Title: CORROSION INHIBITORS FOR USE IN OIL AND GAS WELLS AND SIMILAR APPLICATIONS

Abstract: Anti-corrosion additives and processes useful for oil drilling and similar applications. Heteropoly complex anions of transitional metal elements can be added to an oil well drilling solution which includes a metallic salt, optionally in combination with transition metal compounds or compounds of the metallic elements of Groups IIIa to VIIa of the Periodic Table of Elements, to minimize corrosion of systems within which the solution is used.
CORROSION INHIBITORS FOR USE IN OIL
AND GAS WELLS AND SIMILAR APPLICATIONS

FIELD OF THE INVENTION

This invention relates generally to corrosion inhibitors, and in particular to corrosion inhibitors and processes of using the same to protect metal surfaces in oil and gas drilling systems.

BACKGROUND OF THE INVENTION

Servicing fluids, also known as completion or packer fluids, are used in many oil and natural gas wells for a variety of purposes. Completion fluids used in oil and gas well drilling and similar applications in oilfields include drilling muds, brines, water, oil, and the like. Completion fluids can include inorganic salts, such as halides of zinc, calcium, sodium and other alkali elements, in concentrations ranging from trace amounts up to saturation.

Corrosion is recognized as a problem in the development of geoenergy sources, including oil and natural gas reserves, geothermal and geopressured systems. The corrosion problems are aggravated by the presence of acid gases such as hydrogen sulfide and carbon dioxide and by the co-production of brine solutions. For example, carbon steel is widely used in the construction of oil and gas wells in oilfields. While a useful material for such applications, carbon steel corrodes due to the presence of electrolytes and water in many servicing or completion fluids. In recent years, corrosion problems have become more severe as production from deeper, high pressure and high temperature wells has become more attractive, as these deeper formations can have increased levels of acid gas fluids.
Additives can provide corrosion protection for metals used in oil and gas drilling systems, such as carbon steel. However, conventional additives do not always provide the desired degree of corrosion protection, particularly at higher temperatures.

For example, corrosion inhibitors used in oil and gas drilling operations have typically included organic compounds containing nitrogen, sulfur and/or phosphorous. These corrosion inhibitors protect metal surfaces at least in part by forming a protective film on the metal surface. Thus, an important consideration for corrosion protection in oil and gas drilling systems is how well the corrosion inhibitor is transported to the corroding surface within the oil or gas well system. Dispersibility of the inhibitor in completion fluids, such as brine solutions, also plays an important role in its corrosion protection performance. Many other factors, such as stability of the protective film and inhibitor concentration in the completion fluid, are also important to provide enhanced corrosion protection.

Many current inhibitors, however, have limited stability, particularly at higher temperatures, or exhibit poor characteristics in the solution and therefore offer limited protection.

SUMMARY OF THE INVENTION

The present invention provides corrosion protection for metal surfaces present in oil and gas well drilling systems. One embodiment of the invention includes brine solutions useful in oil and gas well drilling systems and similar applications, for example, as completion fluids. In one aspect of this embodiment of the invention, the solutions include at least one heteropoly complex anion of transition metal elements as a corrosion inhibitor.

The invention also includes solutions that include a mixture of at least one heteropoly complex anion of transition metal elements with at least one additional corrosion inhibiting additive or agent. For example, the solution can include a mixture of at least one heteropoly complex anion of a transition metal element and at least one other transition metal compound as corrosion inhibitors. As another example, the solution can include a mixture of at least one heteropoly complex
anion of a transition metal element and at least one compound of the metallic elements of the groups IIIa to VIa of the Periodic Table of Elements as corrosion inhibitors. Preferred compounds of the metallic elements of Group IIIa to VIa include halides of Group Va, and more preferably antimony halides, such as antimony bromide.

In another aspect of this embodiment of the invention, the solutions can include at least one compound of a metallic element of Group IIIa to VIa, and preferably of Group Va, of the Periodic Table of Elements. Exemplary compounds include without limitation oxides, sulfides, halides, nitrates, and the like, preferably halides, of metallic elements of Group IIIa to VIa. Preferably the solutions include halides, and more preferably antimony bromide (SbBr₃), as a corrosion inhibition additive.

The brine solutions of the invention containing the above noted corrosion inhibitors can provide improved corrosion protection for metal surfaces found in oil and gas drilling systems. The noted corrosion inhibiting additives can be stable in the solution phase, providing desired additive concentrations, stability and improved dispersibility. Still further, use of the solutions in oil and gas wells and other similar applications can result in a protective layer containing magnetite (iron oxide) formed on carbon steel. The inventors have found that a protective layer which forms as a result of using the solutions of the invention can be more corrosion resistant than the oxide layer formed in the presence of conventional corrosion inhibitors, such as lithium molybdate, in which magnetite film tends to be more amorphous and less developed. In addition the solutions of the invention can minimize or eliminate pitting of metal contacted with the brines. The solutions are particularly useful at high temperatures, approaching 550°F and higher.

The present invention also provides processes for inhibiting corrosion metal surfaces present in oil and gas drilling systems and similar applications using the above noted corrosion inhibitors.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention will be described more fully hereinafter in connection with illustrative embodiments of the invention which are given so that the present disclosure will be thorough and complete and will fully convey the scope of the invention to those skilled in the art. However, it is to be understood that this invention may be embodied in many different forms and should not be construed as being limited to the specific embodiments described and illustrated herein. Although specific terms are used in the following description, these terms are merely for purposes of illustration and are not intended to define or limit the scope of the invention.

The present invention may be used to reduce the corrosive effects of brines upon metals, and is particularly useful for brines having a high concentration of metal halides, such as zinc halide, often used in oil and gas well drilling, production and storage. Metals which typically come into contact with the brines include iron, steel (including carbon steel) and other ferrous metals.

The solutions of the invention include any solution useful in oil and gas well drilling systems and in similar applications, such as solutions used in drilling, producing and storing oil and gas from subterranean earth formations. The solutions typically contain metal salts, such as but not limited to, transition metal salts, alkali metal salts, alkaline earth metal salts, and mixtures thereof. Exemplary salts include halides of zinc, calcium, and mixtures thereof. For example, the solution can include zinc halide, such as zinc bromide or zinc chloride or both, optionally in combination with calcium bromide or calcium chloride or both. The brine solution can include the salts in conventional amounts, generally ranging from about 1% to about 80%, and preferably from about 20% to about 60%, based on the total weight of the solution, although as the skilled artisan will appreciate, amounts outside of this range can be used as well.

Particularly preferred for use in the present invention are solutions that include one or more halides of zinc and one or more halides of calcium, and more preferably zinc bromide, with or without zinc chloride, and calcium bromide, with or without calcium chloride. Such solutions can include about 5 to about 40
percent by weight zinc bromide; about 30 to about 60 percent by weight calcium bromide; about 0 to about 22 percent by weight zinc chloride and/or calcium chloride; and remainder water. For reference to exemplary solutions useful in oil and gas well drilling applications, and particularly deep high temperature and high pressure wells, see U.S. Patent Nos. 4,980,074, 4,304,677 and 4,292,183, the entire disclosure of each of which is hereby incorporated in its entirety by reference.

Other solutions useful in the present invention for oil and gas well drilling applications include aqueous alkali hydroxide solutions, such as aqueous solutions of sodium hydroxide. Such solutions typically include the alkali hydroxide in an amount ranging from about 10 to about 80% by weight, and preferably from about 30 to about 60% by weight, although amounts outside of this range may also be useful.

The heteropoly complex anions of transition metal elements can be generally described as coordination-type salts and free acids with a complex and high molecular weight anion. The heteropoly complex anions include as a ligand or complexing agent at least one transition metal atom which, as an ion in solution, exhibits corrosion inhibiting properties in oil and gas drilling systems. The heteropoly complex anions useful in the solutions of the invention also are preferably substantially completely soluble in brine solutions, so as to maximize the concentration of the corrosion inhibiting ions in solution. The heteropoly anions contain complexed transition metal atoms (such as Mo). Therefore, the dissolved heteropoly anions can provide a higher level of transition metal anions (Mo anions) in a solution, as compared to simple transition metal oxides, such as molybdates like lithium molybdate.

Any of the heteropoly complex anions known in the art can be used in the invention, including compounds described in U.S. Patent Application Serial No. 08/876,126, filed June 23, 1997, now U.S. Patent No. 6,004,475, issued December 21, 1999, the entire disclosure of which is incorporated herein by reference. Such complexes can be generally represented by the following formulas:
[XₐMₜOₜ]ⁿ,
[XₜZₜMₜOₜ]ⁿ,
[XₜZₜMₜOₜHₓ]ⁿ,

[XₚMₚOₜ(OH)ᵣ]ⁿ, and
[XₙZₙMₚOₜ(OH)ᵣ]ⁿ,

wherein:

X and Z are central heteroatoms from Groups I-VIII of the Periodic Table of Elements;

the value of a varies and is 1 or 2;
the value of d varies and is an integer from 0 to 4;
MₚOₜ, MₚOₜHₑ, and MₚOₜ(OH)ᵣ are o xo anions in which M is a transition metal element; the value of b varies, depending upon the number of transition metal atoms present in the o xo anion and can be an integer from 5 to 22, preferably 6 to 12; the value of c varies, depending upon the number of oxygen atoms present in the o xo anion attached to the transition metal and also capable of forming unique structural groups with the central atoms, and is an integer from 20 to 70, preferably from 24 to 40; the value of e varies (for example in the reduced heteropoly anion, the value of e varies depending upon the reduction of the heteropoly anion) and is an integer from 0 to 6; and the value of f varies and is an integer from 0 to 3; and

n is the charge of the anion and is the sum of the charges on X, Z, M, O, H, and OH.

Although the above formulas are general representations of the heteropoly complex anions useful in the invention, as will be appreciated by the skilled artisan, other compounds can also be included. Also as these formulas represent, in some heteropoly complex anions, H atoms in addition to the O atoms have been reported. Any of the various heteropoly complex anions known in the art can be used in the invention, including compounds described by G.A. Tsigdinos, Topics Curr. Chem., vol. 76, 5-64 (1978) and D.L. Kepert, Comprehensive Inorganic Chemistry (A.F. Trofman et al.) Oxford: Pergamon Press, vol. 4, pp. 607 (1973), the entire disclosure of each of which is incorporated herein by reference.
With regard to the central or heteroatom X, over 40 different elements (both metals and nonmetals) from Periodic Groups I-VIII can function as central atoms in distinct heteropoly complex anions. For example, X can be an elements selected from Groups IVB, VB, VIB, VIIIB, VIII, IB, IIB, IIIA, IVA, and VA of the Periodic Table of Elements. Exemplary central atoms include, but are not limited to, ions of phosphorus, silicon, manganese, arsenic, boron, iron, tellurium, copper, zinc, aluminum, tin, zirconium, titanium, vanadium, antimony, bismuth, chromium, gallium, germanium, and the like.

M is a 2-18 hexavalent transition metal element atom, which surrounds one or more central atoms X. The transition metal atom M is selected from those elements which as ions in solution provide corrosion inhibiting effect in oil and gas drilling systems. Preferably the transition metal element M in the o xo anion is derived from molybdate or tungstate. Other transition metal elements can also be present, as represented in the formula as Z, such as but not limited to, an element selected from Groups IVB, VB, VIB, VIIIB, VIII, IB, IIB, IIIA, IVA, and VA of the Periodic Table of Elements. Exemplary elements include without limitation manganese, cobalt, nickel, copper, zinc, vanadium, niobium, tantalum, gallium, germanium, arsenic, antimony, bismuth, tellurium, and the like and other transition elements.

Exemplary heteropoly complex anions include, but are not limited to, phosphomolybdates, such as but not limited to, [PMO_{12}O_{40}]^{3-}, wherein P^{5+} is the central atom or heteroatom, [PMO_{10}V_{2}O_{40}]^{5-}, and the like; silicon molybdates, such as but not limited to, [SiMO_{11}NiO_{40}H_{2}]^{6-}, wherein Si^{4+} is the central atom; manganese molybdates, such as but not limited to, [MnMo_{9}O_{32}]^{6-}, wherein Mn^{4+} is the central atom; silicon tungstates, such as but not limited to, [SiW_{12}O_{40}]^{4-}, wherein Si^{4+} is the central atom; tellurium molybdates, such as but not limited to, [TeMo_{6}O_{24}]^{6-}, wherein Te^{6+} is the central atom; arsenic molybdates, such as but not limited to, [As_{2}Mo_{18}O_{62}]^{6-}, wherein As^{5+} is the central atom; manganese niobates, such as but not limited to, [MnNb_{12}O_{36}]^{12-}, wherein Mn^{4+} is the central atom; and the like, and mixtures thereof. Currently preferred heteropoly complex anions are phosphomolybdates.
The heteropoly complex anions which have been structurally characterized can be divided into the broad groups, depending upon the heteroatom [X], transition metal atom [M] stoichiometry, and upon the coordination number of the heteroatom (that is, the number of points at which M is attached to the heteroatom in the complex). The heteropoly complex anions can be classified according to the ratio of the number of the central atoms to the peripheral molybdenum or other such atoms. For example, the different types of known heteropoly complex anions of molybdate show the following X:M ratio with one or more central atoms: X:M = 1:12, 1:11, 1:10, 1:9, 1:6, 2:10, 2:17, 2:5, 4:12, 1m:6m (m unknown) and 1:1 heteropoly complex anions. The known tungstates include all of the above in addition to 2:18, 2:17 and 2:4:18.

In a preferred embodiment of the invention, the transition metal of the heteropoly complex anion is molybdenum or tungsten, and more preferably molybdenum. A particularly preferred solution includes the heteropoly complex anion \([\text{PMo}_{12}\text{O}_{40}]^{-3}\).

The solutions of the invention can also include one or more additional corrosion inhibiting additives or agents in combination with the heteropoly complex anion. For example, the solution can include another transition metal additive having corrosion inhibiting properties. Generally the corrosion inhibiting transition metal additive is a transition metal salt that is different from the transition metal salts such as the zinc halides described above. Useful transition metal additives having corrosion inhibiting properties include compounds capable of providing the transition metal element as ions in aqueous brine solutions for complexing with the chosen heteropoly anion. The transition metal element of the transition metal additive can be the same or different from the transition metal of the heteropoly anion complex. Exemplary transition metal additives include nitrates, halides, oxides, and the like, preferably halides, of transition metal elements such as cobalt, nickel, tungsten, zirconium, manganese, chromium, and the like. The solutions of the invention can also include mixtures of such corrosion inhibiting transition metal additives. See U.S. Patent No. 6,004,476, issued
December 21, 1999, the entire disclosure of which is hereby incorporated by reference.

Other additional corrosion inhibiting additives useful alone or in combination with the heteropoly complex anion include corrosion inhibiting compounds of the metallic elements of Groups IIIa to VIa of the Periodic Table of Elements. Such compounds are also selected from compounds capable of providing the metallic elements of Group IIIa to VIa as ions in brine solutions. Exemplary compounds of the metallic elements of Groups IIIa to VIa include oxides, sulfides, halides, nitrates, and the like, preferably halides, of metallic elements of Group IIIa to VIa, such as antimony, germanium, and the like. See U.S. Patent No. 6,004,476, noted above.

U.S. Patent No. 6,033,595, issued March 7, 2000, the entire disclosure of which is hereby incorporated by reference, describes halides of metallic elements of Group Va of the Periodic Table of Elements which can be particularly useful in the invention. Exemplary halides of Group Va metallic elements (i.e., arsenic, antimony, and bismuth) include antimony bromide, arsenic bromide, and bismuth bromide, and the like and mixtures thereof. Other halides can also be useful, such as chloride or iodide, although bromides are currently preferred.

The heteropoly complex anions, transition metal additives, compounds of metallic elements of Groups IIIa to VIa, including compounds of the Group Va metallic elements, are present in the compositions of the invention in amounts sufficient to provide the desired corrosion inhibiting effect. This amount can vary depending upon various factors, such as the solubility of the compounds in the brine solution, the nature of the ions, temperatures in the oil well or other similar application, concentration of brine in aqueous brine solution, metals used in the construction of the oil well, the presence of air, and the like. Preferably, the aqueous brine solutions of the invention include at least one heteropoly complex anion in an amount ranging from about 50 parts per million (ppm) to about 5000 ppm, more preferably about 50 ppm to about 500 ppm. Transition metal compounds or compounds of the metallic elements of Group IIIa to VIa can be present in the solutions in amounts ranging from about 10 parts per million (ppm)
to about 200 ppm. However, compounds of the metallic elements of Group Va can be present in an amount ranging from about 50 parts per million (ppm) to about 5000 ppm. The corrosion inhibiting agents can also be useful in amounts outside of these ranges, so long as the agent is present in an amount sufficient to provide corrosion inhibition properties.

Further, the solution can include other corrosion inhibitors, such as but not limited to lithium nitrate, molybdate and/or chromate in conventional amounts. Other agents conventionally found in completion fluids can also be present such as but not limited to bactericides, scale preventives, algaeicides, emulsifiers, demulsifiers, water and other solvents or diluents, e.g., hydrocarbons, alcohols, and the like.

The present invention also provides processes for inhibiting corrosion of metals, particularly in oil and gas well drilling, production and storage systems, resulting from the presence of one or more metallic salts, such as zinc halide. The solutions of the invention find particular application for the protection of metal equipment, pipes, tubing, and the like of oil and gas wells.

In the process of the invention, the above described corrosion inhibiting additives singly or in combination are fed or circulated in the oil or gas well to contact the walls of casings, tubing, and other well components such as wellhead fittings, connections, meters, storage tanks, flow lines handling the corrosive fluid, and other metallic elements employed therein. The additive(s) can be added to the oil or gas drilling system by adding the corrosion inhibitors to brine solutions, which are then employed in the oil and gas drilling system under conditions and in amounts sufficient to provide a corrosion inhibiting effect. As the skilled artisan will appreciate, the environment or conditions, such as temperature and/or pressure, can vary. Typically, the temperatures can be as high as 550°F, and higher. The additives, in brine solutions, are particularly advantageous for high temperature applications.

Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions. Therefore, it is to be
understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
That Which Is Claimed Is:

1. A solution having corrosion inhibiting properties useful in oil and
gas well drilling systems and similar applications, the solution comprising:
an aqueous solution comprising at least one transition metal salt, at least
one alkaline earth metal salt, or a mixture thereof; and
at least one heteropoly complex anion of a transition metal element present
in an amount sufficient to provide a corrosion inhibiting effect.

2. The solution of Claim 1, wherein said transition metal salt
comprises one or more zinc halides.

3. The solution of Claim 1, wherein said alkaline earth metal salt
comprises one or more calcium halides.

4. The solution of Claim 1, wherein said solution comprises at least
one zinc halide and at least one calcium halide.

5. The solution of Claim 4, wherein said solution comprises zinc
bromide, optionally zinc chloride, calcium bromide, and optionally calcium
chloride.

6. The solution of Claim 1, said solution further comprising at least
one additional corrosion inhibiting additive in an amount sufficient to provide a
corrosion inhibiting effect.

7. The solution of Claim 1, wherein said at least one heteropoly
complex anion comprises a compound selected from the group consisting of
\([X_aM_bO_c]^n, [X_aZ_dM_bO_c]^n, [X_aZ_dM_bO_cH_2]^n, [X_aM_bO_c(OH)_2]^n, [X_aZ_dM_bO_c(OH)_2]^n,\)
and mixtures thereof, wherein:

\(X\) and \(Z\) are central heteroatoms selected from the group consisting of

elements from Groups I-VIII of the Periodic Table of Elements;

\(a\) is 1 or 2;
\(d\) is an integer from 0 to 4;
M₉O₉, M₈O₇Hₓ, and M₈O₇(OH)ₓ are o xo anions in which M is a transition metal element; b is an integer from 5 to 22; c is an integer from 20 to 70; e is an integer from 0 to 6; and f is an integer from 0 to 3; and n is the charge of the anion.

8. The solution of Claim 7, wherein:
X is phosphorus, silicon, manganese, tellurium or arsenic; and
M is molybdenum or tungsten.

9. The solution of Claim 1, wherein said at least one heteropoly complex anion is selected from the group consisting of phosphomolybdates, silicon molybdates, manganese molybdates, silicon tungstates, tellurium molybdates, arsenic molybdates, and mixtures thereof.

10. The solution of Claim 1, wherein said at least one heteropoly complex anion comprises a phosphomolybdate of the formula [PMO₁₂O₄₀]³⁻.

11. The solution of Claim 6, wherein said additional corrosion inhibiting additive comprises at least one transition metal compound which is different from said transition metal salt and from said heteropoly complex anion of a transition metal element.

12. The solution of Claim 11, wherein said additional corrosion inhibiting additive comprises a transition metal which is different from the transition metal of the heteropoly complex anion.

13. The solution of Claim 11, wherein said additional corrosion inhibiting additive is selected from the group consisting of nitrates, halides, and oxides of transition metal elements, and mixtures thereof.

14. The solution of Claim 13, wherein said transition metal is selected from the group consisting of cobalt, nickel, tungsten, zirconium, manganese, chromium, and mixtures thereof.
15. The solution of Claim 6, wherein said additional corrosion inhibiting additive comprises at least one compound of the metallic elements of Groups IIIa to VIa of the Periodic Table of Elements.

16. The solution of Claim 15, wherein said additional corrosion inhibiting additive is selected from the group consisting of oxides, sulfides, halides, nitrates, and mixtures thereof of metallic elements of Group IIIa to VIa.

17. The solution of Claim 16, wherein said additional corrosion inhibiting additive is a halide of a metallic element of Groups IIIa to VIa.

18. The solution of Claim 17, wherein said halide is selected from the group consisting of antimony bromide, germanium bromide, arsenic bromide, and bismuth bromide, and mixtures thereof.

19. The solution of Claim 15, wherein said additional corrosion inhibiting additive comprises antimony as the metallic element of Groups IIIa to VIa.

20. The solution of Claim 1, wherein said solution comprises said transition metal salt, said alkaline earth metal salt or mixture thereof in an amount from about 1 to about 80 weight percent, based on the total weight of the solution.

21. The solution of Claim 20, wherein said solution comprises said transition metal salt, said alkaline earth metal salt or mixture thereof in an amount from about 20 to about 60 weight percent, based on the total weight of the solution.

22. A solution having corrosion inhibiting properties useful in oil and gas well drilling systems and similar applications, the solution comprising:

at least one salt selected from the group consisting of first transition metal salts, alkaline earth metal salts, and mixtures thereof;

at least one heteropoly complex anion of a transition metal element; and at least one additional corrosion inhibiting agent selected from the group consisting of transition metal salts which are different from said first transition
metal salts, salts of the metallic elements of Groups IIIa to VIa of the Periodic Table of Elements, and mixtures thereof.

said heteropoly complex anion and said additional additive present in an amount sufficient to provide a corrosion inhibiting effect.

23. The solution of Claim 22, wherein said first transition metal salt comprises one or more zinc halides.

24. The solution of Claim 22, wherein said alkaline earth metal salt comprises one or more calcium halides.

25. The solution of Claim 22, wherein said solution comprises at least one zinc halide and at least one calcium halide.

26. The solution of Claim 25, wherein said solution comprises zinc bromide, optionally zinc chloride, calcium bromide, and optionally calcium chloride.

27. The solution of Claim 22, wherein said heteropoly complex anion comprises a phosphomolybdate, and said additional additive comprises at least one transition metal salt.

28. The solution of Claim 27, wherein said additional additive comprises at least one halide of cobalt, nickel, tungsten, zirconium, manganese, chromium, and mixtures thereof.

29. The solution of Claim 22, wherein said heteropoly complex anion comprises a phosphomolybdate and said additional additive comprises at least one salt of a metallic element of Group IIIa to VIa.

30. The solution of Claim 29, wherein said additional additive comprises a halide of the metallic elements of Group Va of the Periodic Table of Elements.
31. The solution of Claim 30, wherein said additional additive comprises a compound selected from the group consisting of antimony bromide (SbBr₃), arsenic bromide, bismuth bromide and mixtures thereof.

32. The solution of Claim 22, wherein said heteropoly complex anion is [PMo₁₂O₄₀]³⁻.

33. The solution of Claim 22, wherein said first transition metal salts, alkaline earth metal salts, and mixtures thereof are present in an amount from about 20 to about 60 weight percent, based on the total weight of the solution.

34. An aqueous completion fluid for oil and gas well drilling systems having corrosion inhibiting properties, comprising at least one zinc halide, at least one calcium halide, or a mixture thereof; at least one phosphomolybdate; and at least one halide of the metallic elements of Group Va of the Periodic Table of Elements, said phosphomolybdate and said Group Va halide present in an amount sufficient to provide a corrosion inhibiting effect.

35. The aqueous completion fluid of Claim 34, wherein said phosphomolybdate is [PMo₁₂O₄₀]³⁻, and said Group Va halide is antimony bromide (SbBr₃).

36. The aqueous completion fluid of Claim 35, wherein said solution comprises zinc bromide, optionally zinc chloride, calcium bromide, and optionally calcium chloride.

37. A solution having corrosion inhibiting properties useful in oil and gas well drilling systems and similar applications, the solution comprising: an aqueous solution comprising at least one transition metal salt, at least one alkaline earth metal salt, or a mixture thereof; and at least one corrosion inhibiting agent comprising at least one compound of the metallic elements of Groups IIIa to VIa of the Periodic Table of Elements.
38. The solution of Claim 37, wherein said transition metal salt comprises one or more zinc halides.

39. The solution of Claim 37, wherein said alkaline earth metal salt comprises one or more calcium halides.

40. The solution of Claim 37, wherein said solution comprises at least one zinc halide and at least one calcium halide.

41. The solution of Claim 40, wherein said solution comprises zinc bromide, optionally zinc chloride, calcium bromide, and optionally calcium chloride.

42. The solution of Claim 37, wherein said corrosion inhibiting agent is selected from the group consisting of oxides, sulfides, halides, nitrates, and mixtures thereof of metallic elements of Group IIIa to VIa.

43. The solution of Claim 42, wherein said corrosion inhibiting agent is a halide of a metallic element of Groups IIIa to VIa.

44. The solution of Claim 43, wherein said corrosion inhibiting agent comprises antimony.

45. The solution of Claim 37, wherein said corrosion inhibiting agent comprises at least one compound selected from the group consisting of antimony bromide, germanium bromide, arsenic bromide, and bismuth bromide, and mixtures thereof.

46. A solution having corrosion inhibiting properties useful in oil and gas well drilling systems and similar applications, the solution comprising at least one zinc halide, at least one calcium halide, or a mixture thereof; and at least one halide of the metallic elements of Group Va of the Periodic Table of Elements in an amount sufficient to provide a corrosion inhibiting effect.
47. The solution of Claim 46, wherein said Group Va halide is antimony bromide (SbBr$_3$).

48. The solution of Claim 47, wherein said solution comprises zinc bromide, optionally zinc chloride, calcium bromide, and optionally calcium chloride.

49. A process for inhibiting the corrosion of metal surfaces in oil and gas well drilling systems and similar systems employing an aqueous completion fluid, the process comprising contacting the metal surfaces with at least one heteropoly complex anion of a transition metal element in an amount sufficient to provide a corrosion inhibiting effect.

50. The process of Claim 49, further comprising contacting said metal surfaces with at least one additional additive having corrosion inhibiting properties in an amount sufficient to provide a corrosion inhibiting effect.

51. The process of Claim 50, wherein said additional additive comprising a compound selected from the group consisting of transition metal compounds, compounds of the metallic elements of Groups IIIa to VIa of the Periodic Table of Elements, and mixtures thereof.

52. The process of Claim 49, wherein said at least one heteropoly complex anion comprises a compound selected from the group consisting of

\[[X_aM_bO_c]^n, [X_aZ_dM_bO_c]^n, [X_aZ_dM_bO_c(OH)]^n, [X_aZ_dM_bO_c(OH)d]^n \]

and mixtures thereof, wherein:

X and Z are central heteroatoms selected from the group consisting of elements from Groups I-VIII of the Periodic Table of Elements;

a is 1 or 2;

d is an integer from 0 to 4;
\(M_bO_c, M_bO_cH_e, \) and \(M_bO_c(OH)\) are oxoanions in which \(M \) is a transition metal element; \(b \) is an integer from 5 to 22; \(c \) is an integer from 20 to 70; \(e \) is an integer from 0 to 6; and \(f \) is an integer from 0 to 3; and
\(n \) is the charge of the anion.

53. The process of Claim 52, wherein:
- \(X \) is phosphorus, silicon, manganese, tellurium or arsenic; and
- \(M \) is molybdenum or tungsten.

54. The process of Claim 49, wherein at least one heteropoly complex anion is selected from the group consisting of phosphomolybdates, silicon molybdates, manganese molybdates, silicon tungstates, tellurium molybdates, arsenic molybdates, and mixtures thereof.

55. The process of Claim 49, wherein at least one heteropoly complex anion comprises a phosphomolybdate of the formula \([PMO_{12}O_{40}]^3\).

56. The process of Claim 50, wherein said additional corrosion inhibiting additive is selected from the group consisting of nitrates, halides, and oxides of transition metal elements, and mixtures thereof.

57. The process of Claim 56, wherein said transition metal is selected from the group consisting of cobalt, nickel, tungsten, zirconium, manganese, chromium, and mixtures thereof.

58. The process of Claim 57, wherein said additional corrosion inhibiting additive is a transition metal halide.

59. The process of Claim 50, wherein at least one additional corrosion inhibiting additive comprises at least one compound of the metallic elements of Groups IIIa to VIa of the Periodic Table of Elements.
60. The process of Claim 59, wherein said additional corrosion inhibiting additive is selected from the group consisting of oxides, sulfides, halides, nitrates, and mixtures thereof of metallic elements of Group IIIa to VIa.

61. The process of Claim 60, wherein said additional corrosion inhibiting additive is a halide.

62. The process of Claim 61, wherein said halide is selected from the group consisting of antimony bromide, germanium bromide, arsenic bromide, and bismuth bromide, and mixtures thereof.

63. The process of Claim 62, wherein said halide is antimony halide.

64. The process of Claim 49, wherein said at least one heteropoly complex anion forms a protective layer on a metal surface.

65. The process of Claim 49, wherein said metal surfaces are exposed to temperatures up to about 550°F.

66. A process for inhibiting the corrosion of metal surfaces in oil and gas well drilling systems and similar systems employing an aqueous completion fluid, the process comprising contacting the metal surfaces with at least one at least one compound of the metallic elements of Groups IIIa to VIa of the Periodic Table of Elements in an amount sufficient to provide a corrosion inhibiting effect.

67. The process of Claim 66, wherein said compound is selected from the group consisting of oxides, sulfides, halides, nitrates, and mixtures thereof of metallic elements of Group IIIa to VIa.

68. The process of Claim 67, wherein said compound is a halide.

69. The process of Claim 68, wherein said compound comprises antimony.
70. The process of Claim 66, wherein said compound of the metallic elements of Groups IIIa to V1a of the Periodic Table of Elements forms a protective layer on a metal surface.

71. The process of Claim 66, wherein said metal surfaces are exposed to temperatures up to about 550°F.

72. A process for inhibiting the corrosion of metal surfaces in oil and gas well drilling systems and similar systems employing an aqueous completion fluid, the process comprising providing in a oil or gas well drilling system a corrosion inhibiting solution comprising at least one metallic salt and at least one heteropoly complex anion of a transition metal element, said at least one heteropoly complex anion of a transition metal element present in an amount sufficient to provide a corrosion inhibiting effect.

73. The process of Claim 72, wherein said solution further comprises at least one additional corrosion inhibiting additive comprising a compound selected from the group consisting of transition metal compounds, compounds of the metallic elements of Groups IIIa to V1a of the Periodic Table of Elements, and mixtures thereof, said at least one additional additive present in an amount sufficient to provide a corrosion inhibiting effect.

74. The process of Claim 72, wherein said at least one heteropoly complex anion forms a protective layer on a metal surface.

75. The process of Claim 72, wherein said solution is exposed to temperatures up to about 550°F.

76. The process of Claim 72, wherein said solution further comprises lithium nitrate and zinc halide.
INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 00/35393

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>E21B41/02</th>
<th>C23F11/18</th>
</tr>
</thead>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

<table>
<thead>
<tr>
<th>IPC</th>
<th>E21B</th>
<th>C23F</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used):

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 004 475 A (BOON PHILIP JOHN ET AL) 21 December 1999 (1999-12-21) cited in the application column 3, line 56 --column 6, line 8; claims 1-7</td>
<td>1, 2, 7-10, 49, 52-55, 72-76</td>
</tr>
<tr>
<td>A</td>
<td>page 5, line 8 - line 15; examples 1,2</td>
<td>6, 15-19</td>
</tr>
<tr>
<td>X, P</td>
<td>US 6 033 595 A (BOON PHILIP JOHN ET AL) 7 March 2000 (2000-03-07) cited in the application column 2, line 27 - line 49 column 3, line 11 -column 4, line 5</td>
<td>66-70</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search:

23 April 2001

Date of mailing of the international search report:

11/06/2001

Name and mailing address of the ISA:

European Patent Office, P.B. 5816 Patentlaan 2 NL-2280 HV Rijswijk, Tel. (+31-70) 340-2040, Tx. 31 451 epo nl, Fax (+31-70) 340-3016

Authorized officer:

Boulon, A
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 4 836 941 A (THOMAS ROBERT C)</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>6 June 1989 (1989-06-06)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims 1-20</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 5 441 929 A (WALKER MICHAEL L)</td>
<td>1,7-10, 49,52-55</td>
</tr>
<tr>
<td></td>
<td>15 August 1995 (1995-08-15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 4, line 7 - line 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 5, line 20 - line 68</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 4 816 303 A (KROENKE WILLIAM J ET AL)</td>
<td>1-5, 7-10, 49,52-55</td>
</tr>
<tr>
<td></td>
<td>28 March 1989 (1989-03-28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 4, line 30 -column 5, line 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 7, line 9 - line 36</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 5 089 153 A (HOLIFIELD PHYLLIS K ET AL)</td>
<td>1,3,7-9, 49,52-55</td>
</tr>
<tr>
<td></td>
<td>18 February 1992 (1992-02-18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 17, line 18 - line 64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims 1,5,7</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 6004475 A</td>
<td>21-12-1999</td>
<td>AU 3412297 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000513401 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9749842 A</td>
</tr>
<tr>
<td>EP 0593230 A</td>
<td>20-04-1994</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9803608 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6083416 A</td>
</tr>
<tr>
<td>US 4836941 A</td>
<td>06-06-1989</td>
<td>NONE</td>
</tr>
<tr>
<td>US 5441929 A</td>
<td>15-08-1995</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2050081 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8377491 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0527278 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5209859 A</td>
</tr>
</tbody>
</table>