
JP 6469083 B2 2019.2.13

10

20

(57)【特許請求の範囲】
【請求項１】
 コンピューティングシステムによって実行されるタスクを制御するための方法であって
、
 複数のタスクの間の少なくとも部分的な順序を規定する順序情報を受信するステップと
、
 前記順序情報に少なくとも部分的に基づいて前記タスクの少なくとも一部を実行するた
めの命令を少なくとも１つのプロセッサを用いて生成するステップとを含み、前記生成す
るステップが、
 第１のタスクに対応する第１のサブルーチンを実行するための命令を記憶することで
あって、前記第１のサブルーチンが、第２のタスクに対応する少なくとも第２のサブルー
チンの実行を制御する第１の制御セクションを含み、前記第１の制御セクションが、前記
第２のタスクに関連する状態情報を変更し、変更された状態情報に基づいて前記第２のサ
ブルーチンの実行を開始すべきか否かを判定するように構成された関数を含む、記憶する
こと、並びに
 前記第２のサブルーチンを実行するための命令を記憶することであって、前記第２の
サブルーチンが、前記第２のタスクを実行するためのタスクセクション、及び第３のタス
クに対応する第３のサブルーチンの実行を制御する第２の制御セクションを含む、記憶す
ることを含む、方法。
【請求項２】

(2) JP 6469083 B2 2019.2.13

10

20

30

40

50

 前記順序情報が、それぞれのタスクを表すノードのペアの間の有向辺を含む制御フロー
グラフを含み、上流のノードから下流のノードへの有向辺が、前記部分的な順序で、前記
上流のノードによって表される前記タスクが前記下流のノードによって表される前記タス
クに先行することを示す請求項１に記載の方法。
【請求項３】
 前記制御フローグラフが、前記第１のタスクを表す第１のノードと前記第２のタスクを
表す第２のノードとの間の有向辺、及び前記第２のノードと前記第３のタスクを表す第３
のノードとの間の有向辺を含む請求項２に記載の方法。
【請求項４】
 前記関数が、前記第２のタスクに関連するカウンタをデクリメント又はインクリメント
し、前記カウンタの値に基づいて前記第２のサブルーチンの実行を開始すべきか否かを判
定するように構成される請求項１～３のいずれかに記載の方法。
【請求項５】
 前記関数が、前記カウンタをアトミックにデクリメント又はインクリメントし、前記カ
ウンタの値を読むアトミックな操作を実行するように構成される請求項４に記載の方法。
【請求項６】
 前記変更された状態情報が、前記第２のタスクを特定する引数を用いた前記関数の前の
呼び出しの履歴を含む請求項１～５のいずれかに記載の方法。
【請求項７】
 前記関数が、複数の異なる関数のうちの１つであり、前記状態情報が、前記第２のタス
クを特定する引数を用いた前記複数の異なる関数のいずれかの前の呼び出しの履歴を捕捉
する請求項６に記載の方法。
【請求項８】
 前記第２の制御セクションが、前記タスクを実行するための前記タスクセクションが呼
び出されるか否かを判定する論理を含む請求項１～７のいずれかに記載の方法。
【請求項９】
 前記論理が、前記第２のタスクに関連するフラグの値に基づいて、前記タスクを実行す
るための前記タスクセクションが呼び出されるか否かを判定する請求項８に記載の方法。
【請求項１０】
 前記第１の制御セクションが、少なくとも、前記第２のタスクに対応する前記第２のサ
ブルーチン及び第４のタスクに対応する第４のサブルーチンの実行を制御する請求項１～
９のいずれかに記載の方法。
【請求項１１】
 前記順序情報が、前記部分的な順序で前記第１のタスクが前記第２のタスクに先行する
ことを示し、前記部分的な順序で前記第１のタスクが前記第４のタスクに先行することを
示し、前記部分的な順序で互いに対する前記第２のタスク及び前記第４のタスクの順序を
制約しない請求項１０に記載の方法。
【請求項１２】
 前記第１の制御セクションが、前記第２のサブルーチンを実行するための新しいプロセ
スをスポーニングすべきか否かを判定する第１の関数と、第１のサブルーチンを実行した
同じプロセスを用いて前記第４のサブルーチンの実行を開始する第２の関数とを含む請求
項１０又は１１に記載の方法。
【請求項１３】
 タスクを制御するための、コンピュータ可読記憶媒体に記憶されるコンピュータプログ
ラムであって、コンピューティングシステムに請求項１～１２のいずれかに記載の方法を
実行させる命令を含む、前記コンピュータプログラム。
【請求項１４】
 タスクを制御するためのコンピューティングシステムであって、
 順序情報を受信するように構成された入力デバイス又はポートと、
 請求項１～１２のいずれかに記載の方法を実行するように構成された少なくとも１つの

(3) JP 6469083 B2 2019.2.13

10

20

30

40

50

プロセッサとを含む、前記コンピューティングシステム。
【請求項１５】
 タスクを制御するためのコンピューティングシステムであって、
 複数のタスクの間の少なくとも部分的な順序を規定する順序情報を受信するための手段
と、
 前記順序情報に少なくとも部分的に基づいて前記タスクの少なくとも一部を実行するた
めの命令を生成するための手段とを含み、前記生成することが、
 第１のタスクに対応する第１のサブルーチンを実行するための命令を記憶することで
あって、前記第１のサブルーチンが、第２のタスクに対応する少なくとも第２のサブルー
チンの実行を制御する第１の制御セクションを含み、前記第１の制御セクションが、前記
第２のタスクに関連する状態情報を変更し、変更された状態情報に基づいて前記第２のサ
ブルーチンの実行を開始すべきか否かを判定するように構成された関数を含む、記憶する
こと、並びに
 前記第２のサブルーチンを実行するための命令を記憶することであって、前記第２の
サブルーチンが、前記第２のタスクを実行するためのタスクセクション、及び第３のタス
クに対応する第３のサブルーチンの実行を制御する第２の制御セクションを含む、記憶す
ることを含む、コンピューティングシステム。
【請求項１６】
 タスクを実行するための方法であって、
 複数のタスクを実行するための命令を少なくとも１つのメモリに記憶するステップであ
って、前記命令が、前記タスクの少なくとも一部のそれぞれに関して、前記タスクを実行
するためのタスクセクション、及び後続のタスクのサブルーチンの実行を制御する制御セ
クションを含むそれぞれのサブルーチンを含む、記憶するステップと、
 記憶されたサブルーチンの少なくとも一部を少なくとも１つのプロセッサによって実行
するステップとを含み、前記実行するステップが、
 第１のタスクに関する第１のサブルーチンを実行するための第１のプロセスをスポー
ニングすることであって、前記第１のサブルーチンが、第１のタスクセクション及び第１
の制御セクションを含む、スポーニングすること、並びに
 前記第１のタスクセクションが返った後に、前記第１のサブルーチンとは異なる第２
のサブルーチンを実行するための第２のプロセスをスポーニングすべきか否かを判定する
前記第１の制御セクションに含まれる少なくとも１つの関数を呼び出すことを含む、方法
。
【請求項１７】
 前記関数が、前記第２のサブルーチンに関連するカウンタをデクリメントし、前記カウ
ンタの値に基づいて前記第２のサブルーチンの実行を開始すべきか否かを判定するように
構成される請求項１６に記載の方法。
【請求項１８】
 前記関数が、前記第２のサブルーチンに対応する第２のタスクを特定する引数を用いて
呼び出されるときに、前記第２のタスクを特定する引数を用いた前記関数の前の呼び出し
の履歴を捕捉する状態情報に基づいて前記第２のサブルーチンの実行を開始すべきか否か
を判定するように構成される請求項１６又は１７に記載の方法。
【請求項１９】
 前記関数が、複数の異なる関数のうちの１つであり、前記状態情報が、前記第２のタス
クを特定する引数を用いた前記複数の異なる関数のいずれかの前の呼び出しの履歴を捕捉
する請求項１８に記載の方法。
【請求項２０】
 前記関数が、前記第１のプロセスにおいて前記第２のサブルーチンの実行を開始し、前
記第２のサブルーチンの実行時間が所定の閾値を超えることに応じて、前記第２のサブル
ーチンの実行を続けるための前記第２のプロセスをスポーニングするように構成される請
求項１６に記載の方法。

(4) JP 6469083 B2 2019.2.13

10

20

30

40

50

【請求項２１】
 前記関数が、前記第１のプロセスに関連付けられたスタックフレームを前記第２のプロ
セスに与えるように構成される請求項２０に記載の方法。
【請求項２２】
 前記関数が、前記第１のプロセスが前記第２のプロセスと同時に実行され続けることを
可能にするために前記第２のプロセスをスポーニングした後に返すように構成される請求
項２０又は２１に記載の方法。
【請求項２３】
 前記第１の制御セクションが、前記第１のタスクセクションが呼び出されるか否かを判
定する論理を含む請求項１６に記載の方法。
【請求項２４】
 前記論理が、前記第１のタスクに関連するフラグの値に基づいて、前記第１のタスクセ
クションが呼び出されるか否かを判定する請求項２３に記載の方法。
【請求項２５】
 前記第２のサブルーチンが、第２のタスクに対応し、前記第１の制御セクションが、前
記第１のタスク及び前記第２のタスクを含む複数のタスクの間の少なくとも部分的な順序
を規定する順序情報に少なくとも部分的に基づく請求項１６に記載の方法。
【請求項２６】
 前記順序情報が、それぞれのタスクを表すノードのペアの間の有向辺を含む制御フロー
グラフを含み、上流のノードから下流のノードへの有向辺が、部分的な順序で、前記上流
のノードによって表される前記タスクが前記下流のノードによって表される前記タスクに
先行することを示す請求項２５に記載の方法。
【請求項２７】
 タスクを実行するための、コンピュータ可読記憶媒体に記憶されるコンピュータプログ
ラムであって、コンピューティングシステムに請求項１６～２６のいずれかに記載の方法
を実行させる命令を含む、前記コンピュータプログラム。
【請求項２８】
 タスクを実行するためのコンピューティングシステムであって、
 複数のタスクを実行するための命令を記憶する少なくとも１つのメモリと、
 請求項１６～２６のいずれかに記載の方法を実行するように構成された少なくとも１つ
のプロセッサとを含む、前記コンピューティングシステム。
【請求項２９】
 タスクを実行するためのコンピューティングシステムであって、
 複数のタスクを実行するための命令を記憶するための手段であって、前記命令が、前記
タスクの少なくとも一部のそれぞれに関して、前記タスクを実行するためのタスクセクシ
ョン、及び後続のタスクのサブルーチンの実行を制御する制御セクションを含むそれぞれ
のサブルーチンを含む、手段と、
 記憶されたサブルーチンの少なくとも一部を実行するための手段とを含み、前記実行す
ることが、
 第１のタスクに関する第１のサブルーチンを実行するための第１のプロセスをスポー
ニングすることであって、前記第１のサブルーチンが、第１のタスクセクション及び第１
の制御セクションを含む、スポーニングすること、並びに
 前記第１のタスクセクションが返った後に、前記第１のサブルーチンとは異なる第２
のサブルーチンを実行するための第２のプロセスをスポーニングすべきか否かを判定する
前記第１の制御セクションに含まれる少なくとも１つの関数を呼び出すことを含む、コン
ピューティングシステム。

【発明の詳細な説明】
【技術分野】

(5) JP 6469083 B2 2019.2.13

10

20

30

40

50

【０００１】
関連出願の相互参照
　本出願は、２０１３年４月２３日に出願した米国特許出願第６１／８１５，０５２号の
優先権を主張するものである。
【０００２】
　この説明は、コンピューティングシステムによって実行されるタスクの制御に関する。
【背景技術】
【０００３】
　コンピューティングシステムによって実行されるタスクを制御するための一部の技術に
おいては、個々のタスクはプロセス又はスレッドによって実行され、プロセス又はスレッ
ドは、そのタスクのためにスポーニング（spawn）され、そのタスクが完了された後に終
了する。コンピューティングシステムのオペレーティングシステム、又はオペレーティン
グシステムの機能を使用するその他の集中型の制御エンティティが、異なるタスクをスケ
ジューリングし、又は異なるタスクの間の通信を管理するために使用される可能性がある
。その他の下流のタスク（例えば、タスクＢ）が始まる前に完了しなければならない特定
の上流のタスク（例えば、タスクＡ）を示すことによってタスクの部分的な順序を定義す
るために、制御フローグラフが使用される可能性がある。制御フローグラフに従ってタス
クを実行するための新しいプロセスのスポーニングを管理する制御プロセスが、存在する
可能性がある。制御プロセスは、タスクＡを実行するためのプロセスＡをスポーニングし
た後、プロセスＡが終了したというオペレーティングシステムによる通知を待つ。プロセ
スＡが終了した後、オペレーティングシステムが、制御プロセスに通知し、そして、制御
プロセスが、タスクＢを実行するためのプロセスＢをスポーニングする。
【発明の概要】
【課題を解決するための手段】
【０００４】
　一態様においては、概して、コンピューティングシステムによって実行されるタスクを
制御するための方法が、複数のタスクの間の少なくとも部分的な順序を規定する順序情報
を受信するステップと、順序情報に少なくとも部分的に基づいてタスクの少なくとも一部
を実行するための命令を少なくとも１つのプロセッサを用いて生成するステップとを含む
。生成するステップは、第１のタスクに対応する第１のサブルーチンを実行するための命
令を記憶することであって、第１のサブルーチンが、第２のタスクに対応する少なくとも
第２のサブルーチンの実行を制御する第１の制御セクション（control section）を含み
、第１の制御セクションが、第２のタスクに関連する状態情報を変更し、変更された状態
情報に基づいて第２のサブルーチンの実行を開始すべきか否かを判定するように構成され
た関数を含む、記憶すること、並びに第２のサブルーチンを実行するための命令を記憶す
ることであって、第２のサブルーチンが、第２のタスクを実行するためのタスクセクショ
ン（task section）、及び第３のタスクに対応する第３のサブルーチンの実行を制御する
第２の制御セクションを含む、記憶することを含む。
【０００５】
　態様は、以下の特徴のうちの１又は２以上を含み得る。
【０００６】
　順序情報は、それぞれのタスクを表すノードのペアの間の有向辺を含む制御フローグラ
フを含み、上流のノードから下流のノードへの有向辺が、部分的な順序で上流のノードに
よって表されるタスクが下流のノードによって表されるタスクに先行することを示す。
【０００７】
　制御フローグラフは、第１のタスクを表す第１のノードと第２のタスクを表す第２のノ
ードとの間の有向辺、及び第２のノードと第３のタスクを表す第３のノードとの間の有向
辺を含む。
【０００８】
　関数は、第２のタスクに関連するカウンタをデクリメント又はインクリメントし、カウ

(6) JP 6469083 B2 2019.2.13

10

20

30

40

50

ンタの値に基づいて第２のサブルーチンの実行を開始すべきか否かを判定するように構成
される。
【０００９】
　関数は、カウンタをアトミックにデクリメント又はインクリメントし、カウンタの値を
読むアトミックな操作を実行するように構成される。
【００１０】
　変更された状態情報は、第２のタスクを特定する引数を用いた関数の前の呼び出しの履
歴を含む。
【００１１】
　関数は、複数の異なる関数のうちの１つであり、状態情報は、第２のタスクを特定する
引数を用いた複数の異なる関数のいずれかの前の呼び出しの履歴を捕捉する。
【００１２】
　第２の制御セクションは、タスクを実行するためのタスクセクションが呼び出されるか
否かを判定する論理を含む。
【００１３】
　論理は、第２のタスクに関連するフラグの値に基づいて、タスクを実行するためのタス
クセクションが呼び出されるか否かを判定する。
【００１４】
　第１の制御セクションは、少なくとも、第２のタスクに対応する第２のサブルーチン及
び第４のタスクに対応する第４のサブルーチンの実行を制御する。
【００１５】
　順序情報は、部分的な順序で第１のタスクが第２のタスクに先行することを示し、部分
的な順序で第１のタスクが第４のタスクに先行することを示し、部分的な順序で互いに対
する第２のタスク及び第４のタスクの順序を制約しない。
【００１６】
　第１の制御セクションは、第２のサブルーチンを実行するための新しいプロセスをスポ
ーニングすべきか否かを判定する第１の関数と、第１のサブルーチンを実行した同じプロ
セスを用いて第４のサブルーチンの実行を開始する第２の関数とを含む。
【００１７】
　別の態様においては、概して、コンピュータプログラムが、タスクを制御するために、
コンピュータ可読記憶媒体に記憶される。コンピュータプログラムは、コンピューティン
グシステムに、複数のタスクの間の少なくとも部分的な順序を規定する順序情報を受信さ
せ、順序情報に少なくとも部分的に基づいてタスクの少なくとも一部を実行するための命
令を生成するための命令を含む。生成することは、第１のタスクに対応する第１のサブル
ーチンを実行するための命令を記憶することであって、第１のサブルーチンが、第２のタ
スクに対応する少なくとも第２のサブルーチンの実行を制御する第１の制御セクションを
含み、第１の制御セクションが、第２のタスクに関連する状態情報を変更し、変更された
状態情報に基づいて第２のサブルーチンの実行を開始すべきか否かを判定するように構成
された関数を含む、記憶すること、並びに第２のサブルーチンを実行するための命令を記
憶することであって、第２のサブルーチンが、第２のタスクを実行するためのタスクセク
ション、及び第３のタスクに対応する第３のサブルーチンの実行を制御する第２の制御セ
クションを含む、記憶することを含む。
【００１８】
　別の態様においては、概して、タスクを制御するためのコンピューティングシステムが
、複数のタスクの間の少なくとも部分的な順序を規定する順序情報を受信するように構成
された入力デバイス又はポートと、順序情報に少なくとも部分的に基づいてタスクの少な
くとも一部を実行するための命令を生成するように構成された少なくとも１つのプロセッ
サとを含む。生成することは、第１のタスクに対応する第１のサブルーチンを実行するた
めの命令を記憶することであって、第１のサブルーチンが、第２のタスクに対応する少な
くとも第２のサブルーチンの実行を制御する第１の制御セクションを含み、第１の制御セ

(7) JP 6469083 B2 2019.2.13

10

20

30

40

50

クションが、第２のタスクに関連する状態情報を変更し、変更された状態情報に基づいて
第２のサブルーチンの実行を開始すべきか否かを判定するように構成された関数を含む、
記憶すること、並びに第２のサブルーチンを実行するための命令を記憶することであって
、第２のサブルーチンが、第２のタスクを実行するためのタスクセクション、及び第３の
タスクに対応する第３のサブルーチンの実行を制御する第２の制御セクションを含む、記
憶することを含む。
【００１９】
　別の態様においては、概して、タスクを制御するためのコンピューティングシステムが
、複数のタスクの間の少なくとも部分的な順序を規定する順序情報を受信するための手段
と、順序情報に少なくとも部分的に基づいてタスクの少なくとも一部を実行するための命
令を生成するための手段とを含む。生成することは、第１のタスクに対応する第１のサブ
ルーチンを実行するための命令を記憶することであって、第１のサブルーチンが、第２の
タスクに対応する少なくとも第２のサブルーチンの実行を制御する第１の制御セクション
を含み、第１の制御セクションが、第２のタスクに関連する状態情報を変更し、変更され
た状態情報に基づいて第２のサブルーチンの実行を開始すべきか否かを判定するように構
成された関数を含む、記憶すること、並びに第２のサブルーチンを実行するための命令を
記憶することであって、第２のサブルーチンが、第２のタスクを実行するためのタスクセ
クション、及び第３のタスクに対応する第３のサブルーチンの実行を制御する第２の制御
セクションを含む、記憶することを含む。
【００２０】
　別の態様においては、概して、タスクを実行するための方法が、複数のタスクを実行す
るための命令を少なくとも１つのメモリに記憶するステップであって、命令が、タスクの
少なくとも一部のそれぞれに関して、そのタスクを実行するためのタスクセクション、及
び後続のタスクのサブルーチンの実行を制御する制御セクションを含むそれぞれのサブル
ーチンを含む、記憶するステップと、記憶されたサブルーチンの少なくとも一部を少なく
とも１つのプロセッサによって実行するステップとを含む。実行することは、第１のタス
クに関する第１のサブルーチンを実行するための第１のプロセスをスポーニングすること
であって、第１のサブルーチンが、第１のタスクセクション及び第１の制御セクションを
含む、スポーニングすること、並びに第１のタスクセクションが返った後に、第２のサブ
ルーチンを実行するための第２のプロセスをスポーニングすべきか否かを判定する第１の
制御セクションに含まれる少なくとも１つの関数を呼び出すことを含む。
【００２１】
　態様は、以下の特徴のうちの１又は２以上を含み得る。
【００２２】
　関数は、第２のサブルーチンに関連するカウンタをデクリメントし、カウンタの値に基
づいて第２のサブルーチンの実行を開始すべきか否かを判定するように構成される。
【００２３】
　関数は、第２のサブルーチンに対応する第２のタスクを特定する引数を用いて呼び出さ
れるときに、第２のタスクを特定する引数を用いた関数の前の呼び出しの履歴を捕捉する
状態情報に基づいて第２のサブルーチンの実行を開始すべきか否かを判定するように構成
される。
【００２４】
　関数は、複数の異なる関数のうちの１つであり、状態情報は、第２のタスクを特定する
引数を用いた複数の異なる関数のいずれかの前の呼び出しの履歴を捕捉する。
【００２５】
　関数は、第１のプロセスにおいて第２のサブルーチンの実行を開始し、第２のサブルー
チンの実行時間が所定の閾値を超えることに応じて、第２のサブルーチンの実行を続ける
ための第２のプロセスをスポーニングするように構成される。
【００２６】
　関数は、第１のプロセスに関連付けられたスタックフレームを第２のプロセスに与える

(8) JP 6469083 B2 2019.2.13

10

20

30

40

50

ように構成される。
【００２７】
　関数は、第１のプロセスが第２のプロセスと同時に実行され続けることを可能にするた
めに第２のプロセスをスポーニングした後に返るように構成される。
【００２８】
　第１の制御セクションは、第１のタスクセクションが呼び出されるか否かを判定する論
理を含む。
【００２９】
　論理は、第１のタスクに関連するフラグの値に基づいて、第１のタスクセクションが呼
び出されるか否かを判定する。
【００３０】
　第２のサブルーチンは、第２のタスクに対応し、第１の制御セクションは、第１のタス
ク及び第２のタスクを含む複数のタスクの間の少なくとも部分的な順序を規定する順序情
報に少なくとも部分的に基づく。
【００３１】
　順序情報は、それぞれのタスクを表すノードのペアの間の有向辺を含む制御フローグラ
フを含み、上流のノードから下流のノードへの有向辺が、部分的な順序で上流のノードに
よって表されるタスクが下流のノードによって表されるタスクに先行することを示す。
【００３２】
　別の態様においては、概して、コンピュータプログラムが、タスクを実行するために、
コンピュータ可読記憶媒体に記憶される。コンピュータプログラムは、コンピューティン
グシステムに、複数のタスクを実行するための命令を記憶させ、命令が、タスクの少なく
とも一部のそれぞれに関して、そのタスクを実行するためのタスクセクション、及び後続
のタスクのサブルーチンの実行を制御する制御セクションを含むそれぞれのサブルーチン
を含み、記憶されたサブルーチンの少なくとも一部を実行させる命令を含む。実行するこ
とは、第１のタスクに関する第１のサブルーチンを実行するための第１のプロセスをスポ
ーニングすることであって、第１のサブルーチンが、第１のタスクセクション及び第１の
制御セクションを含む、スポーニングすること、並びに第１のタスクセクションが返った
後に、第２のサブルーチンを実行するための第２のプロセスをスポーニングすべきか否か
を判定する第１の制御セクションに含まれる少なくとも１つの関数を呼び出すことを含む
。
【００３３】
　別の態様においては、概して、タスクを実行するためのコンピューティングシステムが
、複数のタスクを実行するための命令を記憶する少なくとも１つのメモリであって、命令
が、タスクの少なくとも一部のそれぞれに関して、そのタスクを実行するためのタスクセ
クション、及び後続のタスクのサブルーチンの実行を制御する制御セクションを含むそれ
ぞれのサブルーチンを含む、少なくとも１つのメモリと、記憶されたサブルーチンの少な
くとも一部を実行するように構成された少なくとも１つのプロセッサとを含む。実行する
ことは、第１のタスクに関する第１のサブルーチンを実行するための第１のプロセスをス
ポーニングすることであって、第１のサブルーチンが、第１のタスクセクション及び第１
の制御セクションを含む、スポーニングすること、並びに第１のタスクセクションが返っ
た後に、第２のサブルーチンを実行するための第２のプロセスをスポーニングすべきか否
かを判定する第１の制御セクションに含まれる少なくとも１つの関数を呼び出すことを含
む。
【００３４】
　別の態様においては、概して、タスクを実行するためのコンピューティングシステムが
、複数のタスクを実行するための命令を記憶するための手段であって、命令が、タスクの
少なくとも一部のそれぞれに関して、そのタスクを実行するためのタスクセクション、及
び後続のタスクのサブルーチンの実行を制御する制御セクションを含むそれぞれのサブル
ーチンを含む、手段と、記憶されたサブルーチンの少なくとも一部を実行するための手段

(9) JP 6469083 B2 2019.2.13

10

20

30

40

50

とを含む。実行することは、第１のタスクに関する第１のサブルーチンを実行するための
第１のプロセスをスポーニングすることであって、第１のサブルーチンが、第１のタスク
セクション及び第１の制御セクションを含む、スポーニングすること、並びに第１のタス
クセクションが返った後に、第２のサブルーチンを実行するための第２のプロセスをスポ
ーニングすべきか否かを判定する第１の制御セクションに含まれる少なくとも１つの関数
を呼び出すことを含む。
【００３５】
　態様は、以下の利点のうちの１又は２以上を含む可能性がある。
【００３６】
　タスクがコンピューティングシステムによって実行されるとき、タスクを実行するため
の新しいプロセスをスポーニングすることに関連し、タスクのプロセスと、スケジューラ
、又はタスクの依存関係及び順序を維持するためのその他の中心的なプロセスとの間を行
ったり来たり切り替えることに関連する処理時間のコストが存在する。本明細書において
説明される技術は、計算効率の良い方法で、新しいプロセスが選択的にスポーニングされ
ること、又は実行されているプロセスが選択的に再利用されることを可能にする。コンパ
イラは、タスクを実行するためのサブルーチンに追加される比較的少ない量のコードに基
づく分散型のスケジューリングメカニズムによって、集中型のスケジューラにのみ頼る必
要性を避けることができる。タスクの完了が、自動的に、同時実行及び条件付き論理を可
能にする方法で、制御フローグラフなどの入力の制約に従ってコンピューティングシステ
ムがその他のタスクを実行することを引き起こす。タスクに関連するコンパイラにより生
成されたコードが、カウンタ及びフラグに記憶された状態情報に基づいてその他のタスク
を実行すべきか否かを判定するための関数をランタイムで呼び出す。したがって、コンパ
イラによって生成されたコードが、タスクのサブルーチンの呼び出しをランタイムで制御
する状態機械を効率的に実装している。スケジューラへの及びスケジューラからの切り替
えの余計なオーバーヘッドなしに、コンピューティングシステムは、細かい粒度の潜在的
に同時のタスクをより効率的に実行することができる。
【００３７】
　本発明のその他の特徴及び利点は、以下の説明及び請求項から明らかになるであろう。
【図面の簡単な説明】
【００３８】
【図１】コンピューティングシステムのブロック図である。
【図２Ａ】制御フローグラフの図である。
【図２Ｂ－２Ｄ】図２Ａの制御フローグラフのノードに関するサブルーチンの実行に関連
するプロセスの存続期間の図である。
【図３－４】制御フローグラフの図である。
【発明を実施するための形態】
【００３９】
　図１は、タスク制御技術が使用され得るコンピューティングシステム１００の例を示す
。システム１００は、タスクの仕様１０４を記憶するための記憶システム１０２と、タス
クの仕様を、タスクを実行するためのタスクサブルーチンにコンパイルするためのコンパ
イラ１０６と、メモリシステム１１０にロードされたタスクサブルーチンを実行するため
の実行環境１０８とを含む。それぞれのタスクの仕様１０４は、どのタスクが実行される
ことになるか、及び異なるタスクの間の順序の制約を含む、いつそれらのタスクが実行さ
れ得るかに関する制約についての情報を符号化する。タスクの仕様１０４の一部は、実行
環境１０８のユーザインターフェース１１４を介してユーザ１１２がインタラクションす
ることによって構築され得る。実行環境１０８は、例えば、ＵＮＩＸオペレーティングシ
ステムのバージョンなどの好適なオペレーティングシステムの制御下の１又は２以上の汎
用コンピュータでホストされる可能性がある。例えば、実行環境１０８は、ローカルの（
例えば、対称型マルチプロセッシング（ＳＭＰ，symmetric multi-processing）コンピュ
ータなどのマルチプロセッサシステム）又はローカルに分散された（例えば、クラスタ若

(10) JP 6469083 B2 2019.2.13

10

20

30

40

50

しくは超並列処理（ＭＰＰ，massively parallel processing）システムとして接続され
た複数のプロセッサ）か、或いは遠隔の又は遠隔に分散された（例えば、ローカルエリア
ネットワーク（ＬＡＮ，local area network）及び／若しくは広域ネットワーク（ＷＡＮ
，wide-area network）を介して接続された複数のプロセッサ）か、或いはこれらの任意
の組合せかのいずれかの複数の中央演算処理装置（ＣＰＵ，central processing unit）
或いはプロセッサコアを用いるコンピュータシステムの構成を含むマルチノード並列コン
ピューティング環境を含む可能性がある。記憶システム１０２を提供する記憶デバイスは
、実行環境１０８のローカルにあり、例えば、実行環境１０８をホストするコンピュータ
に接続された記憶媒体（例えば、ハードドライブ）に記憶される可能性があり、又は実行
環境１０８の遠隔にあり、例えば、（例えば、クラウドコンピューティングインフラスト
ラクチャによって提供される）リモート接続を介して実行環境１０８をホストするコンピ
ュータと通信するリモートシステムでホストされる可能性がある。
【００４０】
　図２Ａは、コンピューティングシステム１００によって実行される１組のタスクに対し
て課される部分的な順序を定義する制御フローグラフ２００の例を示す。制御フローグラ
フ２００によって定義される部分的な順序は、記憶されるタスクの仕様１０４で符号化さ
れる。一部の実施形態において、ユーザ１１２は、制御フローグラフに含まれるさまざま
な種類のノードを選択し、接続されたノードの間の順序の制約を表すリンクによってそれ
らのノードの一部を接続する。ノードの１つの種類は、図２Ａにおいて角の四角いブロッ
クによって表されるタスクノードである。それぞれのタスクノードは、実行される異なる
タスクを表す。（有向リンクの始点の）第１のタスクノードから（有向リンクの終点の）
第２のタスクノードに接続された有向リンクは、第２のノードのタスクが開始し得るより
も前に第１のノードのタスクが完了しなければならないという順序の制約を課す。ノード
の別の種類は、図２Ａにおいて角の丸いブロックによって表される接合ノードである。制
御フローグラフが条件付きの動作（behavior）を含まない場合、接合ノードは、単に、順
序の制約を課すように働く。単一の入力リンク及び複数の出力リンクを有する接合ノード
は、出力リンクによって接続されるタスクノードのいずれのタスクが開始し得るよりも前
に入力リンクによって接続されるタスクノードのタスクが完了しなければならないように
順序の制約を課す。複数の入力リンク及び単一の出力リンクを有する接合ノードは、出力
リンクによって接続されるタスクノードのタスクが開始し得るよりも前に入力リンクによ
って接続されるタスクノードのすべてのタスクが完了しなければならないように順序の制
約を課す。タスクノードは、複数の入力リンクの終点でもあり、そのタスクノードのタス
クが開始し得るよりも前に入力リンクによって接続されるタスクノードのすべてのタスク
が完了しなければならないように順序の制約を課す可能性がある。以下でより詳細に説明
されるように、条件付きの動作によって、複数の入力リンクを有するタスクノードは、複
数の入力を有する接合ノードとは異なる論理的な動作をさらに提供する。
【００４１】
　制御フローグラフが構築された後、コンパイラ１０６は、タスク情報と、その制御フロ
ーグラフによって表される順序の情報とを符号化するタスクの仕様１０４をコンパイルし
、タスクを実行するための命令を生成する。命令は、実行される用意のできている低レベ
ルのマシンコードの形態、又は最終的に実行される低レベルのマシンコードを提供するた
めにさらにコンパイルされるより高レベルのコードの形態である可能性がある。生成され
た命令は、それぞれのタスクノードに関するサブルーチン（「タスクサブルーチン」）及
びそれぞれの接合ノードに関するサブルーチン（「接合サブルーチン」）を含む。タスク
サブルーチンのそれぞれは、対応するタスクを実行するための（タスク本体（task body
）とも呼ばれる）タスクセクションを含む。タスクノードは、コンパイラが適切なタスク
セクションを生成することができるように実行される対応するタスクの何らかの説明を含
む。例えば、一部の実施形態において、タスクノードは、呼び出される特定の関数、実行
されるプログラム、又はタスクセクションに含められるその他の実行可能コードを特定す
る。また、タスクサブルーチンの一部は、制御フローグラフの別のノードに関する後続の

(11) JP 6469083 B2 2019.2.13

10

20

30

40

50

サブルーチンの実行を制御する制御セクションを含み得る。いかなる下流のノードにも接
続されないタスクノードに関するタスクサブルーチンは、そのタスクノードの完了後に制
御がいかなる後続のタスクにも渡される必要がないので制御セクションを必要としない可
能性がある。接合ノードの目的は、制御のフローに対する制約を規定することであるので
、接合サブルーチンのそれぞれは、制御セクションをその主要部として含む。
【００４２】
　制御セクションに含まれる関数の例は、制御フローグラフのノードに関連する状態情報
に基づいて後続のノードに関するサブルーチンを実行するための新しいプロセスをスポー
ニングすべきか否かを判定する「ｃｈａｉｎ」関数である。ｃｈａｉｎ関数の引数が、そ
の後続のノードを特定する。下の表は、制御フローグラフ２００のノードのそれぞれに関
してコンパイラによって書かれるサブルーチンに含まれる関数の例を示し、タスクサブル
ーチンのタスクセクションが、関数呼び出しＴ＃（）によって表され、サブルーチンの残
りが、制御セクションを表すと考えられる。（その他の例において、タスクセクションは
、最後の関数が返った後にタスクが完了されるようにして複数の関数呼び出しを含む可能
性がある。）接合サブルーチンは、タスクセクションを含まず、したがって、すべて制御
セクションによって構成される。この例においては、別々の関数呼び出しは、それらの関
数が呼び出される順序でセミコロンによって分けられる。
【００４３】
【表１】

【００４４】
タスクの仕様１０４がコンパイルされた後、コンピューティングシステム１００は、生成
されたサブルーチンを実行環境１０８のメモリシステム１１０にロードする。特定のサブ
ルーチンが呼び出されるとき、プログラムカウンタが、サブルーチンが記憶されるメモリ
システム１１０のアドレス空間の一部の始めの対応するアドレスに設定される。
【００４５】
　スケジューリングされた時間に、又はユーザ入力若しくは所定のイベントに応じて、コ
ンピューティングシステム１００は、制御フローグラフのルートを表すロードされたサブ
ルーチンのうちの少なくとも１つの実行を開始する。例えば、制御フローグラフ２００に
関して、コンピューティングシステム１００は、タスクノードＴ１に関するタスクサブル
ーチンを実行するためのプロセスをスポーニングする。サブルーチンが実行を開始すると
き、プロセスは、最初に、タスクノードＴ１のタスクを実行するためのタスクセクション
を呼び出し、それから、タスクセクションが返った（タスクノードＴ１のタスクの完了を
示す）後に、プロセスは、サブルーチンの制御セクションのｃｈａｉｎ関数を呼び出す。
特定のノードに関するサブルーチンを実行するために新しいプロセスをスポーニングすべ

(12) JP 6469083 B2 2019.2.13

10

20

30

40

50

きか否かを判定するためにｃｈａｉｎ関数によって使用される状態情報は、以下でより詳
細に説明されるように、その特定のノードを引数として呼び出された前のｃｈａｉｎ関数
の履歴を捕捉する情報である。
【００４６】
　この履歴情報は、異なるノードに関連するアクティブ化カウンタに保有され得る。カウ
ンタの値は、例えば、メモリシステム１１０の一部又はその他の作業用記憶域に記憶され
る可能性がある。第１のプロセスがスポーニングされる前に、各ノードに関するアクティ
ブ化カウンタの値は、そのノードへの入力リンクの数に初期化される。したがって、制御
フローグラフ２００に関しては、以下の値に初期化された６つのアクティブ化カウンタが
存在する。
【００４７】
【表２】

【００４８】
タスクノードＴ１は入力リンクを持たないので、そのタスクノードＴ１のアクティブ化カ
ウンタは、ゼロに初期化される。代替的に、いかなる入力リンクも持たない最初のノード
に関しては、そのノードに関連するアクティブ化カウンタが存在する必要がない。入力リ
ンクを介して接続される異なるノードの制御セクションは、下流のリンクされたノードの
アクティブ化カウンタをデクリメントし、デクリメントされた値に基づいてアクションを
決定する。一部の実施形態においては、カウンタにアクセスする関数が、カウンタをアト
ミックにデクリメントし、デクリメント操作の前か又は後かのどちらかでカウンタの値を
読むアトミックな操作（例えば、アトミックな「ｄｅｃｒｅｍｅｎｔ－ａｎｄ－ｔｅｓｔ
」操作）を使用することができる。一部のシステムにおいては、そのような操作が、シス
テムのネイティブの命令によってサポートされる。代替的に、カウンタの値がゼロに達す
るまでカウンタをデクリメントする代わりに、カウンタが、ゼロで始まる可能性があり、
関数が、（例えば、アトミックな「ｉｎｃｒｅｍｅｎｔ－ａｎｄ－ｔｅｓｔ」操作を用い
て）カウンタの値がノードへの入力リンクの数に初期化された所定の閾値に達するまでカ
ウンタをインクリメントする可能性がある。
【００４９】
　ｃｈａｉｎ関数「ｃｈａｉｎ（Ｎ）」の呼び出しは、ノードＮのアクティブ化カウンタ
をデクリメントし、デクリメントされた値がゼロである場合、ｃｈａｉｎ関数は、新しく
スポーニングされたプロセスによるノードＮのサブルーチンの実行をトリガし、それから
返す。デクリメントされた値がゼロよりも大きい場合、ｃｈａｉｎ関数は、新しいサブル
ーチンの実行をトリガすること又は新しいプロセスのスポーニングすることなしにただ返
す。サブルーチンの制御セクションは、表１の接合ノードＪ１に関する接合サブルーチン

(13) JP 6469083 B2 2019.2.13

10

20

30

40

50

と同様に、ｃｈａｉｎ関数の複数の呼び出しを含む可能性がある。制御セクションの最後
の関数が返った後、サブルーチンを実行するプロセスは、終了する可能性があり、又は一
部の関数呼び出しに関しては（例えば、以下で説明される「ｃｈａｉｎＴｏ」関数呼び出
しに関しては）、プロセスは、別のサブルーチンの実行を続ける。新しいプロセスのこの
条件付きのスポーニングは、新しいプロセスのスポーニングを管理するためのスケジュー
ラプロセスへの切り替え及び新しいプロセスのスポーニングを管理するためのスケジュー
ラプロセスからの切り替えを必要とせずに、所望の部分的な順序に従って（潜在的に同時
に）タスクサブルーチンが実行されることを可能にする。
【００５０】
　表１のサブルーチンに関して、タスクサブルーチンＴ１に関するタスクセクションが返
った後のｃｈａｉｎ関数の呼び出し「ｃｈａｉｎ（Ｊ１）」は、ノードＪ１に関するアク
ティブ化カウンタが１から０にデクリメントされる結果をもたらし、ｃｈａｉｎ関数の呼
び出し「ｃｈａｉｎ（Ｔ２）」及び「ｃｈａｉｎ（Ｔ３）」を含む接合サブルーチンの実
行を引き起こす。これらの呼び出しのそれぞれは、ノードＴ２及びＴ３に関するそれぞれ
のアクティブ化カウンタが１から０にデクリメントされる結果をもたらし、ノードＴ２及
びＴ３に関するタスクサブルーチンの実行を引き起こす。両方のタスクサブルーチンが、
ノードＪ２に関するアクティブ化カウンタをデクリメントする「ｃｈａｉｎ（Ｊ２）」を
呼び出す制御セクションを含む。ノードＴ２及びＴ３に関するタスク本体のうち最初に終
了する方が、ノードＪ２に関するアクティブ化カウンタを２から１にデクリメントするｃ
ｈａｉｎ関数の呼び出しにつながる。２番目に終了するタスクセクションは、ノードＪ２
に関するアクティブ化カウンタを１から０にデクリメントするｃｈａｉｎ関数の呼び出し
につながる。したがって、タスクのうちで最後に完了するもののみが、ノードＪ２に関す
る接合サブルーチンの実行を引き起こし、その実行が、ｃｈａｉｎ関数の最後の呼び出し
「ｃｈａｉｎ（Ｔ４）」及びノードＴ４に関するアクティブ化カウンタの１から０へのデ
クリメントにつながり、そのデクリメントが、ノードＴ４に関するタスクサブルーチンの
実行を開始する。ノードＴ４に関するタスクセクションが返った後、制御フローは、ノー
ドＴ４に関するタスクサブルーチンに関する制御セクションが存在しないので完了する。
【００５１】
　表１のサブルーチンの例においては、新しいプロセスが、制御フローグラフ２００の各
ノードのサブルーチンに関してスポーニングされる。中心的なタスク監視又はスケジュー
リングプロセスを必要とせずに、新しいプロセスをスポーニングすべきか否かを判定する
制御セクションを独自に含む各プロセスのサブルーチンによっていくらかの効率が得られ
るが、制御セクションに対する特定のコンパイラの最適化によってより一層の効率が得ら
れる可能性がある。例えば、１つのコンパイラの最適化では、第１のサブルーチンの制御
セクションにｃｈａｉｎ関数の単一の呼び出しが存在する場合、次のサブルーチン（すな
わち、そのｃｈａｉｎ関数の引数）が、第１のサブルーチンを実行している同じプロセス
内で（アクティブ化カウンタがゼロに達するときに）実行される可能性がある－－新しい
プロセスは、スポーニングされる必要がない。これを実現する１つの方法は、コンパイラ
がノードの最後の出力リンクに関する異なる関数呼び出し（例えば、「ｃｈａｉｎ」関数
の代わりに「ｃｈａｉｎＴｏ」関数）を明示的に生成することである。ｃｈａｉｎＴｏ関
数は、アクティブ化カウンタがゼロであるときにその関数の引数のサブルーチンを実行す
るための新しいプロセスをスポーニングする代わりに、その関数の引数のサブルーチンを
同じプロセスに実行させることを除いてｃｈａｉｎ関数と同様である。ノードが単一の出
力リンクを有する場合、そのノードのコンパイルされたサブルーチンは、ｃｈａｉｎＴｏ
関数の単一の呼び出しを有する制御セクションを有する。ノードが複数の出力リンクを有
する場合、そのノードのコンパイルされたサブルーチンは、ｃｈａｉｎ関数の１又は２以
上の呼び出し及びｃｈａｉｎＴｏ関数の単一の呼び出しを有する制御セクションを有する
。これは、独立したプロセスでスポーニングされるサブルーチンの数及びそれらのサブル
ーチンの関連する開始オーバーヘッドを削減する。表３は、このコンパイラの最適化を用
いて制御フローグラフ２００に関して生成されるサブルーチンの例を示す。

(14) JP 6469083 B2 2019.2.13

10

20

30

40

50

【００５２】
【表３】

【００５３】
　表３のサブルーチンの例においては、第１のプロセスがノードＴ１及びＪ１のサブルー
チンを実行し、そして、ノードＴ２のサブルーチンを実行するために新しいプロセスがス
ポーニングされる一方、第１のプロセスはノードＴ３のサブルーチンの実行を続ける。こ
れら２つのプロセスのうちでそれらのプロセスのそれぞれのタスクセクションから始めに
返すものは、接合ノードＪ２のアクティブ化カウンタを（２から１へ）始めにデクリメン
トするものであり、それからそのプロセスは、終了する。プロセスのタスクセクションか
ら返る第２のプロセスは、接合ノードＪ２のアクティブ化カウンタを１から０にデクリメ
ントし、それから、関数呼び出し（「ｃｈａｉｎＴｏ（Ｔ４）」）である接合ノードＪ２
のサブルーチン及び最後にはタスクノードＴ４のサブルーチンを実行することによって継
続する。図２Ｂは、ノードＴ３のタスクがノードＴ２のタスクの前に終了する場合に関し
て、第１の及び第２のプロセスが制御フローグラフ２００の異なるノードに関するサブル
ーチンを実行するときのそれらのプロセスの存続期間の例を示す。プロセスを表す線に沿
った点は、（破線によって点に接続された）異なるノードに関するサブルーチンの実行に
対応する。点の間の線分の長さは、必ずしも経過時間に比例せず、単に、異なるサブルー
チンが実行される相対的な順序と、新しいプロセスがスポーニングされる時点とを示すよ
うに意図されている。
【００５４】
　潜在的に効率をさらに向上させることができる修正の別の例は、特定のサブルーチンが
同時実行の恩恵を受け得ることを示す閾値が満たされるまで遅らされた新しいプロセスの
スポーニングである。異なるプロセスによる複数のサブルーチンの同時実行は、サブルー
チンのそれぞれが完了するのにかなりの量の時間がかかる場合に特に恩恵がある。そうで
はなく、サブルーチンのいずれかがその他のサブルーチンと比べて完了するのに比較的少
ない量の時間がかかる場合、そのサブルーチンは、効率の大きな損失なしに別のサブルー
チンと逐次的に実行される可能性がある。遅らされたスポーニングのメカニズムは、かな
りの量の時間がかかり、一緒に実行され得る複数のタスクが、プロセスを同時に実行する
ことによって実行されることを可能にするが、さらに、より短いタスクのための新しいプ
ロセスのスポーニングを抑制するように試みる。
【００５５】
　遅らされたスポーニングを用いるｃｈａｉｎ関数の代替的な実施形態においては、ｃｈ
ａｉｎＴｏ関数に似たｃｈａｉｎ関数が、その関数の引数のサブルーチンの実行を同じプ
ロセスに開始させる。しかし、ｃｈａｉｎＴｏ関数とは異なり、タイマーが、サブルーチ

(15) JP 6469083 B2 2019.2.13

10

20

30

40

50

ンを実行するのにかかる時間を追跡し、閾値の時間が超えられる場合、ｃｈａｉｎ関数は
、サブルーチンの実行を継続するために新しいプロセスをスポーニングする。第１のプロ
セスは、サブルーチンが完了したかのように継続することができ、第２のプロセスは、第
１のプロセスが終了した時点でサブルーチンの実行を引き継ぐことができる。これを実現
するために使用され得る１つのメカニズムは、第２のプロセスが第１のプロセスからサブ
ルーチンのスタックフレームを継承することである。実行されているサブルーチンに関す
るスタックフレームは、特定の命令を指すプログラムカウンタと、サブルーチンの実行に
関連するその他の値（例えば、ローカル変数及びレジスタ値）を含む。この例において、
Ｔ２に関するタスクサブルーチンのスタックフレームは、プロセスがＴ２に関するタスク
サブルーチンの完了後にＪ１に関する接合サブルーチンに返すことを可能にするリターン
ポインタ（return pointer）を含む。遅らされたスポーニングのタイマーが超えられると
き、新しいプロセスがスポーニングされ、Ｔ２に関するタスクサブルーチンの既存のスタ
ックフレームに関連付けられ、第１のプロセスが、（「ｃｈａｉｎＴｏ（Ｔ３）」を呼び
出すために）Ｊ１に関する接合サブルーチンに直ちに戻る。継承されたスタックフレーム
のリターンポインタは、新しいプロセスがＴ２に関するタスクサブルーチンの完了後にＪ
１に関する接合サブルーチンに戻る必要がないので取り除かれる（つまり、ヌルにされる
）。したがって、遅らされたスポーニングは、タスクが（構成可能な閾値に比して）迅速
である場合に関して、新しいプロセスをスポーニングするオーバーヘッドなしに後続のタ
スクに関するサブルーチンが実行されることを可能にし、既存のスタックフレームを継承
することによって、タスクがより長い場合に関して、新しいプロセスのスポーニングにか
かわるオーバーヘッドを削減する。
【００５６】
　図２Ｃは、ノードＴ２のタスクが遅らされたスポーニングの閾値よりも長い場合に関し
て、第１の及び第２のプロセスが制御フローグラフ２００の異なるノードに関するサブル
ーチンを実行するときのそれらのプロセスの存続期間の例を示す。スポーニングの閾値が
達せられるとき、プロセス１が、ノードＴ２のタスクを実行するサブルーチンのスタック
フレームを継承し、そのサブルーチンの実行を続けるプロセス２をスポーニングする。こ
の例においては、（プロセス１によって実行される）ノードＴ３のタスクが、（プロセス
１によって開始され、プロセス２によって完了される）ノードＴ２のタスクが終了する前
に終了する。したがって、この例において、Ｊ２のアクティブ化カウンタを２から１にデ
クリメントする（そして終了する）のはプロセス１であり、Ｊ２のアクティブ化カウンタ
を１から０にデクリメントし、プロセス２がタスクノードＴ４のタスクを実行する結果と
なるのはプロセス２である。この例においては、ノードＴ２のタスク及びノードＴ３のタ
スクの同時実行が、そのような同時実行が全体的な効率に寄与すると判定された後に可能
にされる。
【００５７】
　図２Ｄは、ノードＴ２のタスクが遅らされたスポーニングの閾値よりも短い場合に関し
て、単一のプロセスが制御フローグラフ２００の異なるノードに関するサブルーチンを実
行するときのそのプロセスの存続期間の例を示す。この例においては、（プロセス１によ
って実行される）ノードＴ２のタスクが、（プロセス１によってやはり実行される）ノー
ドＴ３のタスクの前に終了する。したがって、この例においては、プロセス１が、ノード
Ｔ２のタスクを完了した後にＪ２のアクティブ化カウンタを２から１にデクリメントし、
プロセス１が、ノードＴ３のタスクを完了した後にＪ２のアクティブ化カウンタを１から
０にデクリメントし、その結果、プロセス１が、タスクノードＴ４のタスクを実行する。
この例においては、ノードＴ２及びノードＴ３のタスクの同時実行が、ノードＴ２のタス
クが迅速に完了され得ると判定された後に第２のプロセスをスポーニングする必要性を避
けることによって得られる効率のために放棄される。
【００５８】
　制御フローグラフに含まれる可能性があるノードの別の種類は、図３に示される制御フ
ローグラフ３００の円によって表される条件ノードである。条件ノードは、条件ノードの

(16) JP 6469083 B2 2019.2.13

10

20

30

出力に接続されたタスクノードのタスクが実行されるべきであるか否かを判定するための
条件を定義する。ランタイムで、定義された条件が真である場合、制御フローは、その条
件ノードを過ぎて下流に進むが、ランタイムで、定義された条件が偽である場合、制御フ
ローは、条件ノードを過ぎて進まない。条件が偽である場合、条件ノードの下流のタスク
ノードのタスクは、それらのタスクノードに至る制御フローグラフを抜ける（その他の偽
の条件ノードによってそれら自体が遮断されない）その他の経路が存在する場合にのみ実
行される。
【００５９】
　コンパイラは、それぞれの条件ノードに関する「条件サブルーチン」を生成し、さらに
、条件ノードによって定義された条件を用いて条件ノードの下流の特定のその他のノード
のサブルーチンを修正する。例えば、コンパイラは、制御フローグラフによって定義され
た制御の流れに従うためにランタイムで適用される「スキップメカニズム」のための命令
を生成し得る。スキップメカニズムにおいて、各ノードは、（もしあれば）対応するタス
クセクションが実行されるか否かを制御する関連する「スキップフラグ」を有する。スキ
ップフラグが設定される場合、（ノードが「抑制」状態であるようにして）タスクセクシ
ョンの実行が抑制され、この抑制は、コンパイラによって制御セクションに入れられた適
切な制御コードによってその他のタスクに伝播され得る。前の例においては、タスクサブ
ルーチンのタスクセクションが、制御セクションに先行していた。以下の例においては、
一部のタスクのサブルーチンの制御セクションが、タスクセクションの前に現れる制御コ
ード（「プロローグ（prologue）」とも呼ばれる）と、タスクセクションの後に現れる制
御コード（「エピローグ（epilogue）」とも呼ばれる）とを含む。例えば、このスキップ
メカニズムを実装するために、コンパイラは、条件付きの命令（例えば、ステートメント
（statement）の場合）と、下流のノードを特定する引数を用いて呼び出される「ｓｋｉ
ｐ関数」の呼び出しとをプロローグ（すなわち、タスクセクションの前に実行されるコー
ド）に含める。コンパイラは、ｃｈａｉｎ又はｃｈａｉｎＴｏ関数の呼び出しをエピロー
グ（すなわち、タスクセクションの後に実行されるコード）に含める。場合によっては、
スキップフラグの値によって表される記憶された状態が原因で、プロローグのみが実行さ
れる可能性があり、タスクセクションとエピローグとの両方がスキップされる可能性があ
る。表４は、制御フローグラフ３００に関して生成されるサブルーチンの例を示す。
【００６０】

(17) JP 6469083 B2 2019.2.13

10

20

30

40

50

【表４】

【００６１】
　ｃｈａｉｎ及びｃｈａｉｎＴｏ関数と同様に、ｓｋｉｐ関数「ｓｋｉｐ（Ｎ）」は、そ
のｓｋｉｐ関数の引数（ノードＮ）のアクティブ化カウンタをデクリメントし、デクリメ
ントされた値が０である場合、対応するサブルーチンを実行する。この例において、ｓｋ
ｉｐ関数は、新しいプロセスをスポーニングすることなく同じプロセスを使用し続けるこ
とによってｃｈａｉｎＴｏ関数の動作に従うが、コンパイラは、同様の方法でタスクのス
ポーニングを制御するためにｃｈａｉｎ及びｃｈａｉｎＴｏ関数がするのと同じように振
る舞うｓｋｉｐ関数の２つのバージョンを使用する可能性がある。コンパイラは、サブル
ーチンが実行されているノードのスキップフラグが設定される（つまり、ブール真値と評
価される）場合、タスクセクションを呼び出すことなく下流のノードのｓｋｉｐを呼び出
し、スキップフラグがクリアされる（つまり、ブール偽値と評価される）場合、（ノード

(18) JP 6469083 B2 2019.2.13

10

20

30

40

50

がタスクノードである場合）タスクセクションを確かに呼び出し、下流のノードのｃｈａ
ｉｎを呼び出すように条件付きノードの下流のノードに関するサブルーチンを生成する。
代替的に、コンパイラは、どのノードが条件付きノードの下流にあるかを判定する必要な
しにデフォルトでサブルーチンの制御セクションに条件文を含める可能性がある。特に、
スキップフラグを調べる「ｉｆ」文が、コンパイラがその文を含めるべきか否かを判定す
る必要なしにあらゆるノードのサブルーチンに関してデフォルトで含められる可能性があ
る（ただし、それは、スキップフラグの不必要な検査を招く可能性がある）。
【００６２】
　制御フローグラフに条件ノードが存在する場合、複数の入力を有するノードは、ノード
の種類に依存する論理的動作をランタイムで取得する。複数の入力リンク及び単一の出力
リンクを有する接合ノードは、出力リンクによって接続される出力ノードがそのノードの
サブルーチンを（ｓｋｉｐの呼び出しではなく）ｃｈａｉｎの呼び出しの引数にすべきで
ある場合、入力リンクによって接続される少なくとも１つの入力ノードがそのノードのサ
ブルーチンに（ｓｋｉｐの呼び出しではなく）ｃｈａｉｎの呼び出しを実行させなければ
ならないように論理「ＯＲ」演算に対応する。複数の入力リンク及び単一の出力リンクを
有するタスクノードは、そのタスクノードのサブルーチンが（ｓｋｉｐの呼び出しではな
く）ｃｈａｉｎの呼び出しの引数であるべきである場合、入力リンクによって接続される
入力ノードのすべてがそれらのノードのサブルーチンに（ｓｋｉｐの呼び出しではなく）
ｃｈａｉｎの呼び出しを実行させなければならないように論理「ＡＮＤ」演算に対応する
。
【００６３】
　この論理的動作を確実にするために、ノードに関連するスキップフラグは、所定の規則
に従ってランタイムで設定され、クリアされる。スキップフラグの初期値は、制御フロー
グラフのノードのサブルーチンのいずれかの実行の前に行われる初期化フェーズの間に与
えられ、さらに、ノードの種類に依存する。また、コンパイラは、ノードの種類に依存す
る異なる動作を有するｓｋｉｐ関数及びｃｈａｉｎ関数の異なるバージョンを用いる。ノ
ードＮのスキップフラグを変更するための所定の１組の規則と、コンパイラによって使用
される異なるバージョンの関数の動作との一例は、以下の通りである。
　・複数入力接合ノード（ＯＲ演算）に関して、スキップフラグは、最初に設定され、ｓ
ｋｉｐ＿ＯＲ（Ｎ）は、スキップフラグを変更せず、ｃｈａｉｎ＿ＯＲ（Ｎ）は、スキッ
プフラグをクリアする
　・複数入力タスクノード（ＡＮＤ演算）に関して、スキップフラグは、最初にクリアさ
れ、ｓｋｉｐ＿ＡＮＤ（Ｎ）は、スキップフラグを設定し、ｃｈａｉｎ＿ＡＮＤ（Ｎ）は
、スキップフラグを変更しない
　・単一入力ノードに関して、スキップフラグは、最初に設定され、ｓｋｉｐ（Ｎ）は、
スキップフラグを変更せず、ｃｈａｉｎ（Ｎ）は、スキップフラグをクリアする
ｃｈａｉｎＴｏ関数の動作は、スキップフラグに関してｃｈａｉｎ関数と同じである。単
一入力ノードに関して、ＯＲ演算及びＡＮＤ演算の動作は等価であり、（この例のＯＲ演
算の動作など）どちらかが使用され得る。この１組の規則に関して、（１又は２以上の）
開始ノード（すなわち、いかなる入力リンクもないノード）は、それらのノードのスキッ
プフラグを（そのスキップフラグの初期値がまだクリアされていない場合）クリアする。
【００６４】
　制御フローグラフ３００に関して、ノードＣ１に関する条件が真であり、ノードＣ２に
関する条件が偽であり、ノードＣ２の条件の検査が完了される前にノードＴ３に関するタ
スクが終了する、つまり、ノードＴ３に関するサブルーチンが、ノードＪ２のスキップフ
ラグをクリアし、ノードＪ２に関するアクティブ化カウンタを（２から１に）デクリメン
トする（ｓｋｉｐ論理とは対照的な）ｃｈａｉｎ論理に従い、それから、ノードＴ４に関
するサブルーチンが、（スキップフラグを変更しない）ｓｋｉｐ論理に従い、ノードＪ２
に関するアクティブ化カウンタを（１から０に）デクリメントし、そのことが、ノードＪ
２のスキップフラグがノードＴ３のサブルーチンによってクリアされたのでｃｈａｉｎ（

(19) JP 6469083 B2 2019.2.13

10

20

30

Ｔ５）を引き起こす場合を考える。
【００６５】
　その他の規則も、あり得る。ノードＮのスキップフラグを変更するための所定の１組の
規則と、コンパイラによって使用される異なるバージョンの関数の動作との別の例は、以
下の通りである。
　・接合ノードに関して、スキップフラグは、最初に設定され、ｓｋｉｐ＿Ｊ（Ｎ）は、
スキップフラグを変更せず、ｃｈａｉｎ＿Ｊ（Ｎ）は、スキップフラグをクリアする
　・タスクノード又は条件付きノードに関して、スキップフラグは、最初にクリアされ、
ｓｋｉｐ（Ｎ）は、スキップフラグを設定し、ｃｈａｉｎ（Ｎ）は、スキップフラグを変
更しない
この１組の規則に関して、（１又は２以上の）開始ノード（すなわち、いかなる入力リン
クもないノード）は、それらのノードのスキップフラグを（そのスキップフラグの初期値
がまだクリアされていない場合）やはりクリアする。
【００６６】
　コンパイラは、制御フローグラフの分析に基づいてサブルーチンの制御セクションの条
件文又はその他の命令のさまざまな最適化を実行していてもよい可能性がある。例えば、
制御フローグラフ３００から、タスクノードＴ５のタスクは、最終的にタスクノードＴ５
のタスクの実行を引き起こす接合ノードＪ１と接合ノードＪ３との間のリンクが存在する
ので、条件ノードＣ１及びＣ２の条件が真であるか又は偽であるかにかかわりなくスキッ
プされると判定され得る。したがって、コンパイラは、タスクノードＴ５のスキップフラ
グの検査を避け、単にタスクノードＴ５のタスクセクションＴ５（）を呼び出すタスクノ
ードＴ５に関するサブルーチンを生成することができる。例えば、スキップされたセクシ
ョンの後の下流のノードへのすべてのその他の入力が適切に処理される（つまり、下流の
ノードのカウンタを、スキップされたセクションに関する中間的な呼び出しが含まれてい
たとした場合にそのカウンタがデクリメントされたであろう回数だけデクリメントする）
限り、制御フローグラフのセクション全体が条件付きノードの後でスキップされるべきで
ある場合に関して、中間的なスキップフラグの検査及びｓｋｉｐ関数の呼び出しを省くこ
とによって、その他の最適化がコンパイラによってなされ得る。
【００６７】
　図４は、それぞれが条件ノード（それぞれＣ１及びＣ２）に続くタスクノードＴ１及び
Ｔ２からの入力リンクを有する多入力タスクノードＴ３を含む単純な制御フローグラフ４
００の例を示す。この例において、タスクノードＴ３は、ノードＴ３のタスクが実行され
るためにノードＴ１及びＴ２のタスクが両方とも（スキップされずに）実行されなければ
ならないように論理ＡＮＤ演算に対応する。表５は、制御フローグラフ４００に関して生
成されるサブルーチンの例を示す。
【００６８】

(20) JP 6469083 B2 2019.2.13

10

20

30

40

50

【表５】

【００６９】
　一部の実施形態において、接合ノード（又はその他のノード）は、ノードへの入力の特
徴に依存するさまざまな種類の論理演算を行うように構成される可能性がある。例えば、
ノードは、すべての入力が「必須」入力として指定されるとき、論理ＡＮＤ演算を行い、
すべての入力が「任意選択」入力として指定されるとき、論理ＯＲ演算を行うように構成
される可能性がある。一部の入力が「必須」と指定され、一部の入力が「任意選択」と指
定される場合、１組の所定の規則が、ノードによって実行される論理演算の組合せを解釈
するために使用される可能性がある。
【００７０】
　上述のタスク制御技術は、好適なソフトウェアを実行するコンピューティングシステム
を用いて実装され得る。例えば、ソフトウェアは、それぞれが少なくとも１つのプロセッ
サ、（揮発性及び／又は不揮発性メモリ及び／又は記憶要素を含む）少なくとも１つのデ

(21) JP 6469083 B2 2019.2.13

10

20

30

ータ記憶システム、（少なくとも１つの入力デバイス又はポートを用いて入力を受け取る
ため、及び少なくとも１つの出力デバイス又はポートを用いて出力を与えるための）少な
くとも１つのユーザインターフェースを含む（分散、クライアント／サーバ、又はグリッ
ドなどのさまざまなアーキテクチャである可能性がある）１又は２以上のプログラミング
された又はプログラミング可能なコンピューティングシステムで実行される１又は２以上
のコンピュータプログラムの手順を含み得る。ソフトウェアは、例えば、データフローグ
ラフの設計、構成、及び実行に関連するサービスを提供するより大きなプログラムの１又
は２以上のモジュールを含む可能性がある。プログラムのモジュール（例えば、データフ
ローグラフの要素）は、データリポジトリに記憶されたデータモデルに準拠するデータ構
造又はその他の編成されたデータとして実装され得る。
【００７１】
　ソフトウェアは、ＣＤ－ＲＯＭ又は（例えば、汎用若しくは専用のコンピューティング
システム若しくはデバイスによって読み取り可能な）その他のコンピュータ可読媒体など
の有形の非一時的媒体で提供されるか、或いはそのソフトウェアが実行されるコンピュー
ティングシステムの有形の非一時的媒体にネットワークの通信媒体を介して配信される（
例えば、伝播信号で符号化される）可能性がある。処理の一部又はすべては、専用のコン
ピュータで、又はコプロセッサ若しくはフィールドプログラマブルゲートアレイ（ＦＰＧ
Ａ，field-programmable gate array）若しくは専用の特定用途向け集積回路（ＡＳＩＣ
，application-specific integrated circuit）などの専用のハードウェアを用いて実行
される可能性がある。処理は、ソフトウェアによって指定された計算の異なる部分が異な
る計算要素によって実行される分散された方法で実装される可能性がある。それぞれのそ
のようなコンピュータプログラムは、本明細書において説明された処理を実行するために
記憶デバイスの媒体がコンピュータによって読み取られるときにコンピュータを構成し、
動作させるために、汎用又は専用のプログラミング可能なコンピュータによってアクセス
可能な記憶デバイスのコンピュータ可読記憶媒体（例えば、ソリッドステートメモリ若し
くは媒体、又は磁気式若しくは光学式媒体）に記憶されるか又はダウンロードされること
が好ましい。本発明のシステムは、コンピュータプログラムで構成された有形の非一時的
媒体として実装されると考えられる可能性もあり、そのように構成された媒体は、本明細
書において説明された処理ステップのうちの１又は２以上を実行するために特定の予め定
義された方法でコンピュータを動作させる。
【００７２】
　本発明のいくつかの実施形態が、説明された。しかしながら、上述の説明は、添付の特
許請求の範囲によって定義される本発明の範囲を例示するように意図されており、限定す
るように意図されていないことを理解されたい。したがって、その他の実施形態も、以下
の特許請求の範囲内にある。例えば、本発明の範囲を逸脱することなくさまざまな修正が
なされ得る。さらに、上述のステップの一部は、順序に依存しない可能性があり、したが
って、説明された順序とは異なる順序で実行され得る。

(22) JP 6469083 B2 2019.2.13

【図１】 【図２Ａ】

【図２Ｂ】 【図２Ｃ】

(23) JP 6469083 B2 2019.2.13

【図２Ｄ】 【図３】

【図４】

(24) JP 6469083 B2 2019.2.13

10

20

フロントページの続き

(74)代理人 100150902
 弁理士　山内　正子
(74)代理人 100141391
 弁理士　園元　修一
(74)代理人 100198074
 弁理士　山村　昭裕
(74)代理人 100172797
 弁理士　有馬　昌広
(72)発明者 スタンフィル　クレイグ　ダブリュ．
 アメリカ国　マサチューセッツ０１７７３　リンカーン　ハックルベリーヒルロード４３

 審査官 原　忠

(56)参考文献 特開２０１０－２４４５６３（ＪＰ，Ａ）　　　
 特表２０１１－５１７３５２（ＪＰ，Ａ）　　　
 特開２０１０－２８６９３１（ＪＰ，Ａ）　　　

(58)調査した分野(Int.Cl.，ＤＢ名)
 Ｇ０６Ｆ　　　９／４６　－　９／５４　　　　

	biblio-graphic-data
	claims
	description
	drawings
	overflow

