ethylamino, dimethylamino, and methyl-propyl-amino.

[0030] "Mono- and di-(alkyl)aminoalkyl" encompasses mono- and di-(alkyl)amino as defined above linked to an alkyl group.

[0031] By "amino(alkyl)" is meant an amino group linked to an alkyl group having the indicated number of carbons. Similarly "hydroxyalkyl" is a hydroxy group linked to an alkyl group.

[0032] The term "aminocarbonyl" refers to the group -CONRₙRₜ, where

- Rₙ is chosen from H, optionally substituted Ci-C₄ alkyl, optionally substituted aryl, and optionally substituted heteroaryl; and
- Rₜ is chosen from hydrogen and optionally substituted Ci-C₄ alkyl; or
- Rₙ and Rₜ taken together with the nitrogen to which they are bound, form an optionally substituted 5- to 7-membered nitrogen-containing heterocycloalkyl which optionally includes 1 or 2 additional heteroatoms selected from O, N, and S in the heterocycloalkyl ring;

where each substituted group is independently substituted with one or more substituents independently selected from Ci-C₄ alkyl, aryl, heteroaryl, aryl-C₄ alkyl-, heteroaryl-C₄ alkyl-, Ci-C₄ haloalkyl-, -OCi-C₄ alkyl, -OCI-C₄ alkylphenyl, -Ci-C₄ alkyl-OH, -OCi-C₄ haloalkyl, halo, -OH, -NH₂, -Ci-C₄ alkyl-NH₂, -N(Ci-C₄ alkyl)(Ci-C₄ alkyl), -NH(Ci-C₄ alkyl), -N(Ci-C₄ alkyl)(Ci-C₄ alkylphenyl), -NH(Ci-C₄ alkylphenyl), cyano, nitro, oxo (as a substituted for heteroaryl), -CO₂H, -C(O)OCI-C₄ alkyl, -CON(Ci-C₄ alkyl)(Ci-C₄ alkyl), -CONH(Ci-C₄ alkyl), -CONH₂, -CON(Ci-C₄ alkyl)(Ci-C₄ alkyl), -CONH(Ci-C₄ alkyl), -CONH₂,
-NHC(O)(Ci-C₄ alkyl), -NHC(O)(phenyl), -N(Ci-C₄ alkyl)C(O)(Ci-C₄ alkyl),
-N(Ci-C₄ alkyl)C(OXphenyl), -C(O)Ci-C₄ ... Examples of haloalkyl include, but
are not limited to, trifluoromethyl, difluoromethyl, 2-fluoroethyl, and penta-

"Aryl" encompasses:
 5- and 6-membered carbocyclic aromatic rings, for example, benzene;
bicyclic ring systems wherein at least one ring is carbocyclic and aromatic, for
example, naphthalene, indane, and tetralin; and
tricyclic ring systems wherein at least one ring is carbocyclic and aromatic, for
example, fluorene.

For example, aryl includes 5- and 6-membered carbocyclic aromatic rings fused to a
5- to 7-membered heterocycloalkyl ring containing 1 or more heteroatoms chosen
from N, O, and S. For such fused, bicyclic ring systems wherein only one of the rings
is a carbocyclic aromatic ring, the point of attachment may be at the carbocyclic
aromatic ring or the heterocycloalkyl ring. Bivalent radicals formed from substitutted
benzene derivatives and having the free valences at ring atoms are named as
substituted phenylene radicals. Bivalent radicals derived from univalent polycyclic
hydrocarbon radicals whose names end in "-yl" by removal of one hydrogen atom
from the carbon atom with the free valence are named by adding "-idene" to the name
of the corresponding univalent radical, e.g., a naphthyl group with two points of
attachment is termed naphthylidene. Aryl, however, does not encompass or overlap
in any way with heteroaryl, separately defined below. Hence, if one or more
carbocyclic aromatic rings is fused with a heterocycloalkyl aromatic ring, the
resulting ring system is heteroaryl, not aryl, as defined herein.

The term "aryloxy" refers to the group -O-aryl.
The term "halo" includes fluoro, chloro, bromo, and iodo, and the term
"halogen" includes fluorine, chlorine, bromine, and iodine.
"Haloalkyl" indicates alkyl as defined above having the specified
number of carbon atoms, substituted with 1 or more halogen atoms, up to the
maximum allowable number of halogen atoms. Examples of haloalkyl include, but
are not limited to, trifluoromethyl, difluoromethyl, 2-fluoroethyl, and penta-
fluoroethyl.

"Heteroaryl" encompasses:

5- to 7-membered aromatic, monocyclic rings containing one or more, for example, from 1 to 4, or in certain embodiments, from 1 to 3, heteroatoms chosen from N, O, and S, with the remaining ring atoms being carbon; and

bicyclic heterocycloalkyl rings containing one or more, for example, from 1 to 4, or in certain embodiments, from 1 to 3, heteroatoms chosen from N, O, and S, with the remaining ring atoms being carbon and wherein at least one heteroatom is present in an aromatic ring.

For example, heteroaryl includes a 5- to 7-membered heterocycloalkyl, aromatic ring fused to a 5- to 7-membered cycloalkyl ring. For such fused, bicyclic heteroaryl ring systems wherein only one of the rings contains one or more heteroatoms, the point of attachment may be at the heteroaromatic ring or the cycloalkyl ring. When the total number of S and O atoms in the heteroaryl group exceeds 1, those heteroatoms are not adjacent to one another. In certain embodiments, the total number of S and O atoms in the heteroaryl group is not more than 2. In certain embodiments, the total number of S and O atoms in the aromatic heterocycle is not more than 1. Examples of heteroaryl groups include, but are not limited to, (as numbered from the linkage position assigned priority 1), 2-pyridyl, 3-pyridyl, 4-pyridyl, 2,3-pyrazinyl, 3,4-pyrazinyl, 2,4-pyrimidinyl, 3,5-pyrimidinyl, 2,3-pyrazolinyl, 2,4-imidazolinyl, isoazolinyl, oxazolinyl, thiazolinyl, thiadiazolinyl, tetrazolyl, thienyl, benzothiophenyl, furanyl, benzo furanyl, benzoimidazolinyl, indolinyl, pyridizinyl, triazolyl, quinolinyl, pyrazolyl, and 5,6,7,8-tetrahydroisoquinoline. Bivalent radicals derived from univalent heteroaryl radicals whose names end in "-yl" by removal of one hydrogen atom from the atom with the free valence are named by adding "-idene" to the name of the corresponding univalent radical, e.g., a pyridyl group with two points of attachment is a pyridylidene. Heteroaryl does not encompass or overlap with aryl as defined above.

Substituted heteroaryl also includes ring systems substituted with one or more oxide (-O-) substituents, such as pyridinyl N-oxides.

In the term "heteroarylalkyl," heteroaryl and alkyl are as defined
herein, and the point of attachment is on the alkyl group. This term encompasses, but
is not limited to, pyridylmethyl, thiophenylmethyl, and (pyrrolyl)-ethyl.

By "heterocycloalkyl" is meant a single aliphatic ring, usually with 3
to 7 ring atoms, containing at least 2 carbon atoms in addition to 1-3 heteroatoms
independently selected from oxygen, sulfur, and nitrogen, as well as combinations
comprising at least one of the foregoing heteroatoms. Suitable heterocycloalkyl
groups include, for example (as numbered from the linkage position assigned priority
1), 2-pyrrolinyl, 2,4-imidazolidinyl, 2,3-pyrazolidinyl, 2-piperidyl, 3-piperidyl, 4-
piperdyl, and 2,5-piperzynyl. Morpholinyl groups are also contemplated, including 2-
morpholinyl and 3-morpholinyl (numbered wherein the oxygen is assigned priority 1).
Substituted heterocycloalkyl also includes ring systems substituted with one or more
oxo moieties, such as piperidinyl N-oxide, morpholinyl-N-oxide, 1-oxo-1-
thiomorpholinyl and 1,1-dioxo-1-thiomorpholinyl.

"Carbamimidoyl" refers to the group -C(=NH)-NH₂.

"Substituted carbamimidoyl" refers to the group -C(=NR²)-NR³R₄
where R², R³, and R⁴ is independently chosen from: hydrogen optionally substituted
alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally
substituted heteroaryl, and optionally substituted heterocycloalkyl, provided that at
least one of R², R³, and R⁴ is not hydrogen and wherein substituted alkyl, cycloalkyl,
aryl, heterocycloalkyl, and heteroaryl refer respectively to alkyl, cycloalkyl, aryl,
heterocycloalkyl, and heteroaryl wherein one or more (such as up to 5, for example,
up to 3) hydrogen atoms are replaced by a substituent independently chosen from:
-R³, -OR³, -O(Ci-C₅ alkyl)O- (e.g., methylenedioxy-), -SR³, guanidine,
guanidine wherein one or more of the guanidine hydrogens are replaced with a lower-
alkyl group, -NR³R⁵, halo, cyano, nitro, -COR³, -CO₂R³, -CONR³R⁵, -OCOR³,
-OCO₂R³, -OCOR³R³, -CONR³, -NR³C0R³, -NR³C0₂R³, -NR³C0NR³R⁷, -CO₂R³,
-CNOR³R³, -NR³C0NR³, -SOC₉R³, -SO₂NR³R³, and -NR³SO₂R³,

where R³ is chosen from optionally substituted Ci-C₅ alkyl, optionally
substituted aryl, and optionally substituted heteroaryl;

R⁵ is chosen from H, optionally substituted Ci-C₅ alkyl, optionally substituted
aryl, and optionally substituted heteroaryl; and
R° is independently chosen from hydrogen and optionally substituted Ci-C₄ alkyl; or

R⁰ and R°, and the nitrogen to which they are attached, form an optionally substituted heterocycloalkyl group; and

where each optionally substituted group is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C₁-C₄ alkyl, aryl, heteroaryl, aryl-C₄ alkyl-, heteroaryl-C₄ alkyl-, Ci-C₄ haloalkyl-, -O-Ci-C₄ alkyl, -O-Ci-C₄ alkylation, -Ci-C₄ alkyl-OH, -O-Ci-C₄ haloalkyl, halo, -OH, -NH₂, -Ci-C₄ alkyl-NH₂, -N(Ci-C₄ alkyl)(C₁-C₄ alkyl), -NH(Ci-C₄ alkyl), -N(Ci-C₄ alkyl)(C₁-C₄ alkylphenyl), -NH(Ci-C₄ alklylphenyl), cyano, nitro, oxo (as a substituent for cycloalkyl, heterocycloalkyl, or heteroaryl), -CO₂H, -C(O)O-Ci-C₄ alkyl, -CON(Ci-C₄ alkyl)(C₁-C₄ alkyl), -CONH(Ci-C₄ alkyl), -CONH₂, -NHC(O)(Ci-C₄ alkyl), -NHC(O)(phenyl), -NHC(O)(Ci-C₄ alkyl), -OSO₂(Ci-C₄ alkyl), -OSO₂(Ci-C₄ haloalkyl), -OSO₂(NH(Ci-C₄ alkyl), -OSO₂(NH(Ci-C₄ alkyl)), -OSO₂(Ci-C₄ haloalkyl), -OSO₂(Ci-C₄ haloalkyl), -OSO₂(NH(Ci-C₄ alkyl), -OSO₂(NH(Ci-C₄ alkyl), -OSO₂(NH(Ci-C₄ alkyl), -OSO₂(Ci-C₄ haloalkyl), -OSO₂(Ci-C₄ haloalkyl), -OSO₂(NH(Ci-C₄ alkyl), -OSO₂(NH(Ci-C₄ alkyl), and -OSO₂(Ci-C₄ haloalkyl).

[0043] The term "sulfanyl" includes the groups: -S(optionally substituted (C₁-C₆)alkyl), -S(optionally substituted aryl), -S(optionally substituted heteroaryl), and -S(optionally substituted heterocycloalkyl). Hence, sulfanyl includes the group Ci-C₄ alkylsulfanyl.

[0044] The term "sulfinyl" includes the groups: -S(O)-H, -S(O)-(optionally substituted (Ci-C₆)alkyl), -S(O)-(optionally substituted aryl), -S(O)-(optionally substituted heteroaryl), -S(O)-(optionally substituted heterocycloalkyl); and -S(O)-(optionally substituted amino).

[0045] The term "sulfonyl" includes the groups: -S(O₂)-H, -S(O₂)-(optionally substituted (Ci-C₆)alkyl), -S(O₂)-(optionally substituted aryl), -S(O₂)-(optionally substituted heteroaryl), -S(O₂)-(optionally substituted heterocycloalkyl) -S(O₂)-(optionally substituted alkoxy), -S(O₂)-(optionally substituted aryloxy), -S(O₂)-(optionally substituted heteraryloxy), -S(O₂)-(optionally substituted heterocycloxy); and -S(O₂)-(optionally substituted amino).
The term "substituted", as used herein, means that any one or more hydrogens on the designated atom or group is replaced with a selection from the indicated group, provided that the designated atom's normal valence is not exceeded. When a substituent is *α* (i.e., =0) then 2 hydrogens on the atom are replaced. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds or useful synthetic intermediates. A stable compound or stable structure is meant to imply a compound that is sufficiently robust to survive isolation from a reaction mixture, and subsequent formulation as an agent having at least practical utility. Unless otherwise specified, substituents are named into the core structure. For example, it is to be understood that when (cycloalkyl)alkyl is listed as a possible substituent, the point of attachment of this substituent to the core structure is in the alkyl portion.

The terms "substituted" alkyl, cycloalkyl, aryl, heterocycloalkyl, and heteroaryl, unless otherwise expressly defined, refer respectively to alkyl, cycloalkyl, aryl, heterocycloalkyl, and heteroaryl wherein one or more (such as up to 5, for example, up to 3) hydrogen atoms are replaced by a substituent independently chosen from:

- R^a⁺, -OR^b⁺, -O(alkyl)O-, -SR^b⁺, guanidine, guanidine wherein one or more of the guanidine hydrogens are replaced with a lower-aliphatic group, -NR^b⁺R^c, halo, cyano, nitro, -COR^b⁺, -CO₂R^b⁺, -CONR^b⁺R^c, -OCOR^b⁺, -OCO₂R^b⁺, -OCO₂R^c, -0C0NR^b⁺R^c, -NReC₀R^b⁺, -NR^c⁺C₀R^b⁺, -NR^c⁺C₀_Ra^a, -NR^c⁺C0NR^b⁺R^c, -CO₂R^b⁺, -CO₂R^c, -NRC₀R^b⁺, -NR^c⁺C0R^b⁺, -SOR^a⁺, -SO₂R^a⁺, -SO₂NR^b⁺R^c, and -NR^c⁺SO₂R^a,

where R^a⁺ is chosen from optionally substituted Ci-C₆ alkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R^b⁺, is chosen from H, optionally substituted Ci-C₆ alkyl, optionally substituted aryl, and optionally substituted heteroaryl; and

R^c⁺ is chosen from hydrogen and optionally substituted Ci-C₄ alkyl; or

R_b⁺ and R_c⁺, and the nitrogen to which they are attached, form an optionally substituted heterocycloalkyl group; and

where each optionally substituted group is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently
selected from C₁-C₄ alkyl, aryl, heteroaryl, aryl-C₁-C₄ alkyl-, heteroaryl-C₁-C₄ alkyl-, C₁-C₄ haloalkyl-, -Od-C₄ alkyl, -OCi-C₄ alkylphenyl, -Ci-C₄ alkyl-OH, -OCi-C₄ haloalkyl, halo, -OH, -NH₂, -C₁-C₄ alkyl-NH₂, -Ni(C₁-C₄ alkyl)(C₁-C₄ alkyl), -NH(Ci-C₄ alkyl), -N(C₁-C₄ alkyl)(C₁-C₄ alkylphenyl), -NH(C₁-C₄ alkylphenyl), cyano, nitro, oxo (as a substituent for heteroaryl), -CO₂H, -C(O)OCi-C₄ alkyl, -CON(Ci-C₄ alkyl)(Ci-C₄ alkyl), -CONH(Ci-C₄ alkyl), -CONH₂, -NHC(O)(Ci-C₄ alkyl), -NHC(O)(phenyl), -N(Ci-C₄ alkyl)C(O)(d-C₄ alkyl), -N(Ci-C₄ alkyl)C(O)(phenyl), -C(O)Ci-C₄ alkyl, -C(O)Ci-C₄ phenyl, -Ci(O)Ci-C₄ haloalkyl, -OC(O)Ci-C₄ alkyl, -SO₂(Ci-C₄ alkyl), -SO₂(phenyl), -SO₂(Ci-C₄ haloalkyl), -SO₂NH₂, -SO₂NH(Ci-C₄ alkyl), -SO₂NH(phenyl), -NHSO₂(Ci-C₄ alkyl), -NHSO₂(phenyl), and -NHSO₂(Ci-C₄ haloalkyl).

The term "substituted acyl" refers to the groups (substituted alkyl)-C(O):- (substituted cycloalkyl)-C(O):- (substituted aryl)-C(O):- (substituted heteroaryl)-C(O):- (substituted heterocycloalkyl)-C(O):- wherein the group is attached to the parent structure through the carbonyl functionality and wherein substituted alkyl, cycloalkyl, aryl, heteroaryl, and heterocycloalkyl, refer respectively to alkyl, cycloalkyl, aryl, heteroaryl, and heterocycloalkyl wherein one or more (such as up to 5, for example, up to 3) hydrogen atoms are replaced by a substituent independently chosen from:

-Ra°, -ORb°, -0(Ci-C₂ alkyl)O- (e.g., methylenedioxy-), -SRb°, guanidine, guanidine wherein one or more of the guanidine hydrogens are replaced with a lower-alkyl group, -NRc°Rc°, halo, cyano, nitro, -C0Rb°, -C₀₂Rb°, -CONRb°Rc°, -OC0Rb°, -0C₀₂Rb°, -0CONRb°Rc°, -NRc°C₀₂Rb°, -NRc°C0Rb°, -NRc°CONRb°Rc°, -CO₂Rb°, -CONRb°Rc°, -NRc°C0Rb°, -SORb°, -SO₂Rb°, -S0₂NRb°Rc°, and -NRc°S0₂Rb°,

where Ra° is chosen from optionally substituted Ci-C₆ alkyl, optionally substituted aryl, and optionally substituted heteroaryl;

Rb° is chosen from H, optionally substituted Ci-C₆ alkyl, optionally substituted aryl, and optionally substituted heteroaryl; and

Rc° is chosen from hydrogen and optionally substituted Ci-C₄ alkyl; or

Rb° and Rc°, and the nitrogen to which they are attached, form an optionally substituted heterocycloalkyl group; and

where each optionally substituted group is unsubstituted or independently
substituted with one or more, such as one, two, or three, substituents independently selected from C₁-C₄ alkyl, aryl, heteroaryl, aryl-C₁-C₄ alkyl-, heteroaryl-CrC₄ alkyl-, C₁-C₄ haloalkyl-, -OC₁-C₄ alkyl, -OC₁-C₄ alkyphenyl, -C₁-C₄ alkyl-OH, -OC₁-C₄ haloalkyl, halo, -OH, -NH₂, -C₁-C₄ alkyl-NH₂, -N(C₁-C₄ alkyl)(C₁-C₄ alkyl), -NH(C₁-C₄ alky), -N(C₁-C₄ alkyl)(C₁-C₄ alkyphenyl), -NH(C₁-C₄ alkylphenyl), cyano, nitro, o xo (as a substituent for heteroaryl), -CO₂H, -C(O)OC₁-C₄ alkyl, -CON(C₁-C₄ alkyl)(C₁-C₄ alkyl), -CONH(C₁-C₄ alkyl), -CONH₂, -NHC(O)(C₁-C₄ alkyl), -NHC(O)(phenyl), -N(C₁-C₄ alkyl)C(O)(C₁-C₄ alkyl), -C(O)C₁-C₄ alkyl, -C(O)C₁-C₄ phenyl, -C(O)C₁-C₄ haloalkyl, -OC(O)C₁-C₄ alkyl, -SO₂C₁-C₄ alkyl, -SO₂(phenyl), -SO₂(C₁-C₄ alkyl), -SO₂NH₂, -SO₂NH(C₁-C₄ alkyl), -SO₂NH(phenyl), -NHSO₂(C₁-C₄ alkyl), -NHSO₂(phenyl), and -NHSO₂(C₁-C₄ haloalkyl).

[0049] The term "substituted alkoxy" refers to alkoxy wherein the alkyl constituent is substituted (i.e., -O-(substituted alkyl)) wherein "substituted alkyl" refers to alkyl wherein one or more (such as up to 5, for example, up to 3) hydrogen atoms are replaced by a substituent independently chosen from:

- R₅⁻, -0R₅⁻, -0(C₁-C₂ alkyl)O- (e.g., methylenedioxy-), -SR₅⁻, guanidine, guanidine wherein one or more of the guanidine hydrogens are replaced with a lower-alkyl group, -NR₅⁻R₆⁻, halo, cyano, nitro, -C₀R₅⁻, -C₀₂R₅⁻, -C₀NR₅⁻R₆⁻, -OC₀₂R₅⁻, -OC₀NR₅⁻R₆⁻, -OC₀₂R₅⁻, -OC₀NR₅⁻R₆⁻, -O₂R₅⁻, -OC₂NR₅⁻R₆⁻, -O₂NR₅⁻R₆⁻, -O₂₃R₅⁻, -O₂₂NR₅⁻R₆⁻, and -O₂₂₃R₅⁻, where R₅⁺ is chosen from optionally substituted C₁-C₆ alkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R₅⁻ is chosen from H, optionally substituted C₁-C₆ alkyl, optionally substituted aryl, and optionally substituted heteroaryl; and

R₅⁺ is chosen from hydrogen and optionally substituted C₁-C₄ alkyl; or

R₅⁻ and R₅⁺, and the nitrogen to which they are attached, form an optionally substituted heterocycloalkyl group; and

where each optionally substituted group is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C₁-C₄ alkyl, aryl, heteroaryl, aryl-C₁-C₄ alkyl-, heteroaryl-C₁-C₄ alkyl-, C₁-C₄ haloalkyl-, -OC₁-C₄ alkyl, -OC₁-C₄ alkyphenyl, -C₁-C₄ alkyl-OH,
-OCi-C$_4$ haloalkyl, halo, -OH, -NH$_2$, -Ci-C$_4$ alkyl-NH$_2$, -N(Ci-C$_4$ alkyl)(Ci-C$_4$ alkyl),
-NH(Ci-C$_4$ alkyl), -N(Ci-C$_4$ alkyl)(Ci-C$_4$ alkylphenyl), -NH(Ci-C$_4$ alkylphenyl), cyano, nitro, oxo (as a substituent for heteroaryl), -CO$_2$H, -C(O)OCi-C$_4$ alkyl,
-CON(Ci-C$_4$ alkyl)(Ci-C$_4$ alkyl), -CONH(Ci-C$_4$ alkyl), -CONH$_2$,
-NHC(O)(Ci-C$_4$ alkyl), -NHC(O)(phenyl), -N(Ci-C$_4$ alkyl)C(O)(Ci-C$_4$ alkyl),
-N(Ci-C$_4$ alkyl)C(O)(phenyl), -C(O)Ci-C$_4$ alkyl, -C(O)Ci-C$_4$ phenyl,
-C(O)Ci-C$_4$ haloalkyl, -OC(O)Ci-C$_4$ alkyl, -SO$_2$(Ci-C$_4$ alkyl), -SO$_2$(phenyl),
-SO$_2$(Ci-C$_4$ haloalkyl), -SO$_2$NH$_2$, -SO$_2$NH(Ci-C$_4$ alkyl), -SO$_2$NH(phenyl),
-NHSO$_2$(Ci-C$_4$ alkyl), -NHSO$_2$(phenyl), and -NHSO$_2$(Ci-C$_4$ haloalkyl). In some embodiments, a substituted alkoxy group is "polyalkoxy" or -O-(optionally substituted alkylene)-(optionally substituted alkoxy), and includes groups such as
-OCH$_2$CH$_2$OCH$_3$, and residues of glycol ethers such as polyethyleneglycol, and
-0(CH$_2$CH$_2$O)$_x$CH$_3$, where x is an integer of 2-20, such as 2-10, and for example, 2-5. Another substituted alkoxy group is hydroxyalkoxy or -OCH$_2$(CH$_2$)$_y$OH, where y is an integer of 1-10, such as 1-4.

[0050] The term "substituted alkoxy carbonyl" refers to the group (substituted alkyl)-O-C(O)- wherein the group is attached to the parent structure through the carbonyl functionality and wherein substituted refers to alkyl wherein one or more (such as up to 5, for example, up to 3) hydrogen atoms are replaced by a substituent independently chosen from:

-Ratt, -ORatt, -0(Ci-C$_2$ alkyl)O- (e.g., methylenedioxy-), -SRatt, guanidine,

Ratt is chosen from optionally substituted Ci-C$_6$ alkyl, optionally substituted aryl, and optionally substituted heteroaryl;

Ratt is chosen from H, optionally substituted Ci-C$_6$ alkyl, optionally substituted aryl, and optionally substituted heteroaryl; and

Ratt is chosen from hydrogen and optionally substituted Ci-C$_4$ alkyl; or
R^{bt}$ and R^{ctt}$, and the nitrogen to which they are attached, form an optionally substituted heterocycloalkyl group; and

where each optionally substituted group is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C$_1$-C$_4$ alkyl, aryl, heteroaryl, aryl-C$_1$-C$_4$ alkyl-, heteroaryl-C$_1$-C$_4$ alkyl-, Ci-C$_4$ haloalkyl-, -Od-C$_4$ alkyl, -OC$_4$ alkylphenyl, -Ci-C$_4$ alkyl-OH,

-OCi-C$_4$ haloalkyl, halo, -OH, -NH$_2$, -C$_1$-C$_4$ alkyl-NH$_2$, -Ni(C$_1$-C$_4$ alkyl)(C$_1$-C$_4$ alkyl),

-NH(C$_1$-C$_4$ alkyl), -N(C$_1$-C$_4$ alkyl)(C$_1$-C$_4$ alkylphenyl), -NH(C$_1$-C$_4$ alkylphenyl), cyano, nitro, *oxo* (as a substituent for heteroaryl), -CO$_2$H, -C(O)O-Ci-C$_4$ alkyl,

-CON(Ci-C$_4$ alkyl)(Ci-C$_4$ alkyl), -CONH(Ci-C$_4$ alkyl), -CONH$_2$,

-NHC(O)(Ci-C$_4$ alkyl), -NHC(O)(phenyl), -N(C$_1$-C$_4$ alkyl)(C(O)C$_1$-C$_4$ alkyl),

-N(Ci-C$_4$ alkyl)C(O)(phenyl), -C(O)C$_1$-C$_4$ alkyl, -C(O)C$_1$-C$_4$ phenyl,

-C(O)Ci-C$_4$ haloalkyl, -OC(O)Ci-C$_4$ alkyl, -SO$_2$(Ci-C$_4$ alkyl), -SO$_2$(phenyl), -

SO$_2$(Ci-C$_4$ haloalkyl), -SO$_2$NH$_2$, -SO$_2$NH(Ci-C$_4$ alkyl), -SO$_2$NH(phenyl), -

NHSO$_2$(Ci-C$_4$ alkyl), -NHSO$_2$(phenyl), and -NHSO$_2$(Ci-C$_4$ haloalkyl).

[0051] The term "substituted amino" refers to the group -NHR$_d$ or -NR$_d^4$R$_d$ where each R$_d$ is independently chosen from: hydroxy, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted acyl, aminocarbonyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocycloalkyl, alkoxy carbonyl, sulfinyl and sulfonyl, provided that only one R$_d$ may be hydroxyl, and wherein substituted alkyl, cycloalkyl, aryl, heterocycloalkyl, and heteroaryl refer respectively to alkyl, cycloalkyl, aryl, heterocycloalkyl, and heteroaryl wherein one or more (such as up to 5, for example, up to 3) hydrogen atoms are replaced by a substituent independently chosen from:

-R$_{af}^4$, -OR$_{bf}^4$, -O(Ci-C$_2$ alkyl)O- (e.g., methylenedioxy-), -SR$_{bf}^4$, guanidine, guanidine wherein one or more of the guanidine hydrogens are replaced with a lower-alkyl group, -NR$_{bf}^4$R$_{cf}^4$, halo, cyano, nitro, -C0R$_{bf}^4$, -C0$_2$R$_{bf}^4$, -C0NR$_{bf}^4$R$_{cf}^4$, -0C0R$_{bf}^4$,

-OC0$_2$R$_{af}^4$, -0C0NR$_{bf}^4$R$_{cf}^4$, -NR$_{af}^4$COR$_{bf}^4$, -NR$_{af}^4$C0$_2$Ra4, -NR$_{af}^4$C0$_2$Ra4, -NR$_{af}^4$C0$_2$Ra4, -CO$_2$R$_{bf}^4$,

-C0NR$_{bf}^4$R$_{cf}^4$, -NR$_{cf}^4$COR$_{bf}^4$, -S0$_2$Ra4, -SO$_2$R$_{af}^4$, -S0$_2$NR$_{bf}^4$R$_{cf}^4$, and -NR$_{af}^4$S0$_2$Ra4.

where R$_{af}^4$ is chosen from optionally substituted Ci-C$_6$ alkyl, optionally substituted aryl, and optionally substituted heteroaryl;
Rb is chosen from H, optionally substituted Ci-Cb alkyl, optionally substituted aryl, and optionally substituted heteroaryl; and
Ra is chosen from hydrogen and optionally substituted Ca-Cb alkyl; or
Rb and Ra, and the nitrogen to which they are attached, form an optionally substituted heterocycloalkyl group; and

where each optionally substituted group is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from Ca-Cb alkyl, aryl, heteroaryl, aryl-Ci-Ca alkyl-, heteroaryl-Ci-Ca alkyl-, Ci-Ca haloalkyl-, -OCi-Ca alkyl, -OCi-Ca alkylphenyl, -Ci-Ca alkyl-OH, -OCi-Ca haloalkyl, halo, -OH, -NH$_2$, -Ci-Ca alkyl-NH$_2$, -N(Ci-Ca alkyl)-(Ci-Ca alkyl), -NH(Ci-Ca alkyl), -N(Ci-Ca alkyl)(Ci-Ca alkylphenyl), -NH(Ci-Ca alkylphenyl), cyano, nitro, oxo (as a substituent for heteroaryl), -CO$_2$H, -C(O)Ci-Ca alkyl, -CON(Ci-Ca alkyl)-(Ci-Ca alkyl), -CONH(Ci-Ca alkyl), -CONH$_2$, -NHC(O)(Ci-Ca alkyl), -NHC(O)(phenyl), -N(Ci-Ca alkyl)(Ci-Ca alkyl), -N(Ci-Ca alkyl)C(O)(phenyl), -C(O)Ci-Ca alkyl, -C(O)Ci-Ca phenyl, -C(O)Ci-Ca haloalkyl, -OC(O)Ci-Ca alkyl, -SO$_2$(Ci-Ca alkyl), -SO$_2$(phenyl), -SO$_2$(Ci-Ca haloalkyl), -SO$_2$NH$_2$, -SO$_2$NH(Ci-Ca alkyl), -SO$_2$NH(phenyl), -NHSO$_2$(Ci-Ca alkyl), -NHSO$_2$(phenyl), and -NHSO$_2$(Ci-Ca haloalkyl); and

wherein optionally substituted acyl, aminocarbonyl, alkoxy carbonyl, sulfinyl and sulfonil are as defined herein.

The term "substituted amino" also refers to N-oxides of the groups -NHRd, and NRdRd each as described above. N-oxides can be prepared by treatment of the corresponding amino group with, for example, hydrogen peroxide or m-chloroperoxybenzoic acid. The person skilled in the art is familiar with reaction conditions for carrying out the N-oxidation.

As used herein, "modulation" refers to a change in kinase activity as a direct or indirect response to the presence of compounds described herein, relative to the activity of the kinase in the absence of the compound. The change may be an increase in activity or a decrease in activity, and may be due to the direct interaction of the compound with the kinase, or due to the interaction of the compound with one or more other factors that in turn affect kinase activity. For example, the presence of the compound may, for example, increase or decrease kinase activity by directly
binding to the kinase, by causing (directly or indirectly) another factor to increase or decrease the kinase activity, or by (directly or indirectly) increasing or decreasing the amount of kinase present in the cell or organism.

[0054] Compounds of Formula I include, but are not limited to, optical isomers of Formula I, racemates, and other mixtures thereof. In those situations, the single enantiomers or diastereomers, i.e., optically active forms, can be obtained by asymmetric synthesis or by resolution of the racemates. Resolution of the racemates can be accomplished, for example, by conventional methods such as crystallization in the presence of a resolving agent, or chromatography, using, for example a chiral high-pressure liquid chromatography (HPLC) column. In addition, compounds include Z- and E- forms (or cis- and trans- forms) of compounds with carbon-carbon double bonds. Where compounds exist in various tautomeric forms, chemical entities of the present invention include all tautomeric forms of the compound. Compounds also include crystal forms including polymorphs and clathrates.

[0055] The present invention includes, but is not limited to, compounds of Formula I and all pharmaceutically acceptable forms thereof. Pharmaceutically acceptable forms of the compounds recited herein include pharmaceutically acceptable salts, solvates, prodrugs, and mixtures thereof. In certain embodiments, the compounds described herein are in the form of pharmaceutically acceptable salts. The compounds of this invention remain part of this invention even when they are in the form of chemical association with other chemical entities in the manner of a chelate or a non-covalent complex. The terms "compound" and "chemical entity" are used interchangeably herein.

[0056] "Pharmaceutically acceptable salts" include, but are not limited to salts with inorganic acids, such as hydrochlorate, phosphate, diphosphate, hydrobromate, sulfate, sulfinate, nitrate, and like salts; as well as salts with an organic acid, such as malate, maleate, fumarate, tartrate, succinate, citrate, acetate, lactate, methanesulfonate, p-toluensulfonate, 2-hydroxyethylsulfonate, benzoate, salicylate, stearate, and alkanoate such as acetate, HOOC-(CH₂)ₙ-COOH where n is 0-4, and like salts. Similarly, pharmaceutically acceptable cations include, but are not limited to sodium, potassium, calcium, aluminum, lithium, and ammonium.

[0057] In addition, if the compound is obtained as an acid addition salt, the
free base can be obtained by basifying a solution of the acid salt. Conversely, if the product is a free base, an addition salt, particularly a pharmaceutically acceptable addition salt, may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds. Those skilled in the art will recognize various synthetic methodologies that may be used to prepare non-toxic pharmaceutically acceptable addition salts.

[0058] As noted above, prodrugs also fall within the scope of the present invention, for example ester or amide derivatives of the compounds of Formula 1. The term "prodrugs" includes any compounds that become compounds of Formula 1 when administered to a patient, e.g., upon metabolic processing of the prodrug. Examples of prodrugs include, but are not limited to, acetate, formate, and benzoate and like derivatives of functional groups (such as alcohol or amine groups) in the compounds of Formula 1.

[0059] The term "solvate" refers to the chemical entity formed by the interaction of a solvent and a compound. Suitable solvates are pharmaceutically acceptable solvates, such as hydrates, including monohydrates and hemi-hydrates.

[0060] The term "chelate" refers to the chemical entity formed by the coordination of a compound to a metal ion at two (or more) points. Such a metal ion include Ca++ and Mg++.

[0061] The term "non-covalent complex" refers to the chemical entity formed by the interaction of a compound and another molecule wherein a covalent bond is not formed between the compound and the molecule. For example, complexation can occur through van der Waals interactions, hydrogen bonding, and electrostatic interactions (also called ionic bonding).

[0062] The term "hydrogen bond" refers to a form of association between an electronegative atom (also known as a hydrogen bond acceptor) and a hydrogen atom attached to a second, relatively electronegative atom (also known as a hydrogen bond donor). Suitable hydrogen bond donor and acceptors are well understood in medicinal chemistry (G. C. Pimentel and A. L. McClellan, The Hydrogen Bond, Freeman, San Francisco, 1960; R. Taylor and O. Kennard, "Hydrogen Bond
Geometry in Organic Crystals”, Accounts of Chemical Research, 17, pp. 320-326 (1984)).

[0063] The term "active agent" is used to indicate a chemical entity which has biological activity. In certain embodiments, an "active agent" is a compound having pharmaceutical utility. For example an active agent may be an anti-cancer therapeutic.

[0064] The term "therapeutically effective amount" of a compound of this invention means an amount effective, when administered to a human or non-human patient, to provide a therapeutic benefit such as amelioration of symptoms, slowing of disease progression, or prevention of disease e.g., a therapeutically effective amount may be an amount sufficient to decrease the symptoms of a disease responsive to inhibition of Btk activity. In some embodiments, a therapeutically effective amount is an amount sufficient to reduce cancer symptoms, the symptoms of bone disorders, the symptoms of an allergic disorder, the symptoms of an autoimmune and/or inflammatory disease, or the symptoms of an acute inflammatory reaction. In some embodiments a therapeutically effective amount is an amount sufficient to decrease the number of detectable cancerous cells in an organism, detectably slow, or stop the growth of a cancerous tumor. In some embodiments, a therapeutically effective amount is an amount sufficient to shrink a cancerous tumor. In certain circumstances a patient suffering from cancer may not present symptoms of being affected. In some embodiments, a therapeutically effective amount of a compound/chemical entity is an amount sufficient to prevent a significant increase or significantly reduce the detectable level of cancerous cells or cancer markers in the patient's blood, serum, or tissues. In methods described herein for treating allergic disorders and/or autoimmune and/or inflammatory diseases and/or acute inflammatory reactions, a therapeutically effective amount may also be an amount sufficient, when administered to a patient, to detectably slow progression of the disease, or prevent the patient to whom the compound/chemical entity is given from presenting symptoms of the allergic disorders and/or autoimmune and/or inflammatory disease, and/or acute inflammatory response. In certain methods described herein for treating allergic disorders and/or autoimmune and/or inflammatory diseases and/or acute inflammatory reactions, a therapeutically effective amount may also be an amount sufficient to
produce a detectable decrease in the amount of a marker protein or cell type in the patient's blood or serum. For example, in some embodiments a therapeutically effective amount is an amount of a compound/chemical entity described herein sufficient to significantly decrease the activity of B-cells. In another example, in some embodiments a therapeutically effective amount is an amount of a compound of Formula I sufficient to significantly decrease the number of B-cells. In another example, in some embodiments a therapeutically effective amount is an amount of a compound of Formula I sufficient to decrease the level of anti- acetylcholine receptor antibody in a patient's blood with the disease myasthenia gravis.

[0065] The term "inhibition" indicates a significant decrease in the baseline activity of a biological activity or process. "Inhibition of Btk activity" refers to a decrease in Btk activity as a direct or indirect response to the presence of a compound of Formula I, relative to the activity of Btk in the absence of such compound. The decrease in activity may be due to the direct interaction of the compound with Btk, or due to the interaction of such compound with one or more other factors that in turn affect Btk activity. For example, the presence of the compound may decrease Btk activity by directly binding to the Btk, by causing (directly or indirectly) another factor to decrease Btk activity, or by (directly or indirectly) decreasing the amount of Btk present in the cell or organism.

[0066] Inhibition of Btk activity also refers to observable inhibition of Btk activity in a standard biochemical assay for Btk activity, such as the ATP hydrolysis assay described below. In some embodiments, a compound of Formula I has an IC\textsubscript{50} value less than or equal to 1 micromolar. In some embodiments, a compound of Formula I has an IC\textsubscript{50} value less than or equal to less than 25 nanomolar. In some embodiments, a compound of Formula I has an IC\textsubscript{50} value less than or equal to 5 nanomolar.

[0067] "Inhibition of B-cell activity" refers to a decrease in B-cell activity as a direct or indirect response to the presence of a compound of Formula I, relative to the activity of B-cells in the absence of such compound. The decrease in activity may be due to the direct interaction of the compound with Btk or with one or more other factors that in turn affect B-cell activity.

[0068] Inhibition of B-cell activity also refers to observable inhibition of
CD86 expression in a standard assay such as the assay described below. In some embodiments, a compound of Formula I has an IC$_{50}$ value less than or equal to 10 micromolar. In some embodiments, a compound of Formula I has an IC$_{50}$ value less than or equal to less than 0.5 micromolar. In some embodiments, a compound of Formula I has an IC$_{50}$ value less than or equal to 100 nanomolar.

[0069] "B cell activity" also includes activation, redistribution, reorganization, or capping of one or more various B cell membrane receptors, e.g., CD40, CD86, and Toll-like receptors TLRs (in particular TLR4), or membrane-bound immunoglobulins, e.g., IgM, IgG, and IgD. Most B cells also have membrane receptors for Fc portion of IgG in the form of either antigen-antibody complexes or aggregated IgG. B cells also carry membrane receptors for the activated components of complement, e.g., C3b, C3d, C4, and C1q. These various membrane receptors and membrane-bound immunoglobulins have membrane mobility and can undergo redistribution and capping that can initiate signal transduction.

[0070] B cell activity also includes the synthesis or production of antibodies or immunoglobulins. Immunoglobulins are synthesized by the B cell series and have common structural features and structural units. Five immunoglobulin classes, i.e., IgG, IgA, IgM, IgD, and IgE, are recognized on the basis of structural differences of their heavy chains including the amino acid sequence and length of the polypeptide chain. Antibodies to a given antigen may be detected in all or several classes of immunoglobulins or may be restricted to a single class or subclass of immunoglobulin. Autoantibodies or autoimmune antibodies may likewise belong to one or several classes of immunoglobulins. For example, rheumatoid factors (antibodies to IgG) are most often recognized as an IgM immunoglobulin, but can also IgG or IgA.

[0071] In addition, B cell activity also is intended to include a series of events leading to B cell clonal expansion (proliferation) from precursor B lymphocytes and differentiation into antibody-synthesizing plasma cells which takes place in conjunction with antigen-binding and with cytokine signals from other cells.

[0072] "Inhibition of B-cell proliferation" refers to inhibition of proliferation of abnormal B-cells, such as cancerous B-cells, e.g. lymphoma B-cells and/ or inhibition of normal, non-diseased B-cells. The term "inhibition of B-cell
proliferation” indicates no increase or any significant decrease in the number of B-cells, either in vitro or in vivo. Thus an inhibition of B-cell proliferation in vitro would be any significant decrease in the number of B-cells in an in vitro sample contacted with a compound of Formula I as compared to a matched sample not contacted with such compound.

[0073] Inhibition of B-cell proliferation also refers to observable inhibition of B-cell proliferation in a standard thymidine incorporation assay for B-cell proliferation, such as the assay described herein. In some embodiments, a compound of Formula I has an IC_{50} value less than or equal to 10 micromolar. In some embodiments, a compound of Formula I has an IC_{50} value less than or equal to less than 500 nanomolar. In some embodiments, a compound of Formula I has an IC_{50} value less than or equal to 50 nanomolar.

[0074] An "allergy" or "allergic disorder" refers to acquired hypersensitivity to a substance (allergen). Allergic conditions include eczema, allergic rhinitis or coryza, hay fever, bronchial asthma, urticaria (hives) and food allergies, and other atopic conditions.

[0075] "Asthma" refers to a disorder of the respiratory system characterized by inflammation, narrowing of the airways and increased reactivity of the airways to inhaled agents. Asthma is frequently, although not exclusively associated with atopic or allergic symptoms.

[0076] By "significant" is meant any detectable change that is statistically significant in a standard parametric test of statistical significance such as Student's T-test, where p < 0.05.

[0077] A "disease responsive to inhibition of Btk activity” is a disease in which inhibiting Btk kinase provides a therapeutic benefit such as an amelioration of symptoms, decrease in disease progression, prevention or delay of disease onset, or inhibition of aberrant activity of certain cell-types (monocytes, osteoclasts, B-cells, mast cells, myeloid cells, basophils, macrophages, neutrophils, and dendritic cells).

[0078] "Treatment or treating” means any treatment of a disease in a patient, including:

a) inhibiting the disease;

b) slowing or arresting the development of clinical symptoms; and/or
c) relieving the disease, that is, causing the regression of clinical symptoms.

[0079] “Prevent or preventing" a disease means causing the clinical symptoms of the disease not to develop.

[0080] “Patient" refers to an animal, such as a mammal, that has been or will be the object of treatment, observation or experiment. The methods of the invention can be useful in both human therapy and veterinary applications. In some embodiments, the patient is a mammal; in some embodiments the patient is human; and in some embodiments the patient is chosen from cats and dogs.

[0081] Provided is a compound of Formula I:

\[
\text{\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{formula.png}
\end{figure}}
\]

and pharmaceutically acceptable salts, solvates, and mixtures thereof, wherein

- \(R_1\) is optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkyl, optionally substituted alkoxy, or optionally substituted heterocycloalkyl;
- \(R_2\) is H, OH, or \(C_1-C_3\) alkyl optionally substituted with \(N(R_7)_2\);
- \(Z\) is \(\text{NR}_3\text{R}_4\), wherein \(R_3\) and \(R_4\) are taken together with the nitrogen atom to which they are both attached to form an optionally substituted heterocycloalkyl or optionally substituted heteroaryl, provided that \(Z\) is not pyridylidene;
each of which is optionally substituted with one or two groups chosen from hydroxy, cyano, halo, optionally substituted lower alkyl, and optionally substituted lower alkoxy;
each R_{i6} is independently hydrogen, cyano, optionally substituted cycloalkyl, or optionally substituted lower alkyl;
each of R_{n}, R_{18}, and R_{19} is independently hydrogen or optionally substituted lower alkyl;
each R_{20} is independently hydrogen, hydroxy, cyano, halo, optionally substituted lower alkyl, or optionally substituted lower alkoxy;
D is $-\text{NHR}_{6}$;
R_{6} is optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted heterocycloalkyl; and
each R_{7} is independently H or CH_3.

[0082] In certain embodiments, R_{1} is phenyl,
phenyl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfanyl, sulfonyl, optionally substituted amino, lower alkoxy, lower alkyl substituted with one or more halo, lower alkoxy substituted with one or
more halo, lower alkyl substituted with hydroxy, lower alkyl substituted with lower alkoxy, optionally substituted piperidinyl, and heteroaryl,
 pyridyl,
 pyridyl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl,
 pyrimidinyl,
 pyrimidinyl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl,
 pyrazinyl,
 pyrazinyl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl,
 pyridazinyl,
 pyridazinyl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl,
 oxazol-2-yl,
 oxazol-2-yl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl,
 2H-pyrazol-3-yl,
 2H-pyrazol-3-yl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl,
 [1,2,3]thiadiazol-4-yl,
 [1,2,3]thiadiazol-4-yl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl,
 isoxazol-5-yl,
isoxazol-5-yl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl,

4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl,

4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl,

4,5,6,7-tetrahydrobenzofuran-2-yl,

4,5,6,7-tetrahydrobenzofuran-2-yl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl,

4,5,6,7-tetrahydro-1H-indol-2-yl,

4,5,6,7-tetrahydro-1H-indol-2-yl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl and wherein the amine nitrogen of the indole ring is optionally substituted with an optionally substituted lower alkyl group.

1H-indol-2-yl,

1H-indol-2-yl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl and wherein the amine nitrogen of the indole ring is optionally substituted with an optionally substituted lower alkyl group.

benzofuran-2-yl,

benzofuran-2-yl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl,

benzo[b]thiophen-2-yl, or

benzo[b]thiophen-2-yl substituted with one to three substituents independently selected from hydroxy, lower alkyl, sulfonyl, halo, lower alkoxy, optionally substituted piperidinyl, and heteroaryl.

[0083] In certain embodiments, R₁ is:
In certain embodiments, R is:

- each \(R^0 \) is independently \(C_1-C_3 \) alkyl;
- each \(R^{10} \) is independently H or CH₃;
- each \(R^{13} \) is independently H, halo, \(C_1-C_6 \) alkyl, \(C_1-C_6 \) alkoxy, or \(C_1-C_6 \) haloalkyl;
- each \(R^{14} \) is independently H, \(C(=O)H \), \(C(=O)R^9 \), or \(C_1-C_6 \) alkyl wherein said alkyl is optionally substituted with one or more \(\text{OH} \) groups;
- \(R^{15} \) is CH₃, F, Cl, Br, OH, or OCH₃;
- \(R^{16} \) is F, Cl, Br, CH₃, or CF₃;
- \(R^{17} \) is F or OCH₃;
- \(R^{18} \) is F or Cl; and
- \(R^{19} \) is F or CH₃.

In certain embodiments, \(R_1 \) is:
In certain embodiments, \(R_i \) is chosen from:

\[
\text{CH or N; } W \text{ is CH or N; and each } R_5 \text{ is independently } \text{C}_i-\text{C}_3 \text{ alkyl.}
\]
In certain embodiments, Ri is

wherein at least one of W or W' is N.

In certain embodiments, R2 is H or CH3. In certain embodiments, R2 is H. In certain embodiments, R2 is -(CH2)3N(CH3)2. In certain embodiments, R2 is OH.

In certain embodiments, Z is

, wherein ++ denotes the point of attachment to RiCON(R2)- moiety and + denotes the point of attachment to . In certain embodiments, Z is
[0089] In certain embodiments, R_{16} is H or CH_3.

[0090] In certain embodiments, R_6 is $-B-L-G$ (i.e., D is $-N(H)-B-L-G$)

wherein:

B is chosen from optionally substituted phenylene, optionally substituted pyridylidene, optionally substituted pyrazolyl, optionally substituted 2-0x0-1,2-dihydropyridinyl, optionally substituted oxazolyl, optionally substituted pyrimidinyl, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted imidazolyl.
wherein * indicates the point of attachment to the group -L-G and the broken bond indicates the point of attachment to the -N(H)- group.

Each Xi is independently N or CR31;

each X2 is independently N or CR31; and

each X3 is independently N or CR31; and wherein no more than one of X1, X2, and X3 is N.

each R30 is independently hydrogen, hydroxy, cyano, halo, optionally substituted lower alkyl, or optionally substituted lower alkoxy;

each R31 is independently hydrogen, hydroxy, cyano, halo, optionally substituted lower alkyl, or optionally substituted lower alkoxy;

L is optionally substituted Co-C4 alkylene, -O-optionally substituted Co-C4 alkylene, -(CO-C4 alkylene)(SO)-, -(CO-C4 alkylene)(SO2)-, or -(CO-C4 alkylene)(C=O)-; and

G is hydrogen, halo, hydroxy, alkoxy, nitro, optionally substituted alkyl,

optionally substituted amino, optionally substituted carbamimidoyl,

optionally substituted heterocycloalkyl, optionally substituted cycloalkyl, optionally substituted aryl, or optionally substituted heteroaryl.

[0091] In certain embodiments, B is chosen from ortho-phenylene, meta-phenylene, para-phenylene, ortho-pyridylidene, meta-pyridylidene, para-pyridylidene, pyrazol-4-yl,
In certain embodiments, B is chosen from para-phenylene and meta-phenylene. In certain embodiments, B is para-phenylene.

In certain embodiments, B is para-pyridylidene. In certain embodiments, B is pyrazol-4-yl.

In certain embodiments, B is chosen from...

In certain embodiments, each R₃ₐ is hydrogen.

In certain embodiments, L is chosen from optionally substituted Co-C₄alkylene, -O-optionally substituted Co-C₄alkylene, -(Co-C₄alkylene)(SO₂)_--; and -(Co-C₄alkylene)(C=O)-. In certain embodiments, L is chosen from a covalent bond, -(C=O)-, -CH₂-, -CH₂(C=O)-, -SO₂- and -CH(CH₃)(C=O)-. In certain embodiments, L is -(C=O)-. In some embodiments, L is -CH₂-. In some embodiments, L is a covalent bond.

In certain embodiments, G is chosen from hydrogen, hydroxy, C₁⁻C₆alkoxy, optionally substituted amino, optionally substituted C₃⁻C₇heterocycloalkyl,
optionally substituted C₃₋C₇ cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl.

[00102] In certain embodiments, G is chosen from
hydrogen,
hydroxy,
-NR₈R₉ wherein R₈ and R₉ are independently chosen from hydrogen,
optionally substituted acyl, and optionally substituted (Ci-C₆)alkyl; or wherein R₈ and R₉, together with the nitrogen to which they are bound, form an optionally substituted 5- to 7-membered nitrogen containing heterocycloalkyl which optionally further includes one or two additional heteroatoms chosen from N, O, and S;
optionally substituted 5,6-dihydro-8H-imidazo[1,2-a]pyrazin-7-yl,
lower alkoxy, and
1H-tetrazol-5-yl.

[00103] In certain embodiments, G is chosen from
hydrogen,
hydroxy,
N-methylethanolamino,
-N(Ci-C₆ alkyl)₂,
optionally substituted morpholin-4-yl,
optionally substituted piperazin-1-yl,
optionally substituted piperazin-2-yl,
optionally substituted homopiperazin-1-yl, and
optionally substituted cyclopropyl.

[00104] In certain embodiments, G is chosen from
hydrogen,
-N(Ci-C₆ alkyl)₂,
morpholin-4-yl,
4-acyl-piperazin-1-yl,
4-lower alkyl-piperazin-1-yl,
3-oxo-piperazin-1-yl,
3-oxopiperazin-2-yl,
homopiperazin-1-yl,
4-lower alkyl-homopiperazin-1-yl, and
cyclopropyl.

[00105] In certain embodiments, L is a covalent bond and G is hydrogen.

[00106] In certain embodiments, L is CH₂ and G is hydrogen.

[00107] In certain embodiments, B is optionally substituted phenylene,
on Optionally substituted pyridylidene, optionally substituted pyrazolyl, optionally
substituted 2-oxo-1,2-dihydropyridinyl, optionally substituted oxazolyl, optionally
substituted pyrimidinyl, optionally substituted pyridazinyl, optionally substituted
pyrazinyl, or optionally substituted imidazolyl, wherein optional substituents of each
member of B are independently -R^a or -NR^bR^c. In certain embodiments, R^a is
only substituted Ci-C₆ alkyl, optionally substituted cycloalkyl, or optionally
substituted heterocycloalkyl. In certain embodiments, R^a is C₁-C₆ alkyl, cycloalkyl,
or heterocycloalkyl, wherein said alkyl, cycloalkyl or heterocycloalkyl is optionally
substituted with one to three groups selected from Ci-C₄ alkyl, -OH, heterocycloalkyl,
-OCi-C₄ alkyl, O-heterocycloalkyl, or oxo. In certain embodiments, R^b is Ci-C₆
alkyl and R^c is C₁-C₄ alkyl. In certain embodiments, B is optionally substituted
phenylene, optionally substituted pyridylidene, optionally substituted pyrazolyl,
only substituted 2-oxo-1,2-dihydropyridinyl, optionally substituted oxazolyl,
only substituted pyrimidinyl, optionally substituted pyridazinyl, optionally
substituted pyrazinyl, or optionally substituted imidazolyl, wherein optional
substituents are independently CH₃,

\[\text{HO} - \text{CH\textsubscript{2}} - \text{OH} \quad \text{OCH\textsubscript{3}} \quad \text{N} \quad \text{O} \quad \text{or} \quad \text{N} \quad \text{O} \]

39
In certain embodiments, is

[00108] In certain embodiments, D is:

[00109] In certain embodiments, D is:
In certain embodiments, when is

D is

or

In certain embodiments, when is
In certain embodiments, \(R^1 \) contains a thiophene ring fused to a 5, 6, 7 or 8 membered ring as shown herein. In certain embodiments, \(R^1 \) contains a phenylene or benzo ring as shown herein.

In certain embodiments, the compound of Formula I is chosen from Table 1.

Table 1

(R)-5-tert-butyl-N-(1-(8-(4-(4-methylpiperazin-1-yl)phenyl amino)-1,7-naphthyridin-6-yl)piperidin-3-yl)pyrazine-2-carboxamide
<table>
<thead>
<tr>
<th>4-tert-buty1-N-((3S)-1-(8-((4-(1,4-dimethyl-3-oxopiperazin-2-yl)phenylamino)-1,7-naphthyridin-6-yl)piperidin-3-yl)benzamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-tert-buty1-N-((S)-1-(8-((4-(S)-1,4-dimethyl-3-oxopiperazin-2-yl)phenylamino)-1,7-naphthyridin-6-yl)piperidin-3-yl)benzamide</td>
</tr>
<tr>
<td>(R)-N-((1-(8-((4-methylpiperazin-1-yl)phenylamino)-1,7-naphthyridin-6-yl)piperidin-3-yl)-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxamide</td>
</tr>
<tr>
<td>(R)-N-((1-(4-(4-(4-methylpiperazin-1-yl)phenylamino)pyrido[3,2-d]pyrimidin-2-yl)piperidin-3-yl)-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxamide</td>
</tr>
<tr>
<td>Chemical Structure</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
4-tert-butyl-N-((3S)-1-(8-(5-(1,4-dimethyl-3-oxopiperazin-2-yl)pyridin-2-ylamino)quinolin-6-yl)piperidin-3-yl)benzamide

4-tert-butyl-N-((3S)-1-(4-(5-(1,4-dimethyl-3-oxopiperazin-2-yl)pyridin-2-ylamino)-1,5-naphthyridin-2-yl)piperidin-3-yl)benzamide

4-tert-butyl-N-((3S)-1-(8-(5-(1,4-dimethyl-3-oxopiperazin-2-yl)pyridin-2-ylamino)pyrido[2,3-b]pyrazin-6-yl)piperidin-3-yl)benzamide

(S)-5-tert-butyl-N-(1-(8-(5-(4-methylpiperazin-1-yl)pyridin-2-ylamino)pyrido[2,3-b]pyrazin-6-yl)piperidin-3-yl)pyrazine-2-carboxamide

(S)-N-(1-(4-(5-(4-methylpiperazin-1-yl)pyridin-2-ylamino)-1,5-naphthyridin-2-yl)piperidin-3-yl)benzo[b]thiophene-2-carboxamide
The present compounds described herein are potent inhibitors of Btk.
The activity of the present compounds against Btk can be measured by the assays as described in Examples 1-6 below. Compounds useful as Btk inhibitors exhibit an IC₅₀ value less than or equal to 2 micromolar (preferably less than or equal to 1 micromolar, more preferably less than or equal to 25 nM, and even preferably less than or equal to 5 nM) in Btk biochemical assay described in Example 1; an IC₅₀ value less than or equal to 10 micromolar (preferably less than or equal to 0.5 micromolar, and more preferably less than or equal to 100 nM) in an assay for inhibition of B cell activity (under the conditions described in Example 5); and an IC₅₀ less than or equal to 10 micromolar (preferably less than or equal to 500 nM, and more preferably less than or equal to 100 nM) in at least one of the cell-based assays (other than the T-cell assay) described herein (Examples 2, 3, 5 or 6).

Methods for obtaining the novel compounds described herein will be apparent to those of skill in the art, such as procedures similar to those described, for example, in the reaction schemes I-VI and in the references cited herein. See, also, U.S. Application No. 11/371,180 (US2006/0229337), filed March 9, 2006, which is incorporated herein by reference in its entirety; and International patent application WO2008/1 16064, filed March 20, 2008, which is incorporated herein by reference in its entirety.

Reaction Scheme I

| (S)-N-(1-(2-(1,5-dimethyl-1H-pyrazol-3-ylamino)oxazol-5-yl)piperidin-3-yl)-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-2-carboxamide |
| (S)-4-tert-butyl-N-(1-(2-(1,5-dimethyl-1H-pyrazol-3-ylamino)thiazol-5-yl)piperidin-3-yl)benzamide |

[00114] The present compounds described herein are potent inhibitors of Btk. The activity of the present compounds against Btk can be measured by the assays as described in Examples 1-6 below. Compounds useful as Btk inhibitors exhibit an IC₅₀ value less than or equal to 2 micromolar (preferably less than or equal to 1 micromolar, more preferably less than or equal to 25 nM, and even preferably less than or equal to 5 nM) in Btk biochemical assay described in Example 1; an IC₅₀ value less than or equal to 10 micromolar (preferably less than or equal to 0.5 micromolar, and more preferably less than or equal to 100 nM) in an assay for inhibition of B cell activity (under the conditions described in Example 5); and an IC₅₀ less than or equal to 10 micromolar (preferably less than or equal to 500 nM, and more preferably less than or equal to 100 nM) in at least one of the cell-based assays (other than the T-cell assay) described herein (Examples 2, 3, 5 or 6).

[00115] Methods for obtaining the novel compounds described herein will be apparent to those of skill in the art, such as procedures similar to those described, for example, in the reaction schemes I-VI and in the references cited herein. See, also, U.S. Application No. 11/371,180 (US2006/0229337), filed March 9, 2006, which is incorporated herein by reference in its entirety; and International patent application WO2008/1 16064, filed March 20, 2008, which is incorporated herein by reference in its entirety.

Reaction Scheme I
wherein R is H or CH$_3$.

Reaction Scheme II
Reaction Scheme III

Reaction Scheme IV

X = Cl, Br

Reaction Scheme V
In some embodiments, compounds of Formula I are administered as a pharmaceutical composition or formulation. Accordingly, the invention provides pharmaceutical formulations comprising a compound of Formula I and pharmaceutically acceptable salts, solvates, and mixtures thereof, together with at least one pharmaceutically acceptable vehicle chosen from carriers, adjuvants, and
excipients.

Pharmaceutically acceptable vehicles must be of sufficiently high purity and sufficiently low toxicity to render them suitable for administration to the animal being treated. The vehicle can be inert or it can possess pharmaceutical benefits. The amount of vehicle employed in conjunction with the compound is sufficient to provide a practical quantity of material for administration per unit dose of the compound.

Exemplary pharmaceutically acceptable carriers or components thereof are sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and methyl cellulose; powdered tragacanth; malt; gelatin; talc; solid lubricants, such as stearic acid and magnesium stearate; calcium sulfate; synthetic oils; vegetable oils, such as peanut oil, cottonseed oil, sesame oil, olive oil, and corn oil; polyols such as propylene glycol, glycerine, sorbitol, mannitol, and polyethylene glycol; alginic acid; phosphate buffer solutions; emulsifiers, such as the TWEENS; wetting agents, such as sodium lauryl sulfate; coloring agents; flavoring agents; tableting agents; stabilizers; antioxidants; preservatives; pyrogen-free water; isotonic saline; and phosphate buffer solutions.

Optional active agents may be included in a pharmaceutical composition, which do not substantially interfere with the activity of the compound of the present invention.

Effective concentrations of a compound of Formula I and pharmaceutically acceptable salts, solvates, and mixtures thereof, are mixed with a suitable pharmaceutical acceptable vehicle. In instances in which the compound exhibits insufficient solubility, methods for solubilizing compounds may be used. Such methods are known to those of skill in this art, and include, but are not limited to, using cosolvents, such as dimethylsulfoxide (DMSO), using surfactants, such as Tween, or dissolution in aqueous sodium bicarbonate.

Upon mixing or addition of the compound of Formula I, the resulting mixture may be a solution, suspension, emulsion or the like. The form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound in the chosen vehicle. The
effective concentration sufficient for ameliorating the symptoms of the disease treated may be empirically determined.

Compounds of Formula I may be administered orally, topically, parenterally, intravenously, by intramuscular injection, by inhalation or spray, sublingually, transdermally, via buccal administration, rectally, as an ophthalmic solution, or by other means, in dosage unit formulations.

Dosage formulations suitable for oral use, include, for example, tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents, such as sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide pharmaceutically elegant and palatable preparations. In some embodiments, oral formulations contain from 0.1 to 99% of a compound of Formula I. In some embodiments, oral formulations contain at least 5% (weight %) of a compound of Formula I. Some embodiments contain from 25% to 50% or from 5% to 75% of a compound of Formula I.

Orally administered compositions also include liquid solutions, emulsions, suspensions, powders, granules, elixirs, tinctures, syrups, and the like. The pharmaceutically acceptable carriers suitable for preparation of such compositions are well known in the art. Oral formulations may contain preservatives, flavoring agents, sweetening agents, such as sucrose or saccharin, taste-masking agents, and coloring agents.

Typical components of carriers for syrups, elixirs, emulsions and suspensions include ethanol, glycerol, propylene glycol, polyethylene glycol, liquid sucrose, sorbitol and water. Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol, or sucrose. Such formulations may also contain a demulcent.

Compounds of Formula I can be incorporated into oral liquid preparations such as aqueous or oily suspensions, solutions, emulsions, syrups, or elixirs, for example. Moreover, formulations containing these chemical entities can be presented as a dry product for constitution with water or other suitable vehicle
before use. Such liquid preparations can contain conventional additives, such as
suspending agents (e.g., sorbitol syrup, methyl cellulose, glucose/sugar, syrup,
gelatin, hydroxyethyl cellulose, carboxymethyl cellulose, aluminum stearate gel, and
hydrogenated edible fats), emulsifying agents (e.g., lecithin, sorbitan monoleate, or
acacia), non-aqueous vehicles, which can include edible oils (e.g., almond oil,
fractionated coconut oil, silyl esters, propylene glycol and ethyl alcohol), and
preservatives (e.g., methyl or propyl p-hydroxybenzoate and sorbic acid).

For a suspension, typical suspending agents include methylcellulose,
sodium carboxymethyl cellulose, AVICEL RC-591, tragacanth and sodium alginate;
typical wetting agents include lecithin and polysorbate 80; and typical preservatives
include methyl paraben and sodium benzoate.

Aqueous suspensions contain the active material(s) in admixture with
excipients suitable for the manufacture of aqueous suspensions. Such excipients
include suspending agents, for example sodium carboxymethylcellulose,
methylcellulose, hydropropylmethylcellulose, sodium alginate, polyvinylpyrrolidone,
gum tragacanth and gum acacia; dispersing or wetting agents; naturally-occurring
phosphatides, for example, lecithin, or condensation products of an alkylene oxide
with fatty acids, for example polyoxyethylene stearate, or condensation products of
ethylene oxide with long chain aliphatic alcohols, for example
heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial
esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol
substitute, or condensation products of ethylene oxide with partial esters derived from
fatty acids and hexitol anhydrides, for example polyethylene sorbitan substitute. The
aqueous suspensions may also contain one or more preservatives, for example ethyl,
or n-propyl p-hydroxybenzoate.

Oily suspensions may be formulated by suspending the active
ingredients in a vegetable oil, for example peanut oil, olive oil, sesame oil or coconut
oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a
thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening
agents such as those set forth above, and flavoring agents may be added to provide
palatable oral preparations. These compositions may be preserved by the addition of
an anti-oxidant such as ascorbic acid.
Pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or peanut oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol, anhydrides, for example sorbitan monoleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monoleate.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above.

Tablets typically comprise conventional pharmaceutically acceptable adjuvants as inert diluents, such as calcium carbonate, sodium carbonate, mannitol, lactose and cellulose; binders such as starch, gelatin and sucrose; disintegrants such as starch, alginic acid and croscarmellose; lubricants such as magnesium stearate, stearic acid and talc. Glidants such as silicon dioxide can be used to improve flow characteristics of the powder mixture. Coloring agents, such as the FD&C dyes, can be added for appearance. Sweeteners and flavoring agents, such as aspartame, saccharin, menthol, peppermint, and fruit flavors, can be useful adjuvants for chewable tablets. Capsules (including time release and sustained release formulations) typically comprise one or more solid diluents disclosed above. The selection of carrier components often depends on secondary considerations like taste, cost, and shelf stability.

Such compositions may also be coated by conventional methods, typically with pH or time-dependent coatings, such that the compound is released in the gastrointestinal tract in the vicinity of the desired topical application, or at various times to extend the desired action. Such dosage forms typically include, but are not limited to, one or more of cellulose acetate phthalate, polyvinylacetate phthalate, hydroxypropyl methylcellulose phthalate, ethyl cellulose, Eudragit coatings, waxes and shellac.
Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.

Pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents that have been mentioned above. The sterile injectable preparation may also be sterile injectable solution or suspension in a non-toxic parentally acceptable vehicle, for example as a solution in 1,3-butanediol. Among the acceptable vehicles that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid can be useful in the preparation of injectables.

Compounds of Formula I may be administered parenterally in a sterile medium. Parenteral administration includes subcutaneous injections, intravenous, intramuscular, intrathecal injection or infusion techniques. Compounds of Formula I, depending on the vehicle and concentration used, can either be suspended or dissolved in the vehicle. Advantageously, adjuvants such as local anesthetics, preservatives and buffering agents can be dissolved in the vehicle. In many compositions for parenteral administration the carrier comprises at least 90% by weight of the total composition. In some embodiments, the carrier for parenteral administration is chosen from propylene glycol, ethyl oleate, pyrrolidone, ethanol, and sesame oil.

Compounds of Formula I may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient that is solid at ordinary temperatures but liquid at rectal temperature and will therefore melt in the rectum to release the drug. Such materials include cocoa butter and polyethylene glycols.
Compounds of Formula I may be formulated for local or topical application, such as for topical application to the skin and mucous membranes, such as in the eye, in the form of gels, creams, and lotions and for application to the eye. Topical compositions may be in any form including, for example, solutions, creams, ointments, gels, lotions, milks, cleansers, moisturizers, sprays, skin patches, and the like.

Such solutions may be formulated as 0.01% -10% isotonic solutions, pH 5-7, with appropriate salts. Compounds of Formula I may also be formulated for transdermal administration as a transdermal patch.

Topical compositions comprising a compound of Formula I can be admixed with a variety of carrier materials well known in the art, such as, for example, water, alcohols, aloe vera gel, allantoin, glycerine, vitamin A and E oils, mineral oil, propylene glycol, PPG-2 myristyl propionate, and the like.

Other materials suitable for use in topical carriers include, for example, emollients, solvents, humectants, thickeners and powders. Examples of each of these types of materials, which can be used singly or as mixtures of one or more materials, are as follows:

Representative emollients include stearyl alcohol, glyceryl monoricinoleate, glyceryl monostearate, propane-1,2-diol, butane-1,3-diol, mink oil, cetyl alcohol, iso-propyl isostearate, stearic acid, iso-butyl palmitate, isocetyl stearate, oleyl alcohol, isopropyl laurate, hexyl laurate, decyl oleate, octadecan-2-ol, isocetyl alcohol, cetyl palmitate, dimethylpolysiloxane, di-n-butyl sebacate, iso-propyl myristate, iso-propyl palmitate, iso-propyl stearate, butyl stearate, polyethylene glycol, triethylene glycol, lanolin, sesame oil, coconut oil, arachis oil, castor oil, acetylated lanolin alcohols, petroleum, mineral oil, butyl myristate, isostearic acid, palmitic acid, isopropyl linoleate, lauryl lactate, myristyl lactate, decyl oleate, and myristyl myristate; propellants, such as propane, butane, iso-butane, dimethyl ether, carbon dioxide, and nitrous oxide; solvents, such as ethyl alcohol, methylene chloride, iso-propanol, castor oil, ethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether, dimethyl sulphoxide, dimethyl formamide, tetrahydrofuran; humectants, such as glycerin, sorbitol, sodium 2-pyrrolidone-5-carboxylate, soluble collagen, dibutyl phthalate, and gelatin; and
powders, such as chalk, talc, fullers earth, kaolin, starch, gums, colloidal silicon dioxide, sodium polyacrylate, tetra alkyl ammonium smectites, trialkyl aryl ammonium smectites, chemically modified magnesium aluminium silicate, organically modified montmorillonite clay, hydrated aluminium silicate, fumed silica, carboxyvinyl polymer, sodium carboxymethyl cellulose, and ethylene glycol monostearate.

[00143] Compounds of Formula I may also be topically administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine and phosphatidylcholines.

[00144] Other compositions useful for attaining systemic delivery of the compound include sublingual, buccal and nasal dosage forms. Such compositions typically comprise one or more of soluble filler substances such as sucrose, sorbitol and mannitol, and binders such as acacia, microcrystalline cellulose, carboxymethyl cellulose, and hydroxypropyl methylcellulose. Glidants, lubricants, sweeteners, colorants, antioxidants and flavoring agents disclosed above may also be included.

[00145] Compositions for inhalation typically can be provided in the form of a solution, suspension or emulsion that can be administered as a dry powder or in the form of an aerosol using a conventional propellant (e.g., dichlorodifluoromethane or trichlorofluoromethane).

[00146] The compositions of the present invention may also optionally comprise an activity enhancer. The activity enhancer can be chosen from a wide variety of molecules that function in different ways to enhance or be independent of therapeutic effects of the present compounds. Particular classes of activity enhancers include skin penetration enhancers and absorption enhancers.

[00147] Pharmaceutical compositions of the invention may also contain additional active agents that can be chosen from a wide variety of molecules, which can function in different ways to enhance the therapeutic effects of a compound of Formula I. These optional other active agents, when present, are typically employed in the compositions of the invention at a level ranging from 0.01% to 15%. Some embodiments contain from 0.1% to 10% by weight of the composition. Other embodiments contain from 0.5% to 5% by weight of the composition.
The invention includes packaged pharmaceutical formulations. Such packaged formulations include a pharmaceutical composition comprising a compound of Formula I and pharmaceutically acceptable salts, solvates, and mixtures thereof, and instructions for using the composition to treat a mammal (typically a human patient). In some embodiments, the instructions are for using the pharmaceutical composition to treat a patient suffering from a disease responsive to inhibition of Btk activity and/or inhibition of B-cell and/or myeloid-cell activity. The invention can include providing prescribing information; for example, to a patient or health care provider, or as a label in a packaged pharmaceutical formulation. Prescribing information may include for example efficacy, dosage and administration, contraindication and adverse reaction information pertaining to the pharmaceutical formulation.

In all of the foregoing the compounds of Formula I can be administered alone, as mixtures, or in combination with other active agents.

Accordingly, the invention includes a method of treating a patient, for example, a mammal, such as a human, having a disease responsive to inhibition of Btk activity, comprising administering to the patient having such a disease, an effective amount of a compound of Formula I and pharmaceutically acceptable salts, solvates, and mixtures thereof.

To the extent that Btk is implicated in disease, alleviation of the disease, disease symptoms, preventative, and prophylactic treatment is within the scope of this invention. In some embodiments, compounds of Formula I may also inhibit other kinases, such that alleviation of disease, disease symptoms, preventative, and prophylactic treatment of conditions associated with these kinases is also within the scope of this invention.

Methods of treatment also include inhibiting Btk activity and/or inhibiting B-cell and/or myeloid-cell activity, by inhibiting ATP binding or hydrolysis by Btk or by some other mechanism, in vivo, in a patient suffering from a disease responsive to inhibition of Btk activity, by administering an effective concentration of a compound of Formula I and pharmaceutically acceptable salts, solvates, and mixtures thereof. An example of an effective concentration would be that concentration sufficient to inhibit Btk activity in vitro. An effective concentration
may be ascertained experimentally, for example by assaying blood concentration of the compound, or theoretically, by calculating bioavailability.

[00153] In some embodiments, the condition responsive to inhibition of Btk activity and/or B-cell and/or myeloid-cell activity is cancer, a bone disorder, an allergic disorder and/or an autoimmune and/or inflammatory disease, and/or an acute inflammatory reaction.

[00154] The invention includes a method of treating a patient having cancer, a bone disorder, an allergic disorder and/or an autoimmune and/or inflammatory disease, and/or an acute inflammatory reaction, by administering an effective amount of a compound of Formula I and pharmaceutically acceptable salts, solvates, and mixtures thereof.

[00155] In some embodiments, the conditions and diseases that can be affected using compounds of Formula I, include, but are not limited to:

- **Allergic disorders**, including but not limited to eczema, allergic rhinitis or coryza, hay fever, bronchial asthma, urticaria (hives) and food allergies, and other atopic conditions;
- **Autoimmune and/or inflammatory diseases**, including but not limited to psoriasis, Crohn's disease, irritable bowel syndrome, Sjogren's disease, tissue graft rejection, and hyperacute rejection of transplanted organs, asthma, systemic lupus erythematosus (and associated glomerulonephritis), dermatomyositis, multiple sclerosis, scleroderma, vasculitis (ANCA-associated and other vasculitides), autoimmune hemolytic and thrombocytopenic states, Goodpasture's syndrome (and associated glomerulonephritis and pulmonary hemorrhage), atherosclerosis, rheumatoid arthritis, osteoarthritis, chronic Idiopathic thrombocytopenic purpura (ITP), Addison's disease, Parkinson's disease, Alzheimer's disease, Diabetes mellitus (type I), septic shock, myasthenia gravis, Ulcerative Colitis, Aplastic anemia, Coeliac disease, Wegener's granulomatosis and other diseases in which the cells and antibodies arise from and are directed against the individual's own tissues;
- **Acute inflammatory reactions**, including but not limited to skin sunburn, inflammatory pelvic disease, inflammatory bowel disease, urethritis, uvitis, sinusitis, pneumonia, encephalitis, meningitis, myocarditis, nephritis, osteomyelitis, myositis, hepatitis, gastritis, enteritis, dermatitis, gingivitis, appendicitis, pancreatitis, and cholocystitis;
cancer, including but not limited to hematological malignancies, such as B-cell lymphoma, and acute lymphoblastic leukemia, acute myelogenous leukemia, chronic myelogenous leukemia, chronic and acute lymphocytic leukemia, hairy cell leukemia, Hodgkin's disease, Non-Hodgkin lymphoma, multiple myeloma, and other diseases that are characterized by cancer of the blood or lymphatic system; and bone disorders, including but not limited to osteoporosis.

Btk is a known inhibitor of apoptosis in lymphoma B-cells. Defective apoptosis contributes to the pathogenesis and drug resistance of human leukemias and lymphomas. Thus, further provided is a method of promoting or inducing apoptosis in cells expressing Btk comprising contacting the cell with a compound of Formula I, pharmaceutically acceptable salts, solvates, and mixtures thereof.

The invention provides methods of treatment in which a compound of Formula I, and pharmaceutically acceptable salts, solvates, and mixtures thereof, or a composition (e.g., a pharmaceutical composition thereof), is the only active agent given to a patient and also includes methods of treatment in which a compound of Formula I, and pharmaceutically acceptable salts, solvates, and mixtures thereof, or a composition (e.g., a pharmaceutical composition thereof), is given to a patient in combination with one or more additional active agents. The additional active agent(s) can be given to a patient sequentially or consecutively with a compound or composition of the present invention.

The invention provides methods of treatment of rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and/or asthma in which a compound of Formula I, and pharmaceutically acceptable salts, solvates, and mixtures thereof, is the only active agent given to a patient and also includes methods of treatment of rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and/or asthma in which a compound of Formula I, and pharmaceutically acceptable salts, solvates, and mixtures thereof, is given to a patient in combination with one or more additional active agents.

Thus in one embodiment the invention provides a method of treating cancer, a bone disorder, an allergic disorder and/or an autoimmune and/or inflammatory disease, and/or an acute inflammatory reaction, which comprises administering to a patient in need thereof an effective amount of a compound of
Formula I and pharmaceutically acceptable salts, solvates, and mixtures thereof, together with a second active agent, which can be useful for treating a cancer, a bone disorder, an allergic disorder and/or an autoimmune and/or inflammatory disease, and/or an acute inflammatory reaction. For example the second agent may be an anti-inflammatory agent. Treatment with the second active agent may be prior to, concomitant with, or following treatment with a compound of Formula I pharmaceutically acceptable salts, solvates, and mixtures thereof. In certain embodiments, a compound of Formula I and pharmaceutically acceptable salts, solvates, and mixtures thereof, is combined with another active agent in a single dosage form. Suitable antitumor therapeutics that may be used in combination with a compound of Formula I include, but are not limited to, chemotherapeutic agents, for example mitomycin C, carboplatin, taxol, cisplatin, paclitaxel, etoposide, doxorubicin, or a combination comprising at least one of the foregoing chemotherapeutic agents. Radiotherapeutic antitumor agents may also be used, alone or in combination with chemotherapeutic agents.

[00160] Compounds of Formula I can be useful as chemosensitizing agents, and, thus, can be useful in combination with other chemotherapeutic drugs, in particular, drugs that induce apoptosis.

[00161] A method for increasing sensitivity of cancer cells to chemotherapy, comprising administering to a patient undergoing chemotherapy a chemotherapeutic agent together with a compound of Formula I and pharmaceutically acceptable salts, solvates, and mixtures thereof, in an amount sufficient to increase the sensitivity of cancer cells to the chemotherapeutic agent is also provided herein.

[00162] Examples of other chemotherapeutic drugs that can be used in combination with the present compounds include topoisomerase I inhibitors (camtothesin or topotecan), topoisomerase II inhibitors (e.g. daunomycin and etoposide), alkylating agents (e.g. cyclophosphamid, melphalan and BCNU), tubulin directed agents (e.g. taxol and vinblastine), biological agents (e.g. antibodies such as anti CD20 antibody, IDEC 8, immunotoxins, and cytokines), tyrosine kinase inhibitors (e.g., Gleevac) and the like. Such examples of other chemotherapeutic drugs that can be used in combination with the present compounds also include R-CHOP (cyclophosphamide (also called Cytoxan/Neosar), doxorubicin (or
Adriamycin), vincristine (Oncovin) and prednisolone), ICE (ifosfamide, carboplatin, and etoposide), DHAP (dexamethasone, cisplatin, and cytarabine), ESHAP (etoposide, methylprednisolone, cytarabine, and cisplatin), gemcitabine, Rituxan®, Treanda®, chlorambucil, fludarabine, alemtuzumab, and the like.

[00163] Included herein are methods of treatment, for example for treating autoimmune and/or inflammatory diseases, in which a compound of Formula I and pharmaceutically acceptable salts, solvates, and mixtures thereof, is administered in combination with an anti-inflammatory agent. Anti-inflammatory agents include but are not limited to NSAIDs, non-specific and COX-2 specific cyclooxygenase enzyme inhibitors, gold compounds, corticosteroids, methotrexate, tumor necrosis factor receptor (TNF) receptors antagonists, immunosuppressants and methotrexate.

[00164] Examples of NSAIDs include, but are not limited to ibuprofen, flurbiprofen, naproxen and naproxen sodium, diclofenac, combinations of diclofenac sodium and misoprostol, sulindac, oxaprozin, diflunisal, piroxicam, indomethacin, etodolac, fenoprofen calcium, ketoprofen, sodium nabumetone, sulfasalazine, tolfmetin sodium, and hydroxychloroquine. Examples of NSAIDs also include COX-2 specific inhibitors (i.e., a compound that inhibits COX-2 with an IC₅₀ that is at least 50-fold lower than the IC₅₀ for COX-I) such as celecoxib, valdecoxib, lumiracoxib, etoricoxib and/or rofecoxib.

[00165] In a further embodiment, the anti-inflammatory agent is a salicylate. Salicylates include but are not limited to acetylsalicylic acid or aspirin, sodium salicylate, and choline and magnesium salicylates.

[00166] The anti-inflammatory agent may also be a corticosteroid. For example, the corticosteroid may be chosen from cortisone, dexamethasone, methylprednisolone, prednisolone, prednisolone sodium phosphate, and prednisone.

[00167] In additional embodiments the anti-inflammatory therapeutic agent is a gold compound such as gold sodium thiomalate or auranofin.

[00168] The invention also includes embodiments in which the anti-inflammatory agent is a metabolic inhibitor such as a dihydrofolate reductase inhibitor, such as methotrexate or a dihydroorotate dehydrogenase inhibitor, such as leflunomide. The second anti-inflammatory agent that may be used in combination with any one or more compounds of the present invention includes biologies and oral
agents for treating rheumatoid arthritis.

[00169] Other embodiments of the invention pertain to combinations in which at least one anti-inflammatory compound is an anti-C5 monoclonal antibody (such as eculizumab or pexelizumab), a TNF antagonist, such as entanercept, infliximab, and adalimumab (Humira®) which are anti-TNF alpha monoclonal antibodies.

[00170] Still other embodiments of the invention pertain to combinations in which at least one active agent is an immunosuppressant compound such as methotrexate, leflunomide, cyclosporine, tacrolimus, azathioprine, or mycophenolate mofetil.

[00171] Still other embodiments of the invention pertain to combinations with Rituxan® (Rituximab) or other agents that work by selectively depleting CD20+ B-cells.

[00172] Dosage levels of the order, for example, of from 0.1 mg to 140 mg per kilogram of body weight per day can be useful in the treatment of the above-indicated conditions (0.5 mg to 7 g per patient per day). The amount of active ingredient that may be combined with the vehicle to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. Dosage unit forms will generally contain from 1 mg to 500 mg of an active ingredient.

[00173] Frequency of dosage may also vary depending on the compound used and the particular disease treated. In some embodiments, for example, for the treatment of an allergic disorder and/or autoimmune and/or inflammatory disease, a dosage regimen of 4 times daily or less is used. In some embodiments, a dosage regimen of 1 or 2 times daily is used. It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the particular disease in the patient undergoing therapy.

[00174] A labeled form of a compound of the invention can be used as a diagnostic for identifying and/or obtaining compounds that have the function of modulating an activity of a kinase as described herein. The compounds of the invention may additionally be used for validating, optimizing, and standardizing
bioassays.

By "labeled" herein is meant that the compound is either directly or indirectly labeled with a label which provides a detectable signal, e.g., radioisotope, fluorescent tag, enzyme, antibodies, particles such as magnetic particles, chemiluminescent tag, or specific binding molecules, etc. Specific binding molecules include pairs, such as biotin and streptavidin, digoxin and antidigoxin etc. For the specific binding members, the complementary member would normally be labeled with a molecule which provides for detection, in accordance with known procedures, as outlined above. The label can directly or indirectly provide a detectable signal.

The invention is further illustrated by the following non-limiting examples.

Example 1

Biochemical Btk Assay

A generalized procedure for one standard biochemical Btk Kinase Assay that can be used to test compounds disclosed in this application is as follows.

A master mix minus Btk enzyme is prepared containing IX Cell Signaling kinase buffer (25 mM Tris-HCl, pH 7.5, 5 mM beta-glycerophosphate, 2 mM dithiothreitol, 0.1 mM Na$_3$VO$_4$, 10 mM MgCl$_2$), 0.5 µM Promega PTK Biotinylated peptide substrate 2, and 0.01% BSA. A master mix plus Btk enzyme is prepared containing IX Cell Signaling kinase buffer, 0.5 µM PTK Biotinylated peptide substrate 2, 0.01% BSA, and 100 ng/well (0.06 mU/well) Btk enzyme. Btk enzyme is prepared as follows: full length human wildtype Btk (accession number NM-000061) with a C-terminal V5 and 6x His tag was subcloned into pFastBac vector for making baculovirus carrying this epitope-tagged Btk. Generation of baculovirus is done based on Invitrogen's instructions detailed in its published protocol "Bac-toBac Baculovirus Expression Systems" (Cat. Nos. 10359-016 and 10608-016). Passage 3 virus is used to infect Sf9 cells to overexpress the recombinant Btk protein. The Btk protein is then purified to homogeneity using Ni-NTA column. The purity of the final protein preparation is greater than 95% based on the sensitive Sypro-Ruby staining. A solution of 200 µM ATP is prepared in water and adjusted to pH 7.4 with 1N NaOH. A quantity of 1.25 µL of compounds in 5%DMSO is transferred to a 96-well V area Costar polystyrene plate. Compounds
are tested singly and with an 11-point dose-responsive curve (starting concentration is 10 µM; 1:2 dilution). A quantity of 18.75 µL of master mix minus enzyme (as a negative control) and master mix plus enzyme is transferred to appropriate wells in 96-well Vı area costar polystyrene plate. 5 µL of 200 µM ATP is added to that mixture in the 96-well Vı area Costar polystyrene plate for final ATP concentration of 40 µM. The reaction is allowed to incubate for 1 hour at room temperature. The reaction is stopped with Perkin Elmer IX detection buffer containing 30 mM EDTA, 20 nM SA-APC, and 1 nM PT66 Ab. The plate is read using time-resolved fluorescence with a Perkin Elmer Envision using excitation filter 330 nm, emission filter 665 nm, and 2nd emission filter 615 nm. IC₅₀ values are subsequently calculated. Alternatively, the Lanthascreen assay can be used to evaluate Btk activity through quantification of its phosphorylated peptide product. The FRET that occurs between the fluorescein on the peptide product and the terbium on the detection antibody decreases with the addition of inhibitors of Btk that reduce the phosphorylation of the peptide. In a final reaction volume of 25 uL, Btk (h) (0.1 ng/25 ul reaction) is incubated with 50 mM Hepes pH 7.5, 10 mM MgCl₂, 2 mM MnCl₂, 2 mM DTT, 0.2 mM NaVO₄, 0.01% BSA, and 0.4 uM fluorescein poly-GAT. The reaction is initiated by the addition of ATP to 25 uM (Kₘ of ATP). After incubation for 60 minutes at room temperature, the reaction is stopped by the addition of a final concentration of 2 nM Tb-PY20 detection antibody in 60 mM EDTA for 30 minutes at room temperature. Detection is determined on a Perkin Elmer Envision with 340nM excitation and emission at 495 and 520nm.

Example 2

Ramos Cell Btk Assay

[00179] Another generalized procedure for a standard cellular Btk Kinase Assay that can be used to test compounds disclosed in this application is as follows.

[00180] Ramos cells are incubated at a density of 0.5x10⁷ cells/ml in the presence of test compound for 1 hr at 37 °C. Cells are then stimulated by incubating with 10 µg/ml anti-human IgM F(ab)₂ for 5 minutes at 37 °C. Cells are pelleted, lysed, and a protein assay is performed on the cleared lysate. Equal protein amounts of each sample are subject to SDS-PAGE and western blotting with either anti-
phosphoBtk(Tyr223) antibody (Cell Signaling Technology #3531; Epitomics, cat. #2207-1) or phosphoBtk(Tyr551) antibody (BD Transduction Labs #558034) to assess Btk autophosphorylation or an anti-Btk antibody (BD Transduction Labs #61116) to control for total amounts of Btk in each lysate.

Example 3

B-Cell Proliferation Assay

A generalized procedure for a standard cellular B-cell proliferation assay that can be used to test compounds disclosed in this application is as follows.

B-cells are purified from spleens of 8-16 week old Balb/c mice using a B-cell isolation kit (Miltenyi Biotech, Cat # 130-090-862). Testing compounds are diluted in 0.25% DMSO and incubated with 2.5 x \(10^5\) purified mouse splenic B-cells for 30 min prior to addition of 10µg/ml of an anti-mouse IgM antibody (Southern Biotechnology Associates Cat # 1022-01) in a final volume of 100 µl. Following 24 hr incubation, 1 µCi \(^3\)H-thymidine is added and plates are incubated an additional 36 hr prior to harvest using the manufacturer's protocol for SPA\(^{3}\)H thymidine uptake assay system (Amersham Biosciences # RPNQ 0130). SPA-bead based fluorescence is counted in a microbeta counter (Wallace Triplex 1450, Perkin Elmer).

Example 4

T Cell Proliferation Assay

A generalized procedure for a standard T cell proliferation assay that can be used to test compounds disclosed in this application is as follows.

T cells are purified from spleens of 8-16 week old Balb/c mice using a Pan T cell isolation kit (Miltenyi Biotech, Cat # 130-090-861). Testing compounds are diluted in 0.25% DMSO and incubated with 2.5 x \(10^5\) purified mouse splenic T cells in a final volume of 100 µl in flat clear bottom plates precoated for 90 min at 37°C with 10 µg/ml each of anti-CD3 (BD # 553057) and anti-CD28 (BD # 553294) antibodies. Following 24 hr incubation, 1 µCi \(^3\)H-thymidine is added and plates incubated an additional 36 hr prior to harvest using the manufacturer's protocol for SPA\(^{3}\)H thymidine uptake assay system (Amersham Biosciences # RPNQ 0130). SPA-bead based fluorescence was counted in a microbeta counter (Wallace Triplex
Example 5

CD86 Inhibition Assay

[00185] A generalized procedure for a standard assay for the inhibition of B cell activity that can be used to test compounds disclosed in this application is as follows.

[00186] Total mouse splenocytes are purified from spleens of 8-16 week old Balb/c mice by red blood cell lysis (BD Pharmingen #555899). Testing compounds are diluted to 0.5% DMSO and incubated with 1.25 x 10^6 splenocytes in a final volume of 200 µl in flat clear bottom plates (Falcon 353072) for 60 min at 2,TC. Cells are then stimulated with the addition of 15 µg/ml IgM (Jackson ImmunoResearch 115-006-020), and incubated for 24 hr at 37°C, 5% CO_2. Following the 24 hr incubation, cells are transferred to conical bottom clear 96-well plates and pelleted by centrifugation at 1200 x g x 5 min. Cells are preblocked by CD16/CD32 (BD Pharmingen #553142), followed by triple staining with CD19-FITC (BD Pharmingen #553785), CD86-PE (BD Pharmingen #553692), and 7AAD (BD Pharmingen #51-68981E). Cells are sorted on a BD FACSCalibur and gated on the CD19^+7AAD^- population. The levels of CD86 surface expression on the gated population is measured versus test compound concentration.

Example 6

B-ALL Cell Survival Assay

[00187] The following is a procedure for a standard B-ALL cell survival study using an XTT readout to measure the number of viable cells. This assay can be used to test compounds disclosed in this application for their ability to inhibit the survival of B-ALL cells in culture. One human B-cell acute lymphoblastic leukemia line that can be used is SUP-B15, a human Pre-B-cell ALL line that is available from the ATCC.

[00188] SUP-B15 pre-B-ALL cells are plated in multiple 96-well microtiter plates in 100 µl of Iscove's media + 20% FBS at a concentration of 5 x 10^5 cells/ml. Test compounds are then added with a final cone of 0.4% DMSO. Cells are
incubated at 37°C with 5% CO₂ for up to 3 days. After 3 days cells are split 1:3 into fresh 96-well plates containing the test compound and allowed to grow up to an additional 3 days. After each 24h period, 50 μl of an XTT solution (Roche) is added to one of the replicate 96-well plates and absorbance readings are taken at 2, 4 and 20 hours following manufacturer’s directions. The reading taken with an OD for DMSO only treated cells within the linear range of the assay (0.5-1.5) is then taken and the percentage of viable cells in the compound treated wells are measured versus the DMSO only treated cells.

EXAMPLE 7

(R)-4-tert-butyl-N-(1-(5-(1,5-dimethyl-1H-pyrazol-3-ylamino)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)piperidin-3-yl)benzamide

![Chemical structure](image)

(R)-tert-butyl 3-(4-tert-butylbenzamido)piperidine-1-carboxylate

[00189] A 500 mL round bottom flask equipped with a magnetic stirrer was charged with (R)-tert-butyl 3-aminopiperidine-1-carboxylate (1.0 g, 5 mmol), dichloromethane, added pyridine (5 mL), and 4-tert-butylbenzoyl chloride (0.98g, 5 mmol) and the mixture is let stir for 2h. The mixture is diluted with 500 mL of dichloromethane and washed with IN HCl (3x200 mL), NaHCO₃ (sat) (1x100 mL), dried over sodium sulfate, and concentrated under reduced pressure. The resulting residue was purified by flash chromatography to afford (R)-tert-butyl 3-(4-tert-
butylbenzamido) piperidine-1-carboxylate as a waxy yellow solid in 90% yield (1.62 g, 4.5 mmol).

(R)-4-tert-butyl-N-(piperidin-3-yl)benzamide

[00190] A 500 mL round bottom flask equipped with a reflux condenser, and magnetic stirrer was charged with (R)-tert-butyl 3-(4-tert-butylbenzamido) piperidine-1-carboxylate (1.62 g, 4.5 mmol), dioxane (100 mL) and HCl (4N, 25 mL). The mixture was heated to reflux for 3 h cooled to rt, and diluted with ethyl acetate (400 mL). NaHCO₃(sat) (500 mL) was slowly added with stirring, and the organic layer is dried over sodium sulfate, concentrated under reduced pressure and the resulting residue was purified by flash chromatography to afford an 85% yield of (R)-4-tert-butyl-N-(piperidin-3-yl)benzamide as a white solid (0.99 g, 3.8 mmol).

(R)-4-tert-butyl-N-(1-(5-(1,5-dimethyl-1H-pyrazol-3-ylamino)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)piperidin-3-yl)benzamide

[00191] A 100-mL pressure flask is equipped with a magnetic stirrer was charged with tert-butyl-N-(piperidin-3-yl)benzamide (130 mg, 0.5 mmol), dioxane (10 mL), 6-chloro-4-(1,5-dimethyl-1H-pyrazol-3-ylamino)-2-methylpyridazin-3(2H)-one (127 mg, 0.5 mmol), and cesium carbonate (326 mg, 1 mmol). Argon is bubbled through the solution whilst sonicating for 15 min. Tris(dibenzylideneacetone)dipalladium (0) (46 mg, 0.05 mmol), 2,2'-bis(diphenylphosphino)-L,L'-binaphthyl (66 mg, 0.1 mmol) were then added, the flask was sealed and heated to 120 °C for 8 h. The resulting mixture was diluted with dichloromethane (300 mL) and washed with water (120 mL) filtered through a pad of celite, concentrated and purified by flash chromatography on silica gel to afford a 65% yield of (R)-4-tert-butyl-N-(1-(5-(1,5-dimethyl-1H-pyrazol-3-ylamino)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)piperidin-3-yl)benzamide as a white solid (155 mg, 0.325 mmol).

[00192] While some embodiments have been shown and described, various
modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. For example, for claim construction purposes, it is not intended that the claims set forth hereinafter be construed in any way narrower than the literal language thereof, and it is thus not intended that exemplary embodiments from the specification be read into the claims. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitations on the scope of the claims.
What is claimed is:

1. A compound of Formula I, or a pharmaceutically acceptable salt or solvate or mixture thereof, wherein

\[
\begin{align*}
\text{R}_1 & \quad \text{optionally substituted cycloalkyl,} \\
\text{optionally substituted aryl,} & \quad \text{optionally substituted heteroaryl,} \\
\text{optionally substituted alkyl,} & \quad \text{optionally substituted alkoxy,} \\
\text{or optionally substituted heterocycloalkyl;}& \\
\text{R}_2 & \quad \text{H, OH, or} \quad \text{Ci-C}_3 \text{ alkyl optionally substituted with} \quad \text{N(R}_7\text{)}_2; \\
\text{Z} & \quad \text{NR}_3\text{R}_4, \text{wherein} \quad \text{R}_3 \quad \text{and} \quad \text{R}_4 \text{ are taken together with} \quad \text{the nitrogen atom to which} \\
\text{they are both attached to form} & \quad \text{an optionally substituted hetercycloalkyl or} \\
\text{optionally substituted heteroaryl, provided that} \quad Z \quad \text{is not pyridylidene;}& \\
\end{align*}
\]

and pharmaceutically acceptable salts, solvates, and mixtures thereof, wherein

\[
\begin{align*}
\text{Z} \quad \text{is not pyridylidene;}& \\
\end{align*}
\]
The compound of claim 1 wherein \(R_1 \) is:

1. each of which is optionally substituted with one or two groups chosen from hydroxy, cyano, halo, optionally substituted lower alkyl, and optionally substituted lower alkoxy;

 each \(R_{10} \) is independently hydrogen, cyano, optionally substituted cycloalkyl, or optionally substituted lower alkyl;

 each of \(R_n, R_{18}, \) and \(R_{19} \) is independently hydrogen or optionally substituted lower alkyl;

 each \(R_{20} \) is independently hydrogen, hydroxy, cyano, halo, optionally substituted lower alkyl, or optionally substituted lower alkoxy;

 \(D \) is -NHR_6;

 \(R_6 \) is optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted heterocycloalkyl; and

 each \(R_7 \) is independently H or CH_3.

2. The compound of claim 1 wherein \(R_1 \) is:
The compound of claim 1 or 2, wherein Ri is:

Each R is independently C_1-C_3 alkyl;
each R^10 is independently H or CH_3;
each R^{13} is independently H, halo, C_1-C_6 alkyl, C_1-C_6 alkoxy, or C_1-C_6 haloalkyl;
each R^{14} is independently H, C(=O)H, C(=O)R^9, or C_1-C_6 alkyl wherein said alkyl is optionally substituted with one or more OH groups;
R^{15} is CH_3, F, Cl, Br, OH, or OCH_3;
R^{16} is F, Cl, Br, CH_3, or CF_3;
R^{17} is F or OCH_3;
R^{18} is F or Cl; and
R^{19} is F or CH_3.

3. The compound of claim 1 or 2, wherein Ri is:
4. The compound of any one of claims 1-3, wherein Z is:

5. The compound of any one of claims 1-4, wherein R is H or CH₃.

6. The compound of any one of claims 1-3, wherein is

7. The compound of any one of claims 1-3, wherein is
8. A pharmaceutical composition, comprising a compound of any one of claims 1 to 7, together with at least one pharmaceutically acceptable vehicle chosen from carriers, adjuvants, and excipients.

9. A pharmaceutical composition of claim 8, wherein the composition is formulated in a form chosen from injectable fluids, aerosols, creams, gels, tablets, pills, capsules, syrups, ophthalmic solutions, and transdermal patches.

10. A packaged pharmaceutical composition, comprising a pharmaceutical composition of claim 8 or 9; and instructions for using the composition to treat a patient suffering from a disease responsive to inhibition of Btk activity.
11. The packaged pharmaceutical composition of claim 10 wherein the disease responsive to inhibition of Btk activity is cancer.

12. The packaged pharmaceutical composition of claim 10 wherein the disease responsive to inhibition of Btk activity is chosen from bone disorders, allergic disorders, autoimmune diseases, inflammatory diseases, and acute inflammatory reactions.

13. The pharmaceutical composition of any one of claims 8-12 further comprising a second active agent.

14. A method for treating a patient having a disease responsive to inhibition of Btk activity, comprising administering to the patient an effective amount of a compound of any one of claims 1 to 7.

15. The method of claim 14 wherein the patient is a human.

16. The method of any one of claims 14 to 15 wherein the disease responsive to inhibition of Btk activity is cancer.

17. The method of claim 14 wherein the disease responsive to inhibition of Btk activity is B-cell lymphoma or leukemia.

18. The method of any one of claims 14 to 17 wherein an effective amount of said compound is administered by a method chosen from intravenously, intramuscularly, and parenterally.

19. The method of any of claims 14 to 17 wherein an effective amount of said compound is administered orally.

20. A method for treating a patient having a disease chosen from cancer, bone disorders, autoimmune diseases, inflammatory diseases, acute inflammatory reactions,
and allergic disorders comprising administering to the patient an effective amount of a
compound of any one of claims 1 to 7.

21. The method of claim 20 wherein the patient is a human.

22. The method of any one of claims 20 to 21 wherein an effective amount of said
compound is administered by a method chosen from intravenously, intramuscularly,
and parenterally.

23. The method of any of claims 20 to 21 wherein an effective amount of said
compound is administered orally.

24. A method for increasing sensitivity of cancer cells to chemotherapy,
comprising administering to a patient undergoing chemotherapy with a
chemotherapeutic agent an amount of a compound of any one of claims 1 to 7
sufficient to increase the sensitivity of cancer cells to the chemotherapeutic agent.

25. A method of reducing medication error and enhancing therapeutic compliance
of a patient being treated for a disease responsive to inhibition of Btk activity, the
method comprising providing a packaged pharmaceutical preparation of claim 10
wherein the instructions additionally include contraindication and adverse reaction
information pertaining to the packaged pharmaceutical composition.

26. A method for inhibiting ATP hydrolysis, the method comprising contacting
cells expressing Btk with a compound of any one of claims 1 to 7 in an amount
sufficient to detectably decrease the level of ATP hydrolysis in vitro.

27. The method of claim 26 wherein the cells are present in a human.

28. A method for determining the presence of Btk in a sample, comprising
contacting the sample with a compound of any one of claims 1 to 7 under conditions
that permit detection of Btk activity, detecting a level of Btk activity in the sample, and therefrom determining the presence or absence of Btk in the sample.

29. A method for inhibiting B-cell activity comprising contacting cells expressing Btk with a compound of any one of claims 1 to 7, in an amount sufficient to detectably decrease B-cell activity in vitro.

30. The method of any one of claims 20 to 23 further comprising administering to the patient an effective amount of a second active agent.
A. CLASSIFICATION OF SUBJECT MATTER
INV. C07D401/14 A61K31/501 A61P35/00 A61P29/00

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>

Date of the actual completion of the international search
9 April 2010

Date of mailing of the international search report
16/04/2010

Authorized officer
Fritz, Martin
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2006099075 A2</td>
<td>21-09-2006</td>
<td>AU 2006223409 A1</td>
<td>21-09-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0608252 A2</td>
<td>06-04-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2601628 A1</td>
<td>21-09-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101223141 A</td>
<td>16-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1863766 A2</td>
<td>12-12-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008533032 T</td>
<td>21-08-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006229337 A1</td>
<td>12-10-2006</td>
</tr>
</tbody>
</table>

		BR PI0517619 A	14-10-2008
		CA 2587192 A1	18-05-2006
		EP 1812442 A2	01-08-2007
		JP 2008519843 T	12-06-2008
		KR 20070119606 A	20-12-2007
		NZ 555681 A	28-08-2009
		SG 159549 A1	30-03-2010
		US 2006178367 A1	10-08-2006

| US 2007219195 A1 | 20-09-2007 | NONE | |