发明名称
具有低单价金属离子含量的液体肠营养组合物
摘要
提供了具有低单价金属离子含量的热处理的液体肠营养组合物，其包含微团酪蛋白和预选的酪蛋白盐，并且其中单价金属离子的总量少于25mg/g蛋白质。还公开了热处理的液体肠营养组合物，所述组合物每100ml包含10至20g蛋白质，其中所述蛋白的全部或大部分包含微团酪蛋白。还公开用于产生本发明的组合物的方法，包括步骤：其中将水性蛋白质溶液进行蒸发干燥步骤，所述水性蛋白质溶液中全部或大部分所述蛋白质包含微团酪蛋白。
1. 一种经热处理的液体肠营养组合物，所述组合物每 100ml 包含 10 至 20g 蛋白质，所述组合物包含植物脂肪，其中至少 70 重量%的所述蛋白质为微团酪蛋白，其中单价金属离子的总量少于 25mg/g 蛋白质，并且其中所述单价金属离子是选自钠和钾的一种或多种。

2. 权利要求 1 的经热处理的液体肠营养组合物，其中所述单价金属离子的总量少于 15mg/g 蛋白质。

3. 权利要求 1 或 2 的经热处理的液体肠营养组合物，其中所述蛋白质包含以所述蛋白质的总重量计至少 30 重量%的酪蛋白盐。

4. 权利要求 1 或 2 的经热处理的液体肠营养组合物，其中至少 80 重量%的所述蛋白质为微团酪蛋白。

5. 权利要求 1 或 2 的经热处理的液体肠营养组合物，其中所述蛋白质提供 10% 至 100% 的所述组合物总能量含量。

6. 权利要求 1 或 2 的经热处理的液体肠营养组合物，其中所述组合物包含组合量为所述总蛋白质的至少 95 重量%的微团酪蛋白和酪蛋白盐。

7. 权利要求 1 或 2 的经热处理的液体肠营养组合物，还包含乳清。

8. 权利要求 1 的经热处理的液体肠营养组合物，其中所述组合物包含以所述蛋白质的总重量计至少 30 重量%的酪蛋白盐，并且其中所述酪蛋白盐是二价离子 - 酪蛋白盐。

9. 权利要求 1 的经热处理的液体肠营养组合物，还包含脂肪、消化性碳水化合物和非消化性碳水化合物中的一种或多种。

10. 权利要求 9 的经热处理的液体肠营养组合物，所述脂肪提供 10 至 70% 的所述组合物总能量含量。

11. 权利要求 9 或 10 的经热处理的液体肠营养组合物，其中所述脂肪包含链酯脂肪酸。

12. 权利要求 9 或 10 的经热处理的液体肠营养组合物，所述消化性碳水化合物提供 30 至 60% 的所述组合物总能量含量。

13. 权利要求 1、2 或 9 的经热处理的液体肠营养组合物，其中使用圆锥体 / 板几何体在 20°C 和 100s^-1 的剪切速率下在旋转流变仪中测量的所述组合物的粘度低于 200mPa.s。

14. 权利要求 1、2 或 9 的经热处理的液体肠营养组合物，其中单位剂量是 125ml。

15. 权利要求 1、2 或 9 的经热处理的液体肠营养组合物，所述组合物每 100ml 包含 14 至 16g 蛋白质，包含微团酪蛋白和任选的酪蛋白盐，微团酪蛋白和酪蛋白盐的重量比为 80:20 至 100:0，所述蛋白质提供 20% 至 40% 的所述组合物总能量含量，所述组合物的能量密度为 1.0 至 3.5kcal/ml。

16. 权利要求 1、2 或 9 的经热处理的液体肠营养组合物，包含；

 a) 所述组合物每 100ml 包含 15g 蛋白质，包含微团酪蛋白和任选的酪蛋白盐，微团酪蛋白与酪蛋白盐的重量比为 80:20 至 100:0，所述蛋白质提供 25% 的所述组合物总能量含量；

 b) 提供 35% 的所述组合物总能量含量的脂肪；

 c) 提供 40% 的所述组合物总能量含量的碳水化合物，所述组合物的能量密度为 2.4kcal/ml。

17. 生产权利要求 1、2 或 9 的组合物的方法，包括这一步骤，其中将如下水溶液进行蒸发步骤，所述水溶液包含基于蛋白质重量计至少 70 重量%的微团酪蛋白，以及总量少于
25mg/g 蛋白质的单价金属离子，且其中所述单价金属离子是选自钠和钾的一种或多种。

18. 将权利要求1、2或9的营养组合物用于制备为有需要的人提供营养的产品的用途，
其中所述人是老年人、处于疾病状态的人、正在从疾病状态恢复的人或者营养不良的人。

19. 一种经热处理的半固体肠营养组合物，每100ml所述组合物包含10至20g蛋白质，
其中至少70％的所述蛋白质为微团酪蛋白，其中单价金属离子的总量少于25mg/g蛋白质，
并且其中所述单价金属离子是选自钠和钾的一种或多种，所述组合物可通过将增稠剂或胶凝剂与权利要求1、2或9的液体肠营养组合物组合而得到。

20. 权利要求19的经热处理的半固体肠营养组合物，其选自布丁、蛋奶糕、汤、冰激凌或果冻。

21. 权利要求1或9的经热处理的液体肠营养组合物，其中所述单价金属离子的总量少于10mg/g蛋白质。

22. 权利要求1或9的经热处理的液体肠营养组合物，其中所述单价金属离子的总量为
5至25mg/g蛋白质。
具有低单价金属离子含量的液体肠营养组合物

技术领域
[0001] 本发明涉及液体肠营养组合物领域。

背景技术
[0002] 本发明总的来说涉及包含大量微团酪蛋白的补充物或完全营养物形式的用于提供营养的稳定贮存液体肠组合物。
[0003] 一些患者需要液体体积最小的补充物或完全营养物形式的营养物。必须特别注意它们的蛋白质水平。
[0004] 这些患者可以是恶病质患者或患有终末期 AIDS、癌症或进行过癌症治疗、患有严重的肺病（例如 COPD（慢性阻塞性肺病）、肺结核和其他传染疾病的人，或者经受过重大手术或有外伤（例如烧伤）的人。此外，患有呼吸道疾病（例如支气管炎或口腔炎）的人以及吞咽有问题的人（例如吞咽困难的人）需要的小体积的特殊液体营养物。同样，食欲下降或者味觉失灵的人也会从小体积的（优选为液体）食物中获益。
[0005] 这些患者还可以是老年人，尤其是虚弱的老年人以及有变虚弱风险的老年人。在这方面，虽然老年人的能力需求可能减少，但他们摄取产品的有能力也可能减少。例如，由于例如吞咽困难，或者由于满足日常营养摄取需要摄取的产品的量太大，他们可能有摄取产品困难。因此，顺应性不是最优的，并且摄入经常是欠佳的，导致营养欠佳，最终导致营养不良。
[0006] 上述种类的患者可能对食物稠度和对产品的感官特性（例如粘度、口感、口味、气味和颜色）极度敏感。同样，例如恶病质患者的患者一般出现极度虚弱，这经常使他们不能坐直，不能从碗中饮食，甚至不能用吸管来吸食。这些患者可从具有高营养物特别是蛋白质含量的小体积液体肠组合物中受益。
[0007] 但是，液体营养组合物中的热量和/or 蛋白质增加可能增加所述组合物的整体粘度。这可使得所述液体营养组合物难以摄取或给予，并且还可能有损所述营养组合物的口味。此外，生产蛋白质含量高的稳定（特别是稳定贮存）的液体营养组合物有技术困难。
[0008] 因此，本发明的根本问题在于提供一种液体体积最小的、包含作为主要蛋白质来源的高含量的补充物或完全营养物形式的稳定贮存液体肠组合物，其为上文提到的不同类患者，尤其是老年人或有病患者，提供营养和支持。
[0009] 生产这样的蛋白质尤其是完整蛋白质含量高的稳定贮存液体肠营养组合物存在很大的技术困难。
[0010] 例如，蛋白质含量增加可导致蛋白质和其他成分例如脂质和消化性碳水化合物的积淀而沉积，这可影响营养摄入。
[0011] 浓缩液体甚至会增加成分之间不利相互作用的机会，这可降低稳定性，特别是在加热和长期贮存时的稳定性。稳定贮存被定义为在正常贮存条件下，即环境温度为 18 至 25°C 以及标准大气压下，能够稳定贮存超过 6 个月。
[0012] 此外，液体营养组合物中的蛋白质含量增加可能增加所述组合物的整体粘度。这
可使所述液体营养组合物难以摄取或给予，并且还可能有损所述营养组合物的口味。这些现象经常遵从非线性动力学，并且当成分浓度增加到超过 28 重量%时所述问题的程度迅速增大。因此，目前可得的很多市售稳定贮存液体产品的完整蛋白质水平每 100ml 产品低于约 9 克。

[0013] 对如何将蛋白质含量提高至较高水平而不增加粘度这一问题的已知解决方案是将部分总蛋白质替换为肽或游离氨基酸。但是，这会严重减低口感，从而降低患者自愿摄取所述营养组合物。

[0014] 另一方面，很多浓缩物例如炼乳存在营养谱不完全、乳糖水平过高、口感粘、粘度大、太甜和渗透值高的问题，这不受消费者欢迎并且会迅速增加摄取后的饱腹感和腻足感。这使得在摄取了少量所述产品后摄取更多量的欲望迅速减少。

[0015] 现有技术

[0017] WO 2008/041219 (2008 年 4 月 10 日，Kerry Group Services International Limited) 公开了一种干燥乳蛋白质组合物，其包含至少 12.5 重量%缓慢消化的乳蛋白质，尤其是微团酪蛋白。所述乳蛋白质组合物首先以粉末的形式提供，然后用于饮料、甜点、糖果、烘焙或乳品中，无需巴氏消毒或灭菌。将含有 11.4% Ultra Bio-MTM (约 8 重量%蛋白质) 的液体高蛋白奶昔 (protein shake) 作为实例。没有解决超过 10 重量%的高蛋白含量和相关的问题。

[0018] XP002516238 (互联网引用“Muscle Milk,Nature’s Ultimate Growth Formula”，2003 年 7 月 23 日) 公开了待与水混合的粉末，包含 a.o. 微团 α 和 β 酪蛋白、酪蛋白盐、乳清、蔗糖和脂肪。它没有教导已经进行过加热处理的稳定贮存液体肠组合物。没有提到单价金属离子的作用。

[0019] WO 98/18350 (1998 年 5 月 7 日，Unilever) 描述了具有水相和脂肪相的冰甜点，其中在水相中存在至少 1 重量%和优选最高达 5 重量%的微团酪蛋白。追求感觉浓稠的产品。图 2 和实施例 8 中呈现的测试结果显示，无脂肪组合物包含低水平的微团酪蛋白水平，最高达 6.5 重量%。该文件没有提到单价金属离子的浓度。

[0021] EP 1 563 741 A1 (2005 年 8 月 17 日，Campina) 公开了一种用于食用的脱脂乳品。它试图更换至少部分乳脂肪并且补偿与乳脂肪有关的风味和口感损失。所述微团酪蛋白含量低，一般在所述总脱脂乳品的 3.1 至 3.4 重量%之间。
发明内容

[0022] 本发明提供了一种具有高蛋白含量的液体肠营养组合物，所述组合物被设计以满足有需要的人（尤其是老年和处于某种疾病状态的患者）的营养需要。在一方面，本发明提供了一种包含大含量微团酪蛋白的液体肠营养组合物，所述组合物被设计以满足有需要的人（尤其是老年和处于某种疾病状态的患者）的营养需要。所述组合物提供了每单位体积中量增加的蛋白质，同时提供足够低的粘度以使所述组合物可被容易地经口摄取或者通过管给予。

[0023] 本发明人发现意外地发现，当单价金属离子尤其是钠和钾（Na+K）的总量低时，优选所述组合物中少于 25mg/g 总蛋白质时，这样的组合物能够主要基于微团酪蛋白提供。在更高的单价金属离子浓度下，粘度开始急剧升高，如在下文表2中以及附近所显示的。在更高的浓度下，容易得到300mPas 和更高的不利高粘度。这样的高粘度在生产和消费者对所述产品的吸收方面都是不利的。此外，令人意外的是，与单价金属离子的总量超过 25mg/g 蛋白质的等价组合物相比，所述组合物的整体感觉有提高（根据QDA小组实验测试口味、口感、粘性和粘滑）。

[0024] 为此，在本发明的第一方面，提供了一种液体肠营养组合物，每 100ml 所述组合物包括 10 至 20g 蛋白质，其中所述蛋白质的全部或大部分包含微团酯蛋白，并且其中单价金属离子的总量，更尤其是钠和钾（Na+K）的和，少于 25mg/g 蛋白质，优选少于 20mg/g 蛋白质，更优选少于 15mg/g 蛋白质，最优选少于 10mg/g 蛋白质。

[0025] 在一个特别优选的实施方案中，钠的量少于 25mg/g 蛋白质，优选少于 20mg/g 蛋白质，更优选少于 15mg/g 蛋白质，优选少于 10mg/g 蛋白质，最优选少于 5mg/g 蛋白质。

[0026] 在一个特别优选的实施方案中，钠的量少于 25mg/g 蛋白质，优选少于 20mg/g 蛋白质，更优选少于 15mg/g 蛋白质，优选少于 10mg/g 蛋白质，最优选少于 5mg/g 蛋白质。

[0027] 具体地，提供了一种液体肠营养组合物，其中全部或大部分所述蛋白质包含微团酯蛋白，提供 10％至 100％的所述组合物总能量含量，所述蛋白质包含大量的微团酯蛋白。

[0028] 微团酯蛋白，有时被称作“天然”微团酯蛋白，是指微团形式的酪蛋白，微团形式是酪蛋白在乳中的天然形式。它是高质量的乳蛋白并且且在乳中的天然浓度为约 2.6g/100ml(Dairy Science and Technology, Walstra et al., CRC Press, 2006)。通过不使所述酪蛋白变性或者基本不使所述蛋白变性的方法将它浓缩，并且它以 Micellar Casein Isolate（MCI）市售。用与浓缩乳清蛋白几乎相同的方法将新鲜脱脂乳进行微量过滤处理以生产具有其天然结构的基本无变性的纯乳蛋白质。得到的材料包含以干物质计 90 重量％至 95 重量％、优选超过 95 重量％的微团酯蛋白，余量主要是乳清蛋白和其他非蛋白质氮和其他成分，例如乳糖和无机盐，尤其是磷酸钙。所述酪蛋白微团一般具有 40 至 400nm 的水力半径；10°至 10°道尔顿的分子量和 1.4 至 2.4 的钙：磷重量比，钙含量非常高，大约 25g/kg 蛋白质的数量级。它具有固有的低粘度，因此含有所述 MCI 的液体组合物容易饮用。单价金属离子尤其是 Na 和 K 的量非常低，一般为约 2g/kg 蛋白质。要强调的是，MCI 中的这些单价离子的作用是本领域未知的，因此，在制备包含大量 MCI（尤其是量超过 10g/100ml）的营养组合物中，现有技术没有动机和方法来控制单价离子的浓度。

[0029] 反之，酪蛋白，因其在本发明的上下文中被用来指凝乳形式的酪蛋白，其已经失去其天然的微团结构。它与金属例如钠、钾、钙和镁结合。
[0030] 在本发明的上下文中，应理解，微团聚蛋白还可由其他乳蛋白源提供，例如，基本保持酪蛋白与乳清天然 80：20 比例的源，例如 Milk Protein Concentrate（MPC），其是通常通过超滤膨胀的平均蛋白质含量为约为 80 重量% 的粉末产品；Milk Protein Isolate（MPI），其是通常通过沉淀膨胀的平均蛋白质含量超过 85 重量% 的粉末产品；以及脱脂浓缩乳。所述微团聚蛋白还可经超滤液或微滤液以液体形式提供。

[0031] 在具有高蛋白质含量的液体脂肪营养组合物的生产中，与使用微团聚蛋白分离物相关的一个问题是大量蛋白质粉末在少量水中的溶解。产生了很难处理和加工的粘性中间物状态。特别是在高蛋白质密度制备中，粘度可能太高以致不能泵取、加热、冷却或均化所述溶液，所有这些处理是得到终产物必需的。明显地，仅热处理（通过巴氏消毒或灭菌）的终产品需要具有低粘度，使得它可经口或通过管被摄取。

[0032] 在具有高蛋白质含量并且还包含酸尤其是柠檬酸的液体脂肪营养组合物的生产中，与使用微团聚蛋白相关的另一个问题是钙-酸复合物例如柠檬酸钙的形成。具体地，将柠檬酸加入到所述组合物中以调节 pH，并且还调节钙离子活性。某种程度的钙离子活性有利于在组合物的加工过程中，尤其是所述组合物的热处理（例如在巴氏消毒和 / 或灭菌）中，保持所述组合物的所需粘度。最初来自所述微团聚蛋白的钙易于与酸特别是柠檬酸反应，从而形成柠檬酸钙结晶，当所述组合物的酸性随着时间增加（pH 下降）时其发生沉淀，使得稳定贮存性变差。在 6.9 的 pH 下就已经开始有钙-柠檬酸盐结晶形成。另一方面，某种程度的钙离子活性有利于在所述组合物的加工期间，尤其是在所述组合物的热处理期间（例如在巴氏消毒和 / 或灭菌期间）保持所述组合物的所需粘度。具体地，某种程度的钙离子活性有利于防止粘度在加热期间升高。因此，除了贮存稳定性，使用微团聚蛋白时达到合适的粘度也是一个问题。

[0033] 此外，本发明人观察到，高单价金属离子含量导致不可接受的高粘度，从这种意义上说，单价金属离子的量会严重影响热处理（即，通过灭菌或巴氏消毒）所述产品时的粘度。

[0034] 不同于任何理论，认为高浓度的这些单价金属离子会使得酪蛋白微团聚量更大。如果量不足够低，热处理（即，灭菌或巴氏消毒）的终产品会变得粘滞、凝胶或者凝聚。

[0035] 这些与热处理相关的问题现在由发明人使用特殊的方法——尤其是包含微团聚蛋白和任选的酪蛋白盐的组合物的具体实施方案——得到解决。如上文暗示并且除非另有说明，本发明的组合物是经热处理的组合物，即（热）灭菌和 / 或巴氏消毒、优选（热）灭菌的组合物。还暗示的是，术语“经热处理的组合物”不应错误理解为可以用于或者不可以用其中一种或多种成分的任何热处理步骤例如蒸发步骤，而是指自身经过热处理的包含蛋白质、脂肪和碳水化合物的产品。

[0036] 在另一方面，本发明涉及一种生产液体脂肪营养组合物的方法，每 100ml 所述组合物包含 10 至 20g 蛋白质，其中所述蛋白质的全部或大部分包含微团聚蛋白，并且其中单价金属离子的总量，特别是钠和钾的总量，少于 25mg/g 蛋白质。

[0037] 在另一方面，本发明涉及一种生产液体脂肪营养组合物的方法，每 100ml 所述组合物包含 10 至 20g 蛋白质，其中所述蛋白质的全部或大部分包含微团聚蛋白，并且其中单价金属离子的总量，特别是钠和钾的总量，少于 25mg/g 蛋白质，其中液体脂肪营养组合物经过蒸发步骤。
【0038】在另一方面，本发明涉及一种为有需要的人提供营养的方法，包括将本发明的营养组合物给予所述人的步骤。

【0039】在另一方面，本发明涉及微团酪蛋白和任选的酪蛋白盐在制备用于为人提供营养的本发明的液体营养组合物中的用途。

【0040】在本发明的上下文中，术语“至少”还包括开放范围的起点。例如，“至少95重量％”的量是指等于或超过95重量％的任意量。

【0041】在本发明的上下文中，“肠”是指经口或经管。

【0042】在本发明的上下文中，总能量的％也缩写为En％；因此En％是能量百分比的缩写，表示组分对所述组合物总热量值贡献的相对量。

【0043】在本发明的上下文中，术语“约”是指允许从引用的值有某一偏差，其幅度主要是由测定方法的准确性等确定。一般而言，这样的偏差是10％。

【0044】在本发明的上下文中，“非水解”蛋白质等同于“完整”蛋白质，是指所述蛋白质没有或基本没有经过水解过程。但是，很少量的水解蛋白质可能存在于所述非水解蛋白质中，或者可以加入到所述制剂中，例如另外的氨基酸，例如支链氨基酸，例如亮氨酸、异亮氨酸、缬氨酸等。在本文中，“较少”应被理解为以总蛋白质量约10重量％或更少的量。

【0045】在本发明的上下文中，完整乳蛋白被定义为源自乳的天然状态的乳蛋白质。

【0046】在本发明的上下文中，应理解，“液体”是指水基组合物，例如溶液或悬浮液，其在20℃下在旋转流变仪中在100s⁻¹的剪切速率下测定的粘度为200mPa.s或更小。在本文中约200mPa.s的值定义为经验粘度上限，在大于该值时液体系统具有不易饮用的不可接受高粘度。优选提供具有以下粘度的组合物：小于200mPa.s，更优选150mPa.s或更小，更优选120mPa.s或更小，更优选100mPa.s或更小，更优选80mPa.s或更小，最优选50mPa.s或更小。

【0047】在该申请的上下文中，“大部分”应理解为至少70重量％，更优选至少80重量％，最优选至少90重量％。

【0048】现在通过更详细地描述本发明优选的实施方案来进一步说明本发明。

具体实施方案

【0049】蛋白质

【0050】根据本发明的一个实施方案，提供了一种液体肠营养组合物，每100ml所述组合物包含10至20g蛋白质，优选每100ml所述组合物包含至少11,12,13,14,15,16,17,18或19g并且至多20g蛋白质，优选11至18g/100ml，更优选12至18g/100ml，最优选14至18g/100ml所述组合物，其中所述蛋白质的全部或大部分包含微团酪蛋白。

【0051】根据本发明的另一个实施方案，本发明的液体肠营养组合物包含总量至少25mg/g蛋白质的单价金属离子，优选小于24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6或5mg/g蛋白质。

【0052】根据本发明的另一个实施方案，本发明的液体肠营养组合物包含总量范围为5至25mg/g蛋白质的单价金属离子，优选24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6或5mg/g蛋白质之间的任意量。

【0053】上文段落中单价金属离子的浓度是以蛋白质总量计的，优选以微团酪蛋白和酪蛋
白盐的总量计，更优选以本发明液体肠营养组合物中的微团醇蛋白计。
【0054】根据本发明的另一个实施方案，本发明的液体肠营养组合物任选地包含以所述蛋白
质的总量计至多 30 重量％的醇蛋白盐。
【0055】根据本发明的另一个实施方案，所述蛋白质提供 10％至 100％、优选 20％至 80％、
更优选 30％至 70％、最优选 30％至 60％的所述组合物总能量含量。高蛋白质水平有益于
生理上不能接受大体积的患者，例如限制流体患者。这样的患者每天可被给予减少量的液
体，同时仍接受需要量的营养支持。所述组合物可被用作完全营养物，作为正常膳食摄取的
补充或替代。当不太关心脂肪和碳水化合物的摄取时，所述组合物还可被用作正常膳食摄
取之外的补充物。
【0056】根据本发明的另一个实施方案，所述组合物的能能量密度为至少 0.40kcal/ml 所述
组合物，更优选至少 1.0kcal/ml 所述组合物，尤其是至少 1.5kcal/ml 所述组合物。
【0057】根据本发明的另一个实施方案，所述组合物的能量密度少于 2.0kcal/ml。尽管所
述组合物的能量密度高，但是它的粘度足够低，可使其被吞咽产品困难的人或者用管喂食
的人摄取。
【0058】在本发明的一个实施方案中，本发明的液体营养组合物中微团醇蛋白的量为所述
液体营养组合物中存在的总蛋白的至少 70 重量％，优选至少 80％重量％，更优选至少 90％
重量，更优选至少 95％重量％，并且最多 100 重量％。
【0059】如前所述，本发明的组合物不应含有非微团醇蛋白的大量蛋白质和任选至多 30
重量％的醇蛋白盐。在本发明的另一个实施方案中，所述组合物可以包含最多达所述液体
营养组合物中存在的总蛋白的约 15 重量％的乳清，优选少于或等于 10 重量％的乳清，更优
选少于或等于 5 重量％的乳清。
【0060】在本发明的一个实施方案中，二价金属离子醇蛋白盐，例如醇蛋白钙、醇蛋白镁或
它们的任意混合物或结合物，被用作醇蛋白盐源。优选不使用单价金属离子醇蛋白盐，例如
醇蛋白钾或醇蛋白钠，因为它增加所述营养组合物中单价金属离子例如 K 和 Na 的量（其限
于 25mg/g 蛋白质）。此外，不应使用大量的醇蛋白钙，因为所述微团醇蛋白已经含有足量的
钙，并且应当避免形成另外的钙结核。
【0061】在本发明的一个实施方案中，微团醇蛋白与醇蛋白盐的重量比例范围为约
100：0 至约 70：30。优选地，微团醇蛋白与醇蛋白盐的重量比例范围为约 80：20 至约
100：0。
【0062】本发明的组合物被设计为补充人的饮食或提供完全营养支持。因此，因此，本发明
的组合物还可以包含至少脂肪和／或碳水化合物和／或维生素、矿物质、微量元素和／或
非消化性碳水化合物源。优选地，本发明的组合物是完全营养组合物。
【0063】脂肪
【0064】在一个实施方案中，本发明的液体肠营养组合物还包含脂肪。脂肪的量可以是以
所述组合物的总能量含量计 5 至 95％，优选 10 至 70％，更优选 20 至 40％。
【0065】关于脂肪的类型，可以有很多选择，只要所述脂肪是食物级即可。
【0066】所述脂肪可以是动物脂肪或植物脂肪或者是动物脂肪和植物脂肪。尽管例如猪油
或黄油的动物脂肪有基本相同的热量和营养值，并且可互换使用，但在实施本发明中高度
优选植物油，因为它们容易得到，容易配制，没有胆固醇，并且饱和脂肪酸浓度更低。在一个
实施方案中，本发明的组合物包含葡萄籽油、玉米油和/或向日葵油。

0067 所述脂肪可包含中链脂肪酸源，例如中链甘油三酯（MCT，主要 8 至 10 个碳原子长）、长链脂肪酸源，例如长链甘油三酯（LCT）和磷脂结合脂肪酸，例如磷脂结合 EPA 或 DHA，或者所述两种源的任意结合。MCT 是有益的，因为它们在有代谢压力的患者中容易被吸收和代谢。此外，使用 MCT 可以降低营养吸收障碍的风险。LCT 源，例如低芥酸菜籽油、油菜籽油、向日葵油、大豆油、橄榄油、椰子油、棕榈油、亚麻籽油、海油（marine oil）或玉米油是有益的，因为已知 LCT 能够调节人体的免疫应答。

0068 在一个具体的实施方案中，所述脂肪包含以所述组合物的总脂肪计 30 至 60 重量%的动物脂肪、藻脂肪或真菌脂肪，40 至 70 重量%的植物脂肪以及任选 0 至 20 重量%的 MCT。所述动物脂肪优选包含低量的乳脂肪，即低于总脂肪计的 6 重量%，特别是低于 3 重量%。具体地，使用玉米油、卵油和/或低芥酸菜子油以及具体量的海油的混合物。卵油、鱼油和藻油是优选的非植物脂肪源。特别地，对于经口摄食的组合物，为了防止异味形成并且减少鱼腥余味，推荐选择二十二碳六烯酸（DHA）相对低的成分，即以总脂肪计少于 6 重量%，优选少于 4 重量%。包含 DHA 的海油优选以总脂肪计少于 25 重量%，优选少于 15 重量%的量存在于本发明的组合物中。另一方面，为了获得最大健康效应，非常需要加入二十碳五烯酸（EPA）。因此，在另一个实施方案中，EPA 的量可以为以总脂肪计 4 重量%至 15 重量%，更优选 8 重量%至 13 重量%。EPA：DHA 的重量比有利地为至少 6：4，例如 2：1 至 10：1。在又另一个实施方案中，EPA 的量非常低，例如以总脂肪计 0.1 至 1 重量%，优选 0.3 重量%或 0.6 重量%。

0069 同样，本发明的液体营养组合物可有利地包含乳化剂。可使用公知的乳化剂，并且所述乳化剂通常有助于在所述组合物中的能量含量。

0070 消化性碳水化合物

0071 在本发明的一个实施方案中，本发明的液体营养组合物还包含消化性碳水化合物。优选地，所述消化性碳水化合物 30 至 60%的本发明的组合物总能量含量。所述消化性碳水化合物可包含简单或复杂碳水化合物，或者它们的混合物。适用于本发明的有葡萄糖、果糖、蔗糖、乳糖、海藻糖、帕拉金糖（palatinose）、玉米糖浆、麦芽、麦芽糖、异麦芽糖、部分水解的玉米淀粉、麦芽糊精、低聚和多聚葡萄糖。

0072 优选地，所述消化性碳水化合物的组成使得可避免高黏性、过甜、过度褐变（美拉德反应）和摩尔链段压度过高。可接受的粘度和摩尔渗透压浓度可以通过将所述消化性碳水化合物的平均链长（平均聚合度，DP）调节至1.5 至 6，优选 1.8 至 4。为了避免过甜，蔗糖和果糖的总水平优选低于所述碳水化合物（特别是所述消化性碳水化合物）重量的 60%，更优选低于 52%，更优选低于 40%。长链消化性碳水化合物，例如淀粉、淀粉部分和轻度淀粉水解物（DE ≥ 6，DE < 20）可以优选以少于所述消化性碳水化合物 25 重量%，特别是少于 15 重量%的量存在，以少于 6g/100ml 本发明总液体组合物、优选少于 4g/100ml 本发明总液体组合物的量存在。

0073 在本发明的一个实施方案中，所述消化性碳水化合物包含具有高 DE（葡萄糖当量）的麦芽葡萄糖（maltodextrose）。在一个实施方案中，所述消化性碳水化合物包括 DE > 10、优选 DE > 20、更优选 > 30 或甚至 > 40（例如 DE 为约 47）的麦芽葡萄糖。在本发明的一个实施方案中，所述消化性碳水化合物包含 DE > 10 的麦芽葡萄糖以及蔗糖。
说明书

[0074] 令人意外的是，使用麦芽葡萄糖可导致加热时极少或没有美拉德反应产物。不固
定任何解释，该效应可能可归因于所述微团短蛋白的紧密微团结构几乎不为美拉德反应提
供赖氨酸反应位点。在本发明的一个实施方案中，所述消化性碳水化合物包含所述消化性
碳水化合物总量的至少 35 重量％，优选至多 50 重量％，优选至少 65 重量％，优选至少 90
重量％的量的高 DC 麦芽葡萄糖。在本发明的一个实施方案中，所述消化性碳水化合物包
含具有 2 至 20 的 DE 的麦芽葡萄糖。在本发明的一个实施方案中，所述消化性碳水化合物包
含具有 2 至 10 的 DE 的麦芽葡萄糖，优选具有 2 至 10 的 DE 的麦芽葡萄糖。在本发明的一个实施方案中，所述消化性碳水化合物包含所述消化性碳水化合物的少于 35 重量％，优选少于 20 重量％，优选少于 10 重量％的低 DE 的麦芽葡萄糖。具有低 DE 的麦芽葡萄糖也被称作麦芽糊精。在本
发明的另一个实施方案中，所述消化性碳水化合物包含具有高 DE 的 DE、优选 > 20 的 DE、优选 > 30 或甚至 > 40 的 DE。最优选约 47 的 DE 的麦芽葡萄糖，和与之结合的具有低 DE、优选 2 至 20
的 DE、更优选 2 至 10 的 DE、最优选约 2 的 DE 的麦芽葡萄糖。已知具有低 DE 例如约
2 的 DE 的麦芽葡萄糖可产生高粘度。具有高 DE 例如约 47 的 DE 的麦芽葡萄糖可产生低粘
度，但是很甜。两种麦芽葡萄糖的结合可使甜度和粘度之间的平衡最优化。在本发明的一个
实施方案中，所述消化性碳水化合物包含以消化性碳水化合物总量计至少 65 重量％、
优选至少 90 重量％的 DE > 40、优选 DE 为约 47 的麦芽葡萄糖，以及 0 至 10 重量％的 DE 为
2 至 10，优选 DE 为约 2 的麦芽葡萄糖。

[0075] 在本发明的另一个实施方案中，所述消化性碳水化合物包含海藻糖。如所指出的，
本发明的一个主要目的是提供一种具有低粘度的营养组合物。糖类非常适于此目的，但是
产生很甜的组合物，这一般是不被食者者欢迎。具有低 DE 例如约 2 的 DE 的麦芽葡萄糖没有
很甜这一缺点，但是产生高粘度。具有高 DE 例如约 47 的 DE 的麦芽葡萄糖产生低粘度，但
是又是很甜，并且还产生不希望的美拉德反应。海藻糖是优选的碳水化合物，因为它产生低
粘度，没有不希望的美拉德反应，并且它的甜度是蔗糖甜度的约一半。在本发明的一个实施
方案中，所述消化性碳水化合物包含海藻糖，其为所述碳水化合物总量的 20 ％至 60 ％，
20 ％至 45 ％，其量更优选为所述碳水化合物总量的 25 ％至 45 ％。

[0076] 维生素、矿物质和微量元素

[0077] 本发明的组合物可包含多种维生素、矿物质和微量元素。

[0078] 在本发明的一个实施方案中，本发明的组合物提供所有必需维生素，大部分矿物质
和微量元素。例如，本发明的组合物优选提供每 100ml 所述组合物 6mg 锌，其有利于愈合
患者的组织修复。优选地，本发明的组合物优选 (还) 提供每 100ml 所述组合物 25mg 维生
素 C，以帮助有更严重愈合需要的患者。此外，本发明的组合物优选 (还) 提供每 100ml 所
述组合物 2.25mg 铁。铁对于保持老年患者的体液以及循环系统功能是的有益的。

[0079] 本发明指出，本发明的组合物可含有超 FSMP（特殊医疗目的食物，Foods for Special Medical Purposes）法定水平的钠和 / 或钾水平。

[0080] 在本发明的另一个实施方案中，二价金属离子的量为 170mg/100ml 至
600mg/100ml，优选为 200mg/100ml 至 500mg/100ml。优选地，钠的量为 170mg/100ml 至
600mg/100ml，更优选为 200mg/100ml 至 500mg/100ml。优选地，钙的量为 13mg/100ml 至
100mg/100ml，更优选为 20mg/100ml 至 70mg/100ml。磷含量可以是每克蛋白质高于 10mg，钙
比磷的重量比为 1.0 至 2.0，优选 1.1 至 1.7。肉碱可在利地以 8mg/100ml 至 1000mg/100ml、
优选 10mg/100ml 至 100mg/100ml 组合物的量存在；它可以是肉碱、烷基肉碱、酰基肉碱或它们的混合物的形式。有机酸优选以 0.1g/100ml 至 0.6g/100ml、特别是 0.25g/100ml 至 0.5g/100ml 的水平存在。这些酸包括短脂肪酸例如乙酸、羟基酸例如乳酸、葡萄糖酸，以及优选的价羟基酸例如苹果酸和柠檬酸。在本发明的一个实施方案中，本发明的组合物还包含柠檬酸。

[0081] 非消化性碳水化合物

[0082] 本发明的液体营养组合物可任选使用例如低聚果糖或菊粉的非消化性碳水化合物（膳食纤维）加强。在本发明的一个实施方式中，本发明的组合物包含 0.5g/100ml 至 6g/100ml 的非消化性碳水化合物。所述膳食纤维包含具有 2 至 20、优选 2 至 10 的 DP 的非消化性低聚糖。更优选地，这些低聚糖不含大量（少于 5 重量％）的这些 DP 范围外的糖类，并且它们是可溶的。这些低聚糖包括低聚果糖（FOS）、反式低聚半乳糖（TOS）、低聚木糖（XOS）和大豆低聚糖等。任选地，同样更高分子量的化合物例如菊粉、大豆多糖、金合欢多糖（金合欢纤维或阿拉伯树胶）、纤维素和抗性淀粉等可被纳入本发明的组合物中。不可溶纤维例如纤维素的量优选低于本发明组合物的膳食纤维部分的 20 重量％，并且或低于 0.6g/100ml。例如角叉菜聚糖、黄原胶、果胶、半乳甘露聚糖和其他高分子量（DP > 50）的非消化性多糖的增稠多糖的量优选较低，即低于所述纤维部分重量的 20％，或者低于 1g/100ml。相反，可有利地包括例如水解果胶和半乳甘露聚糖的水解多糖。

[0083] 优选的纤维组分是链长（DP）为 2 至 10 的非消化性低聚糖，例如 Fibersol®（抗性低聚葡萄糖），尤其是氯化 Fibersol®，或者具有 2 至 10 的 DP 的低聚糖例如低聚果糖或低聚半乳糖的混合物，其可能还包含少量的高聚糖类（例如，具有 11 至 20 的 DP 的糖类）。这样的低聚糖优选地占 50 重量％至 90 重量％的所述纤维部分，或者 0.5g/100ml 至 3g/100ml 本发明组合物。其他合适的纤维组分包括仅具有部分消化性的糖。

[0084] 在一个具体实施方案中，本发明的组合物包含一种或多种低聚果糖、菊粉、金合欢多糖、大豆多糖、纤维素和抗性淀粉。

[0085] 在本发明的另一个实施方案中，本发明的组合物可包含 W02005/039597（N. V. Nutricia）所公开的中性和低酸性低聚糖的混合物，W02005/039597 以引用方式全文纳入本文。更具体地，所述酸性低聚糖的聚合度（DP）为 1 至 5000，优选为 1 至 1000，更优选为 2 至 250，甚至更优选为 2 至 50，最优选为 2 至 10。如果使用了具有不同聚合度的酸性低聚糖的混合物，所述酸性低聚糖混合物的平均 DP 优选为 2 至 1000，更优选为 3 至 250，甚至更优选为 3 至 50。所述酸性低聚糖可以是均质或不均质的碳水化合物。所述酸性低聚糖可从果胶、果胶酸盐、藻酸盐、软骨素、透明质酸、肝素、乙酸肝素、细菌碳水化合物、唾液酸黏聚糖（sialoglycans）、岩藻多糖、岩藻低聚糖（fuco-oligosaccharide）或角叉菜聚糖中制备。优选从果胶或藻酸盐中制备。所述酸性低聚糖可通过 WO 01/60378 中所述的方法制备，WO 01/60378 以引用方式纳入本文。所述酸性低聚糖优选从高度甲基化的果胶（其特征是甲基化程度高于 50％）中制备。本文使用的“甲基化程度”（也被称作 DE 或“酯化程度”）意欲指聚半乳糖醛酸链中包含的自由羧基酸被酯化（例如通过甲基化）的程度。所述酸性低聚糖的特征优选在于甲基化程度高于 20％，优选高于 50％，甚至优选高于 70％。所述酸性低聚糖的甲基化程度优选高于 20％，优选高于 50％，甚至更优选高于 70％。所述酸性低聚糖优选以每天 10mg 至 100g、优选每天 100mg 至 50g，甚至更优选每天
0.5至20g的量给予。

[0086] 本发明使用的术语中性低聚糖是指具有单糖单元超过2个，更优选超过3个，甚至更优选超过4个，优选选超过10个的聚合度的糖，其在肠中不被人上消化道（小肠和胃）中存在的酸性或消化性酶的作用消化或者仅被其部分消化，但是其可被人肠道菌群发酵，并且优选缺少酸性基团。中性低聚糖与酸性低聚糖在结构（化学）上不同。本发明使用的术语中性低聚糖优选是指低聚糖聚合度低于60个单糖单位，优选低于40个，甚至更优选低于20个，最优选低于10个单糖单位的糖。术语低聚糖单元是指具有闭环结构的单元，优选为己糖，例如吡喃糖或呋喃糖形式。所述中性低聚糖优选包含以其中包含的单糖单元的总数计至少90%、更优选至少95%的选自以下的单糖单元：甘露糖、阿拉伯糖、果糖、岩藻糖、鼠李糖、半乳糖、β-D-吡喃半乳糖、核糖、葡萄糖、木糖和它们的衍生物。合适的中性低聚糖优选选由肠道菌群发酵。优选地，所述低聚糖选自：纤维二糖（4-O-β-D-吡喃葡萄糖基（glucopyranosyl）-D-葡萄糖基）、纤维三糖（4-O-β-D-吡喃葡萄糖基（glucopyranosyl）-D-葡萄糖基）、纤维多糖（4-O-β-D-吡喃葡萄糖基）n-D-葡萄糖基）、β-环糊精（α-1-4-连接的D-葡萄糖的环状分子；α-环糊精-六聚体、β-环糊精-七聚体和γ-环糊精-八聚体）、非消化性糖精、龙胆低聚糖（β-1-6连接的葡萄糖的聚合物，一些是1-4连接）、低聚糖糖基（α-D-葡萄糖的混合物）、麦芽糖低聚糖（isomaltooligosaccharides）（直链α-1-6连接的葡萄糖残基，一些是1-4连接）、麦芽糖（6-O-α-D-吡喃葡萄糖基-D-葡萄糖基）；异麦芽三糖（6-O-α-D-吡喃葡萄糖基-（1-6）-α-D-吡喃葡萄糖基-D-葡萄糖基）、麦芽糖（6-O-α-D-吡喃葡萄糖基-（1-6）-α-D-吡喃葡萄糖基-（1-4）-D-葡萄糖基）、明串珠二糖（leucrose）（5-O-α-D-吡喃葡萄糖基-D-吡喃果糖基）、异麦芽酮糖（palatinose或isomaltulose）（6-O-α-D-吡喃葡萄糖基-D-果糖）、theanderose（0-O-α-D-吡喃葡萄糖基-（1-6）-0-O-D-吡喃葡萄糖基-（1-4）-0-O-D-吡喃葡萄糖基-（1-2）-β-D-吡喃果糖基）、D-葡萄糖、D-lyxo-己酮糖、乳糖糖（lactosucrose）（0-β-D-吡喃半乳糖基-（1-4）-0-O-D-吡喃葡萄糖基-（1-2）-β-D-吡喃果糖基）、低聚半乳糖（包括半乳糖、水苏糖和其他大豆低聚糖（0-O-D-吡喃半乳糖基-（1-6）-α-D-吡喃葡萄糖基-β-D-吡喃果糖基）、β-低聚半乳糖或反式低聚半乳糖（β-D-吡喃半乳糖基-（1-6）-[β-D-吡喃葡萄糖基]n-（1-4）α-D葡萄糖基）、乳果糖（4-O-β-D-吡喃半乳糖基-D-果糖）、A’-半乳糖基糖基（0-O-D-吡喃半乳糖基-（1-4）-β-D-吡喃葡萄糖基-（1-4）-D-吡喃葡萄糖基）、低聚果糖（neolactabiose）、异半乳二糖、半乳糖基（galsucrose）、异乳糖I、II和III）、果聚糖型果聚糖（fructans-Levan-type）（β-D-（2→6）-吡喃果糖基）nα-D-吡喃葡萄糖基）、菊粉型果聚糖（β-D-（2→1）-呋喃果糖基）nα-D-吡喃葡萄糖基）、蔗果五糖（1f-β-fructofuranosylxylose）（β-D-（2→1）-呋喃果糖基）nB-D-呋喃果糖基）、低聚木糖（B-D-（1→4）-木糖）、lafinose、乳糖基（lactosucrose）和低聚阿拉伯糖。

[0087] 根据另一个优选的实施方案，所述中性低聚糖选自果聚糖、低聚果糖、非消化性糊精低聚半乳糖（包括反式低聚半乳糖）、低聚木糖、低聚阿拉伯糖、低聚葡萄糖、低聚甘露糖、低聚岩藻糖和它们的混合物。最优选地，所述中性低聚糖选自低聚果糖、低聚半乳糖和反式低聚半乳糖。
bacteria:glycosylhydrolases of Bi.adolescentis.PhD-thesis (2000), Wageningen Agricultural University, Wageningen, The Netherlands) 中描述，其全部内容以引用的方式纳入本文。反式低聚半乳糖 (TOS) 以商标例如 Vivinal™(Borculo Domo Ingredients, Netherlands) 销售。可由玉米淀粉热解产生的非消化性糊精，包含在天然淀粉中存在的α (1 → 4) 和 α (1 → 6) 糖苷键，并且包含 1 → 2 和 1 → 3 连接和左旋葡聚糖。由于这些结构特征，非消化性糊精包含由人消化酶部分水解的良好形成的支链颗粒。很多其他非消化性低聚糖市售容易得到并为本领域技术人员所知。例如，反式低聚半乳糖可从日本东京 Yakult Honsha Co. 得到。大豆低聚糖可从 Calpis Corporation 公司得到（由 Ajinomoto U. S. A. Inc., Teaneck, N. J 提供）。

[0089] 在一个优选的实施方案中，本发明的组合物包含 DP 为 2 至 250 的酸性低聚糖，优选从果胶、藻酸盐和它们的混合物中制备；和中性低聚糖，其选自果聚糖、低聚果糖、非消化性糊精、包括反式低聚半乳糖的低聚半乳糖、低聚木糖、低聚阿拉伯糖、低聚葡萄糖、低聚木聚糖、低聚岩藻糖和它们的混合物。

[0090] 在另一个优选的实施方案中，本发明的组合物包含两种在化学上不同的中性低聚糖。已发现，将酸性低聚糖与两种在化学上不同的中性低聚糖结合给予会提供最优的协同免疫刺激效应。

[0091] 本发明的组合物优选包含：

[0092] 如上定义的酸性低聚糖；

[0093] 基于半乳糖的中性低聚糖（其中超过 50% 的单糖单元是半乳糖单元），优选选自低聚半乳糖和反式低聚半乳糖；和

[0094] 基于果聚糖和 / 或葡萄糖的中性低聚糖（其中超过 50% 的单糖单元是果聚糖和 / 或葡萄糖，优选果聚糖），优选果聚糖、果聚糖和 / 或低聚果糖，最优选长链低聚果糖（平均 DP 为 10 至 60）。

[0095] 酸性和中性低聚糖的混合物优选以每天 10mg 至 100g、优选 100mg 至 25g、甚至更优选 0.5 至 20g 的量给予。

[0096] 粘度和摩尔渗透压浓度

[0097] 在本发明的上下文中，粘度是使用圆锥体 - 板几何体在 20°C 和 100s⁻¹ 的剪切速率下在旋转流变仪中测量的。

[0098] 在本发明的一个实施方案中，所述液体营养组合物的粘度小于 200mPa.s，更优选小于 150mPa.s，更优选小于 120mPa.s，更优选小于 100mPa.s，更优选小于 80mPa.s，最优选 50mPa.s。

[0099] 低粘度对于经口给予本发明的液体营养组合物是理想的，因为人能够容易地摄取具有例如本发明所述的低粘度的食物。这对于用餐喂食的单位剂量也是理想的。

[0100] 在本发明的一个实施方案中，所述组合物的摩尔渗透压浓度优选低于 1200mOsml⁻¹，更优选低于 900mOsml⁻¹，更优选低于 800mOsml⁻¹，最优选低于 700mOsml⁻¹。

[0101] 在本发明的一个实施方案中，所述组合物的密度为 1.05g/ml 至 1.20g/ml，特别是 1.10g/ml 至 1.18g/ml。

[0102] 剂量单位

[0103] 本发明的液体营养组合物可具有完全食品的形式，即，它可以满足使用者的所
有营养需求。因此，它优选包含每日剂量 1200 至 2500kcal。每日剂量是就日为体重为
70kg 的健康成人提供 2000kcal 的能量而言给的。对于不同状况和不同体重的人，应当
相应地调整所述水平。应当理解，所述平均日能量摄入优选为约 2000kcal。所述完全食品
可以是多剂量单位的形式，例如，对于使用 2.0kcal/ml 的本发明的液体肠营养组合物提
供 2000kcal/天的能量，为每日 4 (250ml/单位) 至 40 (20ml/单位) 个剂量单位。

[0104] 所述液体肠营养组合物还可以是食物补充物，例如用于补充非医疗食物。作为补
充物，所述液体肠营养组合物优选每日剂量包含少于 1500kcal，特别是，作为补充物，所述
液体肠营养组合物每日剂量包含 400 至 1000kcal。所述食物补充物可以是多剂量单位形式，例如，对于使用 2.0kcal/ml 的本发明的液体肠营养组合物提供 1000kcal/天的能量，为
daily 2 (250ml/单位) 至 10 (50ml/单位) 个剂量单位。

[0105] 在本发明的一个实施方案中，单位剂量包含 10ml 至 250ml（包括该范围的端点值），优选 25ml 至 200ml（包括该范围的端点值），更优选 50ml 至 150ml（包括该范围的端点值）之间的任意量，最优选约 125ml 的本发明的液体肠营养组合物。例如，使用 2.0kcal/ml 的本发明的液体肠营养组合物，可每日给予接受 50ml 单位剂量的人 10 个单位剂量以提
供营养供应。或者，使用 2.0kcal/ml 的本发明的液体肠营养组合物，可每日给予接受 125ml 单位剂量的人 4, 5, 6, 7 或 8 个单位剂量以提供营养供应。这样的小剂量单位由于顺应性更好而优先用于优选的。

[0106] 在本发明的一个实施方案中，所述组合物是以可即用的液体形式提供的，在使用
前不需要复原或混合。本发明的组合物可直接或者经过给。例如，本发明的组合物可在
罐中、在针状物（on spike）和在挂袋中提供。然而，可将组合物以适用水性溶液或水
复原以生产本发明的组合物的粉末形式提供给需要其的人。因此，在本发明的一个实施方案
中，本发明的组合物是粉末形式，附带有在水性组合物或水中溶解或复原以形成本发明的
液体肠组合物的说明书。在本发明的一个实施方案中，本发明的液体肠营养组合物因此
可通过将粉末溶解或者复原在水性组合物尤其是水中得到。

[0107] 在本发明的一个实施方案中，本发明的组合物（任选热处理的）可用作制造半固
体营养组合物例如奶酪、布丁、果饼、汤、冰激凌或果冻的基材。为此目的，对本发明的组合
物（任选热处理的）进行加工，以将本发明的低粘度组合物转变为更固化或粘度更大的
组合物，例如通过加入增稠剂或胶凝剂，并且进一步将所述混合物加工成熟产品，例如通过
对其进行热处理。增稠剂和/或胶凝剂也可在所述加工的更早阶段就存在于所述制剂中，
或者甚至在所述加工开始时与所述营养物一起溶解。

[0108] 因此，根据一个实施方案，本发明涉及一种热处理的半固体肠营养组合物，每
100ml 所述组合物包含 10 至 20g 蛋白质，其中所述蛋白质的至少 70 重量％包含微团酰蛋白
，并且其中单一金属离子的总量少于 25mg/g 蛋白质，其可通过将增稠剂或胶凝剂与本发
明的任选热处理的液体肠营养组合物结合而得到。

[0109] 在本发明的一个实施方案中，本发明的组合物被包装。所述包装可具有任意合
适的形式，例如硬盒、例如可通过吸管排出；例如可揭开盖的盒或塑料杯；例如 80ml 至 200ml
的小瓶，以及例如 10ml 至 30ml 的小杯。另一种合适的包装形式是将小体积的液体（例如
10ml 至 20ml）装入可食用固体或半固体壳或胶囊中，例如胶质样覆盖物等。另一个合适的
包装形式是装在容器中的粉末，所述容器例如小袋，优选地带有在水性组合物或水中溶解
或复原的说明书。

[0110] 制备

[0111] 可如实施例所述制备本发明的液体肠营养组合物。

[0112] 本发明的液体肠营养组合物还可通过有创造性的方法制备，包括这一步骤，其中将水性蛋白质溶液进行蒸发干燥步骤，所述水性蛋白质溶液中部分或大部分所述蛋白质包含微团酪蛋白。

[0113] 首先，制备了液体蛋白质组合物。这可以通过将粉末形式的微团酪蛋白（例如MCI）和任选的粉末形式的酪蛋白盐顺序或同时溶于水中来完成。为了得到可进一步加工的低粘度蛋白质溶液，将所述蛋白质成分溶解在过量的水中，一般是终组合物所需水的150重量％或体积％。没有此过量的水，所述蛋白质溶液将过于浓缩而不能进行均化和巴氏消毒。

[0114] 此外，如果所述液体肠营养组合物要包含其他组分，例如碳水化合物、脂肪和维生素，可通过将所述碳水化合物随后加入到所述蛋白质组合物中，之后任选地分一步或两步加入水溶性维生素和其他组分，混合，加入脂肪（包括脂溶性维生素），均化，并将得到的溶液进行巴氏消毒步骤，从而制备营养产品。可调节pH。随后，将所得中间肠营养组合物通过蒸发干燥步骤去除多余的水浓缩至需要的干物质浓度。可在一般超过60℃的温度下在大气压力下，或者优选地在一般60℃的温度下在真空下，进行蒸发。通过此蒸发干燥步骤可得到更高的粘度。令人意外的是，所得溶液的粘度仍然低至可使在所述产品中有足够的热传导来将所述产品最佳地进行最终热处理，所述热处理是为所述产品提供长时间的耐微生物贮存期（灭菌）所必需的。在此方面，发现所述组合物的酸度在所述热处理中是非常重要的。对于巴氏消毒和灭菌，pH应当是约6.2至7.2。一般的巴氏消毒时间为85℃下30秒。常见的灭菌时间为124℃下4分钟。令人意外的是，最终热处理（灭菌）降低了被处理组合物的粘度，使得得到了比灭菌之前粘度低得多的微生物稳定产品。不问于任何解释，认为在彻底的最终热处理（灭菌）期间，所述微团酪蛋白重构为更紧密的结构致使粘度降低。令人意外的是，所述产品的粘度在长时间的贮存期间基本没有改变，这为所述产品提供了长贮存期。

[0115] 令人意外的是，可以制备具有高蛋白质浓度的液体无菌产品。

[0116] 因此，本发明特别涉及一种制备本发明的组合物的方法，包括这一步骤，其中对通过将粉末形式的微团酪蛋白和任选的粉末形式的微团酪蛋白溶解得到的水性蛋白质溶液进行蒸发干燥的步骤。

[0117] 在本发明组合物的制备中，仅可使用不会将所述单价金属离子含量增加至超过25mg/g蛋白质的添加剂。例如，应限制或避免使用用于调节pH的柠檬酸钾或者使用NaCl。

[0118] 读者可以理解，本发明并不限于上述溶解次序、成分、处理或加热步骤。

[0119] 有效性

[0120] 本发明还涉及一种为有需要的人提供营养的方法，包括将本发明的营养组合物给予所述人的步骤。所述人可以是老年人，处于疾病状态的人，正在从疾病状态恢复的人或者营养不良的人。

[0121] 在此方面，在本申请的上下文中认为，老年人是50岁或年龄更大的人，尤其是55岁或年龄更大的人，更尤其是60岁或年龄更大的人，更尤其是65岁或年龄更大的人。
种相当广泛的定义考虑了这样的事实，即，不同群体之间，在不同洲等的平均年龄不同。大部分发达国家接受 65 岁的实龄为“老年”或老练人的定义（与个体开始接受退休金的年龄相关），但是像很多西方观念一样，这并不很好地适应如非洲的情况。现在，没有联合国（UN）标准数值标准，但是UN认可的限值是 60+岁，这在西方世界称为老年群体。老年或“老年”人的更传统的非洲定义与 50 至 65 岁的实龄有关，取决于环境、区域和国家。

[0122] 在另一个方面，本发明还涉及在用于向需要日的人提供肠营养的本发明的液体营养组合物的制备中同时或顺序使用微团状蛋白和任选的酰蛋白盐。所述液体营养组合物中单价金属离子，尤其是钠和钾的总和，小于 25mg/g 蛋白质。在本发明的一个具体实施方案中，所述组合物每 100ml 组合物提供 10 至 20g 蛋白质，其中所述蛋白质的全部或大部分包含微团状蛋白。在本发明的另一个具体实施方案中，所述蛋白质提供所述组合物总能量含量的 10% 至 100%。

[0123] 在一个实施方案中，本发明涉及一种本发明的液体肠营养组合物，所述组合物每 100ml 包含约 14 至 16g 蛋白质，包含微团状蛋白和任选的酰蛋白盐。微团状蛋白和酰蛋白盐的重量比为约 80 : 20 至 100 : 0。所述蛋白质提供所述组合物总能量含量的 20% 至 40%，所述组合物的能量密度为约 1.0 至 3.5kcal/ml。

[0124] 在一个实施方案中，本发明涉及权利要求 1 的液体肠营养组合物，包含：

[0125] a) 每 100ml 所述组合物约 15g 蛋白质，包含微团状蛋白和任选的酰蛋白盐，微团状蛋白与酰蛋白盐的重量比为约 80 : 20 至 100 : 0，所述蛋白质提供所述组合物总能量含量的约 25%；

[0126] b) 提供所述组合物总能量含量的约 35% 的脂肪；

[0127] c) 提供所述组合物总能量含量的约 40% 的碳水化合物。

[0128] 所述组合物的能量密度为约 2.4kcal/ml。

[0129] 实施例

[0130] 如下制备本发明的以下组合物。

[0131] 制备 A

[0132] 制备了 6 个批次，每个批次 181。将蔗糖（约 2.1kg）溶于约 60°C 的自来水（约 11kg）中。随后向所述溶液加入不同量的粉末蛋白质（MCI, MPI，酰蛋白钙）和麦芽糊精（葡萄糖糖浆 47DE, 约 2.2kg）。之后将矿物质和微量元素溶于水（200g 水中约 160g）并将之加至所述组合物中（氯化胆碱、磷酸氢镁、三磷酸五钙、磷酸氢二钾和（二）磷酸氢钾）。之后，将柠檬酸钾（约 6g）和矿物质混合物（约 6g）溶于 100g 水中并且尽可能快地将之加入所述组合物中。测定粘度（粘度 1）。将所述溶液静置数小时。之后加入脂肪（约 1.6kg 油菜籽油和约 47g 大豆卵磷脂 IP），将各批次在 85°C 下巴氏消毒 30 秒并均化。测定粘度（粘度 2）。最后，加入各种量的抗坏血酸钠（约 5 至 8g）。测定粘度（粘度 3）。溶液的 pH 为约 6.5。最后，将各批次在 124°C 下灭菌 4 分钟。测定粘度（粘度 4）。所有的粘度都在 100s^-1 的剪切速率下在旋转流变仪中在 20°C 下测定。

[0133] 表 1 给出了最终组成（实施例 1 至 6）。所述随时间解析的粘度 1 至 4 在表 2 中给出。以相同的方式制备实施例 7，但是仅终粘度 4 被测定并显示在表 2 中。

[0134] 表 2

[0135]
粘度（mPa.s）	Ex. 1	Ex. 2	Ex. 3	Ex. 4	Ex. 5	Ex. 6
粘度 1 | 182 | 179 | 270 | 212 | 126 | 199
粘度 2 | 154 | 147 | 165 | 156 | 148 | 199
粘度 3 | 135 | 116 | 131 | 136 | 120 | 155
粘度 4 | 166 | 125 | 126 | 126 | 124 | 116

[0136] 通过用不同的盐增加其水平，还用超过每克蛋白质 25mg 单价金属离子尝试上述实施例。通过使用盐酸盐、磷酸盐或柠檬酸盐或它们的结合物形式的 Na 或 K，这是不可能实现的。在加热过程中聚集的产品变成糊状并且或具有超过 300mPa.s 的粘度。

[0137] 制备 B

[0138] 在环境温度下，将合适量的 MCL、MPI 和酪蛋白盐干混并溶于过量的去矿质水中，达到约 10 重量%的蛋白质浓度。加入合适量的脂肪、碳水化合物、矿物质、微量元素和维生素（对于量，参见上文：制备 A）。用柠檬酸将 pH 调节至 6.8。将所述溶液均化，之后借助蒸发器浓缩至所需的营养浓度（参见表 1）。将所述产品在 124℃下 UHT 灭菌 4 分钟。终产品具有小粒度和低粘度，与通过制备 A 制备的组合物相当。

[0139] 应理解，对本文描述的本发明优选实施方案做出的多种改变和修改对本领域技术人员来说是明显的。这样的改变和修改可在不背离本发明的主旨和范围并且不有损其优点的情况下做出。因此，这样的改变和修改为所附权利要求书所涵盖。
表 1

<table>
<thead>
<tr>
<th>组分 (每100 ml产品中的量)</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>实施例 5</th>
<th>实施例 6</th>
<th>实施例 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>能量</td>
<td>240 kcal</td>
</tr>
<tr>
<td>蛋白质 (En%)</td>
<td>25 En%</td>
</tr>
<tr>
<td>蛋白质</td>
<td>15 g</td>
<td>15 g</td>
<td>15 g</td>
<td>15 g</td>
<td>15 g</td>
<td>15 g</td>
<td>14.8 g</td>
</tr>
<tr>
<td>MCI*</td>
<td>9 g</td>
<td>9 g</td>
<td>9 g</td>
<td>11 g</td>
<td>7 g</td>
<td>13 g</td>
<td>14.8 g</td>
</tr>
<tr>
<td>MPI*</td>
<td>3 g</td>
<td>4.5 g</td>
<td>4 g</td>
<td>2 g</td>
<td>6 g</td>
<td>0 g</td>
<td>0 g</td>
</tr>
<tr>
<td>酪蛋白钙</td>
<td>3 g</td>
<td>1.5 g</td>
<td>2 g</td>
<td>2 g</td>
<td>2 g</td>
<td>2 g</td>
<td>0 g</td>
</tr>
<tr>
<td>脂肪(En%)</td>
<td>35 En%</td>
</tr>
<tr>
<td>脂肪</td>
<td>9.3 g</td>
</tr>
<tr>
<td>碳水化合物 (En%)</td>
<td>40 En%</td>
</tr>
<tr>
<td>碳水化合物</td>
<td>24 g</td>
</tr>
<tr>
<td>最终粘度 (mPa.s，于20℃和100s⁻¹)</td>
<td>166</td>
<td>125</td>
<td>126</td>
<td>126</td>
<td>124</td>
<td>116</td>
<td>112</td>
</tr>
<tr>
<td>单价金属离子 (Na+K) (mg/100 ml)</td>
<td>128</td>
<td>131</td>
<td>130</td>
<td>128</td>
<td>131</td>
<td>126</td>
<td>146</td>
</tr>
<tr>
<td>mg/g 蛋白质</td>
<td>8.6</td>
<td>8.7</td>
<td>8.7</td>
<td>8.5</td>
<td>8.7</td>
<td>8.4</td>
<td>10</td>
</tr>
<tr>
<td>二价金属离子(Ca+Mg) (mg/100 ml)</td>
<td>454</td>
<td>454</td>
<td>454</td>
<td>454</td>
<td>454</td>
<td>454</td>
<td>454</td>
</tr>
</tbody>
</table>

* 微团酪蛋白分离物(MCI)包含相对于总干物质约 89 重量%的微团酪蛋白和乳清，微团酪蛋白：乳清的比例为约 95:5。

* 酪蛋白钙包含相对于总干物质约 96 重量%的酪蛋白蛋白质。

* 乳蛋白质量分离物(MPI)包含微团酪蛋白和乳清，微团酪蛋白：乳清的比例为约 80:20。