
(19) United States
US 20060218533A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0218533 A1
Koduru et al. (43) Pub. Date: Sep. 28, 2006

(54) METHOD AND SYSTEM FORMONITORING
PERFORMANCE ON A MOBILE DEVICE

(76) Inventors: Rajendra Kumar Reddy Koduru,
Jersey city, NJ (US); Janusz Smilek,
St. Wendel (DE); Hendrik C.R. Lock,
Dettenheim (DE); Ivan Schreter,
Leimen (DE); Christian Latzel, Bruhl
(DE); Toblas Stolzenberger,
Heidelberg (DE)

Correspondence Address:
KENYON & KENYON LLP
ONE BROADWAY
NEW YORK, NY 10004 (US)

(21) Appl. No.: 11/090,682

(22) Filed: Mar. 24, 2005

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

Start/Execute
Instrumentation Tool

1601

Select
Application File

1602

Lood
Application File

1605

Select
Entities to Monitor

1604

Save Entity Selection Save
To Configuration File Entity Selection?

1606 1605

Produce Code Enhanced
Application File

1607

(52) U.S. Cl. .. 717/124; 717/130

(57) ABSTRACT

A method and system are provided for implementing per
formance monitoring of an application on a mobile device.
An instrumentation tool is provided allowing a user to view
the entities in an application file for a mobile device and
selecting those entities for which performance monitoring is
to be implemented. The instrumentation tool adds perfor
mance monitoring methods to the application file and gen
erates a new instrumented application file that is transferred
to the mobile device. When the instrumented application file
is executed on the mobile device, the performance monitor
ing methods instrumented into the file execute generating
data in a performance log file that is stored on the mobile
device. This performance log file may be transferred to a
remote device for further analysis in addition to viewing the
performance log file on the mobile device. The user selected
entities for performance monitoring in the application file
may be saved to a configuration file that can later be loaded
and modified by the user to facilitate further performance
monitoring of an application.

Deploy Code Enhanced
File to Mobile Device

1608

Execute Application on
Mobile Device

1609

Collect Performance
Monitoring Doto

1610

Analyze Performance
Monitoring Doto

1611

ls
Doto Collected
Adequote?
1612

Yes

s
Performance
Adequote?
1615

Yes

Fix Problem AreOS in
Application

614

US 2006/0218533 A1 Patent Application Publication Sep. 28, 2006 Sheet 1 of 17

ZØ, Z Ø Ø 2% ZZZZZZZZZZZZZZZZZZZZZZX XZZZZZZZZZZZ
@ ? Za ZZZZ× ZZZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZZ.X% 3SOdungpºsn lº?

Patent Application Publication Sep. 28, 2006 Sheet 2 of 17 US 2006/0218533 A1

Stort 200

Select on application
file to open

201 No

Wolid
JAR file?
202

Display as a tree
205

Select Package/class/method
or lood configuration file

206

209

terote

Set measuring points/save
measuring points

207

Another
JAR file?
208

210

End 211

FG.2

US 2006/0218533 A1 Patent Application Publication Sep. 28, 2006 Sheet 3 of 17

Patent Application Publication Sep. 28, 2006 Sheet 5 of 17 US 2006/0218533 A1

50'-O1C:Documents and Settings\D043504\My Documents\PMF Tests.jor
502N-(-O1 com/sap/ip/me/pmf/tests:multipleexit
510 -O ExitOnException.class
520 public void Kinit)C
521 public void Kinit) (String str1)
522 public void Kinit) (floatf)throws jova.io IOException
523 public void Kinit)(long f)throws jova.io IOException
534 public void trycatch()
525 Y public void trycotchfinal
526 D

511 OTryCatchFinally.class
530 O public void Kinit)C
531 public void SS str1) 532 public void Kinit) (int S.
533 O) public void trycatch()
534 public void trycatchfinally()
535 O) public void tryFinally()

503 --OD) com/sap/ip/me/pmf/tests:singleexit
512 9-0) AbstractClass.class
513 O) Constructors.class
514 - O Invalid Methods.class
515 - Oh NormalExit.closs
516 &O) superConstructors.class
504-8-Ocom/sap/ip/me/pmf/tests:util

FIG.5

US 2006/0218533 A1 Patent Application Publication Sep. 28, 2006 Sheet 6 of 17

“ Z? DI GÒ 3q Dq 0, 00

US 2006/0218533 A1 Patent Application Publication Sep. 28, 2006 Sheet 7 of 17

90/ 90/

|OOd quD?Su00

Patent Application Publication Sep. 28, 2006 Sheet 8 of 17 US 2006/0218533 A1

Class Helloworld
public static void main (String orgs) :
System.out.println("Hello World");

FIG.8

US 2006/0218533 A1 Patent Application Publication Sep. 28, 2006 Sheet 9 of 17

US 2006/0218533 A1

000||

Patent Application Publication Sep. 28, 2006 Sheet 10 of 17

Patent Application Publication Sep. 28, 2006 Sheet 11 of 17 US 2006/0218533 A1

User Interface (U) Layer
1101

Commond Collection Layer
1102

Processing Loyer

US 2006/0218533 A1 Patent Application Publication Sep. 28, 2006 Sheet 12 of 17

[07]

Patent Application Publication Sep. 28, 2006 Sheet 13 of 17 US 2006/0218533 A1

O)
S.
3 -

(V). O
N

--
C
O)
Co
U

US 2006/0218533 A1 Patent Application Publication Sep. 28, 2006 Sheet 14 of 17

US 2006/0218533 A1 Patent Application Publication Sep. 28, 2006 Sheet 15 of 17

-- - -

doW +

US 2006/0218533 A1

L. SSDOR]], Ç07||

Patent Application Publication Sep. 28, 2006 Sheet 16 of 17

US 2006/0218533 A1 Patent Application Publication Sep. 28, 2006 Sheet 17 of 17

US 2006/0218533 A1

METHOD AND SYSTEM FORMONITORING
PERFORMANCE ON A MOBILE DEVICE

COPYRIGHT NOTICE

0001. A portion of the disclosure of this patent document
contains material that is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or patent disclosure
as it appears in the Patent and Trademark Office, patent file
or records, but otherwise reserves all copyright rights what
SOW.

FIELD OF THE INVENTION

0002 The present invention relates to a method and
system for monitoring performance in an application where
a user can select what entities in an application file are
monitored and the monitoring commands are incorporated
into a new version of the application file according to one
embodiment of the present invention.

BACKGROUND

0003. Many performance measurement tools exist in the
commercial market each having its own specific capabilities.
The most common of these systems perform full code
instrumentation (i.e., brute force instrumentation) where
performance monitoring is instrumented for all methods of
an application. This can be particularly advantageous
because it may capture all the calls made by the application
during runtime. For example, calls are dynamic and are not
part of the static hierarchy of an application program. During
application runtime a call may or may not be made. Using
the following pseudo-code as an example illustrates why a
method call in an application may or may not occur during
runtime.

if X ... {
method left

else {
method right

In the above pseudo-code, either method left or method
right is executed depending on the value of variable x. Full

code instrumentation provides performance monitoring of
all the calls including those to both method left and metho
d right and may include monitoring of variable values such
as variable X. For this and other reasons, full code instru
mentation for performance monitoring is common in con
ventional systems such as IBM's Rational PurifyPlus (for
merly Visual Quantify) and Compuware Corp.’s DevPartner
Studio (formerly NuMega).
0004 Applications for mobile devices (mobile applica
tions) present a particular challenge to performance moni
toring in that the greater the instrumentation of the applica
tion code to be monitored the greater the overhead placed on
the application and the limited resources of the mobile
device. The limited processor capability and memory/stor
age for mobile devices such as, for example, personal digital
assistants (PDAs) and mobile phones, means that greater
instrumentation may result in greater execution times for the
application as well as increased memory/storage usage on

Sep. 28, 2006

the mobile device. This may be sufficient to cause the
application to fail to execute on the mobile device or the
mobile device to crash rather than just a degradation in
performance. In addition, the limited memory/storage of
most mobile devices prevents extensive logging of the
performance monitoring data. The greater the amount of
application code instrumented, the greater the amount of
memory or storage needed by a performance log file on the
mobile device to store the performance monitoring data.
Because mobile devices are not always connected to a
network, reliance on a server or other remote device to store
the logging data may not be adequate to capture the neces
sary performance monitoring data. In addition, the greater
the degree of instrumentation of the application code, the
greater the extent to which the performance measurements
are skewed by the resource requirements of the performance
monitoring. For example, the performance monitoring
instrumentation code may be measuring its own resource
consumption and impact on the application program.

0005 The present invention presents an innovative
method for addressing the challenges of performance moni
toring in resource limited environments such as for an
application running on a mobile device.

BRIEF DESCRIPTION OF THE DRAWINGS

0006 FIG. 1 is a diagram illustrating the programming
environment of the instrumentation tool according to one
embodiment of the present invention.
0007 FIG. 2 is a flowchart illustrating the operation of
the instrumentation tool according to one embodiment of the
present invention.

0008 FIG. 3 is a screen shot of the instrumentation tool
according to one embodiment of the present invention.

0009 FIG. 4 is an open file dialog box for the instru
mentation tool allowing a user to select a file for profiling
according to one embodiment of the present invention.

0010 FIG. 5 is a diagram illustrating a tree structure of
the entities in a valid application file parsed and opened for
instrumentation according to one embodiment of the present
invention.

0011 FIG. 6 is a diagram illustrating the JavaTM source
code to executable code model as interpreted for one
embodiment of the present invention.

0012 FIG. 7 is a diagram providing an abstract illustra
tion of the JavaTM class file for a simple program according
to one embodiment of the present invention.

0013 FIG. 8 is a diagram illustrating the source code for
a simple program using the class in FIG. 7 according to one
embodiment of the present invention.

0014 FIG. 9 is a diagram illustrating the instrumentation
of JavaTM source code for a class using the instrumentation
tool according to one embodiment of the present invention.

0015 FIG. 10 is a diagram illustrating the instrumenta
tion of JavaTM source code for a class using the instrumen
tation tool where profiling occurs even in the case of an
exception being thrown according to one embodiment of the
present invention.

US 2006/0218533 A1

0016 FIG. 11 is a diagram illustrating the basic structure
of the instrumentation tool according to one embodiment of
the present invention.
0017 FIG. 12 is a diagram illustrating an example of the
classes making up the User Interface Layer of the instru
mentation tool according to one embodiment of the present
invention.

0018 FIG. 13a is a diagram illustrating a simplified
abstract model of event handling in JavaTM.

0.019 FIG. 13b is a diagram illustrating an example of
event processing in the instrumentation tool according to
one embodiment of the present invention.

0020 FIG. 14 is a diagram illustrating an example of the
classes making up the Command Collection Layer of the
instrumentation tool according to one embodiment of the
present invention.

0021 FIG. 15 is a diagram illustrating an example of the
classes making up the Processing Layer of the instrumen
tation tool according to one embodiment of the present
invention.

0022 FIG. 16 is a diagram illustrating a process to
identify problem areas of an application according to one
embodiment of the present invention.

DETAILED DESCRIPTION

0023. A method and system are provided for implement
ing performance monitoring of an application on a mobile
device. According to one embodiment of the present inven
tion an instrumentation tool is provided allowing a user to
view the entities in an application file for a mobile device
and selecting those entities for which performance monitor
ing is to be implemented. The instrumentation tool adds
performance monitoring methods to the application file and
generates a new instrumented application file that is trans
ferred to the mobile device. When the instrumented appli
cation file is executed on the mobile device, the performance
monitoring methods instrumented into the file execute gen
erating data in a performance log file that is stored on the
mobile device. This performance log file may be transferred
to a remote device for further analysis in addition to viewing
the performance log file on the mobile device according to
one embodiment of the present invention. The user selected
entities for performance monitoring in the application file
may be saved to a configuration file that can later be loaded
and modified by the user to facilitate further performance
monitoring of an application.

0024 Performance monitoring refers to any profiling
operation that measures the runtime behavior of an appli
cation on a mobile device. For example, memory consump
tion is a runtime behavior of an application that may be
profiled or monitored. Any measurable runtime behavior to
include, for example, method or function calls made by the
entity may be profiled or monitored according to the present
invention. Performance monitoring is implemented on an
entity basis as discussed below providing particular details
on how selected entities in the application are performing.
The terms performance monitoring and profiling are used
interchangeable throughout this specification. Though the
example embodiment discussed above relates to a mobile

Sep. 28, 2006

device, the present invention may be applied to any proces
sor based device in other embodiments of the present
invention.

0025. According to one embodiment of the present inven
tion, the instrumentation—the addition of performance
monitoring methods or functions in an application file is
not a brute force monitoring of the application as conven
tionally known where the performance of the entire appli
cation is monitored. Instead, the performance monitoring is
tailored to user selected entities in the application allowing
for focused monitoring and/or reduced resource require
ments facilitating the implementation of performance moni
toring on mobile devices. Entities may be any element of an
application and may include an entire application file Such as
an archive file, a package, a module, a method, a class, a
function, a block of code, and/or a line of code. The
instrumentation tool determines the entities available and
presents those entities to the user according to one embodi
ment of the present invention. The instrumentation tool may
be constructed in a way to use particular entities Suited to the
platform or programming environment for which it is writ
ten. For example, an instrumentation tool for JavaTM appli
cations may allow the instrumentation of performance moni
toring for entities such as, for example, JavaTM ARchive
(JAR) files, classes, and methods.
0026. The instrumentation of an application file may be
performed for a source code file, an intermediate file (e.g.,
a JavaTM bytecode file), or a binary file. For example, if a
Source code file is being used, a source code parser may be
used by the instrumentation tool to determine the entities to
be presented to the user to select for performance monitor
ing. Some programming languages such as JavaTM have an
intermediate step between source code and executable code.
In JavaTM, source code is compiled into intermediate byte
code that contains abstract machine-independent instruc
tions that are later interpreted by a JavaTM virtual machine
application (in the JavaTM platform) into machine-specific
executable code. Even binary code contains symbolic infor
mation that can be used to determine parts of the code Such
as entities. For example, a compiler debugger may use this
type of symbolic information. In the example embodiment
of the present invention illustrated below, instrumentation
occurs at the intermediate JavaTM bytecode level though in
other embodiments instrumentation may occur at the Source
code or binary code levels.
0027. The result of the instrumentation of an application

file is the collecting of performance monitoring data on the
mobile device. During the performance monitoring or pro
filing on the mobile device, this data is collected and stored
in a file. This file is generally stored on the mobile device
because the mobile device will at times not be connected to
any other device. However, the file may be transferred to a
remote device during periods of mobile device connectivity
according to this embodiment. For example, when a mobile
device is connected to another device over a wireless
connection such as an IEEE 802.11g wireless network,
Bluetooth or other wireless connection, the file may be
transferred to the remote device (e.g., a personal computer
or workstation) releasing the storage space used on the
mobile device. It is undesirable to transfer the data to any
device, therefore, in one embodiment the mobile device or
the instrumented file transferred to the mobile device may
need to be affiliated or otherwise registered with the remote

US 2006/0218533 A1

device to which the performance monitoring data will be
transferred. This affiliation may occur automatically during
the instrumentation process by incorporating affiliation
information during the instrumentation of the performance
monitoring methods or may occur during the transfer of the
instrumented file to the mobile device. Alternatively, the
affiliation may require user specification in a manual or
semi-automated process in other various embodiments of the
present invention. The transfer of the performance monitor
ing data to a remote device may also allow for greater
processing analysis of the data than may otherwise be
possible on the mobile device.
0028 FIG. 1 is a diagram illustrating the programming
environment of the instrumentation tool according to one
embodiment of the present invention. According to this
embodiment, the instrumentation tool is developed using the
JavaTM programming language 101 with the JavaTM Swing
Application Programming Interface (API) 102 graphical
user interface components that run on any native JavaTM
application Apache Software Foundation’s Byte Code
Engineering Library (BCEL) 103 that allows for retrieval
and editing of JavaTM bytecode and JavaTM API for XML
Processing (JAXP) 104—allowing data exchange, parsing,
and transformation of XML files through JavaTM. According
to this embodiment the Swing Set 102 facilitates the user
interface 112 of the instrumentation tool. The Byte Code
Engineering Library (BCEL) 103 is used in the instrumen
tation 113 of the performance monitoring and JAXP 104 is
used to generate, read, and load configuration (config) files
114 that store the user selected entities facilitating additional
and/or iterative performance measurement of the applica
tion.

0029 FIG. 2 is a flowchart illustrating the operation of
the instrumentation tool according to one embodiment of the
present invention. The process begins 200 with the initiation
of the instrumentation tool through some initiating mecha
nism Such as, for example, the user clicking on an instru
mentation tool icon. The user may next select an application
file to be opened 201. The application file contains the
entities from which the user will select those entities that
he/she wants to implement performance monitoring for. In
this example embodiment, an application file may be a
JavaTMJAR file. The next step 202 is determining whether
the selected file is a valid application file for the instrumen
tation tool. If the file is not valid 203, the user may select
another file 201. If the file is valid 204, the entities of the file
are determined and displayed as a hierarchical tree structure
205. In a further step 206, the user may then select from the
entities in the tree structure in an iterative process until all
the desired entities for which performance monitoring is to
be instrumented are selected. The measuring points (the
performance monitoring methods) are set 207 for each of the
selected entities and a configuration file identifying the
selecting entities and measuring points may be saved for
future use. In the next step 208, the user may determine
whether performance monitoring will be implemented for
another application file. If the user wants to instrument
performance monitoring 209 for other application files, the
process is repeated from the file selection step 201. If the
user does not want instrument performance monitoring 210
for other application files, the program terminates 211. The
result of the instrumentation tool is new instrumented ver
sion of the application file containing the performance
monitoring methods and calls. This instrumented application

Sep. 28, 2006

may then be transferred to the mobile device for use in place
of the original application file.

0030. As previously stated the user interacts with the
instrumentation tool through a graphical user interface 112.
In a JavaTM environment, standard graphical user interface
components are found in Java Foundation Classes and in
particular the Swing set 102 of components in one Such class
library. JavaTM Swing includes features providing user inter
face components such as frames, trees, and tables in addition
to buttons, list boxes, combo boxes, and checkboxes. A
window or frame is created and used as the main interface
for accessing the instrumentation tool according to this
embodiment. The user starts the instrumentation tool in a
conventional manner Such as, for example, clicking on an
associated startup.bat file. FIG. 3 is a screen shot of the
instrumentation tool according to one embodiment of the
present invention. The screen shot shown in FIG. 3 is
similar to the initially displayed frame except that the
left-side panel 301 displaying the hierarchical tree structure
of the application file 302 (e.g., JAR file), the top right-side
panel 305 displaying the path 306 of the application file
(e.g., JAR file), and the bottom right-side panel 310 dis
playing a list (a list box) of the names of the methods 311
selected by the user for instrumentation to implement per
formance monitoring are all initially empty. The left-side
panel 301 does not contain any packages, classes, methods,
or entities because the user has not yet chosen an application
file for instrumentation. For this same reason, the upper
right-side panel 305 is also empty. The lower right-side
panel 310 is similarly empty because methods are not
available to be selected. Some of the drop-down menu 315
items may also be disabled because they can not be imple
mented at the moment. For example, if no file is open then
a Save menu item may be disabled in the File menu 316.
Disabled menu items may be displayed in a shadowed or
faded format in one embodiment though any method to
differentiate disabled menu items including temporarily
removing them from the menus may be used in various
embodiments of the present invention. Alternatively, the
menu items may not be disabled and an error or other
message may be provided if these menu items are executed
at an inappropriate time. Once the user initiates the instru
mentation tool, the user may open a file to be profiled
(instrumented) using any of the available means to do so.
For example, a file may be opened by selecting the Open
option in the File drop-down menu 316 or by selecting an
appropriate shortcut key combination such as CTRL+O
where available.

0031 FIG. 4 is an open file dialog box for the instru
mentation tool allowing a user to select a file for profiling
according to one embodiment of the present invention. The
JFileChooser dialog box 400 shown in FIG. 4 allows a user
to conventionally navigate to and select a JAR or other
application file for the instrumentation tool to profile. The
user may conventionally browse through folders and direc
tories 401 and select an available file 402 or he/she may
directly enter the file name and/or path 403. As is conven
tionally known, a value for the most recently used path may
be stored and used in future operations. Once the user selects
and opens a file Such as, for example, a JAR file, a validity
check determining whether the file is appropriate for instru
mentation is made. If the file is not valid, an error message
may be displayed and the file is not opened according to this

US 2006/0218533 A1

embodiment. If the file is valid, it is parsed and converted
into a tree structure Such as, for example, a Java Tree (JTree)
class structure.

0032 FIG. 5 is a diagram illustrating a tree structure of
the entities in a valid application file parsed and opened for
instrumentation according to one embodiment of the present
invention. The opened application file 501 is displayed along
with its component packages 502-504. The subordinate
classes 510-516 for each of the packages are also displayed
along with the methods 520-526, 530-535 for each of the
classes. Each node of the tree may be expanded or con
tracted as desired by the user in the embodiment shown in
FIG. 5. The instrumentation tool class (CheckRenderer
discussed below) that renders the tree structure in the
graphical user interface customizes the display to add a
check box next to each node entry. The result is that each
node (e.g., file, package, class, method) has an associated
check box that can be checked if the user desires to provide
instrumentation (profiling or performance measurements)
for that node. For example, if a checkbox for a method is
selected (i.e., is checked) it indicates that the user wants to
provide instrumentation for that method. Selecting or dese
lecting a higher node such as a class, package, or file as
shown in FIG. 5 results in all subordinate nodes either being
selected (i.e., checking their associated checkboxes) or dese
lected (i.e., unchecking their associated checkboxes) as
appropriate to the operation being implemented at the higher
node. The hierarchical selection and deselection in the tree
structure can Substantially facilitate the instrumentation of
entities especially where the application file is larger and/or
more complex.

0033. The instrumentation process 113 is illustrated using
JavaTM in the following example according to one embodi
ment of the present invention. JavaTM programs are those
written in the JavaTM programming language using class
files that are compiled into bytecode for the JavaTM virtual
machine (JVM) of the JavaTM platform. Bytecode is machine
independent code generated by the JavaTM compiler and
executed by the JavaTM interpreter. The JavaTM interpreter
decodes and executes bytecode for the JavaTM virtual
machine—an execution engine that executes the bytecode
commands in the JavaTM class files on a microprocessor.
FIG. 6 is a diagram illustrating the JavaTM source code to
executable code model as interpreted for one embodiment of
the present invention. The program illustrated 602 is a
simple program that displays the message “Hello World'.
The JavaTM programming language 601 Source code class
file 602 is compiled 603 by the JavaTM compiler into a class
file containing JavaTM bytecode 604 that is interpreted 605
for execution using other class files as necessary by the
JavaTM interpreter of the JavaTM virtual machine 606. The
instrumentation process adds instructions to the existing
programs by engineering the bytecode using, for example,
Apache Software Foundation’s Byte Code Engineering
Library (BCEL) according to this embodiment of the present
invention. BCEL provides a framework to manipulate
JavaTM class files with the framework used to insert the
performance monitoring methods necessary for the instru
mentation of the application file. This embodiment is only
one example of how the instrumentation of the programming
code can be implemented and other methods may be used in
other embodiments of the present invention.

Sep. 28, 2006

0034 FIG. 7 is a diagram providing an abstract illustra
tion of the JavaTM class file for a simple program according
to one embodiment of the present invention. The illustration
in FIG. 7 is for a standard JavaTM class file 700 presented in
a manner that facilitates the describing of an example
instrumentation process according to one embodiment of the
present invention. The JavaTM class file 700 may be viewed
as containing a number of sections beginning with a header
701 containing an identification number and/or version
number. A constant pool 702 may contain a listing of string
constants representing class, fields, and methods in the
JavaTM class. Access rights 703, implemented interfaces 704
(e.g., optional interfaces implemented in the current class
using the implements JavaTM programming language key
word), fields 705 (data members of the class), and attributes
707 may also be incorporated. The methods 706 are the
functions that are defined for the class. The methods 706
include 708 defined constants 709. FIG. 8 is a diagram
illustrating the Source code for a simple program using the
class in FIG. 7 according to one embodiment of the present
invention.

0035. At least one performance monitoring (profiling)
method needs to be added to the application file to imple
ment the instrumentation of the performance measurements
according to this embodiment of the present invention. This
embodiment uses the BCEL provided JavaTM API to create
a method object for the at least one performance monitoring
method. In particular MethodCien of BCEL may be used in
this process. A new JavaTM class is created and defined
according to the current class but also modified with the at
least one profiling (performance monitoring) method. The
result is a JavaTM class incorporating the instrumentation
methods that allow for performance monitoring. FIG. 9 is a
diagram illustrating the instrumentation of JavaTM source
code for a class using the instrumentation tool according to
one embodiment of the present invention. The original
JavaTM class source code 901 is shown before being acted on
by the instrumentation tool 900. The resulting source code
902 contains the additional profiling method calls 903, 904
that provide for the performance monitoring according to
this embodiment of the present invention.

0036 FIG. 10 is a diagram illustrating the instrumenta
tion of JavaTM source code for a class using the instrumen
tation tool where profiling occurs even in the case of an
exception being thrown according to one embodiment of the
present invention. The original JavaTM class source code
1001 is shown before being acted on by the instrumentation
tool 1000. The resulting source 1002 not only contains
additional profiling method calls 1003, 1004 but includes
code that allows the profiling to occur even if an exception
is thrown within a block of statements. The try keyword
1005 defines a block of statements that may throw a JavaTM
programming language exception. A catch block (not
shown) may be used to handle the specific exceptions
thrown in the try block 1005. The finally block 1006
contains statements that execute whether or not an exception
is thrown in the try block 1005, the exception indicating that
a runtime error occurred. The use of a profiling method call
1004 in the finally block 1006 ensures that profiling occurs
even if an exception is thrown. The instrumentation of the
profiling method calls may also take into account other
situations in the application code such as, for example,
constructors that create a new object or a Super (...) access

US 2006/0218533 A1

to the class from which the current class is derived (the class
inherited by the current class).
0037 FIG. 11 is a diagram illustrating the basic structure
of the instrumentation tool according to one embodiment of
the present invention. The instrumentation tool 1100 may be
represented as having three layers incorporating different
functional objects (classes) at each layer. The layers are
conceptual to help represent the functions in the instrumen
tation tool and don’t necessarily indicate any other distinc
tion between the layer elements. The user interface layer
1101 is the highest level layer and handles the presentation
of information to the user and the interaction with the user.
The command collection layer 1102 is an intermediate layer
that collects the entity selections from the user and stores
them in an internal data structure. The processing layer 1103
is the lowest level layer and contains the classes responsible
for the actual processing of the instrumentation tool 1100.
Each of the layers in turn may contain classes of objects in
an object oriented environment that handle the processing
performed at that layer according to this embodiment of the
present invention. In this example embodiment, Java is the
object oriented language used for the development of the
instrumentation tool.

0038 FIG. 12 is a diagram illustrating an example of the
classes making up the User Interface Layer of the instru
mentation tool according to one embodiment of the present
invention. The user interface layer 1101 contains the pro
cesses that present information to the user and handle the
interaction with the user. The user interface layer 1101 may
contain a number of classes such as, for example: an
ApplicationStarter class 1201, a MainGui class 1202, a
CheckNode class 1203, a NodeSelectionListener class 1204,
and a JarParser class 1205. The ApplicationStarter class
1201 is the class that initiates the instrumentation tool and is
the entry point to the user interface layer for the user. The
ApplicationStarter class 1201, in addition to handling any
instrumentation tool initiation, initiates a call to the MainGui
class 1202. The ApplicationStarter class 1201 is called when
the instrumentation first executes. As conventionally under
stood, a call to a class results in the instantiation of an object
containing the class attributes. The term class is used inter
changeably herein to refer to both the class and the instan
tiated objects of the class.
0039. The MainGui class 1202 is responsible for display
ing the user interface to include displaying the tree structure
of the entities from one or more application files selected by
the user. For example, the MainGui class 1202 may display
the tree structure of a JavaTM Archive (JAR) file selected by
the user. According to the embodiment shown in FIG. 12, a
CheckRenderer class 1203 is called by the MainGui class
1202 to assist in the display of the tree structure with the
CheckRender class 1203 in turn triggering the TreeLabel
class 1204. The CheckRenderer 1203 and TreeLabel 1204
classes help display the entities in a tree structure with a
check box at each node to allow selection of the associated
entity at that node of the tree. The CheckNode class 1205 is
the class for each displayed node of the tree. If a node in the
tree is selected/deselected by a user, the CheckNode class
1205 selects/deselects all the subordinate nodes for that node
as well. For example, if a class is selected all the methods of
that class will also be selected. A selected class may be
shown by a check in the check box according to this
embodiment of the present invention. Selecting an already

Sep. 28, 2006

selected node (a node with a check in the check box)
deselects that node (clears the check from the check box) as
well as all subordinate nodes. This facilitates the selection
process by allowing group selection/deselection instead of
requiring individual selection/deselection of each entity.
0040. The NodeSelectionListener 1206 handles node
selection events and may populate a list box 310 in the user
interface with these selections. Events include the interac
tion between the user and the graphical user interface and are
handled using graphical user interface (GUI) components.
For example in JavaTM, components from the Abstract
Window Toolkit (AWT)—a collection of GUI components
using native platform versions of the components—or the
Swing Set—a code name for a collection of GUI compo
nents that run uniformly on any native platform that Supports
the JavaTM virtual machine—may be used to communicate
these interactions with a JavaTM program. FIG. 13a is a
diagram illustrating a simplified abstract model of event
handling in JavaTM. The event source 1301 is the object
generating the event in question. For example for a click
event on a button in the user interface, the event source is the
button clicked on. The event object 1302 contains the
information related to the event. For example clicking on a
button causes an object to be created containing the infor
mation associated with the event such as event type, etc. The
event listener 1303 is an object registered with the event
source 1301 and having a method for event handling. The
event object 1302 is passed to the event listener 1303
according to the abstract model shown in FIG. 13.a. FIG.
13.b is a diagram illustrating an example of event processing
in the instrumentation tool according to one embodiment of
the present invention. According to this example, the JTree
object 1311—the tree structure of the application file in the
instrumentation tool is the event source 1301. The Node
SelectionListener 1313 is the class for the event listener
1302 registered with the JTree object 1311. When the user
clicks on a node in the tree structure (the JTree object 1311),
a click or select event is initiated with the event information
contained in an event object 1312. The event object 1312 is
passed to the NodeSelectionListener 1313 which generally
calls at least one method to handle the event.

0041) The JarParser class 1207 in FIG. 12 verifies that a
file selected by the user is a valid JavaTM archive (JAR) file
and if so creates a hierarchical tree structure of its contents.
The user interface layer 1101 communicates with command
collection layer 1102 and the processing layer 1103 using the
interfaces 1208-1211 which are described later in this speci
fication.

0042 FIG. 14 is a diagram illustrating an example of the
classes making up the Command Collection Layer of the
instrumentation tool according to one embodiment of the
present invention. The command collection layer 1102
handles the collection and storage of the user selected
entities from the tree structure. The command collection
layer 1102 may include a number of classes some acting as
interfaces Such as, for example, an IMap2Instrumenter class
1210, a Map2Instrumenter class 1401, an IInstrumentation
Commands class 1211, an InstrumentationCommands class
1402, an IIterClass class 1403, and an IterClass class 1404.
The IMap2Instrumenter class 1210 serves as an interface
between the user interface layer 1101 and the command
collection layer 1102 allowing the user interface layer 1101
to be free from the command format at the command

US 2006/0218533 A1

collection layer 1102. The IMap2Instrumenter class 1210
receives the checked tree structure (JTree) and maps the
selected entities to an internal data structure. The
Map2Instrumenter class 1401 contains the mapping logic for
mapping the JTree tree structure to the Instrumentation
Commands class 1211. The IInstrumentationCommands
class 1211 serves as an interface between the user interface
layer 1101, the command collection layer 1102, and the
processing layer 1103 establishing and returning an itera
tor which is used to generate a new JavaTM class based on
the existing class and the additional instrumentation com
mands. The InstrumentationCommands class 1402 helps
implement the IInstrumentationCommands interface 1211
by, for example, providing method(s) for adding selected
entities to a HashMap attribute. IterClass 1403 and Iter
Class 1404 classes are used to store the selected entities
using the HashMap and to return the iterator.
0.043 FIG. 15 is a diagram illustrating an example of the
classes making up the Processing Layer of the instrumen
tation tool according to one embodiment of the present
invention. The processing layer 1103 generates the new
JavaTM class with the bytecode instrumentation according to
the selections made by the user. The processing layer 1103
may include a number of classes some acting as interfaces
Such as, for example, an IConfiguration class 1208, a Con
figuration class 1501, an IInstrumenter class 1209, an Instru
menter class 1502, an InstrumentationCommands class
1211, an IIterClass class 1403, a ClassProcessor class 1504,
a MethodProcessor class 1505, and an Updater class 1503.
The IConfiguration class 1208 serves as the interface
between the process layer 1103 and the user interface layer
1101 allowing the user to save and load configuration
files—files containing the measuring points selected by the
user. For example, the File drop-down menu 316 in the user
interface of the instrumentation tool may provide menu
items such as Save Config, Force Load Config, and Load and
Merge Config. These options may allow the user to save the
measuring points (the selected entities) to a configuration
file which can later be modified or loaded back into the
instrumentation tool. This configuration file may be stored,
in one embodiment, as an extensible Markup Language
(XML) document. The instrumentation tool may use the
JavaTM API for XML Processing (JAXP) to parse and
transform these XML configuration files. By saving the
configuration file, a user does not have to specify again the
measuring points (the selected entities) and can work from
the already saved file. This may be particularly important
where large numbers of measuring points (selected entities)
are involved and/or where a user will need to frequently
adjust the measuring points for performance monitoring.
The user may save the already defined measuring points by
selecting the Save Config option and storing the file as is
conventionally known. This file may then be loaded back
into the instrumentation tool using, for example, the Force
Load Config or the Load and Merge Config menu items. The
Force Load Config menu item clears all the selections the
user has made in the instrumentation tool then loads the
selected entities (measuring points) from the configuration
file into the instrumentation tool. The Load and Merge
Config menu item loads the selected entities (measuring
points) from the configuration file into the instrumentation
tool merging those measuring points with others selected be
the user in the instrumentation tool. The Configuration class
1501 provides the methods to implement the menu items for

Sep. 28, 2006

the configuration files as discussed above. The Instrumenter
class 1209 serves as an interface between the processing
layer 1103 and the user interface layer 1101 for processing
the user selected JAR file. The Instrumenter class 1502 runs
the iterator and creates a new JavaTM class for the instru
mentation using data from the IInstrumentationCommands
1211 and IterClass 1403 classes. The Instrumenter class
1502 handles processing at the JAR file level while delegat
ing the class level processing to the ClassProcessor class
1504. The ClassProcessor class 1504 processes the classes
for which instrumentation is to occur retrieving the class and
the methods selected by the user. The ClassProcessor class
1504 creates Method object and delegates the actual instru
mentation of the methods to the MethodProcessor class
1505. The MethodProcessor class 1505 handles the instru
mentation at the method level and this is where the instru
mentation occurs according to this embodiment. Using
separate classes to process the instrumentation at each
hierarchy (e.g., JAR file, class, method) allows for a flexible
(extensible) system that can be further refined for instru
mentation at, for example, the line level in another embodi
ment of the present invention. The design may be extended
with a LineProcessor class where the instrumentation occurs
rather than at the MethodProcessor class 1505 level. The
Updater class 1503 generates a new JAR file containing the
instrumentation commands at the conclusion of the instru
mentation process.
0044. Once the instrumented application file is generated,

it may be deployed (transferred) to the mobile device or it
may first be further processed before being deployed. In the
example embodiment above, the instrumented JAR file is
deployed to the mobile device where it can begin generating
performance measurements. In another embodiment of the
present invention, a new JAR file (application file) is not
created by the instrumentation tool process and only a
Config (configuration or instrumentation) file is created
containing the measuring points and methods for instrumen
tation. According to this embodiment, both the original JAR
file and the Config file are deployed to the mobile device. In
this embodiment the JavaTM class loader may need to be
modified in order to perform the bytecode instrumentation at
runtime. The JavaTM class loader loads both the JAR file and
the Config file classes while performing the instrumentation
on the fly. According to this embodiment, no code enhance
ment of the application file is made and instrumentation
occurs only at runtime without changing the underlying
application file (e.g., JAR file). This is particularly beneficial
in a case where an application file is enhanced by either an
additional certificate or authentication in order to provide
application security. Under these circumstances, performing
the instrumentation of the application file entities at runtime
may be easier than performing code enhancement (instru
mentation) before the certificate or authentication is gener
ated for the application file (which is generally prior to
deploying the application file to the mobile device) which
would otherwise be necessary.
0045. Otherwise restated, in one embodiment of the
present invention a code enhancement of the application file
(e.g., the JAR file) may be performed and the enhanced (i.e.,
instrumented) application file may be loaded into memory
during execution of the application and executed on the
mobile device (or other resource limited device). In an
alternative embodiment, the code enhancement (instrumen
tation) information is stored in a separate instrumentation

US 2006/0218533 A1

file and this instrumentation file and the original unaltered
application file are deployed to the mobile device or other
resource limited device. Both files are loaded into memory
during the execution of the application and the instrumen
tation of the application occurs at runtime. This alternative
embodiment is particularly advantageous where the
deployed application file (e.g., the JAR file) is controlled to
prevent changes through some certification mechanism. The
certification of the file may fail if the application file is
modified after certification occurs. Therefore, the certified
application file must be deployed unchanged to the mobile
device, loaded into memory and the appropriate certification
checks performed prior to code enhancement or instrumen
tation (the details of which are provided in an instrumenta
tion file) of the entities in the application file.
0046 FIG. 16 is a diagram illustrating a process to
identify problem areas of an application according to one
embodiment of the present invention. According to this
embodiment, this process allows for the identification of
potential problem areas or “hot spots” in the code entities of
the application that have insufficient or undesirable perfor
mance characteristics. Due to the more technical nature of
this monitoring, a specialist Such as a developer or consult
ant rather than an end-user is more likely to be involved
though this embodiment is not limited to any particular class
of individual. The process begins 1600 by starting the
implementation tool 1601. The user of the implementation
tool then selects 1602 an application file (e.g. an archive
file JAR file) which is then loaded 1603 into the instru
mentation tool. As discussed in the example embodiment
above, the application file entities may be determined and
presented in a hierarchical tree structure as part of this
loading process. In the next step 1604, the user of the
instrumentation tool selects application (code) entities to be
monitored. The user may then determine 1605 whether the
selected entities are saved 1606 to a selection file (also called
a configuration file above). The instrumentation tool may
then use the selected entities to perform code enhancement
1607 to the original application file resulting in the creation
of an instrumented or enhanced application file. In the next
step 1608, the code enhanced (instrumented) application file
is then deployed to the mobile device or other resource
limited device. During execution of the application 1609 on
the mobile device, the application file data is loaded into
memory and executed including the performance monitor
ing methods instrumented into the code enhanced applica
tion file. As a result, performance monitoring data is col
lected 1610 in a file (e.g., a performance monitoring log file)
on the mobile device. A user (e.g., a consultant or developer)
may then analyze 1611 the performance monitoring data.
This may occur using the data on the mobile device or the
data may first be transferred to a remote device such as, for
example, a workstation or server. A determination 1612 is
made by the user whether the monitored data is sufficient. If
the data is not sufficient, the user may use the instrumenta
tion tool along with the stored settings in the selection or
configuration file to generate a new entity selection in the
instrumentation tool and reiterate the process. If the data is
sufficient, a determination 1613 may be made whether the
performance is adequate. If the performance is not adequate
then the problem areas need to be fixed 1614 and the
performance monitoring process repeated to determine how
these changes perform. If the performance is adequate, then
the performance monitoring process can terminate 1615. In

Sep. 28, 2006

an alternative embodiment of the present invention, step
1606 is always performed instead of step 1607 with this
selection or configuration file possibly containing additional
data. This file is also deployed with the original application
file to the mobile device in step 1608 and both are loaded
into memory in step 1609. Other than the changes to these
sections, the other steps in this process function similarly
according to this alternative embodiment.

What is claimed is:
1. A method for performance monitoring of an applica

tion, comprising:
presenting entities from a file of the application to a user;
receiving a selection by the user of an entity for perfor
mance monitoring from the presented entities;

generating at least one performance monitoring object for
the selected entity; and

incorporating the generated performance monitoring
object into the application.

2. The method according to claim 1, wherein the appli
cation is a Java application and the file of the application is
a Java Archive file.

3. The method according to claim 1, wherein the entity
from a file of the application is at least one of an application
file, an archive file, a package, a module, a method, a class,
a function, an object, a block of code, and a line of code.

4. The method according to claim 1, further comprising:
presenting entities from a file of the application to a user

in a hierarchical tree of entities.
5. The method according to claim 1, further comprising:
presenting entities from a file of the application to a user

in a hierarchical tree of entities, wherein at least one of
a selection operation and a deselection operation of a
node in the hierarchical tree of entities results in a
similar operation for all subordinate nodes in the hier
archical tree of entities.

6. The method according to claim 1, further comprising:
receiving a selection by the user of an entity for perfor
mance monitoring from the presented entities, wherein
the presented entities are displayed in a hierarchical
tree of entities.

7. The method according to claim 1, further comprising:
receiving a selection by the user of an entity for perfor
mance monitoring from the presented entities, wherein
the presented entities are displayed in a hierarchical
tree of entities and at least one of a selection operation
and a deselection operation of a node in the hierarchical
tree of entities results in a similar operation for all
subordinate nodes in the hierarchical tree of entities.

8. The method according to claim 1, wherein the perfor
mance monitoring object is at least one of a class object and
a method recording a performance data item to a log file.

9. The method according to claim 2, further comprising:
incorporating the generated performance monitoring

object into the application by manipulating a Java
bytecode associated with the Java archive file.

10. The method according to claim 1, further comprising:
incorporating the generated performance monitoring

object into a copy of the file of the application to create

US 2006/0218533 A1

an instrumented version of the file, wherein the instru
mented version of the file is used in place of the file in
the application.

11. The method according to claim 1, further comprising:
deploying the application incorporating the generated

performance monitoring object to the mobile device.
12. A method for performance monitoring of an applica

tion on a mobile device, comprising:
presenting entities from a file of the application to a user;
receiving a selection by the user of an entity for perfor
mance monitoring from the presented entities;

generating a configuration file containing at least one
performance monitoring object for the selected entity;

deploying the application file and the generated configu
ration file containing the performance monitoring
object to the mobile device; and

enhancing the application file with the performance moni
toring object during an execution of the application on
the mobile device.

13. The method according to claim 12, wherein the
application is a Java application and the file of the applica
tion is a Java Archive file.

14. The method according to claim 12, wherein the entity
from a file of the application is at least one of an application
file, an archive file, a package, a module, a method, a class,
a function, an object, a block of code, and a line of code.

15. The method according to claim 12, further compris
1ng:

presenting entities from a file of the application to a user
in a hierarchical tree of entities.

16. The method according to claim 12, further compris
ing:

presenting entities from a file of the application to a user
in a hierarchical tree of entities, wherein at least one of
a selection operation and a deselection operation of a
node in the hierarchical tree of entities results in a
similar operation for all subordinate nodes in the hier
archical tree of entities.

17. The method according to claim 12, further compris
1ng:

receiving a selection by the user of an entity for perfor
mance monitoring from the presented entities, wherein
the presented entities are displayed in a hierarchical
tree of entities.

18. The method according to claim 12, further compris
1ng:

receiving a selection by the user of an entity for perfor
mance monitoring from the presented entities, wherein
the presented entities are displayed in a hierarchical
tree of entities and at least one of a selection operation
and a deselection operation of a node in the hierarchical
tree of entities results in a similar operation for all
subordinate nodes in the hierarchical tree of entities.

19. The method according to claim 12, wherein the
performance monitoring object is at least one of a class
object and a method recording a performance data item to a
log file.

20. The method according to claim 19, wherein the log file
is stored on the mobile device.

Sep. 28, 2006

21. The method according to claim 20, wherein the log file
is periodically transferred to a remote device where it can at
least one of a) undergo a more thorough analysis, b) be
archived for a future reference, and c) removed from the
mobile device to make an additional resource available to
the mobile device while maintaining the performance moni
toring data item in the log file.

22. A system for performance monitoring of an applica
tion, comprising:

a program memory,

a storage device; and
a processor, wherein the processor is adapted to:

(i) present entities from a file of the application to a
user,

(ii) receive a selection by the user of an entity for
performance monitoring from the presented entities;

(iii) generate at least one performance monitoring
object for the selected entity; and

(iv) incorporate the generated performance monitoring
object into the application.

23. A system for performance monitoring of an applica
tion on a mobile device, comprising:

a program memory,

a storage device; and
a processor, wherein the processor is adapted to:

(i) present entities from a file of the application to a
user,

(ii) receive a selection by the user of an entity for
performance monitoring from the presented entities;

iii) generate a configuration file containing at least one 9. 9. 9.
performance monitoring object for the selected
entity;

(iv) deploy the application file and the generated con
figuration file containing the performance monitor
ing object to the mobile device; and

(v) enhance the application file with the performance
monitoring object during an execution of the appli
cation on the mobile device.

24. A computer readable medium including instructions
adapted to execute a method for performance monitoring of
an application, the method comprising:

presenting entities from a file of the application to a user;
receiving a selection by the user of an entity for perfor
mance monitoring from the presented entities;

generating at least one performance monitoring object for
the selected entity; and

incorporating the generated performance monitoring
object into the application.

25. A computer readable medium including instructions
adapted to execute a method for performance monitoring of
an application on a mobile device, the method comprising:

presenting entities from a file of the application to a user;
receiving a selection by the user of an entity for perfor
mance monitoring from the presented entities;

US 2006/0218533 A1

generating a configuration file containing at least one
performance monitoring object for the selected entity;

deploying the application file and the generated configu
ration file containing the performance monitoring
object to the mobile device; and

Sep. 28, 2006

enhancing the application file with the performance moni
toring object during an execution of the application on
the mobile device.

