(19) **日本国特許庁(JP)**

(51) Int.Cl.

(12) 特 許 公 報(B2)

F 1

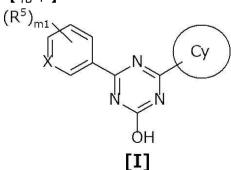
(11)特許番号

特許第6461637号 (P6461637)

(45) 発行日 平成31年1月30日(2019.1.30)

(24) 登録日 平成31年1月11日(2019.1.11)

(01) 111111						
CO7D 251/22	(2006.01)	CO7D	251/22	Α		
A 6 1 K 31/53	(2006.01)	CO7D	251/22	CSPC		
CO7D 401/12	(2006.01)	A 6 1 K	31/53			
CO7D 405/12		CO7D	401/12			
CO7D 403/10	· · · · · · · · · · · · · · · · · · ·	CO7D	251/22	Z		
	(•	- 骨求項の数 18	(全 201 頁)	最終頁に続く
(21) 出願番号	特願2015-30157 (P2015-30)157)	(73) 特許権者	全 000004569		
(22) 出願日	平成27年2月19日 (2015.2.	19)		日本たばこ産業	*株式会社	
(65) 公開番号	特開2015-172039 (P2015-1	.72039A)		東京都港区虎。	ノ門二丁目2番	1号
(43) 公開日	平成27年10月1日 (2015.10).1)	(74) 代理人	100080791		
審査請求日	平成30年2月16日 (2018.2.	16)		弁理士 高島	-	
(31) 優先権主張番号	特願2014-31035 (P2014-31	.035)	(74) 代理人	100125070		
(32) 優先日	平成26年2月20日 (2014.2.	20)		弁理士 土井	京子	
(33) 優先権主張国	日本国(JP)		(74) 代理人	100136629		
				弁理士 鎌田	光宜	
			(74) 代理人	100121212		
				弁理士 田村	弥栄子	
			(74) 代理人	100117743		
			'	弁理士 村田	美由紀	
			(74) 代理人	100163658		
				弁理士 小池	順造	
					昴	長終頁に続く


(54) 【発明の名称】トリアジン化合物及びその医薬用途

(57)【特許請求の範囲】

【請求項1】

式[I]の化合物又はその薬学上許容される塩:

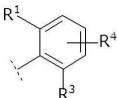
【化1】

[式中、

Xは、CH又はNであり、

環Cyは、

式:


【化2】

$$R^1$$
 R^4 R^2

又は、

式:

【化3】

{式中、R¹は、

- (1) ハロゲン、
- (2) C₁₋₆アルキル、
- (3) シアノ、又は、
- (4) ハロC₁₋₄アルキルであり、

 $R^2 l t$

- (1) ハロゲン、
- (2) ヒドロキシ、
- (3) カルボキシ、
- (4) C₁₋₆アルキル、
- (5) C₁₋₆アルコキシ、
- (6) ハロC₁₋₄アルコキシ、
- (7) ハロC₁₋₄アルキル、
- (8) C₁₋₆アルキル-カルボニル、
- (9) -C(0)NR^{a1}R^{a2}(R^{a1}及びR^{a2}は、それぞれ独立して、水素又はC₁₋₆アルキルである。)、又は、
 - $(10) (C_n H_{2n}) R^b$

(nは、1、2、3又は4であり、 $-(C_nH_{2n})$ -は直鎖状又は分枝鎖状のいずれであってもよく

Rbは、

- (a) ヒドロキシ、
- (b) カルボキシ、
- (c) C₁₋₆アルコキシ、
- (d) C₁₋₆アルキル-カルボニルオキシ、

(e) -C(0)NR^{b1}R^{b2} (R^{b1}及びR^{b2}は、それぞれ独立して、水素又はC₁₋₆アルキルである。)、

- (g) -NR^{b5}C(0)NR^{b6}R^{b7} (R^{b5}、R^{b6}及びR^{b7}は、それぞれ独立して、水素又はC₁₋₆アルキルである。)、
- (h) $-NR^{b8}R^{b9}$ (R^{b8} 及び R^{b9} は、それぞれ独立して、水素、 C_{1-6} アルキル又はハロ C_{1-4} アルキルである。)、
- (i) $-NR^{b10}S(0)_2R^{b11}(R^{b10}及びR^{b11}$ は、それぞれ独立して、水素、 C_{1-6} アルキル又は C_{3-7} シクロアルキルである。)、

50

10

20

30

- (j) $-NR^{b12}C(0)OR^{b13}(R^{b12}$ は、水素又は C_{1-6} アルキルであり、 R^{b13} は、 C_{1-6} アルキルである。)、
 - (k) $-NR^{b_14}C(0)R^{b_15}(R^{b_14}$ は、水素又は C_{1-6} アルキルであり、 R^{b_15} は、
 - (i) C₆₋₁₀アリール、
- (ii) C_{1-8} アルキル(該 C_{1-8} アルキルは、ヒドロキシ、ハロ C_{1-4} アルキル、 C_{1-6} アルコキシ及び C_{6-10} アリールからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)、
 - (iii) アダマンチル、又は、
- (iv) C_{3-7} シクロアルキル(該 C_{3-7} シクロアルキルは、 C_{1-6} アルキル、ハロゲン、ヒドロキシ C_{1-6} アルキル及びハロ C_{1-4} アルキルからなるグループから選択される1、2、3又は4個の置換基で置換されてもよく、及び / 又は、ベンゼン環と縮合環を形成してもよい。) であるか、

或いは、 R^{b14} と R^{b15} は、 R^{b14} が結合する窒素原子及び R^{b15} が結合する炭素原子と一緒になって4、5又は6員のラクタムを形成してもよい。(該ラクタムは1、2又は3個の C_{1-6} アルキルで置換されてもよく、及び/又は、ベンゼン環と縮合環を形成してもよい。))、

(I) 式:

【化4】

$$\begin{array}{c} (R^{b16})_{m4} \\ N \\ M_{m3} \end{array}$$

(式中、m2及びm3は、それぞれ独立して、1、2又は3であり、m4は、0、1、2、3又は4であり、R b16 は、 C_{1-6} アルキル又は C_{1-6} アルコキシであり、m4が2、3又は4のとき、各R b16 は独立して選ばれる。)、又は、

(m) 式:

【化5】

-N Rb17

(式中、m5及びm6は、それぞれ独立して、1、2又は3であり、 R^{b17} は、 C_{1-6} アルキル又は C_{1-6} アルコキシである。)である。)であり、

R³は、

- (1) ハロゲン、
- (2) ヒドロキシ、
- (3) C_{1.6}アルキル、又は、
- (4) $-OR^c$ { R^c は、以下の(a)から(f)からなるグループから選択される1、2又は3個の置換基で置換されてもよい C_{1-6} アルキルである;
 - (a) ハロゲン、
 - (b) ヒドロキシ、
 - (c) C₁₋₆アルコキシ、
- (d) -C(0)NR^{c1}R^{c2} (R^{c1}及びR^{c2}は、それぞれ独立して、水素又はC₁₋₆アルキルである。)、
 - (e) C_{6-10} アリール (該 C_{6-10} アリールは、

30

20

10

50

- (i) ハロゲン、
- (ii) ヒドロキシ、
- (iii) C₁₋₆アルキル、
- (iv) C₁₋₆アルコキシ、及び、
- (f) 5又は6員の、1、2又は3個の窒素原子、酸素原子又は硫黄原子を含むヘテロアリール(該ヘテロアリールは、
 - (i) ハロゲン、
 - (ii) ヒドロキシ、

i)C・アルキル

(iii) C₁₋₆アルキル、

- (iv) C₁₋₆アルコキシ、及び、

R⁴は、

- (1) 水素、
- (2) ハロゲン、
- (3) C₁₋₆アルキル、又は、
- (4) C₁₋₆アルコキシである。 }

であり、

R⁵は、

- (1) ハロゲン、
- (2) ヒドロキシ、
- (4) C_{1-6} アルキル(該 C_{1-6} アルキルは、ハロゲン、 C_{6-10} アリール及び C_{1-6} アルコキシからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)、
 - (5) C₃₋₇シクロアルキル、
 - (6) -OR^d { R^dは、
 - (a) C₂₋₆アルキニル、
 - (b) 1、2又は3個の C_{1-6} アルキルで置換されてもよい C_{3-7} シクロアルキル、又は、
- (c) C_{1-8} アルキル (該 C_{1-8} アルキルは、以下の(i)から(v)からなるグループから選択される1、2又は3個の置換基で置換されてもよい;
 - (i) ハロゲン、
 - (ii) C₆₋₁₀アリール、
 - (iii) C₁₋₆アルコキシ、
- (iv) C_{3-7} シクロアルキル(該 C_{3-7} シクロアルキルは、 C_{1-6} アルキル及びハロ C_{1-4} アルキルからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)、及び、
- (v) 4、5又は6員の、1、2又は3個の窒素原子、酸素原子又は硫黄原子を含む飽和ヘテロシクリル(該飽和ヘテロシクリルは、 C_{1-6} アルキル及びハロ C_{1-4} アルキルからなるグ 40 ループから選択される1、2又は3個の置換基で置換されてもよい。))である。 $\}$ 、又は

(7) 式: 【化6】

____Re

{ 式中、Reは、

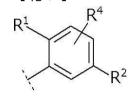
- (a) C₁₋₆アルキル、
- (b) C₃₋₇シクロアルキル、

10

20

30

- (c) 5又は6員の、1、2又は3個の窒素原子、酸素原子又は硫黄原子を含むヘテロアリール、又は、
 - (d) C_{6-10} アリール (該 C_{6-10} アリールは、
 - (i) ハロゲン、
 - (ii) C₁₋₆アルキル、
 - (iii) ハロC₁₋₄アルキル、
 - (iv) C₁₋₆アルコキシ、及び、
- (v) $\Pi \Pi C_{1-4}$ アルコキシからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)である。} であり、


m1は0、1、2又は3であり、m1が2又は3のとき、各R⁵は独立して選ばれる。] ただし、4,6-ビス-(2,5-ジメチル-フェニル)-1,3,5-トリアジン-2-オールは除く。 10

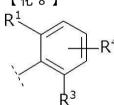
【請求項2】

環Cyが

式:

【化7】

20


(式中、R¹、R²及びR⁴は請求項1における定義と同義である。) である、請求項1に記載の化合物又はその薬学上許容される塩。

【請求項3】

環Cyが

式:

【化8】

30

50

(式中、R¹、R³及びR⁴は請求項1における定義と同義である。) である、請求項1に記載の化合物又はその薬学上許容される塩。

【請求項4】

XがCHである、請求項1から3のいずれか一項に記載の化合物又はその薬学上許容される塩。

【請求項5】

XがNである、請求項1から3のいずれか一項に記載の化合物又はその薬学上許容される 40 塩。

【請求項6】

R¹が、

- (1) クロロ、
- (2) メチル、
- (3) シアノ、又は、
- (4) トリフルオロメチルである、請求項1から5のいずれか一項に記載の化合物又はその薬学上許容される塩。

【請求項7】

R⁴が水素である、請求項1から6のいずれか一項に記載の化合物又はその薬学上許容さ

【請求項8】

 R^2 が、

 $-(C_nH_{2n})-R^b(nは、1又は2であり、-(C_nH_{2n})-は直鎖状又は分枝鎖状のいずれであっても$ よく、Rbは、

(6)

- (a) $-C(0)NR^{b1}R^{b2}$.
- (b) $-NR^{b5}C(0)NR^{b6}R^{b7}$,
- (c) $-NR^{b_10}S(0)_2R^{b_11}$ 、又は、
- (d) -NR^{b14}C(O)R^{b15}(R^{b1}、R^{b2}、R^{b5}、R^{b6}、R^{b7}、R^{b10}、R^{b11}、R^{b14}、及びR^{b15}は請求 項1における定義と同義である。)である。)である、請求項1、2、及び4から7のい ずれか一項に記載の化合物又はその薬学上許容される塩。

【請求項9】

R²が、-CH₂-R^b(R^bは、請求項 8 における定義と同義である。)である、請求項 8 に記 載の化合物又はその薬学上許容される塩。

【請求項10】

R³が、

- (1) ハロゲン、
- (2) ヒドロキシ、
- (3) C₁₋₆アルキル、又は、
- (4) -OR^c { R^cは、以下の(a)から(f)からなるグループから選択される1、2又は3個の置 換基で置換されてもよいC1.6アルキルである。
 - (a) ハロゲン、
 - (b) ヒドロキシ、
 - (c) C₁₋₆アルコキシ、
- (d) -C(0)NR^{c1}R^{c2} (R^{c1}及びR^{c2}は、それぞれ独立して、水素又はC_{1.6}アルキルである 。)、
 - (e) フェニル(該フェニルは、
 - (i) ハロゲン、
 - (ii) ヒドロキシ、
 - (iii) C₁₋₆アルキル、
 - (iv) C₁₋₆アルコキシ、及び、
- (v) ハロC₁₋₂アルキルからなるグループから選択される1、2又は3個の置換基で置 換されてもよい。)、及び、
 - (f) ピリジル(該ピリジルは、
 - (i) ハロゲン、
 - (ii) ヒドロキシ、
 - (iii) C_{1.6}アルキル、
 - (iv) C₁₋₆アルコキシ、及び、
- (v) ハロC₁₋₁アルキルからなるグループから選択される1、2又は3個の置換基で置 40 換されてもよい。)}である、請求項1及び3から9のいずれか一項に記載の化合物又は その薬学上許容される塩。

【請求項11】

m1が1であり、かつ

R⁵が、

【化9】

(式中、R^eは請求項1における定義と同義である。)である、請求項1から10のいずれ

10

20

30

か一項に記載の化合物又はその薬学上許容される塩。

【請求項12】

下記式:

【化10】

$$H_3C$$
 H_3C
 H_3
 H_3

、 【化12】

,

10

20

30

【化14】

10

20

30

、 【化19】

【化22】

10

20

【化24】

30

、 【化25】

40

、 【化26】

10

【化27】

20

及び

【化28】

30

から選ばれる化合物又はその薬学上許容される塩。

【請求項13】

請求項1から12のいずれか一項に記載の化合物又はその薬学上許容される塩、及び薬学上許容される担体を含む、医薬組成物。

【請求項14】

請求項1から12のいずれか一項に記載の化合物又はその薬学上許容される塩を含む、mPGES-1阻害剤。

【請求項15】

請求項1から12のいずれか一項に記載の化合物又はその薬学上許容される塩を含む、 疼痛、リウマチ、発熱、変形性関節症、動脈硬化、アルツハイマー病、多発性硬化症、緑 内障、高眼圧症、虚血性網膜疾患、全身性強皮症及び悪性腫瘍の治療剤又は予防剤。

50

【請求項16】

請求項1から12のいずれか一項に記載の化合物又はその薬学上許容される塩、及び一種類以上の他の緑内障治療剤を組み合わせてなる緑内障及び高眼圧症の治療剤又は予防剤

【請求項17】

mPGES-1阻害剤を製造するための請求項1から12のいずれか一項に記載の化合物又はその薬学上許容される塩の使用。

【請求項18】

疼痛、リウマチ、発熱、変形性関節症、動脈硬化、アルツハイマー病、多発性硬化症、 緑内障、高眼圧症、虚血性網膜疾患、全身性強皮症及び悪性腫瘍の治療剤又は予防剤を製 造するための請求項1から12のいずれか一項に記載の化合物又はその薬学上許容される 塩の使用。

【発明の詳細な説明】

【技術分野】

[00001]

本発明は、microsomal prostaglandin E2 synthase-1 (mPGES-1) 阻害活性を有するトリアジン化合物又はその薬学上許容される塩、それを含む医薬組成物、及びその医薬用途等に関する。

【背景技術】

[0002]

非ステロイド性抗炎症薬(NSAIDs: Non-Steroidal Anti-Inflammatory Drugs)は、炎症、発熱及び疼痛を伴う疾患、例えば、リウマチ、変形性関節炎、頭痛等の治療に汎用されている。NSAIDsは、cyclooxygenase(COX)を阻害してプロスタノイド産生を阻害することにより、抗炎症作用、解熱作用及び鎮痛作用を発揮する。

[0003]

COXには、ユビキタスに分布し、恒常的に発現するCOX-1と、さまざまな炎症促進性刺激、例えばinterleukin-1 (IL-1)等のサイトカインにより発現誘導されるCOX-2の2つのアイソフォームが存在する。COX-1及びCOX-2は、生体膜由来のアラキドン酸をプロスタノイドの前駆体であるprostaglandin H2 (PGH2)へ変換する酵素である。PGH2から各プロスタノイド (prostaglandin E2 (PGE2)、prostaglandin F2 (PGF2)、prostaglandin n I2 (PGI2)、prostaglandin D2 (PGD2)及びthromboxane A2 (TXA2)等)への変換は、それぞれに特異的なプロスタノイド合成酵素が担っている。これらのプロスタノイドは様々な生理活性、例えば炎症誘発/抑制、血管拡張/収縮、気管支の拡張/収縮、催眠/覚醒及び発熱等を有している。PGE2は生体内に最も多く存在するプロスタグランジンであり、炎症、疼痛、発熱に強く関与することが知られている。このことから、PGE2産生を抑制することがNSAIDsの主な作用機序と考えられている。

[0004]

COX-1又はCOX-2の阻害は、その下流のすべてのプロスタノイド産生を抑制する。このことがNSAIDsの副作用の原因であると考えられている。COXを非選択的に阻害するNSAIDsはCOX-1によるPGE2産生も抑制し、PGE2は胃粘膜障害に保護的に働くため、NSAIDsは胃粘液の分泌や胃粘膜血流を抑制し、胃穿孔や出血等のリスクを増大させると考えられている。また、COX-2選択的阻害薬は、血管内皮細胞において血管拡張作用及び血小板凝集抑制作用を有するPGI2の産生を抑制するが、血小板のCOX-1によって産生される血液凝固因子であるTXA2の産生は抑制しない。そのため、血液凝固系のバランスを崩して心血管障害リスクを増大させると考えられる。

[0005]

microsomal prostaglandin E2 synthase-1 (mPGES-1) は、PGE2生合成の最終段階を触媒する酵素であり、membrane-associated proteins in eicosanoid and glutathione met abolismファミリー (MAPEG family) に属する酵素である。ヒトmPGES-1遺伝子は、1999年にクローニングされ、胎盤、前立腺、精巣及び乳腺において恒常的に発現していることが

10

20

30

40

示された(非特許文献 1)。その他の臓器においては、さまざまな炎症性刺激により、CO X-2と共役して、ヒトmPGES-1発現が誘導される。例えば、炎症性サイトカインであるIL-1 やTumor Necrosis Factor- (TNF)は、滑膜細胞、骨芽細胞、内皮細胞、眼窩線維芽細胞、歯肉細胞、軟骨細胞、内皮細胞、心筋細胞等のmPGES-1発現を誘導する。例えば、バクテリア内毒素であるLipopolysaccharide(LPS)はマクロファージ、平滑筋等のmPG ES-1発現を誘導する。

[0006]

mPGES-1阻害剤は、炎症の局所もしくはmPGES-1が発現している組織においてのみPGE2産生を選択的に抑制し、PGE2以外のプロスタノイド(PGI2、PGD2、PGF2 、TXA2等)産生は抑制しないと考えられる(非特許文献 2 、 3)。そこで、mPGES-1阻害剤はNSAIDsと同等の有効性を有するが、PGE2以外のプロスタノイド産生低下に起因するNSAIDsの副作用を有さない薬剤になると考えられる。

[0007]

また、アラキドン酸カスケードにおいてPGH2より下流の代謝経路の一部を遮断すると、PGH2が遮断された経路以外のプロスタノイドへと変換されること、すなわち、シャント(shunt)が起こることが知られている。LPSで刺激したmPGES-1ノックアウトマウス由来のマクロファージにおけるPGE2産生量は、LPSで刺激した野生型(WT)マウス由来のマクロファージにおけるPGE2産生量よりも低下するが、LPSで刺激したmPGES-1ノックアウトマウス由来のマクロファージにおけるTXB2、PG12、PGD2及びPGF2 産生量はLPSで刺激したWTマウス由来のマクロファージにおけるそれぞれの産生量よりも増加することが知られている(非特許文献 4)。mPGES-1阻害剤は、PGE2産生抑制に伴って他のプロスタノイド産生を増加させることから、NSAIDsとは異なる疾患でも有効性を示すと考えられる。

[00008]

以下、mPGES-1阻害剤の用途について述べる。

(1)疼痛

mPGES-1ノックアウトマウスでは、WTマウスと比較して、急性炎症性疼痛モデルであるLPS刺激による痛覚反応評価における腹腔内PGE2産生量及び単位時間当たりの痛覚反応回数が有意に低下する。したがって、mPGES-1阻害剤は急性炎症性疼痛に対する鎮痛薬になると考えられる(非特許文献 3 、 6)。

(2) リウマチ

スウェーデン人女性のmPGES-1遺伝子において、リウマチ発症リスクと重症度を上昇させるいくつかの一塩基多型が存在する。重症度を増加させる一塩基多型(Reference SNP ID number:rs23202821)を有するリウマチ患者の滑膜では、変異を有さない患者と比較してmPGES-1発現の増加が免疫組織学的に確認される(非特許文献 5)。mPGES-1ノックアウトマウスでは、WTマウスと比較して、リウマチの動物モデルであるコラーゲン誘発関節炎モデルにおける関節内への炎症性細胞浸潤、関節の破壊及び四肢の腫脹が顕著に抑制される(非特許文献 6)。したがって、mPGES-1阻害剤はリウマチの治療薬になると考えられる。

(3)変形性関節症

変形性関節炎症患者の半月板軟骨細胞ではmPGES-1のmRNA発現が増加している(非特許文献 7)。mPGES-1阻害剤は、WTマウスと比較して、モノヨード酢酸を用いた変形性関節症モデルの痛覚反応を軽減させる(特許文献 1)。したがって、mPGES-1阻害剤は変形性関節症の治療薬になると考えられる。

(4) 発熱

mPGES-1ノックアウトマウスでは、WTマウスと比較して、LPS刺激による体温上昇が抑制される(非特許文献 8)。したがって、mPGES-1阻害剤は解熱薬になると考えられる。

(5)アルツハイマー病

NSAIDsを長期間使用するとアルツハイマー病の発症及び進行を緩和する。mPGES-1ノックアウトマウスの初代培養脳神経細胞では、WTマウスの脳神経細胞と比較して、アミロイド ペプチド処置時のPGE2産生が抑制され、神経細胞死が起こらない(非特許文献 9)。

10

20

30

40

したがって、mPGES-1阻害剤はアルツハイマー病の治療薬になると考えられる。

(6)多発性硬化症

多発性硬化症患者のEP4遺伝子において、発症リスクを上昇させるいくつかの一塩基多型が存在する(Reference SNP ID number: rs9292777、rs4613763、rs1044063、rs6896969)。多発性硬化症患者脳室周囲の脱髄領域に存在するマクロファージでは、mPGES-1タンパクの発現が確認される。mPGES-1ノックアウトマウスでは、WTマウスと比較して、多発性硬化症の動物モデルである実験的自己免疫性脳脊髄炎モデルマウスの脊髄中PGE2産生が抑制され、麻痺の進行が抑制される(非特許文献10)。したがって、mPGES-1阻害剤は多発性硬化症の治療薬になると考えられる。

(7)動脈硬化

mPGES-1ノックアウトマウスでは、WTマウスと比較して、アテローム性動脈硬化症モデルである高脂肪餌負荷低密度リポタンパク質受容体欠損マウスの血管内皮細胞からのPGE2産生が低下し、アテローム形成が遅延する。血管内皮細胞からは、血小板機能抑制作用が知られるPGI2の産生が増加する(非特許文献11)。したがって、mPGES-1阻害剤は動脈硬化の予防又は治療薬になると考えらえる。

(8)緑内障、高眼圧症

緑内障とは視神経と視野に特徴的変化を生じる疾患であり、この視神経障害は通常、眼圧を十分に下降させることにより改善もしくは抑制しうる。緑内障は開放隅角緑内障と閉塞隅角緑内障に分類することができる。

mPGES-1遺伝子は、ヒト結膜において恒常的に高発現している(GEO accession No: GSE 2513 (Gene Expression Omnibus: http://www.ncbi.nlm.nih.gov/geo/))。緑内障患者の網膜では、健常人と比較してmPGES-1の発現が増加している。緑内障モデルである高眼圧イヌ及び高眼圧マウスの網膜では、正常動物と比較してmPGES-1の発現が増加している (GEO accession No: ヒトGSE2378、イヌGSE21879、マウスGSE3554)。

健常人にPGE2を点眼すると、点眼後2時間にわたって血管拡張をともなう眼圧の上昇が認められる(非特許文献12)。PGE2をウサギ結膜下に投与すると、毛様体の腫脹及び房水産生の増加により眼圧が上昇する(非特許文献13)。mPGES-1阻害時に増加しうるプロスタグランジンであるPGF2 やPGD2はウサギの眼圧を低下させる(非特許文献14)。PGF2 製剤は眼房水排出を促進し、眼圧を低下させる緑内障治療薬として使用されている。PG12はウサギ眼圧に対して明確な作用を示さない。すなわち、mPGES-1阻害によるPGE2低下が房水産生を抑制するため、及び/又はシャントによるPGD2やPGF2 の増加は房水流出を促進するために、眼圧は低下すると考えられる。また、PGE2は網膜からの血管内皮細胞成長因子(VEGF)の発現を亢進させる(非特許文献15)。網膜において産生されたVEGFが前眼部へ移行することで虹彩における血管新生が生じ、隅角を閉塞することで眼圧が上昇する血管新生緑内障を生じるため、mPGES-1阻害剤は血管新生緑内障に対しても改善・予防的効果を示すと考えられる。さらに、PGE2産生が阻害されることによる抗炎症作用が考えられるため、既存のプロスタグランジン製剤(ラタノプロスト等)では慎重投与とされる、眼内炎症を有する場内障にも有効な治療薬になると考えられる。

(9) 虚血性網膜疾患

糖尿病網膜症、糖尿病黄斑浮腫、網膜静脈閉塞症等の虚血性網膜疾患にはVEGFの過剰な分泌が中心的な役割を果たしている。PGE2はVEGFの発現を亢進させることから(非特許文献 15)、mPGES-1阻害剤がこれらの病態を改善すると考えられる。

(10)全身性強皮症

全身性強皮症患者の皮膚では、健常人と比較してmPGES-1の発現が増加している。同様に、全身性強皮症モデルであるブレオマイシン誘発強皮症モデルマウスの皮膚では、正常マウスの皮膚と比較してmPGES-1の発現が増加している。mPGES-1ノックアウトマウスは、WTマウスと比較して、ブレオマイシン誘発強皮症モデルマウスの病変部の皮膚におけるマクロファージの集積が低下し、表皮の肥厚、細胞外基質の沈着及び膠原繊維量の増加が軽減した(非特許文献16)。したがって、mPGES-1阻害剤は全身性強皮症の治療薬になる

10

20

30

と考えられる。

(11) 悪性腫瘍

mPGES-1ノックアウトマウスでは、WTマウスと比較して、大腸癌の動物モデルであるazo xymethane誘発大腸癌モデルマウスにおけるポリープ数及びサイズが著しく抑制された。mPGES-1ノックアウトマウスでは、WTマウスと比較して、大腸腫瘍組織におけるPGE2の産生が低下し、癌細胞の接着を阻害するPGI2やperoxisome proliferator-activated receptor

(PPAR)を介して細胞死を誘導するPGD2の産生量が増加した。mPGES-1ノックアウトマウスの脾臓に大腸癌又は肺癌細胞を移植したところ、WTマウスと比較して、移植後の脾臓腫瘍重量と肝臓への転移率の低下が認められた。mPGES-1ノックアウトマウスの骨髄由来マクロファージとのin vitro共培養系において肺癌細胞の増殖がWTマウスの骨髄由来マクロファージとの共培養系と比較して低下しており、宿主マクロファージ由来のPGE2が癌細胞の増殖に関与することが示された(非特許文献 1 7)。したがって、mPGES-1阻害剤は大腸癌をはじめとする癌の増殖及び転移を抑制する抗癌薬となると考えられる。

(12) PGE2産生抑制が有効性を示す疾患

NSAIDsが有効性を示す炎症性症状及び/又はその状態と関連する痛みとして、例えば、関節炎、痛風、腎結石、尿路結石、頭痛、月経痛、歯痛、腰痛症、筋肉痛、肩関節周囲炎、頚肩腕症候群、顎関節症、及び手術後、外傷後並びに抜歯後の炎症・痛みが挙げられる。その他に、眼の急性及び慢性の非細菌性炎症が挙げられ、例えば、ブドウ膜炎、アレルギー性結膜炎及び内眼部手術における術後の炎症・眼痛が挙げられる。

NSAIDsが有効性を発揮する主な機序は、炎症促進性物質であるPGE2の産生抑制によると考えられている。mPGES-1阻害剤もPGE2の産生抑制作用を有することから、これらの疾患の治療薬になると考えられる。

[0009]

mPGES-1阻害剤は、疼痛、リウマチ、変形性関節症、発熱、アルツハイマー病、多発性硬化症、動脈硬化、緑内障、高眼圧症、虚血性網膜疾患、全身性強皮症、大腸癌をはじめとする悪性腫瘍及びPGE2産生抑制が有効性を示す疾患の予防又は治療に有益であると考えられる。

【先行技術文献】

【特許文献】

[0010]

【特許文献1】国際公開第2012/161965号

【非特許文献】

[0011]

【非特許文献 1】JAKOBSSON, PJ et al. Identification of human prostaglandin E syn thase: a microsomal, glutathione-dependent, inducible enzyme, constituting a pot ential novel drug target. Proc Natl Acad Sci U S A. Jun 22 1999, Vol.96, No.13, pages 7220-7225.

【非特許文献 2】SAMUELSSON, B et al. Membrane prostaglandin E synthase-1: a nove I therapeutic target. Pharmacol Rev. Sep 2007, Vol.59, No.3, pages 207-224.

【非特許文献 3】KAMEI, D et al. Reduced pain hypersensitivity and inflammation in mice lacking microsomal prostaglandin e synthase-1. J Biol Chem. Aug 6 2004, V ol.279, No.32, pages 33684-33695.

【非特許文献 4】TREBINO, CE et al. Redirection of eicosanoid metabolism in mPGES -1-deficient macrophages. J Biol Chem. Apr 29 2005, Vol.280, No.17, pages 16579-16585.

【非特許文献 5】KOROTKOVA, M et al. Variants of gene for microsomal prostaglandin E2 synthase show association with disease and severe inflammation in rheumatoid arthritis. Eur J Hum Genet. Aug 2011, Vol.19, No.8, pages 908-914.

【非特許文献 6】TREBINO, CE et al. Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc Natl Acad Sci U S A. Jul

10

20

30

40

22 2003, Vol.100, No.15, pages 9044-9049.

【非特許文献 7】SUN, Y et al. Analysis of meniscal degeneration and meniscal gen e expression. BMC Musculoskelet Disord. 2010, Vol.11, pages 19.

【非特許文献 8】ENGBLOM, D et al. Microsomal prostaglandin E synthase-1 is the c entral switch during immune-induced pyresis. Nat Neurosci. Nov 2003, Vol.6, No.1 1, pages 1137-1138.

【非特許文献 9】KUROKI, Y et al. Deletion of microsomal prostaglandin E synthase -1 protects neuronal cells from cytotoxic effects of beta-amyloid peptide fragme nt 31-35. Biochem Biophys Res Commun. Aug 3 2012, Vol.424, No.3, pages 409-413.

【非特許文献 1 0 】KIHARA, Y et al. Targeted lipidomics reveals mPGES-1-PGE2 as a therapeutic target for multiple sclerosis. Proc Natl Acad Sci U S A. Dec 22 200 9, Vol.106, No.51, pages 21807-21812.

【非特許文献 1 1】WANG, M et al. Deletion of microsomal prostaglandin E synthase -1 augments prostacyclin and retards atherogenesis. Proc Natl Acad Sci U S A. Se p 26 2006, Vol.103, No.39, pages 14507-14512.

【非特許文献 1 2】FLACH, AJ et al. Topical prostaglandin E2 effects on normal human intraocular pressure. J Ocul Pharmacol. Spring 1988, Vol.4, No.1, pages 13-18.

【非特許文献 1 3】NAKAJIMA, T et al. [Effects of prostaglandin E2 on intraocular pressure, anterior chamber depth and blood flow volume of the iris and the cili ary body in rabbit eyes]. Nihon Ganka Gakkai Zasshi. Apr 1992, Vol.96, No.4, pag es 455-461.

【非特許文献 1 4 】GOH, Y et al. Prostaglandin D2 reduces intraocular pressure. B r J Ophthalmol. Jun 1988, Vol.72, No.6, pages 461-464.

【非特許文献 1 5 】YANNI, SE et al. The role of PGE2 receptor EP4 in pathologic o cular angiogenesis. Invest Ophthalmol Vis Sci. Nov 2009, Vol.50, No.11, pages 54 79-5486.

【非特許文献 1 6】MCCANN, MR et al. mPGES-1 null mice are resistant to bleomycin-induced skin fibrosis. Arthritis Res Ther. 2011, Vol.13, No.1, pages R6.

【非特許文献 1 7】SASAKI, Y et al. Microsomal prostaglandin E synthase-1 is involved in multiple steps of colon carcinogenesis. Oncogene. Jun 14 2012, Vol.31, No.24, pages 2943-2952.

【発明の概要】

[0012]

本発明は、mPGES-1阻害活性を有するトリアジン化合物又はその薬学上許容される塩、それを含む医薬組成物、及びその医薬用途等を提供することを目的とする。対象とする疾患として、例えば、疼痛、リウマチ、変形性関節症、発熱、アルツハイマー病、多発性硬化症、動脈硬化、緑内障、高眼圧症、虚血性網膜疾患、全身性強皮症、大腸癌をはじめとする悪性腫瘍及びPGE2産生抑制が有効性を示す疾患が挙げられる。

[0013]

本発明者らは、下記式[I]で表されるmPGES-1阻害活性を有するトリアジン化合物を見出し、本発明を完成させた。

すなわち、本発明は、以下のとおりである。

[0014]

[01]

式[I]の化合物又はその薬学上許容される塩:

[0015]

10

20

30

[0016]

[式中、

Xは、CH又はNであり、

環Cyは、

式:

[0017]

【化2】

$$R^1$$
 R^4
 R^2

[0018]

又は、

式:

[0019]

【化3】

$$R^1$$
 R^3

[0020]

{式中、R¹は、

- (1) ハロゲン、
- (2) C₁₋₆アルキル、
- (3) シアノ、又は、
- (4) $\Pi \square C_{1-4}$ アルキルであり、

R2は、

- (1) ハロゲン、
- (2) ヒドロキシ、
- (3) カルボキシ、
- (4) C₁₋₆アルキル、
- (5) C₁₋₆アルコキシ、
- (6) ハロC₁₋₄アルコキシ、
- (7) ハロC₁₋₄アルキル、
- (8) C₁₋₆アルキル-カルボニル、
- (9) -C(0)NR^{a1}R^{a2} (R^{a1}及びR^{a2}は、それぞれ独立して、水素又はC₁₋₆アルキルである。)、又は、

$$(10) - (C_n H_{2n}) - R^b$$

10

20

30

40

(nは、1、2、3又は4であり、 $-(C_nH_{2n})$ -は直鎖状又は分枝鎖状のいずれであってもよく

Rbは、

- (a) ヒドロキシ、
- (b) カルボキシ、
- (c) C₁₋₆アルコキシ、
- (d) C₁₋₆アルキル-カルボニルオキシ、
- (e) -C(0)NR^{b1}R^{b2} (R^{b1}及びR^{b2}は、それぞれ独立して、水素又はC₁₋₆アルキルである。)、
- (f) $-OC(O)NR^{b3}R^{b4}$ (R^{b3} 及び R^{b4} は、それぞれ独立して、水素又は C_{1-6} アルキルである。)、
- (g) -NR^{b5}C(0)NR^{b6}R^{b7} (R^{b5}、R^{b6}及びR^{b7}は、それぞれ独立して、水素又はC₁₋₆アルキルである。)、
- (h) -NR^{b8}R^{b9} (R^{b8}及びR^{b9}は、それぞれ独立して、水素、C₁₋₆アルキル又はハロC₁₋₄アルキルである。)、
- (i) $-NR^{b10}S(0)_2R^{b11}(R^{b10}及びR^{b11}$ は、それぞれ独立して、水素、 C_{1-6} アルキル又は C_{3-7} シクロアルキルである。)、
- (j) $-NR^{b12}C(0)OR^{b13}(R^{b12}$ は、水素又は C_{1-6} アルキルであり、 R^{b13} は、 C_{1-6} アルキルである。)、
 - (k) -NR^{b14}C(0)R^{b15} (R^{b14}は、水素又はC₁₋₆アルキルであり、 R^{b15}は、
 - (i) C₆₋₁₀アリール、
- (ii) C_{1-8} アルキル(該 C_{1-8} アルキルは、ヒドロキシ、ハロ C_{1-4} アルキル、 C_{1-6} アルコキシ及び C_{6-10} アリールからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)、
 - (iii) アダマンチル、又は、
- (iv) C_{3-7} シクロアルキル(該 C_{3-7} シクロアルキルは、 C_{1-6} アルキル、ハロゲン、ヒドロキシ C_{1-6} アルキル及びハロ C_{1-4} アルキルからなるグループから選択される1、2、3又は4個の置換基で置換されてもよく、及び / 又は、ベンゼン環と縮合環を形成してもよい。)であるか、

或いは、 R^{b14} と R^{b15} は、 R^{b14} が結合する窒素原子及び R^{b15} が結合する炭素原子と一緒になって4、5又は6員のラクタムを形成してもよい。(該ラクタムは1、2又は3個の $C_{1.6}$ アルキルで置換されてもよく、及び/又は、ベンゼン環と縮合環を形成してもよい。))、

(1) 式:

[0021]

【化4】

[0022]

(式中、m2及びm3は、それぞれ独立して、1、2又は3であり、m4は、0、1、2、3又は4であり、 R^{b16} は、 C_{1-6} アルキル又は C_{1-6} アルコキシであり、m4が2、3又は4のとき、各 R^{b16} は独立して選ばれる。)、又は、

(m) 式:

[0023]

20

10

30

[0024]

(式中、m5及びm6は、それぞれ独立して、1、2又は3であり、 R^{b17} は、 C_{1-6} アルキル又は C_{1-6} アルコキシである。)である。)であり、

10

R³は、

- (1) ハロゲン、
- (2) ヒドロキシ、
- (3) C₁₋₆アルキル、又は、
- (4) $-OR^c$ { R^c は、以下の(a)から(f)からなるグループから選択される1、2又は3個の置換基で置換されてもよい C_{1-6} アルキルである;
 - (a) ハロゲン、
 - (b) ヒドロキシ、
 - (c) C₁₋₆アルコキシ、

20

- (d) $-C(0)NR^{c1}R^{c2}(R^{c1}及びR^{c2}$ は、それぞれ独立して、水素又は C_{1-6} アルキルである。)、
 - (e) C_{6-10} アリール (該 C_{6-10} アリールは、
 - (i) ハロゲン、
 - (ii) ヒドロキシ、
 - (iii) C₁₋₆アルキル、
 - (iv) C₁₋₆アルコキシ、及び、
- (f) 5又は6員の、1、2又は3個の窒素原子、酸素原子又は硫黄原子を含むヘテロアリール(該ヘテロアリールは、
 - (i) ハロゲン、
 - (ii) ヒドロキシ、
 - (iii) C₁₋₆アルキル、
 - (iv) C₁₋₆アルコキシ、及び、
- (v) ハロ C_{1-4} アルキルからなるグループから選択される1、2又は3個の置換基で置換されてもよい。) }

であり、

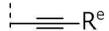
R⁴は、

(1) 水素、

40

- (2) ハロゲン、
- (3) C₁₋₆アルキル、又は、
- (4) C_{1-6} アルコキシである。 }

であり、


R⁵は、

- (1) ハロゲン、
- (2) ヒドロキシ、
- (4) C_{1-6} アルキル(該 C_{1-6} アルキルは、ハロゲン、 C_{6-10} アリール及び C_{1-6} アルコキシからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)、

- (5) C_{3.7}シクロアルキル、
- (6) -ORd { Rdは、
 - (a) C_{2.6}アルキニル、
 - (b) 1、2又は3個の C_{1-6} アルキルで置換されてもよい C_{3-7} シクロアルキル、又は、
- (c) C_{1-8} アルキル(該 C_{1-8} アルキルは、以下の(i)から(v)からなるグループから選択される1、2又は3個の置換基で置換されてもよい;
 - (i) ハロゲン、
 - (ii) C₆₋₁₀アリール、
 - (iii) C₁₋₆アルコキシ、
- (iv) C_{3-7} シクロアルキル(該 C_{3-7} シクロアルキルは、 C_{1-6} アルキル及びハロ C_{1-4} アルキルからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)、及び、
- (v) 4、5又は6員の、1、2又は3個の窒素原子、酸素原子又は硫黄原子を含む飽和ヘテロシクリル(該飽和ヘテロシクリルは、C₁₋₆アルキル及びハロC₁₋₄アルキルからなるグループから選択される1、2又は3個の置換基で置換されてもよい。))である。}、又は
 - (7) 式:

[0025]

【化6】

20

10

[0026]

{式中、Reは、

- (a) C₁₋₆アルキル、
- (b) C₃₋₇シクロアルキル、
- (c) 5又は6員の、1、2又は3個の窒素原子、酸素原子又は硫黄原子を含むヘテロアリール、又は、
 - (d) C_{6-10} アリール (該 C_{6-10} アリールは、
 - (i) ハロゲン、
 - (ii) C₁₋₆アルキル、

30

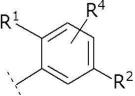
- (iii) ハロC₁₋₄アルキル、
- (iv) C₁₋₆アルコキシ、及び、
- (v) ハロ C_{1-4} アルコキシからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)である。 }

であり、

m1は0、1、2又は3であり、m1が2又は3のとき、各 R^5 は独立して選ばれる。] ただし、4,6-ビス-(2,5-ジメチル-フェニル)-1,3,5-トリアジン-2-オールは除く。

[0027]

[0 2]


環Cyが

40

式:

[0028]

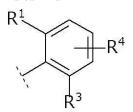
【化7】

[0029]

(式中、 R^1 、 R^2 及び R^4 は [01]における定義と同義である。)

である、「01」に記載の化合物又はその薬学上許容される塩。

[0030]


[03]

環Cyが

式:

[0031]

【化8】

10

[0032]

(式中、R¹、R³及びR⁴は [0 1] における定義と同義である。)

である、「01」に記載の化合物又はその薬学上許容される塩。

[0033]

[04]

XがCHである、[01]から[03]のいずれかに記載の化合物又はその薬学上許容される塩。

20

[0034]

[0 5]

XがNである、[01]から[03]のいずれかに記載の化合物又はその薬学上許容される塩。

[0035]

[06]

R¹が、

- (1) クロロ、
- (2) メチル、
- (3) シアノ、又は、

30

(4) トリフルオロメチルである、 [0 1] から [0 5] のいずれかに記載の化合物又はその薬学上許容される塩。

[0036]

[0 7]

 R^4 が水素である、 [0 1] から [0 6] のいずれかに記載の化合物又はその薬学上許容される塩。

[0037]

[08]

R²が、

 $-(C_nH_{2n})-R^b(n$ は、1又は2であり、 $-(C_nH_{2n})-$ は直鎖状又は分枝鎖状のいずれであってもよく、 R^b は、

- (a) $-C(0)NR^{b1}R^{b2}$
- (b) $-NR^{b5}C(0)NR^{b6}R^{b7}$
- (c) -NR^{b10}S(0)₂R^{b11}、又は、
- $(d) NR^{b_1 4}C(0)R^{b_1 5}(R^{b_1}, R^{b_2}, R^{b_5}, R^{b_6}, R^{b_7}, R^{b_{10}}, R^{b_{11}}, R^{b_{14}}, 及びR^{b_{15}}は「0$
- 1]における定義と同義である。)である。)である、[01]、[02]、及び[04
-]から [07]のいずれかに記載の化合物又はその薬学上許容される塩。

[0038]

[0 9]

 R^2 が、 $-CH_2-R^b$ (R^b は、[08]における定義と同義である。)である、[08]に記

50

載の化合物又はその薬学上許容される塩。

[0039]

[10]

R³が、

- (1) ハロゲン、
- (2) ヒドロキシ、
- (3) C₁₋₆アルキル、又は、
- (4) $-OR^c$ { R^c は、以下の(a)から(f)からなるグループから選択される1、2又は3個の置換基で置換されてもよい C_{1-6} アルキルである。
 - (a) ハロゲン、

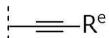
10

- (b) ヒドロキシ、
- (c) C₁₋₆アルコキシ、
- (d) $-C(0)NR^{c1}R^{c2}(R^{c1}及びR^{c2}$ は、それぞれ独立して、水素又は C_{1-6} アルキルである。)、
 - (e) フェニル (該フェニルは、
 - (i) ハロゲン、
 - (ii) ヒドロキシ、
 - (iii) C₁₋₆アルキル、
 - (iv) C₁₋₆アルコキシ、及び、
- (v) $\Pi \Pi C_{1-4} P N$ キルからなるグループから選択される1、2又は3個の置換基で置 20 換されてもよい。)、及び、
 - (f) ピリジル(該ピリジルは、
 - (i) ハロゲン、
 - (ii) ヒドロキシ、
 - (iii) C₁₋₆アルキル、
 - (iv) C₁₋₆アルコキシ、及び、
- (v) ハロ C_{1-4} アルキルからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)} である、 [0 1] 及び [0 3] から [0 9] のいずれかに記載の化合物又はその薬学上許容される塩。

[0040]

30

[11]


m1が1であり、かつ

R⁵が、

式:

[0041]

【化9】

[0042]

(式中、R^eは [01] における定義と同義である。)である、[01] から [10] のい 40 ずれかに記載の化合物又はその薬学上許容される塩。

[0043]

[12]

下記式:

[0044]

【0045】 【化11】

20

【 0 0 4 6 】 【化 1 2 】

30

【0047】 【化13】 CH₃

40

[0 0 4 8]

20

30

40

【化14】

20

【化20】

10

[0055]

【化21】

20

【 0 0 5 6 】 【化 2 2 】

30

40

` [0 0 5 7]

【化23】

$$H_3C$$
 H_3C
 H_3C

[0058]

【化24】

20

10

30

【 0 0 5 9 】 【化 2 5 】

【 0 0 6 0 】 【化 2 6 】

【 0 0 6 2 】 及び 【 0 0 6 3 】 【化 2 8】

[0064]

から選ばれる化合物又はその薬学上許容される塩。

[0065]

[1 3]

10

20

30

- -

40

[01]から[12]のいずれかに記載の化合物又はその薬学上許容される塩、及び薬学上許容される担体を含む、医薬組成物。

[0066]

[14]

[01]から[12]のいずれかに記載の化合物又はその薬学上許容される塩を含む、mPGES-1阻害剤。

[0067]

[1 5]

[01]から[12]のいずれかに記載の化合物又はその薬学上許容される塩を含む、 疼痛、リウマチ、発熱、変形性関節症、動脈硬化、アルツハイマー病、多発性硬化症、緑 内障、高眼圧症、虚血性網膜疾患、全身性強皮症、悪性腫瘍及びPGE2産生抑制が有効性を 示す疾患の治療剤又は予防剤。

10

[0068]

[16]

[01]から[12]のいずれかに記載の化合物又はその薬学上許容される塩、及び一種類以上の他の緑内障治療剤を組み合わせてなる緑内障及び高眼圧症の治療剤又は予防剤

[0069]

[17]

薬学上有効量の、 [01]から [12]のいずれかに記載の化合物又はその薬学上許容される塩をヒトに投与することを含む、mPGES-1の阻害方法。

20

[0070]

[18]

薬学上有効量の、[01]から[12]のいずれかに記載の化合物又はその薬学上許容される塩をヒトに投与することを含む、疼痛、リウマチ、発熱、変形性関節症、動脈硬化、アルツハイマー病、多発性硬化症、緑内障、高眼圧症、虚血性網膜疾患、全身性強皮症、悪性腫瘍及びPGE2産生抑制が有効性を示す疾患の治療方法又は予防方法。

[0071]

[19]

薬学上有効量の、一種類以上の他の緑内障治療剤をさらにヒトに投与することを含む、[18]記載の緑内障及び高眼圧症の治療方法又は予防方法。

30

[0072]

Γ 2 0 1

mPGES-1阻害剤を製造するための [01]から [12]のいずれかに記載の化合物又はその薬学上許容される塩の使用。

[0073]

[21]

疼痛、リウマチ、発熱、変形性関節症、動脈硬化、アルツハイマー病、多発性硬化症、 緑内障、高眼圧症、虚血性網膜疾患、全身性強皮症、悪性腫瘍及びPGE2産生抑制が有効性 を示す疾患の治療剤又は予防剤を製造するための[01]から[12]のいずれかに記載 の化合物又はその薬学上許容される塩の使用。

40

【発明の効果】

[0074]

本発明化合物は、疼痛、リウマチ、発熱、変形性関節症、動脈硬化、アルツハイマー病、多発性硬化症、緑内障、高眼圧症、虚血性網膜疾患、全身性強皮症、大腸癌をはじめとする悪性腫瘍及びPGE2産生抑制が有効性を示す疾患等の治療剤又は予防剤として有効である。

【図面の簡単な説明】

[0075]

【図1】図1は、カニクイザルに被験物質(実施例2-98の化合物)、陽性対照物質(キサ

ラタン(登録商標))又は媒体(メチルセルロース、MC)を投与したときの、投与直前値からの眼圧の変化幅を示す。

【発明を実施するための形態】

[0076]

本発明において使用する用語の定義は以下のとおりである。

[0077]

「ハロゲン」とは、フルオロ、クロロ、ブロモ又はヨードである。

[0078]

「 C_{1-6} アルキル」とは、炭素数1から6個を有する直鎖又は分枝鎖状のアルキルを意味する。例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、1-エチルプロピル、ヘキシル、イソヘキシル、1,1-ジメチルブチル、2,2-ジメチルブチル、3,3-ジメチルブチル、2-エチルブチル等が挙げられる。

[0079]

「 C_{1-8} アルキル」とは、炭素数1から8個を有する直鎖又は分枝鎖状のアルキルを意味する。例えば、メチル、エチル、プロピル、イソプロピル、1,1-ジメチルプロピル、1-エチル-プロピル、1-メチル-1-エチル-プロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、1-メチル-1-プロピル-ブチル、ペンチル、イソペンチル、ネオペンチル、1-エチルプロピル、ヘキシル、イソヘキシル、1,1-ジメチルブチル、2,2-ジメチルブチル、3,3-ジメチルブチル、2-エチルブチル等が挙げられる。

[0800]

「 C_{1-6} アルコキシ」とは、アルキル部分が上記定義の「 C_{1-6} アルキル」であるアルコキシを意味する。例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ペンチルオキシ、イソペンチルオキシ、ネオペンチルオキシ、1,2-ジメチルプロピルオキシ、1-エチルプロピルオキシ、ヘキシルオキシ、イソヘキシルオキシ、1,2,2-トリメチルプロピルオキシ、1,1-ジメチルブチルオキシ、2,2-ジメチルブチルオキシ、3,3-ジメチルブチルオキシ、2-エチルブチルオキシ等が挙げられる。

[0081]

「ハロ C_{1-4} アルキル」とは、上記定義の「ハロゲン」で1から9個置換された、炭素数1から4個を有する直鎖又は分枝鎖状のアルキルを意味する。ハロゲンで複数個置換されている場合、各ハロゲンは同一であっても異なってもよい。例えば、2-フルオロエチル、2-クロロエチル、2-プロモエチル、3-フルオロプロピル、3-クロロプロピル、4-フルオロブチル、4-クロロブチル、1,1-ジフルオロエチル、1,1-ジフルオロプロピル、1,1-ジフルオロ-2-メチルプロピル、トリフルオロメチル、2,2,2-トリフルオロエチル、3,3,3-トリフルオロプロピル、4,4,4-トリフルオロブチル、ペンタフルオロエチル、2,2,2-トリフルオロ-1-トリフルオロメチル-エチル等が挙げられる。

[0082]

「ハロ C_{1-4} アルコキシ」とは、アルキル部分が上記定義の「ハロ C_{1-4} アルキル」であるアルコキシを意味する。例えば、フルオロメトキシ、クロロメトキシ、ブロモメトキシ、2-フルオロエトキシ、2-クロロエトキシ、2-ブロモエトキシ、3-フルオロプロポキシ、3-クロロプロポキシ、4-フルオロブトキシ、4-クロロブトキシ、1,1-ジフルオロエトキシ、2,2-ジフルオロエトキシ、1,1-ジフルオロプロポキシ、2,2-ジフルオロプロポキシ、3,3-ジフルオロプロポキシ、1,1-ジフルオロ-2-メチルプロポキシ、トリフルオロメトキシ、2,2,2-トリフルオロエトキシ、3,3,3-トリフルオロプロポキシ、4,4,4-トリフルオロブトキシ、ペンタフルオロエトキシ、2,2,2-トリフルオロ-1-トリフルオロメチル-エトキシ等が挙げられる。

[0083]

「ヒドロキシ C_{1-6} アルキル」とは、1又は2個のヒドロキシで置換された上記定義の「 C_1 -6アルキル」を意味する。例えば、ヒドロキシメチル、2-ヒドロキシエチル、1-ヒドロキ

20

10

30

40

シ-1-メチルエチル、1,2-ジヒドロキシエチル、3-ヒドロキシプロピル、1-ヒドロキシ-2,2-ジメチルプロピル、4-ヒドロキシブチル、1-ヒドロキシ-2,2-ジメチルブチル、5-ヒドロキシペンチル、6-ヒドロキシヘキシル等が挙げられる。

[0084]

「 C_{1-6} アルキル-カルボニル」とは、上記定義の「 C_{1-6} アルキル」が結合したカルボニルを意味する。例えば、アセチル、プロピオニル、2,2-ジメチルプロピオニル、ブチリル、3-メチルブチリル、2,2-ジメチルブチリル、ペンタノイル、4-メチルペンタノイル、ヘキサノイル等が挙げられる。

[0085]

「 C_{1-6} アルキル-カルボニルオキシ」とは、上記定義の「 C_{1-6} アルキル」が結合したカルボニルオキシを意味する。例えば、メチルカルボニルオキシ、エチルカルボニルオキシ、プロピルカルボニルオキシ、イソプロピルカルボニルオキシ、ブチルカルボニルオキシ、イソブチルカルボニルオキシ、sec-ブチルカルボニルオキシ、tert-ブチルカルボニルオキシ、イソペンチルカルボニルオキシ、2-メチルブチルカルボニルオキシ、1,1-ジメチルプロピルカルボニルオキシ、ネオペンチルカルボニルオキシ、3,3-ジメチルブチルカルボニルオキシ、1-エチルプロピルカルボニルオキシ、ヘキシルカルボニルオキシ等が挙げられる。

[0086]

「C₃₋₇シクロアルキル」とは、3から7員の、単環のシクロアルキルを意味する。例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル及びシクロヘプチルが挙げられる。

[0087]

「 C_{6-10} アリール」とは、6から10員のアリールを意味する。例えば、フェニル、1-ナフチル、2-ナフチル等が挙げられ、これらのうち好ましくはフェニルである。

[0088]

「5又は6員の、1、2又は3個の窒素原子、酸素原子又は硫黄原子を含むヘテロアリール」とは、炭素原子以外に窒素原子、酸素原子及び硫黄原子より選択される1、2又は3個のヘテロ原子を有する、5又は6員の単環のヘテロアリールを意味する。例えば、フリル、チェニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル(1,2,5-オキサジアゾリル、1,3,4-オキサジアゾリル、1,2,4-オキサジアゾリル)、チアジアゾリル(1,2,5-チアジアゾリル、1,3,4-チアジアゾリル、1,2,4-チアジアゾリル)、トリアゾリル(1,2,3-トリアゾリル、1,3,5-トリアジニル等が挙げられ、これらのうち好ましくはピリジルである。

[0089]

「4、5又は6員の、1、2又は3個の窒素原子、酸素原子又は硫黄原子を含む飽和ヘテロシクリル」とは、炭素原子以外に窒素原子、酸素原子及び硫黄原子より選択される1、2又は3個のヘテロ原子を有する、4、5又は6員の単環の飽和ヘテロシクリルを意味する。該ヘテロシクリルの炭素原子はオキソで置換されていてもよく、ヘテロ原子として硫黄原子を含む場合、該硫黄原子はモノオキシド化又はジオキシド化されていてもよい。例えば、オキセタニル、アゼチジニル、テトラヒドロフリル、テトラヒドロピラニル、テトラヒドロチオピラニル、オキサゾリジニル、イソオキサゾリジニル、チアゾリジニル、イソチアゾリジニル、イミダゾリジニル、ピラゾリジニル、ピロリジニル、パリジル(ピペリジノも含む)、モルホリニル(モルホリノも含む)、チオモルホリニル(チオモルホリノも含む)、ピペラジニル、1、1・ジオキシドテトラヒドロチエニル、1、1・ジオキシドテトラヒドロチエニル、1、1・ジオキシドテトラヒドロチエニル、1、1・ジオキシドテトラヒドロチエニル、1、1・ジオキシドテトラヒドロチエニル、1、1・ジオキシドテトラヒドロチオピラニル、1、1・ジオキシドチオモルホリニル(1、1・ジオキシドチオモルホリニル(1、1・ジオキシドチオモルホリノも含む)等が挙げられる。また、該飽和ヘテロシクリルは部分飽和であってもよく、例えば、イミダゾリニル、オキサゾリニル、ピラゾリニル、チアゾリニル等が挙げられる。これらのうち好ましくはオキセタニルである。

10

20

30

40

20

30

40

50

[0090]

「 C_{1-6} アルキルスルファニル」とは、上記定義の「 C_{1-6} アルキル」が結合したスルファニルを意味する。例えば、メチルスルファニル、エチルスルファニル、プロピルスルファニル、エチルスルファニル、プロピルスルファニル、sec-ブチルスルファニル、tert-ブチルスルファニル、ペンチルスルファニル、1,1-ジメチルプロピルスルファニル、2,2-ジメチルプロピルスルファニル、ヘキシルスルファニル等が挙げられる。

[0091]

「 C_{2-6} アルキニル」とは、炭素数2から6個を有する直鎖又は分枝鎖状の少なくとも1つの三重結合を有する炭化水素を意味する。例えば、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-メチル-2-プロピニル、3,3-ジメチルブチニル(すなわち、3,3-ジメチルプト-1-インイル)等が挙げられる。

[0092]

「-(C_nH_{2n})-」とは、炭素数n及び水素数2nの、直鎖上又は分枝鎖状のアルキレンを意味する。例えば、- CH_2 -、- CH_2 CH $_2$ -、- CH_2 CH $_3$)-、- CH_2 CH $_2$ -、- CH_3 CH $_2$ -、- CH_3 CH $_3$ -等が挙げられる。

[0093]

 R^2 が(10) $-(C_nH_{2n})-R^b$ であり、 R^b が(k) $-NR^{b14}C(0)R^{b15}$ である場合の R^{b15} 中の「(ii) C_{1-8} アルキル(該 C_{1-8} アルキルは、ヒドロキシ、ハロ C_{1-4} アルキル、 C_{1-6} アルコキシ及び C_{6-10} アリールからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)」とは、上記定義の「 C_{1-8} アルキル」の置換可能な位置に、ヒドロキシ、上記定義の「N ロ C_{1-4} アルキル」、上記定義の「 C_{1-6} アルコキシ」及び上記定義の「 C_{6-10} アリール」からなるグループから選択される同一又は異なった1、2又は3個の置換基で置換された C_{1-8} アルキル、又は、無置換の C_{1-8} アルキルを意味する。 C_{0} の一例として、 C_{0} で、 C_{0} と、 C_{0} と、 C_{0} と、 C_{0} と、 C_{0} と、 C_{0} に、 C_{0} と、 C_{0} と、 C_{0} に、 C_{0} と、 C_{0} に、 C_{0}

[0094]

 $R^2 \acute{m}(10) - (C_n H_{2n}) - R^b \ddot{r}$ であり、 $R^b \acute{m}(k) - NR^{b14}C(0)R^{b15}$ である場合の R^{b15} 中の「(iv) C_{3-7} シクロアルキル(該 C_{3-7} シクロアルキルは、 C_{1-6} アルキル、ハロゲン、ヒドロキシ C_{1-6} アルキル及びハロ C_{1-4} アルキルからなるグループから選択される1、2、3又は4個の置換基で置換されてもよく、及び/又は、ベンゼン環と縮合環を形成してもよい。)」とは、(1)上記定義の「 C_{3-7} シクロアルキル」の置換可能な位置に、上記定義の「 C_{1-6} アルキル」、上記定義の「ハロゲン」、上記定義の「ヒドロキシ C_{1-6} アルキル」及び上記定義の「ハロ C_{1-4} アルキル」からなるグループから選択される同一又は異なった1、2、3又は4個の置換基で置換された C_{3-7} シクロアルキル、(2)無置換の C_{3-7} シクロアルキル、又は、(3)(1)又は(2)の C_{3-7} シクロアルキルの縮合可能な位置で、1つのベンゼン環と縮合した C_{3-7} シクロアルキルを意味する。 R^b の一例として、1,2,3,4-テトラヒドロ-ナフタレン-2-イルカルボニルアミノ、2-メチル-インダン-2-イルカルボニルアミノ等が挙げられる。

[0095]

 R^2 が(10) $-(C_nH_{2n})-R^b$ であり、 R^b が(k) $-NR^{b14}C(0)R^{b15}$ の場合で、「 R^{b14} と R^{b15} は、 R^b 14が結合する窒素原子及び R^{b15} が結合する炭素原子と一緒になって4、5又は6員のラクタムを形成してもよい。」とは、 R^b が、2-オキソ-アゼチジン-1-イル、2-オキソ-ピロリジン-1-イル、2-オキソ-ピペリジン-1-イル等であることを意味する。

[0096]

またこの場合で、「該ラクタムは1、2又は3個の C_{1-6} アルキルで置換されてもよく、及び / 又は、ベンゼン環と縮合環を形成してもよい。」とは、上記の「ラクタム」に加え、(1)ラクタムの置換可能な位置に同一又は異なった1、2、又は3個の上記定義の C_{1-6} アルキルで置換されている、(2)ラクタムの縮合可能な位置に、1つのベンゼン環が縮合している、及び(3) C_{1-6} アルキルで置換されたラクタムの縮合可能な位置に、1つのベンゼン環が縮

合していることを意味する。R^bの一例として、3,4-ジメチル-2-オキソ-ピロリジン-1-イ ル、1-オキソ-1.3-ジヒドロ-イソインドール-2-イル、3.3-ジメチル-2-オキソ-2.3-ジヒ ドロ-インドール-1-イル等が挙げられる。

[0097]

式「I)で表される化合物において、各基についての好適な態様は以下の通りである。

[0098]

R¹は、好ましくはクロロ、メチル、シアノ、又はトリフルオロメチルであり、より好ま しくはクロロ、又はトリフルオロメチルであり、さらに好ましくはクロロである。

[0099]

R²は、好ましくは、

- (1) ハロゲン、
- (2) ヒドロキシ、
- (3) カルボキシ、
- (5) C₁₋₆アルコキシ、
- (6) ハロC₁₋₄アルコキシ、
- (7) ハロC_{1.4}アルキル、
- (8) C₁₋₆アルキル-カルボニル、
- (9) -C(0)NR^{a1}R^{a2} (R^{a1}及びR^{a2}は前記と同義である。)、又は、
- (10) (C_nH_{2n})-R^b (R^bは前記と同義である。) であり、

より好ましくは、

(10) - (C,H₂,)-R^b(R^bは前記と同義である。)である。

Rbは、好ましくは、

- (g) -NR^{b5}C(0)NR^{b6}R^{b7} (R^{b5}、R^{b6}及びR^{b7}は前記と同義である。)、
- (h) -NR^{b8}R^{b9} (R^{b8}及びR^{b9}は前記と同義である。)、
- (i) -NR^{b10}S(0)₂R^{b11}(R^{b10}及びR^{b11}は前記と同義である。)、
- (j) -NR^{b12}C(0)OR^{b13}(R^{b12}及びR^{b13}は前記と同義である。)、又は
- (k) -NR^{b14}C(O)R^{b15}(R^{b14}及びR^{b15}は前記と同義である。)であり、 より好ましくは、
 - (k) -NR^{b14}C(0)R^{b15} (R^{b14}及びR^{b15}は前記と同義である。)である。
 - nは、好ましくは1又は2であり、より好ましくは1である。

R^{b14}は、好ましくは水素又はメチルであり、より好ましくは水素である。

R^{b15}は、好ましくは、

- (ii) C₁₋₄アルキル(該C₁₋₄アルキルは、ヒドロキシ、トリフルオロメチル、C₁₋ ₄アルコキシ及びフェニルからなるグループから選択される1又は2個の置換基で置換され てもよい。)、又は、
- (iv) C_{3.7}シクロアルキル(該C_{3.7}シクロアルキルは、C_{1.4}アルキル、ハロゲン 、ヒドロキシC1.14アルキル及びトリフルオロメチルからなるグループから選択される1、2 、3又は4個の置換基で置換されてもよい。)であり、

より好ましくは、1又は2個のトリフルオロメチル並びにC₁₋₄アルコキシで置換されてもよ いC₁₋₄アルキル、又は1個のトリフルオロメチルで置換されてもよいC₃₋₇シクロアルキル であり、さらに好ましくは、tert-ブチル、3,3,3-トリフルオロ-2,2-ジメチルプロピル、 3.3.3-トリフルオロ-2-メトキシ-2-メチルプロピル、3,3,3-トリフルオロ-2-メチル-2-ト リフルオロメチルプロピル、又は1-トリフルオロメチルシクロプロピルである。

[0100]

R³は、好ましくは、

- (3) C_{1.6}アルキル、又は、
- (4) -OR° { R°は、以下の(a)から(f)からなるグループから選択される1、2又は3個の 置換基で置換されてもよいC₁₋₆アルキルである;
 - (a) ハロゲン、
 - (b) ヒドロキシ、

10

20

30

- (c) C₁₋₆アルコキシ、
- (d) -C(0)NR^{c1}R^{c2} (R^{c1}及びR^{c2}は前記と同義である。)、
- (e) C_{6-10} アリール (該 C_{6-10} アリールは、
 - (i) ハロゲン、
 - (ii) ヒドロキシ、
 - (iii) C₁₋₆アルキル、
 - (iv) C₁₋₆アルコキシ、及び、
- (v) ハロC₁₋₄アルキルからなるグループから選択される1、2又は3個の置換基で置 換されてもよい。)、及び、
- (f) 5又は6員の、1、2又は3個の窒素原子、酸素原子又は硫黄原子を含むヘテロアリ ール(該ヘテロアリールは、
 - (i) ハロゲン、
 - (ii) ヒドロキシ、
 - (iii) C₁₋₆アルキル、
 - (iv) C_{1.6}アルコキシ、及び、
- (v) ハロC₁₋₁₄アルキルからなるグループから選択される1、2又は3個の置換基で置 換されてもよい。)} である。

 R^c は、好ましくは、以下の(e)及び(f)から選択される1又は2個の置換基で置換されて もよいメチル;

10

20

30

40

50

- (e) C_{6-10} アリール (該 C_{6-10} アリールは、
 - (i) ハロゲン、
 - (ii) ヒドロキシ、
 - (iii) C₁₋₆アルキル、
 - (iv) C₁₋₆アルコキシ、及び、
- (v) ハロC₁₋₄アルキルからなるグループから選択される1、2又は3個の置換基で 置換されてもよい。)、及び、
- (f) 5又は6員の、1、2又は3個の窒素原子、酸素原子又は硫黄原子を含むヘテロア リール(該ヘテロアリールは、
 - (i) ハロゲン、
 - (ii) ヒドロキシ、
 - (iii) C₁₋₆アルキル、
 - (iv) C₁₋₆アルコキシ、及び、
- (v) $\Pi \Pi C_{1-4}$ アルキルからなるグループから選択される1、2又は3個の置換基で 置換されてもよい。)であり、

より好ましくは、以下の(e1)及び(f1)から選択される1又は2個の置換基で置換されてもよ いメチル:

- (e1) フェニル (該フェニルは、
 - (i) ハロゲン、
 - (ii) ヒドロキシ、
 - (iii) C₁₋₆アルキル、
 - (iv) C₁ 。 アルコキシ、及び、
- (v) ハロC₁₋₄アルキルからなるグループから選択される1又は2個の置換基で置換 されてもよい。)、及び、
 - (f1) ピリジル(該ピリジルは、
 - (i) ハロゲン、
 - (ii) ヒドロキシ、
 - (iii) C₁₋₆アルキル、
 - (iv) C₁₋₆アルコキシ、及び、
 - (v) $\Pi \Pi C_{1-4} P \mu + \mu h \delta a \delta f \mu f h \delta 選択される1又は2個の置換基で置換$

されてもよい。) である。

[0101]

R⁴は、好ましくは水素、フルオロ、クロロ、又はメチルであり、より好ましくは水素である。

[0102]

R⁵は、好ましくは、

- (1) ハロゲン、
- (4) C_{1-6} アルキル(該 C_{1-6} アルキルは、ハロゲン、 C_{6-10} アリール及び C_{1-6} アルコキシからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)、
 - (5) C₃₋₇シクロアルキル、

10

20

- (6) -OR^d { R^dは、
 - (a) C_{2.6}アルキニル、
 - (b) 1、2又は3個のC₁₋₆アルキルで置換されてもよいC₃₋₇シクロアルキル、又は、
- (c) C_{1-8} アルキル (該 C_{1-8} アルキルは、以下の(i)から(v)からなるグループから選択される1、2又は3個の置換基で置換されてもよい;
 - (i) ハロゲン、
 - (ii) C₆₋₁₀アリール、
 - (iii) C₁ 6 アルコキシ、
- (iv) C_{3-7} シクロアルキル(該 C_{3-7} シクロアルキルは、 C_{1-6} アルキル及びハロ C_{1-6} アルキル及びハロ C_{4} アルキルからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)、及び、
- (v) 4、5又は6員の、1個の酸素原子を含む飽和ヘテロシクリル(該飽和ヘテロシクリルは、 C_{1-6} アルキル及びハロ C_{1-4} アルキルからなるグループから選択される1、2又は3個の置換基で置換されてもよい。))である。 $}$ 、又は
 - (7) 式:

[0103]

【化29】

[0104]

{ 式中、Reは、

30

- (a) C₁₋₆アルキル、
- (b) C_{3.7}シクロアルキル、
- (c) 5又は6員の、1、2又は3個の窒素原子、酸素原子又は硫黄原子を含むヘテロアリール、又は、
 - (d) C_{6-10} アリール (該 C_{6-10} アリールは、
 - (i) ハロゲン、
 - (ii) C₁₋₆アルキル、
 - (iii) ハロC₁₋₄アルキル、
 - (iv) C₁₋₆アルコキシ、及び、

40

(v) ハロ C_{1-4} アルコキシからなるグループから選択される1、2又は3個の置換基で置換されてもよい。) である。 }

である。

 R^d は、好ましくは、 C_{1-8} アルキル(該 C_{1-8} アルキルは、以下の(i)から(v)からなるグループから選択される1、2又は3個の置換基で置換されてもよい;

- (i) ハロゲン、
- (ii) C₆₋₁₀アリール、
- (iii) C₁₋₆アルコキシ、
- (iv) C_{3-7} シクロアルキル(該 C_{3-7} シクロアルキルは、 C_{1-6} アルキル及びハロ C_{1-4} アルキルからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)

(v) 4、5又は6員の、1個の酸素原子を含む飽和ヘテロシクリル(該飽和ヘテロシクリルは、 C_{1-6} アルキル及びハロ C_{1-4} アルキルからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)である。

(36)

Reは、好ましくは、

- (b) C_{3.7}シクロアルキル、
- (c) 5又は6員の、1、2又は3個の窒素原子、酸素原子又は硫黄原子を含むヘテロアリール、又は、
 - (d) C_{6-10} アリール (該 C_{6-10} アリールは、
 - (i) ハロゲン、

(ii) C₁₋₆アルキル、

- (iii) ハロC₁₋₄アルキル、
- (iv) C₁₋₆アルコキシ、及び、
- (v) ハロ C_{1-4} アルコキシからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)である。
- [0105]

m1は好ましくは0、1又は2であり、より好ましくは1又は2である。

[0106]

式[I]で表される化合物において、好ましい態様の一つは、下記式[I-A]:

[0107]

【化30】

[I-A]

[0108]

「式中、R⁴及びR⁵は水素原子が表記された炭素原子には置換せず、

 $X \setminus R^1 \setminus R^2 \setminus R^4$ は前記式 [I] における定義と同様であり、 R^5 は、

- (1) ハロゲン、
- (4) C_{1-6} アルキル(該 C_{1-6} アルキルは、ハロゲン、 C_{6-10} アリール及び C_{1-6} アルコキシからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)、
 - (5) C₃₋₇シクロアルキル、又は
 - (6) -OR^d { R^dは、
 - (a) C₂₋₆アルキニル、又は、
- (c) C_{1-8} アルキル(該 C_{1-8} アルキルは、以下の(i)から(v)からなるグループから選択 40 される1、2又は3個の置換基で置換されてもよい;
 - (i) ハロゲン、
 - (ii) C₆₋₁₀アリール、
 - (iii) C₁₋₆アルコキシ、
- (iv) C_{3-7} シクロアルキル(該 C_{3-7} シクロアルキルは、 C_{1-6} アルキル及びハロ C_{1-4} アルキルからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)、及び
- (v) 4、5又は6員の、1、2又は3個の窒素原子、酸素原子又は硫黄原子を含む飽和ヘテロシクリル(該飽和ヘテロシクリルは、 C_{1-6} アルキル及びハロ C_{1-4} アルキルからなるグループから選択される1、2又は3個の置換基で置換されてもよい。))である。 } であり

10

20

_ .

30

.

m7は0、1又は2であり、m7が2のとき、6R 5 は独立して選ばれる。] で表される化合物である。

[0109]

式[I]で表される化合物において、好ましい他の態様の一つは、下記式[I-B]:

[0110]

【化31】

$$(R^5)_{m7} \stackrel{H}{\underset{H}{\longrightarrow}} H \qquad R^1 \stackrel{R^4}{\underset{N}{\longrightarrow}} H$$

[I-B]

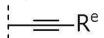
[0111]

「式中、R⁴及びR⁵は水素原子が表記された炭素原子には置換せず、

X、 R^3 、 R^4 は前記式「I]における定義と同様であり、

 R^1 は、クロロ又はトリフルオロメチルであり、

R⁵は、


- (4) C_{1-6} アルキル(該 C_{1-6} アルキルは、ハロゲン、 C_{6-10} アリール及び C_{1-6} アルコキシからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)、
 - (6) -OR^d { R^d は、

 C_{1-8} アルキル(該 C_{1-8} アルキルは、以下の(i)から(iv)からなるグループから選択される1、2又は3個の置換基で置換されてもよい;

- (i) ハロゲン、
- (ii) C₆₋₁₀アリール、
- (iii) C₁₋₆アルコキシ、及び
- (iv) C_{3-7} シクロアルキル(該 C_{3-7} シクロアルキルは、 C_{1-6} アルキル及びハロ C_{1-4} 30 アルキルからなるグループから選択される1、2又は3個の置換基で置換されてもよい。) }、又は
 - (7) 式:

[0112]

【化32】

[0113]

{ 式中、Reは、

- (b) C₃₋₇シクロアルキル、又は
- (d) C_{6-10} アリール (該 C_{6-10} アリールは、
 - (i) ハロゲン、
 - (ii) C₁₋₆アルキル、
 - (iii) ハロC₁₋₄アルキル、
 - (iv) C₁₋₆アルコキシ、及び、
- (v) $\Pi \Pi \Pi \Pi_{1-4}$ アルコキシからなるグループから選択される1、2又は3個の置換基で置換されてもよい。)}であり、

m7は0、1又は2であり、m7が2のとき、各 R^5 は独立して選ばれる。]

で表される化合物である。

[0114]

50

40

10

式[I]で表される化合物において、好ましい他の態様の一つは、下記式[I-C]:

[0115]

【化33】

[0116]

「式中、

Xは、CH又はNであり、

R^{b15}は、

- (ii) C₁₋₄アルキル(該C₁₋₄アルキルは、トリフルオロメチル及びメトキシから選 択される1又は2個の置換基で置換されてもよい。)、又は、
- (iv) トリフルオロメチルで置換されてもよいC_{3.7}シクロアルキル、であり、 R^{5a}は、

(1) フルオロ、

- (4) メチル(該メチルは、3個のフルオロで置換されてもよい。)、又は
- (6) -OR^d { R^dは、
 - (a) C_{2.4}アルキニル、又は、
- (c) 1個のC_{3.7}シクロアルキルで置換されてもよいC_{1.4}アルキル(該C_{3.7}シクロアル キルは、1個のトリフルオロメチルで置換されてもよい。)}であり、 R^{5b}は、
 - (1) ハロゲン、
 - (4) C₁₋₄アルキル、又は
 - (5) シクロプロピルであり、

m8は0又は1である。 1

で表される化合物である。

[0117]

式「I」で表される化合物(以下、本発明化合物ともいう)の薬学上許容される塩とは 、本発明化合物と無毒の塩を形成するものであればいかなる塩でもよく、例えば、無機酸 との塩、有機酸との塩、無機塩基との塩、有機塩基との塩、アミノ酸との塩等が挙げられ る。

様々な形態の薬学上許容される塩が当分野で周知であり、例えば以下の参考文献に記載 されている。

- (a) Berge 5 、 J. Pharm. Sci., 66, p 1-19 (1977) 、
- (b) Stahlb, 「Handbook of Pharmaceutical Salt: Properties, Selection, and Use」 (Wiley-VCH, Weinheim, Germany, 2002),
- (c) Paulekuhn 5, J. Med. Chem., 50, p 6665-6672 (2007)

無機酸との塩として、例えば、塩酸、硝酸、硫酸、リン酸、臭化水素酸等との塩が挙げ られる。

有機酸との塩として、例えば、シュウ酸、マレイン酸、クエン酸、フマル酸、乳酸、リ ンゴ酸、コハク酸、酒石酸、酢酸、トリフルオロ酢酸、グルコン酸、アスコルビン酸、メ タンスルホン酸、ベンゼンスルホン酸、 p - トルエンスルホン酸等との塩が挙げられる。

さらに、有機酸との塩として、例えば、アジピン酸、アルギン酸、4-アミノサリチル酸 、アンヒドロメチレンクエン酸、安息香酸、エデト酸カルシウム、ショウノウ酸、カンフ 10

20

30

40

ァ-10-スルホン酸、炭酸、エデト酸、エタン-1,2-ジスルホン酸、ドデシル硫酸、エタンスルホン酸、グルコへプトン酸、グルクロン酸、グリコリルアルサニル酸、ヘキシルレソルシン酸、フッ化水素酸、ヨウ化水素酸、ヒドロキシ-ナフトエ酸、2-ヒドロキシ-1-エタンスルホン酸、ラクトビオン酸、マンデル酸、メチル硫酸、メチル硝酸、メチレンビス(サリチル酸)、ガラクタル酸、ナフタレン-2-スルホン酸、2-ナフトエ酸、1,5-ナフタレンジスルホン酸、オレイン酸、パモ酸、パントテン酸、ペクチン酸、ピクリン酸、プロピオン酸、ポリガラクツロン酸、サリチル酸、ステアリン酸、タンニン酸、テオクル酸、チオシアン酸、またはウンデカン酸等との塩が挙げられる。

無機塩基との塩として、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩等が挙げられる。

さらに、無機塩基との塩として、例えばアルミニウム、バリウム、ビスマス、リチウム、または亜鉛との塩が挙げられる。

有機塩基との塩として、例えば、メチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、トリス(ヒドロキシメチル)メチルアミン、ジシクロヘキシルアミン、N,N'-ジベンジルエチレンジアミン、グアニジン、ピリジン、ピコリン、コリン、シンコニン、メグルミン等との塩が挙げられる。

さらに、有機塩基との塩として、例えば、アレコリン、ベタイン、クレミゾール、N-メチルグルカミン、N-ベンジルフェネチルアミン、または、トリス(ヒドロキシメチル)メチルアミンとの塩が挙げられる。

アミノ酸との塩として、例えば、リジン、アルギニン、アスパラギン酸、グルタミン酸等との塩が挙げられる。

上記の塩のうち、好ましくは塩酸、硫酸又は p - トルエンスルホン酸との塩である。 公知の方法に従って、式 「 I]で表される化合物と、無機塩基、有機塩基、無機酸、有

機酸、又はアミノ酸とを反応させることにより、各々の塩を得ることができる。

[0118]

式[I]で表される化合物又はその薬学上許容される塩は溶媒和物として存在することもある。「溶媒和物」とは、式[I]で表される化合物又はその薬学上許容される塩に、溶媒の分子が配位したものであり、水和物も包含される。溶媒和物は、薬学上許容される溶媒和物が好ましい。例えば、式[I]で表される化合物又はその薬学上許容される塩の水和物、エタノール和物、ジメチルスルホキシド和物等が挙げられる。具体的には、式[I]で表される化合物の半水和物、1水和物、2水和物又は1エタノール和物、或いは式[I]で表される化合物のナトリウム塩の1水和物又は2塩酸塩の2/3エタノール和物等が挙げられる。

公知の方法に従って、その溶媒和物を得ることができる。

[0119]

また、式 [I] で表される化合物は、同位元素(例えば、 2 H, 3 H, 14 C, 35 S等)で標識されていてもよい。

[0120]

本発明化合物は、互変異性体として存在する場合がある。その場合、本発明化合物は、個々の互変異性体又は互変異性体の混合物として存在し得る。例えば、式 [I]で表される化合物には、下記に示す互変異性体

[0121]

10

20

30

10

20

30

40

50

【化34】

[0122]

が存在し得るが、当該互変異性体も式[I]で表される化合物に包含される。

本発明化合物は、炭素二重結合を有する場合がある。その場合、本発明化合物は、E体、Z体、又はE体とZ体の混合物として存在し得る。

本発明化合物は、シス/トランス異性体として認識すべき立体異性体が存在する場合がある。その場合、本発明化合物は、シス体、トランス体、又はシス体とトランス体の混合物として存在し得る。

本発明化合物は、1又はそれ以上の不斉炭素を有する場合がある。その場合、本発明化合物は、単一のエナンチオマー、単一のジアステレオマー、エナンチオマーの混合物或いはジアステレオマーの混合物として存在する場合がある。

本発明化合物は、アトロプ異性体として存在する場合がある。その場合、本発明化合物は、個々のアトロプ異性体又はアトロプ異性体の混合物として存在し得る。

本発明化合物は、上記の異性体を生じさせる構造上の特徴を同時に複数含むことがある。また、本発明化合物は、上記の異性体をあらゆる比率で含み得る。

[0123]

本願明細書に立体化学を特定せずに表記した式、化学構造もしくは化合物名は、他に注釈等の言及がない限り、存在しうる上記の異性体すべてを含む。

[0124]

ジアステレオマー混合物は、クロマトグラフィーや結晶化等の慣用されている方法によって、それぞれのジアステレオマーに分離することができる。また、立体化学的に単一である出発物質を用いることにより、又は立体選択的な反応を用いる合成方法によりそれぞれのジアステレオマーを作ることもできる。

[0125]

エナンチオマーの混合物からのそれぞれの単一なエナンチオマーへの分離は、当分野でよく知られた方法で行うことができる。

例えば、ジアステレオマー混合物は、エナンチオマーの混合物と、実質的に純粋なエナンチオマーであってキラル補助剤(chiral auxiliary)として知られている化合物とを反応させることによって調製することができる。当該ジアステレオマー混合物は、前記の通りそれぞれのジアステレオマーに分離することができる。分離されたジアステレオマーを、付加されたキラル補助剤を開裂で除去することにより、目的のエナンチオマーに変換することができる。

また、当分野でよく知られた、キラル固定相を使用するクロマトグラフィー法によって 、化合物のエナンチオマーの混合物を直接分離することもできる。

或いは、化合物のどちらか一方のエナンチオマーを、実質的に純粋な光学活性出発原料を用いることにより、又は、プロキラル(prochiral)な中間体に対しキラル補助剤や不 斉触媒を用いた立体選択的合成(不斉誘導)を行うことによって得ることもできる。

[0126]

絶対立体配置は結晶性の生成物又は中間体のX線結晶解析により決定することができる。その際、必要によっては立体配置が既知である不斉中心を持つ試薬で誘導化された結晶性の生成物又は中間体を用いてもよい。

[0127]

式[I]で表される化合物又はその薬学上許容される塩としては、実質的に精製された

、式[I]で表される化合物又はその薬学上許容される塩が好ましい。さらに好ましくは、80%以上の純度に精製された、式[I]で表される化合物又はその薬学上許容される塩である。

[0128]

「医薬組成物」としては、錠剤、カプセル剤、顆粒剤、散剤、トローチ剤、シロップ剤、乳剤、懸濁剤等の経口剤、或いは外用剤、坐剤、注射剤、点眼剤、経鼻剤、経肺剤等の非経口剤が挙げられる。

[0129]

本発明医薬組成物は、医薬製剤の技術分野において自体公知の方法に従って、式[I]で表される化合物又はその薬学上許容される塩、或いはその溶媒和物を、少なくとも1種以上の薬学上許容される担体等と、適宜、適量混合等することによって、製造される。該医薬組成物中の式[I]で表される化合物又はその薬学上許容される塩、或いはその溶媒和物の含量は、剤形、投与量等により異なるが、例えば、組成物全体の0.00001から100重量%である。

[0130]

該「薬学上許容される担体」としては、製剤素材として慣用の各種有機又は無機担体物質が挙げられ、例えば、固形製剤における賦形剤、崩壊剤、結合剤、流動化剤、滑沢剤等、或いは液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤、界面活性剤、pH調整剤、粘稠剤等が挙げられる。更に必要に応じて、保存剤、抗酸化剤、着色剤、甘味剤等の添加物が用いられる。

[0131]

「賦形剤」としては、例えば、乳糖、白糖、D-マンニトール、D-ソルビトール、トウモロコシデンプン、デキストリン、微結晶セルロース、結晶セルロース、カルメロース、カルメロースカルシウム、カルボキシメチルスターチナトリウム、低置換度ヒドロキシプロピルセルロース、アラビアゴム等が挙げられる。

[0132]

「崩壊剤」としては、例えば、カルメロース、カルメロースカルシウム、カルメロースナトリウム、カルボキシメチルスターチナトリウム、クロスカルメロースナトリウム、クロスポビドン、低置換度ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、結晶セルロース等が挙げられる。

[0133]

「結合剤」としては、例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポビドン、結晶セルロース、白糖、デキストリン、デンプン、ゼラチン、カルメロースナトリウム、アラビアゴム等が挙げられる。

[0134]

「流動化剤」としては、例えば、軽質無水ケイ酸、ステアリン酸マグネシウム等が挙げられる。

[0135]

「滑沢剤」としては、例えば、ステアリン酸マグネシウム、ステアリン酸カルシウム、 タルク等が挙げられる。

[0136]

「溶剤」としては、例えば、精製水、エタノール、プロピレングリコール、マクロゴール、ゴマ油、トウモロコシ油、オリーブ油等が挙げられる。

[0137]

「溶解補助剤」としては、例えば、プロピレングリコール、D-マンニトール、安息香酸ベンジル、エタノール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム等が挙げられる。

[0138]

「懸濁化剤」としては、例えば、塩化ベンザルコニウム、カルメロース、ヒドロキシプロピルセルロース、プロピレングリコール、ポビドン、メチルセルロース、モノステアリ

10

20

30

40

ン酸グリセリン等が挙げられる。

[0139]

「等張化剤」としては、例えば、ブドウ糖、D-ソルビトール、塩化ナトリウム、D-マンニトール等が挙げられる。

[0140]

「緩衝剤」としては、例えば、リン酸水素ナトリウム、酢酸ナトリウム、炭酸ナトリウム、クエン酸ナトリウム等が挙げられる。

[0141]

「無痛化剤」としては、例えば、ベンジルアルコール等が挙げられる。

[0142]

「界面活性剤」としては、例えば、ポリオキシエチレン硬化ヒマシ油、モノステアリン酸ポリエチレングリコール、ポリオキシエチレンソルビタン脂肪酸エステル、アルキルジアミノエチルグリシン、アルキルベンゼンスルホン酸塩、塩化ベンゼトニウム等が挙げられる。

[0143]

「pH調整剤」としては、例えば、塩酸、硫酸、リン酸、クエン酸、酢酸、炭酸水素ナトリウム、炭酸ナトリウム、水酸化カリウム、水酸化ナトリウム、モノエタノールアミン、トリエタノールアミン等が挙げられる。

[0144]

「粘稠剤」としては、例えば、ポリビニルアルコール、カルボキシビニルポリマー、メチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、デキストラン等が挙げられる。

[0145]

「保存剤」としては、例えば、パラオキシ安息香酸エチル、クロロブタノール、ベンジルアルコール、デヒドロ酢酸ナトリウム、ソルビン酸等が挙げられる。

[0146]

「抗酸化剤」としては、例えば、亜硫酸ナトリウム、アスコルビン酸等が挙げられる。 【 0 1 4 7 】

「着色剤」としては、例えば、食用色素(例:食用赤色2号若しくは3号、食用黄色4号若しくは5号等)、 - カロテン等が挙げられる。

[0148]

「甘味剤」としては、例えば、サッカリンナトリウム、グリチルリチン酸ニカリウム、アスパルテーム等が挙げられる。

[0149]

本発明医薬組成物は、ヒトはもちろんのこと、ヒト以外の哺乳動物(例:ハムスター、モルモット、ネコ、イヌ、ブタ、ウシ、ウマ、ヒツジ、サル等)に対しても、経口的又は非経口的(例:局所、直腸、静脈投与等)に投与することができる。投与量は、投与対象、疾患、症状、剤形、投与ルート等により異なるが、例えば、成人の患者(体重:約60 kg)に経口投与する場合の投与量は、有効成分である本発明化合物として、1日あたり、通常約0.1 μg から10gの範囲である。これらの量を1回から数回に分けて投与することができる。

[0150]

上記式[I]で表される化合物又はその薬学上許容される塩、或いはその溶媒和物を、 医薬分野で行われている一般的な方法で、1剤又は複数の他の薬剤(以下、併用薬剤とも いう)と組み合わせて使用(以下、併用ともいう)することができる。

[0151]

上記式[I]で表される化合物又はその薬学上許容される塩、或いはその溶媒和物、及び併用薬剤の投与時期は限定されず、これらを投与対象に対し、配合剤として投与してもよいし、両製剤を同時に又は一定の間隔をおいて投与してもよい。また、本発明の医薬組成物及び併用薬剤とからなるキットであることを特徴とする医薬として用いてもよい。併

10

20

30

40

用薬剤の投与量は、臨床上用いられている投与量に準ずればよく、投与対象、疾患、症状、剤形、投与ルート、投与時間、組み合わせ等により適宜選択することができる。併用薬剤の投与形態は、特に限定されず、本発明化合物又はその塩、或いはその溶媒和物と併用薬剤とが組み合わされていればよい。

[0152]

併用薬剤としては、プロスタグランジン製剤、 遮断薬、 受容体作動薬、交感神経刺激剤、 遮断薬、炭酸脱水酵素阻害剤、抗コリンエステラーゼ剤、Rhoキナーゼ阻害剤等 の緑内障治療剤が挙げられる。

[0153]

プロスタグランジン製剤として、例えば、イソプロピルウノプロストン、ラタノプロスト、トラボプロスト、タフルプロスト、ビマトプロスト等が挙げられる。

遮断薬として、例えば、マレイン酸チモロール、塩酸ベフノロール、塩酸カルテオロール、塩酸ベタキソロール、ニプラジロール、塩酸レボブノロール等が挙げられる。

[0154]

受容体作動薬として、例えば、ブリモニジン酒石酸塩等が挙げられる。

[0155]

交感神経刺激剤として、例えば、塩酸ジピベフリン、塩酸ピロカルピン等が挙げられる

[0156]

遮断薬として、例えば、塩酸ブナゾシン等が挙げられる。

[0 1 5 7]

炭酸脱水酵素阻害剤として、例えば、塩酸ドルゾラミド、ブリンゾラミド等が挙げられる。

[0158]

抗コリンエステラーゼ剤の例として、例えば、臭化ジスチグミン等が挙げられる。

[0159]

Rhoキナーゼ阻害剤の例として、例えば、リパスジル塩酸塩水和物等が挙げられる。

[0160]

具体的な薬剤の組み合わせとしては、例えば、ラタノプロスト、トラボプロスト、タフルプロスト、マレイン酸チモロール、塩酸ドルゾラミド、及びブリンゾラミドから選択される1の薬剤と、上記式[I]で表される化合物又はその薬学上許容される塩、或いはその溶媒和物との組み合わせが挙げられる。

[0161]

次に、本発明の実施に用いる化合物の製造方法の一例を説明するが、本発明化合物又はその薬学上許容される塩の製造方法はこれらに限定されるものではない。

下記製造方法に記載はなくとも、必要に応じて官能基に保護基を導入し、後工程で脱保護を行う;各製法及び工程の順序を入れ替える;反応の進行を促進するために、例示した 試薬以外の試薬を適宜用いる等の工夫により効率よい製造を実施してもよい。

また、各工程において、反応後の処理は、通常行われる方法で行えばよく、単離精製は、必要に応じて、結晶化、再結晶、蒸留、分液、シリカゲルカラムクロマトグラフィー、分取HPLC等の慣用される方法を適宜選択し、また組み合わせて行えばよい。場合によっては、単離精製せずに次の工程に進めることができる。

また、塩を形成しうる中間体は塩として得てもよく、また塩として反応に用いてもよい。このような塩の例として、アミノ基を有する中間体の塩酸塩が挙げられる。

[0162]

[製造方法1-1]

[0163]

20

10

30

【化35】

$$(R^5)_{m1}$$
 $(R^5)_{m1}$ $($

[0164]

(式中、Hal¹はクロロ又はブロモ;

 R^6 はメチル、エチル等の C_{1-6} アルキル又はベンジル;

Zは-B(OH)₂、-B(OR⁷)₂(ここでR⁷はC₁₋₄アルキル又は一方のR⁷が他方のR⁷と結合して環を 形成してもよい)、-BF₃、式

[0165]

【化36】

EB CH³

[0166]

等の鈴木カップリング反応に用いられるホウ素置換基;

X、Cy、 R^5 、m1は前記式 [I]における定義と同義である。)

[0167]

(工程1-1-1)

化合物[1]と化合物[2]との鈴木カップリング反応により、化合物[3]を得ることができる。例えば、溶媒中、加熱下で塩基及びパラジウム触媒の存在下、化合物[1]を化合物[2]と反応させることにより化合物[3]を得ることができる。必要に応じて配位子を添加しても良い。鈴木カップリング反応が二度進行することを防ぐため、化合物[2]に対して1.5当量以上の化合物[1]を用いることが好ましい。

反応に用いるパラジウム触媒としては、例えば、酢酸パラジウム、テトラキストリフェニルホスフィンパラジウム、ビス(トリフェニルホスフィン)パラジウムジクロリド、(ビス(ジフェニルホスフィノ)フェロセン)パラジウムジクロリド - 塩化メチレン錯体等が挙げられる。

反応に用いる塩基としては、リン酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、酢酸カリウム、酢酸ナトリウム、フッ化セシウム等のアルカリ金属塩等の無機塩基、トリエチルアミン等の有機塩基が挙げられる。

20

30

40

反応に用いる配位子としては、トリフェニルホスフィン、トリシクロヘキシルホスフィン、2,2 '-ビス(ジフェニルホスフィノ)-1,1 '-ビナフタレン、2-ジシクロヘキシルホスフィノ-2 ',6 '-ジメトキシビフェニル等の有機リン系配位子等が挙げられる。

反応に用いる溶媒としては、1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒;メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール系溶媒;トルエン、キシレン、ヘキサン等の炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル等の極性溶媒;それらの混合溶媒、及びそれらと水との混合溶媒が挙げられる。

化合物[1]は2,4-ジクロロ-6-メトキシ-1,3,5-トリアジンのような市販品であってもよく、又は市販品を適宜当業者に周知の方法で変換して得られるものであってもよい。

鈴木カップリング反応については、例えば次のような総説が知られている(SUZUKI, A et al. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Ch em Rev. 1995, Vol.95, pages 2457-2483.)。

[0168]

(工程1-1-2)

化合物[3]と化合物[4]との鈴木カップリング反応により、化合物[5]を得ることができる。例えば、溶媒中、加熱下で塩基及びパラジウム触媒の存在下、化合物[3] を化合物[4]と反応させることにより化合物[5]を得ることができる。必要に応じて配位子を添加しても良い。

反応に用いるパラジウム触媒としては、例えば、酢酸パラジウム、テトラキストリフェニルホスフィンパラジウム、ビス(トリフェニルホスフィン)パラジウムジクロリド、(ビス(ジフェニルホスフィノ)フェロセン)パラジウムジクロリド - 塩化メチレン錯体等が挙げられる。

反応に用いる塩基としては、リン酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、酢酸カリウム、酢酸ナトリウム、フッ化セシウム等のアルカリ金属塩等の無機塩基、トリエチルアミン等の有機塩基が挙げられる。

反応に用いる配位子としては、トリフェニルホスフィン、トリシクロヘキシルホスフィン、2,2 '-ビス(ジフェニルホスフィノ)-1,1 '-ビナフタレン、2-ジシクロヘキシルホスフィノ-2',6'-ジメトキシビフェニル等の有機リン系配位子等が挙げられる。

反応に用いる溶媒としては、1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒;メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール系溶媒;トルエン、キシレン、ヘキサン等の炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル等の極性溶媒;それらの混合溶媒、及びそれらと水との混合溶媒が挙げられる。

[0169]

(工程1-1-3)

化合物 [5]のアルコキシを加水分解でヒドロキシに変換することにより、化合物 [I]を得ることができる。例えば、 R^6 が C_{1-6} アルキルの場合、化合物 [5]を溶媒中、塩基の存在下、室温から加熱下で反応させた後、得られた溶液を中性にすることにより化合物 [I]を得ることができる。

反応に用いる塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド等が挙げられる。

反応に用いる溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール系溶媒と水との混合溶媒;又はそれらと1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒との混合溶媒が挙げられる。

[0170]

[製造方法1-2]

10

20

30

40

化合物「2]は例えば製造方法1-2により得ることができる。

[0171]

[製造方法1-2]

[0172]

【化37】

10

[0173]

(式中、 L^1 はプロモ、ヨード、トリフルオロメタンスルホニルオキシ等の脱離基; $X \times R^5$ 、m1は前記式 [I] における定義と同義であり、Zは前記製造方法 1 - 1 における定義と同義である。)

[0174]

(工程1-2)

化合物 [2] は化合物 [6] をホウ素化することにより得ることができる。例えば、加熱下で塩基及びパラジウム触媒の存在下、化合物 [6] をホウ素試薬と反応させることにより化合物 [2] を得ることができる。必要に応じて配位子を添加しても良い。

20

反応に用いるホウ素試薬としては、4,4,4',4',5,5,5',5'-1カクタメチル-2,2'-ビ-1,3,2-1 ジオキサボロラン、5,5,5',5'-1 テトラメチル-2,2'-U-1,3,2-1 ジオキサボリナン、テトラヒドロキシジボロン、4,4,5,5-1 テトラメチル-1,3,2-1 ジオキサボロラン等が挙げられる。

反応に用いるパラジウム触媒としては、例えば、酢酸パラジウム、テトラキストリフェニルホスフィンパラジウム、ビス(トリフェニルホスフィン)パラジウムジクロリド、(ビス(ジフェニルホスフィノ)フェロセン)パラジウムジクロリド - 塩化メチレン錯体等が挙げられる。

反応に用いる塩基としては、リン酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、酢酸カリウム、酢酸ナトリウム、フッ化セシウム等のアルカリ金属塩等の無機塩基、トリエチルアミン等の有機塩基が挙げられる。

30

反応に用いる配位子としては、トリフェニルホスフィン、トリシクロヘキシルホスフィン、2,2 '- ビス(ジフェニルホスフィノ)-1,1 '- ビナフタレン、2-ジシクロヘキシルホスフィノ-2 ',6 '- ジメトキシビフェニル等の有機リン系配位子等が挙げられる。

反応に用いる溶媒としては、1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒;メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール系溶媒;トルエン、キシレン、ヘキサン等の炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル等の極性溶媒;それらの混合溶媒、及びそれらと水との混合溶媒が挙げられる。

を - 40 : が

また、化合物 [6]を溶媒中、-78 から室温下で有機金属試薬を加えた後、生成物を-78 から室温下でホウ素化合物と反応させることによっても、化合物 [2]を得ることができる。

反応に用いる有機金属試薬としては、n-ブチルリチウム、tert-ブチルリチウム、イソプロピルマグネシウムクロリド等が挙げられる。

反応に用いるホウ素試薬としては、ホウ酸トリメチル、ホウ酸トリイソプロピル、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン等が挙げられる。

反応に用いる溶媒としては、1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒;トルエン、キシレン、ヘキサン等の炭化水素系溶媒、及びそれらの混合溶媒が挙げられる。

化合物[6]は、一例として以下に示すような市販品であってもよく、又は市販品を適

10

50

宜当業者に周知の方法で変換して得られるものであってもよい。

[0175]

【化38】

$$F_3C$$
 Br
 CI
 Br
 F_3C
 Br
 Br
 Br
 Br

[0176]

化合物[2]は、一例として以下に示すような市販品であってもよく、又は市販品を適 宜当業者に周知の方法で変換して得られるものであってもよい。

[0177]

[0178]

【化39】

(式中、Zは前記製造方法1-1における定義と同義である。)

[0179]

[製造方法1-3]

化合物[4]は例えば製造方法1-3により得ることができる。

[0180]

[製造方法1-3]

[0181]

【化40】

$$R^1$$
 工程1-3 R^4 工程1-3 R^4 R^5 R^6 R^6 R^6 R^6 R^8 R^8

[0182]

(式中、 R^1 、 R^2 、 R^3 、 R^4 は前記式 [I]における定義と同義であり、 L^1 は前記製造方法 1 - 2における定義と同義であり、Zは前記製造方法 1 - 1における定義と同義である。)

[0183]

(工程1-3)

化合物 [4] は化合物 [8a] 又は [8b] である。製造方法 1 - 2の工程 1 - 2と同様の方法で、化合物 [7a] 又は [7b] をホウ素化することにより化合物 [8a] 又は [8b]、すなわち化合物 [4] を得ることができる。

化合物[7a]又は[7b]は、2-ブロモ-4-メチルベンゾニトリルや2-ブロモ-3-メチルフェノールような市販品であってもよく、又は市販品を適宜当業者に周知の方法で変換して得られるものであってもよい。

[0184]

また化合物 [4]は、一例として以下に示すような市販品であってもよく、又は市販品を適宜当業者に周知の方法で変換して得られるものであってもよい。

[0185]

10

20

【化41】

[0186]

(式中、Zは前記製造方法1-1における定義と同義である。)

[0187]

[製造方法2-1]又は[製造方法2-3]

環Cyの置換基を適宜変換することによって、例えば式[I]において環Cyが式

[0188]

【化42】

[0189]

(式中、R¹、R⁴、R^{b15}、nは前記式[I]における定義と同義である。)

である化合物 [I - a 1] を得ることができる。

 C_nH_{2n} が直鎖状の場合は製造方法 2 - 1が好ましく、 C_nH_{2n} が分岐鎖状の場合は製造方法 2 - 3 が好ましい。

[0190]

[製造方法2-1]

[0191]

40

10

20

$$R^1$$
 工程2-1-1 R^4 工程2-1-2 Z^2 Z^2

$$R^1$$
 R^4 工程2-1-6 R^1 R^4 R

$$R^{1}$$
 工程2-1-8 P^{4} 工程2-1-9 脱保護 P^{2} [16] P^{2} [17] P^{2} [18] P^{2} P^{2}

$$R^{1}$$
 R^{4} T 程2-1-10 T R^{1} R^{4} R^{4

$$(R^5)_{m1}$$
 R^1 R^4 工程2-1-11 R^4 R^4

[0192]

(式中、Yは式

[0193]

【化44】

[0194]

(式中、 R^5 、 R^6 、m1は前記式 [I] における定義と同義である。); $C_{1-6}Alkyl$ は C_{1-6} アルキル;

50

10

20

30

tは0、1、2又は3であり、 $-(C_tH_{2t})$ -は直鎖状又は分枝鎖状のいずれであってもよく; Hal^2 はプロモ又はヨード;

P^vはメトキシメチル等のヒドロキシ基の保護基:

Pwはtert-ブトキシカルボニル等のアミノ基の保護基;

 L^2 はクロロ、プロモ等のハロゲン、メタンスルホニルオキシ、p-トルエンスルホニルオキシ等の脱離基:

 R^1 、 R^4 、 R^6 、 R^{b15} 、nは前記式 [I] における定義と同義であり、Zは前記製造方法 1 - 1 における定義と同義である。)

[0195]

(工程2-1-1)

化合物 [9]のエステルを加水分解でカルボキシに変換することにより、化合物 [10]を得ることができる。例えば、化合物 [9]を溶媒中、塩基の存在下、室温から加熱下で反応させた後、得られた溶液を中性にすることにより化合物 [10]を得ることができる。

反応に用いる塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド等が挙げられる。

反応に用いる溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール系溶媒と水との混合溶媒;又はそれらと1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒との混合溶媒が挙げられる。

化合物 [9]は例えば以下に示すような市販品であってもよく、又は市販品を適宜当業者に周知の方法で変換して得られるものであってもよい。

[0196]

【化45】

[0197]

(工程2-1-2)

化合物 [10]のカルボキシを還元でヒドロキシに変換することにより、化合物 [11]を得ることができる。例えば、化合物 [10]を溶媒中、氷冷下から室温下で還元剤と 反応させることにより化合物 [11]を得ることができる。

反応に用いる還元剤としては、水素化アルミニウムリチウム、水素化ジイソブチルアルミニウム、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、ボラン-テトラヒドロフラン錯体等が挙げられる。

反応に用いる溶媒としては、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル、トルエン、キシレン、ヘキサン等及びそれらの混合溶媒が挙げられる。

[0198]

(工程2-1-3)

化合物 [11] のヒドロキシ基を保護することにより、化合物 [12] を得ることができる。保護反応は、採用される保護基に応じた公知の方法で行えばよい。

例えばP^vがメトキシメチルである場合、テトラヒドロフラン、1,2-ジメトキシエタン、シクロペンチルメチルエーテル、N,N-ジメチルホルムアミド等の溶媒中、水素化ナトリウム等の塩基の存在下、氷冷から室温下で化合物[11]をクロロメチルメチルエーテルと反応させることにより、化合物[12]を得ることができる。

[0199]

(工程2-1-4)

10

20

30

40

10

20

30

40

50

製造方法1-2の工程1-2と同様の方法で、化合物[12]をホウ素化することにより化合物[13]を得ることができる。

[0200]

(工程2-1-5)

製造方法1-1の工程1-1-2と同様の方法で、化合物[3]と化合物[13]との 鈴木カップリング反応により化合物[14]を得ることができる。

[0201]

(工程2-1-6)

常法のヒドロキシ脱保護反応で、化合物[14]のP'を除去することにより、化合物[15]を得ることができる。脱保護反応は、採用される保護基に応じた公知の方法で行えばよい。

例えばP^{*}がメトキシメチルである場合、クロロホルム、1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル、酢酸エチル、エタノール、メタノール、水等の単独又は混合溶媒中、塩酸、トリフルオロ酢酸、メタンスルホン酸等の酸で処理をすればよい。

また、製造方法1-1の工程1-1-2と同様の方法で、化合物[3]と式

[0202]

【化46】

$$R^{1}$$
 Z
 R^{4}
 $(C_{t}H_{2t})$
 OH

[0203]

(式中、R¹及びR⁴は前記式[I]における定義と同義であり、Zは前記製造方法 1 - 1における定義と同義であり、tは前記製造方法 2 - 1における定義と同義である。)で表される化合物[23]との鈴木カップリング反応によっても、化合物[15]を得ることができる。

[0204]

(工程2-1-7)

化合物 [1 5] のヒドロキシを脱離基 L^2 に変換することにより化合物 [1 6] を得ることができる。例えば、 L^2 がメタンスルホニルオキシである場合、化合物 [1 5] を溶媒中、塩基存在下で、室温下でメタンスルホニルクロライドと反応させることにより、化合物 [1 6] を得ることができる。 L^2 がブロモである場合、化合物 [1 5] を溶媒中、トリフェニルホスフィン存在下で、氷冷から室温下で四臭化炭素と反応させることにより、化合物 [1 6] を得ることができる。

反応に用いる塩基としては、トリエチルアミン、ピリジン等が挙げられる。

反応に用いる溶媒としては、1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒;トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジクロロメタン、クロロホルム等のハロゲン系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル等の極性溶媒が挙げられる。

上記トリフェニルホスフィンに代えてジメチルスルフィドを用いることができ、上記四 臭化炭素に代えてN-ブロモスクシンイミドを用いることができる。

上記メタンスルホニルクロライドに代えて、p-トルエンスルホニルクロライドや、ベンゼンスルホニルクロライドを用いることができる。

[0205]

(工程2-1-8)

化合物[16]を溶媒中、塩基の存在下、室温から加熱下で化合物[17]と反応させ

ることにより、化合物 [18]を得ることができる。保護基P^wとしては、例えばtert-ブトキシカルボニルが挙げられる。

反応に用いる塩基としては、炭酸セシウム、リン酸カリウム、炭酸ナトリウム、炭酸カ リウム等のアルカリ金属塩等の無機塩基が挙げられる。

反応に用いる溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル等の極性溶媒が挙げられる。

[0206]

(工程2-1-9)

化合物 [1 8] の保護基P^wを、常法のアミン脱保護反応で除去することにより、化合物 [1 9] を得ることができる。脱保護反応は、採用される保護基に応じた公知の方法で行えばよい。

例えばP^wがtert-ブトキシカルボニルである場合、溶媒中、塩酸、トリフルオロ酢酸、 メタンスルホン酸等の酸で処理をすればよい。

反応に用いる溶媒としては、1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒;トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジクロロメタン、クロロホルム等のハロゲン系溶媒;酢酸エチル等のエステル系溶媒;メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール系溶媒が挙げられる。

[0207]

(工程2-1-10)

常法のアミド結合形成反応で、例えば、化合物 [19]を溶媒中、縮合剤及び添加剤の存在下、化合物 [20]と反応させることにより、化合物 [21]を得ることができる。必要に応じて塩基を添加しても良い。

反応に用いる縮合剤としては、ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC・HCI)、ジイソプロピルカルボジイミド、1,1'-カルボニルジイミダゾール(CDI)、0-(7-アザベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムヘキサフルオロフォスフェート(HATU)、ヘキサフルオロリン酸(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム(PyBOP)又はジフェニルホスホリルアジド等が挙げられる。

反応に用いる添加剤としては、1-ヒドロキシベンゾトリアゾール(HOBt)、1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt)、N-ヒドロキシコハク酸イミド(HOSu)、4-ジメチルアミノピリジン等が挙げられる。

反応に用いる塩基としては、ピリジン、トリエチルアミン等の有機塩基が挙げられる。 反応に用いる溶媒としては、1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル 、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒;トルエン 、ヘキサン、キシレン等の炭化水素系溶媒;ジクロロメタン、クロロホルム等のハロゲン 系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド 、アセトニトリル、ピリジン等の極性溶媒が挙げられ、これらは単独又は2種以上を混合 して使用することができる。

化合物 [20]はシクロペンタンカルボン酸や1-(トリフルオロメチル)シクロプロパン-1-カルボン酸のような市販品であってもよく、又は市販品を適宜当業者に周知の方法で変換して得られるものであってもよい。

[0208]

(工程2-1-11)

化合物 [21] は化合物 [22] と表記することができる。製造方法 1-1の工程 1-1-3と同様に、化合物 [22]のアルコキシを加水分解でヒドロキシに変換することにより、化合物 [I-a1]を得ることができる。

[0209]

[製造方法2-2]

化合物 [1 0] においてR¹がC₁₋₆アルキル又はクロロである化合物 [1 0 a] を [製造

20

10

30

40

方法2-2]によっても得ることができる。

[0210]

[製造方法2-2]

[0211]

【化47】

$$R^{X}$$
 R^{4} 工程2-2 R^{X} R^{4} R^{4} R^{4} R^{2} R^{2} R^{2} R^{3} R^{4} R^{4

[0212]

(式中、 R^{x} は C_{1-6} アルキル又はクロロ;

 R^4 は前記式 [I] における定義と同義であり、 Hal^2 、tは前記製造方法 2-1 における定義と同義である。)

[0213]

(工程2-2)

化合物 [2 4] をハロゲン化することにより化合物 [1 0 a] を得ることができる。例えば、 Hal^2 がヨードである場合、化合物 [2 4] を酸中、室温下でN-ヨードスクシンイミドと反応させることにより、化合物 [1 0 a] を得ることができる。

反応に用いる酸としては、濃硫酸等が挙げられる。

化合物 [24]は4-クロロフェニル酢酸、3-(4-クロロフェニル)プロピオン酸、又は4-(4-クロロフェニル)ブタン酸、4-メチルフェニル酢酸、又は2-(4-メチルフェニル)プロピオン酸のような市販品であってもよく、又は市販品を適宜当業者に周知の方法で変換して得られるものであってもよい。

[0214]

「製造方法 2 - 3]

[0215]

10

【化48】

工程2-3-5
$$P^{\times}$$
 P^{\times} $P^$

工程2-3-7
$$\mathcal{P} \in \mathcal{F}$$
化 $(C_{j}H_{2j})$ = $(C_{h}H_{2n})$ $(C$

[0216]

(式中、j及びkはそれぞれ0、1、2又は3で、かつj+k=n-1であり;

 R^1 、 R^4 、 R^5 、 R^{b15} 、nは前記式「I]における定義と同義であり、

Zは前記製造方法1-1における定義と同義であり、

 Hal^2 、Y、 P^w 、 L^2 は前記製造方法 2 - 1 における定義と同義である。)

[0217]

(工程2-3-1)

40

製造方法1-2の工程1-2と同様の方法で、化合物[25]をホウ素化することによ り化合物[26]を得ることができる。

化合物[25]は1-(3-ブロモ-4-クロロフェニル)プロパン-1-オンや1-(3-ブロモ-4 - クロロフェニル) ブタン-1-オンのような市販品であってもよく、又は市販品を適宜当業 者に周知の方法で変換して得られるものであってもよい。

[0218]

(工程2-3-2)

製造方法1-1の工程1-1-2と同様の方法で、化合物[3]と化合物[26]との 鈴木カップリング反応により化合物 [27]を得ることができる。

[0219]

10

(工程2-3-3)

化合物 [27]のカルボキシを還元でヒドロキシに変換することにより、化合物 [28]を得ることができる。例えば、化合物 [27]を溶媒中、氷冷下から室温下で還元剤と 反応させることにより化合物 [28]を得ることができる。

反応に用いる還元剤としては、水素化ホウ素ナトリウム等が挙げられる。

反応に用いる溶媒としては、メタノール、エタノール、2-プロパノール、1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等が挙げられる。

[0220]

(工程2-3-4)

10

製造方法2-1の工程2-1-7と同様の方法で、化合物[28]のヒドロキシを脱離 基L²に変換することにより化合物[29]を得ることができる。

[0221]

(工程2-3-5)

製造方法 2 - 1 の工程 2 - 1 - 8 と同様の方法で、化合物 [2 9] を化合物 [1 7] と 反応させることにより、化合物 [3 0] を得ることができる。

[0222]

(工程2-3-6)

製造方法 2 - 1 の工程 2 - 1 - 9 と同様の方法で、化合物 [3 0] の保護基P[™]を除去することにより、化合物 [3 1] を得ることができる。

20

[0223]

(工程2-3-7)

製造方法 2 - 1 の工程 2 - 1 - 1 0 と同様の方法で、化合物 [3 1] を化合物 [2 0] と反応させることにより、化合物 [3 2] を得ることができる。

[0224]

(工程2-3-8)

化合物 [32] は化合物 [22] と表記することができる。製造方法 1 - 1 の工程 1 - 1 - 3 と同様に、化合物 [22] のアルコキシを加水分解でヒドロキシに変換することにより、化合物 [I - a 1] を得ることができる。

[0225]

30

製造方法 2 - 1 において、化合物 [9]を工程 2 - 1 - 4、工程 2 - 1 - 5、工程 2 - 1 - 1 1 の反応に付すことにより、式 [I]において環Cyが式

[0226]

【化49】

$$R^{1}$$
 R^{4}
 $(C_{n}H_{2n})$
 O
 OH

[0227]

40

(式中、 R^1 、 R^4 、nは前記式 [I] における定義と同義である。)である化合物 [I - a 2] を得ることができる。

[0228]

製造方法 2-1 において、化合物 [10] にジメチルアミンやtert - ブチルアミン等の $HNR^{b1}R^{b2}$ を用いて工程 2-1-10 と同様の方法でアミド結合形成反応を行う。その後、生成物を工程 2-1-4、工程 2-1-5、工程 2-1-10 反応に付すことにより、式 [I] において環Cyが式

[0229]

【化50】

$$R^{1}$$
 R^{4}
 $(C_{n}H_{2n})$
 R^{b2}

[0230]

(式中、 R^1 、 R^4 、 R^{b1} 、 R^{b2} 、nは前記式 [I] における定義と同義である。)である化合物 [I - a 3] を得ることができる。

[0231]

製造方法 2 - 1 において、化合物 [1 5] を工程 2 - 1 - 1 1 の反応に付すことにより、式 [I] において環Cyが式

[0232]

【化51】

$$R^1$$
 (C_nH_{2n})
OH

[0233]

(式中、 R^1 、 R^4 、nは前記式 [I]における定義と同義である。)

である化合物 [I - a 4] を得ることができる。

[0234]

製造方法 2 - 1 において、化合物 [15] を用いて工程 2 - 1 - 1 1 の反応を行う。その後、生成物を無水酢酸やプロピオン酸無水物等の C_{1-6} アルキル-カルボン酸無水物と反応させることにより、式 [I] において環Cyが式

[0235]

【化52】

 R^{1} R^{4} $C_{n}H_{2n}$ $C_{1-6}AlkyI$

[0236]

(式中、 R^1 、 R^4 、nは前記式 [I] における定義と同義であり、 C_{1-6} Alkylは前記製造方法 2-1 における定義と同義である。)である化合物 [I -a5] を得ることができる。

[0 2 3 7]

製造方法 2 - 1 において、化合物 [1 5] に塩基の存在下ジメチルカルバモイルクロライドやジエチルカルバモイルクロライド等のCIC(0)NR b3 R b4 を反応させる。その後、生成物を工程 2 - 1 - 1 1 の反応に付すことにより、式 [I] において環Cyが式

[0238]

10

20

30

10

30

40

【化53】

$$R^{1}$$
 R^{4}
 $(C_{n}H_{2n})$
 R^{b3}
 R^{b4}

[0239]

(式中、 R^1 、 R^4 、 R^{b3} 、 R^{b4} 、nは前記式 [I] における定義と同義である。)

である化合物「I-a6] を得ることができる。

[0240]

製造方法 2 - 1 において、化合物 [15] に水素化ナトリウム及び C_{1-6} アルキルハライドを用いてアルキル化反応を行う。その後、生成物を工程 2 - 1 - 1 1 の反応に付すことにより、式 [I] において環Cyが式

[0241]

【化54】

$$R^{1}$$

$$R^{4}$$

$$(C_{n}H_{2n})$$

$$C_{1-6}AlkyI$$

[0242]

(式中、 R^1 、 R^4 、nは前記式 [I] における定義と同義であり、 C_{1-6} Alkylは前記製造方法 2 - 1 における定義と同義である。)

である化合物[I-a7]を得ることができる。

[0243]

製造方法 2 - 1 において、化合物 [1 6] にジメチルアミンやジエチルアミン等のHNR^b 8R^{b 9}を用いてアミノ化反応を行う。その後、生成物を工程 2 - 1 - 1 1 の反応に付すことにより、式 [I] において環Cyが式

[0244]

【化55】

$$R^1$$
 R^4
 (C_nH_{2n})
 R^{b8}
 R^{b9}

[0245]

(式中、 R^1 、 R^4 、 R^{b8} 、 R^{b9} 、nは前記式 [I] における定義と同義である。)

である化合物 [I - a 8] を得ることができる。

[0246]

製造方法 2 - 1 において、化合物 [1 6] に水素化ナトリウム、及びN-メチルアセトアミドや 2 - ピロリジノン等の $HNR^{b14}C(O)R^{b15}$ を用いて反応を行う。その後、生成物を工程 2 - 1 - 1 1 の反応に付すことにより、式 [I] において環Cyが式

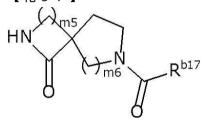
[0247]

【化56】

$$\begin{array}{c}
R^{1} \\
(C_{n}H_{2n}) \\
R^{b14}
\end{array}$$

$$\begin{array}{c}
R^{b15}
\end{array}$$

[0248]

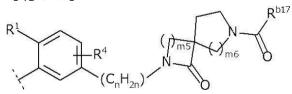

(式中、R¹、R⁴、R^{b14}、R^{b15}、nは前記式[I]における定義と同義である。) である化合物[I-a9]を得ることができる。

[0249]

製造方法2-1において、化合物「16]に水素化ナトリウム及び式

[0250]

【化57】


[0251]

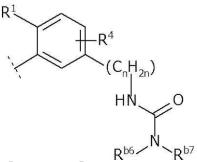
(式中、R^{b17}、m5、m6は前記式 [I] における定義と同義である。)

で表される化合物[33]を用いて反応を行う。その後、生成物を工程2-1-11の反 応に付すことにより、式[I]において環Cyが式

[0252]

【化58】

[0253]


(式中、R¹、R⁴、R^{b17}、n、m5、m6は前記式[I]における定義と同義である。)である 化合物[I・a10]を得ることができる。

[0254]

製造方法2-1において、化合物[19]に塩基の存在下、ジメチルカルバモイルクロ ライドやジエチルカルバモイルクロライド等のCIC(0)NRb6Rb7を反応させる。その後、生 成物を工程 2 - 1 - 1 1 の反応に付すことにより、式 [I] において環Cyが式

[0255]

【化59】

[0256]

10

20

30

(式中、 R^1 、 R^4 、 R^{b6} 、 R^{b7} 、nは前記式 [I] における定義と同義である。)である化合物 [I - a 1 1] を得ることができる。

[0257]

製造方法 2-1 において、化合物 [19] に塩基の存在下、メタンスルホニルクロライド等の $R^{b11}S(0)_2$ CIを反応させる。その後、生成物を工程 2-1-1 の反応に付すことにより、式 [I] において環Cyが式

[0258]

【化60】

$$R^{4}$$
 $(C_{n}H_{2n})$
 HN
 S
 R^{b11}

[0259]

(式中、 R^1 、 R^4 、 $R^{b\,1\,1}$ 、nは前記式 [I] における定義と同義である。)

である化合物 [I - a 1 2] を得ることができる。

[0260]

製造方法 2 - 1 において、化合物 [1 9] に塩基の存在下、エチルクロロホルメート等の $R^{b13}OC(0)CI$ を反応させる。その後、生成物を工程 2 - 1 - 1 1 の反応に付すことにより、式 [I] において環Cyが式

[0261]

【化61】

$$R^1$$
 R^4
 (C_nH_{2n})
 HN
 O
 R^{b13}

[0262]

(式中、 R^1 、 R^4 、 $R^{b\,1\,3}$ 、nは前記式 [I] における定義と同義である。)である化合物 [I - a 1 3] を得ることができる。

[0263]

製造方法 2 - 3 において、化合物 [2 7] を工程 2 - 3 - 8 の反応に付すことにより、式 [I] において環Cyが式

[0264]

【化62】

$$\begin{array}{c|c}
R^{1} & R^{4} \\
 & (C_{j}H_{2j}) \\
 & (C_{k}H_{2k}) & O
\end{array}$$

10

20

30

(式中、 R^1 、 R^4 は前記式 [I] における定義と同義であり、j、kは前記製造方法 2 - 2 における定義と同義である。)

である化合物 [I-a14]を得ることができる。

[0266]

製造方法 2 - 4 により式 [I] において環Cyが式

[0267]

【化63】

[0268]

(式中、 R^1 、 R^4 、 $R^{b \cdot 16}$ 、m2、m3、m4は前記式 [I]における定義と同義であり、tは前記製造方法 2-1における定義と同義である。)

である化合物[I-a15]を得ることができる。

[0269]

[製造方法2-4]

[0270]

【化64】

$$C_{1-6}$$
Alkyl C_{1-6} Alkyl $C_$

$$R^{1}$$
 工程2-4-5 環化 R^{1} R^{2} R^{4} R^{4}

[0271]

(式中、R 1 、R 4 、R $^{b\,1\,6}$ 、m 2 、m 3 、m 4 は前記式 [I] における定義と同義であり、C $_{1\,-\,6}$ Alky I、L 2 、P v 、t、Yは上記製造方法 2 - 1 における定義と同義である。)

[0272]

20

(工程2-4-1)

化合物[34]を溶媒中、塩基の存在下、化合物[35]と反応させることにより、化合物[36]を得ることができる。

反応に用いる塩基としては、リチウムジイソプロピルアミド、ビス(トリメチルシリル) アミドリチウム等の塩基が挙げられる。

反応に用いる溶媒としては、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒;トルエン、ヘキサン、キシレン等の炭化水素系溶媒及びそれらの混合溶媒が挙げられる。

化合物 [35] はベンジルクロロメチルエ・テルのような市販品であってもよく、又は 市販品を適宜当業者に周知の方法で変換して得られるものであってもよい。

10

[0273]

(工程2-4-2)

製造方法 2 - 1 の工程 2 - 1 - 6 と同様の方法で、化合物 [3 6]のP^vを除去することにより、化合物 [3 7]を得ることができる。

[0274]

(工程2-4-3)

製造方法 2 - 1の工程 2 - 1 - 1と同様の方法で、化合物 [3 7]のエステルを加水分解でカルボキシに変換することにより、化合物 [3 8]を得ることができる。

[0275]

(工程2-4-4)

20

製造方法2-1の工程2-1-10と同様の方法で、化合物[38]を溶媒中、縮合剤及び添加剤の存在下、化合物[19]と反応させることにより、化合物[39]を得ることができる。

[0276]

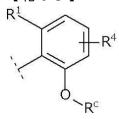
(工程2-4-5)

化合物 [39]の分子内光延反応で環化を行うことにより、化合物 [40]を得ることができる。例えば、例えば化合物 [39]を溶媒中、アゾジカルボン酸ジエステル(例えば、アゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル、アゾジカルボン酸ビス(2-メトキシエチル)等)とトリフェニルホスフィンやトリブチルホスフィン等のホスフィンの存在下と反応させることにより、化合物 [40]を得ることができる。

30

反応に用いる溶媒は、ジクロロメタン、クロロホルム、1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル、トルエン、N,N-ジメチルホルムアミド等が挙げられ、これらは単独又は2種以上を混合して使用することができる。

[0277]


[製造方法3-1]

環Cyの置換基を適宜変換する他の方法として、例えば式[I]において環Cyが式

[0278]

【化65】

40

[0279]

(式中、R¹、R⁴、R^cは前記式 [I]における定義と同義である。)

である化合物「I-b1]を得る製造方法3-1を挙げることができる。

[製造方法3-1]

[0280]

10

20

30

50

【化66】

[0281]

(式中、R¹、R⁴、R⁵、R^c、m1、Xは前記式[I]における定義と同義であり、Zは上記製造 方法 1 - 1 における定義と同義であり、 Hal^2 、 P^v は上記製造方法 2 - 1 における定義と同 義である。)

[0282]

(工程3-1-1)

化合物「41]を製造方法2-1の工程2-1-3と同様の方法でヒドロキシ基を保護 することにより化合物「42]を得ることができる。

化合物 [41]は2-ブロモ-3-メチルフェノールのような市販品であってもよく、又は 市販品を適宜当業者に周知の方法で変換して得られるものであってもよい。

[0283]

(工程3-1-2)

製造方法1-3の工程1-3と同様の方法で、化合物「42]をホウ素化することによ り化合物[43]を得ることができる。

[0284]

(工程3-1-3)

製造方法1-1の工程1-1-2と同様の方法で、化合物「3]と化合物「43]との 鈴木カップリング反応により化合物「44」を得ることができる。

[0285]

(工程3-1-4)

40

製造方法2-1の工程2-1-6と同様の方法で、化合物[44]のPˇを除去すること により、化合物[45]を得ることができる。

[0286]

(工程3-1-5)

化合物「45」と化合物「46」との光延反応により、化合物「47」を得ることがで きる。例えば化合物[45]を溶媒中、アゾジカルボン酸ジエステル(例えば、アゾジカ ルボン酸ジエチル、アゾジカルボン酸ジイソプロピル、アゾジカルボン酸ビス(2-メトキ シエチル)等)とトリフェニルホスフィンやトリブチルホスフィン等のホスフィンの存在 下で、化合物[46]と反応させることにより、化合物[47]を得ることができる。

反応に用いる溶媒は、ジクロロメタン、クロロホルム、1,4-ジオキサン、テトラヒドロ

フラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル、ト ルエン、N.N-ジメチルホルムアミド等が挙げられ、これらは単独又は2種以上を混合して 使用することができる。

化合物「461はベンジルアルコールや2-ピリジンメタノール等の市販品であってもよ く、又は市販品を適宜当業者に周知の方法で変換して得られるものであってもよい。

[0287]

(工程3-1-6)

製造方法1-1の工程1-1-3と同様に、化合物[47]のアルコキシを加水分解で ヒドロキシに変換することにより、化合物「I-b1〕を得ることができる。

[0288]

製造方法3-1において、化合物[45]に工程3-1-6の反応に付すことにより、

例えば式「I]において環Cvが式

[0289]

【化67】

[0290]

20 (式中、R¹、R⁴は前記式「I]における定義と同義である。)

である化合物[I-b2]を得ることができる。

[0291]

「製造方法3-2]

化合物「43)においてR¹がクロロ又はトリフルオロメチルである化合物「43alを 「製造方法3-2]によっても得ることができる。

[0292]

[製造方法3-2]

[0293]

【化68】

T程3-2-2 リチオ化/

Z

[48] [49] [43a]

[0294]

(式中、R^yはクロロ又はトリフルオロメチル:

R⁴は前記式[Ⅰ]における定義と同義であり、Zは前記製造方法1-1における定義と同 義であり、P^vは前記製造方法2-1における定義と同義である。)

[0295]

(工程3-2-1)

製造方法2-1の工程2-1-3と同様の方法で化合物「48]のヒドロキシ基を保護 することにより、化合物[49]を得ることができる。

化合物[48]は、一例として以下に示すような市販品であってもよく、又は市販品を 適宜当業者に周知の方法で変換して得られるものであってもよい。

[0296]

10

30

【化69】

[0297]

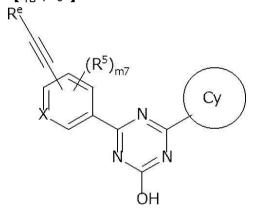
(工程3-2-2)

化合物 [49]を溶媒中、塩基の存在下、ホウ素化合物と反応させることにより、化合物 [43a]を得ることができる。例えば化合物 [49]に溶媒中、-78 から室温下で塩基を加えた後、-78 から室温下で生成物をホウ素試薬と反応させることにより、化合物 [43a]を得ることができる。

反応に用いられる塩基としては、n-ブチルリチウムやsec-ブチルリチウム等が挙げられる。

反応に用いられるホウ素試薬としては、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン、ホウ酸トリメチル等が挙げられる。

反応に用いられる溶媒としては、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等が挙げられる。


[0298]

[製造方法4]

化合物[2]の置換基を適宜変換することにより、例えば式

[0299]

【化70】

[0300]

(式中、R⁵、R^e、X、Cyは前記式[I]における定義と同義であり、m7は0、1又は2であり、m7が2のとき、各R⁵は独立して選ばれる。)

である化合物[I-c1]を得ることができる。

[製造方法4]

[0301]

10

20

【化71】

[0302]

(式中、L³はトリフルオロメタンスルホニルオキシ等の脱離基;

P^xはベンジル等のヒドロキシ基の保護基;

[I-c1]

фΗ

 R^5 、 R^6 、 R^e 、X、Cyは前記式 [I]における定義と同義であり、 HaI^1 、Zは前記製造方法 1 - 1における定義と同義であり、m7は前記式 [I - A]における定義と同義である。)

[0303]

(工程4-1)

製造方法1-1の工程1-1-1と同様の方法で、化合物[1]と化合物[50]との 鈴木カップリング反応により化合物[51]を得ることができる。

化合物 [50]は4-(ベンジロキシ)フェニルボロン酸のような市販品であってもよく、又は市販品を適宜当業者に周知の方法で変換して得られるものであってもよい。

[0304]

(工程4-2)

製造方法 1 - 1 の工程 1 - 1 - 2 と同様の方法で、化合物 [4] と化合物 [5 1] との 鈴木カップリング反応により化合物 [5 2] を得ることができる。

[0305]

(工程4-3)

化合物 [52]のフェノール保護基P^Xを除去することにより、化合物 [53]を得ることができる。脱保護反応は、採用される保護基に応じた公知の方法で行えばよい。

例えばP^xがベンジルである場合、テトラヒドロフラン、酢酸エチル、エタノール、メタ ノール、水等の単独又は混合溶媒中、パラジウム炭素又はプラチナ炭素等の触媒存在下、

50

30

水素添加反応させればよい。

[0306]

(工程4-4)

化合物 [53]のヒドロキシを脱離基L³に変換することにより、化合物 [54]を得ることができる。例えば、脱離基がトリフルオロメタンスルホニルオキシである場合、化合物 [53]を溶媒中、塩基の存在下、氷冷から室温下でトリフルオロメタンスルホン酸無水物又はN-フェニルビス(トリフルオロメタンスルホンイミド)等と反応させることにより化合物 [54]を得ることができる。

反応に用いる塩基としては、ピリジン、2,6-ルチジン、トリエチルアミン等の有機塩基 ;炭酸セシウム、水素化ナトリウム等のアルカリ金属塩の無機塩基等が挙げられる。

反応に用いる溶媒としては、1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒;トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジクロロメタン、クロロホルム等のハロゲン系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル、ピリジン等の極性溶媒等が挙げられ、これらは単独又は2種以上を混合して使用することができる。

[0307]

(工程4-5)

化合物[54]と化合物[55]との薗頭反応により、化合物[56]を得ることができる。例えば、溶媒中、好ましくは加熱下で塩基、パラジウム触媒及び銅触媒の存在下、化合物[54]を化合物[55]と反応させることにより化合物[56]を得ることができる。

反応に用いるパラジウム触媒としては、テトラキストリフェニルホスフィンパラジウム 、ビス(トリフェニルホスフィン)パラジウムジクロリド、(ビス(ジフェニルホスフィノ)フェロセン)パラジウムジクロリド-塩化メチレン錯体等が挙げられる。

反応に用いる銅触媒としては、ヨウ化銅、臭化銅等が挙げられる。

反応に用いる塩基としては、ジエチルアミン、ジシクロヘキシルアミン、トリエチルアミン、N-エチルジイソプロピルアミン等が挙げられる。

反応に用いる溶媒としては、1,4-ジオキサン、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタン、シクロペンチルメチルエーテル等のエーテル系溶媒;トルエン、ヘキサン、キシレン等の炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル、ピリジン等の極性溶媒が挙げられ、これらは単独又は2種以上を混合して使用することができる。

化合物[55]はシクロヘキシルアセチレンや2-エチニルピリジン等の市販品であって もよく、又は市販品を適宜当業者に周知の方法で変換して得られるものであってもよい。

薗頭反応については、例えば次のような総説が知られている(NAJERA, C et al. The S onogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry. Chem Rev. 2007, Vol.107, pages 874-922.)。

[0308]

(工程4-6)

製造方法1-1の工程1-1-3と同様に、化合物[56]のアルコキシを加水分解でヒドロキシに変換することにより、化合物[I-c1]を得ることができる。

[0309]

製造方法 4 において、化合物 [53]を工程 4 - 6 の反応に付すことにより、式【0310】

10

20

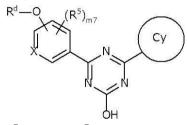
30

【化72】

$$(R^5)_{m7}$$
 (Cy)

[0311]

(式中、R⁵、X、Cyは前記式[Ⅰ]における定義と同義であり、m7は前記式[Ⅰ-A]に おける定義と同義である。)


である化合物[I-c2]を得ることができる。

[0312]

製造方法4において、化合物[53]とシクロヘキシルメタノール等のR^dOHを用いて製造方法3-1の工程3-1-5と同様の方法で光延反応を行い、生成物を工程4-6の反応に付すことにより、式

[0313]

【化73】

[0314]

(式中、 R^5 、 R^d 、X、Cyは前記式 [I] における定義と同義であり、<math>m7は前記式 [I-A] における定義と同義である。)

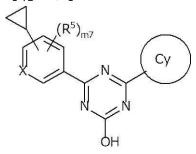
である化合物[I・c3]を得ることができる。

[0315]

製造方法4において、製造方法1-1の工程1-1-2と同様の方法で、化合物[54] 1と式

[0316]

【化74】


[0317]

(式中、Zは前記製造方法1-1における定義と同義である。)

である化合物 [57] との鈴木カップリング反応を行う。生成物を工程 4 - 6 の反応に付すことにより、式

[0318]

【化75】

10

20

30

50

[0319]

(式中、R⁵、X、Cyは前記式 [I]における定義と同義であり、m7は前記式 [I-A]に おける定義と同義である。)

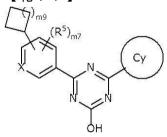
である化合物[I-c4]を得ることができる。

[0320]

製造方法4において、製造方法1-1の工程1-1-2と同様の方法で、化合物「54 1と式

[0321]

【化76】


[0322]

(式中、m9は1、2、3、又は4であり、Zは前記製造方法1・1における定義と同義であ

である化合物[58]との鈴木カップリング反応を行う。生成物のオレフィンを還元した 後、工程4-6の反応に付すことにより、式

[0323]

【化77】

[0324]

(式中、m9は前記と同義であり、m7は前記式 [I-A]における定義と同義であり、R⁵、 X、Cyは前記式[I]における定義と同義である。)

である化合物「I-c5]を得ることができる。オレフィンの還元反応は、例えば、テト ラヒドロフラン、酢酸エチル、エタノール、メタノール、水等の単独又は混合溶媒中、パ ラジウム炭素又はプラチナ炭素等の触媒存在下、水素添加反応させればよい。

【実施例】

[0325]

以下に実施例及び試験例を挙げて本発明を更に具体的に説明するが、これらは本発明を 限定するものではない。

また、実施例中、略号は以下のとおりである。

WSC・HCI: 1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩

HOBt・H₂O:1-ヒドロキシ-1H-ベンゾトリアゾール1水和物

DMSO: ジメチルスルホキシド

M: mol/L

[0326]

[製造例1]

N-(4-クロロ-3-{4-[4-(2,2-ジメチルプロポキシ)フェニル]-6-ヒドロキシ-1,3,5-トリ アジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例 番号1-86)の合成

[0327]

10

20

40

[0328]

(1)2-クロロ-4-[4-(2,2-ジメチルプロポキシ)フェニル]-6-メトキシ-1,3,5-トリアジン 【0329】

【化79】

[0330]

アルゴン雰囲気下、4-(2,2-3)メチルプロポキシ)フェニルボロン酸(2.0 g, 9.6 mmol)、2,4-30 ロロ-6-メトキシ-1,3,5-トリアジン(3.5 g, 19 mmol)、[1,1'-1]2 エニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(1.1 g, 0.96 mmol)及び2M炭酸ナトリウム水溶液(14 ml, 29 mmol)のトルエン(20 ml)懸濁液を100 にて、3.5時間撹拌した。室温にて、この反応混合物に水及び酢酸エチルを加え、分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:1.060 mmol)を得た。 1.061 mm(1.061 mm)にて精製することにより表題化合物(1.062 mm)を得た。 1.063 mm)、1.063 mm)、1.064 mm)、1.063 mm)、1.064 mm)、1.065 mm)、1.066 mm)、1.066 mm)、1.067 mm)、1.068 mm)、1.069 mmol)、1.069 mmol)、1.0

[0331]

(2)(4-クロロ-3-{4-[4-(2,2-ジメチルプロポキシ)フェニル]-6-メトキシ-1,3,5-トリア ジン-2-イル}フェニル)メタノール

[0332]

【化80】

[0333]

アルゴン雰囲気下、上記(1)で得られた2-クロロ-4-[4-(2,2-ジメチルプロポキシ)フェニル]-6-メトキシ-1,3,5-トリアジン(2.3 g, 7.4 mmol)、2-クロロ-5-ヒドロキシメチルフェニルボロン酸(1.7 g, 8.9 mmol)、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.61 g, 0.74 mmol)及び2M炭酸ナトリウム水溶液(15 ml, 30 mmol)の1,4-ジオキサン(23 ml)懸濁液を100 にて、1.5時間撹拌した。室温にて、この反応混合物に水及び酢酸エチルを加え、分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=4/1から1/1)

20

10

30

40

10

20

30

50

にて精製することにより表題化合物(1.3 g、収率43%)を得た。

 $^{1}\text{H-NMR}$ (400MHz, CDCI $_{3}$) : 1.06 (9H, s), 1.75 (1H, t, J = 5.9 Hz), 3.69 (2H, s), 4.19 (3H, s), 4.77 (2H, d, J = 5.9 Hz), 6.98-7.03 (2H, m), 7.46 (1H, dd, J = 8.2, 2.2 Hz), 7.53 (1H, d, J = 8.2 Hz), 8.00 (1H, d, J = 2.2 Hz), 8.52-8.58 (2H, m).

[0334]

(3) tert-ブチル N-(4-クロロ-3-{4-[4-(2,2-ジメチルプロポキシ)フェニル]-6-メトキシ-1,3,5-トリアジン-2-イル}ベンジル)-N-(tert-ブトキシカルボニル)カーバメート

[0335]

【化81】

CI OFO CI OFO NAME OF NAME OF

[0336]

アルゴン雰囲気下、上記(2)で得られた(4-クロロ-3-{4-[4-(2,2-ジメチルプロポキシ)フェニル]-6-メトキシ-1,3,5-トリアジン-2-イル}フェニル)メタノール(1.3 g, 3.2 mm ol)及びトリエチルアミン(0.58 ml, 4.2 mmol)のテトラヒドロフラン(13 ml)溶液に、氷冷下、メタンスルホニルクロリド(0.29 ml, 3.8 mmol)を加え、室温に昇温した。0.5時間撹拌後、この反応混合物をろ過し、ろ液を減圧濃縮した。残渣のN,N-ジメチルホルムアミド(13 ml)溶液に、炭酸セシウム(3.1 g, 9.5 mmol)及びイミノジカルボン酸ジ-tert-ブチル(0.83 g, 3.8 mmol)を加え、3時間撹拌した。この反応混合物に水及び酢酸エチルを加え、分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン/酢酸エチル=9/1から7/3)にて精製することにより表題化合物(1.6 g, 収率82%)を得た。

 $^{1}\text{H-NMR}$ (400MHz, CDCI $_{3}$) : 1.06 (9H, s), 1.48 (18H, s), 3.69 (2H, s), 4.18 (3H, s), 4.83 (2H, s), 6.96-7.01 (2H, m), 7.39 (1H, dd, J = 8.2, 2.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.98 (1H, d, J = 2.2 Hz), 8.51-8.57 (2H, m).

[0337]

(4)4-クロロ-3-{4-[4-(2,2-ジメチルプロポキシ)フェニル]-6-メトキシ-1,3,5-トリア ジン-2-イル}ベンジルアミン塩酸塩

[0338]

【化82】

CI O O CI NH₂ ·HCI 40

[0339]

アルゴン雰囲気下、上記(3)で得られたtert-ブチル N-(4-クロロ-3-{4-[4-(2,2-ジメチルプロポキシ)フェニル]-6-メトキシ-1,3,5-トリアジン-2-イル}ベンジル)-N-(tert-ブトキシカルボニル)カーバメート(1.3 g, 2.2 mol)の1,4-ジオキサン(2.8 ml)溶液に、室温にて、4M塩化水素 / 1,4 - ジオキサン溶液(11 ml)を加え、3時間撹拌した。この懸濁液より固体をろ取し、減圧乾燥することにより表題化合物(0.97 g, 収率99%)を得た。

¹H-NMR (400MHz, DMSO-d₆) : 1.03 (9H, s), 3.76 (2H, s), 4.10-4.18 (2H, m), 4.14

(3H, s), 7.11-7.17 (2H, m), 7.72 (2H, d, J = 0.9 Hz), 8.13 (1H, br s), 8.40-8.5 8 (5H, m).

[0340]

(5) N-(4-クロロ-3-{4-[4-(2,2-ジメチルプロポキシ)フェニル]-6-メトキシ-1,3,5-トリアジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド

[0341]

【化83】

[0342]

アルゴン雰囲気下、上記(4)で得られた、4-クロロ-3-{4-[4-(2,2-ジメチルプロポキシ)フェニル]-6-メトキシ-1,3,5-トリアジン-2-イル}ベンジルアミン塩酸塩(0.97 g, 2.2 mmol)及び3,3,3-トリフルオロ-2,2-ジメチルプロピオン酸(0.41 g, 2.6 mmol)のN,N-ジメチルホルムアミド(10 ml)溶液に、室温にて、HOBt・ H_2O (0.43 g, 2.8 mmol)、WSC・HCI(2.8 g, 2.8 mmol)及びトリエチルアミン(0.91 ml, 6.5 mmol)を加え、3.5時間撹拌した。3,3,3-トリフルオロ-2,2-ジメチルプロピオン酸(0.067 g, 0.43 mmol)、HOBt・ H_2O (0.066 g, 0.43 mmol)及びWSC・HCI(0.082 g, 0.43 mmol)を加え、1.5時間撹拌した。この反応混合物に水及び酢酸エチルを加え、分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=9/1から7/3)にて精製することにより表題化合物(0.97 g, 収率81%)を得た。

 $^{1}\text{H-NMR} \ (400\text{MHz}, \ \text{CDCI}_{3}) \ : \ 1.07 \ (9\text{H}, \ \text{s}), \ 1.44 \ (6\text{H}, \ \text{s}), \ 3.69 \ (2\text{H}, \ \text{s}), \ 4.19 \ (3\text{H}, \ \text{s}), \ 4.55 \ (2\text{H}, \ \text{d}, \ \text{J} = 5.8 \ \text{Hz}), \ 6.22 \ (1\text{H}, \ \text{br} \ \text{s}), \ 6.96\text{-}7.03 \ (2\text{H}, \ \text{m}), \ 7.34 \ (1\text{H}, \ \text{dd}, \ \text{J} = 8.3, \ 2.3 \ \text{Hz}), \ 7.51 \ (1\text{H}, \ \text{d}, \ \text{J} = 8.3 \ \text{Hz}), \ 7.91 \ (1\text{H}, \ \text{d}, \ \text{J} = 2.3 \ \text{Hz}), \ 8.50\text{-}8.57 \ (2\text{H}, \ \text{m}).$

[0343]

(6) N-(4-クロロ-3-{4-[4-(2,2-ジメチルプロポキシ)フェニル]-6-ヒドロキシ-1,3,5-トリアジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-86)

[0344]

【化84】

[0345]

アルゴン雰囲気下、上記(5)で得られた、N-(4-クロロ-3-{4-[4-(2,2-ジメチルプロポキシ)フェニル]-6-メトキシ-1,3,5-トリアジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(0.97 g, 1.76 mmol)のメタノール(10 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(3.5 ml, 14 mmol)を加え、65 にて、1.5時間撹拌した。この反応液に、室温にて、2M塩酸(7.0 ml, 14 mmol)及び水を加え、撹拌した。析出した固体をろ取し、水で洗浄し、減圧乾燥することで、表題化合物(0.87 g, 収率92%)を得た。

 1 H-NMR (400MHz, DMSO-d₆) : 1.02 (9H, s), 1.37 (6H, s), 3.73 (2H, s), 4.35 (2H, d, J = 5.8 Hz), 7.08 (2H, d, J = 9.1 Hz), 7.40 (1H, dd, J = 8.3, 2.2 Hz), 7.58 (1H, d, J = 8.3 Hz), 7.62 (1H, d, J = 1.9 Hz), 8.29 (2H, d, J = 9.1 Hz), 8.62 (1

10

20

30

40

20

30

40

50

H, t, J = 5.8 Hz, 13.13 (1H, s).

[0346]

[製造例2]

1-[4-クロロ-3-(4-ヒドロキシ-6-フェニル-1,3,5-トリアジン-2-イル)-ベンジル]-3,3-ジメチル-1,3-ジヒドロインドール-2-オン(実施例番号1-258)の合成

[0347]

【化85】

[0348]

(1)2-(5-プロモメチル-2-クロロフェニル)-4-メトキシ-6-フェニル-1,3,5-トリアジン

[0349]

【化86】

[0350]

製造例1の(1)及び(2)と同様の方法で、2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン、2-クロロ-5-ヒドロキシメチルフェニルボロン酸、及び4-(2,2-ジメチルプロポキシ)フェニルボロン酸に替えてフェニルボロン酸を用いて、[4-クロロ-3-(4-メトキシ-6-フェニル-1,3,5-トリアジン-2-イル)フェニル]メタノールを得た。

アルゴン雰囲気下、得られた [4-クロロ-3-(4-メトキシ-6-フェニル-1,3,5-トリアジン-2-イル)フェニル]メタノール (0.47 g, 1.4 mmol) 及びトリフェニルホスフィン (0.56 g, 2.1 mmol) のクロロホルム (4.5 ml) 溶液に、氷冷下、四臭化炭素 (0.71 g, 2.1 mmol) を加えた。この反応混合物を室温にて、10分間撹拌した後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー (展開溶媒: n - ヘキサン / 酢酸エチル = 30 / 1から9 / 1) にて精製することにより表題化合物 (0.49 g, 収率87%) を得た。

 1 H-NMR (400MHz, CDCI₃) : 4.22 (3H, s), 4.53 (2H, s), 7.45-7.64 (5H, m), 8.06 (1H, br s), 8.57-8.63 (2H, m).

[0351]

(2)1-[4-クロロ-3-(4-メトキシ-6-フェニル-1,3,5-トリアジン-2-イル)ベンジル]-3,3-ジメチル-1,3-ジヒドロインドール-2-オン

[0352]

【化87】

[0353]

アルゴン雰囲気下、3,3-ジメチルインドリン-2-オン (0.050 g, 0.31 mmol) のN,N-ジ

メチルホルムアミド (1.0 ml)溶液に、氷冷下、水素化ナトリウム (0.012 g, 60重量%オイルディスパージョン)を加えた。30分間攪拌後、上記 (1)で得られた2-(5-ブロモメチル-2-クロロフェニル)-4-メトキシ-6-フェニル-1,3,5-トリアジン (0.10 g, 0.26 mmol)を加え、室温にて、30分間攪拌した。この反応混合物に飽和塩化アンモニウム水溶液及び酢酸エチルを加え、分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n- へキサン / 酢酸エチル=7/2)にて精製することにより表題化合物 (0.11 g, 収率89%)を得た。

 $^{1}\text{H-NMR} \ (400\text{MHz}, \ \text{CDCI}_{3}) \qquad : \ 1.44 \ (6\text{H}, \ \text{s}), \ 4.18 \ (3\text{H}, \ \text{s}), \ 4.98 \ (2\text{H}, \ \text{s}), \ 6.72\text{-}6.76 \ (1\text{H}, \ \text{m}), \ 7.02\text{-}7.08 \ (1\text{H}, \ \text{m}), \ 7.13\text{-}7.19 \ (1\text{H}, \ \text{m}), \ 7.21\text{-}7.25 \ (1\text{H}, \ \text{m}), \ 7.31\text{-}7.36 \ (1\text{H}, \ \text{m}), \ 7.46\text{-}7.53 \ (3\text{H}, \ \text{m}), \ 7.55\text{-}7.61 \ (1\text{H}, \ \text{m}), \ 8.00 \ (1\text{H}, \ \text{br} \ \text{s}), \ 8.51\text{-}8.58 \ (2\text{H}, \ \text{m}).$

[0354]

(3) 1-[4-クロロ-3-(4-ヒドロキシ-6-フェニル-1,3,5-トリアジン-2-イル)ベンジル]-3, 3-ジメチル-1,3-ジヒドロインドール-2-オン(実施例番号1-258)

[0355]

【化88】

$$\begin{array}{c}
CI \\
N \\
N \\
N
\end{array}$$

$$\begin{array}{c}
CI \\
N \\
N \\
OH
\end{array}$$

$$\begin{array}{c}
20 \\
OH
\end{array}$$

[0356]

アルゴン雰囲気下、上記(2)で得られた、1-[4-クロロ-3-(4-メトキシ-6-フェニル-1, 3,5-トリアジン-2-イル)ベンジル]-3,3-ジメチル-1,3-ジヒドロインドール-2-オン(0.11 g, 0.23 mmol)のメタノール(10 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.34 ml, 1.4 mmol)を加え、65 にて、2時間撹拌した。この反応液に、室温にて、10重量%クエン酸水溶液(1.4 ml)及び水(7.0 ml)を加え、30分間撹拌した。析出した固体を3取し、水で洗浄し、減圧乾燥することにより表題化合物(0.10 g, 収率96%)を得た

 $^{1}\text{H-NMR} \ \, (400\text{MHz}, \ \text{DMSO-d}_{6}) \quad : \quad 1.34 \ \, (6\text{H}, \ \text{s}) \, , \quad 4.99 \ \, (2\text{H}, \ \text{s}) \, , \quad 6.97 \ \, (1\text{H}, \ \text{d}, \ \text{J} = 7.6 \ \text{Hz}) \, , \quad 7.05 \ \, (1\text{H}, \ \text{t}, \ \text{J} = 7.6 \ \text{Hz}) \, , \quad 7.39 \ \, (1\text{H}, \ \text{d}, \ \text{J} = 7.6 \ \text{Hz}) \, , \quad 7.48 \ \, (1\text{H}, \ \text{dd}, \ \text{J} = 8.3, \ 1.8 \ \text{Hz}) \, , \quad 7.55 \ \, (2\text{H}, \ \text{t}, \ \text{J} = 7.6 \ \text{Hz}) \, , \quad 7.59 - 7.68 \ \, (2\text{H}, \ \text{m}) \, , \quad 7.55 \ \, (1\text{H}, \ \text{d}, \ \text{J} = 1.8 \ \text{Hz}) \, , \quad 8.29 \ \, (2\text{H}, \ \text{d}, \ \text{J} = 7.6 \ \text{Hz}) \, , \quad 13.32 \ \, (1\text{H}, \ \text{br s}) \, .$

[0357]

[製造例3]

N- [4-クロロ-3-(4-ヒドロキシ-6-フェニル-1,3,5-トリアジン-2-イル)ベンジル] -N-エチル-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-263)の合成

[0358]

【化89】

[0359]

10

30

40

(1)[4-クロロ-3-(4-メトキシ-6-フェニル-1.3.5-トリアジン-2-イル)ベンジル]エチル アミン

[0360]

【化90】

[0361]

アルゴン雰囲気下、製造例2の(1)と同様の方法で得られた2-(5-ブロモメチル-2-クロ ロフェニル)-4-メトキシ-6-フェニル-1,3,5-トリアジン(0.20 g, 0.51 mmol)に、室温 にて、2Mエチルアミンテトラヒドロフラン(2.5 ml)溶液を加え、1時間撹拌した。この 反応混合物に飽和重曹水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄 した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き 、減圧濃縮した。粗生成物として、表題化合物(0.28 g)を得た。

¹H-NMR (400MHz, CDCI₃) : 1.14 (3H, t, J = 7.2 Hz), 2.70 (2H, q, J = 7.2 Hz), 3 .86 (2H, s), 4.22 (3H, s), 7.44 (1H, dd, J = 8.2, 2.2 Hz), 7.48-7.55 (3H, m), 7. 57-7.62 (1H, m), 7.97 (1H, d, J = 2.2 Hz), 8.58-8.64 (2H, m).

[0362]

(2) N-[4-クロロ-3-(4-メトキシ-6-フェニル-1,3,5-トリアジン-2-イル)ベンジル]-N-エ チル-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド

[0363]

【化91】

[0364]

アルゴン雰囲気下、上記(1)で得られた[4-クロロ-3-(4-メトキシ-6-フェニル-1,3,5-トリアジン-2-イル)ベンジル]エチルアミン(0.18 g, 0.38 mmol)及び3,3,3-トリフルオ ロ-2,2-ジメチルプロピオン酸(0.12 g, 0.76 mmol)のクロロホルム(2.0 ml)溶液に、 室温にて、WSC・HCI (0.15 g, 0.76 mmol) 及び4-ジメチルアミノピリジン (0.93 mg, 0. 76 mmol)を加え、16時間撹拌した。シリカゲルカラムクロマトグラフィー(展開溶媒: n - ヘキサン/酢酸エチル = 8/3) にて精製することにより表題化合物 (0.086 g, 収率4 6%)を得た。

 $^{1}H-NMR$ (400MHz, CDCI₃) : 1.20 (3H, t, J = 6.9 Hz), 1.55 (6H, s), 3.47 (2H, q, J = 6.9 Hz, 4.21 (3H, s), 4.71 (2H, s), 7.24-7.30 (1H, m), 7.45-7.63 (4H, m), 7.88 (1H,br s), 8.56-8.64 (2H, m).

[0365]

(3) N-[4-クロロ-3-(4-ヒドロキシ-6-フェニル-1,3,5-トリアジン-2-イル)ベンジル]-N-エチル-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-263)

[0366]

【化92】

10

20

30

40

20

30

40

50

アルゴン雰囲気下、上記(2)で得られたN-[4-クロロ-3-(4-メトキシ-6-フェニル-1.3. 5-トリアジン-2-イル)ベンジル1-N-エチル-3,3,3-トリフルオロ-2,2-ジメチルプロピオン アミド (0.086 g, 0.17 mmol) のメタノール (1.5 ml) 溶液に、室温にて、4M水酸化ナト リウム水溶液 (0.26 ml, 1.0 mmol) を加えた。65 にて、2時間撹拌した。室温にて、10 重量%クエン酸水溶液(1.2 ml)及び水(6 ml)を加え、30分間撹拌した。析出した固体 をろ取し、水で洗浄し、減圧乾燥することにより粗生成物を得た。この粗生成物の酢酸エ チル (1.5 ml) 懸濁液にn-ヘキサン (1.5 ml) を加え、30分間撹拌した。固体をろ取し 、減圧乾燥することにより表題化合物(0.067g,収率80%)を得た。

¹H-NMR (400MHz, DMSO-d₆) :1.13 (3H, t, J = 6.9 Hz), 1.50 (6H, s), 3.42 (2H, br s), 4.66 (2H, s), 7.41 (1H, dd, J = 8.3, 1.8 Hz), 7.56 (2H, t, J = 7.9 Hz), 7.61-7.69 (3H, m), 8.34 (2H, d, J = 7.9 Hz), 13.33 (1H, br s).

[0368]

「製造例4]

7-tert-ブチル-2-[4-クロロ-3-(4-ヒドロキシ-6-フェニル-1,3,5-トリアジン-2-イル) ベンジル]-2-アザスピロ[3.5] ノナン-1-オン(実施例番号1-266)の合成

[0369]

【化93】

(1)1-ベンジロキシメチル-4-tert-ブチル-シクロヘキサンカルボン酸メチル

[0371]

【化94】

アルゴン雰囲気下、4-tert-ブチル-シクロヘキサンカルボン酸メチル(0.46 g, 2.3 mm ol)のテトラヒドロフラン (2.5 ml)溶液に、-78 にて、リチウムジイソプロピルアミ ドの2M ヘプタン / テトラヒドロフラン / エチルベンゼン溶液 (1.4 ml, 2.8 mmol) を5分 かけて滴下した。1時間撹拌後、ベンジルクロロメチルエ・テル(0.38 ml, 2.8 mmol)を 1分かけて滴下した。氷冷下、1時間撹拌した。この反応混合物に、10重量%クエン酸水溶 液(3.0 ml)及び酢酸エチルを加え、分液した後、有機層を飽和重曹水で洗浄後、有機層 を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナ トリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開 溶媒: n - ヘキサン / 酢酸エチル = 30 / 1) にて精製することにより表題化合物 (0.49 g, 収率66%)を得た。表題化合物は、単一の立体異性体として得られたが、その相対配置 は未決定である。具体的には、tert-ブチル基に対してメトキシカルボニル基がシス/ト ランスのいずれであるか未決定である。

¹H-NMR (400MHz, CDCI₃) : 0.81 (9H, s), 0.88-0.99 (1H, m), 1.00-1.21 (4H, m), 1 .68 (2H, d, J = 12.0 Hz), 2.29 (2H, d, J = 12.0 Hz), 3.36 (2H, s), 3.69 (3H, s),

4.48 (2H, br s), 7.22-7.38 (5H, m).

[0373]

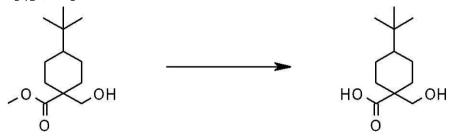
(2) 4-tert-ブチル-1-ヒドロキシメチル-シクロヘキサンカルボン酸メチル

[0374]

【化95】

[0375]

アルゴン雰囲気下、上記(1)で得られた1-ベンジロキシメチル-4-tert-ブチル-シクロヘキサンカルボン酸メチル(0.49 g, 1.5 mmol)のメタノール(5.5 ml)溶液に、室温にて、ASCA-2(活性炭担持の4.5%パラジウム-0.5%白金触媒(エヌ・イーケムキャット(株)製、ファインケミカル2002年10月1日号、5-14ページ参照),0.20 g)を加えた。1気圧水素下、4時間撹拌した。アルゴン雰囲気下、この反応混合物をセライトろ過し、酢酸エチルで溶出した。ろ液を減圧濃縮することにより、表題化合物(0.27 g,収率75%)を得た。表題化合物は、単一の立体異性体であるが、その相対配置は未決定である。


 1 H-NMR (400MHz, CDCI₃) : 0.83 (9H, s), 0.91-1.17 (5H, m), 1.64-1.78 (3H, m), 2.20-2.31 (2H, m), 3.53 (2H, d, J = 6.0 Hz), 3.73 (3H, s).

[0376]

(3) 4-tert-ブチル-1-ヒドロキシメチル-シクロヘキサンカルボン酸

[0377]

【化96】

[0378]

アルゴン雰囲気下、上記(2)で得られた、4-tert-ブチル-1-ヒドロキシメチル-シクロヘキサンカルボン酸メチル(0.27 g, 1.2 mmol)のメタノール(1.7 ml)溶液に、室温にて、テトラヒドロフラン(1.7 ml)及び4M水酸化ナトリウム水溶液(1.7 ml,7.0 mmol)を加え、65 にて、1.5時間撹拌した。メタノール(1.7 ml)、テトラヒドロフラン(1.7 ml)及び4M水酸化ナトリウム水溶液(1.7 ml)を加え、65 にて、2時間撹拌した。この反応液に、室温にて、2M塩酸(7.5 ml,15 mmol)及び水を加え、撹拌した。酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、3過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン / 酢酸エチル = 12 / 1)にて精製することにより表題化合物(0.24 g,収率94%)を得た。表題化合物は、単一の立体異性体であるが、その相対配置は未決定である。

 1 H-NMR (400MHz, DMSO-d₆) : 0.80 (9H, s), 0.86-1.12 (5H, m), 1.53-1.66 (2H, m), 2.00-2.13 (2H, m), 3.31 (2H, s).

[0379]

(4)4-tert-ブチル-1-ヒドロキシメチル-シクロヘキサンカルボン酸 4-クロロ-3-(4-メトキシ-6-フェニル-1,3,5-トリアジン-2-イル)ベンジルアミド

[0380]

10

20

30

20

30

40

50

【化97】

[0381]

製造例1の(1)から(4)と同様の方法で、2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン、2-クロロ-5-ヒドロキシメチルフェニルボロン酸、及び4-(2,2-ジメチルプロポキシ)フェニルボロン酸に替えてフェニルボロン酸を用いて、4-クロロ-3-(4-メトキシ-6-フェニル-1,3,5-トリアジン-2-イル)ベンジルアミン塩酸塩を得た。

アルゴン雰囲気下、得られた4-クロロ-3-(4-メトキシ-6-フェニル-1,3,5-トリアジン-2-イル)ベンジルアミン塩酸塩(0.90 g、0.25 mmol)及び上記(3)で得られた、4-tert-ブチル-1-ヒドロキシメチル-シクロヘキサンカルボン酸(0.080 g、0.37 mmol)のN,N-ジメチルホルムアミド(2.0 ml)溶液に、室温にて、HOB t · H $_2$ O(0.057 g、0.37 mmol)、WSC・HCI(0.071 g、0.37 mmol)及びトリエチルアミン(0.10 ml、0.74 mmol)を加え、13時間撹拌した。この反応混合物に飽和重曹水及び酢酸エチルを加え、分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン / 酢酸エチル = 1/2から1/3)にて精製することにより表題化合物(0.11 g、収率81%)を得た。表題化合物は、単一の立体異性体であるが、その相対配置は未決定である。

 $^{1}\text{H-NMR} \ (400\text{MHz}, \ \text{CDCI}_{3}) \ : \ 0.78 \ (9\text{H}, \ \text{s}), \ 0.94-1.22 \ (5\text{H}, \ \text{m}), \ 1.66-1.75 \ (2\text{H}, \ \text{m}), \ 2.22-2.30 \ (2\text{H}, \ \text{m}), \ 2.42 \ (1\text{H}, \ \text{t}, \ \text{J} = 5.0 \ \text{Hz}), \ 3.52 \ (2\text{H}, \ \text{d}, \ \text{J} = 5.0 \ \text{Hz}), \ 4.21 \ (3\text{H}, \ \text{s}), \ 4.57 \ (2\text{H}, \ \text{d}, \ \text{J} = 5.8 \ \text{Hz}), \ 6.46 \ (1\text{H}, \ \text{t}, \ \text{J} = 5.8 \ \text{Hz}), \ 7.38 \ (1\text{H}, \ \text{dd}, \ \text{J} = 8.3, \ 2.3 \ \text{Hz}), \ 7.47-7.55 \ (3\text{H}, \ \text{m}), \ 7.57-7.62 \ (1\text{H}, \ \text{m}), \ 7.97 \ (1\text{H}, \ \text{d}, \ \text{J} = 2.3 \ \text{Hz}), \ 8.57-8.62 \ (2\text{H}, \ \text{m}).$

[0382]

(5) 7-tert-ブチル-2-[4-クロロ-3-(4-メトキシ-6-フェニル-1,3,5-トリアジン-2-イル) ベンジル]-2-アザスピロ[3.5] ノナン-1-オン

[0383]

【化98】

$$\begin{array}{c} CI \\ N \\ N \\ N \end{array}$$

[0384]

アルゴン雰囲気下、上記(4)で得られた4-tert-ブチル-1-ヒドロキシメチル-シクロヘキサンカルボン酸 4-クロロ-3-(4-メトキシ-6-フェニル-1,3,5-トリアジン-2-イル)ベンジルアミド(0.11 g, 0.20 mmol)及びトリフェニルホスフィン(0.080 g, 0.30 mmol)のテトラヒドロフラン(1.0 ml)溶液に、室温にて、アゾジカルボン酸ビス(2-メトキシエチル)(0.071 g, 0.30 mmol)を加え、1.5時間撹拌した。この反応混合物に水及び酢酸エチルを加え、分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、3過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をプレパラティブ薄層クロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=4/1)にて精製することにより表題化合物(0.068 g, 収率66%)を得た。表題化合物は、単一の立体異性体であるが、tert-ブチル基の相対配置は未決定であ

30

40

る。

 $^{1}\text{H-NMR}$ (400MHz, CDCI $_{3}$) : 0.81-1.77 (7H, m), 0.87 (9H, s), 2.03-2.12 (2H, m), 2.87 (2H, br s), 4.21 (3H, s), 4.40 (2H, br s), 7.30-7.37 (1H, m), 7.48-7.64 (4H, m), 7.90 (1H, br s), 8.57-8.63 (2H, m).

[0385]

(6) 7-tert-ブチル-2-[4-クロロ-3-(4-ヒドロキシ-6-フェニル-1,3,5-トリアジン-2-イル)ベンジル]-2-アザスピロ[3.5] ノナン-1-オン(実施例番号1-266)

[0386]

【化99】

アルゴン雰囲気下、上記(5)で得られた7-tert-ブチル-2-[4-クロロ-3-(4-メトキシ-6-フェニル-1,3,5-トリアジン-2-イル)ベンジル]-2-アザスピロ[3.5] ノナン-1-オン(0.06-8-g, 0.13 mmol)のメタノール(1.2 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.20 ml, 0.81 mmol)を加えた。65 にて、1.5時間撹拌した。室温にて、この反応液に10重量%クエン酸水溶液(0.82 ml)及び水(4.0 ml)を加え、30分間撹拌した。析出した固体をろ取し、水で洗浄し、減圧乾燥することにより表題化合物(0.062-g, 収率94%)を得た。表題化合物は、単一の立体異性体であるが、tert-ブチル基の相対配置は未決定である。

 $^{1}\text{H-NMR}$ (400MHz, DMSO-d₆) : 0.83 (9H, s), 0.90-0.99 (1H, m), 1.41-1.67 (6H, m), 1.96-2.03 (2H, m), 2.92 (2H, s), 4.38 (2H, s), 7.47 (1H, dd, J = 8.3, 1.8 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.63-7.69 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).

[0388]

[製造例5]

4-[2-(6-メチルピリジン-2-イルメトキシ)-6-トリフルオロメチルフェニル]-6-(4-フェニルエチニルフェニル)-1,3,5-トリアジン-2-オール塩酸塩(実施例番号2-98)の合成

[0389]

【化100】

[0390]

(1)2-プロモ-1-メトキシメトキシ-3-トリフルオロメチル-ベンゼン

[0391]

【化101】

[0392]

アルゴン雰囲気下、2-ブロモ-3-フルオロベンゾトリフルオリド(6.0 g, 25 mmol)及び2-(メチルスルホニル)エタノール(4.3 g, 35 mmol)のN,N-ジメチルホルムアミド(10 ml)溶液に、氷冷下、水素化ナトリウム(2.8 g, 60重量%オイルディスパージョン)を3回に分けて加えた。室温にて、10分間撹拌後、氷冷下、クロロメチルメチルエーテル(5.3 ml, 69 mmol)を滴下した。30分間撹拌後、室温にて、15分間撹拌した。氷冷下、この反応混合物に水及び酢酸エチルを加え、分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン/酢酸エチル = 12/1)にて精製することにより表題化合物(5.0 g. 収率70%)を得た。

¹H-NMR (400MHz, CDCI₃) : 3.53 (3H, s), 5.29 (2H, s), 7.31-7.38 (3H, m).

[0393]

(2)2-(2-メトキシメトキシ-6-トリフルオロメチルフェニル)-4,4,5,5-テトラメチル-1, 3,2-ジオキサボロラン

[0394]

【化102】

[0395]

アルゴン雰囲気下、上記(1)で得られた2-プロモ-1-メトキシメトキシ-3-トリフルオロメチル-ベンゼン(4.9 g, 17 mmol)のテトラヒドロフラン(90 ml)溶液に、-78 にて、n-ブチルリチウム(1.6 M n-ヘキサン溶液, 11 ml, 17 mmol)を30分で滴下した。2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(3.5 ml, 17 mmol)を15分で滴下し、室温に昇温後、2時間撹拌した。この反応混合物に飽和塩化アンモニウム水溶液及び酢酸エチルを加え、分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=9/1)にて精製することにより表題化合物(2.8 g, 収率48%)を得た。

¹H-NMR (400MHz, CDCI₃) : 1.39 (12H, s), 3.47 (3H, s), 5.18 (2H, s), 7.20 (1H, d, J = 8.4 Hz), 7.24-7.28 (1H, m), 7.36-7.42 (1H, m).

[0396]

(3)2-(4-ベンジロキシフェニル)-4-メトキシ-6-(2-メトキシメトキシ-6-トリフルオロメチルフェニル)-1,3,5-トリアジン

[0397]

10

20

30

20

30

40

50

(81)

[0398]

製造例1の(1)と同様の方法で、2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン及び4-(2,2-ジメチルプロポキシ)フェニルボロン酸に替えて4-(ベンジロキシ)フェニルボロン酸を用いて、2-(4-ベンジロキシフェニル)-4-クロロ-6-メトキシ-1,3,5-トリアジンを得た。

アルゴン雰囲気下、得られた2-(4-ベンジロキシフェニル)-4-クロロ-6-メトキシ-1,3,5-トリアジン(3.0 g, 9.2 mmol)及び上記(2)で得られた2-(2-メトキシメトキシ-6-トリフルオロメチルフェニル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(2.8 g, 8.4 mmol)のN,N-ジメチルホルムアミド(25 ml)溶液に、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(1.4 g, 1.7 mmol)、ヨウ化銅(I)(0.48 g, 2.5 mmol)及び2M炭酸ナトリウム水溶液(13 ml, 25 mmol)を加え、115 にて、45分間撹拌した。この反応混合物に水及び酢酸エチルを加え、撹拌後、不溶物をセライトろ過で取り除き、酢酸エチルで溶出した。ろ液を分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=7/2)にて精製することにより表題化合物(2.0 g, 収率47%)を得た。

 $^{1}\text{H-NMR} \ (400\text{MHz}, \ \text{DMSO-d}_{6}) \quad : \quad 3.39 \ (3\text{H}, \ \text{s}), \quad 4.14 \ (3\text{H}, \ \text{s}), \quad 5.13 \ (2\text{H}, \ \text{s}), \quad 5.15 \ (2\text{H}, \ \text{s}), \quad 7.02\text{-}7.08 \ (2\text{H}, \ \text{m}), \quad 7.30\text{-}7.46 \ (7\text{H}, \ \text{m}), \quad 7.48\text{-}7.55 \ (1\text{H}, \ \text{m}), \quad 8.47\text{-}8.52 \ (2\text{H}, \ \text{m}).$

(4)4-[4-メトキシ-6-(2-メトキシメトキシ-6-トリフルオロメチルフェニル)-1,3,5-トリアジン-2-イル]フェノール

[0400]

【化104】

[0401]

アルゴン雰囲気下、上記 (3) で得られた2-(4-ベンジロキシフェニル)-4-メトキシ-6-(2-メトキシメトキシ-6-トリフルオロメチルフェニル)-1,3,5-トリアジン (2.0 g, 4.0 mm ol) の酢酸エチル (10 ml) 溶液に、室温にて、メタノール (10 ml) 及び10重量%パラジウム炭素 (0.49 g) を加えた。 1 気圧水素下、2時間撹拌した。アルゴン雰囲気下、この反応混合物をセライトろ過し、酢酸エチルで溶出した。ろ液を減圧濃縮することにより、表題化合物 (1.6 g, 収率97%) を得た。

 $^{1}\text{H-NMR}$ (400MHz, CDCI $_{3}$) $\,$: 3.39 (3H, s), 4.14 (4H, s), 5.13 (2H, s), 5.39 (1H, b r s), 6.87-6.93 (2H, m), 7.40-7.45 (2H, m), 7.48-7.55 (1H, m), 8.43-8.48 (2H, m)

[0402]

(5) トリフルオロメタンスルホン酸 4-[4-メトキシ-6-(2-メトキシメトキシ-6-トリフルオロメチルフェニル)-1,3,5-トリアジン-2-イル]フェニルエステル

[0403]

【化105】

[0404]

アルゴン雰囲気下、上記(4)で得られた4-[4-メトキシ-6-(2-メトキシメトキシ-6-トリフルオロメチルフェニル)-1,3,5-トリアジン-2-イル]フェノール(1.6 g, 3.9 mmol)のピリジン(15 ml)溶液に、氷冷下、トリフルオロメタンスルホン酸無水物(13 ml, 7.7 mmol)を滴下した。室温にて、30分間撹拌した。この反応混合物に水及び酢酸エチルを加え、分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=3/1)にて精製することにより表題化合物(2.0 g, 収率95%)を得た。

 $^{1}\text{H-NMR}$ (400MHz, CDCI $_{3}$) : 3.39 (3H, s), 4.17 (3H, s), 5.13 (2H, s), 7.37-7.48 (4 H, m), 7.51-7.58 (1H, m), 8.61-8.67 (2H, m).

[0405]

(6) 2-メトキシ-4-(2-メトキシメトキシ-6-トリフルオロメチルフェニル)-6-(4-フェニルエチニルフェニル)-1,3,5-トリアジン

[0406]

【化106】

[0407]

アルゴン雰囲気下、上記(5)で得られたトリフルオロメタンスルホン酸 4-[4-メトキシ-6-(2-メトキシメトキシ-6-トリフルオロメチルフェニル)-1,3,5-トリアジン-2-イル]フェニルエステル(0.50 g, 0.93 mmol)、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(0.098 g, 0.139 mmol)、ヨウ化銅(I)(0.053 g, 0.28 mmol)のN,N-ジメチルホルムアミド(5.0 ml)溶液に、トリエチルアミン(0.39 ml, 2.8 mmol)及びエチニルベンゼン(0.51 ml, 4.6 mmol)を加え、65 にて、2.5時間撹拌した。この反応混合物に水及び酢酸エチルを加え、1時間撹拌後、不溶物をセライトろ過により取り除き、酢酸エチルで溶出した。ろ液を分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=5/1から4/1)にて精製することにより表題化合物(0.45 g,収率98%)を得た。

 $^{1}\text{H-NMR}$ (400MHz, DMSO-d $_{6}$) : 3.40 (3H, s), 4.17 (3H, s), 5.14 (2H, s), 7.34-7.39 (3H, m), 7.42-7.47 (2H, m), 7.50-7.59 (3H, m), 7.62-7.67 (2H, m), 8.50-8.55 (2H, m).

[0408]

(7) 2-[4-メトキシ-6-(4-フェニルエチニルフェニル)-1,3,5-トリアジン-2-イル]-3-ト リフルオロメチルフェノール 10

20

30

40

[0410]

アルゴン雰囲気下、上記(6)で得られた2-メトキシ-4-(2-メトキシメトキシ-6-トリフルオロメチルフェニル)-6-(4-フェニルエチニルフェニル)-1,3,5-トリアジン(0.45 g, 0.92 mmol)のメタノール(4.5 ml)溶液に、室温にて、1,4-ジオキサン(4.5 ml)及びメタンスルホン酸(0.030 ml, 0.46 mmol)を加えた。70 にて、5時間撹拌した後、室温にて、この反応混合物にトリエチルアミン(0.13 ml, 0.92 mmol)を加えた。この反応混合物に水(45 ml)を加え、30分間撹拌した。析出した固体をろ取し、乾燥することにより表題化合物(0.38 g, 収率93%)を得た。

 $^{1}\text{H-NMR}$ (400MHz, CDCI $_{3}$) : 4.23 (3H, s), 7.25-7.30 (1H, m), 7.36-7.40 (3H, m), 7.43-7.47 (1H, m), 7.50-7.60 (3H, m), 7.67-7.72 (2H, m), 8.48-8.52 (2H, m), 12.43 (1H, br s)

[0411]

(8) 2-メトキシ-4-[2-(6-メチルピリジン-2-イルメトキシ)-6-トリフルオロメチルフェニル]-6-(4-フェニルエチニルフェニル)-1,3,5-トリアジン

[0412]

【化108】

[0413]

アルゴン雰囲気下、上記(7)で得られた2-[4-メトキシ-6-(4-フェニルエチニルフェニル)- 1,3,5-トリアジン-2-イル]-3-トリフルオロメチルフェノール(0.24 g, 0.54 mmol)、6-メチル-2-ピリジンメタノール(0.099 g, 0.80 mmol)及びトリフェニルホスフィン(0.21 g, 0.80 mmol)のテトラヒドロフラン(6.0 ml)溶液に、氷冷下、アゾジカルボン酸ビス(2-メトキシエチル)(0.19 g, 0.80 mmol)を3回に分けて加えた。反応混合物を20分間撹拌後、室温にて、20時間撹拌した。その後、この反応混合物に6-メチル-2-ピリジンメタノール(0.099 g, 0.80 mmol)、トリフェニルホスフィン(0.21 g, 0.80 mmol)を1)を加え、氷冷下、アゾジカルボン酸ビス(2-メトキシエチル)(0.19 g, 0.80 mmol)を2回に分けて加えた。20分間撹拌後、室温にて、反応混合物を10分間撹拌した。この反応混合物に水及び酢酸エチルを加え、分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン / 酢酸エチル = 4 / 3)にて精製することにより表題化合物(0.28 g, 収率95%)を得た。

 $^{1}\text{H-NMR}$ (400MHz, CDCI $_{3}$) : 2.51 (3H, s), 4.17 (3H, s), 5.21 (2H, s), 6.96-7.01 (1H, m), 7.02-7.07 (1H, m), 7.20-7.25 (1H, m), 7.33-7.42 (5H, m), 7.47-7.59 (3H, m), 7.62-7.68 (2H, m), 8.52-8.57 (2H, m).

10

20

40

[0414]

(9) 4-[2-(6-メチルピリジン-2-イルメトキシ)-6-トリフルオロメチルフェニル]-6-(4-フェニルエチニルフェニル)-1,3,5-トリアジン-2-オール

[0415]

【化109】

[0416]

アルゴン雰囲気下、上記(8)で得られた2-メトキシ-4-[2-(6-メチルピリジン-2-イルメトキシ)-6-トリフルオロメチルフェニル]-6-(4-フェニルエチニルフェニル)-1,3,5-トリアジン(0.28 g, 0.52 mmol)のメタノール(4.6 ml)懸濁液に、室温にて、4M水酸化ナトリウム水溶液(0.77 ml, 3.1 mmol)及びテトラヒドロフラン(0.46 ml)を加えた。65 にて、この反応混合物を3.5時間撹拌した。室温にて、この反応混合物に10重量%クエン酸水溶液(3.2 ml)及び水(16 ml)を加え、30分間撹拌した。析出した固体をろ取し、水で洗浄し、減圧乾燥することにより表題化合物(0.27 g, 収率95%)を得た。

1H-NMR (400MHz, DMSO-d₆) : 2.43 (3H, s), 5.31 (2H, s), 7.07-7.17 (2H, m), 7.43-7.49 (3H, m), 7.50-7.68 (5H, m), 7.69-7.82 (3H, m), 8.32-8.38 (2H, m), 13.63 (1H, br s).

[0417]

(10) 4-[2-(6-メチルピリジン-2-イルメトキシ)-6-トリフルオロメチルフェニル]-6-(4-フェニルエチニルフェニル)-1,3,5-トリアジン-2-オール塩酸塩(実施例番号2-98)

[0418]

【化110】

[0419]

アルゴン雰囲気下、上記(9)で得られた4-[2-(6-メチルピリジン-2-イルメトキシ)-6-トリフルオロメチルフェニル]-6-(4-フェニルエチニルフェニル)-1,3,5-トリアジン-2-オール(0.27 g, 0.49 mmol)の1,4-ジオキサン(5.3 ml)溶液に、室温にて、4M塩化水素 / 1,4-ジオキサン溶液(0.37 ml, 1.5 mmol)を加えた。この反応混合物にn-ヘキサン(21 ml)を加え、30分間撹拌した。析出した固体をろ取し、n-ヘキサンで洗浄後、減圧乾燥することにより表題化合物(0.26 g, 収率91%)を得た。

 $^{1}\text{H-NMR} \ (400\text{MHz}, \ \text{DMSO-d}_{6}) \qquad : 2.48 \ (3\text{H}, \ \text{s}), \ 5.37 \ (2\text{H}, \ \text{s}), \ 7.23 \ (1\text{H}, \ \text{d}, \ \text{J} = 7.3 \ \text{Hz}), \\ 7.28 \ (1\text{H}, \ \text{d}, \ \text{J} = 7.3 \ \text{Hz}), \ 7.48-7.45 \ (3\text{H}, \ \text{m}), \ 7.56 \ (1\text{H}, \ \text{d}, \ \text{J} = 7.9 \ \text{Hz}), \\ 7.64-7 \ .59 \ (2\text{H}, \ \text{m}), \ 7.67 \ (1\text{H}, \ \text{d}, \ \text{J} = 8.6 \ \text{Hz}), \\ 7.82-7.72 \ (4\text{H}, \ \text{m}), \ 8.35 \ (2\text{H}, \ \text{dd}, \ \text{J} = 6.8, \\ 2.0 \ \text{Hz}).$

[0420]

「製造例6]

2-[4-クロロ-2-メチル-5-(4,4,5,5-テトラメチル[1,3,2]ジオキサボロラン-2-イル) ベンジロキシ]テトラヒドロピランの合成

[0421]

(1) 4- クロロ-5- ヨード-2- メチル安息香酸

40

20

アルゴン雰囲気下、4-クロロ-2-メチル安息香酸(1.9 g, 11 mmol)に氷冷下、濃硫酸(16 ml)及びN-ヨードこはく酸イミド(2.7 g, 12 mmol)を加え、室温にて、4時間撹拌した。この反応液を、注意深く氷水に注ぎ、撹拌した。析出した固体をろ取し、水で洗浄し、減圧乾燥することで、表題化合物(3.3 g, 収率99%)を得た。

¹H-NMR (CDCI₃) : 2.58 (3H, s), 7.38 (1H, br s), 8.50 (1H, s).

[0424]

(2)(4-クロロ-5-ヨード-2-メチルフェニル)メタノール

[0425]

【化112】

アルゴン雰囲気下、4-クロロ-5-ヨード-2-メチル安息香酸(2.4 g, 8.1 mmol)のテトラヒドロフラン(12 ml)溶液に、氷冷下、トリエチルアミン(1.2 ml, 8.9 mmol)及びクロロギ酸イソブチル(1.2 ml, 8.9 mmol)を加え、30分間撹拌した。室温にて、ろ過により不溶物を取り除き、テトラヒドロフラン(36 ml)で洗浄した。このろ液を氷冷にて調製した水素化ホウ素ナトリウム(0.92 g, 24 mmol)の水(4.5 ml)溶液に10分かけて滴下した。室温にて、2時間撹拌後、この反応混合物に水素化ホウ素ナトリウム(0.30 g, 8.1 mmol)を加え、1時間撹拌した。この反応混合物に飽和塩化アンモニウム水溶液及び酢酸エチルを加え、分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/酢酸エチル=100/0から95/5)にて精製することにより表題化合物(2.0 g, 収率88%)を得た。

 1 H-NMR (400MHz,CDCI₃) : 1.60 (1H, t, J = 5.7 Hz), 2.26 (3H, s), 4.63 (2H, d, J = 5.6 Hz), 7.25-7.26 (1H, m), 7.84 (1H, br s).

[0427]

(3) 2-(4-クロロ-5-ヨード-2-メチルベンジロキシ)テトラヒドロピラン

[0428]

【化113】

[0429]

アルゴン雰囲気下、上記(1)で得られた(4-クロロ-5-ヨード-2-メチルフェニル)メタノール(2.0 g, 7.1 mmol)のクロロホルム(20 ml)溶液に、室温にて、ピリジニウム p-トルエンスルホナート(0.27 mg, 1.1 mmol)及び3,4-ジヒドロ-2H-ピラン(0.97 ml, 1 mmol)を加え、16時間撹拌した。この反応混合物を減圧濃縮後、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=9/1)にて精製することにより表題化合物(2.6 g, 収率99%)を得た。

20

30

10

(86)

 $^{1}\text{H-NMR}$ (400MHz, CDCI₃) : 1.51-1.92 (6H, m), 2.26 (3H, s), 3.52-3.59 (1H, m), 3.85-3.91 (1H, m), 4.38 (1H, d, J = 12.6 Hz), 4.67-4.72 (2H, m), 7.25 (1H, br s), 7.82 (1H, br s).

[0430]

(4)2-[4-クロロ-2-メチル-5-(4,4,5,5-テトラメチル[1,3,2]ジオキサボロラン-2-イル) ベンジロキシ]テトラヒドロピラン

[0431]

【化114】

[0432]

アルゴン雰囲気下、上記(2)で得られた2-(4-クロロ-5-ヨード-2-メチルベンジロキシ)テトラヒドロピラン(2.3 g, 6.2 mmol)の1,4-ジオキサン(23 ml)溶液に、室温にて、ビフェニル-2-イル-ジシクロヘキシルホスフィン(0.43 g, 1.2 mmol)、酢酸パラジウム(II)(0.070 g, 0.31 mmol)、トリエチルアミン(3.4 ml, 25 mmol)及び4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(2.7 ml, 18 mmol)を加え、80 にて、5時間撹拌した。氷冷下、この反応混合物に水を滴下し、酢酸エチルを加えた。分液した後、有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン / 酢酸エチル = 98 / 2から80 / 20)にて精製することにより表題化合物(1.3 g, 収率60%)を得た。

 1 H-NMR (400MHz, CDCI $_{3}$) : 1.36 (12H, s), 1.47-1.90 (6H, m), 2.34 (3H, s), 3.52-3.59 (1H, m), 3.88-3.95 (1H, m), 4.42 (1H, d, J = 11.6 Hz), 4.67 (1H, t, J = 3.5 Hz), 4.74 (1H, d, J = 11.6 Hz), 7.18 (1H, br s), 7.63 (1H, br s).

[0433]

[製造例7]

tert-ブチル-(4-クロロ-3-ヨード-2-メチルベンジロキシ)ジメチルシランの合成

[0434]

(1)3-(tert-ブチル-ジメチルシラニロキシメチル)-6-クロロ-2-メチルフェニルアミン

[0435]

【化115】

$$H_2N$$
 $O_{\tilde{j}}S_{\tilde{i}}$
 $O_{\tilde{j}}S_{\tilde{i}}$

[0436]

アルゴン雰囲気下、 $3-(\text{tert}-\vec{\textit{J}} + \vec{\textit{J}} \times \vec{$

 1 H-NMR (400MHz, CDCI₃) : 0.08 (6H, s), 0.92 (9H, s), 2.11 (3H, s), 4.01 (2H, b r s), 4.60-4.69 (2H, m), 6.77 (1H, d, J = 8.4 Hz), 7.11 (1H, d, J = 8.4 Hz).

[0437]

(2) tert - ブチル - (4-クロロ-3-ヨード-2-メチルベンジロキシ)ジメチルシラン

[0438]

50

10

20

30

[0439]

アルゴン雰囲気下、上記(1)で得られた3-(tert-ブチル-ジメチルシラニロキシメチル)-6-クロロ-2-メチルフェニルアミン(0.18 g, 0.63 mmol)のアセトニトリル(2.0 ml)溶液に、室温にて、ヨウ素(0.19 g, 0.76 mmol)及び亜硝酸 tert-ブチル(0.11 ml, 0.9 4 mmol)を加え、65 にて、30分間撹拌した。室温にて、この反応混合物に水及び酢酸エチルを加えた。分液した後、有機層を飽和重曹水、10重量%チオ硫酸ナトリウム水溶液で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n- ヘキサン / 酢酸エチル = 40 / 1)にて精製することにより表題化合物(0.099 g, 収率40%)を得た。

 1 H-NMR (400MHz, CDCI₃) : 0.10 (6H, s), 0.93 (9H, s), 2.47 (3H, s), 4.68 (2H, s), 7.30 (1H, d, J = 8.4 Hz), 7.35 (1H, d, J = 8.1 Hz).

[0440]

「製造例8]

2-(6-クロロ-2-メトキシメトキシ-3-メチルフェニル)-4,4,5,5-テトラメチル[1,3,2]ジオキサボロランの合成

[0441]

(1) 4- クロロ-2- メトキシメトキシ-1- メチルベンゼン

[0442]

【化117】

[0443]

アルゴン雰囲気下、5-クロロ-2-メチルフェノール(1.0 g, 7.0 mmol)のN,N-ジメチルホルムアミド(20 ml)溶液に、氷冷下、水素化ナトリウム(0.34 g, 60重量%オイルディスパージョン)を加えた。15分間撹拌後、室温にて、30分間撹拌した。氷冷下、クロロメチルメチルエーテル(0.64 ml, 8.4 mmol)を加え、30分間撹拌した。この反応混合物に水及びジエチルエーテルを加え、室温にて、分液した。有機層を水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: n - n

 1 H-NMR (400MHz, CDCI₃) : 2.20 (3H, s), 3.48 (3H, s), 5.18 (2H, s), 6.89 (1H, d d, J = 7.9, 2.0 Hz), 7.03-7.07 (2H, m).

[0444]

(2)2-(6-クロロ-2-メトキシメトキシ-3-メチルフェニル)-4,4,5,5-テトラメチル[1,3,2]ジオキサボロラン

[0445]

20

10

30

[0446]

アルゴン雰囲気下、上記(1)で得られた4-クロロ-2-メトキシメトキシ-1-メチルベンゼン(0.75 g, 4.0 mmol)のテトラヒドロフラン(20 ml)溶液に、-78 にて、n-ブチルリチウム(1.6M n-ヘキサン溶液,2.5 ml,4.0 mmol)を5分かけて滴下した。30分間撹拌後、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(0.81 ml,4.0 mmol)を加えた。2時間撹拌後、撹拌を停止し、室温に昇温した。13時間後、この反応混合物に飽和塩化アンモニウム水溶液及び酢酸エチルを加え、分液した後、有機層を水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、3過により硫酸マグネシウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン/酢酸エチル=12/1)にて精製することにより表題化合物(0.20 g, 収率15%)を得た。

¹H-NMR (400MHz, CDCI₃) : 1.40 (12H, s), 2.27 (3H, s), 3.55 (3H, s), 5.03 (2H, s), 7.01 (1H, d, J = 8.2 Hz), 7.07-7.11 (1H, m).

[0447]

[製造例9]

N-{4-クロロ-3-[4-(4-イソブチルフェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル] ベンジル}-2,2-ジメチルプロピオンアミド(実施例番号1-51)の合成

[0448]

【化119】

[0449]

(1) 2-クロロ-4-(4-イソブチルフェニル)-6-メトキシ-1,3,5-トリアジン

[0450]

【化120】

[0451]

アルゴン雰囲気下、4-(2-メチルプロピル)フェニルボロン酸(35~g, 200~mmol)、2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン(<math>46~g, 260~mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(2.3~g, 2.0~mmol)及び炭酸ナトリウム(63~g, 590~mmol)のトルエン(280~ml)及び蒸留水(280~ml)懸濁液を70~cにて、3.5時間撹拌した。室温にて、この反応液に水、酢酸エチル、及びn-ヘキサンを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。粗生成物として表題化合物(60~g)を得た。

[0452]

10

20

30

20

40

50

(2) {4-クロロ-3-[4-(4-イソプチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェニル}メタノール

[0453]

【化121】

[0454]

アルゴン雰囲気下、上記(1)で得られた2-クロロ-4-(4-イソブチルフェニル)-6-メトキシ-1,3,5-トリアジンの粗生成物(60 g)、2-クロロ-5-ヒドロキシメチルフェニルボロン酸(44 g,240 mmol)、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(3.2 g,3.9 mmol)及びフッ化セシウム(90 g,590 mmol)のアセトニトリル(440 ml)及び蒸留水(130 ml)の懸濁液を67 にて、2時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した。有機層を水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=7/3から6/4)にて精製することにより表題化合物(57 g)を得た。

 $^{1}\text{H-NMR} \ \, \text{(CDCI}_{3}) \qquad : \quad 0.93 \ \, \text{(6H , d, J = 6.6 Hz) , } \ \, 1.77 \ \, \text{(1H , t , J = 6.1 Hz) , } \ \, 1.9 \\ 0-1.97 \ \, \text{(1H, m) , } \ \, 2.57 \ \, \text{(2H , d , J = 7.3 Hz) , } \ \, 4.21 \ \, \text{(3H, s) , } \ \, 4.77 \ \, \text{(2H, d, J = 6.1 Hz) , } \ \, \text{7.29} \ \, \text{(2H, d, J = 8.3 Hz) , } \ \, 7.47 \ \, \text{(1H, dd, J = 8.3, 2.1 Hz) , } \ \, 7.54 \ \, \text{(1H, d, J = 8.3 Hz) , } \ \, \text{8.01} \ \, \text{(1H, d, J = 8.3 Hz) , } \ \, \text{8.51} \ \, \text{(2H, d, J = 8.3 Hz) . }$

[0455]

(3) tert-ブチル N-{4-クロロ-3-[4-(4-イソブチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル}-N-(tert-ブトキシカルボニル)カーバメート

[0456]

【化122】

[0457]

アルゴン雰囲気下、上記(2)で得られた $\{4- 4- 10-3-[4-(4- 4- 10)]$ チトキシ-1,3,5-トリアジン-2-イル]フェニル} メタノール(0.25 g, 0.64 mmol)及びトリフェニルホスフィン(0.25 g, 0.96 mmol)のクロロホルム(2.4 ml)溶液に、氷冷下、四臭化炭素(0.32 g, 0.96 mmol)を加えた。この反応液を室温にて、10分間撹拌した。反応液をシリカゲルカラムクロマトグラフィー(展開溶媒:n- n+ 1 の n- n+ 1 の

¹H-NMR (CDCI₃) : 0.93 (6H, d, J= 6.6 Hz), 1.47 (18H, s), 1.88-1.98 (1H, m), 2. 57 (2H, d, J = 7.3 Hz), 4.19 (3H, s), 4.83 (2H, s), 7.28 (2H, d, J = 8.4 Hz), 7.

39 (1H, dd, J = 8.4, 2.3 Hz), 7.48 (1H, d, J = 8.4 Hz), 8.00 (1H, d, J = 2.3 Hz), 8.50 (2H, dt, J = 8.4, 1.8 Hz).

[0458]

(4)4-クロロ-3-[4-(4-イソブチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩

[0459]

【化123】

[0460]

アルゴン雰囲気下、上記(3)で得られたtert-ブチル N- $\{4$ -クロロ-3-[4-(4-イソブチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル $\}$ -N- $\{tert$ -ブトキシカルボニル)カーバメート(0.27 g, 0.46 mmol)に、室温にて、 $\{tert\}$ - がオキサン溶液(2.0 ml)を加え、30分間撹拌した。この懸濁液より固体をろ取し、減圧乾燥することにより表題化合物を粗生成物(0.16 g)として得た。

[0461]

(5) N-{4-クロロ-3-[4-(4-イソブチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル] ベンジル}-2,2-ジメチルプロピオンアミド

[0462]

【化124】

[0463]

アルゴン雰囲気下、上記(4)で得られた4-クロロ-3-[4-(4-イソブチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩の粗生成物(0.035 g)、HOB t・H₂0(0.019 g, 0.12 mmol)及びWSC・HCI(0.024 g, 0.13 mmol)のN,N-ジメチルホルムアミド(1.0 ml)溶液に、室温にて、2,2-ジメチルプロピオン酸(0.014 ml, 0.12 mmol)及びトリエチルアミン(0.035 ml, 0.25 mmol)を加え、3時間撹拌した。この反応液に飽和重曹水及び酢酸エチルを加え、分液した。有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン / 酢酸エチル = 3 / 2)にて精製することにより表題化合物(0.030 g)を得た。

¹H-NMR (CDCI₃) : 0.93 (6H, d, J= 6.6 Hz), 1.24 (9H, s), 1.88-1.99 (1H, m), 2.5 7 (2H, d, J = 7.1 Hz), 4.20 (3H, s), 4.50 (2H, d, J = 6.0 Hz), 5.98 (1H, br s), 7.29 (2H, d, J = 8.3 Hz), 7.36 (1H, dd, J = 8.2, 2.3 Hz), 7.51 (1H, d, J = 8.2 Hz), 7.92 (1H, d, J = 2.3 Hz), 8.50 (2H, d, J = 8.3 Hz).

[0464]

(6) N-{4-クロロ-3-[4-ヒドロキシ-6-(4-イソブチルフェニル)-1,3,5-トリアジン-2-イル]ベンジル}-2,2-ジメチルプロピオンアミド(実施例番号1-51)

[0465]

30

20

20

30

40

50

(91)

[0466]

[0467]

「製造例10]

N- {4-クロロ-3-[4-(3-フルオロ-4-メチルフェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-81)の合成

[0468]

【化126】

[0469]

(1)2-クロロ-4-(3-フルオロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン

[0470]

【化127】

[0471]

アルゴン雰囲気下、3-フルオロ-4-メチルフェニルボロン酸(0.43 g, 2.8 mmol)、2,4 -ジクロロ-6-メトキシ-1,3,5-トリアジン(1.0 g, 5.6 mmol)及びテトラキス(トリフェニルホスフィン)パラジウム(0)(0.16 g, 0.14 mmol)のトルエン(8 ml)懸濁液に、室温にて、2Mリン酸三カリウム水溶液(4.0 ml)を加え、100 にて、3時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した。有機層を水で洗浄し分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン / クロロホルム = 2 / 3から1 / 2)にて精製することにより表題化合物(0.58 g, 収率81%)を得た。

¹H-NMR (CDCI₃) : 2.37 (3H, d, J= 2.1 Hz), 4.17 (3H, s), 7.32 (1H, t, J= 7.9 Hz), 8.12 (1H, dd, J = 10.7, 1.7 Hz), 8.19 (1H, dd, J= 7.9, 1.7 Hz).

20

30

40

50

[0472]

(2) {4-クロロ-3-[4-(3-フルオロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェニル}メタノール

[0473]

【化128】

[0474]

アルゴン雰囲気下、上記(1)で得られた2-クロロ-4-(3-フルオロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン(0.58 g, 2.3 mmol)、2-クロロ-5-ヒドロキシメチルフェニルボロン酸(0.51 g, 2.7 mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン] パラジウム(II)ジクロリド ジクロロメタン付加物(0.18 g, 0.23 mmol)の1,4-ジオキサン(9.0 ml)溶液に2M炭酸ナトリウム水溶液(4.5 ml)を加え、100 にて、2時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン / 酢酸エチル = 4 / 3)にて精製することにより表題化合物(0.44 g, 収率53%)を得た。

 1 H-NMR (CDCI₃) : 1.76 (1H, t, J= 5.8 Hz), 2.37 (3H, d, J = 1.9 Hz), 4.21 (3H, s), 4.78 (2H, d, J= 5.8 Hz), 7.33 (1H, t, J = 7.9 Hz), 7.47 (1H, dd, J = 8.1, 2.2 Hz), 7.54 (1H, d, J = 8.1 Hz), 8.02 (1H, d, J = 2.2 Hz), 8.23 (1H, dd, J = 10.7, 1.6 Hz), 8.29 (1H, dd, J = 7.9, 1.6 Hz).

[0475]

(3) tert-ブチル N-{4-クロロ-3-[4-(3-フルオロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル}-N-(tert-ブトキシカルボニル)カーバメート

[0476]

【化129】

$$\begin{array}{c} C \\ N \\ N \\ N \end{array}$$

[0477]

アルゴン雰囲気下、上記(2)で得られた {4-クロロ-3-[4-(3-フルオロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェニル} メタノール(0.44 g, 1.2 mmol)のテトラヒドロフラン(13 ml)溶液に、氷冷下、トリエチルアミン(0.22 ml, 1.6 mmol)及びメタンスルホニルクロリド(0.10 ml, 1.3 mmol)を加え、0.5時間撹拌した。この反応液を、室温にて、イミノジカルボン酸ジ-tert-ブチル(0.32 g, 1.5 mmol)及び炭酸セシウム(1.2 g, 3.6 mmol)のN,N-ジメチルホルムアミド(3.0 ml)溶液に加え、1時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n・ヘキサン/酢酸エチル=6/1)にて精製することにより表題化合物(0.64 g, 収率94%)を得た。

 $^{1}\text{H-NMR} \ (\text{CDCI}_{3}) \quad : \quad 1.48 \ (18\text{H}, \ \text{s}) , \quad 2.37 \ (3\text{H}, \ \text{d}, \ \text{J} = 1.6 \ \text{Hz}) , \quad 4.19 \ (3\text{H}, \ \text{s}) , \quad 4.83 \ (2\text{H}, \ \text{s}) , \quad 7.31 \ (1\text{H}, \ \text{t}, \ \text{J} = 7.9 \ \text{Hz}) , \quad 7.40 \ (1\text{H}, \ \text{dd}, \ \text{J} = 8.4, \quad 2.3 \ \text{Hz}) , \quad 7.49 \ (1\text{H}, \ \text{d}, \ \text{J} = 8.4 \ \text{Hz}) , \quad 8.00 \ (1\text{H}, \ \text{d}, \ \text{J} = 2.3 \ \text{Hz}) , \quad 8.22 \ (1\text{H}, \ \text{dd}, \ \text{J} = 10.7, \quad 1.6 \ \text{Hz}) , \quad 8.28 \ (1\text{H}, \ \text{Hz})$

dd, J = 7.9, 1.6 Hz).

[0478]

(4) 4- クロロ-3- [4- (3- フルオロ-4- メチルフェニル) -6- メトキシ-1,3,5- トリアジン-2-イル] ベンジルアミン塩酸塩

[0479]

【化130】

[0480]

アルゴン雰囲気下、上記(3)で得られたtert-ブチル N- $\{4$ -クロロ-3-[4-(3-フルオロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル $\}$ -N- $\{tert$ -ブトキシカルボニル)カーバメート(0.64 g, 1.1 mmol)の1,4 - ジオキサン溶液(2.0 ml)に、室温にて、 $\{4$ M塩化水素 / 1,4 - ジオキサン溶液(6.0 ml)を加え、2時間撹拌した。この反応液に、 $\{n\}$ -ヘキサン(32 ml)を加え、45分間撹拌した。この懸濁液より固体をろ取し、減圧乾燥することにより表題化合物(0.45 g, 収率99%)として得た。

 $^{1}\text{H-NMR} \ (\text{DMSO-D}_{6}) \quad : \quad 2.36 \ (3\text{H, d, J} = 1.4 \ \text{Hz}) \,, \quad 4.13-4.19 \ (2\text{H, m}) \,, \quad 4.17 \ (3\text{H, s}) \,, \quad 7.55 \ (1\text{H, t, J} = 8.0 \ \text{Hz}) \,, \quad 7.71 \ (1\text{H, dd, J} = 8.1, \ 2.1 \ \text{Hz}) \,, \quad 7.75 \ (1\text{H, d, J} = 8.1 \ \text{Hz}) \,, \quad 8.16-8.20 \ (2\text{H, m}) \,, \quad 8.27 \ (1\text{H, dd, J} = 7.9, \ 1.6 \ \text{Hz}) \,, \quad 8.38 \ (3\text{H, br s}) \,.$

[0481]

(5) N-{4-クロロ-3-[4-(3-フルオロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル] ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド

[0482]

【化131】

[0483]

アルゴン雰囲気下、上記(4)で得られた4-クロロ-3-[4-(3-フルオロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩(0.070 g, 0.18 mmol)、HOBt・ H_2 O(0.041 g, 0.27 mmol)及び3,3,3-トリフルオロ-2,2-ジメチルプロピオン酸(0.042 g, 0.27 mmol)のN,N-ジメチルホルムアミド(1.0 ml)溶液に、室温にて、WS C・HCI(0.051 g, 0.27 mmol)及びトリエチルアミン(0.037 ml, 0.027 mmol)を加え、1.5時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した。有機層を飽和重曹水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン / 酢酸エチル=2 / 1)にて精製することにより表題化合物(0.080 g, 収率90%)を得た。

 1 H-NMR (CDCI $_{3}$) : 1.45 (6H, s), 2.37 (3H, d, J = 1.9 Hz), 4.20 (3H, s), 4.55 (2 H, d, J = 5.8 Hz), 6.23 (1H, br s), 7.30-7.37 (2H, m), 7.52 (1H, d, J = 8.4 Hz), 7.93 (1H, d, J = 2.3 Hz), 8.22 (1H, dd, J = 10.7, 1.6 Hz), 8.28 (1H, dd, J = 7.9, 1.6 Hz).

[0484]

(6) N- {4-クロロ-3-[4-(3-フルオロ-4-メチル-フェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル] ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-81)

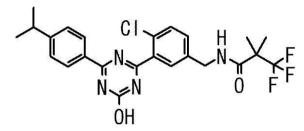
10

20

30

40

[0486]


アルゴン雰囲気下、上記(5)で得られたN-{4-クロロ-3-[4-(3-フルオロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(0.077 g, 0.16 mmol)のメタノール(1.4 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.23 ml)を加え、60 にて、2時間撹拌した。この反応液に、室温にて、10%クエン酸水溶液(0.070 ml)及び水を加え、撹拌した。析出した固体をろ取し、水で洗浄し、減圧乾燥することで、表題化合物(0.070 g, 収率92%)を得た。

[0487]

「製造例11]

N- $\{4-$ クロロ-3-[4-ヒドロキシ-6-(4- イソプロピルフェニル)-1,3,5- トリアジン-2- イル]ベンジル $\}$ -3,3,3- トリフルオロ-2,2- ジメチルプロピオンアミド(実施例番号1-98)の合成

【 0 4 8 8 】 【 化 1 3 3 】

[0489]

(1)2-クロロ-4-(4-イソプロピルフェニル)-6-メトキシ-1,3,5-トリアジン

[0490]

【化134】

[0491]

アルゴン雰囲気下、4-イソプロピルフェニルボロン酸(0.30 g, 1.7 mmol)、2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン(0.23 g, 1.4 mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.11 g, 0.14 mmol)の1,4-ジオキサン(4.0 ml)懸濁液に、室温にて、2M炭酸ナトリウム水溶液(2.0 ml)を加え、100 にて、1.5時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-へキサン / 酢酸エチル = 20/1)にて精製することにより表題化合物(0.21 g, 収率57%)を得た。

 $^{1}\text{H-NMR}$ (CDCI $_{3}$) : 1.29 (6H, d, J= 7.1 Hz), 2.99-3.02 (1H, m), 4.16 (3H, s), 7.3 4-7.38 (2H, m), 8.39-8.43 (2H, m).

[0492]

10

20

40

30

(2) {4-クロロ-3-[4-(4-イソプロピルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル] フェニル}メタノール

[0493]

【化135】

[0494]

アルゴン雰囲気下、上記(1)で得られた2-クロロ-4-(4-イソプロピルフェニル)-6-メトキシ-1,3,5-トリアジン(0.21 g)、2-クロロ-5-ヒドロキシメチルフェニルボロン酸(0.15 g, 0.80 mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.066 g, 0.080 mmol)の1,4-ジオキサン(2.4 ml)懸濁液に、室温にて、2M炭酸ナトリウム水溶液(1.2 ml)を加え、100 にて、2時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した。有機層を水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: n - ヘキサン / 酢酸エチル = 5 / 3)にて精製することにより表題化合物(0.15 g,収率51%)を得た。

 $^{1}\text{H-NMR (CDCI}_{3}) \hspace{0.5cm} : \hspace{0.1cm} 1.30 \hspace{0.1cm} (6\text{H, d, J= 7.1 Hz}), \hspace{0.1cm} 1.77 \hspace{0.1cm} (1\text{H, t, J= 6.1 Hz}), \hspace{0.1cm} 2.95\text{-}3.07 \\ \hspace{0.1cm} (1\text{H, m}), \hspace{0.1cm} 4.20 \hspace{0.1cm} (3\text{H, s}), \hspace{0.1cm} 4.77 \hspace{0.1cm} (2\text{H, d, J= 6.1 Hz}), \hspace{0.1cm} 7.35\text{-}7.39 \hspace{0.1cm} (2\text{H, m}), \hspace{0.1cm} 7.46 \hspace{0.1cm} (1\text{H, dd}, \hspace{0.1cm} \text{J= 8.2, 2.2 Hz}), \hspace{0.1cm} 7.54 \hspace{0.1cm} (1\text{H, d, J= 8.2 Hz}), \hspace{0.1cm} 8.01 \hspace{0.1cm} (1\text{H, dd}, \hspace{0.1cm} \text{J= 2.2, 0.4 Hz}), \hspace{0.1cm} 8.50\text{-}8.54 \hspace{0.1cm} (2\text{H, m}).$

[0495]

(3) tert-ブチル N- $\{4-$ クロロ-3-[4-(4-イソプロピルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル $\}$ -N-(tert-ブトキシカルボニル)カーバメート

[0496]

【化136】

CI O O O N N N O O

[0497]

この残渣のN,N-ジメチルホルムアミド(1.5 ml)溶液を、氷冷下、イミノジカルボン酸ジ-tert-ブチル(0.089 g, 0.41 mmol)及び水素化ナトリウム(0.016 g, 60重量%オイルディスパージョン)のN,N-ジメチルホルムアミド(0.70 ml)溶液に加え、室温にて、15分間撹拌した。この反応液に水及び酢酸エチルを加え、分液した。有機層を水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン/酢酸エチル=5/1)にて精製することにより表題化合物(0.20 g, 収率85%)を得た。

10

20

30

 1 H-NMR (CDCI₃) : 1.30 (6H, d, J= 7.0 Hz), 1.47 (18H, s), 2.94-3.05 (1H, m), 4. 19 (3H, s), 4.83 (2H, s), 7.34-7.41 (3H, m), 7.48 (1H, d, J = 8.4 Hz), 8.00 (1H, d, J = 2.3 Hz), 8.49-8.53 (2H, m).

[0498]

(4) 4- クロロ-3- [4- (4- イソプロピルフェニル) -6- メトキシ-1,3,5- トリアジン-2- イル] ベンジルアミン塩酸塩

[0499]

【化137】

[0500]

アルゴン雰囲気下、上記(3)で得られた $tert-ブチル N-\{4-クロロ-3-[4-(4-イソプロピルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル<math>\}-N-(tert-ブトキシカルボニル)カーバメート(0.20 g, 0.35 mmol)に、室温にて、<math>4M塩化水素 / 1,4-ジオキサン溶液(2.0 ml)を加え、1時間撹拌した。この懸濁液を減圧濃縮し、酢酸エチル共沸を2回行うことにより表題化合物を粗生成物(0.14 g)として得た。$

[0501]

(5) N- {4- クロロ-3- [4- (4- イソプロピルフェニル) -6- メトキシ-1,3,5- トリアジン-2- イル] ベンジル} -3,3,3- トリフルオロ-2,2- ジメチルプロピオンアミド

[0502]

【化138】

[0503]

 1 H-NMR (CDCI₃) : 1.30 (6H, d, J= 6.8 Hz), 1.44 (6H, s), 2.95-3.05 (1H, m), 4.1 8 (3H, s), 4.53 (2H, d, J = 5.7 Hz), 6.34 (1H, br s), 7.30-7.39 (3H, m), 7.50 (1 H, d, J = 8.4 Hz), 7.91 (1H, d, J = 2.2 Hz), 8.49-8.53 (2H, m).

[0504]

(6) N- {4-クロロ-3-[4-ヒドロキシ-6-(4-イソプロピルフェニル)-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-98) 【 0 5 0 5 】 20

30

20

30

40

50

[0506]

アルゴン雰囲気下、上記(5)で得られたN-{4-クロロ-3-[4-(4-イソプロピルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(0.050 g, 0.099 mmol)のメタノール(0.50 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.20 ml)を加え、60 にて、2時間撹拌した。この反応液に、室温にて、2N塩酸(0.40 ml)及び水を加え、撹拌した。析出した固体をろ取し、水で洗浄し、減圧乾燥することで、表題化合物(0.043 g, 収率89%)を得た。

[0507]

[製造例12]

N- {4-クロロ-3-[4-ヒドロキシ-6-(4-イソブトキシフェニル)-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-109)の合成

【0508】 【化140】

CI H F F OH

[0509]

(1) 2-クロロ-4-(4-イソブトキシフェニル)-6-メトキシ-1,3,5-トリアジン

[0510]

【化141】

[0511]

アルゴン雰囲気下、4-イソブトキシフェニルボロン酸(0.50 g, 2.58 mmol)、2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン(0.93 g, 5.15 mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.15 g, 0.129 mmol)及び炭酸ナトリウム(0.819 g, 7.73 mmol)のトルエン(5.0 ml)懸濁液に蒸留水(3.5 ml)を加え、86 にて、2時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=10/1)にて精製することにより表題化合物(0.606 g, 収率80%)を得た。

 1 H-NMR (CDCI₃) : 1.05 (6H, d, J= 6.7 Hz), 2.07-2.17 (1H, m), 3.81 (2H, d, J = 6.5 Hz), 4.14 (3H, s), 6.95-7.00 (2H, m), 8.42-8.46 (2H, m).

(2) {4-クロロ-3-[4-(4-イソブトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル] フェニル}メタノール

[0513]

【化142】

[0514]

アルゴン雰囲気下、上記(1)で得られた2-クロロ-4-(4-イソブトキシフェニル)-6-メトキシ-1,3,5-トリアジン(0.60 g, 2.0 mmol)、2-クロロ-5-ヒドロキシメチルフェニルボロン酸(0.57 g, 3.1 mmol)、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.083 g, 0.10 mmol)及びリン酸三カリウム(1.3 g, 6.1 mmol)のN,N-ジメチルホルムアミド(6.0 ml)懸濁液を60 にて、1.5時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した。有機層を水で洗浄し分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン / 酢酸エチル=3/2)にて精製することにより表題化合物(0.32 g, 収率39%)を得た。

 $^{1}\text{H-NMR (CDCI}_{3}) \hspace{0.2cm} : \hspace{0.2cm} 1.05 \hspace{0.1cm} (6\text{H, d, J= }6.7 \hspace{0.1cm} \text{Hz}), \hspace{0.1cm} 1.77 \hspace{0.1cm} (1\text{H, t, J= }5.9 \hspace{0.1cm} \text{Hz}), \hspace{0.1cm} 2.08\text{-}2.18 \\ (1\text{H, m}), \hspace{0.2cm} 3.82 \hspace{0.1cm} (2\text{H, d, J= }6.5 \hspace{0.1cm} \text{Hz}), \hspace{0.1cm} 4.19 \hspace{0.1cm} (3\text{H, s}), \hspace{0.1cm} 4.77 \hspace{0.1cm} (2\text{H, d, J= }5.9 \hspace{0.1cm} \text{Hz}), \hspace{0.1cm} 6.98\text{-}7. \\ 01 \hspace{0.1cm} (2\text{H, m}), \hspace{0.1cm} 7.46 \hspace{0.1cm} (1\text{H, dd, J= }8.2, \hspace{0.1cm} 2.2 \hspace{0.1cm} \text{Hz}), \hspace{0.1cm} 7.53 \hspace{0.1cm} (1\text{H, d, J= }8.2 \hspace{0.1cm} \text{Hz}), \hspace{0.1cm} 8.00 \hspace{0.1cm} (1\text{H, d, J= }2.2 \hspace{0.1cm} \text{Hz}), \hspace{0.1cm} 8.55 \hspace{0.1cm} (2\text{H, m}). \\ \end{array}$

[0515]

(3) tert-ブチル N- $\{4-$ クロロ-3-[4-(4-イソブトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル $\}$ -N- $\{tert-ブトキシカルボニル\}$ カーバメート

[0516]

【化143】

[0517]

アルゴン雰囲気下、上記(2)で得られた{4-クロロ-3-[4-(4-イソブトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェニル}メタノール(0.24 g, 0.61 mmol)のテトラヒドロフラン(2.0 ml)溶液に、氷冷下、トリエチルアミン(0.11 ml, 0.79 mmol)及びメタンスルホニルクロリド(0.052 ml, 0.67 mmol)を加え、0.5時間撹拌した。この反応液をろ過し、ろ液を減圧濃縮した。この残渣のN,N-ジメチルホルムアミド(1.5 ml)溶液に、室温にて、炭酸セシウム(0.59 g, 1.8 mmol)及びイミノジカルボン酸ジ-tert-ブチル(0.16 g, 0.73 mmol)を加え、1.5時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン/酢酸エチル=6/1)にて精製することにより表題化合物(0.34 g, 収率92%)を得た。

 $^{1}\text{H-NMR} \ (\text{CDCI}_{3}) \quad : \quad 1.05 \ (\text{6H}, \ \text{d}, \ \text{J= 6.7 Hz}), \quad 1.47 \ (\text{18H}, \ \text{s}), \quad 2.08\text{-}2.18 \ (\text{1H}, \ \text{m}), \quad 3.82 \ (\text{2H}, \ \text{d}, \ \text{J= 6.5 Hz}), \quad 4.18 \ (\text{3H}, \ \text{s}), \quad 4.82 \ (\text{2H}, \ \text{s}), \quad 6.96\text{-}7.00 \ (\text{2H}, \ \text{m}), \quad 7.39 \ (\text{1H}, \ \text{dd}, \ \text{J= 8.3}, \quad 2.3 \ \text{Hz}), \quad 7.48 \ (\text{1H}, \ \text{d}, \ \text{J= 8.3 Hz}), \quad 7.99 \ (\text{1H}, \ \text{d}, \ \text{J= 2.3 Hz}), \quad 8.52\text{-}8.$

10

20

30

40

20

30

40

50

56 (2H, m).

[0518]

(4) 4- クロロ-3- [4- (4- イソブトキシフェニル) -6- メトキシ-1,3,5- トリアジン-2- イル] ベンジルアミン塩酸塩

[0519]

【化144】

[0520]

アルゴン雰囲気下、上記(3)で得られたtert-ブチル N- $\{4$ -クロロ-3-[4-(4-イソブトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル $\}$ -N-(tert-ブトキシカルボニル)カーバメート(0.34 g, 0.56 mmol)の1,4 - ジオキサン溶液(1.0 ml)に、室温にて、4M塩化水素 / 1,4 - ジオキサン溶液(3.0 ml)を加え、2.5時間撹拌した。この反応液にn-ヘキサン(20 ml)を加え、撹拌した。この懸濁液より固体をろ取し、減圧乾燥することにより表題化合物(0.24 g, 収率95%)を得た。

 1 H-NMR (DMSO-D₆) : 1.01 (6H, d, J= 6.8 Hz), 2.01-2.11 (1H, m), 3.88 (2H, d, J= 6.4 Hz), 4.14 (3H, s), 4.12-4.17 (2H, m), 7.12-7.15 (2H, m), 7.72 (2H, br s), 8.13 (1H, br s), 8.40-8.51 (5H, m).

[0521]

(5) N-{4-クロロ-3-[4-(4-イソブトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド

[0522]

【化145】

$$\begin{array}{c|c} & & & & \\ & &$$

[0523]

アルゴン雰囲気下、上記(4)で得られた4-クロロ-3-[4-(4-イソブトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩(0.065 g, 0.14 mmol)、HOB $t\cdot H_2O$ (0.033 g, 0.22 mmol)及び3,3,3-トリフルオロ-2,2-ジメチルプロピオン酸(0.034 g, 0.22 mmol)のN,N-ジメチルホルムアミド(0.70 ml)溶液に、室温にて、WSC・HCI(0.042 g, 0.22 mmol)及びトリエチルアミン(0.030 ml, 0.22 mmol)を加え、5時間撹拌した。この反応液に、3,3,3-トリフルオロ-2,2-ジメチルプロピオン酸(0.034 g, 0.22 mmol)、WSC・HCI(0.042 g, 0.22 mmol)、HOBt・ H_2O (0.033 g, 0.22 mmol)及びトリエチルアミン(0.030 ml, 0.22 mmol)を加え、1時間撹拌した。この反応液に水及び酢酸エチルアミン(0.030 ml, 0.22 mmol)を加え、1時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n・ヘキサン/酢酸エチル=3/1)にて精製することにより表題化合物(0.068 g, 収率86%)を得た。

 $^{1}\text{H-NMR} \ (\text{CDCI}_{3}) \quad : \ 1.06 \ (6\text{H, d}, \ J=6.8 \ \text{Hz}), \ 1.44 \ (6\text{H, br s}), \ 2.08-2.18 \ (1\text{H, m}), \\ 3.82 \ (2\text{H, d}, \ J=6.6 \ \text{Hz}), \ 4.19 \ (3\text{H, s}), \ 4.55 \ (2\text{H, d}, \ J=5.7 \ \text{Hz}), \ 6.21 \ (1\text{H, br s}), \\ 6.97-7.01 \ (2\text{H, m}), \ 7.34 \ (1\text{H, dd}, \ J=8.3, \ 2.3 \ \text{Hz}), \ 7.51 \ (1\text{H, d}, \ J=8.3 \ \text{Hz}), \ 7. \\ 91 \ (1\text{H, d}, \ J=2.3 \ \text{Hz}), \ 8.53-8.55 \ (2\text{H, m}).$

[0524]

(6) N-{4-クロロ-3-[4-ヒドロキシ-6-(4-イソプトキシフェニル)-1,3,5-トリアジン-2-

イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-109)

[0525]

【化146】

[0526]

アルゴン雰囲気下、上記(5)で得られたN- $\{4-クロロ-3-[4-(4-イソプトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル\}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(0.066 g, 0.12 mmol)のメタノール(1.1 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.18 ml)を加え、60 にて、2時間撹拌した。この反応液に、室温にて、10%クエン酸水溶液(0.55 ml)及び水を加え、撹拌した。析出した固体を3取し、水で洗浄し、減圧乾燥することで、表題化合物(0.057 g, 収率88%)を得た。表題化合物(0.030 g)のアセトニトリル(0.60 ml)懸濁液を室温にて撹拌後、固体を3取し、乾燥することで、表題化合物の結晶(0.011 g)を得た。$

[0527]

「製造例13]

N- {4-クロロ-3-[4-ヒドロキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イル] ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-122)の合成

[0528]

【化147】

[0529]

(1)2-クロロ-4-メトキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン

[0530]

【化148】

[0531]

アルゴン雰囲気下、4-プロポキシフェニルボロン酸(1.0 g, 5.6 mmol)、2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン(2.0 g, 11 mmol)及びテトラキス(トリフェニルホスフィン)パラジウム(0)(0.65 g, 0.56 mmol)のトルエン(25 ml)懸濁液に、2M炭酸ナトリウム水溶液(8.4 ml)を加え、100 にて、1時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン / 酢酸エチル=20 / 1)にて精製することにより表題化合物(1.1 g, 収率70%)を得た。

10

20

30

20

30

40

50

 1 H-NMR (CDCI₃) : 1.06 (3H, t, J= 7.4 Hz), 1.83-1.87 (2H, m), 4.02 (2H, t, J = 6.6 Hz), 4.14 (3H, s), 6.96-6.99 (2H, m), 8.43-8.45 (2H, m).

[0532]

(2) {4-クロロ-3-[4-メトキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イル]フェニル}メタノール

[0533]

【化149】

[0534]

アルゴン雰囲気下、上記(1)で得られた2-クロロ-4-メトキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン(0.75 g, 2.7 mmol)、2-クロロ-5-ヒドロキシメチルフェニルボロン酸(0.60 g, 3.2 mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.22 g, 0.27 mmol)の1,4-ジオキサン(15 ml)溶液に2M炭酸ナトリウム水溶液(5.4 ml)を加え、100 にて、3時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した。有機層を水で洗浄した後分液し、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、3過により硫酸マグネシウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/酢酸エチル=10/1)にて精製することにより表題化合物(0.95 g, 収率91%)を得た。

¹H-NMR (CDCI₃) : 1.07 (3H, t, J= 7.4 Hz), 1.77 (1H, t, J = 5.8 Hz), 1.84-1.87 (2H, m), 4.02 (2H, t, J= 6.6 Hz), 4.19 (3H, s), 4.77 (2H, d, J= 5.8 Hz), 7.00 (2 H, d, J = 8.7 Hz), 7.45 (1H, dd, J = 8.3, 1.9 Hz), 7.53 (1H, d, J = 8.3 Hz), 8.0 0 (1H, d, J = 1.9 Hz), 8.55 (2H, d, J = 8.7 Hz).

[0535]

(3) tert-ブチル N-{4-クロロ-3-[4-メトキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イル]ベンジル}-N-(tert-ブトキシカルボニル)カーバメート

[0536]

【化150】

[0537]

アルゴン雰囲気下、上記(2)で得られた{4-クロロ-3-[4-メトキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イル]フェニル}メタノール(0.95 g, 2.5 mmol)のテトラヒドロフラン(13 ml)溶液に、氷冷下、トリエチルアミン(0.45 ml, 3.2 mmol)及びメタンスルホニルクロリド(0.23 ml, 3.0 mmol)を加え、0.5時間撹拌した。この反応液をろ過し、ろ液を減圧濃縮した。この残渣のN,N-ジメチルホルムアミド(13 ml)溶液に、室温にて、炭酸セシウム(2.4 g, 7.4 mmol)及びイミノジカルボン酸ジ-tert-ブチル(0.64 g, 3.0 mmol)を加え、1時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン/酢酸エチル=10/1)にて精製することにより表題化合物(1.3 g, 収率90%)を得た。

[0538]

(4)4-クロロ-3-[4-メトキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イル]ベ

20

30

40

ンジルアミン塩酸塩

[0539]

【化151】

[0540]

アルゴン雰囲気下、上記(3)で得られたtert-ブチル N- $\{4$ -クロロ-3-[4-メトキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イル]ベンジル $\}$ -N- $\{tert$ -ブトキシカルボニル)カーバメート(1.3 g, 2.2 mmol)に、室温にて、 $\{tert\}$ -ジオキサン溶液(5.0 ml)を加え、 $\{tert\}$ -ジオキサン(2.0 ml)及びn-ヘキサン(5.0 ml)を加え、 $\{tert\}$ -が開撹拌した。この懸濁液より固体をろ取し、減圧乾燥することにより表題化合物(0.68 g, 収率73%)として得た。

 1 H-NMR (DMSO-D₆) : 1.00 (3H, t, J= 7.4 Hz), 1.73-1.83 (2H, m), 4.06 (2H, t, J = 6.5 Hz), 4.12-4.18 (2H, m), 4.14 (3H, s), 7.12-7.16 (2H, m), 7.69-7.74 (2H, m), 8.13 (1H, br s), 8.44 (3H, br s), 8.45-8.50 (2H, m).

[0541]

(5) N-{4-クロロ-3-[4-メトキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イル] ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド

[0542]

【化152】

[0543]

アルゴン雰囲気下、上記(4)で得られた4-クロロ-3-[4-メトキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩(0.10 g, 0.24 mmol)、HOB t・ H_2 0(0.054 g, 0.36 mmol)及びWSC・HCI(0.068 g, 0.36 mmol)のN,N-ジメチルホルムアミド(1.5 ml)溶液に、室温にて、3,3,3-トリフルオロ-2,2-ジメチルプロピオン酸(0.056 g, 0.36 mmol)及びトリエチルアミン(0.099 ml, 0.71 mmol)を加え、4時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、3過により硫酸マグネシウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=10/3)にて精製することにより表題化合物(0.096 g, 収率78%)を得た。

 $^{1}\text{H-NMR (DMSO-D}_{6}) \hspace{0.5cm} : \hspace{0.5cm} 1.00 \hspace{0.5cm} (3\text{H, t, J= 7.3 Hz}), \hspace{0.5cm} 1.39 \hspace{0.5cm} (6\text{H, s}), \hspace{0.5cm} 1.73\text{-}1.83 \hspace{0.5cm} (2\text{H, m}), \hspace{0.5cm} 4$

[0544]

(6) N- {4-クロロ-3-[4-ヒドロキシ-6-(4-プロポキシフェニル) -1,3,5-トリアジン-2-イル]ベンジル} -3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-122) 【 0 5 4 5 】

[0546]

アルゴン雰囲気下、上記(5)で得られたN-{4-クロロ-3-[4-メトキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(0.094 g, 0.18 mmol)のメタノール(0.94 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.27 ml)を加え、65 にて、2時間撹拌した。この反応液に、室温にて、2N塩酸(0.54 ml)及び水を加え、撹拌した。析出した固体をろ取し、水で洗浄し、減圧乾燥することで、表題化合物(0.069 g, 収率75%)を得た。表題化合物(0.050 g)のアセトン(1.0 ml)懸濁液を加熱還流下溶解し、室温にて固体をろ取し、乾燥することで、表題化合物の結晶(0.012 g)を得た。

[0547]

「製造例14]

N-(4-クロロ-3-{4-ヒドロキシ-6-[4-(1-メチルシクロプロピルメトキシ)フェニル]-1,3,5-トリアジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-128)の合成

[0548]

【化154】

[0549]

(1) 2-クロロ-4-メトキシ-6-(4-メトキシメトキシフェニル)-1,3,5-トリアジン

[0550]

【化155】

[0551]

アルゴン雰囲気下、4-(メトキシメトキシ)フェニルボロン酸(1.0~g, 5.5~mmol)、2,4~v-ジクロロ-6-メトキシ-1,3,5-トリアジン(2.0~g, 11~mmol)及びテトラキス(トリフェニルホスフィン)パラジウム(0)(0.64~g, 0.55~mmol)のトルエン(25~ml)懸濁液に、2M炭酸ナトリウム水溶液(8.3~ml)を加え、100~c にて、1時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:1.0~v-中で、1.

[0552]

(2) {4-クロロ-3-[4-メトキシ-6-(4-メトキシメトキシフェニル)-1,3,5-トリアジン-2-イル]フェニル}メタノール

20

10

30

40

20

30

40

[0554]

アルゴン雰囲気下、上記(1)で得られた2-クロロ-4-メトキシ-6-(4-メトキシメトキシフェニル)-1,3,5-トリアジン(1.3 g, 4.4 mmol)、2-クロロ-5-ヒドロキシメチルフェニルボロン酸(0.99 g, 5.3 mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.36 g, 0.44 mmol)の1,4-ジオキサン(25 ml)溶液に2M炭酸ナトリウム水溶液(8.8 ml)を加え、100 にて、3時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した。有機層を水で洗浄後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/酢酸エチル=10/1)にて精製することにより表題化合物(0.98 g, 収率56%)を得た。

[0555]

(3) tert-ブチル N- $\{4-$ クロロ-3-[4-メトキシ-6-(4-メトキシメトキシフェニル)-1,3,5-トリアジン-2-イル]ベンジル $\}$ -N- $\{tert-プトキシカルボニル\}$ カーバメート

[0556]

【化157】

[0557]

アルゴン雰囲気下、上記(2)で得られた{4-クロロ-3-[4-メトキシ-6-(4-メトキシメトキシフェニル)-1,3,5-トリアジン-2-イル]フェニル}メタノール(0.78 g, 2.0 mmol)のテトラヒドロフラン(7.8 ml)溶液に、氷冷下、トリエチルアミン(0.36 ml, 2.6 mmol)及びメタンスルホニルクロリド(0.19 ml, 2.4 mmol)を加え、0.5時間撹拌した。この反応液をろ過し、ろ液を減圧濃縮した。この残渣のN,N-ジメチルホルムアミド(10 ml)溶液に、室温にて、炭酸セシウム(2.0 g, 6.0 mmol)及びイミノジカルボン酸ジ-tert-ブチル(0.53 g, 2.4 mmol)を加え、2時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン/酢酸エチル=10/1)にて精製することにより表題化合物(0.80 g, 収率68%)を得た。

 1 H-NMR (DMSO-D₆) : 1.42 (18H, s), 3.41 (3H, s), 4.12 (3H, s), 4.77 (2H, s), 5. 32 (2H, s), 7.18-7.23 (2H, m), 7.45 (1H, dd, J = 8.2, 2.3 Hz), 7.65 (1H, d, J = 8.2 Hz), 7.91 (1H, d, J= 2.3 Hz), 8.43-8.47 (2H, m).

[0558]

(4)4-[4-(5-アミノメチル-2-クロロフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル] フェノール塩酸塩

[0559]

20

30

50

【化158】

$$\begin{array}{c} \text{MeO} \longrightarrow 0 \\ \text{N} \longrightarrow \text{N} \longrightarrow 0 \\ \text{N} \longrightarrow \text{N} \longrightarrow 0 \\ \text{N} \longrightarrow \text{$$

[0560]

アルゴン雰囲気下、上記(3)で得られたtert-ブチル N- $\{4$ -クロロ-3-[4-メトキシ-6-(4-メトキシメトキシフェニル)-1,3,5-トリアジン-2-イル]ベンジル $\}$ -N- $\{tert$ -ブトキシカルボニル)カーパメート(0.40 g, 0.68 mmol)に、室温にて、4M塩化水素 / 1,4 - ジオキサン溶液(2.0 ml)を加え、1時間撹拌した。この反応液にn-ヘキサン(3.0 ml)を加え、45分間撹拌した。この懸濁液より固体をろ取し、減圧乾燥することにより表題化合物を粗生成物(0.26 g)として得た。

[0561]

(5)3,3,3-トリフルオロ-2,2-ジメチルプロピオン酸 $4-(4-\{2-\emptyset)$ 00 ロロ-5-[(3,3,3-1)]0 ルオロ-2,2-ジメチルプロピオニルアミノ)メチル]フェニル $\{-6-\emptyset\}$ 1,3,5-トリアジン-2-イル)フェニル

[0 5 6 2]

【化159】

[0563]

アルゴン雰囲気下、上記(4)で得られた4- [4-(5-アミノメチル-2-クロロフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェノール塩酸塩の粗生成物(0.10 g)、HOB $t\cdot H_2$ O(0.061 g, 0.40 mmol)及びWSC・HCI(0.076 g, 0.40 mmol)のN,N-ジメチルホルムアミド(1.5 ml)溶液に、室温にて、3,3,3-トリフルオロ-2,2-ジメチルプロピオン酸(0.066 g, 0.40 mmol)及びトリエチルアミン(0.11 ml, 0.79 mmol)を加え、2時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/酢酸エチル=10/1)にて精製することにより表題化合物(0.090 g)を得た。

 1 H-NMR (DMSO-D₆) : 1.39 (6H, s), 1.59 (6H, s), 4.15 (3H, s), 4.40 (2H, d, J = 6.0 Hz), 7.39-7.47 (3H, m), 7.62 (1H, d, J = 8.4 Hz), 7.88 (1H, d, J = 2.1 Hz), 8.55-8.60 (2H, m), 8.66 (1H, t, J = 6.0 Hz).

[0564]

(6) N-{4-クロロ-3-[4-(4-ヒドロキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル] 40 ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド

[0565]

【化160】

[0566]

アルゴン雰囲気下、上記(5)で得られた3,3,3-トリフルオロ-2,2-ジメチルプロピオン酸 4-(4-{2-クロロ-5-[(3,3,3-トリフルオロ-2,2-ジメチルプロピオニルアミノ)メチル]

フェニル}-6-メトキシ-1,3,5-トリアジン-2-イル)フェニル (0.070 g, 0.15 mmol) のメタノール (0.70 ml) 溶液に、室温にて、5Mナトリウムメトキシド/メタノール溶液 (0.0 32 ml) を加え、1時間撹拌した。この反応液に、氷冷下、2N塩酸を加え、pH=2とした。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/酢酸エチル=4/1)にて精製することにより表題化合物 (0.036 g, 収率51%)を得た。

(7) N-(4-クロロ-3- $\{4-$ メトキシ-6-[4-(1-メチルシクロプロピルメトキシ)フェニル]-1, 3,5-トリアジン-2-イル $\}$ ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド【 0 5 6 8 】

【化161】

[0569]

アルゴン雰囲気下、上記(6)で得られたN- $\{4-$ クロロ-3-[4-(4-ヒドロキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル $\}$ -3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(0.036 g, 0.075 mmol)、1-メチル-シクロプロパンメタノール(0.0087 ml, 0.090 mmol)及びトリフェニルホスフィン(0.024 g, 0.090 mmol)のテトラヒドロフラン(0.50 ml)溶液に、氷冷下、1.9Mアゾジカルボン酸ジエチル/トルエン溶液(0.051 ml, 0.098 mmol)を加え、1時間撹拌した。この反応液を室温にて、1時間撹拌後、1.9Mアゾジカルボン酸ジエチル/トルエン溶液(0.028 ml, 0.053 mmol)を加えた。この反応液を室温にて、1時間撹拌後、プレパラティブ薄層クロマトグラフィー(展開溶媒:クロロホルム/酢酸エチル=19/1)にて精製することにより表題化合物(0.029 g, 収率70%)を得た。

 $\begin{array}{l} ^{1}\text{H-NMR} \ (\text{DMSO-D}_{6}) & : \ 0.42 \ (2\text{H}, \ \text{dd}, \ \text{J=}\ 5.6, \ 4.0 \ \text{Hz}), \ 0.56 \ (2\text{H}, \ \text{dd}, \ \text{J=}\ 5.4, \ 4.2 \ \text{Hz} \\), \ 1.20 \ (3\text{H}, \ \text{s}), \ 1.39 \ (6\text{H}, \ \text{s}), \ 3.88 \ (2\text{H}, \ \text{s}), \ 4.11 \ (3\text{H}, \ \text{s}), \ 4.39 \ (2\text{H}, \ \text{d}, \ \text{J=}\ 5.9 \ \text{Hz}), \ 7.09-7.14 \ (2\text{H}, \ \text{m}), \ 7.43 \ (1\text{H}, \ \text{dd}, \ \text{J=}\ 8.2, \ 2.1 \ \text{Hz}), \ 7.60 \ (1\text{H}, \ \text{d}, \ \text{J=}\ 8.2 \ \text{Hz}), \ 7.85 \ (1\text{H}, \ \text{d}, \ \text{J=}\ 2.1 \ \text{Hz}), \ 8.41-8.46 \ (2\text{H}, \ \text{m}), \ 8.66 \ (1\text{H}, \ \text{t}, \ \text{J=}\ 5.9 \ \text{Hz}). \end{array}$

[0570]

(8) N-(4-クロロ-3-{4-ヒドロキシ-6-[4-(1-メチルシクロプロピルメトキシ)フェニル]-1,3,5-トリアジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-128)

[0571]

【化162】

[0572]

アルゴン雰囲気下、上記 (7) で得られたN- $(4-クロロ-3-\{4-メトキシ-6-[4-(1-メチルシクロプロピルメトキシ)フェニル]-1,3,5-トリアジン-2-イル<math>\}$ ベンジル $)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド <math>(0.028\ g,\ 0.051\ mmol)$ のメタノール $(0.28\ ml)$

10

20

30

40

)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.077 ml)を加え、60 にて、1時間 撹拌した。この反応液に、室温にて、2N塩酸(0.16 ml)及び水を加え、撹拌した。析出 した固体を3取し、水で洗浄し、減圧乾燥することで、表題化合物(0.019 g, 収率69%) を得た。

[0573]

「製造例15]

N-{4-クロロ-3-[4-(3-クロロ-4-メチルフェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-129)の合成

[0574]

【化163】

[0575]

(1)2-クロロ-4-(3-クロロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン

[0576]

【化164】

[0577]

[0578]

(2) {4-クロロ-3-[4-(3-クロロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェニル}メタノール

[0579]

【化165】

[0580]

アルゴン雰囲気下、上記(1)で得られた2-クロロ-4-(3-クロロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン(0.61~g,~2.3~mmol)、2-クロロ-5-ヒドロキシメチルフェニルボロン酸(<math>0.51~g,~2.7~mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パ

10

20

30

40

ラジウム(II) ジクロリド ジクロロメタン付加物 (0.19 g. 0.23 mmol) の1,4-ジオキサン (6.0 ml)溶液に2M炭酸ナトリウム水溶液(4.5 ml)を加え、100 にて、1.5時間撹拌し た。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水 で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取 り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキ サン / 酢酸エチル = 8 / 2から6 / 4) にて精製することにより表題化合物 (0.61 g. 収率71 %)を得た。

 1 H-NMR (CDCI₃) : 1.81 (1H, t, J= 5.9 Hz), 2.47 (3H, s), 4.21 (3H, s), 4.78 (2H , d, J = 5.9 Hz), 7.37 (1H, d, J = 7.9 Hz), 7.47 (1H, dd, J = 8.1, 2.2 Hz), 7.54 Hz(1H, d, J = 8.1 Hz), 8.01 (1H, d, J = 2.2 Hz), 8.38 (1H, dd, J = 7.9, 1.8 Hz), 8.57 (1H, d, J = 1.8 Hz).

[0581]

(3)4-クロロ-3-[4-(3-クロロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イ ル]ベンジルアミン塩酸塩

[0582]

【化166】

[0583]

アルゴン雰囲気下、上記(2)で得られた{4-クロロ-3- [4-(3-クロロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル|フェニル}メタノール (0.61 g, 1.6 mmol) のテ トラヒドロフラン (6.0 ml) 溶液に、氷冷下、トリエチルアミン (0.29 ml, 2.1 mmol) 及びメタンスルホニルクロリド (0.15 ml, 1.9 mmol) を加え、1時間撹拌した。この反応 液をろ過し、ろ液を減圧濃縮した。この残渣のN,N-ジメチルホルムアミド(6.0 ml)溶液 に、室温にて、炭酸セシウム (1.6 g, 4.8 mmol) 及びイミノジカルボン酸ジ-tert-ブチ ル (0.42 g, 1.9 mmol) を加え、2時間撹拌した。この反応液に水及び酢酸エチルを加え 、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した 後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラム クロマトグラフィー(展開溶媒:n - ヘキサン / 酢酸エチル = 95 / 5から80 / 20)にて精 製した。アルゴン雰囲気下、この精製物の1,4・ジオキサン溶液(2.0 ml)に、室温にて 、4M塩化水素/1,4・ジオキサン溶液(8.0 ml)を加え、2.5時間撹拌した。この反応液に n-ヘキサンを加え、固体をろ取し、減圧乾燥することにより表題化合物 (0.67 g, 収率99 %)を得た。

¹H-NMR (DMSO-D₆) : 2.46 (3H, s), 4.12-4.21 (5H, m), 7.62 (1H, d, J = 8.0 Hz), 7.73-7.75 (2H, m), 8.17 (1H, br s), 8.38 (1H, dd, J = 8.0, 1.6 Hz), 8.47 (1H, d, J = 1.6 Hz), 8.48 (3H, br s).

[0584]

(4) N-{4-クロロ-3-[4-(3-クロロ-4-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド

[0585]

【化167】

[0586]

アルゴン雰囲気下、上記(3)で得られた4-クロロ-3-[4-(3-クロロ-4-メチルフェニル) - 6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩(0.070g, 0.17 mmol)、

20

10

30

40

(109)

HOB $t\cdot H_2O$ ($0.039\,$ g, $0.26\,$ mmo I) 及びWSC・HCI ($0.049\,$ g, $0.26\,$ mmo I) のN,N-ジメチルホルムアミド ($0.70\,$ mI) 溶液に、室温にて、3,3,3-トリフルオロ-2,2-ジメチルプロピオン酸 ($0.037\,$ g, $0.24\,$ mmo I) 及びトリエチルアミン ($0.071\,$ mI, $0.51\,$ mmo I) を加え、1時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: $n\cdot$ へキサン / 酢酸エチル=9/1から8/2)にて精製することにより表題化合物 ($0.072\,$ g, 収率 $8\,$ 2%) を得た。

 1 H-NMR (CDCI $_{3}$) : 1.45 (6H, s), 2.47 (3H, s), 4.21 (3H, s), 4.56 (2H, d, J = 5.6 Hz), 6.24 (1H, br s), 7.34-7.39 (2H, m), 7.52 (1H, d, J= 8.2 Hz), 7.92 (1H, d, J= 2.3 Hz), 8.38 (1H, dd, J= 8.2, 1.8 Hz), 8.56 (1H, d, J= 1.8 Hz).

[0587]

(5) N-{4-クロロ-3-[4-(3-クロロ-4-メチルフェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-129)

[0588]

【化168】

[0589]

[0590]

[製造例16]

N- {4-クロロ-3-[4-ヒドロキシ-6-(3-イソプロピル-4-トリフルオロメチルフェニル)-1, 3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-130)の合成

[0591]

【化169】

[0592]

(1) 4-ベンジロキシ-2-ブロモ-1-トリフルオロメチルベンゼン

[0593]

【化170】

$$F \xrightarrow{F} F$$
 $Br \xrightarrow{F} F$
 $Br \xrightarrow{F} 0$

10

20

30

40

[0594]

アルゴン雰囲気下、2-ブロモ-4-フルオロ-1-トリフルオロメチルベンゼン(1.5 g, 6.2 mmol)及び水素化ナトリウム(0.74 g, 60重量%オイルディスパージョン)のN,N-ジメチルホルムアミド(15 ml)溶液に、氷冷下、ベンジルアルコール(0.64 ml, 6.2 mmol)を加え、0.5時間撹拌した。この反応液を60 にて、2時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: n - ヘキサン / 酢酸エチル=99 / 1から98 / 2)にて精製することにより表題化合物(1.3 g, 収率69%)を得た。 1 H-NMR(CDCl3): 5.08(2H, s)、6.93(1H, dd, J = 8.8, 2.4 Hz)、7.30(1H, d, J = 2.4 Hz)、7.33-7.41(5H, m)、7.57(1H, d, J = 8.8 Hz)

10

20

[0595]

(2) 4-ベンジロキシ-2-イソプロペニル-1-トリフルオロメチルベンゼン

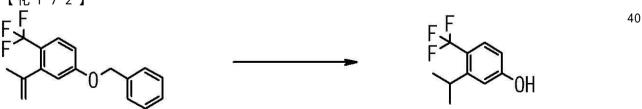
[0596]

【化171】

[0597]

アルゴン雰囲気下、上記(1)で得られた4-ベンジロキシ-2-プロモ-1-トリフルオロメチルベンゼン(1.3 g, 3.9 mmol)の1,4-ジオキサン(13 ml)溶液に、室温にて、2-イソプロペニル-4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン(0.99 g, 5.9 mmol)、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.32 g, 0.39 mmol)及び2M炭酸ナトリウム水溶液(5.9 ml)を加え、100 にて、2時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、3過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-0キサン/酢酸エチル=99/1から97/3)にて精製することにより表題化合物(1.1 g, 収率99%)を得た。

30


 $^{1}\text{H-NMR}$ (CDCI $_{3}$) : 2.04 (3H, s), 4.88 (1H, br s), 5.08 (2H, s), 5.18 (1H, br s), 6.82 (1H, d, J = 2.6 Hz), 6.89 (1H, dd, J = 8.8, 2.6 Hz), 7.31-7.42 (5H, m), 7.54 (1H, d, J= 8.8 Hz).

[0598]

(3)3-イソプロピル-4-トリフルオロメチルフェノール

[0599]

【化172】

[0600]

アルゴン雰囲気下、上記(2)で得られた4-ベンジロキシ-2-イソプロペニル-1-トリフルオロメチルベンゼン(1.2 g, 3.9 mmol)のテトラヒドロフラン(12 ml)溶液に、室温にて、10重量%パラジウム炭素(0.23 g)を加え、1気圧水素雰囲気下、5時間撹拌した。窒素雰囲気下、この反応液をセライトろ過し、酢酸エチルで溶出した。ろ液を減圧濃縮す

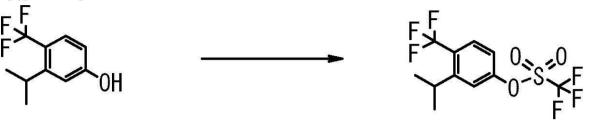
20

30

40

50

ることにより、表題化合物(0.76 g, 収率96%)を得た。


 $^{1}\text{H-NMR}$ (CDCI $_{3}$) : 1.23 (6H, d, J= 6.7 Hz), 3.24-3.35 (1H, m), 5.04 (1H, br s), 6.66 (1H, dd, J = 8.6, 2.6 Hz), 6.87 (1H, d, J = 2.6 Hz), 7.46 (1H, d, J = 8.6 Hz).

[0601]

(4)トリフルオロメタンスルホン酸3-イソプロピル-4-トリフルオロメチルフェニル

[0602]

【化173】

[0603]

アルゴン雰囲気下、上記(3)で得られた3-イソプロピル-4-トリフルオロメチルフェノール(0.77 g, 3.8 mmol)のクロロホルム(8.0 ml)溶液に、氷冷下、トリエチルアミン(0.58 ml, 4.1 mmol)及びトリフルオロメタンスルホン酸無水物(0.67 ml, 4.0 mmol)を加え、1時間撹拌した。この反応液に水及びクロロホルムを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: n-ヘキサン/酢酸エチル=98/2)にて精製することにより表題化合物(0.78 g, 収率62%)を得た。

 1 H-NMR (CDCI $_{3}$) : 1.28 (6H, d, J= 6.7 Hz), 3.34-3.46 (1H, m), 7.19 (1H, dd, J = 8.8, 2.4 Hz), 7.34 (1H, d, J = 2.4 Hz), 7.70 (1H, d, J= 8.8 Hz).

[0604]

(5)2-(3-イソプロピル-4-トリフルオロメチルフェニル)-4,4,5,5-テトラメチル-[1,3,2] 1ジオキサボロラン

[0605]

【化174】

[0606]

アルゴン雰囲気下、上記(4)で得られたトリフルオロメタンスルホン酸3-イソプロピル-4-トリフルオロメチルフェニル(0.78~g,~2.3~mmol)のDMSO(8.0~ml)溶液に、室温にて、ビス(ピナコラート)ジボロン(0.71~g,~2.8~mmol)、酢酸カリウム(0.68~g,~7.0~mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.095~g,~0.12~mmol)を加え、80~にて、2時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン / 酢酸エチル=98/2)にて精製することにより表題化合物(0.48~g,~収率66%)を得た

 1 H-NMR (CDCI₃) : 1.29 (6H, d, J= 7.0 Hz), 1.36 (12H, s), 3.29-3.40 (1H, m), 7. 57 (1H, d, J = 7.9 Hz), 7.68 (1H, d, J = 7.9 Hz), 7.88 (1H, br s).

[0607]

(6)2-クロロ-4-(3-イソプロピル-4-トリフルオロメチルフェニル)-6-メトキシ-1,3,5-トリアジン

[0608]

【化175】

[0609]

アルゴン雰囲気下、上記(5)で得られた2-(3-イソプロピル-4-トリフルオロメチルフェニル)-4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン(0.48 g, 1.5 mmol)、2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン(0.69 g, 3.8 mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.13 g, 0.15 mmol)の1,4-ジオキサン(5.0 ml)懸濁液に、2M炭酸ナトリウム水溶液(3.1ml)を加え、100 にて、1時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、3 過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン / 酢酸エチル = 97 / 3から94 / 6)にて精製することにより表題化合物(0.36 g, 収率71%)を得た。

[0610]

(7) {4-クロロ-3-[4-(3-イソプロピル-4-トリフルオロメチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェニル}メタノール

[0611]

【化176】

[0612]

アルゴン雰囲気下、上記(6)で得られた2-クロロ-4-(3-イソプロピル-4-トリフルオロメチルフェニル)-6-メトキシ-1,3,5-トリアジン(0.36 g, 1.1 mmol)、2-クロロ-5-ヒドロキシメチルフェニルボロン酸(0.25 g, 1.3 mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.089 g, 0.11 mmol)の1,4-ジオキサン(3.6 ml)溶液に2M炭酸ナトリウム水溶液(2.2 ml)を加え、100にて、1.5時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-へキサン/酢酸エチル = 8/2から1/1)にて精製することにより表題化合物(0.30 g, 収率62%)を得た。

 $^{1}\text{H-NMR} \ \, \text{(CDCl}_{3}) \qquad : \ \, 1.36 \ \, \text{(6H, d, J= 6.8 Hz)} \,, \ \, 1.79 \ \, \text{(1H, t, J= 6.0 Hz)} \,, \ \, 3.37\text{-}3.48 \\ \text{(1H, m), 4.24 (3H, s), 4.79 (2H, d, J= 6.0 Hz), 7.49 (1H, dd, J= 8.4, 2.2 Hz)} \,, \\ \text{7.57 (1H, d, J= 8.4 Hz), 7.75 (1H, d, J= 8.4 Hz), 8.07 (1H, d, J= 2.2 Hz), 8.} \\ \text{47 (1H, d, J= 8.4 Hz), 8.73 (1H, br s)} \,.$

[0613]

(8) 4-クロロ-3-[4-(3-イソプロピル-4-トリフルオロメチルフェニル)-6-メトキシ-1,3, 5-トリアジン-2-イル]ベンジルアミン塩酸塩

[0614]

40

10

20

【化177】

アルゴン雰囲気下、上記(7)で得られた $\{4-クロロ-3-[4-(3-イソプロピル-4-トリフルオロメチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェニル<math>\}$ メタノール(0.30g, 0.68 mmol)のテトラヒドロフラン(3.0 ml)溶液に、氷冷下、トリエチルアミン(0.12 ml, 0.89 mmol)及びメタンスルホニルクロリド(0.063 ml, 0.82 mmol)を加え、0.5時間撹拌した。この反応液をろ過し、ろ液を減圧濃縮した。この残渣のN,N-ジメチルホルムアミド(3.0 ml)溶液に、室温にて、炭酸セシウム(0.67g, 2.0 mmol)及びイミノジカルボン酸ジ-tert-ブチル(0.18g, 0.82 mmol)を加え、1.5時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n- n キサン/酢酸エチル=95/5から80/20)にて精製した。アルゴン雰囲気下、この精製物の1,4-ジオキサン溶液(1.0 ml)に、室温にて、4M塩化水素/1,4-ジオキサン溶液(4.0 ml)を加え、1.5時間撹拌した。この反応液にn- n サンを加え、固体をろ取し、減圧乾燥することにより表題化合物(0.24g, 収率74%)を得た。

 $^{1}\text{H-NMR (DMSO-D}_{6}) \hspace{0.5cm} : \hspace{0.1cm} 1.33 \hspace{0.1cm} (6\text{H, d, J= 6.7 Hz}), \hspace{0.1cm} 3.28\text{-}3.40 \hspace{0.1cm} (1\text{H, m}), \hspace{0.1cm} 4.13\text{-}4.22 \hspace{0.1cm} (5\text{H, m}), \hspace{0.1cm} 7.73 \hspace{0.1cm} (1\text{H, dd, J= 8.2, 2.2 Hz}), \hspace{0.1cm} 7.77 \hspace{0.1cm} (1\text{H, d, J= 8.3 Hz}), \hspace{0.1cm} 7.92 \hspace{0.1cm} (1\text{H, d, J= 8.8 Hz}), \hspace{0.1cm} 8.20 \hspace{0.1cm} (1\text{H, d, J= 2.2 Hz}), \hspace{0.1cm} 8.35 \hspace{0.1cm} (3\text{H, br s}), \hspace{0.1cm} 8.48 \hspace{0.1cm} (1\text{H, d, J= 8.8 Hz}), \hspace{0.1cm} 8.7 \hspace{0.1cm} 0 \hspace{0.1cm} (1\text{H, s}).$

[0616]

(9) N-{4-クロロ-3-[4-(3-イソプロピル-4-トリフルオロメチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド【0617】

【化178】

アルゴン雰囲気下、上記(8)で得られた4-クロロ-3-[4-(3-イソプロピル-4-トリフルオロメチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩(0.0 80 g, 0.17 mmol)、HOBt・ H_2 O(0.039 g, 0.26 mmol)及びWSC・HCI(0.049 g, 0.26 mmol)のN,N-ジメチルホルムアミド(0.80 ml)溶液に、室温にて、3,3,3-トリフルオロ-2,2-ジメチルプロピオン酸(0.037 g, 0.24 mmol)及びトリエチルアミン(0.071 ml, 0.51 mmol)を加え、1時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=19/1から8/2)にて精製することにより表題化合物(0.077 g, 収率79%)を得た。

 $^{1}\text{H-NMR} \ (\text{CDCI}_{3}) \quad : 1.35 \ (6\text{H, d}, \ J=6.0 \ \text{Hz}), \ 1.44 \ (6\text{H, br s}), \ 3.37\text{-}3.49 \ (1\text{H, m}), \\ 4.23 \ (3\text{H, s}), \ 4.56 \ (2\text{H, d}, \ J=5.8 \ \text{Hz}), \ 6.25 \ (1\text{H, br s}), \ 7.37 \ (1\text{H, dd}, \ J=8.4, \\ 2.3 \ \text{Hz}), \ 7.54 \ (1\text{H, d}, \ J=8.4 \ \text{Hz}), \ 7.74 \ (1\text{H, d}, \ J=8.4 \ \text{Hz}), \ 7.96 \ (1\text{H, d}, \ J=2.3 \ \text{Hz}), \ 8.46 \ (1\text{H, d}, \ J=8.4 \ \text{Hz}), \ 8.72 \ (1\text{H, br s}).$

[0619]

10

20

30

(10) N-{4-クロロ-3-[4-ヒドロキシ-6-(3-イソプロピル-4-トリフルオロメチルフェニル)-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-130)

[0620]

【化179】

[0621]

アルゴン雰囲気下、上記(9)で得られたN- $\{4-クロロ-3-[4-(3-イソプロピル-4-トリフルオロメチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル<math>\}$ -3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(0.077 g, 0.13 mmol)のメタノール(0.80 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.27 ml)を加え、60 にて、1時間撹拌した。この反応液に、室温にて、2N塩酸(0.54 ml)及び水を加え、撹拌した。析出した固体を3取し、水で洗浄し、減圧乾燥することで、表題化合物(0.066 g, 収率88%)を得た。

[0622]

「製造例17]

N-{3-[4-(4-ブトキシフェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル]-4-クロロベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-131)の合成 【 0 6 2 3 】

【化180】

[0624]

(1) N-{3-[4-(4-プトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]-4-クロロベンジル}-3.3.3-トリフルオロ-2.2-ジメチルプロピオンアミド

[0625]

【化181】

[0626]

アルゴン雰囲気下、上記 [製造例14]の(6)で得られたN-{4-クロロ-3-[4-(4-ヒドロキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(0.10 g, 0.21 mmol)、n-ブタノール(0.023 ml, 0.25 mmol)及びトリフェニルホスフィン(0.066 g, 0.25 mmol)のテトラヒドロフラン(1.0 ml)溶液に、氷冷下、アゾジカルボン酸ビス(2-メトキシエチル)(0.059 g, 0.25 mmol)を加え、1時間撹拌した。この反応液に、n-ブタノール(0.019 ml, 0.21 mmol)、トリフェニルホスフィン(0.055 g, 0.21 mmol)及びアゾジカルボン酸ビス(2-メトキシエチル)(0.049 g, 0.21 mmol)を加え、室温にて、2時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。残渣をシリカゲ

10

20

30

40

ルカラムクロマトグラフィー(展開溶媒: n - n

[0627]

(2) N-{3-[4-(4-ブトキシフェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル]-4-クロロベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-131)

[0628]

【化182】

[0629]

アルゴン雰囲気下、上記(1)で得られたN-{3-[4-(4-ブトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]-4-クロロベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(0.096 g, 0.18 mmol)のメタノール(0.96 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.27 ml)を加え、65 にて、2時間撹拌した。この反応液に、室温にて、2N塩酸(0.54 ml)及び水を加え、撹拌した。析出した固体をろ取し、水で洗浄し、減圧乾燥することで、表題化合物(0.086 g, 収率93%)を得た。

[0630]

「製造例18]

N-{4-クロロ-3-[4-(3-シクロプロピル-4-フルオロフェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-135)の合成

[0631]

【化183】

[0632]

(1)2-クロロ-4-(3-シクロプロピル-4-フルオロフェニル)-6-メトキシ-1,3,5-トリアジン

[0633]

【化184】

[0634]

アルゴン雰囲気下、2-(3-シクロプロピル-4-フルオロフェニル)-4,4,5,5-テトラメチル-[1,3,2]ジオキサボロラン(0.59 g, 2.2 mmol)、2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン(0.81 g, 4.5 mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.18 g, 0.22 mmol)の1,4-ジオキサン(3.0 ml)懸濁液に、2M炭酸ナトリウム水溶液(3.4 ml)を加え、100 にて、1時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、3過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-

20

30

10

20

30

40

50

ヘキサン / 酢酸エチル = 25 / 1から20 / 1)にて処理することにより表題化合物の粗生成物 (0.44 g)を得た。

[0635]

(2) {4-クロロ-3-[4-(3-シクロプロピル-4-フルオロフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェニル}メタノール

[0636]

【化185】

[0637]

アルゴン雰囲気下、上記(1)で得られた2-クロロ-4-(3-シクロプロピル-4-フルオロフェニル)-6-メトキシ-1,3,5-トリアジンの粗生成物(0.44 g)、2-クロロ-5-ヒドロキシメチルフェニルボロン酸(0.31 g, 1.6 mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.11 g, 0.13 mmol)の1,4-ジオキサン(5.4 ml)溶液に2M炭酸ナトリウム水溶液(2.7 ml)を加え、100 にて、1時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン / 酢酸エチル=5 / 3)にて精製することにより表題化合物(0.32 g)を得た

 $^{1}\text{H-NMR} \ (\text{CDCI}_{3}) \quad : \quad 0.83\text{-}0.88 \ (2\text{H, m}) \,, \quad 1.01\text{-}1.07 \ (2\text{H, m}) \,, \quad 1.79 \ (1\text{H, t} \,, \, \, \text{J} \,=\, 6.0 \ \text{Hz} \,) \,, \quad 2.10\text{-}2.19 \ (1\text{H, m}) \,, \quad 4.20 \ (3\text{H, s}) \,, \quad 4.77 \ (2\text{H, d} \,, \, \, \text{J} \,=\, 6.0 \ \text{Hz}) \,, \quad 7.13 \ (1\text{H, t} \,, \, \, \text{J} \,=\, 9 \ .2 \ \text{Hz}) \,, \quad 7.47 \ (1\text{H, d} \,, \, \, \text{J} \,=\, 8.1 \ \text{Hz}) \,, \quad 7.54 \ (1\text{H, d} \,, \, \, \text{J} \,=\, 8.1 \ \text{Hz}) \,, \quad 8.01 \ (1\text{H, br s}) \,, \quad 8.2 \ 0 \ (1\text{H, d} \,, \, \, \text{J} \,=\, 7.6 \ \text{Hz}) \,, \quad 8.38\text{-}8.41 \ (1\text{H, m}) \,.$

[0638]

(3) tert-ブチル N-{4-クロロ-3-[4-(3-シクロプロピル-4-フルオロフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル}-N-(tert-ブトキシカルボニル)カーバメート

[0639]

【化186】

$$\begin{array}{c|c} F & CI & OH \\ \hline N & N & N \\ \hline \end{array}$$

[0640]

アルゴン雰囲気下、上記(2)で得られた {4-クロロ-3-[4-(3-シクロプロピル-4-フルオロフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェニル}メタノール(0.32 g, 0.82 mmol)のテトラヒドロフラン(3.3 ml)溶液に、氷冷下、トリエチルアミン(0.15 ml, 1.1 mmol)及びメタンスルホニルクロリド(0.076 ml, 0.98 mmol)を加え、0.5時間撹拌した。この反応液をろ過し、ろ液を減圧濃縮した。この残渣のN,N-ジメチルホルムアミド(3.3 ml)溶液に、室温にて、炭酸セシウム(0.80 g, 2.5 mmol)及びイミノジカルボン酸ジ-tert-ブチル(0.21 g, 0.98 mmol)を加え、1時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥した後、ろ過により硫酸マグネシウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン/酢酸エチル=7/1)にて精製することにより表題化合物(0.40 g, 収率83%)を得た。

30

40

50

 1 H-NMR (CDCI $_{3}$) : 0.84-0.88 (2H, m), 1.01-1.07 (2H, m), 1.47 (18H, s), 2.09-2.1 8 (1H, m), 4.18 (3H, s), 4.83 (2H, s), 7.11 (1H, dd, J = 9.7, 8.6 Hz), 7.40 (1H, dd, J = 8.3, 2.2 Hz), 7.49 (1H, d, J = 8.3 Hz), 8.00 (1H, d, J = 2.2 Hz), 8.19 (1H, dd, J = 7.5, 2.2 Hz), 8.36-8.41 (1H, m).

[0641]

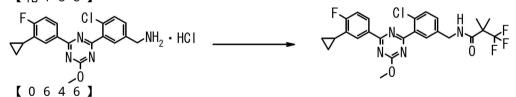
(4)4-クロロ-3-[4-(3-シクロプロピル-4-フルオロフェニル)-6-メトキシ-1,3,5-トリア ジン-2-イル] ベンジルアミン塩酸塩

[0642]

【化187】

[0643]

アルゴン雰囲気下、上記(3)で得られたtert-ブチル N- $\{4$ -クロロ-3-[4-(3-シクロプロピル-4-フルオロフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル $\}$ -N- $\{tert$ -ブトキシカルボニル)カーバメート(0.40 g, 0.68 mmol)に、室温にて、4M塩化水素 / 1,4 - ジオキサン溶液(3.3 ml)を加え、1時間撹拌した。この反応液に酢酸エチル(35 ml)を加え、撹拌した。その後、固体をろ取し、減圧乾燥することにより表題化合物(0.26 g,収率89%)を得た。


 $^{1}\text{H-NMR (DMSO-D}_{6}) \quad : \quad 0.78-0.83 \quad (2\text{H, m}) \,, \quad 1.05-1.10 \quad (2\text{H, m}) \,, \quad 2.10-2.19 \quad (1\text{H, m}) \,, \quad 4.16 \quad (3\text{H, s}) \,, \quad 4.16 \quad (2\text{H, s}) \,, \quad 7.39 \quad (1\text{H, dd, J} = 9.9, \ 8.7 \,\,\text{Hz}) \,, \quad 7.71 \quad (1\text{H, dd, J} = 8.4, \ 2.1 \,\,\text{Hz}) \,, \quad 7.75 \quad (1\text{H, d, J} = 8.4 \,\,\text{Hz}) \,, \quad 8.13 \quad (1\text{H, dd, J} = 7.7, \ 2.1 \,\,\text{Hz}) \,, \quad 8.16 \quad (1\text{H, d, J} = 2.1 \,\,\text{Hz}) \,, \quad 8.35-8.37 \quad (4\text{H, m}) \,.$

[0644]

(5) N-{4-クロロ-3-[4-(3-シクロプロピル-4-フルオロフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル] ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド

[0645]

【化188】

アルゴン雰囲気下、上記(4)で得られた4-クロロ-3-[4-(3-シクロプロピル-4-フルオロフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩(0.070 g, 0.17 mmol)、HOBt・ H_2 O(0.033 g, 0.22 mmol)及びWSC・HCI(0.041 g, 0.22 mmol)のN, N-ジメチルホルムアミド(2.0 ml)溶液に、室温にて、3,3,3-トリフルオロ-2,2-ジメチルプロピオン酸(0.034 g, 0.22 mmol)及びトリエチルアミン(0.069 ml, 0.48 mmol)を加え、3時間撹拌した。この反応液に飽和重曹水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=5/3)にて精製することにより表題化合物(0.082 g, 収率94%)を得た。

¹H-NMR (CDCI₃) : 0.82-0.87 (2H, m), 1.01-1.05 (2H, m), 1.43 (6H, s), 2.10-2.16 (1H, m), 4.18 (3H, s), 4.54 (2H, d, J = 5.6 Hz), 6.21 (1H, br s), 7.11 (1H, t, J = 9.2 Hz), 7.34 (1H, d, J = 8.3 Hz), 7.51 (1H, d, J = 8.3 Hz), 7.90 (1H, s), 8.18 (1H, d, J = 7.7 Hz), 8.36-8.40 (1H, m).

[0647]

(6) N-{4-クロロ-3-[4-(3-シクロプロピル-4-フルオロフェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-135)

[0648]

【化189】

[0649]

アルゴン雰囲気下、上記(5)で得られたN- $\{4-クロロ-3-[4-(3-シクロプロピル-4-フルオロフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル<math>\}$ -3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(0.082 g,0.16 mmol)のメタノール(1.8 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.24 ml)を加え、60 にて、3時間撹拌した。この反応液に、室温にて、10%クエン酸水溶液(1.0 ml)及び水を加え、撹拌した。析出した固体を3取し、水で洗浄し、減圧乾燥することで、表題化合物(0.065 g,収率81%)を得た。

[0650]

「製造例19]

(R) -N- {4-クロロ-3- [4-(4-クロロ-3-メチルフェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル] ベンジル} -3,3,3-トリフルオロ-2-メトキシ-2-メチルプロピオンアミド(実施例番号1-136)の合成

[0651]

【化190】

[0652]

(1)(R)-3,3,3-トリフルオロ-2-ヒドロキシ-2-メチルプロピオン酸ベンジル

[0653]

【化191】

[0654]

アルゴン雰囲気下、(R)-3,3,3-トリフルオロ-2-ヒドロキシ-2-メチルプロピオン酸(2.2 g, 14 mmol)及び炭酸カリウム(2.3 g, 16 mmol)のN,N-ジメチルホルムアミド(30 ml)懸濁液に、室温にて、ベンジルプロミド(1.8 ml, 15 mmol)を加え、4時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=6/1)にて精製することにより表題化合物(3.0 g, 収率90%)を得た。 1 H-NMR(CDCl₃): 1.60 (3H, s), 3.78 (1H, s), 5.31 (2H, s), 7.33-7.42 (5H, m).

[0655]

(2)(R)-3,3,3-トリフルオロ-2-メトキシ-2-メチルプロピオン酸ベンジル

10

20

30

40

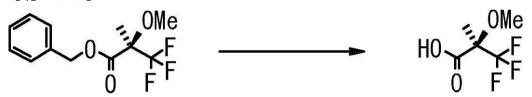
20

30

50

【0656】 【化192】

[0657]


アルゴン雰囲気下、上記(1)で得られた(R)-3,3,3-トリフルオロ-2-ヒドロキシ-2-メチルプロピオン酸ベンジル(3.4 g, 14 mmol)のN,N-ジメチルホルムアミド(40 ml)溶液に、氷冷下、水素化ナトリウム(0.60 g, 60重量%オイルディスパージョン)を加え、1時間撹拌した。この反応液に、ヨウ化メチル(1.3 ml, 20 mmol)を加え、室温にて、2時間撹拌した。この反応液に飽和塩化アンモニウム水溶液及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン / 酢酸エチル = 15 / 1)にて精製することにより表題化合物(2.8 g、収率78%)を得た。

 1 H-NMR (CDCI $_{3}$) : 1.59 (3H, s), 3.40 (3H, s), 5.26 (2H, s), 7.31-7.37 (5H, m). [0 6 5 8]

(3)(R)-3,3,3-トリフルオロ-2-メトキシ-2-メチルプロピオン酸

[0659]

【化193】

[0660]

アルゴン雰囲気下、上記(2)で得られた(R)-3,3,3-トリフルオロ-2-メトキシ-2-メチルプロピオン酸ベンジル(2.8 g, 11 mmol)の酢酸エチル(50 ml)溶液に、室温にて、10重量%パラジウム炭素(0.23 g)を加え、1気圧水素雰囲気下、5時間撹拌した。窒素雰囲気下、この反応液をセライトろ過し、酢酸エチルで溶出した。ろ液を減圧濃縮することにより、表題化合物(1.4 g, 収率78%)を得た。

¹H-NMR (CDCI₃) : 1.68 (3H, s), 3.54 (3H, s).

[0661]

(4)2-クロロ-4-(4-クロロ-3-メチルフェニル)-6-メトキシ-1,3,5-トリアジン

[0662]

【化194】

[0663]

アルゴン雰囲気下、4-クロロ-3-メチルフェニルボロン酸(0.47 g, 2.8 mmol)、2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン(1.0 g, 5.6 mmol)及びテトラキス(トリフェニルホスフィン)パラジウム(0)(0.32 g, 0.28 mmol)のトルエン(5.0 ml)懸濁液に、2M 炭酸ナトリウム水溶液(4.2 ml)を加え、100 にて、2時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n- ヘキサン / 酢酸エチ

20

30

40

50

[0664]

(5) {4-クロロ-3-[4-(4-クロロ-3-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェニル}メタノール

[0665]

【化195】

[0666]

アルゴン雰囲気下、上記(4)で得られた2-クロロ-4-(4-クロロ-3-メチルフェニル)-6-メトキシ-1,3,5-トリアジン(0.50 g, 1.3 mmol)、2-クロロ-5-ヒドロキシメチルフェニルボロン酸(0.30 g, 1.6 mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.11 g, 0.13 mmol)の1,4-ジオキサン(5.0 ml)溶液に2M炭酸ナトリウム水溶液(2.6 ml)を加え、100 にて、1.5時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、3過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-へキサン/酢酸エチル=8/2から6/4)にて精製することにより表題化合物(0.40 g, 収率80%)を得た。

 1 H-NMR (CDCI $_{3}$) : 1.79 (1H, t, J= 5.3 Hz), 2.48 (3H, s), 4.21 (3H, s), 4.78 (2H, d, J = 5.3 Hz), 7.45-7.50 (2H, m), 7.54 (1H, d, J = 8.1 Hz), 8.01 (1H, d, J = 2.1 Hz), 8.37 (1H, dd, J = 8.4, 2.1 Hz), 8.46 (1H, d, J = 2.1 Hz).

[0667]

(6) 4-クロロ-3-[4-(4-クロロ-3-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩

[0668]

【化196】

$$\begin{array}{c} \text{CI} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{O} \end{array} \begin{array}{c} \text{CI} \\ \text{O} \\ \text{O} \\ \text{O} \end{array} \begin{array}{c} \text{CI} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{O} \end{array} \begin{array}{c} \text{CI} \\ \text{N} \\ \text{O} \end{array} \begin{array}{c} \text{CI} \\ \text{N} \\ \text{N}$$

[0669]

アルゴン雰囲気下、上記(5)で得られた $\{4-クロロ-3-[4-(4-クロロ-3-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]$ フェニル $\}$ メタノール(0.40 g, 1.1 mmol)のテトラヒドロフラン(4.0 ml)溶液に、氷冷下、トリエチルアミン(0.19 ml, 1.4 mmol)及びメタンスルホニルクロリド(0.098 ml, 1.3 mmol)を加え、1時間撹拌した。この反応液をろ過し、ろ液を減圧濃縮した。この残渣のN,N-ジメチルホルムアミド(2.0 ml)溶液に、室温にて、炭酸セシウム(1.0 g, 3.2 mmol)及びイミノジカルボン酸ジ-tert-ブチル(0.37 g, 1.7 mmol)を加え、3時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n- へキサン / 酢酸エチル = 95 / 5 から80 / 20)にて精製した。アルゴン雰囲気下、この精製物の1,4 - ジオキサン溶液(2.0 ml)に、室温にて、4M塩化水素 / 1,4 - ジオキサン溶液(4.0 ml)を加え、2時間撹拌した。この反応液に n- に、4M塩化合物(0.43 g, 収率99

20

30

40

50

%)を得た。

 $^{1}\text{H-NMR}$ (DMSO-D₆) : 2.47 (3H, s), 4.13-4.19 (5H, m), 7.67 (1H, d, J = 8.3 Hz), 7.71-7.76 (2H, m), 8.16 (1H, d, J = 1.6 Hz), 8.35 (1H, dd, J = 8.3, 1.6 Hz), 8.4 1-8.50 (4H, m).

[0670]

(7)(R)-N-{4-クロロ-3-[4-(4-クロロ-3-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2-メトキシ-2-メチルプロピオンアミド

[0671]

【化197】

CI
$$N_1$$
 N_2 N_3 N_4 N_4 N_5 N_6 N

アルゴン雰囲気下、上記(6)で得られた4-クロロ-3-[4-(4-クロロ-3-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩(0.070 g, 0.17 mmol)、HOBt・ H_2 0(0.039 g, 0.26 mmol)及びWSC・HCI(0.049 g, 0.26 mmol)のN,N-ジメチルホルムアミド(0.70 ml)溶液に、室温にて、上記(3)で得られた(R)-3,3,3-トリフルオロ-2-メトキシ-2-メチルプロピオン酸(0.038 g, 0.22 mmol)及びトリエチルアミン(0.071 ml, 0.51 mmol)を加え、18時間撹拌した。この反応液に飽和重曹水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、3過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=3/2)にて精製することにより表題化合物(0.058 g, 収率65%)を得た。

 $^{1}\text{H-NMR} \ (\text{CDCI}_{3}) \quad : \ 1.66 \ (3\text{H, s}), \ 2.48 \ (3\text{H, s}), \ 3.45 \ (3\text{H, s}), \ 4.20 \ (3\text{H, s}), \ 4.48$ (1H, dd, J = 15.1, 5.8 Hz), 4.63 (1H, dd, J = 15.1, 6.5 Hz), 7.16 (1H, br s), 7. 37 (1H, dd, J= 8.3, 2.3 Hz), 7.48 (1H, d, J= 8.3 Hz), 7.53 (1H, d, J= 8.3 Hz), 7.92 (1H, d, J = 2.3 Hz), 8.36 (1H, dd, J= 8.3, 2.0 Hz), 8.46 (1H, d, J= 2.0 Hz). z).

[0673]

(8) (R) -N- {4-クロロ-3-[4-(4-クロロ-3-メチルフェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2-メトキシ-2-メチルプロピオンアミド(実施例番号1-136)

[0674]

【化198】

[0675]

アルゴン雰囲気下、上記(7)で得られた(R)-N-{4-クロロ-3-[4-(4-クロロ-3-メチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2-メトキシ-2-メチルプロピオンアミド(0.058 g, 0.11 mmol)のメタノール(1.3 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.17 ml)を加え、60 にて、3時間撹拌した。この反応液に、室温にて、10%クエン酸水溶液(0.68 ml)及び水を加え、撹拌した。析出した固体を3取し、水で洗浄し、減圧乾燥することで、表題化合物(0.051 g, 収率88%)を得た。

[0676]

「製造例20]

(R)-N-{4-クロロ-3-[4-ヒドロキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イ

ル]ベンジル}-3,3,3-トリフルオロ-2-メトキシ-2-メチルプロピオンアミド(実施例番号1-137)の合成

[0677]

【化199】

[0678]

(1)(R)-N-{4-クロロ-3-[4-メトキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2-メトキシ-2-メチルプロピオンアミド

[0679]

【化200】

[0680]

アルゴン雰囲気下、 [製造例13]の (4)で得られた4-クロロ-3-[4-メトキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩 (0.80 g, 0.19 mmo l)、H0Bt・ H_2 0 (0.044 g, 0.28 mmol)及びWSC・HCI (0.055 g, 0.28 mmol)のN,N-ジメチルホルムアミド (1.0 ml)溶液に、室温にて、 [製造例19]の (3)で得られた (R)-3,3,3-トリフルオロ-2-メトキシ-2-メチルプロピオン酸 (0.046 g, 0.27 mmol)及びトリエチルアミン (0.080 ml, 0.57 mmol)を加え、18時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=8/2から3/2)にて精製することにより表題化合物 (0.084 g, 収率82%)を得た。

 $^{1}\text{H-NMR}$ (CDCI $_{3}$) : 1.07 (3H, t, J= 7.4 Hz), 1.66 (3H, br s), 1.81-1.90 (2H, m), 3.45 (3H, br s), 4.02 (2H, t, J = 6.5 Hz), 4.19 (3H, s), 4.50 (1H, dd, J = 15.0, 5.8 Hz), 4.59 (1H, dd, J = 15.0, 6.3 Hz), 6.97-7.02 (2H, m), 7.14 (1H, br s), 7.35 (1H, dd, J= 8.3, 2.3 Hz), 7.51 (1H, d, J= 8.3 Hz), 7.92 (1H, d, J= 2.3 Hz), 8.52-8.56 (2H, m).

[0681]

(2)(R)-N-{4-クロロ-3-[4-ヒドロキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2-メトキシ-2-メチルプロピオンアミド(実施例番号1-137)

[0682]

【化201】

[0683]

アルゴン雰囲気下、上記(1)で得られた(R)-N-{4-クロロ-3-[4-メトキシ-6-(4-プロポキシフェニル)-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2-メトキシ-2-メチルプロピオンアミド(0.084 g, 0.16 mmol)のメタノール(0.80 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.30 ml)を加え、65 にて、1.5時間撹拌した。この

10

20

30

50

40

20

30

50

反応液に、室温にて、2N塩酸(0.60 ml)及び水を加え、撹拌した。析出した固体をろ取し、水で洗浄し、減圧乾燥することで、表題化合物(0.072 g, 収率89%)を得た。

[0684]

「製造例21]

N-{4-クロロ-3-[4-(3,4-ジメチルフェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル] ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-150)の合成

[0685]

【化202】

[0686]

(1) 2-クロロ-4-(3,4-ジメチルフェニル)-6-メトキシ-1,3,5-トリアジン

[0687]

【化203】

[0688]

アルゴン雰囲気下、3,4-ジメチルベンゼンボロン酸(0.42 g, 2.8 mmol)、2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン(1.0 g, 5.6 mmol)及びテトラキス(トリフェニルホスフィン)パラジウム(0)(0.32 g, 0.28 mmol)のトルエン(8.4 ml)懸濁液に、2M炭酸ナトリウム水溶液(4.2 ml)を加え、100 にて、2時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n- へキサン / 酢酸エチル = 20 / 1)にて精製することにより表題化合物(0.64 g, 92%)を得た。

 1 H-NMR (CDCI₃) : 2.35 (6H, s), 4.16 (3H, s), 7.26 (3H, d, J = 7.8 Hz), 8.22 (1 H, dd, J = 7.8, 2.1 Hz), 8.25 (1H, d, J = 2.1 Hz).

[0689]

(2) {4-クロロ-3-[4-(3,4-ジメチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェニル}メタノール

[0690]

【化204】

[0691]

アルゴン雰囲気下、上記(1)で得られた2-クロロ-4-(3,4-ジメチルフェニル)-6-メトキシ-1,3,5-トリアジン(0.64 g, 2.6 mmol)、2-クロロ-5-ヒドロキシメチルフェニルボロン酸(0.57 g, 3.1 mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.21 g, 0.26 mmol)の1,4-ジオキサン(10 ml)溶液に2M炭酸ナトリウム水溶液(5.1 ml)を加え、100 にて、1時間撹拌した。室

20

30

50

[0692]

(3)4-クロロ-3-[4-(3,4-ジメチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベ ンジルアミン塩酸塩

[0693]

【化205】

$$\begin{array}{c} CI \\ N \\ N \\ N \\ N \end{array}$$

[0694]

アルゴン雰囲気下、上記(2)で得られた $\{4-クロロ-3-[4-(3,4-ジメチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]$ フェニル $\}$ メタノール(0.54 g, 1.5 mmol)のテトラヒドロフラン(5.5 ml)溶液に、氷冷下、トリエチルアミン(0.28 ml, 2.0 mmol)及びメタンスルホニルクロリド(0.14 ml, 1.8 mmol)を加え、0.5時間撹拌した。この反応液を3過し、3液を減圧濃縮した。この残渣のN,N-ジメチルホルムアミド(5.5 ml)溶液に、氷冷下、炭酸セシウム(1.5 g, 4.6 mmol)及びイミノジカルボン酸ジ-tert-ブチル(0.40 g, 1.8 mmol)を加え、室温にて、1時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、3過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n- n かきかと、減圧滞縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n- n がまチルモアルゴン雰囲気下、この精製物に、室温にて、n- n がまチルを加え、固体を3取し、減圧乾燥することにより表題化合物(0.56 g, 収率94%)を得た。

 $^{1}\text{H-NMR (DMSO-D}_{6}) \hspace{0.2cm} : \hspace{0.2cm} 2.34 \hspace{0.2cm} (3\text{H, s}), \hspace{0.2cm} 2.35 \hspace{0.2cm} (3\text{H, s}), \hspace{0.2cm} 4.12\text{-}4.19 \hspace{0.2cm} (5\text{H, m}), \hspace{0.2cm} 7.38 \hspace{0.2cm} (1\text{H, d}, \hspace{0.2cm} J = 7.9 \hspace{0.2cm} \text{Hz}), \hspace{0.2cm} 7.69\text{-}7.75 \hspace{0.2cm} (2\text{H, m}), \hspace{0.2cm} 8.12 \hspace{0.2cm} (1\text{H, d}, \hspace{0.2cm} J = 1.9 \hspace{0.2cm} \text{Hz}), \hspace{0.2cm} 8.26 \hspace{0.2cm} (1\text{H, dd}, \hspace{0.2cm} J = 7.9 \hspace{0.2cm} \text{Hz}), \hspace{0.2cm} 8.29 \hspace{0.2cm} (1\text{H, br s}), \hspace{0.2cm} 8.44 \hspace{0.2cm} (3\text{H, br s}).$

[0695]

(4) N-{4-クロロ-3-[4-(3,4-ジメチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル] ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド

[0696]

【化206】

[0697]

アルゴン雰囲気下、上記(3)で得られた4-クロロ-3-[4-(3,4-ジメチルフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩(0.070 g, 0.18 mmol)、HOBt・ H_2 O(0.035 g, 0.23 mmol)及びWSC・HCI(0.044 g, 0.23 mmol)のN,N-ジメチルホルムアミド(2.0 ml)溶液に、室温にて、3,3,3-トリフルオロ-2,2-ジメチルプロピオン酸(0.036 g, 0.23 mmol)及びトリエチルアミン(0.075 ml, 0.54 mmol)を加え、4時間撹

拌した。この反応液に飽和重曹水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン / 酢酸エチル = 2 / 1)にて精製することにより表題化合物(0.075 g, 収率85%)を得た。

 1 H-NMR (CDCI $_{3}$) : 1.44 (6H, s), 2.36 (3H, s), 2.37 (3H, s), 4.20 (3H, s), 4.55 (2H, d, J = 5.7 Hz), 6.22 (1H, br s), 7.27 (3H, d, J = 7.8 Hz), 7.35 (1H, dd, J = 8.2, 2.2 Hz), 7.52 (1H, d, J = 8.2 Hz), 7.91 (1H, d, J = 2.2 Hz), 8.32 (1H, dd, J = 7.8, 1.7 Hz), 8.35 (1H, br s).

[0698]

(5) N-{4-クロロ-3-[4-(3,4-ジメチルフェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-150)

【0699】 【化207】

[0700]

アルゴン雰囲気下、上記(4)で得られたN- $\{4-クロロ-3-[4-(3,4-ジメチルフェニル)-6-3-[4-(3,4-ジメチルフェニル)-6-3-1,3,5-トリアジン-2-イル]ベンジル<math>\{-3,3,3-1\}$ -トリフルオロ- $\{2,2-3\}$ -ジメチルプロピオンアミド(0.075 g, 0.15 mmol)のメタノール(1.8 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.23 ml)を加え、60 にて、4時間撹拌した。この反応液に、室温にて、10%クエン酸水溶液(1.0 ml)及び水を加え、撹拌した。析出した固体をろ取し、水で洗浄し、減圧乾燥することで、表題化合物(0.063 g, 収率86%)を得た。

[0701]

「製造例22]

N- {4-クロロ-3-[4-(4-シクロプロピルメトキシフェニル) -6-ヒドロキシ-1,3,5-トリアジン-2-イル] ベンジル} -3,3,3-トリフルオロ-2-メチル-2-トリフルオロメチルプロピオンアミド(実施例番号1-169)の合成

[0702]

【化208】

[0703]

(1) 2-クロロ-4-(4-シクロプロピルメトキシフェニル)-6-メトキシ-1,3,5-トリアジン 【 0 7 0 4 】

【化209】

10

20

30

40

[0705]

アルゴン雰囲気下、4-(シクロプロピルメトキシ)ベンゼンボロン酸(2.5 g, 13 mmol)、2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン(4.7 g, 26 mmol)及びテトラキス(トリフェニルホスフィン)パラジウム(0)(1.5 g, 1.3 mmol)のトルエン(25 ml)懸濁液に、2M炭酸ナトリウム水溶液(20 ml)を加え、100 にて、2時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n- へキサン / 酢酸エチル=90 / 10 から80 / 20)にて精製することにより表題化合物(3.0 g, 79 %)を得た。 1 H-NMR(CDCl $_3$) : 0.36-0.41 (2H, m), 0.65-0.71 (2H, m), 1.25-1.36 (1H, m), 3.90 (12H, 13H, 15H, 1

[0706]

(2) {4-クロロ-3-[4-(4-シクロプロピルメトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェニル}メタノール

[0707]

【化210】

[0708]

アルゴン雰囲気下、上記(1)で得られた2-クロロ-4-(4-シクロプロピルメトキシフェニル)-6-メトキシ-1,3,5-トリアジン(3.0 g, 10 mmol)、2-クロロ-5-ヒドロキシメチルフェニルボロン酸(2.3 g, 12 mmol)及び[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.84 g, 1.0 mmol)の1,4-ジオキサン(30 ml)溶液に2M炭酸ナトリウム水溶液(21 ml)を加え、100 にて、3時間撹拌した。室温にて、この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、3過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル=8/2から1/1)にて精製することにより表題化合物(2.9 g, 収率71%)を得た。

 $^{1}\text{H-NMR} \ \, \text{(CDCI}_{3}) \quad : \quad 0.37\text{-}0.41 \ \, \text{(2H, m)}, \quad 0.65\text{-}0.71 \ \, \text{(2H, m)}, \quad 1.27\text{-}1.36 \ \, \text{(1H, m)}, \quad 1.76 \ \, \text{(1H, t, J = 6.0 Hz)}, \quad 3.90 \ \, \text{(2H, d, J = 6.7 Hz)}, \quad 4.19 \ \, \text{(3H, s)}, \quad 4.77 \ \, \text{(2H, d, J = 6.0 Hz)}, \quad 6.98\text{-}7.02 \ \, \text{(2H, m)}, \quad 7.46 \ \, \text{(1H, dd, J= 8.1, 1.9 Hz)}, \quad 7.53 \ \, \text{(1H, d, J= 8.1 Hz)}, \quad 8.00 \ \, \text{(1H, d, J = 1.9 Hz)}, \quad 8.53\text{-}8.57 \ \, \text{(2H, m)}.$

[0709]

(3) 4-クロロ-3-[4-(4-シクロプロピルメトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩

[0710]

【化211】

[0711]

アルゴン雰囲気下、上記(2)で得られた $\{4-クロロ-3-[4-(4-シクロプロピルメトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]フェニル<math>\}$ メタノール(2.9 g, 7.3 mmo l)のテトラヒドロフラン(29 ml)溶液に、氷冷下、トリエチルアミン(1.3 ml, 9.5 mm ol)及びメタンスルホニルクロリド(0.68 ml, 8.7 mmol)を加え、0.5時間撹拌した。この反応液をろ過し、ろ液を減圧濃縮した。この残渣のN,N-ジメチルホルムアミド(29 ml

10

20

30

40

20

30

40

)溶液に、氷冷下、炭酸セシウム(7.1 g, 22 mmol)及びイミノジカルボン酸ジ-tert-ブチル(1.9 g, 8.7 mmol)を加え、室温にて、2時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。この残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン/酢酸エチル = 95 / 5から70 / 3 0)にて精製した。アルゴン雰囲気下、この精製物の1,4 - ジオキサン溶液(9.3 ml)に、室温にて、4M塩化水素 / 1,4 - ジオキサン溶液(37 ml)を加え、3時間撹拌した。この反応液に酢酸エチルを加え、固体をろ取し、減圧乾燥することにより表題化合物(3.1 g,収率97%)を得た。

 $^{1}\text{H-NMR}$ (DMSO-D₆) : 0.34-0.39 (2H, m), 0.57-0.63 (2H, m), 1.21-1.32 (1H, m), 3. 95 (2H, d, J = 7.0 Hz), 4.11-4.18 (5H, m), 7.11-7.15 (2H, m), 7.70-7.74 (2H, m), 8.13 (1H, br s), 8.42-8.53 (5H, m).

[0712]

(4) N- $\{4-$ クロロ-3-[4-(4-シクロプロピルメトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル $\}-3,3,3-$ トリフルオロ-2-メチル-2-トリフルオロメチルプロピオンアミド

[0713]

【化212】

[0714]

アルゴン雰囲気下、上記(3)で得られた4-クロロ-3-[4-(4-シクロプロピルメトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩(0.080 g, 0.18 m mol)、HOBt・ H_2 O(0.037 g, 0.24 mmol)及びWSC・HCI(0.046 g, 0.24 mmol)のN,N-ジメチルホルムアミド(2.0 ml)溶液に、室温にて、2,2-ビス(トリフルオロメチル)プロピオン酸(0.050 g, 0.24 mmol)及びトリエチルアミン(0.077 ml, 0.55 mmol)を加え、1.5時間撹拌した。この反応液に、HOBt・ H_2 O(0.037 g, 0.24 mmol)、WSC・HCI(0.046 g, 0.24 mmol)、2,2-ビス(トリフルオロメチル)プロピオン酸(0.050 g, 0.24 mmol)及びトリエチルアミン(0.077 ml, 0.55 mmol)を加えて、2時間撹拌した。この反応液に、HOBt・ H_2 O(0.037 g, 0.24 mmol)、WSC・HCI(0.046 g, 0.24 mmol)、2,2-ビス(トリフルオロメチル)プロピオン酸(0.050 g, 0.24 mmol)及びトリエチルアミン(0.077 ml, 0.55 mmol)を加えて、1.5時間撹拌した。この反応液に飽和重曹水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、3過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン/酢酸エチル=3/1)にて精製することにより表題化合物(0.045 g、収率41%)を得た。

 $^{1}\text{H-NMR} \ (\text{CDCI}_{3}) \quad : \quad 0.36\text{-}0.41 \ (2\text{H, m}), \quad 0.65\text{-}0.71 \ (2\text{H, m}), \quad 1.26\text{-}1.35 \ (2\text{H, m}), \quad 1.70 \\ (3\text{H, s}), \quad 3.90 \ (2\text{H, d}, \ J=6.7 \ \text{Hz}), \quad 4.19 \ (3\text{H, s}), \quad 4.61 \ (2\text{H, d}, \ J=5.8 \ \text{Hz}), \quad 6.49 \ (1\text{H, br s}), \quad 6.98\text{-}7.02 \ (2\text{H, m}), \quad 7.32 \ (1\text{H, dd}, \ J=8.5, \ 2.1 \ \text{Hz}), \quad 7.53 \ (1\text{H, d}, \ J=8.5, \ 2.1 \ \text{Hz}), \quad 7.92 \ (1\text{H, d}, \ J=2.1 \ \text{Hz}), \quad 8.52\text{-}8.56 \ (2\text{H, m}).$

[0715]

(5) N- $\{4-$ クロロ-3-[4-(4-シクロプロピルメトキシフェニル)-6-ヒドロキシ-1,3,5-トリアジン-2-イル]ベンジル $\}$ -3,3,3-トリフルオロ-2-メチル-2-トリフルオロメチルプロピオンアミド(実施例番号1-169)

[0716]

20

30

40

50

[0717]

アルゴン雰囲気下、上記(4)で得られたN- $\{4-$ クロロ-3-[4-(4-シクロプロピルメトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル $\}$ -3,3,3-トリフルオロ-2-メチル-2-トリフルオロメチルプロピオンアミド(0.045 g, 0.076 mmol)のメタノール(0.70 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.11 ml)を加え、60 にて、4時間撹拌した。この反応液に、室温にて、10%クエン酸水溶液(0.50 ml)及び水を加え、撹拌した。析出した固体をろ取し、水で洗浄し、減圧乾燥することで、表題化合物(0.039 g, 収率89%)を得た。

[0718]

「製造例23]

1-トリフルオロメチルシクロプロパンカルボン酸 4-クロロ-3-[4-ヒドロキシ-6-(4-イソブトキシフェニル)-1,3,5-トリアジン-2-イル]ベンジルアミド(実施例番号1-178)の合成

[0719]

【化214】

 $\begin{array}{c|c} & C & H \\ & N & N \\ & N & O \end{array}$

[0720]

(1)1-トリフルオロメチルシクロプロパンカルボン酸 4-クロロ-3-[4-(4-イソブトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミド

[0721]

【化215】

 $\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

アルゴン雰囲気下、 [製造例12]の (4) で得られた4-クロロ-3-[4-(4-イソブトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジルアミン塩酸塩 (0.10 g, 0.23 mm ol)、HOBt・ H_2 O (0.049 g, 0.32 mmol)及びWSC・HCI (0.061 g, 0.32 mmol)のN,N-ジメチルホルムアミド (0.75 ml)溶液に、室温にて、1-トリフルオロメチルシクロプロパン-1-カルボン酸 (0.050 g, 0.32 mmol)及びトリエチルアミン (0.064 ml, 0.46 mmol)を加え、1.5時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-ヘキサン/酢酸エチル = 2/1、その後クロロホルム/酢酸エチル = 9/1)にて精製することにより表題化合物 (0.068 g, 収率55%)を得た。

 1 H-NMR (DMSO-D₆) : 1.01 (6H, d, J= 6.9 Hz), 1.23-1.27 (2H, m), 1.30-1.36 (2H, m), 2.00-2.11 (1H, m), 3.87 (2H, d, J = 6.4 Hz), 4.12 (3H, s), 4.37 (2H, d, J = 5.9 Hz), 7.11-7.15 (2H, m), 7.43 (1H, dd, J = 8.2, 2.1 Hz), 7.60 (1H, d, J = 8.2 Hz), 7.85 (1H, d, J = 2.1 Hz), 8.43-8.47 (2H, m), 8.50 (1H, t, J= 5.9 Hz).

[0723]

(2) 1-トリフルオロメチル-シクロプロパンカルボン酸 4-クロロ-3-[4-ヒドロキシ-6-(4-イソプトキシフェニル)-1,3,5-トリアジン-2-イル]ベンジルアミド(実施例番号1-178)

[0724]

【化216】

[0725]

アルゴン雰囲気下、上記(1)で得られた1-トリフルオロメチルシクロプロパンカルボン酸 4-クロロ-3-[4-(4-イソプトキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル] ベンジルアミド(0.065 g, 0.12 mmol)のメタノール(1.0 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.12 ml)を加え、60 にて、3時間撹拌した。この反応液に、室温にて、2N塩酸(0.24 ml)及び水を加え、撹拌した。析出した固体をろ取し、水で洗浄し、減圧乾燥することで、表題化合物(0.060 g, 収率94%)を得た。

[0726]

「製造例24]

N- $(4- クロロ-3- \{4- [4- ((S)-1-シクロプロピルエトキシ) フェニル]-6- ヒドロキシ-1,3,5-1-リアジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-184)の合成$

[0727]

【化217】

[0728]

(1) N-(4-クロロ-3-{4-[4-((S)-1-シクロプロピルエトキシ)フェニル]-6-メトキシ-1,3, 5-トリアジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド

[0729]

【化218】

[0730]

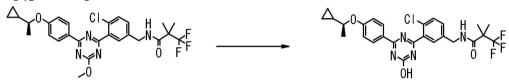
アルゴン雰囲気下、上記 [製造例14]の(6)で得られたN-{4-クロロ-3-[4-(4-ヒドロキシフェニル)-6-メトキシ-1,3,5-トリアジン-2-イル]ベンジル}-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(0.080 g, 0.17 mmol)、(1R)-1-シクロプロピルエタン-1-オール(0.029 g, 0.33 mmol)及びトリフェニルホスフィン(0.087 g, 0.33 mmol)のテトラヒドロフラン(1.0 ml)溶液に、氷冷下、アゾジカルボン酸ビス(2-メトキシエチル)(0.078 g, 0.33 mmol)を加え、室温にて、17時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n-へキサン/酢酸エチル = 2/1)にて精製することにより表題化合物(0.079 g, 収率86%)を得た。

10

30

20

50


 $^{1}\text{H-NMR} \ (\text{CDCI}_{3}) \quad : \quad 0.28\text{-}0.36 \ (\text{1H, m}), \quad 0.38\text{-}0.45 \ (\text{1H, m}), \quad 0.53\text{-}0.63 \ (\text{2H, m}), \quad 1.12 \\ -1.21 \ (\text{1H, m}), \quad 1.41 \ (\text{3H, d}, \ J=6.0 \ Hz), \quad 1.44 \ (\text{6H, s}), \quad 3.95\text{-}4.05 \ (\text{1H, m}), \quad 4.18 \ (3H, \ s), \quad 4.54 \ (\text{2H, d}, \ J=5.6 \ Hz), \quad 6.20 \ (\text{1H, br s}), \quad 6.95\text{-}7.00 \ (\text{2H, m}), \quad 7.34 \ (\text{1H, d}, \ J=8.3, \quad 1.9 \ Hz), \quad 7.51 \ (\text{1H, d}, \ J=8.3 \ Hz), \quad 7.91 \ (\text{1H, d}, \ J=1.9 \ Hz), \quad 8.50\text{-}8.55 \ (\text{2H, m}).$

[0731]

(2) N-(4-クロロ-3-{4-[4-((S)-1-シクロプロピルエトキシ)フェニル]-6-ヒドロキシ-1, 3,5-トリアジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド (実施例番号1-184)

[0732]

【化219】

[0733]

アルゴン雰囲気下、上記(1)で得られた、N-(4-クロロ-3-{4-[4-((S)-1-シクロプロピルエトキシ)フェニル]-6-メトキシ-1,3,5-トリアジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド (0.079 g, 0.14 mmol)のメタノール (1.3 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液 (0.22 ml)を加え、65 にて、4時間撹拌した。この反応液に、室温にて、10%クエン酸水溶液 (0.90 ml)及び水を加え、撹拌した。析出した固体を3取し、水で洗浄し、減圧乾燥することで、表題化合物 (0.072 g, 収率93%)を得た。

[0734]

「製造例25]

N- (4-クロロ-3-{4-[4-((R)-1-シクロプロピルエトキシ)フェニル]-6-ヒドロキシ-1,3,5-トリアジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(実施例番号1-185)の合成

[0735]

【化220】

CI H F F OH

[0736]

(1) N-(4-クロロ-3-{4-[4-((R)-1-シクロプロピルエトキシ)フェニル]-6-メトキシ-1,3,5-トリアジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド

【 0 7 3 7 】 【化 2 2 1 】

[0738]

アルゴン雰囲気下、上記 [製造例14] の (6) で得られたN- $\{4-$ クロロ-3- [4- (4- ヒドロキシフェニル) -6- メトキシ-1,3,5- トリアジン-2- イル] ベンジル $\}$ -3,3,3- トリフルオロ-2,2- ジメチルプロピオンアミド (0.080 g, 0.17 mmol) 、 (1S) -1- シクロプロピルエタン-1- オール (0.029 g, 0.33 mmol) 及びトリフェニルホスフィン (0.087 g, 0.33 mmol) の

10

20

30

40

テトラヒドロフラン(1.0 ml)溶液に、氷冷下、アゾジカルボン酸ビス(2-メトキシエチル)(0.078 g, 0.33 mmol)を加え、室温にて、17時間撹拌した。この反応液に水及び酢酸エチルを加え、分液した後、有機層を飽和食塩水で洗浄した。この有機層を硫酸ナトリウムで乾燥した後、ろ過により硫酸ナトリウムを取り除き、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n - ヘキサン/酢酸エチル = 2 / 1)にて精製することにより表題化合物(0.038 g, 収率41%)を得た。

 $^{1}\text{H-NMR} \ (\text{CDCI}_{3}) \quad : \quad 0.28-0.36 \ (1\text{H, m}), \quad 0.38-0.45 \ (1\text{H, m}), \quad 0.53-0.63 \ (2\text{H, m}), \quad 1.12 \\ -1.21 \ (1\text{H, m}), \quad 1.41 \ (3\text{H, d}, \ J=6.0 \ \text{Hz}), \quad 1.44 \ (6\text{H, s}), \quad 3.95-4.05 \ (1\text{H, m}), \quad 4.18 \ (3\text{H, s}), \quad 4.54 \ (2\text{H, d}, \ J=5.6 \ \text{Hz}), \quad 6.20 \ (1\text{H, br s}), \quad 6.95-7.00 \ (2\text{H, m}), \quad 7.34 \ (1\text{H, d}, \ J=8.3, \quad 1.9 \ \text{Hz}), \quad 7.51 \ (1\text{H, d}, \ J=8.3 \ \text{Hz}), \quad 7.91 \ (1\text{H, d}, \ J=1.9 \ \text{Hz}), \quad 8.50-8.55 \ (2\text{H, m}).$

[0739]

(2) N-(4-クロロ-3-{4-[4-((R)-1-シクロプロピルエトキシ)フェニル]-6-ヒドロキシ-1, 3,5-トリアジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド (実施例番号1-185)

[0740]

【化222】

[0741]

アルゴン雰囲気下、上記(1)で得られたN-(4-クロロ-3-{4-[4-((R)-1-シクロプロピルエトキシ)フェニル]-6-メトキシ-1,3,5-トリアジン-2-イル}ベンジル)-3,3,3-トリフルオロ-2,2-ジメチルプロピオンアミド(0.038 g, 0.069 mmol)のメタノール(0.62 ml)溶液に、室温にて、4M水酸化ナトリウム水溶液(0.10 ml)を加え、65 にて、4時間撹拌した。この反応液に、室温にて、10%クエン酸水溶液(0.42 ml)及び水を加え、撹拌した。析出した固体を3取し、水で洗浄し、減圧乾燥することで、表題化合物(0.034 g, 収率91%)を得た。

[0742]

上記製法に準じて実施例1-1から1-267、実施例2-1から2-130、及び実施例3-1から3-23 の化合物を得た。表 1 - 1 から 1 - 3 4、表 2 - 1 から 2 - 1 5、及び表 3 - 1 から 3 -3 に実施例化合物の構造式及び物性データを示す。表中の注釈は以下の内容を表す。

[0743]

10

20

【化223】

[0744]

注釈1(実施例番号1-188、1-189)

2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン、4-(2,2-ジメチルプロポキシ)フェニルボロン酸に替えて4-フルオロ-3-メチルフェニルボロン酸、及び2-クロロ-5-ヒドロキシメチルフェニルボロン酸に替えて5-アセチル-2-クロロフェニルボロン酸を用いて、製造例1の(1)及び(2)と同様の方法で、化合物Aを得た。

化合物Aのカルボニル基を水素化ホウ素ナトリウムで還元することにより、ラセミ体の化合物Bを得た。

化合物Bを製造例1の(3)及び(4)と同様の方法でラセミ体の化合物Dを得た。

ラセミ体の化合物Dを純粋なエナンチオマーの化合物Eと反応させることにより、ジアステレオマー混合物の化合物Fを得た。

製造例1の(6)と同様の方法で、化合物F1の加水分解反応により、実施例番号1-188の化合物を得た。同様に化合物F2から実施例番号1-189の化合物を得た。実施例番号1-188の化合物と1-189の化合物はそれぞれ単一の立体異性体であるが、ベンジル位の不斉炭素の絶対立体配置は未決定である。

50

【 0 7 4 5 】 【 化 2 2 4 】

[0746]

注釈2(実施例番号1-200、1-201)

2,4-ジクロロ-6-メトキシ-1,3,5-トリアジン、4-(2,2-ジメチルプロポキシ)フェニルボロン酸、及び2-クロロ-5-ヒドロキシメチルフェニルボロン酸に替えて5-アセチル-2-クロロフェニルボロン酸を用いて、製造例1の(1)及び(2)と同様の方法で、化合物Jを得た

化合物Jのカルボニル基を水素化ホウ素ナトリウムで還元することにより、ラセミ体の 化合物Kを得た。

化合物Kを製造例1の(3)及び(4)と同様の方法でラセミ体の化合物Mを得た。

ラセミ体の化合物Mを純粋なエナンチオマーの化合物Eと反応させることにより、ジアステレオマー混合物の化合物Nを得た。

化合物Nを注釈1と同様の方法によりシリカゲルカラムクロマトグラフィーで精製し、製造例1の(6)と同様の方法で、低極性ジアステレオマーの化合物N1(Merck TLC Silica gel

50

60G F254 25 Glassplates、展開溶媒:n- へキサン / 酢酸エチル = 2 / 1)から実施例番号1-200の化合物を得て、高極性ジアステレオマーの化合物N2から実施例番号1-201の化合物を得た。実施例番号1-200の化合物と1-201の化合物はそれぞれ単一の立体異性体であるが、ベンジル位の不斉炭素の絶対立体配置は未決定である。

[0747]

注釈3(実施例番号1-256, 1-257)

単一の立体異性体であるが、その相対配置は未決定である。

[0748]

注釈4(実施例番号1-266)

単一の立体異性体であるが、tert-ブチル基の相対配置は未決定である。

[0749]

注釈5(実施例番号1-267)

単一の立体異性体であるが、メトキシ基の相対配置は未決定である。

[0750]

【表1-1】

実施例番号	構造式	NMR	MS(M+H)	MS(M-H)	注釈
1-1	F F H ₃ C H ₃ C F	1H-NMR (DMSO-D6) δ: 2.50 (3H, s), 7.38 (1H, td, J = 8.3, 2.5 Hz), 7.46 (1H, dd, J = 8.4, 5.3 Hz), 7.56-7.65 (1H, br m), 7.95 (2H, d, J = 8.4 Hz), 8.55 (2H, d, J = 8.4 Hz), 13.33 (1H, br s).	350	348	
1-2	F F F N N CH3	1H-NMR (DMSO-D6) δ: 2.35 (3H, s), 2.50 (3H, s), 7.30 (1H, d, J = 7.7 Hz), 7.34 (1H, d, J = 7.7 Hz), 7.51 (1H, br s), 7.94 (2H, d, J = 8.1 Hz), 8.55 (2H, d, J = 8.1 Hz), 13.17 (1H, br s).	346	344	
1-3	F F H ₃ C N N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 2.50 (3H, s), 7.45 (1H, d, J = 8.4 Hz), 7.59 (1H, dd, J = 8.4, 2.3 Hz), 7.81 (1H, br s), 7.94 (2H, d, J = 8.1 Hz), 8.54 (2H, d, J = 8.1 Hz), 13.33 (1H, s).	366	364	
1-4	F F CI CH ₃	1H-NMR (DMSO-D6) δ: 2.38 (3H, s), 7.46 (1H, d, J = 8.1 Hz), 7.55 (1H, d, J = 8.1 Hz), 7.64 (1H, br s), 7.94 (2H, d, J = 8.4 Hz), 8.54 (2H, d, J = 8.4 Hz), 13.49 (1H, br s).	366	364	
1-5	F F CI	1H-NMR (DMSO-D6) δ: 7.69 (1H, dd, J = 8.8, 2.2 Hz), 7.83 (1H, d, J = 8.8 Hz), 7.91 (1H, d, J = 2.2 Hz), 7.95 (2H, d, J = 8.2 Hz), 8.53 (2H, d, J = 8.2 Hz), 13.67 (1H, br s).	436	434	
1-6	F F CI N O-CH ₃	1H-NMR (DMSO-D6) δ: 3.83 (3H, s), 7.21 (1H, dd, J = 8.8, 3.1 Hz), 7.41 (1H, d, J = 3.1 Hz), 7.57 (1H, d, J = 8.8 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.54 (2H, d, J = 8.4 Hz), 13.52 (1H, br s).	382	380	
1-7	F F F N OH	1H-NMR (DMSO-D6) δ: 7.01 (1H, dd, J = 8.6, 2.9 Hz), 7.17 (1H, s), 7.44 (1H, d, J = 8.6 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.53 (2H, d, J = 8.4 Hz), 10.17 (1H, s), 13.46 (1H, br s).	368	366	
1-8	F F F CI OH	1H-NMR (DMSO-D6) δ: 7.81 (1H, d, J = 8.4 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.12 (1H, dd, J = 8.5, 2.0 Hz), 8.36 (1H, d, J = 1.9 Hz), 8.54 (2H, d, J = 8.4 Hz), 13.53 (2H, br s).	396	394	

[0 7 5 1]

10

20

30

【表1-2】

X *LC 1					
1-9	F F N H ₃ C N	1H-NMR (DMSO-D6) δ: 2.63 (3H, s), 7.66 (1H, d, J = 8.2 Hz), 7.88 (1H, dd, J = 8.3, 1.7 Hz), 7.95 (2H, d, J = 8.4 Hz), 8.11 (1H, br s), 8.54 (2H, d, J = 8.4 Hz), 13.41 (1H, br s).	400	398	
1-10	F.F. H,C. N H,C OH	1H-NMR (DMSO-D6) δ: 2.61 (3H, s), 7.54 (1H, d, J = 7.9 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.04 (1H, dd, J = 7.9, 1.8 Hz), 8.30 (1H, br s), 8.55 (2H, d, J = 8.4 Hz), 13.23 (2H, br s).	376	374	
1-11	F F H ₃ C NH ₂	1H-NMR (DMSO-D6) δ: 2.59 (3H, s), 7.46 (1H, br s), 7.50 (1H, d, J = 8.2 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.00 (1H, dd, J = 7.9, 1.8 Hz), 8.01 (1H, br s), 8.24 (1H, br s), 8.56 (2H, d, J = 8.4 Hz), 13.28 (1H, s).	375	373	
1-12	F.F.F.	1H-NMR (DMSO-D6) δ: 4.58 (2H, d, J = 5.5 Hz), 5.45 (1H, t, J = 5.6 Hz), 7.56 (1H, dd, J = 8.2, 2.0 Hz), 7.62 (1H, d, J = 8.2 Hz), 7.74 (1H, br s), 7.94 (2H, d, J = 8.4 Hz), 8.54 (2H, d, J = 8.4 Hz), 13.53 (1H, br s).	382	380	
1-13	F F CI CH ₃	1H-NMR (DMSO-D6) δ: 2.65 (3H, s), 7.84 (1H, d, J = 8.4 Hz), 7.95 (2H, d, J = 8.4 Hz), 8.16 (1H, dd, J = 8.4, 2.2 Hz), 8.38 (1H, d, J = 2.2 Hz), 8.54 (2H, d, J = 8.4 Hz), 13.65 (1H, s).	394	392	
1-14	F F H ₃ C N N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 1.22 (3H, t, J = 7.7 Hz), 2.50 (3H, s), 2.66 (2H, q, J = 7.6 Hz), 7.32 (1H, d, J = 7.9 Hz), 7.37 (1H, dd, J = 7.8, 1.7 Hz), 7.55 (1H, br s), 7.94 (2H, d, J = 8.4 Hz), 8.55 (2H, d, J = 8.4 Hz), 13.19 (1H, br s).	360	358	
1-15	F.F. CI CI CH3	1H-NMR (DMSO-D6) δ: 1.39 (9H, s), 4.20 (2H, d, J = 6.0 Hz), 7.47-7.53 (2H, m), 7.62 (1H, d, J = 8.4 Hz), 7.66 (1H, br s), 7.93 (2H, d, J = 8.4 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.54 (1H, s).	481	479	
1-16	F F CI	1H-NMR (DMSO-D6) δ: 1.89 (3H, s), 4.32 (2H, d, J = 6.0 Hz), 7.49 (1H, dd, J = 8.3, 2.3 Hz), 7.62 (1H, d, J = 8.2 Hz), 7.67 (1H, d, J = 2.2 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.46 (1H, t, J = 6.0 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.55 (1H, br s).	423	421	

[0752]

10

20

【表1-3】

1-17	F F CI NH ₂	1H-NMR (DMSO-D6) δ: 4.13 (2H, br s), 7.72-7.77 (2H, m), 7.93-7.97 (3H, m), 8.39 (3H, br s), 8.54 (2H, d, J = 8.4 Hz), 13.67 (1H, s).	381	379	
1-18	CI N N H ₃ C OH	1H-NMR (DMSO-D6) δ: 1.36 (3H, d, J = 6.4 Hz), 4.78-4.84 (1H, m), 5.42 (1H, d, J = 4.2 Hz), 7.57-7.62 (2H, m), 7.77 (1H, br s), 7.94 (2H, d, J = 8.2 Hz), 8.54 (2H, d, J = 8.2 Hz), 13.52 (1H, br s).	396	394	
1-19	FFF CI OCH3	1H-NMR (DMSO-D6) δ: 3.34 (3H, s), 4.50 (2H, s), 7.57 (1H, dd, J = 8.3, 2.1 Hz), 7.65 (1H, d, J = 8.2 Hz), 7.76 (1H, d, J = 2.0 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.54 (2H, d, J = 8.4 Hz), 13.54 (1H, br s).	396	394	
1-20	F.F. Colonia C	1H-NMR (DMSO-D6) 5: 2.93 (3H, s), 4.25 (2H, d, J = 6.4 Hz), 7.60 (1H, dd, J = 8.4, 2.0 Hz), 7.66 (1H, d, J = 8.4 Hz), 7.70 (1H, t, J = 6.4 Hz), 7.78 (1H, d, J = 2.0 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.54 (2H, d, J = 8.4 Hz), 13.58 (1H, br s).	459	457	
1-21	FF CI CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 2.07 (1.0H, s), 2.08 (2.0H, s), 2.82 (1.0H, s), 2.96 (2.0H, s), 4.56 (1.3H, s), 4.64 (0.7H, s), 7.47 (1.0H, d, J = 8.2 Hz), 7.61-7.68 (2.0H, m), 7.94 (2.0H, d, J = 8.4 Hz), 8.53 (2.0H, d, J = 8.4 Hz), 13.56 (1.0H, s).	437	435	
1-22	FEFF CI	1H-NMR (DMSO-D6) δ: 3.56 (3H, s), 4.26 (2H, d, J = 6.2 Hz), 7.50 (1H, dd, J = 8.5, 2.1 Hz), 7.63 (1H, d, J = 8.4 Hz), 7.68 (1H, d, J = 2.0 Hz), 7.80 (1H, t, J = 6.2 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.54 (1H, s).	439	437	
1-23	F, F, C, N,	1H-NMR (DMSO-D6) δ: 3.71 (2H, s), 7.53 (1H, dd, J = 8.3, 1.9 Hz), 7.62 (1H, d, J = 8.2 Hz), 7.71 (1H, d, J = 1.8 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.54 (2H, d, J = 8.4 Hz), 12.53 (1H, br s), 13.54 (1H, br s).	410	408	
1-24	FF HO CH,	1H-NMR (DMSO-D6) 5: 1.13 (9H, s), 4.32 (2H, d, J = 6.0 Hz), 7.45 (1H, dd, J = 8.3, 2.1 Hz), 7.61 (1H, d, J = 8.2 Hz), 7.65 (1H, d, J = 2.0 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.18 (1H, t, J = 6.1 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.55 (1H, br s).	465	463	

[0753]

10

20

【表1-4】

K 100 1	· •				
1-25	F.F. F. N.	1H-NMR (DMSO-D6) δ: 2.09 (3H, s), 5.16 (2H, s), 7.63 (1H, dd, J = 8.3, 2.1 Hz), 7.68 (1H, d, J = 8.2 Hz), 7.81 (1H, d, J = 2.0 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.54 (2H, d, J = 8.4 Hz), 13.57 (1H, br s).	424	422	
1-26	F F CI N-CH ₃	1H-NMR (DMSO-D6) 5: 2.59 (3H, d, J = 4.6 Hz), 3.50 (2H, s), 7.50 (1H, dd, J = 8.3, 2.1 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.67 (1H, d, J = 2.0 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.01-8.06 (1H, br m), 8.54 (2H, d, J = 8.4 Hz), 13.54 (1H, s).	423	421	
1-27	FFF HO CI	1H-NMR (DMSO-D6) δ: 1.02 (3H, t, J = 7.6 Hz), 2.16 (2H, q, J = 7.6 Hz), 4.32 (2H, d, J = 6.0 Hz), 7.49 (1H, dd, J = 8.4, 2.2 Hz), 7.62 (1H, d, J = 8.4 Hz), 7.67 (1H, d, J = 2.2 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.39 (1H, t, J = 6.0 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.55 (1H, br s).	437	435	
1-28	F.F. CI CH _s CH _s	1H-NMR (DMSO-D6) δ: 1.04 (6H, d, J = 7.1 Hz), 2.38-2.48 (1H, m), 4.32 (2H, d, J = 6.2 Hz), 7.47 (1H, dd, J = 8.4, 2.2 Hz), 7.62 (1H, d, J = 8.4 Hz), 7.66 (1H, d, J = 2.2 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.37 (1H, t, J = 6.2 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.55 (1H, br s).	451	449	
1-29	F.E.F.	1H-NMR (DMSO-D6) 5: 1.11-1.40 (5H, m), 1.57-1.76 (5H, m), 2.13-2.20 (1H, m), 4.31 (2H, d, J = 6.2 Hz), 7.46 (1H, dd, J = 8.3, 2.1 Hz), 7.61 (1H, d, J = 8.2 Hz), 7.65 (1H, d, J = 2.0 Hz), 7.93 (2H, d, J = 8.4 Hz), 8.34 (1H, t, J = 6.1 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.55 (1H, br s).	491	489	
1-30	F F N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 1.44-1.82 (8H, m), 2.58-2.66 (1H, m), 4.32 (2H, d, J = 6.2 Hz), 7.47 (1H, dd, J = 8.3, 2.1 Hz), 7.62 (1H, d, J = 8.2 Hz), 7.66 (1H, d, J = 2.0 Hz), 7.93 (2H, d, J = 8.4 Hz), 8.39 (1H, t, J = 6.2 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.55 (1H, br s).	477	475	
1-31	F.F.F. CI	1H-NMR (DMSO-D6) δ: 1.20 (3H, t, J = 7.3 Hz), 3.02 (2H, q, J = 7.4 Hz), 4.23 (2H, d, J = 6.5 Hz), 7.60 (1H, dd, J = 8.4, 2.1 Hz), 7.66 (1H, d, J = 8.4 Hz), 7.72 (1H, t, J = 6.4 Hz), 7.77 (1H, d, J = 2.1 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.54 (2H, d, J = 8.4 Hz), 13.57 (1H, br s).	473	471	
1-32	HO CH ₃	1H-NMR (DMSO-D6) δ: 1.31 (9H, s), 4.32 (2H, d, J = 6.4 Hz), 7.60-7.66 (3H, m), 7.76 (1H, br s), 7.94 (2H, d, J = 8.4 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.58 (1H, br s).	501	499	
	1				

[0754]

10

20

【表1-5】

	_				
1-33	PEFF NO CI NO SSO OH ₃	1H-NMR (DMSO-D6) δ: 1.24 (6H, d, J = 6.8 Hz), 3.14-3.20 (1H, m), 4.25 (2H, d, J = 6.4 Hz), 7.60 (1H, dd, J = 8.5, 1.9 Hz), 7.66 (1H, d, J = 8.4 Hz), 7.70 (1H, t, J = 6.5 Hz), 7.77 (1H, d, J = 1.8 Hz), 7.94 (2H, d, J = 8.2 Hz), 8.53 (2H, d, J = 8.2 Hz), 13.58 (1H, br s).	487	485	
1-34	FEF CI CH ₃ CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 2.81 (6H, s), 4.28 (2H, d, J = 5.8 Hz), 6.98 (1H, t, J = 5.9 Hz), 7.50 (1H, dd, J = 8.3, 2.0 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.68 (1H, d, J = 1.9 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.54 (1H, br s).	452	450	
1-35	HO OH,	1H-NMR (DMSO-D6) δ: 2.56 (3H, d, J = 4.6 Hz), 4.26 (2H, d, J = 6.2 Hz), 5.90 (1H, q, J = 4.6 Hz), 6.52 (1H, t, J = 6.2 Hz), 7.49 (1H, dd, J = 8.3, 2.1 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.66 (1H, d, J = 2.0 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.55 (1H, br s).	438	436	
1-36	F F F CI N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 0.85 (3H, t, J = 7.4 Hz), 1.54 (2H, sextet, J = 7.4 Hz), 2.13 (2H, t, J = 7.4 Hz), 4.33 (2H, d, J = 6.2 Hz), 7.48 (1H, dd, J = 8.2, 2.0 Hz), 7.62 (1H, d, J = 8.2 Hz), 7.66 (1H, d, J = 2.0 Hz), 7.94 (2H, d, J = 8.2 Hz), 8.41 (1H, t, J = 6.1 Hz), 8.53 (2H, d, J = 8.2 Hz), 13.55 (1H, br s).	451	449	
1-37	F F CI H ₃ CCH ₃	1H-NMR (DMSO-D6) 5: 0.87 (6H, d, J = 6.4 Hz), 1.96-2.06 (3H, m), 4.33 (2H, d, J = 6.0 Hz), 7.48 (1H, dd, J = 8.2, 2.0 Hz), 7.61 (1H, d, J = 8.2 Hz), 7.66 (1H, d, J = 2.0 Hz), 7.93 (2H, d, J = 8.4 Hz), 8.42 (1H, t, J = 6.1 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.55 (1H, br s).	465	463	
1-38	FEF HO CI HO CI HO CH ₃	1H-NMR (DMSO-D6) δ: 1.16 (3H, t, J = 7.1 Hz), 4.01 (2H, q, J = 7.1 Hz), 4.25 (2H, d, J = 6.2 Hz), 7.50 (1H, dd, J = 8.4, 2.0 Hz), 7.63 (1H, d, J = 8.4 Hz), 7.68 (1H, d, J = 2.0 Hz), 7.76 (1H, t, J = 6.3 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.55 (1H, br s).	453	451	
1-39	F.F.F. CI	1H-NMR (DMSO-D6) δ: 1.17 (6H, d, J = 6.2 Hz), 4.24 (2H, d, J = 6.2 Hz), 4.73-4.80 (1H, m), 7.49 (1H, dd, J = 8.4, 2.0 Hz), 7.63 (1H, d, J = 8.4 Hz), 7.66-7.71 (2H, m), 7.93 (2H, d, J = 8.4 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.55 (1H, br s).	467	465	
1-40	PEF NO NO N	1H-NMR (DMSO-D6) δ: 2.85 (3H, s), 3.05 (3H, s), 3.80 (2H, s), 7.47 (1H, dd, J = 8.4, 2.2 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.65 (1H, d, J = 2.2 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.54 (2H, d, J = 8.4 Hz), 13.54 (1H, br s).	437	435	
7 ^ 7 .					

[0755]

10

20

【表1-6】

1-41	FF HO CH, H-CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,	1H-NMR (DMSO-D6) δ: 1.25 (9H, s), 3.47 (2H, s), 7.49 (1H, dd, J = 8.5, 2.1 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.66 (1H, d, J = 2.0 Hz), 7.77 (1H, s), 7.94 (2H, d, J = 8.4 Hz), 8.54 (2H, d, J = 8.4 Hz), 13.54 (1H, s).	465	463	
1-42	F F F N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 1.51-1.71 (4H, m), 1.83-1.92 (4H, m), 3.47-3.54 (1H, m), 4.26 (2H, d, J = 6.4 Hz), 7.59 (1H, d, J = 8.3 Hz), 7.66 (1H, d, J = 8.3 Hz), 7.72 (1H, t, J = 6.3 Hz), 7.77 (1H, s), 7.94 (2H, d, J = 8.3 Hz), 8.53 (2H, d, J = 8.3 Hz), 13.58 (1H, br s).	513	511	
1-43	CI CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.13 (9H, s), 4.31 (2H, d, J = 6.0 Hz), 7.44 (1H, dd, J = 8.2, 2.0 Hz), 7.56-7.58 (3H, m), 7.64-7.69 (2H, m), 8.18 (1H, t, J = 6.0 Hz), 8.34 (2H, d, J = 7.1 Hz), 13.34 (1H, br s).	397	395	
1-44	H ₃ C N N N HO CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 0.91 (3H, t, J = 7.4 Hz), 1.13 (9H, s), 1.62-1.65 (2H, m), 2.65 (2H, t, J = 7.5 Hz), 4.31 (2H, d, J = 6.0 Hz), 7.38 (2H, d, J = 8.2 Hz), 7.43 (1H, dd, J = 8.4, 2.0 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.64 (1H, br s), 8.17 (1H, t, J = 6.1 Hz), 8.26 (2H, d, J = 8.2 Hz), 13.25 (1H, br s).	439	437	
1-45	F.F. H ₃ C OH	1H-NMR (DMSO-D6) δ: 2.51 (3H, s), 4.55 (2H, d, J = 5.5 Hz), 5.29 (1H, t, J = 5.6 Hz), 7.36 (1H, d, J = 7.9 Hz), 7.46 (1H, dd, J = 7.8, 1.7 Hz), 7.65 (1H, br s), 7.94 (2H, d, J = 8.4 Hz), 8.55 (2H, d, J = 8.4 Hz), 13.22 (1H, br s).	362	360	
1-46	H ₃ C CH ₃ N C CH CH CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.13 (9H, s), 1.24 (6H, d, J = 6.8 Hz), 2.96-3.03 (1H, m), 4.31 (2H, d, J = 6.0 Hz), 7.41-7.46 (3H, m), 7.58 (1H, d, J = 8.4 Hz), 7.64 (1H, br s), 8.17 (1H, t, J = 6.0 Hz), 8.27 (2H, d, J = 8.2 Hz), 13.26 (1H, br s).	439	437	
1-47	FEFE H3C CH3	1H-NMR (DMSO-D6) δ: 1.88 (3H, s), 2.50 (3H, s), 4.29 (2H, d, J = 6.0 Hz), 7.35 (1H, d, J = 7.9 Hz), 7.39 (1H, dd, J = 7.9, 1.8 Hz), 7.59 (1H, br s), 7.94 (2H, d, J = 8.2 Hz), 8.37 (1H, t, J = 6.0 Hz), 8.54 (2H, d, J = 8.2 Hz), 13.26 (1H, br s).	403	401	
1-48	H ₃ C N N HO H ₃ C N CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.13 (9H, s), 2.50 (3H, s), 4.30 (2H, d, J = 6.0 Hz), 7.34-7.35 (2H, br m), 7.57 (1H, br s), 7.93 (2H, d, J = 8.4 Hz), 8.09 (1H, t, J = 6.1 Hz), 8.54 (2H, d, J = 8.4 Hz), 13.24 (1H, br s).	445	443	

[0756]

10

20

【表1-7】

	=			
1-49	H ₃ C Cl Cl CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.13 (9H, s), 1.25 (6H, d, J = 7.0 Hz), 2.96-3.03 (1H, m), 4.32 (2H, d, J = 5.8 Hz), 7.44 (1H, dd, J = 8.1, 1.2 Hz), 7.48 (1H, t, J = 7.7 Hz), 7.56 (1H, d, J = 7.7 Hz), 7.59 (1H, d, J = 8.1 Hz), 7.65 (1H, br s), 8.16-8.20 (3H, m), 13.30 (1H, br s).	439	437
1-50	H ₃ C CI CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 0.91 (3H, t, J = 7.3 Hz), 1.13 (9H, s), 1.61-1.65 (2H, m), 2.65 (2H, t, J = 7.5 Hz), 4.31 (2H, d, J = 6.2 Hz), 7.43-7.50 (3H, m), 7.59 (1H, d, J = 8.2 Hz), 7.64 (1H, br s), 8.16-8.18 (3H, m), 13.30 (1H, s).	439	437
1-51	H ₃ C	1H-NMR (DMSO-D6) δ : 0.88 (6H, d, J = 6.6 Hz), 1.13 (9H, s), 1.88-1.92 (1H, m), 2.55 (2H, d, J = 7.1 Hz), 4.31 (2H, d, J = 6.2 Hz), 7.35 (2H, d, J = 8.2 Hz), 7.43 (1H, dd, J = 8.4, 2.0 Hz), 7.58 (1H, d, J = 8.2 Hz), 7.64 (1H, br s), 8.17 (1H, t, J = 6.1 Hz), 8.26 (2H, d, J = 8.4 Hz), 13.25 (1H, br s).	439	437
1-52	C1 H CH ₃	1H-NMR (DMSO-D6) δ: 1.06 (3H, s), 1.14-1.49 (8H, m), 1.91-1.98 (2H, m), 4.32 (2H, d, J = 5.8 Hz), 7.43 (1H, d, J = 8.1 Hz), 7.52-7.59 (3H, m), 7.62-7.67 (2H, m), 8.16 (1H, t, J = 5.9 Hz), 8.32 (2H, d, J = 8.1 Hz), 13.31 (1H, br s).	437	435
1-53	HO CI CH ₃ O-CH ₃	1H-NMR (DMSO-D6) δ: 1.26 (6H, s), 3.15 (3H, s), 4.32 (2H, d, J = 6.3 Hz), 7.45 (1H, d, J = 7.2 Hz), 7.53-7.59 (3H, m), 7.63-7.68 (2H, m), 8.32 (2H, d, J = 7.9 Hz), 8.46 (1H, t, J = 6.3 Hz), 13.31 (1H, br s).	413	411
1-54	F F CI N N N N CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.12 (9H, s), 4.31 (2H, d, J = 6.0 Hz), 7.45 (1H, d, J = 8.4 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.63 (1H, s), 7.81 (1H, t, J = 7.9 Hz), 8.03 (1H, d, J = 7.4 Hz), 8.16 (1H, t, J = 5.9 Hz), 8.57-8.63 (2H, m), 13.51 (1H, br s).	465	463
1-55	H ₃ C CI CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.13 (9H, s), 1.22 (3H, t, J = 7.6 Hz), 2.70 (2H, q, J = 7.6 Hz), 4.31 (2H, d, J = 6.0 Hz), 7.42-7.53 (3H, m), 7.59 (1H, d, J = 8.2 Hz), 7.64 (1H, s), 8.15-8.19 (3H, m), 13.31 (1H, br s).	425	423
1-56	F F CH ₃ CH ₄ CH ₄ CH ₄ O-CH ₃	1H-NMR (DMSO-D6) δ: 1.28 (6H, s), 3.17 (3H, s), 4.33 (2H, d, J = 6.2 Hz), 7.48 (1H, dd, J = 8.4, 2.1 Hz), 7.61 (1H, d, J = 8.3 Hz), 7.67 (1H, s), 7.94 (2H, d, J = 8.3 Hz), 8.48 (1H, t, J = 6.3 Hz), 8.52 (2H, d, J = 8.3 Hz), 13.55 (1H, br s).	481	479

[0 7 5 7]

10

20

【表1-8】

1-57	H,C H,C H,C N N N N CH, O CH, O CH,	1H-NMR (DMSO-D6) δ: 1.13 (9H, s), 1.34 (9H, s), 4.31 (2H, d, J = 6.0 Hz), 7.43 (1H, dd, J = 8.2, 2.0 Hz), 7.49 (1H, t, J = 7.8 Hz), 7.59 (1H, d, J = 8.2 Hz), 7.66 (1H, s), 7.72 (1H, d, J = 8.2 Hz), 8.15-8.18 (2H, m), 8.38 (1H, s), 13.33 (1H, br s).	453	451
1-58	F F HO CI N HO CH ₃ CCH ₃	1H-NMR (DMSO-D6) 5: 0.72 (3H, t, J = 7.4 Hz), 1.08 (6H, s), 1.49 (2H, q, J = 7.4 Hz), 4.32 (2H, d, J = 6.0 Hz), 7.47 (1H, dd, J = 8.2, 2.0 Hz), 7.61 (1H, d, J = 8.2 Hz), 7.65 (1H, s), 7.82 (1H, t, J = 7.8 Hz), 8.04 (1H, d, J = 7.9 Hz), 8.15 (1H, t, J = 6.1 Hz), 8.59-8.63 (2H, m), 13.54 (1H, s).	479	477
1-59	F F CI N N N N HO CH ₃ OCH ₃ OCH ₃ F F	1H-NMR (DMSO-D6) δ: 1.37 (6H, s), 4.36 (2H, d, J = 5.6 Hz), 7.45 (1H, d, J = 8.4 Hz), 7.62 (1H, d, J = 8.4 Hz), 7.62 (1H, d, J = 8.4 Hz), 7.64 (1H, s), 7.81 (1H, t, J = 7.7 Hz), 8.03 (1H, d, J = 7.9 Hz), 8.58-8.66 (3H, m), 13.53 (1H, br s).	519	517
1-60	F F N O O CH ₃	1H-NMR (DMSO-D6) δ: 1.13 (9H, s), 4.31 (2H, d, J = 6.0 Hz), 7.45 (1H, d, J = 8.4 Hz), 7.55 (2H, d, J = 8.7 Hz), 7.61 (1H, d, J = 8.4 Hz), 7.64 (1H, s), 8.18 (1H, t, J = 6.0 Hz), 8.46 (2H, d, J = 8.7 Hz), 13.45 (1H, br s).	481	479
1-61	F CI NH O CH ₃ OH H ₃ C CH ₃	1H-NMR (DMSO-D6) δ: 1.13 (9H, s), 4.31 (2H, d, J = 6.0 Hz), 7.45 (1H, dd, J = 8.4, 2.2 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.63-7.73 (3H, m), 8.18 (1H, t, J = 6.0 Hz), 8.21 (1H, s), 8.37 (1H, dt, J = 7.4, 1.5 Hz), 13.50 (1H, br s).	481	479
1-62	H,C O CI CH ₃ CH ₃ OH ₃ C CH ₃	1H-NMR (DMSO-D6) δ: 1.12 (9H, s), 1.34 (3H, t, J = 7.0 Hz), 4.09 (2H, q, J = 7.0 Hz), 4.30 (2H, d, J = 6.0 Hz), 7.20 (1H, dd, J = 8.1, 2.3 Hz), 7.41-7.46 (2H, m), 7.57 (1H, d, J = 8.4 Hz), 7.63 (1H, s), 7.84 (1H, s), 7.91 (1H, d, J = 7.7 Hz), 8.16 (1H, t, J = 6.0 Hz), 13.30 (1H, br s).	441	439
1-63	H ₃ C OH ₃	1H-NMR (DMSO-D6) δ : 1.13 (9H, s), 2.41 (3H, s), 4.31 (2H, d, J = 6.0 Hz), 7.37 (2H, d, J = 8.1 Hz), 7.43 (1H, d, J = 8.1 Hz), 7.59 (1H, d, J = 8.1 Hz), 7.64 (1H, s), 8.17 (1H, t, J = 6.0 Hz), 8.24 (2H, d, J = 8.1 Hz), 13.24 (1H, br s).	411	409
1-64	H ₃ C CH ₃ NH NH NC CH ₃ OH	1H-NMR (DMSO-D6) δ: 1.14 (9H, s), 2.40 (3H, s), 4.32 (2H, d, J = 6.0 Hz), 7.41-7.51 (3H, m), 7.60 (1H, d, J = 8.4 Hz), 7.64 (1H, s), 8.11-8.20 (3H, m), 13.30 (1H, br s).	411	409

[0758]

【表1-9】

1-65	L CI	1H-NMR (DMSO-D6) δ: 1.60-1.71 (6H, m), 1.79-1.83 (6H, m), 1.94-1.98 (3H, m), 4.30 (2H, d, J = 6.0 Hz), 7.42 (1H, d, J = 8.6 Hz), 7.53-7.59 (3H, m), 7.63-7.68 (2H, m), 8.10 (1H, t, J = 6.1 Hz), 8.34 (2H, d, J = 7.5 Hz), 13.34 (1H, br s).	475	473	
1-66	HO CI	1H-NMR (DMSO-D6) δ: 1.72-1.94 (2H, m), 1.99-2.08 (2H, m), 2.10-2.20 (2H, m), 3.03-3.11 (1H, m), 4.31 (2H, d, J = 6.0 Hz), 7.45 (1H, dd, J = 8.4, 2.0 Hz), 7.54-7.69 (5H, m), 8.28 (1H, t, J = 6.0 Hz), 8.34 (2H, d, J = 7.3 Hz), 13.34 (1H, br s).	395	393	
1-67	CI C	1H-NMR (DMSO-D6) δ: 1.46-1.81 (8H, m), 2.58-2.66 (1H, m), 4.32 (2H, d, J = 6.0 Hz), 7.45 (1H, dd, J = 8.4, 2.2 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.60 (1H, d, J = 8.2 Hz), 7.64-7.69 (2H, m), 8.34 (2H, d, J = 7.5 Hz), 8.40 (1H, t, J = 6.1 Hz), 13.34 (1H, br s).	409	407	
1-68	HO N H H	1H-NMR (DMSO-D6) δ: 1.50-1.68 (4H, m), 1.82-1.91 (2H, m), 2.29-2.36 (2H, m), 4.37 (2H, d, J = 5.8 Hz), 7.41 (1H, d, J = 8.8 Hz), 7.54 (2H, t, J = 7.7 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.62-7.67 (2H, m), 8.32 (2H, d, J = 7.7 Hz), 8.69 (1H, t, J = 5.9 Hz), 13.33 (1H, br s).	477	475	
1-69	HO CH ₃ O CH ₃ O CH ₃ O F F	1H-NMR (DMSO-D6) δ : 1.38 (6H, s), 4.37 (2H, d, J = 6.0 Hz), 7.44 (1H, dd, J = 8.3, 2.1 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.61 (1H, d, J = 8.4 Hz), 7.64-7.69 (2H, m), 8.34 (2H, d, J = 7.5 Hz), 8.64 (1H, t, J = 6.0 Hz), 13.35 (1H, br s).	451	449	
1-70	HO CI	1H-NMR (DMSO-D6) δ: 1.77-1.94 (2H, m), 2.30-2.39 (2H, m), 2.45-2.57 (2H, m), 4.39 (2H, d, J = 5.8 Hz), 7.44 (1H, d, J = 7.4 Hz), 7.54 (2H, t, J = 7.7 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.63-7.68 (2H, m), 8.33 (2H, d, J = 7.7 Hz), 8.78 (1H, t, J = 5.9 Hz), 13.32 (1H, br s).	463	461	
1-71	HO CI	1H-NMR (DMSO-D6) δ: 1.08-1.42 (5H, m), 1.57-1.77 (5H, m), 2.13-2.21 (1H, m), 4.31 (2H, d, J = 6.0 Hz), 7.44 (1H, dd, J = 8.2, 2.2 Hz), 7.54-7.60 (3H, m), 7.65-7.69 (2H, m), 8.33-8.35 (3H, m), 13.34 (1H, br s).	423	421	
1-72	HO CH ₃	1H-NMR (DMSO-D6) δ: 1.35 (3H, s), 1.63-1.76 (3H, m), 1.84-1.93 (1H, m), 2.30-2.37 (2H, m), 4.32 (2H, d, J = 6.2 Hz), 7.45 (1H, dd, J = 8.4, 2.0 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.64-7.68 (2H, m), 8.18 (1H, t, J = 6.1 Hz), 8.34 (2H, d, J = 7.5 Hz), 13.35 (1H, br s).	409	407	

[0759]

10

20

【表1-10】

1-73	HO CH ₃	1H-NMR (DMSO-D6) 5: 1.19 (3H, s), 1.35-1.43 (2H, m), 1.51-1.62 (4H, m), 1.98-2.05 (2H, m), 4.32 (2H, d, J = 6.0 Hz), 7.44 (1H, dd, J = 8.3, 2.1 Hz), 7.54-7.60 (3H, m), 7.64-7.69 (2H, m), 8.20 (1H, t, J = 6.1 Hz), 8.34 (2H, d, J = 7.3 Hz), 13.34 (1H, br s).	423	421	
1-74	HO CH ₃ OH ₂ C CH ₃	1H-NMR (DMSO-D6) 5: 1.12 (9H, s), 4.30 (2H, d, J = 6.0 Hz), 7.37 (1H, d, J = 8.8 Hz), 7.39 (1H, d, J = 8.8 Hz), 7.42 (1H, dd, J = 8.5, 2.0 Hz), 7.58 (1H, d, J = 8.4 Hz), 7.62 (1H, s), 8.16 (1H, t, J = 5.9 Hz), 8.38 (1H, d, J = 8.8 Hz), 8.40 (1H, d, J = 8.8 Hz), 13.33 (1H, br s).	415	413	
1-75	H ₃ C-O N N N N CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.13 (9H, s), 3.32 (3H, s), 4.31 (2H, d, J = 6.0 Hz), 4.50 (2H, s), 7.43 (1H, d, J = 8.6 Hz), 7.53 (1H, t, J = 7.7 Hz), 7.59 (2H, d, J = 8.1 Hz), 7.63 (1H, s), 8.18 (1H, t, J = 6.0 Hz), 8.26 (1H, d, J = 7.7 Hz), 8.30 (1H, s), 13.34 (1H, br s).	441	439	
1-76	F CI CH ₃ CH ₃ OH ₃ C CH ₃	1H-NMR (DMSO-D6) δ: 1.14 (9H, s), 4.32 (2H, d, J = 6.0 Hz), 7.45 (1H, dd, J = 8.4, 2.1 Hz), 7.52 (1H, td, J = 8.4, 2.7 Hz), 7.59-7.63 (2H, m), 7.65 (1H, d, J = 2.1 Hz), 8.05 (1H, dt, J = 9.8, 2.0 Hz), 8.16-8.20 (2H, m), 13.43 (1H, br s).	415	413	
1-77	F CI CI F F OH, C CH,	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 4.37 (2H, d, J = 5.8 Hz), 7.41 (1H, d, J = 8.4 Hz), 7.58 (1H, d, J = 8.4 Hz), 7.61-7.65 (2H, m), 7.69 (1H, t, J = 7.8 Hz), 8.21 (1H, s), 8.36 (1H, d, J = 7.7 Hz), 8.63 (1H, t, J = 5.8 Hz), 13.52 (1H, br s).	535	533	
1-78	FF HO	1H-NMR (DMSO-D6) δ: 1.48-1.71 (4H, m), 1.81-1.94 (2H, m), 2.30-2.39 (2H, m), 4.39 (2H, d, J = 5.9 Hz), 7.45 (1H, dd, J = 8.3, 1.4 Hz), 7.59-7.75 (4H, m), 8.22 (1H, br s), 8.35- 8.39 (1H, m), 8.72 (1H, t, J = 5.9 Hz), 13.51 (1H, br s).	561	559	
1-79	F F HO N HO F F	1H-NMR (DMSO-D6) δ: 1.50-1.69 (4H, m), 1.83-1.93 (2H, m), 2.29-2.39 (2H, m), 4.39 (2H, d, J = 6.0 Hz), 7.44 (1H, dd, J = 8.3, 1.9 Hz), 7.60-7.66 (2H, m), 7.82 (1H, t, J = 7.7 Hz), 8.03 (1H, d, J = 7.7 Hz), 8.59-8.65 (2H, m), 8.71 (1H, t, J = 6.0 Hz), 13.54 (1H, br s).	545	543	
1-80	H,C H,C H,C N N N N N N N N F F	1H-NMR (DMSO-D6) δ: 1.34 (9H, s), 1.49-1.69 (4H, m), 1.83-1.92 (2H, m), 2.29-2.38 (2H, m), 4.38 (2H, d, J = 6.0 Hz), 7.42 (1H, d, J = 8.3 Hz), 7.49 (1H, t, J = 7.8 Hz), 7.61 (1H, d, J = 8.3 Hz), 7.65 (1H, s), 7.71 (1H, d, J = 7.8 Hz), 8.15 (1H, d, J = 7.8 Hz), 8.38 (1H, s), 8.71 (1H, t, J = 6.0 Hz), 13.35 (1H, br s).	533	531	

[0760]

10

20

【表1-11】

1-81	CI—NH NH NH ₃ C CH ₃ F	1H-NMR (DMSO-D6) δ: 1.37 (6H, s), 2.32 (3H, d, J = 1.2 Hz), 4.36 (2H, d, J = 5.9 Hz), 7.50-7.43 (2H, m), 7.60 (1H, d, J = 8.4 Hz), 7.64 (1H, br s), 7.99 (1H, d, J = 10.9 Hz), 8.08 (1H, dd, J = 7.8, 1.5 Hz), 8.63 (1H, t, J = 5.9 Hz), 13.36 (1H, s).	483	481	
1-82	H ₃ C	1H-NMR (DMSO-D6) 5: 1.13 (9H, s), 1.31 (6H, d, J = 6.0 Hz), 4.31 (2H, d, J = 6.0 Hz), 4.72-4.82 (1H, m), 7.06 (2H, d, J = 8.9 Hz), 7.42 (1H, d, J = 8.4 Hz), 7.58 (1H, d, J = 8.4 Hz), 7.63 (1H, s), 8.17 (1H, t, J = 6.0 Hz), 8.29 (2H, d, J = 8.9 Hz), 13.12 (1H, br s).	455	453	
1-83	H ₃ C Ci H ₃ C Ci H ₃ C Ci H ₃ C CH ₃	1H-NMR (DMSO-D6) δ: 1.17 (6H, d, J = 6.3 Hz), 1.34 (9H, s), 4.23 (2H, d, J = 6.0 Hz), 4.72-4.80 (1H, m), 7.43-7.52 (2H, m), 7.60 (1H, d, J = 8.4 Hz), 7.65-7.73 (3H, m), 8.15 (1H, d, J = 7.7 Hz), 8.38 (1H, s), 13.33 (1H, br s).	455	453	
1-84	H ₂ C CH ₃ N N O-CH ₃ OH ₂ C CH ₃	1H-NMR (DMSO-D6) δ: 1.27 (6H, s), 1.34 (9H, s), 3.16 (3H, s), 4.33 (2H, d, J = 6.3 Hz), 7.42-7.46 (1H, m), 7.49 (1H, d, J = 7.9 Hz), 7.57 (1H, d, J = 8.1 Hz), 7.66-7.71 (2H, m), 8.14 (1H, d, J = 7.9 Hz), 8.38 (1H, s), 8.47 (1H, t, J = 6.3 Hz), 13.32 (1H, br s).	469	467	
1-85	H ₃ COO CI	1H-NMR (DMSO-D6) δ: 1.36 (3H, t, J = 7.0 Hz), 1.51-1.69 (4H, m), 1.84-1.91 (2H, m), 2.30-2.38 (2H, m), 4.10 (2H, q, J = 7.0 Hz), 4.38 (2H, d, J = 6.0 Hz), 7.20 (1H, dd, J = 8.3, 2.4 Hz), 7.39-7.43 (1H, m), 7.46 (1H, d, J = 7.9 Hz), 7.59 (1H, d, J = 8.3 Hz), 7.63 (1H, s), 7.85 (1H, d, J = 2.4 Hz), 7.89-7.96 (1H, m), 8.71 (1H, t, J = 6.0 Hz), 13.33 (1H, br s).	521	519	
1-86	H ₃ C CH ₃ CI NH CH ₃ F	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 1.37 (6H, s), 3.73 (2H, s), 4.35 (2H, d, J = 5.8 Hz), 7.08 (2H, d, J = 9.1 Hz), 7.40 (1H, dd, J = 8.3, 2.2 Hz), 7.58 (1H, d, J = 8.3 Hz), 7.62 (1H, d, J = 1.9 Hz), 8.29 (2H, d, J = 9.1 Hz), 8.62 (1H, t, J = 5.8 Hz), 13.13 (1H, s).	537	535	
1-87	CI NO CH ₃ O CH ₃ O F F	1H-NMR (DMSO-D6) δ: 1.54 (3H, s), 3.36 (3H, s), 4.32-4.44 (2H, m), 7.46 (1H, d, J = 8.2 Hz), 7.53-7.71 (5H, m), 8.34 (2H, d, J = 7.5 Hz), 9.04 (1H, t, J = 6.3 Hz), 13.35 (1H, br s).	467	465	
1-88	H ₃ C O CI CH ₃ O CH ₃ O CH ₃ O CH ₅ F F	1H-NMR (DMSO-D6) δ: 1.00 (6H, d, J = 6.8 Hz), 1.38 (6H, s), 1.99-2.10 (1H, m), 3.83 (2H, d, J = 6.4 Hz), 4.37 (2H, d, J = 6.0 Hz), 7.23 (1H, dd, J = 8.2, 2.6 Hz), 7.41-7.49 (2H, m), 7.61 (1H, d, J = 8.2 Hz), 7.66 (1H, s), 7.84-7.88 (1H, m), 7.93 (1H, d, J = 7.9 Hz), 8.64 (1H, t, J = 6.0 Hz), 13.33 (1H, br s).	523	521	

[0 7 6 1]

10

20

【表1-12】

1-89	HO CH ₃ O CH ₃ O CH ₃ O CH ₃	1H-NMR (DMSO-D6) δ: 1.54 (3H, s), 3.36 (3H, s), 4.32-4.44 (2H, m), 7.46 (1H, d, J = 8.2 Hz), 7.53-7.71 (5H, m), 8.34 (2H, d, J = 7.5 Hz), 9.04 (1H, t, J = 6.3 Hz), 13.35 (1H, br s).	467	465	
1-90	H ₃ C CI F F F F F F F F F F F F F F F F F F	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 2.31 (3H, s), 4.37 (2H, d, J = 5.8 Hz), 7.31 (1H, t, J = 9.1 Hz), 7.43 (1H, dd, J = 8.4, 2.0 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.63 (1H, s), 8.21 (1H, s), 8.28 (1H, d, J = 7.4 Hz), 8.64 (1H, t, J = 5.8 Hz), 13.32 (1H, br s).	483	481	
1-91	H,C CH ₃ N CI H F F F F CH ₃ C CH ₃	1H-NMR (DMSO-D6) δ: 1.30 (6H, d, J = 6.0 Hz), 1.38 (6H, s), 4.37 (2H, d, J = 5.8 Hz), 4.66-4.72 (1H, m), 7.20 (1H, dd, J = 8.4, 2.1 Hz), 7.42-7.47 (2H, m), 7.60 (1H, d, J = 8.4 Hz), 7.66 (1H, s), 7.84-7.86 (1H, m), 7.90 (1H, d, J = 7.7 Hz), 8.64 (1H, t, J = 5.8 Hz), 13.32 (1H, br s).	509	507	
1-92	H ₃ C CH ₃ C1 TF F F OH ₃ C CH ₃	1H-NMR (DMSO-D6) δ : 1.34 (9H, s), 1.38 (6H, s), 4.37 (2H, d, J = 6.0 Hz), 7.42 (1H, d, J = 8.4 Hz), 7.48 (1H, t, J = 7.9 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.66 (1H, s), 7.70 (1H, d, J = 7.7 Hz), 8.15 (1H, d, J = 7.7 Hz), 8.37-8.39 (1H, m), 8.63 (1H, t, J = 6.0 Hz), 13.33 (1H, br s).	507	505	
1-93	H ₃ C CH ₃	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 2.35 (6H, s), 4.37 (2H, d, J = 5.8 Hz), 7.30 (1H, s), 7.44 (1H, d, J = 8.4 Hz), 7.63 (1H, d, J = 8.4 Hz), 7.63 (1H, s), 7.96 (2H, s), 8.64 (1H, t, J = 5.8 Hz), 13.27 (1H, br s).	479	477	
1-94	H ₃ C Cl NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	1H-NMR (DMSO-D6) δ: 1.33 (9H, s), 4.55 (2H, d, J = 5.8 Hz), 7.45-7.50 (3H, m), 7.52-7.56 (2H, m), 7.61 (1H, d, J = 8.4 Hz), 7.71 (1H, d, J = 8.4 Hz), 7.78 (1H, s), 7.89-7.91 (2H, m), 8.14 (1H, d, J = 7.7 Hz), 8.37 (1H, s), 9.15 (1H, t, J = 5.8 Hz), 13.33 (1H, br s).	473	471	
1-95	H ₂ C CH ₃ CH ₄ CH ₄ CH ₄ CH ₅ FF	1H-NMR (DMSO-D6) 5: 0.88 (6H, d, J = 6.6 Hz), 1.38 (6H, s), 1.82-1.94 (1H, m), 2.55 (2H, d, J = 7.1 Hz), 4.37 (2H, d, J = 6.0 Hz), 7.42-7.50 (3H, m), 7.59-7.67 (2H, m), 8.12-8.20 (2H, m), 8.64 (1H, t, J = 6.0 Hz), 13.31 (1H, br s).	507	505	
1-96	CI N N HO N Ho O CH ₃ O F F	1H-NMR (DMSO-D6) δ: 1.19 (3H, t, J = 7.1 Hz), 1.54 (3H, s), 3.46-3.54 (1H, m), 3.57-3.66 (1H, m), 4.40 (2H, d, J = 6.2 Hz), 7.46 (1H, d, J = 8.4 Hz), 7.54-7.70 (5H, m), 8.34 (2H, d, J = 7.5 Hz), 8.86 (1H, t, J = 6.2 Hz), 13.35 (1H, br s).	481	479	

[0 7 6 2]

10

20

【表1-13】

1-97	H ₃ C H ₃ C	1H-NMR (DMSO-D6) δ: 1.19 (3H, t, J = 7.1 Hz), 1.54 (3H, s), 3.46-3.54 (1H, m), 3.57-3.66 (1H, m), 4.40 (2H, d, J = 6.2 Hz), 7.46 (1H, d, J = 8.4 Hz), 7.54-7.70 (5H, m), 8.34 (2H, d, J = 7.5 Hz), 8.86 (1H, t, J = 6.2 Hz), 13.35 (1H, br s).	481	479	
1-98	H ₃ C CH ₃	1H-NMR (DMSO-D6) δ: 1.24 (6H, d, J = 7.0 Hz), 1.38 (6H, s), 4.36 (2H, d, J = 5.8 Hz), 7.35-7.40 (3H, m), 7.54 (1H, d, J = 8.4 Hz), 7.61 (1H, d, J = 2.1 Hz), 8.25 (2H, d, J = 8.4 Hz), 8.62 (1H, t, J = 5.8 Hz), 13.26 (1H, br s).	493	491	
1-99	F F OH ₃ C OH ₃	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 4.37 (2H, d, J = 5.8 Hz), 4.86 (2H, q, J = 8.8 Hz), 7.36 (1H, dd, J = 8.0, 2.4 Hz), 7.43 (1H, dd, J = 8.0, 2.4 Hz), 7.53 (1H, t, J = 8.0 Hz), 7.60 (1H, d, J = 8.0 Hz), 7.65 (1H, s), 7.93-7.95 (1H, m), 8.03 (1H, d, J = 7.7 Hz), 8.64 (1H, t, J = 5.8 Hz), 13.35 (1H, br s).	549	547	
1-100	CI NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	1H-NMR (DMSO-D6) δ: 1.36 (6H, s), 1.79-1.87 (1H, m), 1.93-2.05 (1H, m), 2.07-2.18 (2H, m), 2.29-2.36 (2H, m), 3.55-3.64 (1H, m), 4.35 (2H, d), J = 6.0 Hz), 7.37-7.48 (3H, m), 7.56 (1H, d, J = 8.1 Hz), 7.61 (1H, s), 8.13 (1H, d, J = 7.0 Hz), 8.18 (1H, s), 8.61 (1H, t, J = 6.0 Hz), 13.31 (1H, br s).	505	503	
1-101	H,C H,C CH, N CH, N CH, S CH,	1H-NMR (DMSO-D6) δ: 0.88 (6H, d, J = 6.5 Hz), 1.25 (9H, s), 1.84-1.95 (1H, m), 2.55 (2H, d, J = 7.2 Hz), 3.45 (2H, s), 7.35 (2H, d, J = 8.1 Hz), 7.46 (1H, d, J = 8.4 Hz), 7.57 (1H, d, J = 8.4 Hz), 7.65 (1H, s), 7.76 (1H, s), 8.26 (2H, d, J = 8.1 Hz), 13.24 (1H, br s).	453	451	
1-102	H,C OH,C CH,	1H-NMR (DMSO-D6) δ: 0.91 (3H, t, J = 7.6 Hz), 1.38 (6H, s), 1.58-1.69 (2H, m), 2.64 (2H, t, J = 7.6 Hz), 4.37 (2H, d, J = 6.0 Hz), 7.40-7.46 (3H, m), 7.58 (1H, d, J = 8.1 Hz), 7.63 (1H, d, J = 1.9 Hz), 8.14-8.18 (2H, m), 8.63 (1H, t, J = 6.0 Hz), 13.32 (1H, br s).	493	491	
1-103	FFF CI CH ₃	1H-NMR (DMSO-D6) δ: 1.54 (3H, s), 3.36 (3H, s), 4.32-4.46 (2H, m), 7.48 (1H, d, J = 7.7 Hz), 7.60-7.75 (4H, m), 8.22 (1H, s), 8.37 (1H, d, J = 7.3 Hz), 9.04 (1H, t, J = 6.3 Hz), 13.52 (1H, br s).	551	549	
1-104	HO CH ₅	1H-NMR (DMSO-D6) δ: 0.91 (3H, t, J = 7.4 Hz), 1.54 (3H, s), 1.58-1.69 (2H, m), 2.65 (2H, t, J = 7.6 Hz), 3.36 (3H, s), 4.32-4.45 (2H, m), 7.43-7.52 (3H, m), 7.61 (1H, d, J = 8.4 Hz), 7.67 (1H, s), 8.13-8.19 (2H, m), 9.04 (1H, t, J = 6.2 Hz), 13.31 (1H, br s).	509	507	

[0763]

10

20

【表1-14】

1-105	H,C N N CI N CH ₃ HO CH ₃	1H-NMR (DMSO-D6) δ: 1.54 (3H, s), 2.34 (3H, d, J = 1.1 Hz), 3.36 (3H, s), 4.33-4.45 (2H, m), 7.44-7.52 (2H, m), 7.61 (1H, d, J = 8.2 Hz), 7.67 (1H, s), 8.00 (1H, d, J = 11.0 Hz), 8.09 (1H, dd, J = 7.9, 1.5 Hz), 9.04 (1H, t, J = 6.2 Hz), 13.38 (1H, br s).	499	497	
1-106	H ₃ C CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ : 1.54 (3H, s), 2.32 (3H, d, J = 1.3 Hz), 3.36 (3H, s), 4.32-4.44 (2H, m), 7.32 (1H, t, J = 9.0 Hz), 7.46 (1H, d, J = 8.3 Hz), 7.61 (1H, d, J = 8.3 Hz), 7.65 (1H, s), 8.19-8.25 (1H, m), 8.28 (1H, d, J = 7.3 Hz), 9.03 (1H, t, J = 6.3 Hz), 13.33 (1H, br s).	499	497	
1-107	H ₂ C H ₃ C H ₃ C H ₃ C H ₄ C H ₅ C H ₅ C H ₇ C	1H-NMR (DMSO-D6) δ: 1.25 (6H, d, J = 6.9 Hz), 1.38 (6H, s), 2.94-3.06 (1H, m), 4.37 (2H, d, J = 5.9 Hz), 7.41-7.68 (5H, m), 8.13-8.19 (1H, m), 8.22 (1H, br s), 8.64 (1H, t, J = 5.9 Hz), 13.33 (1H, br s).	493	491	
1-108	H ₃ C Cl CH ₃ CH	1H-NMR (DMSO-D6) δ: 1.25 (6H, d, J = 7.3 Hz), 1.54 (3H, s), 2.94-3.07 (1H, m), 3.36 (3H, s), 4.31-4.46 (2H, m), 7.42-7.71 (5H, m), 8.16 (1H, d, J = 7.7 Hz), 8.22 (1H, br s), 9.04 (1H, t, J = 6.0 Hz), 13.32 (1H, br s).	509	507	
1-109	H ₃ C CH ₃ NH	1H-NMR (DMSO-D6) 5: 0.98 (6H, d, J = 6.5 Hz), 1.37 (6H, s), 2.07-2.00 (1H, m), 3.85 (2H, d, J = 6.5 Hz), 4.35 (2H, d, J = 6.0 Hz), 7.07 (2H, d, J = 9.1 Hz), 7.41 (1H, dd, J = 8.1, 2.1 Hz), 7.58 (1H, d, J = 8.1 Hz), 7.62 (1H, s), 8.29 (2H, d, J = 9.1 Hz), 8.63 (1H, t, J = 5.9 Hz), 13.13 (1H, br s).	523	521	
1-110	H ₃ C N HO CH ₃ CH ₃ CH ₃ CH ₅ F F	1H-NMR (DMSO-D6) 5: 1.22 (3H, t, J = 7.6 Hz), 1.38 (6H, s), 2.70 (2H, q, J = 7.6 Hz), 4.37 (2H, d, J = 6.0 Hz), 7.42-7.54 (3H, m), 7.61 (1H, d, J = 8.4 Hz), 7.65 (1H, s), 8.16 (1H, d, J = 7.7 Hz), 8.19 (1H, s), 8.65 (1H, t, J = 6.0 Hz), 13.32 (1H, br s).	479	477	
1-111	H,C	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 2.40 (3H, s), 4.37 (2H, d, J = 6.0 Hz), 7.41-7.50 (3H, m), 7.61 (1H, d, J = 8.4 Hz), 7.65 (1H, s), 8.11-8.18 (2H, m), 8.65 (1H, t, J = 6.0 Hz), 13.32 (1H, br s).	465	463	
1-112	H ₃ C CI F F F OH ₃ C CH ₃	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 2.42 (3H, s), 4.37 (2H, d, J = 6.0 Hz), 7.44 (1H, dd, J = 8.4, 2.1 Hz), 7.61 (2H, dd, J = 8.4, 2.1 Hz), 7.64 (1H, d, J = 2.1 Hz), 8.17 (1H, dd, J = 8.4, 2.1 Hz), 8.30 (1H, d, J = 2.1 Hz), 8.65 (1H, t, J = 6.0 Hz), 13.39 (1H, br s).	499	497	

[0764]

10

20

【表1-15】

• • •				
1-113	F C C C F F C OH ₃ C CH ₃	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 4.36 (2H, d, J = 6.0 Hz), 4.89 (2H, q, J = 8.8 Hz), 7.20 (2H, d, J = 9.1 Hz), 7.39 (1H, dd, J = 8.3, 2.0 Hz), 7.56 (1H, d, J = 8.3 Hz), 7.62 (1H, d, J = 2.0 Hz), 8.33 (2H, d, J = 9.1 Hz), 8.64 (1H, t, J = 6.0 Hz), 13.24 (1H, br s).	549	547
1-114	H ₃ C _C CH ₃	1H-NMR (DMSO-D6) 5: 0.94 (6H, d, J = 6.6 Hz), 1.37 (6H, s), 1.63 (2H, q, J = 6.6 Hz), 1.79 (1H, m), 4.04 (2H, t, J = 6.6 Hz), 4.33 (2H, d, J = 6.0 Hz), 6.95 (2H, d, J = 8.9 Hz), 7.23 (1H, d, J = 8.3 Hz), 7.42 (1H, d, J = 8.3 Hz), 7.50 (1H, d, J = 2.0 Hz), 8.22 (2H, d, J = 8.9 Hz), 8.59 (1H, t, J = 6.0 Hz).	537	535
1-115	CH ₃ N HO HO H CH ₃ CH ₅ CH ₅ FF	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 2.55 (3H, s), 4.36 (2H, d, J = 6.0 Hz), 7.39 (2H, d, J = 8.7 Hz), 7.40 (1H, d, J = 8.3 Hz), 7.58 (1H, d, J = 8.3 Hz), 7.63 (1H, s), 8.26 (2H, d, J = 8.7 Hz), 8.64 (1H, t, J = 6.0 Hz), 13.26 (1H, s).	497	495
1-116	CI	1H-NMR (DMSO-D6) δ : 1.37 (6H, s), 1.94-1.80 (4H, m), 2.11-2.04 (2H, m), 2.77-2.69 (1H, m), 4.05 (2H, d, J = 6.7 Hz), 4.35 (2H, d, J = 5.8 Hz), 7.07 (2H, d, J = 9.1 Hz), 7.40 (1H, dd, J = 8.4, 2.1 Hz), 7.57 (1H, d, J = 8.4 Hz), 7.62 (1H, s), 8.28 (2H, d, J = 9.1 Hz), 8.62 (1H, t, J = 5.8 Hz), 13.13 (1H, s).	535	533
1-117	H,C F	1H-NMR (DMSO-D6) δ: 1.27 (6H, d, J = 7.1 Hz), 1.38 (6H, s), 3.19-3.28 (1H, m), 4.37 (2H, d, J = 6.0 Hz), 7.33 (1H, t, J = 9.5 Hz), 7.44 (1H, d, J = 8.4 Hz), 7.59-7.68 (2H, m), 8.21-8.26 (1H, m), 8.33 (1H, dd, J = 7.5, 2.2 Hz), 8.64 (1H, t, J = 6.0 Hz), 13.36 (1H, br s).	511	509
1-118	H ₂ C F C C H ₃ C H ₄ C H ₅ C H ₅ F F F F F	1H-NMR (DMSO-D6) δ: 0.92 (3H, t, J = 7.3 Hz), 1.38 (6H, s), 1.56-1.67 (2H, m), 2.67 (2H, t, J = 7.7 Hz), 4.37 (2H, d, J = 6.0 Hz), 7.33 (1H, t, J = 9.3 Hz), 7.44 (1H, d, J = 8.4 Hz), 7.59-7.66 (2H, m), 8.21-8.30 (2H, m), 8.65 (1H, t, J = 6.0 Hz), 13.34 (1H, br s).	511	509
1-119	H,C F F OH,C CH,	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 2.01 (3H, t, J = 19.0 Hz), 4.37 (2H, d, J = 5.8 Hz), 7.44 (1H, dd, J = 8.4, 2.1 Hz), 7.61 (2H, d, J = 8.1 Hz), 7.65 (2H, d, J = 2.1 Hz), 7.74 (2H, d, J = 8.4 Hz), 8.43 (2H, d, J = 8.1 Hz), 8.64 (1H, t, J = 5.8 Hz), 13.46 (1H, br s).	515	513
1-120	H _S C CH ₅ FF H _O OH ₅ C CH ₅ OH ₅ C CH ₅	1H-NMR (DMSO-D6) δ : 1.01 (6H, d, J = 6.7 Hz), 1.37 (6H, s), 2.04-2.10 (1H, m), 3.95 (2H, d, J = 6.7 Hz), 4.33 (2H, d, J = 6.0 Hz), 7.25 (1H, dd, J = 8.3, 2.2 Hz), 7.29 (1H, d, J = 8.3 Hz), 7.44 (1H, d, J = 8.3 Hz), 7.51 (1H, d, J = 2.2 Hz), 8.49-8.53 (2H, m), 8.56-8.62 (1H, m).	591	589

[0765]

10

20

【表1-16】

1-121	H ₃ C CH ₃	1H-NMR (DMSO-D6) δ: 1.23 (3H, t, J = 7.7 Hz), 1.54 (3H, s), 2.70 (2H, q, J = 7.7 Hz), 3.36 (3H, s), 4.32-4.45 (2H, m), 7.44-7.54 (3H, m), 7.61 (1H, d, J = 8.4 Hz), 7.67 (1H, s), 8.13-8.19 (2H, m), 9.03 (1H, t, J = 6.3 Hz), 13.31 (1H, br s).	495	493	
1-122	CH ₅ N CH ₅	1H-NMR (DMSO-D6) δ: 0.99 (3H, t, J = 7.4 Hz), 1.38 (6H, s), 1.76 (2H, m), 4.04 (2H, t, J = 6.6 Hz), 4.36 (2H, d, J = 5.8 Hz), 7.07 (2H, d, J = 8.8 Hz), 7.40 (1H, d, J = 6.0 Hz), 7.57 (1H, d, J = 6.0 Hz), 7.52 (1H, s), 8.29 (2H, d, J = 8.8 Hz), 8.63 (1H, s), 13.14 (1H, s).	509	507	
1-123	H ₃ CCCH ₃ N N N O CH ₃ O CH ₃ O CH ₃ O CH ₃ F F	1H-NMR (DMSO-D6) δ: 1.00 (6H, d, J = 6.9 Hz), 1.54 (3H, s), 1.98-2.12 (1H, m), 3.36 (3H, s), 3.86 (2H, d, J = 6.2 Hz), 4.30-4.45 (2H, m), 7.09 (2H, d, J = 8.5 Hz), 7.44 (1H, d, J = 8.5 Hz), 7.59 (1H, d, J = 8.5 Hz), 7.66 (1H, br s), 8.30 (2H, d, J = 8.9 Hz), 9.03 (1H, t, J = 6.2 Hz), 13.14 (1H, br s).	539	537	
1-124	H ₃ C F CH ₃ CH ₄ CH ₅	1H-NMR (DMSO-D6) δ: 1.21 (3H, t, J = 7.6 Hz), 1.38 (6H, s), 2.71 (2H, q, J = 7.6 Hz), 4.37 (2H, d, J = 6.0 Hz), 7.33 (1H, t, J = 9.3 Hz), 7.44 (1H, dd, J = 8.5, 2.1 Hz), 7.59-7.66 (2H, m), 8.21-8.26 (1H, m), 8.30 (1H, dd, J = 7.7, 2.2 Hz), 8.65 (1H, t, J = 6.0 Hz), 13.35 (1H, br s).	497	495	
1-125	H ₃ C N C C N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 1.75-2.00 (2H, m), 2.28-2.43 (5H, m), 2.45-2.61 (2H, m), 4.40 (2H, d, J = 5.7 Hz), 7.33 (1H, t, J = 9.1 Hz), 7.46 (1H, dd, J = 8.4, 1.8 Hz), 7.63 (1H, d, J = 8.4 Hz), 7.66 (1H, br s), 8.19-8.32 (2H, m), 8.81 (1H, t, J = 5.7 Hz), 13.33 (1H, br s).	495	493	
1-126	HO N CI	1H-NMR (DMSO-D6) δ: 1.54 (3H, s), 3.36 (3H, s), 4.32-4.46 (2H, m), 7.48 (1H, dd, J = 8.4, 1.6 Hz), 7.63 (1H, d, J = 8.4 Hz), 7.68 (1H, br s), 7.94 (2H, d, J = 8.4 Hz), 8.53 (2H, d, J = 8.4 Hz), 9.04 (1H, t, J = 6.0 Hz), 13.56 (1H, br s).	535	533	
1-127	H ₃ C N C N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 1.20-1.39 (4H, m), 2.32 (3H, s), 4.35 (2H, d, J = 5.9 Hz), 7.33 (1H, t, J = 9.1 Hz), 7.45 (1H, dd, J = 8.4, 1.8 Hz), 7.61 (1H, d, J = 8.4 Hz), 7.64 (1H, s), 8.18-8.31 (2H, m), 8.48 (1H, t, J = 5.9 Hz), 13.32 (1H, br s).	481	479	
1-128	H ₂ C — CI — CH ₃ — C	1H-NMR (DMSO-D6) δ: 0.41 (2H, dd, J = 5.8, 4.0 Hz), 0.55 (2H, dd, J = 5.2, 4.0 Hz), 1.19 (3H, s), 1.38 (6H, s), 3.87 (2H, s), 4.36 (2H, d, J = 5.8 Hz), 7.07 (2H, d, J = 8.9 Hz), 7.41 (1H, d, J = 7.3 Hz), 7.58 (1H, d, J = 7.3 Hz), 7.63 (1H, s), 8.29 (2H, d, J = 8.9 Hz), 8.64 (1H, t, J = 5.8 Hz), 13.14 (1H, s).	535	533	

[0766]

10

20

【表1-17】

	_				
1-129	H,C CI H,C CH ₃	1H-NMR (DMSO-D6) δ: 1.39 (6H, s), 2.43 (3H, s), 4.37 (2H, d, J = 6.0 Hz), 7.44 (1H, d, J = 8.4 Hz), 7.55 (1H, d, J = 8.4 Hz), 7.61 (1H, d, J = 8.4 Hz), 7.64 (1H, s), 8.20 (1H, dd, J = 8.4, 1.5 Hz), 8.31 (1H, d, J = 1.5 Hz), 8.64 (1H, t, J = 6.0 Hz), 13.39 (1H, br s).	499	497	
1-130	H ₃ C Cl N C Cl N C CH ₃ C CH ₃	1H-NMR (DMSO-D6) δ: 1.30 (6H, d, J = 6.7 Hz), 1.38 (6H, s), 4.37 (2H, d, J = 5.8 Hz), 7.43 (1H, dd, J = 8.4, 2.0 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.65 (1H, d, J = 2.0 Hz), 7.83 (1H, d, J = 8.4 Hz), 8.29 (1H, d, J = 8.4 Hz), 8.52 (1H, s), 8.63 (1H, t, J = 5.8 Hz), 13.55 (1H, br s).	561	559	
1-131	H ₅ C Cl ₃ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ FF	1H-NMR (DMSO-D6) δ: 0.94 (3H, t, J = 7.3 Hz), 1.38 (6H, s), 1.45 (2H, m), 1.69-1.76 (2H, m), 3.17 (2H, d, J = 5.1 Hz), 4.08 (2H, m), 4.37 (2H, d, J = 5.8 Hz), 7.10 (2H, d, J = 9.1 Hz), 7.44 (1H, s), 7.60 (m, s), 8.31 (2H, d, J = 9.1 Hz), 8.64 (1H, s), 13.14 (1H, s).	523	521	
1-132	H ₂ C C C C C C C C C C C C C C C C C C C	1H-NMR (DMSO-D6) δ: 1.35 (3H, t, J = 7.1 Hz), 1.37 (6H, s), 4.13 (2H, q, J = 7.1 Hz), 4.35 (2H, d, J = 6.0 Hz), 7.07 (2H, d, J = 8.8 Hz), 7.42 (aH, brs), 7.60 (2H, brs), 8.29 (2H, d, J = 8.8 Hz), 8.62 (1H, t, J = 6.0 Hz), 13.13 (1H, s).	495	493	
1-133	HO CH,	1H-NMR (DMSO-D6) δ: 0.34 (2H, m), 0.57 (2H, m), 1.23 (1H, m), 1.37 (6H, s), 3.92 (2H, d, J = 6.7 Hz), 4.35 (2H, d, J = 6.0 Hz), 7.07 (2H, s), 7.42 (1H, s), 7.59 (2H, s), 8.28 (2H, d, J = 9.1 Hz), 8.62 (1H, t, J = 6.0 Hz), 13.13 (1H, s).	521	519	
1-134	HO CI CH ₃ CH ₃ CH ₃ CH ₃ F F	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 4.36 (2H, d, J = 5.8 Hz), 6.90 (2H, d, J = 8.8 Hz), 7.42 (1H, d, J = 8.6 Hz), 7.59 (1H, d, J = 8.6 Hz), 7.64 (1H, s), 8.23 (2H, d, J = 8.8 Hz), 8.64 (1H, t, J = 5.8 Hz), 10.46 (1H, s).	467	465	
1-135	F CH,	1H-NMR (DMSO-D6) δ: 0.74-0.87 (2H, m), 1.01-1.09 (2H, m), 1.38 (6H, s), 2.07-2.15 (1H, m), 4.37 (2H, d, J = 6.0 Hz), 7.33 (1H, t, J = 9.3 Hz), 7.44 (1H, d, J = 8.2 Hz), 7.61 (1H, d, J = 8.2 Hz), 7.65 (1H, s), 7.96 (1H, dd, J = 7.4, 1.9 Hz), 8.15-8.21 (1H, m), 8.64 (1H, t, J = 6.0 Hz), 13.33 (1H, br s).	509	507	
1-136	H ₃ C-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V	1H-NMR (DMSO-D6) δ : 1.54 (3H, s), 2.42 (3H, s), 3.36 (3H, s), 4.32-4.45 (2H, m), 7.46 (1H, dd, J = 8.4, 2.0 Hz), 7.58-7.68 (3H, m), 8.16 (1H, dd, J = 8.4, 2.0 Hz), 8.30 (1H, d, J = 2.0 Hz), 9.04 (1H, t, J = 6.2 Hz), 13.39 (1H, br s).	515	513	
F 0 7 0	1				

[0 7 6 7]

10

20

【表1-18】

1-137	H ₃ C O-CH ₃	1H-NMR (DMSO-D6) δ: 0.99 (3H, t, J = 7.4 Hz), 1.54 (3H, s), 1.71-1.81 (2H, m), 3.36 (3H, s), 4.04 (2H, t, J = 6.6 Hz), 4.32-4.43 (2H, m), 7.07 (2H, d, J = 9.0 Hz), 7.42 (1H, dd, J = 8.3, 1.9 Hz), 7.58 (1H, d, J = 8.3 Hz), 7.65 (1H, d, J = 1.9 Hz), 8.29 (2H, d, J = 9.0 Hz), 9.03 (1H, t, J = 6.6 Hz), 13.15 (1H, br s).	525	523	
1-138	HO CI CH, CCH, CCH,	1H-NMR (DMSO-D6) 5: 1.54 (3H, s), 2.01 (3H, t, J = 19.0 Hz), 3.36 (3H, s, J = 8.8 Hz), 4.38 (2H, dd, J = 6.3, 2.8 Hz), 7.44 (1H, dd, J = 8.4, 2.1 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.66 (1H, d, J = 2.1 Hz), 7.73 (2H, d, J = 8.4 Hz), 8.42 (2H, d, J = 8.4 Hz), 9.03 (1H, t, J = 6.3 Hz), 13.47 (1H, s).	531	529	
1-139	CH ₃ N N CH ₃ CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 3.86 (3H, s), 4.37 (2H, d, J = 6.0 Hz), 7.10 (2H, d, J = 8.8 Hz), 7.42 (1H, d, J = 8.6 Hz), 7.59 (1H, d, J = 8.6 Hz), 7.64 (1H, s), 8.32 (2H, d, J = 8.8 Hz), 8.63 (1H, t, J = 6.0 Hz), 13.15 (1H, s).	481	479	
1-140	HO CH ₃ CH ₃ CH ₄ CH ₅ CH ₆ CH ₇	1H-NMR (DMSO-D6) δ: 1.31 (6H, d, J = 6.0 Hz), 1.38 (6H, s), 4.37 (2H, d, J = 5.8 Hz), 4.77 (1H, m), 7.06 (2H, d, J = 8.8 Hz), 7.41 (1H, d, J = 8.4 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.64 (1H, s), 8.29 (2H, d, J = 8.8 Hz), 8.63 (1H, t, J = 5.8 Hz), 13.13 (1H, s).	509	507	
1-141	CI N CH, HO CH, FF	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 1.66 (2H, m), 1.85 (2H, m), 2.07 (2H, m), 4.36 (2H, d, J = 5.8 Hz), 4.81 (1H,m), 6.98 (2H, d, J = 8.8 Hz), 7.40 (1H, d, J = 7.9 Hz), 7.57 (1H, d, J = 7.9 Hz), 7.62 (1H, s), 8.28 (2H, d, J = 8.8 Hz), 8.63 (1H, t, J = 5.8 Hz), 13.14 (1H, s).	521	519	
1-142	F CH,	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 2.83 (2H, td, J = 11.3, 5.5 Hz), 4.33 (2H, t, J = 5.8 Hz), 4.37 (2H, d, J = 6.0 Hz), 7.12 (2H, d, J = 8.8 Hz), 7.43 (1H, s), 7.58 (1H, s), 7.64 (1H, s), 8.32 (2H, d, J = 8.8 Hz), 8.64 (1H, d, J = 6.0 Hz), 13.18 (1H, s).	563	561	
1-143	H,C,C,H,C,H,C,H,C,H,C,H,C,H,C,H,C,H,C,H	1H-NMR (DMSO-D6) δ: 1.38 (3H, s), 1.39 (6H, s), 4.18 (2H, s), 4.32 (2H, d, J = 5.8 Hz), 4.37 (2H, d, J = 5.8 Hz), 4.51 (2H, d, J = 5.8 Hz), 7.15 (2H, d, J = 8.8 Hz), 7.43 (1H, d, J = 7.7 Hz), 7.60 (1H, d, J = 7.7 Hz), 7.64 (1H, s), 8.33 (2H, d, J = 8.8 Hz), 8.64 (1H, t, J = 5.8 Hz), 13.17 (1H, s).	551	549	
1-144	H _O COO	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 3.32 (3H, s), 3.69 (2H, t, J = 4.4 Hz), 4.21 (2H, t, J = 4.4 Hz), 4.37 (2H, d, J = 5.8 Hz), 7.11 (2H, d, J = 8.8 Hz), 7.42 (1H, d, J = 8.1 Hz), 7.60 (1H, d, J = 8.1 Hz), 7.64 (1H, s), 8.31 (2H, d, J = 8.8 Hz), 8.63 (1H, d, J = 5.8 Hz), 13.15 (1H, s).	525	523	

[0768]

10

20

20

30

【表1-19】

	1-145	H ₂ C CH ₃ CH ₄ CH ₄ CH ₅ FF	1H-NMR (DMSO-D6) δ: 0.91 (3H, t, J = 7.6 Hz), 1.38 (6H, s), 1.80 (2H, q, J = 7.6 Hz), 4.21 (2H, s), 4.35 (2H, d, J = 6.0 Hz), 4.37 (2H, d, J = 5.8 Hz), 4.46 (2H, d, J = 6.0 Hz), 7.15 (2H, d, J = 8.8 Hz), 7.42 (1H, d, J = 8.4 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.64 (1H, s), 8.32 (2H, d, J = 8.8 Hz), 8.64 (1H, t, J = 5.8 Hz), 13.17 (1H, s).	565	563
_	1-146	H ₃ C Cl CH ₃ CH	1H-NMR (DMSO-D6) 5: 1.38 (6H, s), 1.84 (3H, t, J = 2.2 Hz), 4.37 (2H, d, J = 5.8 Hz), 4.87 (2H, d, J = 2.2 Hz), 7.12 (2H, d, J = 8.8 Hz), 7.43 (1H, d, J = 8.4 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.65 (1H, s), 8.32 (2H, d, J = 8.8 Hz), 8.64 (1H, t, J = 5.8 Hz), 13.17 (1H, s).	519	517
	1-147	HO CH ₃	1H-NMR (DMSO-D6) 5: 1.38 (6H, s), 2.53 (3H, s), 4.37 (2H, d, J = 6.0 Hz), 7.42 (1H, dd, J = 8.1, 2.1 Hz), 7.59 (1H, d, J = 8.1 Hz), 7.63 (1H, d, J = 2.1 Hz), 7.84 (1H, d, J = 8.1 Hz), 8.30 (1H, d, J = 8.1 Hz), 8.34 (1H, s), 8.64 (1H, t, J = 6.0 Hz), 13.53 (1H, br s).	533	531
	1-148	HO CI	1H-NMR (DMSO-D6) δ: 1.54 (3H, s), 2.54 (3H, s), 3.36 (3H, s), 4.33-4.44 (2H, m), 7.47 (1H, dd, J = 8.3, 2.0 Hz), 7.62 (1H, d, J = 8.3 Hz), 7.66 (1H, d, J = 2.0 Hz), 7.86 (1H, d, J = 8.3 Hz), 8.31 (1H, d, J = 8.3 Hz), 8.31 (1H, d, J = 8.3 Hz), 8.35 (1H, s), 9.04 (1H, t, J = 6.4 Hz), 13.53 (1H, br s).	549	547
	1-149	H ₃ C N N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 1.22-1.36 (4H, m), 2.53 (3H, s), 4.34 (2H, d, J = 6.0 Hz), 7.40 (1H, dd, J = 8.4, 2.1 Hz), 7.57 (1H, d, J = 8.4 Hz), 7.61 (1H, d, J = 2.1 Hz), 7.82 (1H, d, J = 8.4 Hz), 8.30 (1H, d, J = 8.4 Hz), 8.34 (1H, s), 8.47 (1H, t, J = 6.0 Hz), 13.53 (1H, br s).	531	529
	1-150	H,C H,C H,C H,C H,C H,C H,C H,C H,C H,C	1H-NMR (DMSO-D6) δ: 1.38 (6H, s), 2.31 (3H, s), 2.32 (3H, s), 4.37 (2H, d, J = 6.0 Hz), 7.33 (1H, d, J = 8.2 Hz), 7.43 (1H, d, J = 8.2 Hz), 7.58-7.67 (2H, m), 8.07 (1H, d, J = 8.2 Hz), 8.12 (1H, s), 8.65 (1H, t, J = 6.0 Hz), 13.23 (1H, br s).	479	477
	1-151	H ₃ C Cl CH ₃ O CH ₃ O F F	1H-NMR (DMSO-D6) δ: 1.21 (3H, t, J = 7.5 Hz), 1.54 (3H, s), 2.71 (2H, q, J = 7.5 Hz), 3.36 (3H, s), 4.32-4.45 (2H, m), 7.33 (1H, t, J = 9.3 Hz), 7.46 (1H, dd, J = 8.4, 2.0 Hz), 7.61 (1H, d, J = 8.4 Hz), 7.66 (1H, s), 8.20-8.26 (1H, m), 8.29 (1H, dd, J = 7.6, 2.3 Hz), 9.04 (1H, t, J = 6.3 Hz), 13.35 (1H, br s).	513	511
	1-152	H ₂ C F C C C C C C C C C C C C C C C C C C	1H-NMR (DMSO-D6) δ: 1.19-1.27 (5H, m), 1.32-1.37 (2H, m), 2.71 (2H, q, J = 7.5 Hz), 4.35 (2H, d, J = 6.0 Hz), 7.33 (1H, t, J = 9.2 Hz), 7.45 (1H, dd, J = 8.4, 2.0 Hz), 7.61 (1H, dd, J = 8.4 Hz), 7.65 (1H, s), 8.21-8.26 (1H, m), 8.30 (1H, dd, J = 7.5, 2.0 Hz), 8.48 (1H, t, J = 6.0 Hz), 13.34 (1H, br s).	495	493
	7 0 7	I			

[0769]

【表1-20】

_		,			1
1-153	HO CH,	1H-NMR (DMSO-D6) δ: 1.39 (6H, s), 4.37 (2H, d, J = 6.0 Hz), 7.45 (1H, dd, J = 8.3, 2.1 Hz), 7.59-7.66 (3H, m), 8.32-8.38 (1H, m), 8.45 (1H, dd, J = 7.4, 2.1 Hz), 8.65 (1H, t, J = 6.0 Hz), 13.48 (0H, br s).	503	501	
1-154	H ₂ C- N N N N N N N N N N	1H-NMR (DMSO-D6) 5: 0.99 (3H, t, J = 7.4 Hz), 1.22-1.27 (2H, m), 1.31-1.37 (2H, m), 1.71-1.81 (2H, m), 4.04 (2H, t, J = 6.5 Hz), 4.34 (2H, d, J = 6.0 Hz), 7.09 (2H, d, J = 9.0 Hz), 7.43 (1H, dd, J = 8.4, 2.0 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.64 (1H, s), 8.31 (2H, d, J = 9.0 Hz), 8.47 (1H, t, J = 6.0 Hz), 13.14 (1H, br s).	507	505	1
1-155	H ₂ C Cl ₃ Cl ₄ Ch ₃ Ch ₄ Ch ₅ F F	1H-NMR (DMSO-D6) δ: 0.90 (3H, t, J = 7.3 Hz), 1.27 (3H, d, J = 6.0 Hz), 1.37 (6H, s), 1.43 (2H, m), 1.52-1.60 (1H, m), 1.67 (1H, m), 4.37 (2H, d, J = 5.8 Hz), 4.62 (1H, m), 7.07 (2H, d, J = 9.1 Hz), 7.42 (1H, d, J = 8.1 Hz), 7.59 (1H, d, J = 8.1 Hz), 7.64 (1H, s), 8.29 (2H, d, J = 9.1 Hz), 8.63 (1H, t, J = 5.8 Hz), 13.13 (1H, s).	537	535	
1-156	H ₃ C CH ₃ CH ₄ CH ₄ CH ₄ CH ₅ F F	1H-NMR (DMSO-D6) δ: 0.90 (3H, t, J = 7.3 Hz), 1.27 (3H, d, J = 6.0 Hz), 1.36 (6H, s), 1.43 (2H, m), 1.51-1.60 (1H, m), 1.65 (1H, m), 4.37 (2H, d, J = 5.8 Hz), 4.62 (1H, m), 7.06 (2H, d, J = 8.8 Hz), 7.41 (1H, d, J = 8.1 Hz), 7.59 (1H, d, J = 8.1 Hz), 7.64 (1H, s), 8.29 (2H, d, J = 8.8 Hz), 8.63 (1H, t, J = 5.8 Hz), 13.13 (1H, s).	537	535	
1-157	F CI H H H H H H H H H H H H H H H H H H	1H-NMR (DMSO-D6) δ: 0.77-0.83 (2H, m), 1.02-1.08 (2H, m), 1.22-1.27 (2H, m), 1.31-1.36 (2H, m), 2.07-2.15 (1H, m), 4.34 (2H, d, J = 5.8 Hz), 7.33 (1H, t, J = 9.3 Hz), 7.44 (1H, d, J = 8.4 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.65 (1H, s), 7.96 (1H, d, J = 7.9 Hz), 8.15-8.20 (1H, m), 8.47 (1H, t, J = 5.8 Hz), 13.31 (1H, br s).	507	505	2
1-158	H ₂ C O CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 0.99 (3H, t, J = 7.5 Hz), 1.21 (6H, s), 1.76 (2H,m), 3.03 (2H, s), 4.04 (2H, t, J = 6.5 Hz), 4.40 (2H, s), 7.09 (2H, d, J = 8.9 Hz), 7.47 (1H, d, J = 8.3 Hz), 7.65 (1H, d, J = 8.3 Hz), 7.67 (1H, s), 8.31 (2H, d, J = 8.9 Hz), 13.14 (1H, s).	453	451	
1-159	CI N N HO N HO CH ₃ CH ₃ CF _F	1H-NMR (DMSO-D6) δ: 0.72-0.77 (2H, m), 0.97-1.04 (2H, m), 1.38 (6H, s), 1.99-2.07 (1H, m), 4.37 (2H, d, J = 6.0 Hz), 7.34-7.45 (3H, m), 7.59 (1H, d, J = 8.4 Hz), 7.65 (1H, s), 8.03 (1H, s), 8.10 (1H, d, J = 7.7 Hz), 8.64 (1H, t, J = 6.0 Hz), 13.32 (1H, br s).	491	489	3
1-160	CI HO FF	1H-NMR (DMSO-D6) δ: 0.72-0.78 (2H, m), 0.98-1.04 (2H, m), 1.21-1.27 (2H, m), 1.31-1.36 (2H, m), 2.00-2.07 (1H, m), 4.34 (2H, d, J = 5.8 Hz), 7.35-7.46 (3H, m), 7.60 (1H, d, J = 8.1 Hz), 7.66 (1H, s), 8.03 (1H, s), 8.10 (1H, d, J = 7.4 Hz), 8.47 (1H, t, J = 5.8 Hz), 13.30 (1H, br s).	489	487	

[0 7 7 0]

【表1-21】

1-161	H ₂ C O H ₃ C O H ₄ C O H ₅ C O O O O O O O O O O O O O O O O O O O	1H-NMR (DMSO-D6) 5: 1.32-1.38 (9H, m), 2.55 (3H, s), 4.10 (2H, q, J = 7.2 Hz), 4.35 (2H, d, J = 5.8 Hz), 6.86-6.92 (2H, m), 7.39 (1H, d, J = 8.6 Hz), 7.56 (1H, d, J = 8.6 Hz), 7.62 (1H, s), 7.81 (1H, br s), 8.61 (1H, t, J = 5.8 Hz), 13.08 (1H, br s).	509	507
1-162	HO N CH, CH, CH,	1H-NMR (DMSO-D6) &: 0.35 (2H, q, J = 5.1 Hz), 0.57-0.60 (2H, m), 1.22-1.30 (1H, m), 1.54 (3H, s), 3.36 (3H, s), 3.93 (2H, d, J = 7.0 Hz), 4.37 (2H, dd, J = 5.9, 2.9 Hz), 7.07 (2H, d, J = 8.8 Hz), 7.42 (1H, d, J = 8.4 Hz), 7.58 (1H, d, J = 8.4 Hz), 7.65 (1H, s), 8.29 (2H, d, J = 8.8 Hz), 9.02 (1H, t, J = 5.9 Hz), 13.14 (1H, br s).	537	535
1-163	N N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) & 0.33-0.37 (2H, m), 0.57-0.61 (2H, m), 1.22-1.35 (5H, m), 3.92 (2H, d, J = 7.0 Hz), 4.33 (2H, d, J = 5.8 Hz), 7.05 (2H, d, J = 8.8 Hz), 7.39 (1H, dd, J = 8.3, Hz), 7.55 (1H, d, J = 8.3 Hz), 7.61 (1H, d, J = 1.9 Hz), 8.28 (2H, d, J = 8.8 Hz), 8.46 (1H, t, J = 5.8 Hz), 13.15 (1H, br s).	519	517
1-164	F C C C C C C C C C C C C C C C C C C C	1H-NMR (DMSO-D6) 5: 1.05 (2H, m), 1.10 (2H, m), 1.38 (6H, s), 4.20 (2H, s), 4.34 (2H, d, J = 5.6 Hz), 7.02 (2H, d, J = 7.9 Hz), 7.32 (1H, d, J = 7.5 Hz), 7.49 (1H, d, J = 7.5 Hz), 7.56 (1H, s), 8.26 (2H, d, J = 7.9 Hz), 8.61 (1H, t, J = 5.6 Hz), 13.18 (1H, s).	589	587
1-165	HO CH ₃	1H-NMR (DMSO-D6) & 0.77-0.82 (2H, m), 1.01-1.07 (2H, m), 1.54 (3H, s), 2.07-2.15 (1H, m), 3.35 (3H, s), 4.31-4.44 (2H, m), 7.32 (1H, t, J = 9.3 Hz), 7.44 (1H, d, J = 8.4 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.67 (1H, s), 7.95 (1H, d, J = 7.2 Hz), 8.14-8.19 (1H, m), 9.02 (1H, t, J = 6.3 Hz), 13.31 (1H, br s).	525	523
1-166	N CI F F F CH ₃ O CH ₃	1H-NMR (DMSO-D6) δ: 0.33-0.38 (2H, m), 0.56-0.62 (2H, m), 1.19-1.31 (7H, m), 2.59 (2H, q, J = 12.1 Hz), 3.93 (2H, d, J = 7.1 Hz), 4.33 (2H, d, J = 6.0 Hz), 7.07 (2H, d, J = 9.0 Hz), 7.42 (1H, d, J = 8.4 Hz), 7.62 (1H, d, J = 8.4 Hz), 7.63 (1H, s), 8.29 (2H, d, J = 9.0 Hz), 8.35 (1H, t, J = 6.0 Hz), 13.14 (1H, br s).	535	533
1-167	CI CH,	1H-NMR (DMSO-D6) & 0.11-0.16 (2H, m), 0.41-0.48 (2H, m), 0.79-0.90 (1H, m), 1.38 (6H, s), 1.65 (2H, q, J = 6.5 Hz), 4.14 (2H, t, J = 6.5 Hz), 4.37 (2H, d, J = 6.0 Hz), 7.09 (2H, d, J = 9.0 Hz), 7.41 (1H, dd, J = 8.4, 2.0 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.64 (1H, d, J = 2.0 Hz), 8.30 (2H, d, J = 9.0 Hz), 8.64 (1H, t, J = 6.0 Hz), 13.15 (1H, br s).	535	533
1-168	HO CH ₃	1H-NMR (DMSO-D6) & 0.32-0.38 (2H, m), 0.56-0.62 (2H, m), 1.01 (3H, s), 1.12 (3H, s), 1.19-1.30 (1H, m), 1.78-1.85 (2H, m), 1.90-1.97 (2H, m), 2.95-3.05 (1H, m), 3.93 (2H, d, J = 7.0 Hz), 4.30 (2H, d, J = 6.0 Hz), 7.08 (2H, d, J = 8.6 Hz), 7.43 (1H, d, J = 8.4 Hz), 7.62 (1H, s), 8.25-8.32 (3H, m), 13.13 (1H, br s).	493	491

[0 7 7 1]

10

20

【表1-22】

1-169	HO FF	1H-NMR (DMSO-D6) δ: 0.32-0.38 (2H, m), 0.55-0.62 (2H, m), 1.20-1.29 (1H, m), 1.74 (3H, s), 3.93 (2H, d, J = 6.7 Hz), 4.43 (2H, d, J = 6.0 Hz), 7.07 (2H, d, J = 8.4 Hz), 7.41 (1H, d, J = 8.4 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.65 (1H, s), 8.29 (2H, d, J = 8.4 Hz), 9.10 (1H, t, J = 6.0 Hz), 13.14 (1H, br s).	575	573	
1-170	HO N H	1H-NMR (DMSO-D6) δ: 0.33-0.38 (2H, m), 0.56-0.62 (2H, m), 1.20-1.31 (1H, m), 1.57-1.90 (6H, m), 1.97-2.09 (2H, m), 2.29-2.39 (1H, m), 3.93 (2H, d, J = 7.1 Hz), 4.31-4.33 (2H, br m), 7.08 (2H, d, J = 8.8 Hz), 7.44 (1H, d, J = 8.4 Hz), 7.58 (1H, d, J = 8.4 Hz), 7.64 (1H, s), 8.29 (2H, d, J = 8.8 Hz), 8.50 (1H, t, J = 6.0 Hz), 13.14 (1H, br s).	529	527	
1-171	N CI CH,	1H-NMR (DMSO-D6) δ: 0.33-0.38 (2H, m), 0.56-0.62 (2H, m), 0.79 (6H, t, J = 7.5 Hz), 1.20-1.54 (5H, m), 1.98-2.07 (1H, m), 3.94 (2H, d, J = 7.1 Hz), 4.34 (2H, d, J = 6.0 Hz), 7.08 (2H, d, J = 9.0 Hz), 7.46 (1H, d, J = 8.2 Hz), 7.60 (1H, d, J = 8.2 Hz), 7.60 (1H, d, J = 9.0 Hz), 8.29 (2H, d, J = 9.0 Hz), 8.46 (1H, t, J = 5.7 Hz), 13.14 (1H, br s).	481	479	
1-172	N COH,	1H-NMR (DMSO-D6) 5: 0.99-1.33 (5H, m), 1.38 (6H, s), 1.62-1.86 (6H, m), 3.89 (2H, d, J = 6.2 Hz), 4.36 (2H, d, J = 6.0 Hz), 7.06 (2H, d, J = 9.0 Hz), 7.40 (1H, dd, J = 8.4, 2.0 Hz), 7.57 (1H, d, J = 8.4 Hz), 7.62 (1H, d, J = 2.0 Hz), 8.29 (2H, d, J = 9.0 Hz), 8.64 (1H, t, J = 6.0 Hz), 13.15 (1H, br s).	563	561	
1-173	NO CITY CH3	1H-NMR (DMSO-D6) δ: 0.33-0.37 (2H, m), 0.56-0.62 (2H, m), 1.11 (6H, s), 1.17 (6H, s), 1.20-1.29 (2H, m), 3.93 (2H, d, J = 7.1 Hz), 4.29 (2H, d, J = 6.0 Hz), 7.07 (2H, d, J = 8.4 Hz), 7.43 (1H, dd, J = 8.4, 2.0 Hz), 7.57 (1H, d, J = 8.4 Hz), 7.62 (1H, d, J = 2.0 Hz), 8.29 (2H, d, J = 8.8 Hz), 8.37 (1H, t, J = 6.0 Hz), 13.14 (1H, br s).	507	505	
1-174	N =	1H-NMR (DMSO-D6) δ: 2.51 (3H, s), 7.49-7.46 (3H, m), 7.63-7.60 (2H, m), 7.66 (1H, d, J = 7.9 Hz), 7.77 (2H, d, J = 8.6 Hz), 7.96 (1H, d, J = 7.9 Hz), 8.22 (1H, s), 8.53 (2H, d, J = 8.6 Hz), 13.46 (1H, s).	389	387	
1-175	CI CH ₃ N CH ₃ O CH ₃ O CH ₃ O CH ₃	1H-NMR (DMSO-D6) δ: 0.36 (2H, td, J = 5.2, 3.9 Hz), 0.56-0.60 (2H, m), 1.23-1.30 (1H, m), 1.38 (6H, s), 2.21 (3H, s), 3.91 (2H, d, J = 6.7 Hz), 4.34 (2H, d, J = 5.8 Hz), 6.97 (1H, d, J = 8.6 Hz), 7.29 (1H, dd, J = 8.3, 1.9 Hz), 7.47 (1H, d, J = 8.4 Hz), 7.53 (1H, d, J = 1.9 Hz), 8.08-8.14 (2H, m), 8.61 (1H, t, J = 5.8 Hz).	535	533	

[0772]

10

20

【表1-23】

1-176	H ₂ C CH ₃ N CH ₃ N CH ₃ CH ₃ CH ₃ CH ₃ FF	1H-NMR (DMSO-D6) δ : 0.30 (2H, td, J = 5.3, 4.0 Hz), 0.56 (2H, ddd, J = 9.2, 5.3, 3.1 Hz), 1.22-1.27 (1H, m), 1.38 (6H, s), 2.29 (6H, s), 3.69 (2H, d, J = 7.0 Hz), 4.36 (2H, d, J = 5.8 HJ, 7.41 (1H, dd, J = 8.4, 1.9 Hz), 7.58 (1H, d, J = 8.4 Hz), 7.61 (1H, d, J = 1.9 Hz), 8.02 (2H, s), 8.64 (1H, t, J = 5.8 Hz), 13.18 (1H, br s).	549	547
1-177	H,C H,C CH ₃ CH ₄ CH ₅ FF	1H-NMR (DMSO-D6) 5: 0.88 (6H, d, J = 6.4 Hz), 1.54 (3H, s), 1.83-1.98 (1H, m), 2.55 (2H, d, J = 7.3 Hz), 3.36 (3H, s), 4.31-4.45 (2H, m), 7.35 (2H, d, J = 8.3 Hz), 7.45 (1H, dd, J = 8.1, 2.0 Hz), 7.60 (1H, d, J = 8.1 Hz), 7.67 (1H, br s), 8.26 (2H, d, J = 8.3 Hz), 9.03 (1H, t, J = 6.2 Hz), 13.26 (1H, br s).	523	521
1-178	H ₃ C CH ₃	1H-NMR (DMSO-D6) 5: 0.99 (6H, d, J = 6.4 Hz), 1.20-1.39 (4H, m), 1.96-2.13 (1H, m), 3.84 (2H, d, J = 6.4 Hz), 4.33 (2H, d, J = 6.0 Hz), 7.05 (2H, d, J = 9.1 Hz), 7.37 (1H, dd, J = 8.3, 2.0 Hz), 7.54 (1H, d, J = 8.3 Hz), 7.60 (1H, d, J = 2.0 Hz), 8.28 (2H, d, J = 9.1 Hz), 8.46 (1H, t, J = 5.8 Hz), 13.15 (1H, br s).	521	519
1-179	H ₂ C H ₃ C H ₃ C H ₃ C H ₄ C H ₅ C	1H-NMR (DMSO-D6) &: 0.94 (3H, s), 0.95 (3H, s), 1.27-1.36 (2H, m), 1.38 (6H, s), 1.41-1.49 (2H, m), 1.56-1.66 (2H, m), 1.80-1.89 (2H, m), 4.36 (2H, d, J = 5.7 Hz), 4.45-4.53 (1H, m), 7.07 (2H, d, J = 9.0 Hz), 7.40 (1H, d), J = 8.2, 2.0 Hz), 7.58 (1H, d, J = 8.2 Hz), 7.63 (1H, d, J = 2.0 Hz), 8.63 (1H, t, J = 6.1 Hz), 13.13 (1H, br s).	577	575
1-180	H ₃ C CH ₄ CH ₅ FF	1H-NMR (DMSO-D6) δ: 0.91 (3H, t, J = 7.3 Hz), 1.27-1.37 (2H, m), 1.38 (6H, s), 1.55-1.64 (2H, m), 2.67 (2H, t, J = 7.7 Hz), 4.37 (2H, d, J = 6.0 Hz), 7.38 (2H, d, J = 8.2 Hz), 7.42 (1H, d, J = 8.4 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.64 (1H, s), 8.25 (2H, d, J = 8.2 Hz), 8.64 (1H, t, J = 6.0 Hz), 13.27 (1H, br s).	507	505
1-181	HO N CH ₃	1H-NMR (DMSO-D6) & 0.90 (3H, t, J = 7.7 Hz), 1.26-1.37 (2H, m), 1.54 (3H, s), 1.55-1.64 (2H, m), 2.67 (2H, t, J = 7.7 Hz), 3.36 (3H, s), 4.32-4.44 (2H, m), 7.38 (2H, d, J = 7.5 Hz), 7.44 (1H, d, J = 8.4 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.66 (1H, s), 8.25 (2H, d, J = 7.5 Hz), 9.03 (1H, t, J = 6.2 Hz), 13.27 (1H, br s).	523	521
1-182	H ₂ C CH ₃ N Cl Cl Ch	1H-NMR (DMSO-D6) & 0.99 (6H, t, J = 6.0 Hz), 1.37 (6H, s), 2.00-2.10 (1H, m), 4.11 (2H, d, J = 6.5 Hz), 4.34 (2H, d, J = 6.0 Hz), 6.88 (1H, d, J = 8.7 Hz), 7.30 (1H, dd, J = 8.1, 2.1 Hz), 7.48 (1H, d, J = 8.1 Hz), 7.57 (1H, d, J = 2.1 Hz), 8.47 (1H, dd, J = 8.7, 2.4 Hz), 8.60 (1H, t, J = 6.0 Hz), 9.02 (1H, d, J = 2.4 Hz).	524	522
1-183	H _J C CH _J CH _J CH _J CH _J CH _J F F F	1H-NMR (DMSO-D6) 5: 1.24 (6H, s), 2.32 (3H, d, J = 1.3 Hz), 2.59 (2H, q, J = 12.1 Hz), 4.34 (2H, d, J = 6.2 Hz), 7.32 (1H, t, J = 9.2 Hz), 7.44 (1H, dd, J = 8.4, 2.0 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.63 (1H, d, J = 2.0 Hz), 8.19-8.25 (1H, m), 8.28 (1H, d, J = 7.7 Hz), 8.35 (1H, t, J = 5.8 Hz), 13.33 (1H, br s).	497	495

[0773]

10

20

【表1-24】

• • •	- · -				
1-184	Ho Cl Ch ₃ Ch ₄ Ch ₄ Ch ₄ Ch ₄ F F F	1H-NMR (DMSO-D6) δ : 0.29-0.39 (2H, m), 0.47-0.55 (2H, m), 1.08-1.17 (1H, m), 1.32 (3H, d, J = 6.3 Hz), 1.38 (6H, s), 4.10-4.18 (1H, m), 4.36 (2H, d, J = 6.0 Hz), 7.05 (2H, d, J = 8.8 Hz), 7.41 (1H, d, J = 8.0 Hz), 7.58 (1H, d, J = 8.0 Hz), 7.63 (1H, s), 8.27 (2H, d, J = 8.8 Hz), 8.63 (1H, t, J = 6.0 Hz), 13.13 (1H, br s).	535	533	
1-185	H ₃ C Cl CH ₃ CH ₄ CH ₅ FF	1H-NMR (DMSO-D6) δ : 0.29-0.39 (2H, m), 0.47-0.55 (2H, m), 1.08-1.17 (1H, m), 1.32 (3H, d, J = 6.3 Hz), 1.38 (6H, s), 4.10-4.18 (1H, m), 4.36 (2H, d, J = 6.0 Hz), 7.05 (2H, d, J = 8.0 Hz), 7.51 (2H, d, J = 8.0 Hz), 7.51 (1H, d, J = 8.0 Hz), 7.52 (2H, d, J = 8.8 Hz), 8.63 (1H, t, J = 6.0 Hz), 13.13 (1H, br s).	535	533	
1-186	H ₃ C Cl Cl CH ₃ Cl CH ₃	1H-NMR (DMSO-D6) δ: 1.37 (6H, s), 2.28 (3H, d, J = 1.2 Hz), 4.33 (2H, d, J = 6.0 Hz), 7.15 (1H, t, J = 9.1 Hz), 7.22 (1H, dd, J = 8.4, 2.3 Hz), 7.41 (1H, d, J = 8.4 Hz), 7.49 (1H, d, J = 2.3 Hz), 8.10-8.16 (1H, m), 8.19 (1H, dd, J = 8.1, 1.6 Hz), 8.59 (1H, t, J = 6.0 Hz).	505	503	
1-187	H ₃ C CH ₃ CC CH ₃ N N N CC CH OH	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 3.75 (2H, s), 4.57 (2H, d, J = 5.7 Hz), 5.42 (1H, t, J = 5.7 Hz), 7.10 (2H, d, J = 8.8 Hz), 7.53 (1H, d, J = 8.4 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.71 (1H, s), 8.31 (2H, d, J = 8.8 Hz), 13.13 (1H, br s).	400	398	
1-188	H ₂ C OH ₃ C OH ₅ C CH	1H-NMR (DMSO-D6) δ: 1.45 (3H, d, J = 6.8 Hz), 1.49 (3H, s), 2.32 (3H, s), 3.33 (3H, s), 5.02-5.10 (1H, m), 7.32 (1H, t, J = 9.3 Hz), 7.60 (2H, s), 7.76 (1H, s), 8.18-8.24 (1H, m), 8.27 (1H, d, J = 6.8 Hz), 8.81 (1H, d, J = 8.4 Hz), 13.32 (1H, s).	513	511	1
1-189	H,C CH, CH, CH, FFF	1H-NMR (DMSO-D6) δ: 1.46 (3H, d, J = 6.8 Hz), 1.54 (3H, s), 2.31 (3H, s), 3.37 (3H, s), 5.02-5.11 (1H, m), 7.32 (1H, t, J = 9.2 Hz), 7.54 (1H, d, J = 8.4 Hz), 7.61 (1H, d, J = 8.4 Hz), 7.72 (1H, s), 8.19-8.25 (1H, m), 8.28 (1H, d, J = 7.3 Hz), 8.83 (1H, d, J = 8.2 Hz), 13.33 (1H, br s).	513	511	1
1-190	CI-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O	1H-NMR (DMSO-D6) δ: 0.33-0.37 (2H, m), 0.56-0.62 (2H, m), 1.21-1.30 (1H, m), 2.85 (3H, br s), 2.90 (3H, br s), 3.94 (2H, d, J = 7.1 Hz), 5.13 (2H, s), 7.09 (2H, d, J = 8.6 Hz), 7.56-7.67 (2H, br m), 7.78 (1H, br s), 8.30 (2H, d, J = 8.6 Hz), 13.15 (1H, br s).	455	453	
1-191	HO CH ₃ CH ₃ CH ₃ FF	1H-NMR (DMSO-D6) 5: 1.30-1.40 (9H, m), 1.44-1.55 (3H, m), 1.64-1.74 (2H, m), 1.80-1.88 (2H, m), 2.63-2.70 (1H, m), 4.33 (2H, d, J = 6.0 Hz), 7.25 (1H, dd, J = 8.6, 2.1 Hz), 7.40-7.46 (3H, m), 7.52 (1H, d, J = 2.1 Hz), 8.25 (2H, d, J = 8.1 Hz), 8.59 (1H, t, J = 6.0 Hz).	557	555	

[0 7 7 4]

10

20

20

30

【表1-25】

1-192	CI, N, HO OH	1H-NMR (DMSO-D6) 5: 0.35 (2H, dt, J = 7.9, 2.8 Hz), 0.57-0.61 (2H, m), 1.21-1.30 (1H, m), 3.94 (2H, d, J = 7.0 Hz), 7.09 (2H, d, J = 8.8 Hz), 7.77 (1H, d, J = 8.4 Hz), 8.09 (1H, dd, J = 8.4, 1.6 Hz), 8.30 (2H, d, J = 9.0 Hz), 8.33 (1H, s), 13.31 (1H, s).	398	396	
1-193	CI, N N NH ₂	1H-NMR (DMSO-D6) 5: 0.35 (2H, td, J = 5.2, 4.1 Hz), 0.56-0.62 (2H, m), 1.21-1.29 (1H, m), 3.94 (2H, d, J = 7.0 Hz), 7.08 (2H, d, J = 8.8 Hz), 7.58 (1H, s), 7.74 (1H, d, J = 8.4 Hz), 8.06 (1H, d, J = 8.4 Hz), 8.17 (1H, s), 8.27 (1H, d, J = 2.1 Hz), 8.31 (2H, d, J = 8.8 Hz), 13.14 (1H, s).	397	395	
1-194	HO CI CH ₃	1H-NMR (DMSO-D6) 5: 0.35 (2H, q, J = 4.8 Hz), 0.57-0.61 (2H, m), 1.22-1.29 (1H, m), 2.81 (3H, d, J = 4.4 Hz), 3.94 (2H, d, J = 7.0 Hz), 7.09 (2H, d, J = 8.8 Hz), 7.75 (1H, d, J = 8.4 Hz), 8.02 (1H, d, J = 8.1 Hz), 8.24 (1H, s), 8.31 (2H, d, J = 8.8 Hz), 8.63-8.67 (1H, m), 13.19 (1H, s).	411	409	
1-195	CI, CH ₃	1H-NMR (DMSO-D6) 5: 0.33-0.37 (2H, m), 0.57-0.61 (2H, m), 1.20-1.30 (1H, m), 2.95 (3H, s), 3.00 (3H, s), 3.94 (2H, d, J = 7.0 Hz), 7.09 (2H, d, J = 8.8 Hz), 7.63 (1H, d, J = 9.1 Hz), 7.70 (1H, d, J = 8.1 Hz), 7.83 (1H, d, J = 1.9 Hz), 8.30 (2H, d, J = 9.1 Hz), 13.16 (1H, s).	425	423	
1-196	H.C. CH ₃ N N CH ₃ CH ₄ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 1.51 (6H, s), 3.05 (3H, s), 3.75 (2H, s), 4.65 (2H, s), 7.10 (2H, d, J = 8.8 Hz), 7.41 (1H, d, J = 8.6 Hz), 7.61-7.66 (2H, m), 8.31 (2H, d, J = 8.8 Hz), 13.15 (1H, br s).	551	549	
1-197	H,C CH ₃	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 3.34 (3H, s), 3.75 (2H, s), 4.49 (2H, s), 7.10 (2H, d, J = 8.8 Hz), 7.53 (1H, dd, J = 8.2, 2.0 Hz), 7.62 (1H, d, J = 8.2 Hz), 7.72 (1H, d, J = 2.0 Hz), 8.31 (2H, d, J = 8.8 Hz), 13.14 (1H, br s).	414	412	
1-198	H,C CH3 CI	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 2.79 (2H, t, J = 6.6 Hz), 3.65 (2H, td, J = 6.6, 5.1 Hz), 3.75 (2H, s), 4.69 (1H, t, J = 5.1 Hz), 7.10 (2H, d, J = 8.8 Hz), 7.47 (1H, s), 7.54 (1H, d, J = 8.1 Hz), 7.63 (1H, s), 8.31 (2H, d, J = 8.8 Hz), 13.10 (1H, br s).	414	412	
1-199	H,C CH ₃ CI N O-CH ₃	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 2.89 (2H, t, J = 6.5 Hz), 3.25 (3H, s), 3.58 (2H, t, J = 6.5 Hz), 3.75 (2H, s), 7.10 (2H, d, J = 8.8 Hz), 7.47 (1H, d, J = 8.1 Hz), 7.55 (1H, d, J = 8.1 Hz), 7.65 (1H, d, J = 1.9 Hz), 8.31 (2H, d, J = 8.8 Hz), 13.10 (1H, s).	428	426	

[0775]

【表1-26】

1-200	H ₃ C CH ₃ N CI CH ₃ H ₃ C CH ₅ H ₄ C CH ₅	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 1.45 (3H, d, J = 7.1 Hz), 1.49 (3H, s), 3.33 (3H, s), 3.75 (2H, s), 5.02-5.11 (1H, m), 7.09 (2H, d, J = 8.8 Hz), 7.58 (2H, s), 7.76 (1H, s), 8.29 (2H, d, J = 8.8 Hz), 8.82 (1H, d, J = 8.2 Hz), 13.14 (1H, br s).	567	565	2
1-201	H,C CH ₃ H,C CH ₃ HO H,C CH ₃ H,C	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 1.47 (3H, d, J = 7.1 Hz), 1.54 (3H, s), 3.37 (3H, s), 3.75 (2H, s), 5.02-5.11 (1H, m), 7.09 (2H, d, J = 8.2 Hz), 7.51 (1H, d, J = 8.4 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.72 (1H, s), 8.31 (2H, d, J = 8.2 Hz), 8.83 (1H, d, J = 8.2 Hz), 13.15 (1H, br s).	567	565	2
1-202	HO N CH,	1H-NMR (DMSO-D6) δ: 1.48 (6H, s), 4.29 (2H, d, J = 6.0 Hz), 7.08 (1H, t, J = 7.6 Hz), 7.21 (2H, t, J = 7.6 Hz), 7.30 (2H, d, J = 8.4 Hz), 7.33-7.41 (2H, m), 7.52-7.60 (3H, m), 7.68 (1H, t, J = 7.2 Hz), 8.03 (1H, t, J = 6.0 Hz), 8.34 (2H, d, J = 8.1 Hz), 13.33 (1H, br s).	459	457	
1-203	H ₃ C OH ₃ CI H ₃ C CH ₃ F F	1H-NMR (DMSO-D6) δ: 1.00 (9H, t, J = 16.5 Hz), 1.29 (6H, s), 2.80 (2H, t, J = 7.0 Hz), 3.30 (4H, s), 3.34 (3H, q, J = 6.7 Hz), 3.73 (2H, s), 7.07 (2H, d, J = 8.8 Hz), 7.37 (1H, dd, J = 8.4, 2.0 Hz), 7.51 (1H, d, J = 8.4 Hz), 7.57 (1H, d, J = 2.1 Hz), 8.00 (1H, t, J = 5.6 Hz), 8.29 (2H, d, J = 8.8 Hz), 13.10 (1H, br s).	551	549	
1-204	H,C CH ₃ Cl CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 0.89 (6H, d, J = 6.7 Hz), 1.02 (9H, s), 1.81-1.91 (1H, m), 3.25 (2H, d, J = 6.5 Hz), 3.75 (2H, s), 4.53 (2H, s), 7.10 (2H, d, J = 8.8 Hz), 7.54 (1H, d, J = 8.4 Hz), 7.62 (1H, d, J = 8.1 Hz), 7.73 (1H, s), 8.31 (2H, d, J = 8.8 Hz), 13.12 (1H, s).	456	454	
1-205	H,C COH, N CI	1H-NMR (DMSO-D6) δ: 0.91 (3H, t, J = 7.3 Hz), 1.02 (9H, s), 1.28-1.37 (2H, m), 1.55-1.62 (2H, m), 2.65 (2H, t, J = 7.7 Hz), 3.75 (2H, s), 7.10 (2H, d, J = 9.1 Hz), 7.43 (1H, d, J = 8.1 Hz), 7.61 (1H, d, J = 2.1 Hz), 8.31 (2H, d, J = 9.1 Hz), 13.09 (1H, s).	426	424	
1-206	H ₂ C H ₃ C H ₄ C H ₅ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 0.88 (6H, d, J = 6.6 Hz), 1.51 (6H, s), 1.84-1.95 (1H, m), 2.55 (2H, d, J = 7.3 Hz), 3.05 (3H, s), 4.65 (2H, s), 7.35 (2H, d, J = 8.4 Hz), 7.41 (1H, d, J = 8.2 Hz), 7.62-7.66 (2H, m), 8.26 (2H, d, J = 8.4 Hz), 13.26 (1H, br s).	521	519	
1-207	H ₃ C CH ₃ H ₃ C CH ₃ H ₀ N P P P P P P P P P P P P P P P P P P P	1H-NMR (DMSO-D6) δ: 1.01 (9H, s), 3.75 (2H, s), 4.67 (2H, d, J = 5.5 Hz), 5.55 (1H, t, J = 5.5 Hz), 7.10 (2H, d, J = 8.8 Hz), 7.73 (1H, d, J = 7.9 Hz), 7.78 (1H, s), 7.90 (1H, d, J = 7.9 Hz), 8.29 (2H, d, J = 8.8 Hz), 13.21 (1H, br s).	434	432	

[0776]

10

20

【表1-27】

	-			
1-208	H ₂ C CH ₃ H ₂ C CH ₃ F F F HO CH ₃ CH ₃ F F F	1H-NMR (DMSO-D6) δ: 1.01 (9H, s), 1.39 (6H, s), 3.74 (2H, s), 4.44 (2H, d, J = 6.0 Hz), 7.08 (2H, d, J = 8.6 Hz), 7.57 (1H, d, J = 8.1 Hz), 7.68 (1H, s), 7.88 (1H, d, J = 8.1 Hz), 8.28 (2H, d, J = 8.6 Hz), 8.69 (1H, t, J = 6.0 Hz), 13.23 (1H, br s).	571	569
1-209	H ₃ C CH ₃ CH ₃ CH ₅ CH ₅ CH ₅ CH ₃ CH ₃ CH ₃	1H-NMR (CDCl3) δ: 1.07 (9H, s), 1.12 (3H, t, J = 5.8 Hz), 1.48 (9H, br s), 3.27 (2H, br s), 3.70 (2H, s), 4.48 (2H, s), 7.02 (2H, d, J = 8.6 Hz), 7.41 (1H, br s), 7.50 (1H, d, J = 8.1 Hz), 7.89 (1H, s), 8.50 (2H, d, J = 8.4 Hz).	527	525
1-210	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 1.23 (3H, t, J = 7.2 Hz), 2.99 (2H, dt, J = 19.7, 7.2 Hz), 3.76 (2H, s), 4.23 (2H, t, J = 6.0 Hz), 7.13 (2H, d, J = 9.1 Hz), 7.74 (2H, s), 7.97 (1H, s), 8.33 (2H, d, J = 9.1 Hz), 9.05 (2H, s).	427	425
1-211	CH ₃ CH ₃ CH ₃ CH ₄ FF	1H-NMR (DMSO-D6) δ: 1.00-1.32 (5H, m), 1.51 (6H, s), 1.61-1.85 (6H, m), 3.05 (3H, s), 3.89 (2H, d, J = 6.2 Hz), 4.65 (2H, s), 7.08 (2H, d, J = 9.0 Hz), 7.40 (1H, d, J = 8.2 Hz), 7.61-7.65 (2H, m), 8.30 (2H, d, J = 9.0 Hz), 13.14 (1H, br s).	577	575
1-212	H ₃ C CH ₃ CI	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 3.24 (2H, q, J = 9.5 Hz), 3.75 (2H, s), 3.86 (2H, s), 7.10 (2H, d, J = 8.6 Hz), 7.54-7.63 (2H, m), 7.74 (1H, s), 8.32 (2H, d, J = 8.6 Hz), 13.11 (1H, s).	481	479
1-213	CCH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.30-1.41 (3H, m), 1.44-1.56 (9H, m), 1.65-1.73 (2H, m), 1.81- 1.88 (2H, m), 2.66-2.73 (1H, m), 3.05 (3H, s), 4.65 (2H, s), 7.42 (1H, d, J = 8.6 Hz), 7.54 (2H, d, J = 8.4 Hz), 7.62-7.66 (2H, m), 8.30 (2H, d, J = 8.4 Hz), 13.36 (1H, br s).	571	569
1-214	H,C CH ₃ OH OH CH ₃	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 1.09 (6H, s), 2.72 (2H, s), 3.75 (2H, s), 4.40 (1H, s), 7.10 (2H, d, J = 8.8 Hz), 7.44 (1H, d, J = 8.8 Hz), 7.53 (1H, d, J = 8.1 Hz), 7.61 (1H, s), 8.31 (2H, d, J = 8.8 Hz), 13.10 (1H, br s).	442	440
1-215	H,C O CH ₃ O-CH ₃ HO CI O-CH ₃ CH ₃ H ₃	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 1.10 (6H, s), 2.81 (2H, s), 3.17 (3H, s), 3.75 (2H, s), 7.10 (2H, d, J = 8.8 Hz), 7.41 (1H, dd, J = 8.5, 1.7 Hz), 7.53 (1H, d, J = 8.5 Hz), 7.58 (1H, d, J = 1.7 Hz), 8.31 (2H, d, J = 8.8 Hz), 13.10 (1H, s).	456	454

[0777]

10

20

20

30

【表1-28】

1-216	H,C CH,	1H-NMR (DMSO-D6) δ: 1.00 (9H, s), 1.06 (3H, d, J = 6.3 Hz), 2.68 (2H, d, J = 6.0 Hz), 3.73 (2H, s), 3.82-3.88 (1H, m), 4.60 (1H, d, J = 4.9 Hz), 7.09 (2H, d, J = 9.1 Hz), 7.42 (1H, d, J = 9.3 Hz), 7.51 (1H, d, J = 8.1 Hz), 7.59 (1H, s), 8.30 (2H, d, J = 9.1 Hz), 13.08 (1H, s).	428	426	
1-217	H,C,CH,S H,C,CH,S H,C,CH,S	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 1.20 (9H, s), 2.36 (2H, t, J = 7.6 Hz), 2.86 (2H, t, J = 7.6 Hz), 3.75 (2H, s), 7.10 (2H, d, J = 8.8 Hz), 7.40-7.46 (2H, m), 7.53 (1H, d, J = 8.2 Hz), 7.61 (1H, s), 8.31 (2H, d, J = 8.8 Hz), 13.11 (1H, br s).	497	495	
1-218	H,C CH ₃ N N C N CH ₃ O CH ₃	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 2.66 (2H, t, J = 7.6 Hz), 2.81 (3H, s), 2.87 (2H, t, J = 7.6 Hz), 2.95 (3H, s), 3.75 (2H, s), 7.10 (2H, d, J = 8.8 Hz), 7.46-7.56 (2H, m), 7.66 (1H, d, J = 2.0 Hz), 8.31 (2H, d, J = 9.0 Hz), 13.11 (1H, br s).	469	467	
1-219	CI CH ₃	1H-NMR (DMSO-D6) δ : 0.89 (6H, d, J = 6.5 Hz), 1.30-1.40 (3H, m), 1.46-1.55 (3H, m), 1.65-1.73 (2H, m), 1.80-1.90 (3H, m), 2.67-2.72 (1H, m), 3.25 (2H, d, J = 6.5 Hz), 7.57 (1H, d, J = 8.4 Hz), 7.54 (2H, d, J = 8.4 Hz), 7.73 (1H, s), 8.31 (2H, d, J = 8.4 Hz), 13.33 (1H, br s).	476	474	
1-220	CI NO CH ₃ HO CH ₃ O CH ₃ O CH ₃ O CH ₃	1H-NMR (DMSO-D6) δ: 1.51 (6H, s), 3.06 (3H, s), 4.65 (2H, s), 7.42 (1H, d, J = 8.4 Hz), 7.56 (2H, t, J = 7.7 Hz), 7.62-7.69 (3H, m), 8.34 (2H, d, J = 7.7 Hz), 13.34 (1H, br s).	465	463	
1-221	CI N CH ₃ HO CH ₃ CH ₅ CH ₅	1H-NMR (DMSO-D6) δ: 1.24 (9H, s), 3.02 (3H, s), 4.62 (2H, s), 7.40 (1H, dd, J = 8.4, 1.8 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.61-7.69 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).	465	463	
1-222	CI CH ₃ CH ₃ O CH ₃	1H-NMR (DMSO-D6) δ: 1.01 (1.8H, d, J = 6.7 Hz), 1.04 (4.2H, d, J = 6.7 Hz), 2.84 (0.9H, s), 2.84-2.88 (0.3H, m), 2.90-2.97 (0.7H, m), 3.01 (2.1H, s), 4.57 (1.4H, s), 4.71 (0.6H, s), 7.42 (1H, dd, J = 8.3, 1.9 Hz), 7.57 (2H, t, J = 7.6 Hz), 7.60-7.69 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).	397	395	
1-223	H ₃ C CH ₃ CI O CH ₃	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 1.37 (9H, s), 2.79 (3H, s), 3.75 (2H, s), 4.50 (2H, s), 7.11 (2H, d, J = 8.9 Hz), 7.55 (1H, dd, J = 8.1, 1.6 Hz), 7.68 (1H, d, J = 8.1 Hz), 7.72 (1H, s), 8.31 (2H, d, J = 8.9 Hz), 13.17 (1H, br s).	533	531	

[0 7 7 8]

【表1-29】

1-224	HO CI CH ₃ CH ₃	1H-NMR (DMSO-D6) 5: 0.97-1.05 (3H, m), 2.34-2.43 (2H, m), 2.85 (0.9H, s), 2.96 (2.1H, s), 4.57 (1.4H, s), 4.65 (0.6H, s), 7.44 (1H, d, J = 8.4 Hz), 7.54-7.69 (5H, m), 8.34 (2H, d, J = 8.4 Hz), 13.35 (1H, br s).	383	381
1-225	CI CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 0.84-0.93 (3H, m), 1.50-1.60 (2H, m), 2.31-2.38 (2H, m), 2.84 (0.9H, s), 2.96 (2.1H, s), 4.57 (1.4H, s), 4.66 (0.6H, s), 7.41-7.46 (1H, m), 7.54-7.69 (5H, m), 8.34 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).	397	395
1-226	HO CI CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 0.87-0.93 (6H, m), 1.99-2.10 (1H, m), 2.22-2.28 (2H, m), 2.84 (0.9H, s), 2.97 (2.1H, s), 4.58 (1.4H, s), 4.66 (0.6H, s), 7.40-7.46 (1H, m), 7.56 (2H, t, J = 7.6 Hz), 7.60-7.70 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).	411	409
1-227	H,C CH ₃ N N N H,C CH ₃ N N N CI H,C CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 1.43 (6H, s), 2.88 (2H, t, J = 7.5 Hz), 3.03 (3H, s), 3.55 (2H, t, J = 7.5 Hz), 3.74 (2H, s), 7.09 (2H, d, J = 9.0 Hz), 7.45 (1H, dd, J = 8.0, 2.0 Hz), 7.65 (1H, d, J = 8.0 Hz), 7.64 (1H, d, J = 2.0 Hz), 8.30 (2H, d, J = 9.0 Hz), 13.11 (1H, br s).	565	563
1-228	CH ₃	1H-NMR (DMSO-D6) 5: 1.46-1.86 (8H, m), 2.83 (0.9H, s), 2.96-3.10 (1H, m), 3.01 (2.1H, s), 4.57 (1.4H, s), 4.72 (0.6H, s), 7.42 (1H, d, J = 8.3 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.60-7.69 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.33 (1H, br s).	423	421
1-229	CH ₃	1H-NMR (DMSO-D6) 5: 1.10-1.43 (5H, m), 1.58-1.77 (5H, m), 2.56-2.68 (1H, m), 2.81 (0.9H, s), 3.01 (2.1H, s), 4.56 (1.4H, s), 4.70 (0.6H, s), 7.38-7.43 (1H, m), 7.56 (2H, t, J = 7.6 Hz), 7.59-7.69 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).	437	435
1-230	CI CH ₃	1H-NMR (DMSO-D6) δ: 2.87-2.97 (3H, m), 4.54 (0.8H, s), 4.75 (1.2H, s), 7.39-7.51 (5.4H, m), 7.54-7.61 (2.6H, m), 7.62-7.70 (2.4H, m), 7.74-7.83 (0.6H, m), 8.35 (2H, d, J = 7.6 Hz), 13.35 (1H, br s).	431	429
1-231	CH ₃ CH ₃ CH ₃ CH ₃ CCH ₃	1H-NMR (DMSO-D6) δ: 0.79 (3H, t, J = 7.4 Hz), 1.19 (6H, s), 1.64 (2H, q, J = 7.4 Hz), 3.02 (3H, s), 4.61 (2H, s), 7.43 (1H, d, J = 8.3 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.61-7.69 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.33 (1H, br s).	425	423

[0779]

10

20

【表1-30】

1-232	H ₃ C H ₃ C C1 O CH ₃ CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 0.88 (6H, d, J = 6.7 Hz), 1.35 (9H, s), 1.84-1.95 (1H, m), 2.55 (2H, d, J = 7.4 Hz), 2.90 (3H, s), 3.77 (2H, s), 7.35 (2H, d, J = 8.1 Hz), 7.41 (1H, d, J = 8.3 Hz), 7.57 (1H, d, J = 8.3 Hz), 7.62 (1H, s), 8.26 (2H, d, J = 8.1 Hz), 13.24 (1H, br s).	467	465
1-233	CI CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 0.75-0.84 (6H, m), 1.33-1.46 (2H, m), 1.47-1.60 (2H, m), 2.62-2.71 (1H, m), 2.88 (0.9H, s), 3.03 (2.1H, s), 4.61 (1.4H, s), 4.72 (0.6H, s), 7.41-7.47 (1H, m), 7.56 (2H, t, J = 7.6 Hz), 7.61-7.69 (3H, m), 8.33 (2H, d, J = 7.6 Hz), 13.35 (1H, br s).	425	423
1-234	CI CH ₃ CH ₃ CH ₃ COH ₃ O-CH ₃	1H-NMR (DMSO-D6) δ: 1.37 (6H, s), 2.78 (0.6H, br s), 3.14 (3H, s), 3.23 (2.4H, br s), 4.59 (1.6H, s), 5.09 (0.4H, br s), 7.45 (1H, d, J = 7.9 Hz), 7.56 (2H, t, J = 7.9 Hz), 7.61-7.69 (3H, m), 8.33 (2H, d, J = 7.9 Hz), 13.33 (1H, br s).	427	425
1-235	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.02 (9H, s), 1.12 (3H, t, J = 6.8 Hz), 1.50 (6H, s), 3.42 (2H, br s), 3.75 (2H, s), 4.66 (2H, s), 7.09 (2H, d, J = 8.8 Hz), 7.40 (1H, d, J = 8.3 Hz), 7.61 (1H, d, J = 8.3 Hz), 7.62 (1H, s), 8.30 (2H, d, J = 8.8 Hz), 13.14 (1H, s).	565	563
1-236	CI CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.21 (6H, s), 3.04 (2H, s), 4.41 (2H, s), 7.48 (1H, d, J = 8.6 Hz), 7.57 (2H, t, J = 7.6 Hz), 7.64-7.71 (3H, m), 8.35 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).	395	393
1-237	HO CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.48 (6H, s), 2.45 (3H, br s), 4.55 (2H, br s), 7.18 (1H, t, J = 7.2 Hz), 7.22-7.26 (2H, m), 7.28-7.34 (2H, m), 7.41 (1H, br s), 7.53-7.68 (5H, m), 8.35 (2H, d, J = 8.1 Hz), 13.34 (1H, br s).	473	471
1-238	CI NON CH ₃ CH ₃ OF F	1H-NMR (DMSO-D6) δ: 1.56-1.67 (4H, m), 2.08-2.17 (2H, m), 2.37-2.46 (2H, m), 3.02 (3H, s), 4.65 (2H, s), 7.39 (1H, d, J = 8.3 Hz), 7.55 (2H, t, J = 8.0 Hz), 7.60-7.68 (3H, m), 8.34 (2H, d, J = 8.0 Hz), 13.34 (1H, br s).	491	489
1-239	HO CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) 5: 1.23 (6H, s), 3.02 (3H, s), 3.20 (3H, s), 3.43 (2H, s), 4.63 (2H, s), 7.42 (1H, d, J = 8.3 Hz), 7.54-7.70 (5H, m), 8.34 (2H, d, J = 7.6 Hz), 13.36 (1H, br s).	441	439

[0780]

10

20

【表1-31】

1-240	CI N CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.07 (6H, s), 1.83 (2H, t, J = 6.9 Hz), 3.21 (2H, t, J = 6.9 Hz), 4.44 (2H, s), 7.42 (1H, d, J = 8.3 Hz), 7.57 (2H, t, J = 7.6 Hz), 7.62-7.69 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).	409	407	
1-241	CI N N N O CH ₃	1H-NMR (DMSO-D6) δ: 1.15 (6H, s), 1.64- 1.69 (2H, m), 1.74-1.81 (2H, m), 3.26 (2H, t, J = 6.0 Hz), 4.53 (2H, s), 7.42 (1H, d, J = 8.1 Hz), 7.56 (2H, t, J = 7.4 Hz), 7.60-7.69 (3H, m), 8.35 (2H, d, J = 7.4 Hz), 13.33 (1H, br s).	423	421	
1-242	CH ₃ CH ₃ CH ₃ CH ₃ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅	1H-NMR (DMSO-D6) δ: 1.61 (3H, s), 2.82 (0.6H, br s), 3.23 (2.4H, s), 3.37 (3H, s), 4.64 (1.6H, s), 4.87-5.12 (0.4H, m), 7.46 (1H, d, J = 8.3 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.63-7.71 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).	481	479	
1-243	CH ₃ CH ₃ CH ₃ CH ₃ O CH ₃ CH ₃ O CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 1.61 (3H, s), 2.82 (0.6H, br s), 3.23 (2.4H, s), 3.37 (3H, s), 4.64 (1.6H, s), 4.87-5.12 (0.4H, m), 7.46 (1H, d, J = 8.3 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.63-7.71 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).	481	479	
1-244	CI N HO CH ₃ CH ₃ CF _F	1H-NMR (DMSO-D6) δ: 1.18-1.31 (3H, m), 1.46-1.59 (3H, m), 1.63-1.72 (2H, m), 2.51-2.58 (2H, m), 3.15 (3H, s), 4.71 (2H, s), 7.43 (1H, dd, J = 8.1, 1.8 Hz), 7.56 (2H, t, J = 7.5 Hz), 7.63-7.69 (3H, m), 8.34 (2H, d, J = 7.5 Hz), 13.36 (1H, br s).	505	503	
1-245	HO CI CH ₃ CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 0.81 (3H, t, J = 7.4 Hz), 1.15-1.25 (8H, m), 1.54-1.60 (2H, m), 3.02 (3H, s), 4.61 (2H, s), 7.42 (1H, d, J = 8.6 Hz), 7.56 (2H, t, J = 7.4 Hz), 7.60-7.69 (3H, m), 8.34 (2H, d, J = 7.4 Hz), 13.34 (1H, br s).	439	437	
1-246	CI CH ₃	1H-NMR (DMSO-D6) δ: 2.88 (0.9H, s), 3.04- 3.22 (6.1H, m), 3.63-3.77 (1H, m), 4.62 (1.4H, s), 4.80 (0.6H, s), 7.42-7.48 (1H, m), 7.52- 7.58 (2H, m), 7.60-7.69 (3H, m), 8.34 (2H, d, J = 7.9 Hz), 13.35 (1H, br s).	471	469	
1-247	LO CI LI CI	1H-NMR (DMSO-D6) δ: 1.14-1.36 (5H, m), 1.38-1.50 (3H, m), 1.89-1.97 (2H, m), 3.37 (2H, s), 4.36 (2H, d, J = 6.0 Hz), 4.75 (1H, br s), 7.49 (1H, d, J = 8.3 Hz), 7.53-7.59 (3H, m), 7.64-7.70 (2H, m), 8.09 (1H, t, J = 6.0 Hz), 8.34 (2H, d, J = 7.4 Hz), 13.32 (1H, br s).	453	451	

[0781]

10

20

【表1-32】

1-248	CI, NAME OF THE PROPERTY OF TH	1H-NMR (DMSO-D6) δ: 1.26-1.37 (3H, m), 1.42-1.50 (1H, m), 1.59-1.71 (6H, m), 3.02 (2H, s), 4.40 (2H, s), 7.47 (1H, dd, J = 8.1, 2.1 Hz), 7.56 (2H, t, J = 7.9 Hz), 7.63-7.69 (3H, m), 8.34 (2H, d, J = 7.9 Hz), 13.33 (1H, br s).	435	433	
1-249	HO CI CH3 CH3 CH3	1H-NMR (DMSO-D6) δ: 1.21 (6H, s), 2.94 (2H, s), 3.11 (3H, s), 4.63 (2H, s), 7.06-7.10 (2H, m), 7.11-7.16 (1H, m), 7.16-7.22 (2H, m), 7.39 (1H, dd, J = 7.9, 1.8 Hz), 7.55 (2H, t, J = 7.4 Hz), 7.59-7.67 (3H, m), 8.34 (2H, d, J = 7.4 Hz), 13.35 (1H, br s).	453	451	
1-250	CI CH ₃ CH ₃ OOH	1H-NMR (DMSO-D6) 5: 0.71 (6H, t, J = 7.4 Hz), 1.51 (4H, q, J = 7.4 Hz), 3.47 (2H, d, J = 4.0 Hz), 4.34 (2H, d, J = 5.7 Hz), 4.62 (1H, br s), 7.48 (1H, d, J = 7.7 Hz), 7.53-7.61 (3H, m), 7.64-7.71 (2H, m), 8.11 (1H, t, J = 5.7 Hz), 8.34 (2H, d, J = 7.3 Hz), 13.34 (1H, br s).	441	439	
1-251	CI N HO CH ₃	1H-NMR (DMSO-D6) δ: 0.87 (6H, t, J = 7.4 Hz), 1.52-1.63 (4H, m), 3.01 (2H, s), 4.40 (2H, s), 7.49 (1H, d, J = 8.3 Hz), 7.57 (2H, t, J = 7.9 Hz), 7.64-7.72 (3H, m), 8.34 (2H, d, J = 7.9 Hz), 13.35 (1H, br s).	423	421	
1-252	CI CH ₃ — CH ₃ HO CH ₃ — CH ₃ F F	1H-NMR (DMSO-D6) δ: 1.02 (0.6H, br s), 1.17 (2.4H, t, J = 6.9 Hz), 1.62 (3H, s), 2.81 (0.6H, s), 3.25 (2.4H, s), 3.54-3.67 (2H, m), 4.63 (1.6H, s), 4.90-5.17 (0.4H, m), 7.45 (1H, dd, J = 8.2, 1.8 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.63-7.69 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).	495	493	
1-253	CI NO CH ₃ — CH ₃ O — CH ₃ O — CH ₃	1H-NMR (DMSO-D6) 5: 1.02 (0.6H, br s), 1.17 (2.4H, t, J = 6.9 Hz), 1.62 (3H, s), 2.81 (0.6H, s), 3.25 (2.4H, s), 3.54-3.67 (2H, m), 4.63 (1.6H, s), 4.90-5.17 (0.4H, m), 7.45 (1H, dd, J = 8.2, 1.8 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.63-7.69 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).	495	493	
1-254	CI NO OH	1H-NMR (DMSO-D6) δ: 1.51-1.55 (6H, m), 1.86-1.95 (2H, m), 3.46 (2H, s), 4.35 (2H, d, J = 6.0 Hz), 4.99 (1H, br s), 7.47 (1H, dd, J = 8.4, 2.0 Hz), 7.54-7.60 (3H, m), 7.64-7.69 (2H, m), 8.12 (1H, t, J = 6.0 Hz), 8.34 (2H, d, J = 7.7 Hz), 13.34 (1H, br s).	439	437	
1-255	CI N N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 1.53-1.68 (4H, m), 1.77-1.89 (4H, m), 3.17 (2H, s), 4.42 (2H, s), 7.47 (1H, dd, J = 8.3, 2.1 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.64-7.69 (3H, m), 8.35 (2H, d, J = 7.6 Hz).	421	419	

[0782]

10

20

【表1-33】

1-256	HO CH ₃	1H-NMR (DMSO-D6) δ : 0.69 (3H, d, J = 6.2 Hz), 0.85-0.98 (2H, m), 1.06-1.28 (3H, m), 1.42-1.50 (2H, m), 2.05-2.12 (2H, m), 3.28 (2H, s), 4.36 (2H, d, J = 6.0 Hz), 4.73 (1H, br s), 7.49 (1H, d, J = 8.1 Hz), 7.53-7.59 (3H, m), 7.63-7.69 (2H, m), 8.10 (1H, t, J = 6.0 Hz), 8.34 (2H, d, J = 7.9 Hz), 13.34 (1H, br s).	467	465	3
1-257	CI N N CH ₃	1H-NMR (DMSO-D6) δ: 0.89 (3H, d, J = 5.5 Hz), 1.33-1.46 (3H, m), 1.51-1.62 (4H, m), 1.87-1.94 (2H, m), 2.94 (2H, s), 4.39 (2H, s), 7.47 (1H, dd, J = 8.3, 2.3 Hz), 7.56 (2H, t, J = 7.9 Hz), 7.63-7.69 (3H, m), 8.34 (2H, d, J = 7.9 Hz), 13.33 (1H, br s).	449	447	3
1-258	CI CH ₃ O CH ₃	1H-NMR (DMSO-D6) δ: 1.34 (6H, s), 4.99 (2H, s), 6.97 (1H, d, J = 7.6 Hz), 7.05 (1H, t, J = 7.6 Hz), 7.20 (1H, t, J = 7.6 Hz), 7.20 (1H, t, J = 7.6 Hz), 7.48 (1H, dd, J = 8.3, 1.8 Hz), 7.55 (2H, t, J = 7.6 Hz), 7.59 (2H, d, J = 1.6 Hz), 7.59 (2H, d, J = 1.6 Hz), 7.59 (2H, d, J = 7.6 Hz), 13.32 (1H, br s).	457	455	
1-259	HO HO CH ₃	1H-NMR (DMSO-D6) δ : 0.77 (6H, t, J = 7.3 Hz), 1.03-1.19 (4H, m), 1.36-1.50 (4H, m), 3.46 (2H, s), 4.33 (2H, d, J = 6.0 Hz), 4.62 (1H, br s), 7.47 (1H, d, J = 8.4 Hz), 7.53-7.60 (3H, m), 7.61-7.69 (2H, m), 8.12 (1H, t, J = 6.0 Hz), 8.34 (2H, d, J = 7.6 Hz), 13.35 (1H, br s).	469	467	
1-260	CI, CH ₃	1H-NMR (DMSO-D6) 5: 0.84 (6H, t, J = 7.2 Hz), 1.14-1.29 (2H, m), 1.30-1.58 (6H, m), 3.02 (2H, s), 4.39 (2H, s), 7.48 (1H, dd, J = 8.3, 2.1 Hz), 7.57 (2H, t, J = 7.9 Hz), 7.64-7.70 (3H, m), 8.34 (2H, d, J = 7.9 Hz), 13.36 (1H, br s).	451	449	
1-261	CI CH ₃	1H-NMR (DMSO-D6) δ: 0.96-1.06 (3.9H, m), 1.10 (2.1H, t, J = 7.2 Hz), 2.31 (0.6H, q, J = 7.2 Hz), 2.42 (1.4H, q, J = 7.2 Hz), 3.29-3.35 (2H, m), 4.56 (1.4H, s), 4.63 (0.6H, s), 7.45 (1H, d, J = 8.3 Hz), 7.54-7.69 (5H, m), 8.34 (2H, d, J = 7.9 Hz), 13.33 (1H, br s).	397	395	
1-262	HO CI	1H-NMR (DMSO-D6) 5: 1.28 (3H, s), 2.75 (2H, d, J = 15.7 Hz), 3.36 (2H, d, J = 15.7 Hz), 4.37 (2H, d, J = 6.0 Hz), 7.06-7.11 (2H, m), 7.14-7.18 (2H, m), 7.44 (1H, dd, J = 8.3, 2.1 Hz), 7.52-7.62 (4H, m), 7.66 (1H, t, J = 7.4 Hz), 8.34 (2H, d, J = 7.4 Hz), 8.41 (1H, t, J = 6.0 Hz), 13.32 (1H, br s).	471	469	
1-263	HO N CH ₃ C	1H-NMR (DMSO-D6) δ: 1.13 (3H, t, J = 6.9 Hz), 1.50 (6H, s), 3.42 (2H, br s), 4.66 (2H, s), 7.41 (1H, dd, J = 8.3, 1.8 Hz), 7.56 (2H, t, J = 7.9 Hz), 7.61-7.69 (3H, m), 8.34 (2H, d, J = 7.9 Hz), 13.33 (1H, br s).	479	477	

[0783]

10

20

【表1-34】

1-264	CI CH ₃ CH ₃	1H-NMR (DMSO-D6) &: 1.31 (3H, s), 2.91 (2H, d, J = 16.0 Hz), 3.04 (3H, br s), 3.51 (2H, d, J = 16.0 Hz), 4.66 (2H, br s), 7.11-7.15 (2H, m), 7.17-7.21 (2H, m), 7.45 (1H, dd, J = 8.3, 2.1 Hz), 7.54 (2H, t, J = 7.9 Hz), 7.61 (7.67 (3H, m), 8.33 (2H, d, J = 7.9 Hz), 13.33 (1H, br s).	485	483	
1-265	HO N CI CH3. CH4. CH4. CH4. CH4. CH4.	1H-NMR (DMSO-D6) δ: 1.34-1.42 (2H, m), 1.40 (9H, s), 1.53-1.63 (2H, m), 1.96 (2H, t, J = 6.8 Hz), 2.86-3.00 (2H, m), 3.25 (2H, t, J = 6.8 Hz), 3.78-3.87 (2H, m), 4.46 (2H, s), 7.42 (1H, dd, J = 8.3, 2.1 Hz), 7.54-7.59 (2H, m), 7.60-7.69 (3H, m), 8.34 (2H, d, J = 7.7 Hz), 13.34 (1H, br s).	550	548	
1-266	CI CH ₃ CH ₃	1H-NMR (DMSO-D6) &: 0.83 (9H, s), 0.90-0.99 (1H, m), 1.41-1.67 (6H, m), 1.96-2.03 (2H, m), 2.92 (2H, s), 4.38 (2H, s), 7.47 (1H, dd, J = 8.3, 1.8 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.63-7.69 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).	491	489	4
1-267	HO CI NO CH3	1H-NMR (DMSO-D6) δ: 1.48-1.65 (4H, m), 1.67-1.77 (2H, m), 1.82-1.91 (2H, m), 3.03 (2H, s), 3.21 (3H, s), 3.23-3.29 (1H, m), 4.40 (2H, s), 7.48 (1H, dd, J = 8.1, 1.8 Hz), 7.56 (2H, t, J = 7.6 Hz), 7.63-7.70 (3H, m), 8.34 (2H, d, J = 7.6 Hz), 13.34 (1H, br s).	465	463	5

[0 7 8 4]

【表2-1】

実施例番号	構造式	NMR	MS(M+H)	MS(M-H)	注釈
2-1	F F N H ₃ C N H ₃ C	1H-NMR (DMSO-D6) δ: 2.24 (6H, s), 7.21 (2H, d, J = 7.6 Hz), 7.37 (1H, t, J = 7.6 Hz), 7.91 (2H, d, J = 8.4 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.35 (1H, br s).	346	344	
2-2	H ₃ C N HO H ₃ C	1H-NMR (CDCl3) δ: 2.34 (6H, s), 7.17 (2H, d, J = 7.7 Hz), 7.33 (1H, t, J = 7.7 Hz), 7.49 (2H, t, J = 7.7 Hz), 7.60 (1H, t, J = 7.7 Hz), 8.52 (2H, dd, J = 7.7, 1.2 Hz), 11.87 (1H, s).	278	276	
2-3	H ₃ C N H ₃ C H ₃ C	1H-NMR (CDCl3) δ: 2.32 (6H, s), 2.72 (3H, s), 7.17 (2H, d, J = 7.7 Hz), 7.34 (1H, t, J = 7.7 Hz), 7.53-7.56 (2H, m), 8.12-8.16 (1H, m), 11.29 (1H, s).	360	358	
2-4	FF N CI N O CH ₃	1H-NMR (DMSO-D6) 5: 3.84 (3H, s), 7.25 (2H, d, J = 8.3 Hz), 7.59 (1H, t, J = 8.3 Hz), 7.92 (2H, d, J = 8.3 Hz), 8.51 (2H, d, J = 8.3 Hz), 13.59 (1H, br s).	382	380	
2-5	H ₃ C N N H ₀ H ₃ C	1H-NMR (DMSO-D6) δ: 2.22 (6H, s), 5.22 (2H, s), 7.13-7.21 (2H, m), 7.32-7.37 (2H, m), 7.38-7.43 (2H, m), 7.46-7.48 (2H, m), 8.28-8.32 (2H, m), 12.98 (1H, br s).	384	382	
2-6	HO H ₃ C H ₃ C	1H-NMR (DMSO-D6) δ: 2.20 (6H, s), 6.86 (2H, dt, J = 9.4, 2.4 Hz), 7.17 (2H, d, J = 7.7 Hz), 7.32 (1H, t, J = 7.6 Hz), 8.19 (2H, dt, J = 9.5, 2.3 Hz), 10.32 (1H, br s), 12.87 (1H, br s).	294	292	
2-7	H ₃ C CH ₃ H ₃ C H ₃ C	1H-NMR (DMSO-D6) δ: 1.32 (9H, s), 2.22 (6H, s), 7.20 (2H, d, J = 7.7 Hz), 7.35 (1H, t, J = 7.7 Hz), 7.56 (2H, d, J = 8.5 Hz), 8.28 (2H, d, J = 8.5 Hz), 13.08 (1H, br s).	334	332	
2-8	H ₃ C CH ₃ N N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 1.23 (6H, d, J = 7.3 Hz), 2.22 (6H, s), 2.90-3.05 (1H, m), 7.20 (2H, d, J = 7.7 Hz), 7.35 (1H, t, J = 7.7 Hz), 7.41 (2H, d, J = 8.3 Hz), 8.27 (2H, d, J = 8.3 Hz), 13.09 (1H, br s).	320	318	
2-9	FF N H ₃ C H ₀ H ₂ C	1H-NMR (DMSO-D6) δ: 2.24 (6H, s), 7.19 (2H, d, J = 7.7 Hz), 7.34 (1H, t, J = 7.7 Hz), 7.73 (1H, d, J = 8.1 Hz), 7.85 (1H, d, J = 10.7 Hz), 8.24 (1H, t, J = 7.9 Hz), 13.42 (1H, br s).	364	362	

[0 7 8 5]

10

20

【表2-2】

2-10	FF F CI N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 7.50 (1H, t, J = 8.8 Hz), 7.57 (1H, d, J = 8.4 Hz), 7.67-7.73 (1H, m), 7.94 (2H, d, J = 8.1 Hz), 8.51 (2H, d, J = 8.1 Hz), 13.90 (1H, br s).	370	368	
2-11	H ₃ C N CH ₃	1H-NMR (DMSO-D6) δ: 2.24 (6H, s), 7.20 (2H, d, J = 7.7 Hz), 7.35 (1H, t, J = 7.7 Hz), 7.45-7.47 (3H, m), 7.59-7.63 (2H, m), 7.71 (2H, dd, J = 6.9, 2.0 Hz), 8.37 (2H, dd, J = 6.9, 2.0 Hz), 13.20 (1H, br s).	378	376	
2-12	H ₃ C N CH ₃ OH	1H-NMR (DMSO-D6) δ: 2.22 (6H, s), 2.89-3.00 (4H, m), 7.16-7.29 (7H, m), 7.33 (1H, d, J = 7.7 Hz), 7.38 (2H, d, J = 8.4 Hz), 8.24 (2H, d, J = 8.4 Hz), 13.09 (1H, br s).	382	380	
2-13	H ₃ C H ₃ C H ₃ C	1H-NMR (DMSO-D6) δ: 2.23 (6H, s), 2.39 (3H, s), 7.20 (2H, d, J = 7.6 Hz), 7.35 (1H, t, J = 7.6 Hz), 7.40-7.48 (2H, m), 8.11-8.18 (2H, m), 13.14 (1H, br s).	292	290	
2-14	H ₃ C N N HO H ₃ C	1H-NMR (DMSO-D6) δ: 2.23 (6H, s), 3.83 (3H, s), 7.18-7.24 (3H, m), 7.36 (1H, t, J = 7.8 Hz), 7.45 (1H, t, J = 7.8 Hz), 7.83-7.86 (1H, m), 7.94 (1H, d, J = 7.8 Hz), 13.17 (1H, br s).	308	306	
2-15	F—————————————————————————————————————	1H-NMR (DMSO-D6) δ: 2.23 (6H, s), 7.21 (2H, d, J = 7.6 Hz), 7.36 (1H, t, J = 7.6 Hz), 7.47-7.53 (1H, m), 7.57-7.63 (1H, m), 8.00-8.05 (1H, m), 8.19 (1H, dt, J = 7.9, 1.3 Hz), 13.27 (1H, br s).	296	294	
2-16	F F CI N HO HO	1H-NMR (DMSO-D6) δ: 6.97 (1H, dd, J = 8.1, 0.7 Hz), 7.05 (1H, dd, J = 8.1, 0.7 Hz), 7.39 (1H, t, J = 8.1 Hz), 7.90 (2H, d, J = 8.4 Hz), 8.50 (2H, d, J = 8.4 Hz), 10.74 (1H, br s), 13.38 (1H, br s).	368	366	
2-17	F F CI N N O CH ₃	1H-NMR (DMSO-D6) δ: 1.20 (3H, t, J = 7.0 Hz), 4.12 (2H, q, J = 7.0 Hz), 7.21 (2H, d, J = 8.3 Hz), 7.55 (1H, t, J = 8.3 Hz), 7.91 (2H, d, J = 8.3 Hz), 8.50 (2H, d, J = 8.3 Hz), 13.53 (1H, br s).	396	394	
2-18	H,C N CH, OH	1H-NMR (DMSO-D6) δ: 1.31-1.40 (3H, m), 1.45-1.54 (3H, m), 1.65-1.72 (2H, m), 1.81-1.88 (2H, m), 2.22 (6H, s), 2.67-2.71 (1H, m), 7.20 (2H, d, J = 7.7 Hz), 7.35 (1H, t, J = 7.7 Hz), 7.51 (2H, dd, J = 6.7, 1.9 Hz), 8.29 (2H, dd, J = 6.7, 1.9 Hz), 13.16 (1H, br s).	384	382	

[0786]

10

20

【表2-3】

2-19	FEF N CI N N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 2.29 (3H, s), 7.38-7.41 (1H, m), 7.47-7.52 (2H, m), 7.92 (2H, d, J = 8.1 Hz), 8.52 (2H, d, J = 8.1 Hz), 13.61 (1H, br s).	366	364	
2-20	F F CI CI CH ₃	1H-NMR (DMSO-D6) δ: 0.80 (3H, t, J = 7.3 Hz), 1.55-1.63 (2H, m), 4.02 (2H, t, J = 6.3 Hz), 7.22 (2H, t, J = 8.3 Hz), 7.55 (1H, t, J = 8.3 Hz), 7.90 (2H, d, J = 8.3 Hz), 8.50 (2H, d, J = 8.3 Hz), 13.54 (1H, br s).	410	408	
2-21	F F CI N C	1H-NMR (DMSO-D6) δ: 1.18 (6H, d, J = 6.0 Hz), 4.65-4.71 (1H, m), 7.20 (1H, d, J = 8.4 Hz), 7.25 (1H, d, J = 8.4 Hz), 7.54 (1H, t, J = 8.4 Hz), 7.91 (2H, d, J = 8.4 Hz), 8.50 (2H, d, J = 8.4 Hz), 13.49 (1H, br s).	410	408	
2-22	F.F. CI N N N OH	1H-NMR (DMSO-D6) δ: 3.59-3.62 (2H, br m), 4.09 (2H, t, J = 5.0 Hz), 4.81 (1H, br s), 7.24 (2H, t, J = 8.3 Hz), 7.56 (1H, t, J = 8.3 Hz), 7.92 (2H, d, J = 8.4 Hz), 8.52 (2H, d, J = 8.4 Hz), 13.49 (1H, s).	412	410	
2-23	F.F. CI	1H-NMR (DMSO-D6) δ: 1.71-1.77 (2H, m), 3.39 (2H, t, J = 6.2 Hz), 4.14 (2H, t, J = 6.2 Hz), 4.45 (1H, br s), 7.23 (1H, d, J = 8.3 Hz), 7.24 (1H, d, J = 8.3 Hz), 7.56 (1H, t, J = 8.3 Hz), 7.92 (2H, d, J = 8.4 Hz), 8.52 (2H, d, J = 8.4 Hz), 13.56 (1H, br s).	426	424	
2-24	H ₃ C	1H-NMR (DMSO-D6) δ: 2.23 (6H, s), 7.20 (2H, d, J = 7.7 Hz), 7.35 (1H, t, J = 7.7 Hz), 7.60 (2H, d, J = 8.6 Hz), 8.34 (2H, d, J = 8.6 Hz), 13.21 (1H, br s).	296	294	
2-25	CI N N HO H ₃ C	1H-NMR (DMSO-D6) δ: 2.23 (6H, s), 7.20 (2H, d, J = 7.6 Hz), 7.35 (1H, t, J = 7.6 Hz), 7.60 (2H, d, J = 8.6 Hz), 8.34 (2H, d, J = 8.6 Hz), 13.21 (1H, br s).	312	310	
2-26	H ₃ C N N HO H ₃ C	1H-NMR (DMSO-D6) 5: 2.22 (6H, s), 2.40 (3H, s), 7.20 (2H, d, J = 7.5 Hz), 7.32-7.37 (3H, m), 8.23 (2H, d, J = 8.2 Hz), 13.08 (1H, br s).	292	290	
2-27	H ₃ C-O N N H ₃ C	1H-NMR (DMSO-D6) δ: 2.22 (6H, s), 3.85 (3H, s), 7.07 (2H, d, J = 9.0 Hz), 7.19 (2H, d, J = 7.6 Hz), 7.34 (1H, t, J = 7.6 Hz), 8.31 (2H, d, J = 9.0 Hz), 12.98 (1H, s).	308	306	
F 0 7					

[0 7 8 7]

10

20

【表2-4】

1 1/1 2	· •				
2-28	F F H ₃ C H ₀ H ₃ C	1H-NMR (DMSO-D6) δ: 2.24 (6H, s), 7.21 (2H, d, J = 7.7 Hz), 7.37 (1H, t, J = 7.7 Hz), 7.80 (1H, t, J = 7.9 Hz), 8.03 (1H, d, J = 7.9 Hz), 8.57 (1H, s), 8.62 (1H, d, J = 7.9 Hz), 13.33 (1H, br s).	346	344	
2-29	O H ₃ C	1H-NMR (DMSO-D6) δ: 2.22 (6H, s), 5.19 (2H, s), 7.20 (2H, d, J = 7.5 Hz), 7.27-7.42 (5H, m), 7.43-7.49 (3H, m), 7.92-7.96 (2H, m), 13.17 (1H, br s).	384	382	
2-30	HO H ₃ C	1H-NMR (DMSO-D6) δ: 2.22 (6H, s), 6.99-7.03 (1H, m), 7.20 (2H, d, J = 7.7 Hz), 7.30-7.37 (2H, m), 7.76-7.80 (2H, m), 9.69 (1H, s), 13.12 (1H, br s).	294	292	
2-31	F F CI CH ₃	1H-NMR (DMSO-D6) δ: 0.76 (3H, t, J = 7.4 Hz), 1.22-1.31 (2H, m), 1.53-1.60 (2H, m), 4.07 (2H, t, J = 6.2 Hz), 7.23 (2H, dd, J = 8.4, 2.2 Hz), 7.56 (1H, t, J = 8.4 Hz), 7.92 (2H, d, J = 8.4 Hz), 8.51 (2H, d, J = 8.4 Hz), 13.56 (1H, br s).	424	422	
2-32	F F O O O O	1H-NMR (DMSO-D6) δ: 5.24 (2H, s), 7.35-7.24 (7H, m), 7.57 (1H, t, J = 8.3 Hz), 7.93 (2H, d, J = 8.2 Hz), 8.52 (2H, d, J = 8.2 Hz), 13.66 (1H, br s).	458	456	
2-33	F F N O CH, CH,	1H-NMR (DMSO-D6) δ: 0.80 (6H, d, J = 6.7 Hz), 1.82-1.92 (1H, m), 3.83 (2H, d, J = 6.0 Hz), 7.20 (2H, dd, J = 8.3, 3.5 Hz), 7.54 (1H, t, J = 8.3 Hz), 7.90 (2H, d, J = 8.4 Hz), 8.50 (2H, d, J = 8.4 Hz), 13.56 (1H, br s).	424	422	
2-34	F F O O CH ₃	1H-NMR (DMSO-D6) δ: 3.12 (3H, s), 3.53 (2H, t, J = 4.5 Hz), 4.18 (2H, t, J = 4.5 Hz), 7.24 (2H, dd, J = 8.3, 3.8 Hz), 7.55 (1H, t, J = 8.3 Hz), 7.90 (2H, d, J = 8.4 Hz), 8.50 (2H, d, J = 8.4 Hz), 13.54 (1H, br s).	426	424	
2-35	N N O CH ₃	1H-NMR (DMSO-D6) δ: 3.83 (3H, s), 5.22 (2H, s), 7.16 (2H, d, J = 8.8 Hz), 7.22 (2H, d, J = 8.8 Hz), 7.37-7.32 (1H, m), 7.43-7.38 (2H, m), 7.50-7.45 (2H, m), 7.61-7.53 (1H, m), 8.28 (2H, d, J = 8.8 Hz), 13.17 (1H, s).	420	418	
2-36	F F CI	1H-NMR (DMSO-D6) δ: 4.90 (2H, q, J = 8.7 Hz), 7.38 (2H, dd, J = 8.4, 2.4 Hz), 7.64 (1H, t, J = 8.4 Hz), 7.93 (2H, d, J = 8.2 Hz), 8.51 (2H, d, J = 8.2 Hz), 13.68 (1H, br s).	450	448	
	_				_

[0 7 8 8]

10

20

20

30

【表2-5】

	•					
2-3	37	H ₃ C N H ₃ C H ₀ C	1H-NMR (DMSO-D6) δ: 0.99-1.10 (2H, m), 1.13-1.30 (3H, m), 1.61-1.83 (6H, m), 2.20 (6H, s), 3.86 (2H, d, J = 6.3 Hz), 7.04 (2H, d, J = 9.1 Hz), 7.17 (2H, d, J = 7.7 Hz), 7.32 (1H, t, J = 7.7 Hz), 8.26 (2H, d, J = 9.1 Hz), 12.95 (1H, br s).	390	388	
2-3	88	H ₃ C N N N N N N H ₃ C	1H-NMR (DMSO-D6) δ: 1.28 (6H, d, J = 6.0 Hz), 2.20 (6H, s), 4.70-4.76 (1H, m), 7.02 (2H, d, J = 8.8 Hz), 7.18 (2H, d, J = 7.6 Hz), 7.32 (1H, t, J = 7.6 Hz), 8.26 (2H, d, J = 8.8 Hz), 12.94 (1H, br s).	336	334	
2-3	39	H ₃ C N N H ₀ H ₃ C	1H-NMR (DMSO-D6) δ: 0.88 (6H, d, J = 6.4 Hz), 1.84-1.94 (1H, m), 2.23 (6H, s), 2.54 (2H, d, J = 6.9 Hz), 7.20 (2H, d, J = 7.7 Hz), 7.30-7.38 (3H, m), 8.26 (2H, d, J = 8.5 Hz), 13.09 (1H, br s).	334	332	
2-4	10	H ₃ C N N N N N N N N N N N N N N N N N N N	1.13-1.30 (3H, m), 1.61-1.83 (6H, m), 2.20 (6H, s), 3.86 (2H, d, J = 6.3 Hz), 7.04 (2H, d, J = 9.1 Hz), 7.17 (2H, d, J = 7.7 Hz), 8.26 (2H, d, J = 9.1 Hz), 1.77 (2H, d, J = 7.7 Hz), 8.26 (2H, d, J = 9.1 Hz), 1.70 (2H, d, J = 8.8 Hz), 7.18 (2H, d, J = 8.8 Hz), 7.18 (2H, d, J = 8.8 Hz), 7.29 (1H, t, J = 7.6 Hz), 8.26 (2H, d, J = 8.8 Hz), 12.94 (1H, br s). 1H-NMR (DMSO-D6) 5: 0.88 (6H, d, J = 6.4 Hz), 1.84-1.94 (1H, m), 2.23 (6H, s), 2.54 (2H, d, J = 8.8 Hz), 1.294 (1H, br s). 1H-NMR (DMSO-D6) 5: 1.35 (3H, t, J = 6.9 Hz), 2.22 (6H, s), 4.13 (2H, q, J = 6.9 Hz), 2.22 (6H, s), 4.13 (2H, q, J = 6.9 Hz), 2.22 (6H, s), 4.13 (2H, q, J = 6.9 Hz), 7.30 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.5 Hz), 8.29 (2H, d, J = 8.8 Hz), 7.24 (1H, t, J = 7.5 Hz), 8.29 (2H, d, J = 9.0 Hz), 7.24 (1H, t, J = 7.5 Hz), 8.29 (2H, d, J = 9.0 Hz), 7.20 (2H, d, J = 6.8 Hz), 7.20 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 6.8 Hz), 7.06 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.5 Hz), 8.29 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.5 Hz), 8.29 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.5 Hz), 8.29 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.5 Hz), 8.29 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.5 Hz), 8.29 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.5 Hz), 8.29 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 6.8 Hz), 7.06 (2H, d, J = 6.4 Hz), 7.20 (2H, d, J = 7.5 Hz), 8.29 (2H, d, J = 6.8 Hz), 7.20 (2H, d, J = 6.4 Hz). 7.20 (2H, d, J = 6.8 Hz), 7.20 (2H, d, J = 6.8 Hz), 7.20 (2H, d, J = 6.8 Hz), 7.20 (2H, d, J = 6.8 Hz). 7.20 (2H, d, J = 6.8			
2-4	11	H ₃ C N H ₃ C N H ₃ C N H ₃ C				
2-4	12	N N N	Hz), 2.01-2.08 (1H, m), 2.22 (6H, s), 3.85 (2H, d, J = 6.6 Hz), 7.06 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.5 Hz), 7.35 (1H, t, J = 7.5	350	348	
2-4	13	_ сн, з >=⟨	Hz), 2.19 (6H, s), 5.66 (1H, q, J = 6.4 Hz), 7.04 (2H, d, J = 9.0 Hz), 7.17 (2H, d, J = 7.7 Hz), 7.23-7.28 (1H, m), 7.30-7.37 (3H, m), 7.41-7.43 (2H, m), 8.20 (2H, d, J = 9.0 Hz),	398	396	
2-4	14	CH ₃ N= CH ₃	Hz), 2.19 (6H, s), 5.66 (1H, q, J = 6.4 Hz), 7.04 (2H, d, J = 9.0 Hz), 7.18 (2H, d, J = 7.7 Hz), 7.24-7.28 (1H, m), 7.30-7.37 (3H, m), 7.41-7.43 (2H, m), 8.20 (2H, d, J = 9.0 Hz),	398	396	
2-4	1 5		7.27 (4H, m), 7.57 (1H, t, J = 8.2 Hz), 7.71 (1H, td, J = 7.7, 1.7 Hz), 7.93 (2H, d, J = 8.2	459	457	

[0 7 8 9]

【表2-6】

_						
	2-46	H ₃ C — CH ₃	1H-NMR (DMSO-D6) δ: 1.23-1.32 (1H, m), 1.35-1.57 (5H, m), 1.68-1.75 (2H, m), 1.92-1.98 (2H, m), 2.22 (6H, s), 4.47-4.51 (1H, m), 7.06 (2H, d, J = 8.8 Hz), 7.19 (2H, d, J = 7.6 Hz), 7.34 (1H, t, J = 7.6 Hz), 8.27 (2H, d, J = 8.8 Hz), 12.96 (1H, br s).	376	374	
	2-47	H ₃ C CH ₃ N CH ₃ OH	1H-NMR (DMSO-D6) δ: 0.94 (6H, d, J = 4.2 Hz), 1.26-1.35 (2H, m), 1.41-1.48 (2H, m), 1.56-1.65 (2H, m), 1.81-1.87 (2H, m), 2.22 (6H, s), 4.46-4.50 (1H, m), 7.06 (2H, d, J = 8.8 Hz), 7.19 (2H, d, J = 7.5 Hz), 7.34 (1H, t, J = 7.5 Hz), 8.27 (2H, d, J = 8.8 Hz), 12.96 (1H, br s).	404	402	
	2-48	CI N N N H ₃ C	1H-NMR (DMSO-D6) δ: 2.23 (6H, s), 5.31 (2H, s), 7.19-7.23 (2H, m), 7.32-7.43 (4H, m), 7.48-7.53 (2H, m), 7.63 (1H, d, J = 8.4 Hz), 7.97 (1H, dd, J = 8.4, 1.7 Hz), 8.10 (1H, d, J = 1.7 Hz), 13.22 (1H, br s).	418	416	
	2-49	F N N OH	1H-NMR (DMSO-D6) δ: 0.99 (3H, t, J = 7.5 Hz), 2.55 (2H, q, J = 7.5 Hz), 5.22 (2H, s), 7.07 (1H, t, J = 6.8 Hz), 7.16 (1H, d, J = 6.8 Hz), 7.27 (1H, d, J = 6.8 Hz), 7.27 (1H, d, J = 6.2 Hz), 7.31 (1H, d, J = 6.8 Hz), 7.42 (1H, d, J = 8.2 Hz), 7.80 (1H, t, J = 8.2 Hz), 7.91 (2H, d, J = 8.6 Hz), 8.48 (2H, d, J = 8.6 Hz), 13.63 (1H, s).	486	484	
	2-50	H ₃ C — CH ₃	1H-NMR (DMSO-D6) δ: 1.30-1.38 (2H, m), 1.50-1.65 (4H, m), 1.74-1.82 (2H, m), 2.22 (6H, s), 2.29-2.36 (1H, m), 3.95 (2H, d, J = 7.1 Hz), 7.06 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.7 Hz), 7.34 (1H, t, J = 7.7 Hz), 8.28 (2H, d, J = 8.8 Hz), 12.97 (1H, br s).	376	374	
	2-51	H ₃ C—CH ₃ N—CH ₃ OH	1H-NMR (DMSO-D6) δ: 1.81-1.94 (4H, m), 2.05-2.12 (2H, m), 2.22 (6H, s), 2.70-2.78 (1H, m), 4.05 (2H, d, J = 6.6 Hz), 7.06 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.5 Hz), 7.34 (1H, t, J = 7.5 Hz), 8.29 (2H, d, J = 8.8 Hz), 12.97 (1H, br s).	362	360	
	2-52	H ₃ C — CH ₃ N OH	1H-NMR (DMSO-D6) δ: 1.38 (3H, t, J = 6.9 Hz), 2.22 (6H, s), 4.19 (2H, q, J = 6.9 Hz), 7.19 (2H, d, J = 7.6 Hz), 7.34 (1H, t, J = 7.6 Hz), 7.58 (1H, d, J = 8.3 Hz), 7.92 (1H, dd, J = 8.3, 1.7 Hz), 7.96 (1H, d, J = 1.7 Hz), 13.19 (1H, br s).	356	354	
	2-53	F N N O CH ₃	1H-NMR (DMSO-D6) δ: 2.18 (3H, s), 5.18 (2H, s), 7.04 (1H, t, J = 7.4 Hz), 7.16-7.09 (2H, m), 7.21 (1H, d, J = 7.9 Hz), 7.28 (1H, d, J = 7.4 Hz), 7.34 (1H, d, J = 8.4 Hz), 7.57-7.49 (1H, m), 7.88 (2H, d, J = 8.4 Hz), 8.47 (2H, d, J = 8.4 Hz), 13.63 (1H, s).	472	470	
	2-54	H ₃ C — CH ₃ N — CH ₃ N — OH	1H-NMR (DMSO-D6) δ: 1.20 (3H, t, J = 7.5 Hz), 2.23 (6H, s), 2.80 (2H, q, J = 7.5 Hz), 7.21 (2H, d, J = 7.6 Hz), 7.36 (1H, t, J = 7.6 Hz), 7.58 (1H, d, J = 8.4, 2.0 Hz), 8.29 (1H, d, J = 2.0 Hz), 13.20 (1H, br s).	340	338	
ī		I				

[0790]

10

20

20

30

【表2-7】

2-55	F N OH O-CH,	1H-NMR (DMSO-D6) δ : 2.11 (3H, s), 5.17 (2H, s), 7.04 (1H, d, J = 7.7 Hz), 7.17-7.06 (3H, m), 7.25 (1H, d, J = 8.3 Hz), 7.29 (1H, d, J = 8.3 Hz), 7.57 (1H, t, J = 8.3 Hz), 7.91 (2H, d, J = 8.1 Hz), 8.52 (2H, d, J = 8.1 Hz), 13.64 (1H, br s).	472	470
2-56	F N N N O CH ₃	1H-NMR (DMSO-D6) δ : 2.22 (3H, s), 5.16 (2H, s), 7.06 (2H, d, J = 7.9 Hz), 7.20 (2H, d, J = 7.9 Hz), 7.23 (1H, d, J = 7.9 Hz), 7.28 (1H, d, J = 7.9 Hz), 7.28 (1H, d, J = 7.9 Hz), 7.55 (1H, t, J = 8.4 Hz), 7.92 (2H, d, J = 8.4 Hz), 8.49 (2H, d, J = 8.4 Hz), 13.62 (1H, br s).	472	470
2-57	H ₃ C—CH ₃ N=CH ₃ OH	1H-NMR (DMSO-D6) δ: 1.34-1.23 (2H, m), 1.82-1.38 (6H, m), 1.72-1.63 (2H, m), 1.86-1.77 (2H, m), 2.00-1.88 (1H, m), 2.22 (6H, s), 3.86 (2H, d, J = 6.8 Hz), 7.06 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.6 Hz), 7.34 (1H, t, J = 7.6 Hz), 8.28 (2H, d, J = 8.8 Hz), 12.97 (1H, br s).	404	402
2-58	H ₃ C N CH ₃ H ₃ C O N OH	1H-NMR (DMSO-D6) δ: 1.01 (9H, s), 2.22 (6H, s), 3.74 (2H, s), 7.07 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.7 Hz), 7.35 (1H, t, J = 7.7 Hz), 8.29 (2H, d, J = 8.8 Hz), 12.97 (1H, br s).	364	362
2-59	H ₃ C OH ₃	1H-NMR (DMSO-D6) δ: 2.24 (6H, s), 5.46 (2H, s), 7.02 (1H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.7 Hz), 7.31-7.41 (4H, m), 7.46-7.49 (2H, m), 8.53 (1H, dd, J = 8.8, 2.0 Hz), 9.10 (1H, d, J = 2.0 Hz), 13.13 (1H, br s).	385	383
2-60	F N N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 5.30 (2H, s), 7.28 (1H, d, J = 7.9 Hz), 7.30-7.35 (2H, m), 7.59 (1H, t, J = 8.4 Hz), 7.73 (1H, dt, J = 7.9, 1.5 Hz), 7.93 (2H, d, J = 8.4 Hz), 8.48 (1H, dd, J = 4.9, 1.5 Hz), 8.51 (2H, d, J = 8.4 Hz), 8.56 (1H, d, J = 1.5 Hz), 13.67 (1H, br s).	459	457
2-61	CI————————————————————————————————————	1H-NMR (DMSO-D6) δ: 5.33 (2H, s), 7.23-7.32 (4H, m), 7.57 (1H, t, J = 8.4 Hz), 7.94 (2H, d, J = 8.4 Hz), 8.48 (2H, d, J = 5.3 Hz), 8.54 (2H, d, J = 8.4 Hz), 13.72 (1H, br s).	459	457
2-62	H ₃ C CH ₃ CI O O O O O O O O O O O O O O O O O O	1H-NMR (DMSO-D6) δ: 1.00 (9H, s), 3.73 (2H, s), 5.30 (2H, s), 7.08 (2H, t, J = 4.5 Hz), 7.30-7.20 (3H, m), 7.33 (1H, d, J = 7.7 Hz), 7.52 (1H, t, J = 8.1 Hz), 7.69 (1H, td, J = 7.7, 1.7 Hz), 8.28 (2H, d, J = 8.8 Hz), 8.53-8.49 (1H, m), 13.27 (1H, br s).	477	475
2-63	H ₃ C CH ₃ CI CH ₃ O CH ₃ O O O O O O O O O O O O O O O O O O O	1H-NMR (DMSO-D6) δ: 1.01 (9H, s), 1.46 (3H, d, J = 6.2 Hz), 3.74 (2H, s), 5.60 (1H, q, J = 6.2 Hz), 7.04-7.11 (3H, m), 7.17 (1H, d, J = 7.7 Hz), 7.27 (1H, d, J = 7.0, 5.1 Hz), 7.37-7.44 (2H, m), 7.72 (1H, t, J = 7.0 Hz), 8.30 (2H, d, J = 8.8 Hz), 8.51 (1H, d, J = 4.2 Hz), 13.32 (1H, br s).	491	489

[0791]

【表2-8】

2-64	H ₃ C CH ₃ CI— CH ₃ O— N— O— CH ₃ OH	1H-NMR (DMSO-D6) δ: 1.01 (9H, s), 1.47 (3H, d, J = 6.3 Hz), 3.74 (2H, s), 5.60 (1H, q, J = 6.3 Hz), 7.13-7.02 (3H, m), 7.18 (1H, d, J = 7.7 Hz), 7.27 (1H, dd, J = 7.1, 5.2 Hz), 7.48-7.36 (2H, m), 7.72 (1H, t, J = 7.1 Hz), 8.31 (2H, d, J = 8.8 Hz), 8.51 (1H, d, J = 4.2 Hz), 13.32 (1H, br s).	491	489	
2-65	H ₃ C CH ₃ CI— CH ₃	1H-NMR (DMSO-D6) δ: 1.01 (9H, s), 1.40 (3H, d, J = 6.2 Hz), 3.74 (2H, s), 5.62 (1H, q, J = 6.2 Hz), 7.05-7.15 (4H, m), 7.21-7.41 (6H, m), 8.31 (2H, d, J = 8.8 Hz), 13.21 (1H, br s).	490	488	
2-66	H ₃ C CH ₃ N O O O O O O O O O O O O O O O O O O	1H-NMR (DMSO-D6) & 0.99 (6H, d, J = 6.6 Hz), 2.04 (1H, td, J = 13.3, 6.6 Hz), 3.86 (2H, d, J = 6.6 Hz), 5.31 (2H, s), 7.08 (2H, d, J = 8.8 Hz), 7.31-7.21 (3H, m), 7.34 (1H, d, J = 7.7 Hz), 7.57-7.48 (1H, m), 7.70 (1H, td, J = 7.7, 1.6 Hz), 8.30 (2H, d, J = 8.8 Hz), 8.53 (1H, d, J = 4.9 Hz), 13.29 (1H, br s).	463	461	
2-67	H ₉ C CH ₃ N CH ₃ CH ₃	1H-NMR (DMSO-D6) δ : 1.00 (6H, d, J = 6.6 Hz), 1.48 (3H, d, J = 6.6 Hz), 2.09-2.02 (1H, m), 3.87 (2H, d, J = 6.6 Hz), 5.61 (1H, q, J = 6.2 Hz), 7.14-7.04 (3H, m), 7.19 (1H, d, J = 7.9 Hz), 7.31-7.25 (1H, m), 7.48-7.37 (2H, m), 7.73 (1H, td, J = 7.9, 1.6 Hz), 8.32 (2H, d, J = 9.0 Hz), 8.53 (1H, d, J = 4.9 Hz), 13.33 (1H, br s).	477	475	
2-68	H ₃ C CH ₃ CI—ON NN N	1H-NMR (DMSO-D6) 5: 1.02 (9H, s), 3.74 (2H, s), 5.40 (2H, s), 7.08 (2H, d, J = 8.8 Hz), 7.24 (2H, d, J = 7.7 Hz), 7.44 (1H, t, J = 4.9 Hz), 7.51 (1H, br s), 8.27 (2H, d, J = 8.8 Hz), 8.78 (2H, d, J = 4.9 Hz), 13.19 (1H, br s).	478	476	
2-69	H ₃ C — CH ₃ OH	1H-NMR (DMSO-D6) 5: 0.88 (3H, t, J = 7.2 Hz), 1.31-1.42 (4H, m), 1.69-1.76 (2H, m), 2.21 (6H, s), 4.05 (2H, t, J = 6.5 Hz), 7.04 (2H, d, J = 8.8 Hz), 7.18 (2H, d, J = 7.4 Hz), 7.33 (1H, t, J = 7.4 Hz), 8.27 (2H, d, J = 8.8 Hz), 12.96 (1H, br s).	364	362	
2-70	H ₃ C — H ₃ C — CH ₃ OH	1H-NMR (DMSO-D6) δ: 0.92 (3H, t, J = 7.3 Hz), 1.38-1.48 (2H, m), 1.67-1.74 (2H, m), 2.21 (6H, s), 4.06 (2H, t, J = 6.5 Hz), 7.05 (2H, d, J = 8.8 Hz), 7.18 (2H, d, J = 7.7 Hz), 7.33 (1H, t, J = 7.7 Hz), 8.27 (2H, d, J = 8.8 Hz), 12.96 (1H, br s).	350	348	
2-71	H ₃ C CH ₃ H ₃ C CH ₃ N CH ₃ OH	1H-NMR (DMSO-D6) δ: 0.92 (6H, d, J = 6.6 Hz), 1.63 (2H, q, J = 6.6 Hz), 1.72-1.82 (1H, m), 2.21 (6H, s), 4.08 (2H, t, J = 6.6 Hz), 7.05 (2H, d, J = 8.8 Hz), 7.18 (2H, d, J = 7.4 Hz), 7.33 (1H, t, J = 7.4 Hz), 8.27 (2H, d, J = 8.8 Hz), 12.96 (1H, br s).	364	362	
2-72	H ₃ C CH ₃ CI CH ₃ O CH ₃	1H-NMR (DMSO-D6) δ: 0.98 (6H, d, J = 6.5 Hz), 2.00-2.07 (1H, m), 2.19 (3H, s), 3.84 (2H, d, J = 6.5 Hz), 5.31 (2H, s), 7.05 (2H, d, J = 8.8 Hz), 7.20-7.26 (2H, m), 7.40 (1H, d, J = 8.1 Hz), 7.50-7.57 (2H, m), 8.23 (2H, d, J = 8.8 Hz), 8.33 (1H, d, J = 3.7 Hz), 13.25 (1H, br s).	477	475	

[0792]

10

20

20

30

【表2-9】

2-73	H ₃ C H ₃ C CH ₃ OH	1H-NMR (DMSO-D6) δ: 0.90 (6H, t, J = 7.4 Hz), 1.60-1.69 (4H, m), 2.22 (6H, s), 4.36-4.42 (1H, m), 7.06 (2H, d, J = 8.8 Hz), 7.20 (2H, d, J = 7.5 Hz), 7.35 (1H, t, J = 7.5 Hz), 8.28 (2H, d, J = 8.8 Hz), 12.97 (1H, br s).	364	362	
2-74	H ₃ C — CH ₃ N OH	1H-NMR (DMSO-D6) δ: 0.31-0.35 (2H, m), 0.55-0.59 (2H, m), 1.20-1.27 (1H, m), 2.21 (6H, s), 3.91 (2H, d, J = 7.0 Hz), 7.04 (2H, d, J = 8.8 Hz), 7.18 (2H, d, J = 7.4 Hz), 7.33 (1H, t, J = 7.4 Hz), 8.27 (2H, d, J = 8.8 Hz), 12.95 (1H, br s).	348	346	
2-75	CI—N—O—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—	1H-NMR (DMSO-D6) δ: 1.94-1.80 (4H, m), 2.11-2.03 (2H, m), 2.76-2.69 (1H, m), 4.05 (2H, d, J = 6.7 Hz), 5.29 (2H, s), 7.07 (2H, d, J = 8.8 Hz), 7.29-7.23 (3H, m), 7.32 (1H, d, J = 7.9 Hz), 7.56-7.48 (1H, m), 7.71-7.66 (1H, m), 8.28 (2H, d, J = 8.8 Hz), 8.52-8.50 (1H, m), 13.28 (1H, br s).	475	473	
2-76	CI—ONNO NONNO NONN	1H-NMR (DMSO-D6) δ: 1.40-1.31 (3H, m), 1.54-1.45 (3H, m), 1.73-1.65 (2H, m), 1.88-1.80 (2H, m), 2.73-2.66 (1H, m), 5.31 (2H, s), 7.31-7.25 (3H, m), 7.33 (1H, d, J = 7.7 Hz), 7.57-7.51 (3H, m), 7.70 (1H, td, J = 7.7, 1.7 Hz), 8.30 (2H, d, J = 8.4 Hz), 8.52 (1H, d, J = 4.6 Hz), 13.53 (1H, br s).	497	495	
2-77	O-O-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	1H-NMR (DMSO-D6) δ: 1.30-0.99 (5H, m), 1.83-1.60 (6H, m), 3.87 (2H, d, J = 6.3 Hz), 5.29 (2H, s), 7.06 (2H, d, J = 8.8 Hz), 7.29-7.23 (3H, m), 7.32 (1H, d, J = 7.7 Hz), 7.55-7.49 (1H, m), 7.68 (1H, t, J = 7.7 Hz), 8.27 (2H, d, J = 8.8 Hz), 8.51 (1H, d, J = 4.9 Hz), 13.27 (1H, br s).	503	501	
2-78	H ₃ C — CI— N — N — N — N — N — N — N — N — N — N	1H-NMR (DMSO-D6) δ: 0.90 (3H, t, J = 7.3 Hz), 1.27 (3H, d, J = 6.0 Hz), 1.47-1.31 (2H, m), 1.60-1.51 (1H, m), 1.72-1.63 (1H, m), 4.65-4.59 (1H, m), 5.31 (2H, s), 7.06 (2H, d, J = 9.0 Hz), 7.31-7.24 (3H, m), 7.34 (1H, d, J = 7.7 Hz), 7.53 (1H, t, J = 7.7 Hz), 7.70 (1H, td, J = 7.7, 1.5 Hz), 8.28 (2H, d, J = 9.0 Hz), 8.53 (1H, d, J = 4.2 Hz), 13.28 (1H, br s).	477	475	
2-79	H ₃ C O CI N N N OH N OH	1H-NMR (DMSO-D6) δ : 0.90 (3H, t, J = 7.3 Hz), 1.27 (3H, d, J = 6.0 Hz), 1.47-1.33 (2H, m), 1.61-1.51 (1H, m), 1.72-1.62 (1H, m), 4.65-4.59 (1H, m), 5.31 (2H, s), 7.06 (2H, d, J = 9.0 Hz), 7.31-7.24 (3H, m), 7.34 (1H, d, J = 7.9 Hz), 7.53 (1H, t, J = 7.9 Hz), 7.72-7.68 (1H, m), 8.28 (2H, d, J = 9.0 Hz), 8.53 (1H, d, J = 4.0 Hz), 13.28 (1H, br s).	477	475	
2-80	CI—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N	1H-NMR (DMSO-D6) δ: 5.31 (2H, s), 7.30-7.25 (3H, m), 7.33 (1H, d, J = 7.7 Hz), 7.47-7.43 (3H, m), 7.54 (1H, t, J = 8.5 Hz), 7.62-7.57 (2H, m), 7.73-7.67 (3H, m), 8.36 (2H, d, J = 8.4 Hz), 8.52 (1H, d, J = 4.0 Hz), 13.56 (1H, br s).	491	489	

[0793]

【表2-10】

2-81	CI————————————————————————————————————	1H-NMR (DMSO-D6) δ: 1.76-1.54 (6H, m), 2.04-1.95 (2H, m), 2.95-2.88 (1H, m), 5.31 (2H, s), 7.34-7.25 (4H, m), 7.58-7.51 (3H, m), 7.70 (1H, td, J = 7.7, 1.8 Hz), 8.29 (2H, d, J = 8.4 Hz), 8.54-8.52 (1H, m), 13.53 (1H, br s).	483	481	
2-82	CI—OH NOH NOH	1H-NMR (DMSO-D6) δ: 0.81-0.76 (2H, m), 0.96-0.90 (2H, m), 1.64-1.55 (1H, m), 5.31 (2H, s), 7.33-7.25 (4H, m), 7.58-7.50 (3H, m), 7.70 (1H, td, J = 7.7, 1.7 Hz), 8.28 (2H, d, J = 8.4 Hz), 8.53 (1H, d, J = 4.0 Hz), 13.52 (1H, br s).	455	453	
2-83	CI—ONNO ONNO PEFF	1H-NMR (DMSO-D6) δ: 1.31-1.40 (3H, m), 1.45-1.54 (3H, m), 1.65-1.72 (2H, m), 1.81-1.87 (2H, m), 2.67-2.72 (1H, m), 5.44 (2H, s), 7.25-7.30 (2H, m), 7.51-7.56 (4H, m), 8.14 (1H, d, J = 8.2 Hz), 8.29 (2H, d, J = 8.6 Hz), 8.94 (1H, s), 13.52 (1H, br s).	565	563	
2-84	H ₂ C CH ₃ CI N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ : 0.94 (6H, d, J = 4.2 Hz), 1.35-1.25 (2H, m), 1.49-1.40 (2H, m), 1.66-1.55 (2H, m), 1.89-1.79 (2H, m), 4.53-4.44 (1H, m), 5.30 (2H, s), 7.07 (2H, d, J = 8.8 Hz), 7.31-7.21 (3H, m), 7.34 (1H, d, J = 7.7 Hz), 7.56-7.48 (1H, m), 7.70 (1H, t, J = 7.1 Hz), 8.27 (2H, d, J = 8.8 Hz), 8.53 (1H, d, J = 4.6 Hz), 13.28 (1H, s).	517	515	
2-85	CI-VO N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	1H-NMR (DMSO-D6) δ: 5.38 (2H, s), 7.28 (1H, d, J = 8.1 Hz), 7.31 (1H, d, J = 8.1 Hz), 7.47-7.40 (5H, m), 7.55 (1H, d, J = 8.4 Hz), 7.61-7.57 (2H, m), 7.72 (2H, d, J = 8.8 Hz), 7.88-7.84 (1H, m), 8.36 (2H, d, J = 8.8 Hz), 8.58 (1H, d, J = 4.4 Hz).	491	489	
2-86	CI—CH ₃ N=N N NH HCI	1H-NMR (DMSO-D6) δ: 1.51 (3H, d, J = 6.4 Hz), 5.65 (1H, q, J = 6.4 Hz), 7.11 (1H, d, J = 8.6 Hz), 7.22 (1H, d, J = 7.7 Hz), 7.32 (1H, dd, J = 6.9, 5.4 Hz), 7.50-7.41 (5H, m), 7.63-7.59 (2H, m), 7.81-7.73 (3H, m), 8.40 (2H, d, J = 8.6 Hz), 8.55 (1H, d, J = 4.2 Hz).	505	503	
2-87	CI—OO OO HOO HOO HOO	1H-NMR (DMSO-D6) δ: 2.53 (3H, s), 5.40 (2H, s), 7.30 (1H, d, J = 8.2 Hz), 7.33 (1H, d, J = 8.2 Hz), 7.42-7.35 (2H, m), 7.49-7.44 (3H, m), 7.64-7.56 (3H, m), 7.73 (2H, d, J = 8.8 Hz), 7.91-7.88 (1H, m), 8.37 (2H, d, J = 8.8 Hz).	505	503	
2-88	N= N= N N N N N N N N N N N N N N N N N	1H-NMR (CDCl3) δ: 5.50 (0.90H, s), 5.60 (1.10H, s), 7.43-7.30 (5.45H, m), 7.69-7.54 (5.00H, m), 7.90-7.78 (2.00H, m), 8.05 (0.45H, d, J = 7.9 Hz), 8.71-8.60 (2.55H, m), 8.88 (0.55H, d, J = 4.2 Hz), 11.44 (0.45H, s), 14.69 (0.55H, br s).	482	480	
2-89	O-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	1H-NMR (DMSO-D6) δ: 0.38-0.32 (2H, m), 0.62-0.56 (2H, m), 1.30-1.20 (1H, m), 3.93 (2H, d, J = 6.8 Hz), 5.32 (2H, s), 7.08 (2H, d, J = 7.5 Hz), 7.36-7.24 (4H, m), 7.54 (1H, t, J = 8.4 Hz), 7.71 (1H, t, J = 7.6 Hz), 8.29 (2H, d, J = 7.5 Hz), 8.53 (1H, d, J = 4.6 Hz).	461	459	

[0794]

10

20

【表2-11】

2-90	O-OH3 OH OH3	1H-NMR (DMSO-D6) δ: 0.32-0.35 (2H, m), 0.55-0.59 (2H, m), 1.20-1.26 (1H, m), 2.79 (3H, s), 2.91 (3H, s), 3.91 (2H, d, J = 7.0 Hz), 4.98 (2H, s), 7.05 (2H, d, J = 8.8 Hz), 7.16 (1H, d, J = 8.4 Hz), 7.23 (1H, d, J = 8.4 Hz), 7.51 (1H, t, J = 8.4 Hz), 8.26 (2H, d, J = 8.8 Hz), 13.15 (1H, br s).	455	453
2-91		1H-NMR (DMSO-D6) δ: 1.76-1.53 (6H, m), 2.05-1.93 (2H, m), 2.95-2.88 (1H, m), 5.36 (2H, s), 7.28 (1H, dd, J = 7.9, 0.7 Hz), 7.30 (1H, d, J = 7.9 Hz), 7.43-7.36 (2H, m), 7.59-7.50 (3H, m), 7.81 (1H, td, J = 7.7, 1.8 Hz), 8.29 (2H, d, J = 8.6 Hz), 8.57 (1H, dq, J = 5.0, 0.8 Hz).	483	481
2-92	OI	1H-NMR (DMSO-D6) δ: 1.41-1.30 (3H, m), 1.56-1.45 (3H, m), 1.74-1.64 (2H, m), 1.89-1.80 (2H, m), 2.74-2.65 (1H, m), 5.37 (2H, s), 7.28 (1H, dd, J = 8.0, 0.6 Hz), 7.31 (1H, d, J = 8.0 Hz), 7.46-7.40 (2H, m), 7.59-7.52 (3H, m), 7.85 (1H, td, J = 7.8, 1.6 Hz), 8.29 (2H, d, J = 8.6 Hz), 8.59-8.58 (1H, m).	497	495
2-93	CI—VOH	1H-NMR (DMSO-D6) δ: 0.33-0.37 (2H, m), 0.54-0.59 (2H, m), 1.23-1.30 (1H, m), 4.21 (2H, d, J = 7.3 Hz), 5.23 (2H, s), 6.97 (1H, d, J = 8.8 Hz), 7.23-7.35 (7H, m), 7.55 (1H, t, J = 8.0 Hz), 8.48 (1H, dd, J = 8.8, 2.2 Hz), 9.05 (1H, d, J = 2.2 Hz), 13.41 (1H, br s).	461	459
2-94	H,C CI	1H-NMR (DMSO-D6) δ : 1.31 (9H, s), 5.38 (2H, s), 7.28 (1H, d, J = 8.2 Hz), 7.31 (1H, d, J = 8.2 Hz), 7.47-7.41 (2H, m), 7.52 (2H, d, J = 8.8 Hz), 7.56 (1H, t, J = 8.4 Hz), 7.86 (1H, td, J = 7.7, 1.5 Hz), 8.29 (2H, d, J = 8.8 Hz), 8.59 (1H, dd, J = 5.0, 0.8 Hz).	471	469
2-95	F N N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 5.38 (2H, s), 7.39-7.34 (2H, m), 7.46-7.43 (3H, m), 7.54 (1H, d, J = 7.9 Hz), 7.61-7.57 (2H, m), 7.66 (1H, d, J = 8.6 Hz), 7.72 (2H, d, J = 8.4 Hz), 7.82-7.76 (2H, m), 8.34 (2H, d, J = 8.4 Hz), 8.56 (1H, d, J = 4.9 Hz).	525	523
2-96	CI—VO—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—	1H-NMR (DMSO-D6) δ: 5.25 (2H, s), 7.36-7.24 (8H, m), 7.46 (1H, ddd, J = 7.8, 4.9, 1.0 Hz), 7.57 (1H, t, J = 8.3 Hz), 7.72 (1H, dt, J = 7.8, 1.0 Hz), 7.79 (2H, d, J = 8.6 Hz), 7.90 (1H, td, J = 7.8, 1.8 Hz), 8.40 (2H, d, J = 8.6 Hz), 8.65 (1H, dq, J = 4.9, 0.9 Hz).	491	489
2-97	CI—OO NI—OO NI—OOO	1H-NMR (DMSO-D6) δ: 5.40 (2H, s), 7.30 (1H, dd, J = 8.2, 0.7 Hz), 7.33 (1H, d, J = 8.2 Hz), 7.51-7.43 (3H, m), 7.58 (1H, t, J = 8.2 Hz), 7.75 (1H, dt, J = 7.8, 1.0 Hz), 7.80 (2H, dd, J = 6.7, 1.9 Hz), 7.95-7.87 (2H, m), 8.40 (2H, dd, J = 6.7, 1.9 Hz), 8.61 (1H, d, J = 5.0 Hz), 8.66 (1H, dq, J = 5.0, 0.9 Hz).	492	490
2-98	FF N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 2.48 (3H, s), 5.37 (2H, s), 7.23 (1H, d, J = 7.3 Hz), 7.28 (1H, d, J = 7.3 Hz), 7.48-7.45 (3H, m), 7.56 (1H, d, J = 7.9 Hz), 7.64-7.59 (2H, m), 7.67 (1H, d, J = 8.6 Hz), 7.82-7.72 (4H, m), 8.35 (2H, dd, J = 6.8, 2.0 Hz).	539	537

[0795]

10

20

20

30

【表2-12】

2-99	F P N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 2.41 (3H, s), 5.30 (2H, s), 7.09 (1H, d, J = 7.7 Hz), 7.14 (1H, d, J = 7.7 Hz), 7.51-7.45 (3H, m), 7.54 (1H, d, J = 7.7 Hz), 7.60 (1H, t, J = 7.7 Hz), 7.66-7.64 (3H, m), 7.78 (1H, d, J = 8.2 Hz), 7.81 (1H, dd, J = 8.2, 0.8 Hz), 8.61 (1H, dd, J = 8.2, 0.8 Hz), 9.40-9.39 (1H, m), 13.78 (1H, br s).	540	538
2-100	CH ₃ F N O N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 2.50 (3H, s), 5.41 (2H, s), 7.29-7.24 (1H, m), 7.35 (2H, dd, J = 4.9, 1.1 Hz), 7.43-7.39 (2H, m), 7.56 (2H, dd, J = 7.7, 4.2 Hz), 7.67 (1H, d, J = 8.6 Hz), 7.73 (2H, d, J = 8.6 Hz), 7.73 (2H, d, J = 8.6 Hz), 7.86-7.78 (2H, m), 8.36 (2H, d, J = 8.6 Hz), 8.59-8.57 (1H, m).	539	537
2-101	H ₂ C F N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 2.34 (3H, s), 5.41 (2H, s), 7.27 (1H, d, J = 7.7 Hz), 7.34 (1H, t, J = 7.7 Hz), 7.43-7.39 (4H, m), 7.56 (1H, d, J = 7.7 Hz), 7.68 (1H, d, J = 8.4 Hz), 7.72 (2H, dd, J = 6.7, 1.9 Hz), 7.87-7.78 (2H, m), 8.35 (2H, dd, J = 6.7, 1.9 Hz), 8.59 (1H, d, J = 4.4 Hz).	539	537
2-102	H ₃ C — H ₃ C — H ₄ C — H ₅ C	1H-NMR (DMSO-D6) δ: 2.35 (3H, s), 5.40 (2H, s), 7.27 (2H, d, J = 7.9 Hz), 7.42-7.37 (2H, m), 7.49 (2H, d, J = 7.9 Hz), 7.56 (1H, d, J = 7.9 Hz), 7.67 (1H, d, J = 8.6 Hz), 7.71 (2H, d, J = 8.6 Hz), 7.85-7.77 (2H, m), 8.34 (2H, d, J = 8.6 Hz), 8.58 (1H, dq, J = 4.9, 0.9 Hz).	539	537
2-103	F F F N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 5.39 (2H, s), 7.39-7.35 (2H, m), 7.56 (1H, d, J = 7.9 Hz), 7.69-7.64 (2H, m), 7.72 (2H, dd, J = 6.7, 1.9 Hz), 7.83-7.75 (3H, m), 7.89-7.85 (2H, m), 8.39 (2H, dd, J = 6.7, 1.9 Hz), 8.57 (1H, d, J = 4.9 Hz).	593	591
2-104	F F F N N N N N HCI OH	1H-NMR (DMSO-D6) 5: 5.40 (2H, s), 7.40-7.36 (2H, m), 7.56 (1H, d, J = 7.9 Hz), 7.67 (1H, d, J = 8.6 Hz), 7.72 (1H, d, J = 7.9 Hz), 7.84-7.76 (5H, m), 7.92 (1H, d, J = 7.7 Hz), 7.99 (1H, br s), 8.37 (2H, dd, J = 6.8, 2.0 Hz), 8.57 (1H, dq, J = 4.9, 0.9 Hz).	593	591
2-105	FF N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) 5: 5.40 (2H, s), 7.41-7.36 (2H, m), 7.56 (1H, d, J = 7.9 Hz), 7.68 (1H, d, J = 8.6 Hz), 7.84-7.77 (8H, m), 8.37 (2H, dd, J = 6.7, 1.9 Hz), 8.57 (1H, d, J = 4.9 Hz).	593	591
2-106	F HCI OH	1H-NMR (DMSO-D6) 5: 5.40 (2H, s), 7.41-7.36 (2H, m), 7.51-7.45 (3H, m), 7.57 (1H, d, J = 7.7 Hz), 7.64-7.60 (2H, m), 7.68 (1H, d, J = 8.4 Hz), 7.84-7.79 (3H, m), 8.10 (1H, dd, J = 10.5, 1.4 Hz), 8.19 (1H, dd, J = 8.2, 1.5 Hz), 8.57 (1H, dd, J = 4.9, 0.9 Hz).	543	541
2-107	F N O N N HCI OH H ₃ C	1H-NMR (DMSO-D6) 5: 2.54 (3H, s), 5.45 (2H, s), 7.30 (1H, td, J = 7.6, 1.1 Hz), 7.44-7.35 (3H, m), 7.56-7.50 (1H, m), 7.58 (1H, d, J = 7.9 Hz), 7.71-7.67 (2H, m), 7.75 (2H, dd, J = 6.7, 1.9 Hz), 7.81 (1H, t, J = 7.9 Hz), 7.92 (1H, br s), 8.36 (2H, dd, J = 6.7, 1.9 Hz).	557	555

[0796]

【表2-13】

2-108	CI FF NO	1H-NMR (DMSO-D6) &: 2.52 (3H, s), 5.43 (2H, s), 7.33 (1H, d, J = 7.7 Hz), 7.38 (1H, d, J = 7.7 Hz), 7.43 (1H, td, J = 7.7, 1.4 Hz), 7.48 (1H, td, J = 7.7, 1.9 Hz), 7.57 (1H, d, J = 8.0 Hz), 7.63 (1H, dd, J = 8.0, 1.2 Hz), 7.68 (1H, d, J = 8.3 Hz), 7.67.72 (3H, m), 7.81 (1H, t, J = 8.3 Hz), 7.90-7.84 (1H, m), 8.37 (2H, dd, J = 6.7, 1.9 Hz).	573	571	
2-109	H ₃ C F F O O O O O O O O O O O O O O O O O	1H-NMR (DMSO-D6) &: 2.51 (3H, s), 3.88 (3H, s), 5.41 (2H, s), 7.00 (1H, td, J = 7.5, 0.9 Hz), 7.12 (1H, d, J = 7.9 Hz), 7.29 (1H, d, J = 7.9 Hz), 7.34 (1H, d, J = 7.5 Hz), 7.43 (1H, ddd, J = 8.8, 7.1, 1.3 Hz), 7.52 (1H, dd, J = 7.5, 1.7 Hz), 7.57 (1H, d, J = 7.9 Hz), 7.69 (3H, m), 7.85-7.78 (2H, m), 8.34 (2H, dd, J = 6.8, 2.0 Hz).	569	567	
2-110	FF N N N N CH3	1H-NMR (DMSO-D6) δ: 2.24 (3H, s), 2.49 (3H, s), 5.41 (2H, s), 7.22 (1H, br s), 7.31 (1H, br s), 7.46-7.43 (3H, m), 7.60-7.57 (3H, m), 7.72-7.68 (3H, m), 7.82 (1H, t, J = 8.3 Hz), 8.33 (2H, dd, J = 6.7, 1.8 Hz).	553	551	
2-111	F N N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 5.42 (2H, d, J = 1.6 Hz), 7.42-7.48 (4H, m), 7.54 (1H, t, J = 4.2 Hz), 7.59-7.63 (2H, m), 7.64-7.73 (3H, m), 7.81 (2H, d, J = 4.2 Hz), 8.29 (2H, d, J = 8.6 Hz), 8.35-8.37 (1H, m).	543	541	
2-112	F F N N N N N N N CI	1H-NMR (DMSO-D6) δ: 5.37 (2H, s), 7.37 (1H, d, J = 8.3 Hz), 7.44-7.48 (3H, m), 7.55 (1H, d, J = 7.6 Hz), 7.58-7.66 (3H, m), 7.73 (2H, d, J = 8.6 Hz), 7.79 (1H, t, J = 8.1 Hz), 7.88 (1H, dd, J = 8.6, 2.3 Hz), 8.34 (2H, d, J = 8.6 Hz), 8.59 (1H, d, J = 2.3 Hz).	559	557	
2-113	F N N N N CH ₃	1H-NMR (DMSO-D6) & 2.27 (3H, s), 5.43 (2H, s), 7.35 (1H, s), 7.39 (1H, d, J = 5.8 Hz), 7.44-7.48 (3H, m), 7.57-7.63 (3H, m), 7.69-7.75 (3H, m), 7.83 (1H, t, J = 8.1 Hz), 8.35 (2H, d, J = 8.3 Hz), 8.51 (1H, d, J = 5.3 Hz).	539	537	
2-114	FF PF N O O O O O O O O O O O O O O O O O O	1H-NMR (DMSO-D6) 5: 7.36 (1H, d, J = 7.9 Hz), 7.44-7.48 (3H, m), 7.56 (1H, d, J = 7.9 Hz), 7.59-7.63 (2H, m), 7.66-7.75 (4H, m), 7.79 (1H, t, J = 8.1 Hz), 8.34 (2H, d, J = 8.6 Hz), 8.44 (1H, s).	539	537	
2-115	F F N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) &: 5.36 (2H, s), 7.41 (1H, dd, J = 8.8, 4.4 Hz), 7.44-7.48 (3H, m), 7.55 (1H, d, J = 7.9 Hz), 7.58-7.63 (2H, m), 7.65-7.75 (4H, m), 7.79 (1H, t, J = 8.1 Hz), 8.34 (2H, d, J = 8.6 Hz), 8.53 (1H, d, J = 3.0 Hz).	543	541	
2-116	F F N O O O O O O O O O O O O O O O O O	1H-NMR (DMSO-D6) δ: 2.53 (3H, s), 5.44 (2H, s), 7.54-7.30 (6H, m), 7.58 (1H, d, J = 7.7 Hz), 7.69 (1H, d, J = 8.0 Hz), 7.74 (2H, dd, J = 6.8, 1.8 Hz), 7.81 (1H, t, J = 8.0 Hz), 7.90 (1H, br s), 8.35 (2H, dd, J = 6.8, 1.8 Hz).	557	555	

[0 7 9 7]

10

20

10

20

30

【表2-14】

2-117	F-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	1H-NMR (DMSO-D6) δ: 2.51 (3H, s), 5.42 (2H, s), 7.33-7.29 (3H, m), 7.37 (1H, d, J = 7.9 Hz), 7.57 (1H, d, J = 7.9 Hz), 7.69-7.65 (3H, m), 7.72 (2H, dd, J = 6.8, 1.8 Hz), 7.89-7.78 (2H, m), 8.34 (2H, dd, J = 6.8, 1.8 Hz).	557	555
2-118	F F N N OH OH OH OH	1H-NMR (CDCl3) δ: 3.87 (3H, s), 5.27 (2H, s), 6.61 (1H, d, J = 8.2 Hz), 6.86 (1H, d, J = 7.3 Hz), 7.31 (1H, d, J = 8.6 Hz), 7.35-7.39 (3H, m), 7.43-7.51 (2H, m), 7.53-7.60 (3H, m), 7.64 (2H, d, J = 8.4 Hz), 8.50 (2H, d, J = 8.4 Hz).	555	553
2-119	F N N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 5.10 (2H, s), 6.16-6.32 (2H, m), 7.32-7.38 (1H, m), 7.44-7.48 (3H, m), 7.54-7.63 (4H, m), 7.70-7.75 (2H, m), 7.77-7.84 (1H, m), 8.34 (2H, d, J = 8.6 Hz).	541	539
2-120	HCI OH N CH3	1H-NMR (DMSO-D6) δ: 3.89 (3H, s), 5.48 (2H, s), 7.20-7.26 (2H, m), 7.44-7.49 (3H, m), 7.58-7.64 (3H, m), 7.69-7.75 (3H, m), 7.84 (1H, t, J = 8.2 Hz), 8.33 (2H, d, J = 8.6 Hz), 8.56 (1H, d, J = 6.0 Hz).	555	553
2-121	F-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	1H-NMR (DMSO-D6) δ: 5.47 (2H, s), 7.44-7.48 (3H, m), 7.55-7.63 (4H, m), 7.68 (1H, d, J = 8.6 Hz), 7.73 (2H, d, J = 8.6 Hz), 7.78-7.84 (2H, m), 8.03 (1H, t, J = 8.1 Hz), 8.35 (2H, d, J = 8.6 Hz), 13.58 (1H, br s).	593	591
2-122	FNNO NFF	1H-NMR (DMSO-D6) δ: 5.47 (2H, s), 7.44-7.51 (4H, m), 7.56-7.63 (3H, m), 7.67-7.74 (4H, m), 7.82 (1H, t, J = 8.1 Hz), 8.34 (2H, d, J = 8.6 Hz), 8.83 (1H, d, J = 5.1 Hz).	593	591
2-123	CI FF O O N OH HCI H3C	1H-NMR (DMSO-D6) δ: 2.50 (3H, s), 5.40 (2H, s), 7.29 (1H, d, J = 7.7 Hz), 7.33 (1H, d, J = 7.7 Hz), 7.59-7.46 (4H, m), 7.68 (1H, d, J = 8.4 Hz), 7.71-7.69 (1H, m), 7.75 (2H, dd, J = 6.7, 1.9 Hz), 7.84-7.78 (2H, m), 8.36 (2H, dd, J = 6.7, 1.9 Hz).	573	571
2-124	CI————————————————————————————————————	1H-NMR (DMSO-D6) δ: 2.49 (3H, s), 5.39 (2H, s), 7.26 (1H, d, J = 7.5 Hz), 7.31 (1H, d, J = 7.5 Hz), 7.53 (2H, dt, J = 8.7, 2.2 Hz), 7.56 (1H, d, J = 7.9 Hz), 7.63 (2H, dt, J = 8.7, 2.2 Hz), 7.67 (1H, d, J = 8.4 Hz), 7.74 (2H, dd, J = 6.7, 1.9 Hz), 7.83-7.76 (2H, m), 8.35 (2H, dd, J = 6.7, 1.9 Hz), 1.9 Hz).	573	571
2-125	CH ₃ FF O O N O HCI OH H ₃ C	1H-NMR (DMSO-D6) δ: 2.50 (3H, s), 3.80 (3H, s), 5.40 (2H, s), 7.03 (1H, dq, J = 8.6, 1.2 Hz), 7.19-7.14 (2H, m), 7.29 (1H, d, J = 7.3 Hz), 7.39-7.32 (2H, m), 7.57 (1H, d, J = 7.9 Hz), 7.67 (1H, d, J = 8.6 Hz), 7.73 (2H, dd, J = 6.7, 1.9 Hz), 7.85-7.77 (2H, m), 8.34 (2H, dd, J = 6.7, 1.9 Hz), 1.9 Hz).	569	567

[0798]

【表2-	1 5]				
2-126	H ₃ C O O HCI OH H ₃ C	1H-NMR (DMSO-D6) 5: 2.49 (3H, s), 3.81 (3H, s), 5.40 (2H, s), 7.01 (2H, dt, J = 9.5, 2.4 Hz), 7.28 (1H, d, J = 6.8 Hz), 7.32 (1H, d, J = 7.5 Hz), 7.57-7.53 (3H, m), 7.70-7.66 (3H, m), 7.80 (2H, t, J = 7.9 Hz), 8.33 (2H, dd, J = 6.8, 2.0 Hz).	569	567	
2-127	H ₃ C — H ₃ C OH H ₃ C	1H-NMR (DMSO-D6) δ: 2.35 (3H, s), 2.51 (3H, s), 5.42 (2H, s), 7.27 (2H, d, J = 7.7 Hz), 7.32 (1H, d, J = 7.7 Hz), 7.36 (1H, d, J = 7.7 Hz), 7.49 (2H, d, J = 8.2 Hz), 7.57 (1H, d, J = 7.7 Hz), 7.72-7.66 (3H, m), 7.88-7.77 (2H, m), 8.33 (2H, dd, J = 6.7, 1.9 Hz).	553	551	
2-128	H ₃ C N N N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 1.19 (3H, t, J = 7.5 Hz), 2.52 (3H, s), 2.65 (2H, q, J = 7.6 Hz), 5.43 (2H, s), 7.30 (2H, d, J = 8.4 Hz), 7.34 (1H, d, J = 7.7 Hz), 7.39 (1H, d, J = 7.7 Hz), 7.52 (2H, d, J = 8.4 Hz), 7.57 (1H, d, J = 7.7 Hz), 7.52 (2H, d, J = 8.4 Hz), 7.57 (1H, d, J = 7.7 Hz), 7.72-7.67 (3H, m), 7.81 (1H, t, J = 8.3 Hz), 7.87 (1H, br s), 8.33 (2H, dd, J = 6.7, 1.9 Hz).	567	565	
2-129	F F F N N N N N N N N N N N N N N N N N	1H-NMR (DMSO-D6) δ: 2.51 (3H, s), 5.42 (2H, s), 7.32 (1H, d, J = 7.1 Hz), 7.37 (1H, d, J = 7.7 Hz), 7.63-7.48 (4H, m), 7.72-7.67 (3H, m), 7.89-7.77 (3H, m), 8.37 (2H, dd, J = 6.8, 2.0 Hz).	623	621	
2-130	F F N N N N HCI OH H3C	1H-NMR (DMSO-D6) δ: 2.55 (3H, s), 5.47 (2H, s), 7.40 (1H, d, J = 7.1 Hz), 7.48-7.43 (3H, m), 7.58 (1H, d, J = 7.7 Hz), 7.69 (1H, d, J = 8.5 Hz), 7.77-7.72 (4H, m), 7.82 (1H, t, J = 8.5 Hz), 7.95 (1H, br s), 8.35 (2H, dd, J = 6.7, 1.9 Hz).	623	621	

[0799]

10

10

20

30

【表3-1】

3-1 1H-NMR (DMSO-D6) δ: 2.19 (6H, s), 2.30 (3H, s), 7.01 (2H, s), 7.90 (2H, d, J = 8.4 Hz), 8.51 (2H, d, J = 8.4 Hz), 13.26 (1H, br s). 3-2 1H-NMR (DMSO-D6) δ: 3.72 (3H, s), 4.59 (2H, d, J = 5.5 Hz), 5.41 (1H, t, J = 5.5 Hz), 7.45 (1H, d, J = 8.4 Hz), 7.67 (1H, d, J = 8.4 Hz), 7.92 (2H, d, J = 8.4 Hz), 13.70 (1H, br s). 1H-NMR (DMSO-D6) δ: 2.31 (3H, s), 3.71 (3H, s), 7.30 (1H, d, J = 8.4 Hz), 7.49 (1H, d, J = 8.4 Hz), 7.30 (1H, d, J = 8.4 Hz), 7.39 (2H, d, J = 8.3 Hz), 8.53 (2H, d, J = 8.3 Hz), 13.67 (1H, br s). 3-3 1H-NMR (DMSO-D6) δ: 2.31 (3H, s), 3.71 (3H, s), 7.36 (1H, d, J = 8.3 Hz), 8.53 (2H, d, J = 8.3 Hz), 8.53 (2H, d, J = 8.3 Hz), 13.67 (1H, br s). 1H-NMR (DMSO-D6) δ: 1.09 (3H, t, J = 7.0 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.38 (1H, d, J = 8.2 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.93 (2H, d, J = 8.2 Hz), 8.53 (2H, d, J = 8.2 Hz), 7.93 (2H, d, J = 8.2 Hz), 8.53 (2H, d, J = 8.2 Hz), 7.93 (2H, d, J = 8.2 Hz), 8.53 (2H, d, J = 8.2 Hz), 8
3-2 (2H, d, J = 5.5 Hz), 5.41 (1H, t, J = 5.5 Hz), 7.45 (1H, d, J = 8.4 Hz), 7.67 (1H, d, J = 8.4 Hz), 7.92 (2H, d, J = 8.4 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.70 (1H, br s). 1H-NMR (DMSO-D6) & 2.31 (3H, s), 3.71 (3H, s), 7.36 (1H, d, J = 8.4 Hz), 7.49 (1H, d, J = 8.4 Hz), 7.93 (2H, d, J = 8.3 Hz), 8.53 (2H, d, J = 8.4 Hz), 7.93 (2H, d, J = 8.3 Hz), 8.53 (2H, d, J = 8.3 Hz), 13.67 (1H, br s). 1H-NMR (DMSO-D6) & 1.09 (3H, t, J = 7.0 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.93 (2H, d, J = 8.2 Hz), 7.93 (2H, d, J = 8.2 Hz), 8.53 (2H, d, J = 8.2 Hz), 7.93 (2H, d, J = 8.2 Hz), 8.53 (2H, d, J = 8.2 Hz), 7.93 (2H, d, J = 8.2 Hz), 8.53 (2H, d, J = 8
3-3 (3H, s), 7.36 (1H, d, J = 8.4 Hz), 7.49 (1H, d, J = 8.4 Hz), 7.49 (1H, d, J = 8.4 Hz), 7.93 (2H, d, J = 8.3 Hz), 8.53 (2H, d, J = 8.3 Hz), 13.67 (1H, br s). 1H-NMR (DMSO-D6) δ: 1.09 (3H, t, J = 7.0 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 7.93 (2H, d, J = 8.2 Hz), 8.53 (2H, d, J =
3-4 Hz), 2.30 (3H, s), 3.94 (2H, q, J = 7.0 Hz), 7.34 (1H, d, J = 8.2 Hz), 7.48 (1H, d, J = 8.2 Hz), 8.53 (2H, d, J = 8.2 Hz), 7.93 (2H, d, J = 8.2 Hz), 8.53 (2H, d, J = 8.2
но о он ₃ 8.2 Hz), 13.66 (1H, br s).
3-5 1H-NMR (DMSO-D6) δ: 1.91 (3H, s), 3.74 (3H, s), 4.32 (2H, d, J = 5.8 Hz), 7.43 (1H, d, J = 8.4 Hz), 7.92 (2H, d, J = 8.4 Hz), 8.42 (1H, t, J = 5.8 Hz), 8.53 (2H, d, J = 8.4 Hz), 13.73 (1H, br s).
3-6 1H-NMR (DMSO-D6) δ: 2.17 (3H, s), 4.55 (2H, d, J = 5.1 Hz), 5.35 (1H, t, J = 5.2 Hz), 7.48 (1H, d, J = 8.4 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.91 (2H, d, J = 8.6 Hz), 8.51 (2H, d, J = 8.6 Hz), 8.51 (2H, d, J = 8.6 Hz), 13.61 (1H, br s).
3-7 1H-NMR (DMSO-D6) δ: 1.90 (3H, s), 2.21 (3H, s), 4.28 (2H, d, J = 5.7 Hz), 7.41 (1H, d, J = 8.4 Hz), 7.47 (1H, d, J = 8.4 Hz), 7.91 (2H, d, J = 8.2 Hz), 8.37 (1H, t, J = 5.8 Hz), 8.51 (2H, d, J = 8.2 Hz), 13.62 (1H, br s).
3-8 1H-NMR (DMSO-D6) δ: 1.16 (9H, s), 2.21 (3H, s), 4.27 (2H, d, J = 5.7 Hz), 7.34 (1H, d, J = 8.4 Hz), 7.91 (2H, d, J = 8.2 Hz), 8.09 (1H, t, J = 5.6 Hz), 8.51 (2H, d, J = 8.2 Hz), 13.64 (1H, br s).

[080]

【表3-2】

3-9	F F HO O CH ₃	1H-NMR (DMSO-D6) δ: 2.32 (3H, s), 3.47 (2H, t, J = 4.9 Hz), 3.88 (2H, t, J = 4.8 Hz), 4.70 (1H, br s), 7.34 (1H, d, J = 8.1 Hz), 7.47 (1H, d, J = 8.1 Hz), 7.92 (2H, d, J = 8.4 Hz), 8.51 (2H, d, J = 8.4 Hz), 13.56 (1H, br s).	426	424	
3-10	HO H ₃ C H ₃ C CH ₃	1H-NMR (DMSO-D6) δ : 1.33 (9H, s), 2.22 (3H, s), 4.30 (2H, d, J = 6.0 Hz), 7.52-7.54 (2H, m), 7.60 (1H, d, J = 8.4 Hz), 7.91 (2H, d, J = 8.4 Hz), 8.51 (2H, d, J = 8.4 Hz), 13.65 (1H, br s).	515	513	
3-11	F F CI F NO CH ₃	1H-NMR (DMSO-D6) 5: 3.79-3.87 (3H, m), 7.28 (1H, dd, J = 9.3, 3.7 Hz), 7.67 (1H, t, J = 9.2 Hz), 7.93 (2H, d, J = 8.6 Hz), 8.51 (2H, d, J = 8.6 Hz), 13.68 (1H, br s).	400	398	
3-12	CI F	1H-NMR (DMSO-D6) δ: 3.82 (3H, s), 5.22 (2H, s), 7.17 (2H, d, J = 9.0 Hz), 7.24-7.27 (1H, br m), 7.35 (1H, t, J = 7.2 Hz), 7.41 (2H, t, J = 7.3 Hz), 7.47 (2H, d, J = 7.1 Hz), 7.63-7.66 (1H, br m), 8.28 (2H, d, J = 9.0 Hz), 13.26 (1H, br s).	438	436	
3-13	CI————————————————————————————————————	1H-NMR (DMSO-D6) δ : 2.36 (3H, s), 5.01 (2H, s), 7.11-7.15 (1H, m), 7.22 (1H, d, J = 7.7 Hz), 7.39 (1H, d, J = 8.4 Hz), 7.52 (1H, d, J = 8.4 Hz), 7.60 (1H, td, J = 7.7, 1.7 Hz), 7.86 (2H, d, J = 8.4 Hz), 8.31 (1H, d, J = 4.0 Hz), 8.41 (2H, d, J = 8.4 Hz), 13.61 (1H, br s).	473	471	
3-14	H ₃ C H ₃ C CH ₃	1H-NMR (DMSO-D6) δ: 0.88 (6H, d, J = 6.6 Hz), 1.41 (6H, s), 1.83-1.95 (1H, m), 2.19 (3H, s), 2.54 (2H, d, J = 7.3 Hz), 4.33 (2H, d, J = 5.5 Hz), 7.28-7.38 (3H, m), 7.46 (1H, d, J = 8.4 Hz), 8.24 (2H, d, J = 8.2 Hz), 8.52-8.60 (1H, m), 13.35 (1H, br s).	521	519	
3-15	H,C H,C CI	1H-NMR (DMSO-D6) δ: 0.88 (6H, d, J = 6.6 Hz), 1.18 (3H, t, J = 7.1 Hz), 1.83-1.94 (1H, m), 2.19 (3H, s), 2.54 (2H, d, J = 7.1 Hz), 4.02 (2H, q, J = 7.1 Hz), 4.21 (2H, d, J = 5.7 Hz), 7.33 (2H, d, J = 8.4 Hz), 7.39 (1H, d, J = 8.2 Hz), 7.46 (1H, d, J = 8.2 Hz), 7.69-7.75 (1H, m), 8.24 (2H, d, J = 8.4 Hz), 13.33 (1H, br s).	455	453	
3-16	H ₀ C CI CH ₃ F F F CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 0.91 (3H, t, J = 7.3 Hz), 1.37 (6H, s), 1.60-1.67 (2H, m), 2.33 (3H, s), 2.62 (2H, t, J = 7.6 Hz), 4.31 (2H, d, J = 5.7 Hz), 7.30-7.38 (3H, m), 7.52 (1H, s), 8.10-8.15 (2H, m), 8.48 (1H, t, J = 5.7 Hz).	507	505	

[0801]

10

20

40

50

【表3-3】

	- -				
3-17	CI CH ₃ NH CH ₃ CH ₅ F F	1H-NMR (DMSO-D6) ō: 0.35 (2H, dt, J = 8.0, 2.9 Hz), 0.59 (2H, ddd, J = 9.1, 5.0, 2.9 Hz), 1.20-1.29 (1H, m), 1.38 (6H, s), 2.35 (3H, s), 3.93 (2H, d, J = 7.0 Hz), 4.32 (2H, d, J = 5.6 Hz), 7.05 (2H, d, J = 8.8 Hz), 7.44 (1H, s), 7.56 (1H, s), 8.29 (2H, d, J = 8.8 Hz), 8.49 (1H, t, J = 5.6 Hz), 13.08 (1H, br s).	535	533	
3-18	H ₃ C CH ₃	1H-NMR (DMSO-D6) δ: 0.99 (6H, d, J = 6.6 Hz), 1.41 (6H, s), 1.98-2.10 (1H, m), 2.18 (3H, s), 3.85 (2H, d, J = 6.6 Hz), 4.32 (2H, d, J = 5.7 Hz), 7.06 (2H, d, J = 8.4 Hz), 7.30 (1H, d, J = 8.2 Hz), 7.44 (1H, d, J = 8.2 Hz), 8.27 (2H, d, J = 8.4 Hz), 8.52-8.59 (1H, m), 13.23 (1H, br s).	537	535	
3-19	CI CH ₃	1H-NMR (DMSO-D6) δ: 0.35 (2H, td, J = 5.2, 4.1 Hz), 0.57-0.62 (2H, m), 1.24-1.27 (1H, m), 2.61 (3H, s), 3.94 (2H, d, J = 7.2 Hz), 7.09 (2H, d, J = 8.8 Hz), 7.64 (1H, s), 8.27 (1H, s), 8.30 (2H, d, J = 8.8 Hz), 13.20 (2H, br s).	412	410	
3-20	CI CH ₃ HO NH ₂	1H-NMR (DMSO-D6) δ: 0.35 (2H, td, J = 5.1, 4.1 Hz), 0.58-0.60 (2H, m), 1.22-1.30 (1H, m), 2.45 (3H, s), 3.94 (2H, d, J = 7.2 Hz), 7.09 (2H, d, J = 9.1 Hz), 7.56 (2H, s), 7.81 (1H, s), 7.85 (1H, s), 8.32 (2H, d, J = 8.8 Hz), 13.06 (1H, br s).	411	409	
3-21	CI CH ₃ HO CH ₃	1H-NMR (DMSO-D6) δ: 0.35 (2H, td, J = 5.2, 4.0 Hz), 0.57-0.62 (2H, m), 1.22-1.27 (1H, m), 2.42 (3H, s), 2.77 (3H, d, J = 4.7 Hz), 3.94 (2H, d, J = 7.0 Hz), 7.09 (2H, d, J = 9.1 Hz), 7.56 (1H, s), 7.77 (1H, s), 8.31 (2H, d, J = 9.1 Hz), 8.32 (1H, s), 13.09 (1H, br s).	425	423	
3-22	O CH ₃ CH ₃ CH ₃ CH ₃	1H-NMR (DMSO-D6) δ: 0.35 (2H, td, J = 5.6, 4.4 Hz), 0.57-0.61 (2H, m), 1.21-1.29 (1H, m), 2.28 (3H, s), 2.81 (3H, s), 3.02 (3H, s), 3.93 (2H, d, J = 7.2 Hz), 7.08 (2H, d, J = 9.1 Hz), 7.59 (1H, s), 7.62 (1H, s), 8.30 (2H, d, J = 9.1 Hz), 13.10 (1H, br s).	439	437	
3-23	HO CI CH3 CH3	1H-NMR (DMSO-D6) δ: 0.35 (2H, td, J = 5.3, 4.0 Hz), 0.57-0.61 (2H, m), 0.90 (3H, t, J = 7.3 Hz), 1.20-1.30 (2H, m), 1.30-1.40 (2H, m), 1.46-1.53 (2H, m), 2.41 (3H, s), 3.24 (2H, q, J = 6.9 Hz), 3.94 (2H, d, J = 7.2 Hz), 7.09 (2H, d, J = 9.1 Hz), 7.56 (1H, s), 7.74 (1H, s), 8.31 (2H, d, J = 9.1 Hz), 8.37 (1H, t, J = 5.5 Hz), 13.09 (1H, br s).	467	465	

[0802]

試験例1:ヒトmPGES-1酵素阻害活性の評価

被験物質のヒトmPGES-1酵素阻害活性は、Xuらの報告に準じて評価した(XU, Det al. MF63 [2-(6-chloro-1H-phenanthro[9,10-d]imidazol-2-yl)-isophthalonitrile], a sele ctive microsomal prostaglandin E synthase-1 inhibitor, relieves pyresis and pain in preclinical models of inflammation. J Pharmacol Exp Ther. Sep 2008, Vol.326, No.3, pages 754-763.)。すなわち、被験物質存在下でヒトmPGES-1により産生されるPG E2量を、HTRF (homogeneous time resolved fluorescence) 法で測定することにより、被 験物質のヒトmPGES-1酵素阻害活性を求めた。

[0803]

1)ヒトmPGES-1発現細胞のミクロソーム画分の調製

PCR (Polymerase Chain Reaction) 法により、自社で調製したヒトmPGES-1発現プラス ミドDNA(pME-18S/iPGES-1)を鋳型として、翻訳開始コドンの直前にBamHI認識切断配列 を、翻訳終止コドンの直下にEcoRI認識切断配列を付加したヒトmPGES-1を含むDNA断片を 増幅した。精製したDNA断片をBamHI及びEcoRIで消化し、同様にBamHI及びEcoRIで消化し たpcDNA3.1(+) (Invitrogen、型番V790-20) にDNA Ligation kit ver.2.1 (タカラバイオ 、型番6022)を用いて連結した。得られたLigation産物で形質転換した大腸菌DH5 (TOY OBO、型番DNA-903)から、ヒトmPGES-1発現プラスミドDNAを単離した。ベクターにクローニングしたヒトmPGES-1の塩基配列を、BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems、品番4337455)を用いたDye Terminator法によって決定した。決定した配列はNCBI Reference Databaseに登録されているヒトmPGES-1 (Accession number NM_004878)の蛋白質翻訳領域の配列と同一であった。

ヒトmPGES-1発現プラスミドDNAを、遺伝子導入試薬 (FreeStyle MAX Reagent (Invitro gen、品番16447-100)) を用いてチャイニーズハムスター卵巣由来細胞 (FreeStyle CHO-S Cell、Invitrogen、品番R800-07) にトランスフェクションし、8 mmol/L L-グルタミンを含む培地 (GIBCO FreeStyle CHO Expression Medium、Invitrogen、品番12651-022)で48時間振盪培養した (8% CO₂、37)。

CHO-S細胞をHomogenate Buffer (100 mmol/L リン酸カリウム (pH7.4)、250 mmol/L Sucrose、100 mmol/L EDTA、コンプリート EDTA free (Roche、品番1873580))に懸濁した。Ultrasonic disruptor UD-201 (トミー精工)を用いて、output: 3、duty cycle: 50で30秒間、懸濁した細胞を破砕した。遠心分離(1,000 x g、5分、4)で沈殿を除去した後、上清を遠心分離(5,000 x g、10分、4)した。その上清に対してさらに遠心分離(105,000 x g、60分、4)を行った。得られた沈殿をResuspension Buffer (100 mmol/L リン酸カリウム (pH 7.4)、250 mmol/L スクロース、100 mmol/L EDTA、10% グリセロール)で懸濁し、ミクロソーム画分とした。

ミクロソーム画分のタンパク質濃度は、Bradford法(Protein Assay Kit、Bio-Rad)で測定した。ミクロソーム画分は、液体窒素を用いて急速凍結した後、-80 で保存した。ラビット抗mPGES-1ポリクローナル抗体(ThermoFisher Scientific、品番PA1-10264)を用いたWestern Blotにより、ミクロソーム画分のヒトmPGES-1を検出した。

[0804]

2) ヒトmPGES-1酵素阻害活性の評価

96穴V底プレート(Corning、品番3363)に、 $0.1\ mol/L\ U$ ン酸カリウム、pH 7.4(以下 KPBと記載する)で希釈した被験物質溶液もしくはDMSO(ナカライテスク、品番13407-45)を $5\ \mu$ L/wellずつ添加した。反応時における最終DMSO濃度は2%(v/v)とした。更に、還元型GSH($12.5\ mmol/L\ KPB溶液、SIGMA、品番G6529-25G)で、タンパク濃度が<math>5\ \mu$ g/mLとなるように希釈した、ヒトmPGES-1を発現させたCHO-S細胞のミクロソーム画分を $20\ \mu$ L/we IIずつ添加した。用いたミクロソーム画分量は、以下に示す反応条件下で産生されるPGE2量と用いるミクロソーム画分量が直線性を示す範囲内のミクロソーム画分量である。ブランクには、還元型GSH($12.5\ mmol/L\ KPB溶液$)を $20\ \mu$ L/wellずつ添加した。室温で $10\ h$ 間 静置した後、PGH2(冷却したアセトンで $100\ \mu$ g/mLに溶解したPGH2を、 $10\ \mu$ g/mLになるようにD-PBS(-)(日研生物医学研究所、品番CM6201)で希釈したもの、Cayman Chemical、品番17020)を $25\ \mu$ L/wellずつ添加し、室温で $45\ h$ 間静置した。塩化スズ(II)二水和物($2\ m$ g/mL $10\ m$ mol/Lクエン酸溶液、和光純薬工業、品番 $204\ -01562$)を $50\ \mu$ L/wellずつ添加し、プレートを軽く振盪し、酵素反応を停止させた。

上記酵素反応液中のPGE2濃度を、Prostaglandin E2 assay (CISbio Bioassays、品番62 P2APEC)を用いて、取扱い説明書に従い、測定した。検量線用標品は、PGE2 (Cayman Che mical、品番14010)を用いた。RUBYstar (BMG Labtech)を用いて、337 nmの励起光に対する620 nmと665 nmの時間分解蛍光を測定した。PGE2濃度はPGE2検量線から外挿した。各処置をしたウェルのPGE2濃度の平均値をデータとした。

被験物質のmPGES-1酵素阻害活性(%)は、下記式1に従い、算出した。

[式1]

mPGES-1酵素阻害活性(%) = ($PGE2_A$ - $PGE2_X$)/($PGE2_A$ - $PGE2_B$) × 100

PGE2_A: 媒体溶液処置ウェルのPGE2濃度

PGE2_B:ブランクウェルのPGE2濃度

PGE2_X:被験物質処置ウェルのPGE2濃度

被験物質のIC₅₀値(50%阻害濃度)は、下記式2に従い、算出した。

[式2]

10

20

30

 IC_{50} 値 = $10^{\{log10(D / E) \times (50 - G) / (F - G) + log10(E)\}}$

D:50%阻害を挟む2点のうち、50%以上の阻害活性を示した被験物質濃度

E:50%阻害を挟む2点のうち、50%以下の阻害活性を示した被験物質濃度

F:被験物質濃度がDの時のmPGES-1酵素阻害活性(%)

G:被験物質濃度がEの時のmPGES-1酵素阻害活性(%)

結果を表4-1から4-9に示した。

[0805]

【表4-1】

実施例番号	E⊦mPGES-1	実施例番号	EhmPGES-1	実施例番号	는 MPGES-1
大旭四面马	酵素阻害活性(μM)	大旭四百	酵素阻害活性(μM)	大旭四百	酵素阻害活性(μM)
1-1	0.813	1-18	0.114	1-35	0.022
1-2	0.138	1-19	0.411	1-36	0.0007
1-3	0.164	1-20	0.0016	1-37	0.0008
1-4	0.025	1-21	0.988	1-38	0.0015
1-5	0.672	1-22	0.0027	1-39	0.0019
1-6	0.163	1-23	0.134	1-40	2.231
1-7	0.652	1-24	0.0006	1-41	0.0023
1-8	27.0	1-25	0.108	1-42	0.0010
1-9	0.601	1-26	0.018	1-43	0.0020
1-10	5% 阻害 (at 30 µM)	1-27	0.0010	1-44	0.0006
1-11	42% 阻害 (at 30 μM)	1-28	0.0006	1-45	0.138
1-12	0.015	1-29	0.0011	1-46	0.0007
1-13	0.397	1-30	0.0006	1-47	0.043
1-14	1.413	1-31	0.0010	1-48	0.0009
1-15	0.0074	1-32	0.0007	1-49	0.0009
1-16	0.010	1-33	0.0008	1-50	0.0009
1-17	0.735	1-34	0.0059	1-51	0.0010

[0806]

10

20

30

【表4-2】

実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)
1-52	0.0006	1-69	0.0003	1-86	0.0058
1-53	0.0045	1-70	0.0007	1-87	0.0008
1-54	0.0009	1-71	0.0025	1-88	0.0012
1-55	0.0011	1-72	0.0013	1-89	0.0009
1-56	0.0006	1-73	0.0006	1-90	0.0004
1-57	0.0005	1-74	0.0006	1-91	0.0004
1-58	0.0005	1-75	0.0067	1-92	0.0005
1-59	0.0006	1-76	0.0017	1-93	0.0007
1-60	0.0004	1-77	0.0009	1-94	0.0046
1-61	0.0007	1-78	0.0022	1-95	0.0021
1-62	0.0010	1-79	0.0012	1-96	0.081
1-63	0.0005	1-80	0.0031	1-97	0.0091
1-64	0.0019	1-81	0.0006	1-98	0.0009
1-65	0.0086	1-82	0.0008	1-99	0.0007
1-66	0.0041	1-83	0.011	1-100	0.0009
1-67	0.0010	1-84	0.0006	1-101	0.0058
1-68	0.0003	1-85	0.0005	1-102	0.0009

[0 8 0 7]

10

20

【表4-3】

実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)
1-103	0.0013	1-120	0.048	1-137	0.0005
1-104	0.0015	1-121	0.0012	1-138	0.0005
1-105	0.0007	1-122	0.0013	1-139	0.0006
1-106	0.0007	1-123	0.0023	1-140	0.0005
1-107	0.0012	1-124	0.0009	1-141	0.0011
1-108	0.0006	1-125	0.0008	1-142	0.0005
1-109	0.0025	1-126	0.0008	1-143	0.0010
1-110	0.0009	1-127	0.0008	1-144	0.0009
1-111	0.0012	1-128	0.0013	1-145	0.0005
1-112	0.0009	1-129	0.0006	1-146	0.0004
1-113	0.0009	1-130	0.009	1-147	0.0008
1-114	0.0059	1-131	0.0009	1-148	0.0017
1-115	0.0006	1-132	0.0003	1-149	0.0008
1-116	0.0020	1-133	0.0005	1-150	0.0004
1-117	0.0016	1-134	0.004	1-151	0.0004
1-118	0.0019	1-135	0.0005	1-152	0.0004
1-119	0.0010	1-136	0.0005	1-153	0.0005

[0 8 0 8]

10

20

【表4-4】

実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)
1-154	0.0005	1-171	0.0005	1-188	0.0016
1-155	0.0035	1-172	0.017	1-189	1.1
1-156	0.0041	1-173	0.0054	1-190	0.047
1-157	0.0007	1-174	0.0031	1-191	0.015
1-158	0.012	1-175	0.0013	1-192	41% 阻害 (at 30 μM)
1-159	0.0007	1-176	0.0018	1-193	8.7
1-160	0.0014	1-177	0.0013	1-194	10.5
1-161	0.0013	1-178	0.0014	1-195	6.0
1-162	0.0012	1-179	0.016	1-196	0.042
1-163	0.0010	1-180	0.0041	1-197	0.289
1-164	0.0037	1-181	0.0024	1-198	0.014
1-165	0.0009	1-182	0.0016	1-199	0.031
1-166	0.0011	1-183	0.0013	1-200	0.010
1-167	0.0019	1-184	0.0019	1-201	0.306
1-168	0.0021	1-185	0.0017	1-202	0.0082
1-169	0.0020	1-186	0.0014	1-203	0.020
1-170	0.0015	1-187	0.0053	1-204	0.034

[0809]

10

20

10

20

30

40

【表4-5】

実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)
1-205	0.367	1-222	0.165	1-239	0.428
1-206	0.014	1-223	0.007	1-240	0.428
1-207	0.0043	1-224	5.8	1-241	0.278
1-208	0.016	1-225	4.2	1-242	0.082
1-209	0.059	1-226	2.2	1-243	0.120
1-210	0.288	1-227	0.050	1-244	0.021
1-211	0.063	1-228	0.672	1-245	0.108
1-212	0.032	1-229	0.532	1-246	0.307
1-213	0.088	1-230	0.750	1-247	0.011
1-214	0.024	1-231	0.045	1-248	0.016
1-215	0.452	1-232	0.521	1-249	0.226
1-216	0.039	1-233	0.848	1-250	0.012
1-217	0.126	1-234	1.0	1-251	0.018
1-218	0.070	1-235	0.070	1-252	0.511
1-219	0.041	1-236	0.263	1-253	0.791
1-220	0.016	1-237	1.3	1-254	0.030
1-221	0.079	1-238	0.0074	1-255	0.045

[0 8 1 0]

【表4-6】

実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)
1-256	0.098	2-6	28% 阻害 (at 30 μM)	2-23	0.155
1-257	0.017	2-7	3.5	2-24	2.4
1-258	1.9	2-8	1.9	2-25	0.249
1-259	0.176	2-9	6.4	2-26	2.7
1-260	0.147	2-10	0.073	2-27	7.7
1-261	44% 阻害 (at 30 μM)	2-11	0.0060	2-28	3.7
1-262	0.007	2-12	0.141	2-29	0.503
1-263	0.702	2-13	23.1	2-30	43% 阻害 (at 30 μM)
1-264	0.163	2-14	14.3	2-31	0.031
1-265	0.056	2-15	16.4	2-32	0.014
1-266	0.011	2-16	0.412	2-33	0.102
1-267	0.150	2-17	0.039	2-34	0.163
2-1	0.283	2-18	0.0080	2-35	0.017
2-2	21.3	2-19	0.211	2-36	0.053
2-3	14.7	2-20	0.052	2-37	0.041
2-4	0.066	2-21	0.341	2-38	1.0
2-5	0.101	2-22	0.219	2-39	0.450

[0811]

10

20

【表4-7】

実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)
2-40	1.3	2-57	0.025	2-74	0.424
2-41	0.429	2-58	0.145	2-75	0.0037
2-42	0.239	2-59	0.095	2-76	0.0058
2-43	0.570	2-60	0.121	2-77	0.0037
2-44	0.563	2-61	0.092	2-78	0.0068
2-45	0.012	2-62	0.0093	2-79	0.0037
2-46	0.494	2-63	0.259	2-80	0.0016
2-47	0.295	2-64	0.012	2-81	0.0027
2-48	0.019	2-65	0.151	2-82	0.0017
2-49	0.014	2-66	0.016	2-83	0.051
2-50	0.061	2-67	0.027	2-84	0.017
2-51	0.090	2-68	0.672	2-85	0.0016
2-52	0.100	2-69	0.084	2-86	0.0022
2-53	0.011	2-70	0.158	2-87	0.0018
2-54	0.170	2-71	0.172	2-88	0.0020
2-55	0.010	2-72	0.283	2-89	0.018
2-56	0.018	2-73	0.402	2-90	2.1

[0812]

10

20

【表4-8】

実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)	実施例番号	ヒトmPGES-1 酵素阻害活性(μM)
2-91	0.0016	2-108	0.0064	2-125	0.0043
2-92	0.0044	2-109	0.0028	2-126	0.0046
2-93	0.038	2-110	0.0074	2-127	0.0062
2-94	0.0041	2-111	0.0044	2-128	0.013
2-95	0.0050	2-112	0.0059	2-129	0.032
2-96	0.021	2-113	0.0051	2-130	0.035
2-97	0.0089	2-114	0.0049	3-1	0.484
2-98	0.0037	2-115	0.0030	3-2	0.148
2-99	0.0017	2-116	0.0055	3-3	0.141
2-100	0.0056	2-117	0.0047	3-4	0.202
2-101	0.0065	2-118	0.0071	3-5	0.341
2-102	0.0059	2-119	0.0018	3-6	0.056
2-103	0.010	2-120	0.0041	3-7	0.019
2-104	0.018	2-121	0.014	3-8	0.0010
2-105	0.018	2-122	0.015	3-9	0.776
2-106	0.0050	2-123	0.012	3-10	0.016
2-107	0.0038	2-124	0.012	3-11	0.093

【 0 8 1 3 】 【表 4 - 9 】

ヒトmPGES-1 ヒトmPGES-1 ĽトmPGES-1 実施例番号 実施例番号 実施例番号 酵素阻害活性(μM) 酵素阻害活性(μM) 酵素阻害活性(μM) 3-12 0.028 3-16 0.0021 3-20 1.1 3-13 0.034 3-17 0.0008 3-21 0.611 3-14 0.002 3-18 0.0012 3-22 6.9 3-15 0.0051 3-19 24.6 3-23 0.041

[0814]

試験例2:mPGES-1阻害剤のカニクイザルの正常眼圧に対する作用評価

10

20

30

本試験は、雄性カニクイザルを用いて行った。個体間差及び投与日間差の影響を排除するため、表 5 に示すように、クロスオーバー試験にて評価した。

[0815]

【表5】

動物番号	第1クール	第2クール	第3クール
SX1M01	被験物質10 mg/kg	陽性対照物質	対照物質
SX1M02	陽性対照物質	対照物質	被験物質30 mg/kg
SX1M03	陽性対照物質	対照物質	被験物質30 mg/kg
SX1M04	対照物質	被験物質30 mg/kg	陽性対照物質
SX1M05	対照物質	被験物質30 mg/kg	陽性対照物質

[0816]

残留した被験物質の影響を排除するため、各試験の間に1週間のウォッシュアウト期間を設けた。試験日の給餌は最終測定後に行った。

被験物質(実施例2-98の化合物)は、0.5%メチルセルロース(和光純薬工業)に懸濁し、ポリプロピレン製注射筒(滅菌済ディスポーザブル製品、二プロ株式会社)及び胃カテーテル(ネラトンA型9号、株式会社イズモヘルス)を用い、強制経口投与した。投与量は、個体ごとに投与前日の体重を基準として、10 mg/kg/5mL(N=1)又は30 mg/kg/5mL(N=4)とした。対照物質群には、被験物質と同様の方法で媒体(0.5%メチルセルロース(MC))を投与した。陽性対照物質としてキサラタン(登録商標)点眼液0.005%(Pfizer社、一般名:ラタノプロスト)を用いた。陽性対照物質は、マイクロピペットを用いて一眼あたり20μLを点眼投与した。点眼後、約15秒間下眼瞼を軽く押さえて涙嚢部を軽く固定した。反対眼も同様に処理した。眼圧測定は、投与直前、投与2、4、8、12及び24時間後に実施した。眼圧測定前は、動物をモンキーチェアに固定し、眼科用表面麻酔剤(ベノキシール(登録商標)点眼液0.4%、参天製薬株式会社、一般名:オキシブプロカイン塩酸塩)を点眼投与して局所麻酔した。開瞼器(株式会社はんだや)を装着後、空圧圧平式眼圧計(Model30 Classic、ライカート社)を用いて両目の眼圧を測定した。

被験物質の消失を確認するため、第3クール投与24時間後の眼圧測定後、無麻酔にてヘパリンナトリウムで処理したポリプロピレン製注射筒及び23ゲージの注射針(いずれも滅菌済ディスポーザブル製品)を用いて大腿静脈より1 mLの採血を行い、被験物質の血漿中未変化体濃度を測定した。

測定眼ごとに、各測定時点における投与直前値からの眼圧差(mmHg;小数点第1位まで)を求めた後、左右眼の平均値を算出してその個体の評価データとした。群ごとに眼圧差の平均値及び標準偏差(小数点第2位まで)を算出し、対照物質群と、被験物質投与群又は陽性対照物質投与群について、F検定による等分散性の検定(有意水準5%)を行い、分散が等しい場合はStudentのt検定を、分散が等しくない場合はAspin-Welchのt検定を行った。また、各群で最大眼圧下降幅(mmHg;投与直前値からの最大下降値、小数点第1位まで)を求め、同様に群間で比較した。検定はいずれも両側で、有意水準5%で対照物質群との差が認められた場合に有意な変動とし、図1中には5%と1%に区別して示した。なお、被験物質10 mg/kg投与群は1頭であることから、統計学的解析から除外した。

[0817]

本試験に用いたカニクイザルの被験物質投与前における眼圧は、19.6±1.7 mmHgであった。第3クール投与24時間後の眼圧測定後において、対照物質群及び陽性対照物質投与群

10

20

30

40

の血漿中被験物質の未変化体濃度は検出下限未満であった。結果を図1に示した。

試験例3:モルモット房水中プロスタグランジン組成に対する作用評価

被験物質を0.5%ポリソルベート80(フルカ)を含有した生理食塩水に溶解し、0.003%点眼溶液(pH 7.0~8.0)を調製した。マイクロピペットを用いてHartley系雄性モルモットに一眼あたり20 μLを点眼投与した。点眼後、約15秒間下眼瞼を軽く押さえて涙嚢部を軽く固定した。反対眼も同様に処理した。対照物質群には、被験物質と同様の方法で媒体(0.5%ポリソルベート含有生理食塩水)を投与した。点眼23時間後にモルモットの両眼にミドリンP(登録商標)0.5%点眼液(参天製薬株式会社、一般名:トロピカミド/フェニレフリン塩酸塩)を一滴ずつ滴下し、散瞳させた。モルモットをエスカイン(登録商標)吸入麻酔薬(Pfizer社、一般名:イソフルラン)で麻酔し、両眼の角膜を30Gの注射針で穿刺し、漏出した房水(一次房水)を採取した。さらに1時間後(点眼投与24時間後)に再度モルモットをイソフルランで麻酔し、同様にして二次房水を採取した。各群4匹8眼より得た二次房水中のプロスタグランジン類の濃度をLC/MS/MS システム(超高速液体クロマトグラフ:株式会社島津製作所社製Nexera(登録商標)、質量分析計:AB SCIEX社製QTRAP(登録商標)5500)にて測定し、全プロスタグランジンの濃度の和に対する各プロスタグランジンの濃度比を算出した。結果を表6に示した。

【 0 8 1 9 】 【表 6 】

実施例番号	PGE2 (%)	PGF2 α (%)	6-keto- PGF1α(%)	PGD2 (%)	TXB2 (%)
媒体	80.8	7	6.8	4.7	0.7
1-51	50.7	14	21.7	13.2	0.4
1-81	60	9.8	15.7	13.2	1.3
1-98	38	14.2	31.2	16.3	0.3
1-109	29.5	14.1	37.5	18.9	0.1
1-122	37.3	11.7	27.7	23	0.2
1-128	36.2	13.9	29.7	19.3	0.8
1-129	62.5	10.2	18.1	9.2	0
1-130	73.6	8	11.2	6.2	1
1-131	42.9	9.8	27.9	18.8	0.6
1-135	56.1	12.7	19.4	10.9	0.9
1-136	66.7	7.9	17.3	7.4	0.7
1-137	49.5	11.3	24.8	14.1	0.3
1-150	69	8.9	14	8	0.2
1-169	28.7	13.5	40.3	17	0.5
1-178	30	13	36.6	20.1	0.3
1-184	57	10.3	21.2	10.7	0.8
1-185	50	11	25.4	12.1	1.6
2-98	37.8	14.8	27.3	20.1	0

[0820]

試験例4:mPGES-1阻害剤のカニクイザルの正常眼圧に対する作用評価

本試験は、雄性カニクイザルを用いて行う。個体間差及び投与日間差の影響を排除する ため、表 7 に示すように、クロスオーバー試験にて評価する。

[0821]

20

10

30

【表7】

動物番号	第1クール	第2クール	第3クール	第4クール
SX1M01	対照物質	被験物質	被験物質+ 陽性対照物質	陽性対照物質
SX1M02	被験物質	対照物質	陽性対照物質	被験物質+ 陽性対照物質
SX1M03	陽性対照物質	被験物質+ 陽性対照物質	被験物質	対照物質
SX1M04	被験物質+ 陽性対照物質	被験物質	対照物質	陽性対照物質
SX1M05	対照物質	陽性対照物質	被験物質+ 陽性対照物質	被験物質
SX1M06	被験物質	対照物質	陽性対照物質	被験物質+ 陽性対照物質

[0822]

残留した被験物質の影響を排除するため、各試験の間に1週間のウォッシュアウト期間を設ける。試験日の給餌は最終測定後に行う。

被験物質は、0.5%ポリソルベート80(フルカ)を含有した生理食塩水に溶解し、0.1%点眼溶液(pH 7.9~8.1)を調製する。対照物質群には、被験物質と同様の方法で媒体(0.5%ポリソルベート含有生理食塩水)を投与する。陽性対照物質としてキサラタン(登録商標)点眼液0.005%(Pfizer社、一般名:ラタノプロスト)を用いる。被験物質は、マイクロピペットを用いて一眼あたり30 μ Lを5分間隔で5回点眼投与した後に媒体を1回投与する(一眼あたり計6回点眼)。媒体群及び陽性対照物質群は各々を1回投与後に,媒体を5回投与する(一眼あたり計6回点眼)。被験物質と陽性対照物質の併用群は陽性対照物質を点眼後に被験物質を5回点眼する(一眼あたり計6回点眼)。各回の点眼後、約15秒間下眼瞼を軽く押さえて涙嚢部を軽く固定する。反対眼も同様に処理する。眼圧測定は、投与直前、投与2、4、8、12及び24時間後に実施する。眼圧測定前は、動物をモンキーチェアに固定し、眼科用表面麻酔剤(ベノキシール(登録商標)点眼液0.4%、参天製薬株式会社、一般名:オキシブプロカイン塩酸塩)を点眼投与して局所麻酔する。開瞼器(株式会社はんだや)を装着後、空圧圧平式眼圧計(Model30 Classic、ライカート社)を用いて両目の眼圧を測定する。

測定眼ごとに、各測定時点における投与直前値からの眼圧差(mmHg;小数点第1位まで)を求めた後、左右眼の平均値を算出してその個体の評価データとする。群ごとに眼圧差の平均値及び標準偏差(小数点第2位まで)を算出し、対照物質群と、被験物質投与群又は陽性対照物質投与群について、F検定による等分散性の検定(有意水準5%)を行い、分散が等しい場合はStudentのt検定を、分散が等しくない場合はAspin-Welchのt検定を行う。また、各群で最大眼圧下降幅(mmHg;投与直前値からの最大下降値、小数点第1位まで)を求め、同様に群間で比較する。検定はいずれも両側で、有意水準5%で対照物質群との差が認められた場合に有意な変動とする。

[0823]

本発明の製剤例としては、例えば下記の製剤が挙げられる。しかしながら、本発明はこれら製剤例によって限定されるものではない。

製剤例1(カプセルの製造)

1)実施例1-86の化合物	30	mg
2)微結晶セルロース	10	mg
3)乳糖	19	mg
4)ステアリン酸マグネシウム	1	mg

10

20

30

40

1)、2)、3)及び4)を混合して、ゼラチンカプセルに充填する。

製剤例2(錠剤の製造)

1)実施例1-86の化合物 10 g
2)乳糖 50 g
3)トウモロコシデンプン 15 g
4)カルメロースカルシウム 44 g
5)ステアリン酸マグネシウム 1 g

1)、2)、3)の全量及び30 gの4)を水で練合し、真空乾燥後、整粒を行う。この整粒末に14 gの4)及び1 gの5)を混合し、打錠機により打錠する。このようにして、1 錠あたり実施例1-86の化合物10 mgを含有する錠剤1000錠を得る。

10

製剤例3(点眼剤の製造)

点眼剤100 mL中

1)実施例1-86の化合物100 mg2)ポリソルベート80500 mg3)塩化ナトリウム900 mg4)水酸化ナトリウム適量5)滅菌精製水適量

以上の成分を無菌的に混和してpH 7.9~8.1とし、点眼剤とする。

製剤例4(点眼剤の製造)

点眼剤100 mL中

20

1)実施例1-86の化合物100 mg2)ポリソルベート80100 mg3)リン酸二水素ナトリウム二水和物100 mg4)塩化ナトリウム900 mg5)塩化ベンザルコニウム5 mg6)水酸化ナトリウム適量7)滅菌精製水適量

以上の成分を無菌的に混和してpH 7.9~8.1とし、点眼剤とする。

製剤例5(点眼剤の製造)

点眼剤100 mL中

30

1)実施例1-86の化合物100 mg2)ホウ酸700 mg3)ホウ砂適量4)塩化ナトリウム500 mg5)エデト酸ナトリウム0.05 mg6)塩化ベンザルコニウム0.0005 mg7)滅菌精製水適量

以上の成分を無菌的に混和してpH 7.9~8.1とし、点眼剤とする。

【産業上の利用可能性】


[0824]

40

本発明化合物又はその薬学上許容される塩は、mPGES-1阻害活性を有するため、疼痛、リウマチ、変形性関節症、発熱、アルツハイマー病、多発性硬化症、動脈硬化、緑内障、高眼圧症、虚血性網膜疾患、全身性強皮症、大腸癌をはじめとする悪性腫瘍及びPGE2産生抑制が有効性を示す疾患の予防又は治療のために有効な薬剤となり得る。

本出願は、日本国で2014年2月20日に出願された特願2014-031035を 基礎としており、その内容は本明細書にすべて包含されるものである。

【図1】

平均值±標準偏差: *:P <0.05, **:P <0.01

フロントページの続き

(51) Int.CI.		FΙ			
C 0 7 D 403/12	(2006.01)	C 0 7 D	405/12		
A 6 1 K 45/00	(2006.01)	C 0 7 D	403/10		
A 6 1 P 25/04	(2006.01)	C 0 7 D	403/12		
A 6 1 P 29/00	(2006.01)	A 6 1 K	45/00		
A 6 1 P 19/02	(2006.01)	A 6 1 P	25/04		
A 6 1 P 9/10	(2006.01)	A 6 1 P	29/00	1 0 1	
A 6 1 P 25/28	(2006.01)	A 6 1 P	29/00		
A 6 1 P 25/00	(2006.01)	A 6 1 P	19/02		
A 6 1 P 27/02	(2006.01)	A 6 1 P	9/10	1 0 1	
A 6 1 P 27/06	(2006.01)	A 6 1 P	25/28		
A 6 1 P 17/00	(2006.01)	A 6 1 P	25/00		
A 6 1 P 35/00	(2006.01)	A 6 1 P	27/02		
A 6 1 P 43/00	(2006.01)	A 6 1 P	27/06		
		A 6 1 P	9/10		
		A 6 1 P	17/00		
		A 6 1 P	35/00		
		A 6 1 P	43/00	1 1 1	
(74)代理人 100174296 弁理士 當麻 博文					

(72)発明者 長森 弘将

大阪府高槻市紫町1番1号 日本たばこ産業株式会社 医薬総合研究所内

(72)発明者 三谷 育生

大阪府高槻市紫町1番1号 日本たばこ産業株式会社 医薬総合研究所内

(72)発明者 山下 正樹

大阪府高槻市紫町1番1号 日本たばこ産業株式会社 医薬総合研究所内

(72)発明者 堀田 隆宏

大阪府高槻市紫町1番1号 日本たばこ産業株式会社 医薬総合研究所内

(72)発明者 中川 祐一

大阪府高槻市紫町1番1号 日本たばこ産業株式会社 医薬総合研究所内

(72)発明者 上田 正俊

大阪府高槻市紫町1番1号 日本たばこ産業株式会社 医薬総合研究所内

審査官 前田 憲彦

(56)参考文献 国際公開第2011/037610(WO,A1)

国際公開第2012/161965(WO,A1)

特表2002-514195(JP,A)

特表2011-525905(JP,A)

特表2012-511517(JP,A)

(58)調査した分野(Int.CI., DB名)

C07D 251/00

A 6 1 K 3 1 / 0 0

C07D 401/00

C07D 403/00

C07D 405/00

CAplus/REGISTRY(STN)