(54) 发明名称
用于均质充量压缩点火内燃机的燃料

(57) 摘要
本发明提供一种用于均质充量压缩点火内燃机的燃料，该燃料能够在均质充量压缩点火燃烧过程中控制燃烧反应以改善发动机热效率。该燃料满足所有的下述特性要求(1)至(6)和下述要求(7)或(8)：

(1) C5到C10的正链烷烃的总含量为25%体积或更高，和70%体积或更少；(2) C6到C11的芳香烃的总含量为30%体积或更高，和75%体积或更低；(3)烯烃含量为20%体积或更低；(4)含卤素化合物的含量以氯计为5%质量或更低；(5)研究法辛烷值为70或更高，和低于92；(6)蒸馏特性中的起始沸点和终点分别为30℃或更高和220℃或更低；(7)与第一参比燃料(PRF)相比，对于连续400个循环的该燃料的最大压力提升率小于15%或更多，该第一参比燃料在相同的发动机操作条件下显示出相同的平均指示有效压力(IMEP)和50%的高温放热燃烧的曲柄转角(HTHCA50)；(8)与具有与该燃料相同的研发法辛烷值的第一参比燃料(PRF)相比，对于连续400个循环的该燃料的平均IMEP增加20%或更多，该燃料和PRF的IMEP在相同的最大
1. 用于均质充量压缩自动点火内燃机的燃料，该燃料满足所有的下述特性要求 (1) 至
(6)：
(1) C5 到 C10 的正链烷烃的总含量为 25％体积或更高，和 70％体积或更低；
(2) O6 到 C11 的芳香烃的总含量为 30％体积或更高，和 75％体积或更低；
(3) 烯烃含量为 20％体积或更低；
(4) 含氧化合物的含量以氧计为 5％质量或更低；
(5) 研究法辛烷值为 70 或更高，并低于 92；和
(6) 蒸馏特性中的起始沸点和终点分别为 30℃或更高和 220℃或更低；
和下述要求 (7) 或 (8)：
(7) 该燃料的对于连续 400 个循环的平均最大压力提升率与第一参比燃料 (PRF) 相比
降低了 15％或更多，该第一参比燃料在相同的发动机操作条件下，显示与该燃料相同的
平均指示有效压力 (IMEP) 和 50％的高温放热燃烧的曲柄转角 HTHR CA50；
(8) 与具有与该燃料相同的研究法辛烷值的第一参比燃料 (PRF) 相比，该燃料的对于
连续 400 个循环的平均 IMEP 增加 20％或更多，该燃料和 PRF 的 IMEP 在相同的最大压力
提升率下，在相同的发动机操作条件下测量。
2. 如权利要求 1 所述的用于均质充量压缩自动点火内燃机的燃料，其中所述发动机
操作条件是发动机的压缩比、发动机速度、吸入管压力、进气歧管中的温度、空气流率、进
气 - 排气阀定时、EGR 率和燃料注入启动定时。
3. 如权利要求 1 所述的用于均质充量压缩自动点火内燃机的燃料，其中该燃料的硫含
量为以质量计 10ppm 或更低。
4. 如权利要求 1 所述的用于均质充量压缩自动点火内燃机的燃料，其中该燃料包含含
氧化合物，该含氧化合物选自由甲醇，乙醇，正丙醇，异丙醇，正丁醇，异丁醇，二甲醚，二异
丙醚，甲基叔丁基醚 (MTBE)，乙基叔丁基醚 (ETBE)，叔戊基甲基醚 (TAME)，叔戊基乙基醚，
脂肪酸甲酯，和脂肪酸乙酯组成的组。
用于均质充量压缩点火内燃机的燃料

技术领域
[0001] 本发明涉及用于均质充量压缩点火发动机的燃料，更具体地是涉及能够在均质充量压缩燃烧过程中控制燃烧反应来改进发动机热效率的燃料。

背景技术
[0002] 目前，两种类型的发动机已被广泛地使用，其中一种为火花点火汽油发动机和另一种为压缩点火发动机（柴油发动机）。
[0003] 对于火花点火汽油发动机来说，燃料被注入进入口或者燃烧室，并且形成空气燃料混合物的预混气体。而后预混气体被火花塞点燃并燃烧。燃料需具有高的汽化性和低的自燃特性。由于火花点火汽油发动机排放出氮的氧化物（NOx）、烃（HC）和一氧化碳，因此三用催化剂被广泛使用来净化这些排放物。但是，例如三用催化剂的排气净化系统只适用于这样的范围，其中空气－燃料比率为在非常窄的化学计量的空气－燃料比率的范围内并且其是与压缩点火柴油发动机相比低热效率和低放的燃料消耗的原因。
[0004] 对于柴油发动机来说，柴油燃料被直接注入汽缸中并在压缩冲程中与空气混合。通过活塞压缩来增加温度和压力，使空气－燃料混合物自燃。柴油燃料需具有高的可燃性特性。压缩自动点火柴油发动机在燃料消耗和热效率方面优异，但具有由多相空气燃料混合物导致的NOx和烟灰排放的缺点。此外，需要对后处理系统，如氧化催化器，NOx捕捉器，柴油颗粒过滤器或者SCR系统的严格控制，来降低NOx和烟灰以符合政府规定。
[0005] 因此，常规的火花点火汽油发动机能够净化排放气体到一定程度，但是在燃料消耗和热效率方面有问题。与之相比较，柴油发动机在燃料消耗方面优异并具有高的热效率，但其有NOx的排放问题。因此，已研究均质充量压缩点火发动机来实现低NOx排放气体，优异的燃料消耗和高的热效率。
[0006] 对于均质充量压缩点火发动机来说，燃料在20MPa或更低的注入压力下被注入进入口或者燃烧室，该压力大大低于柴油发动机，并且燃料注入在上止点之前以60度的曲柄转角完成，使得预混空气－燃料混合物通过自动点火燃烧，而不是通过火花点火。均质充量压缩点火发动机与柴油发动机相比花费较长的时间来在汽缸中制备充分混合的空气－燃料混合物。因此，对于均质充量压缩点火发动机来说，高温燃烧区域，其中的温度高于2200K，没有在汽缸中局部形成，这是在没有还原催化剂的情况下导致低NOx排放特性（以质量计低于10ppm）的原因。均质充量压缩点火发动机的热效率和燃料消耗与柴油发动机的那些是相当的。
发明内容

本发明的简要概述

对于压燃式发动机（下文称为“HCCI 燃烧”）来说，一种混合燃料的气体 - 燃料混合物被压塞压缩，这提高温度和压力，并且自动点火被启动。对于 HCCI 发动机来说，发动机的操作被限制在低载荷范围，原因在于超过发动机载荷的中间范围的巨大的发动机噪音（高的最大压力提升率）。

本发明的目的是为 HCCI 发动机提供一种燃料，其将 HCCI 的操作范围提高到一个更高的载荷范围。

本发明可以通过混合高可燃性烃（主要是 C5 到 C10 的正链烷烃）和 C6-C11 的芳香族化合物来实现，该芳香烃的苯环在 1100K 或更高下开始断裂，其中热能反应开始。本发明的燃料可以延长燃烧时间，降低最大压力提升率，并能够使 HCCI 发动机在一个较高的载荷范围内进行操作。

更确切地说，本发明涉及一种用于 HCCI 发动机的燃料，其满足所有的下述特性要求（1）至（6）和下述要求（7）或（8）：（1）C5 到 C10 的正链烷烃的总含量为 25％体积或更高，和 70％体积或更低；（2）C6 到 C11 的芳香烃的总含量为 30％体积或更高，和 75％体积或更低；（3）烯烃含量为 20％体积或更低；（4）含氧化合物的含量以氧化为 5％质量或更低；（5）研究辛烷值为 70 或更高，和低于 92；（6）蒸馏特性中的起始沸点和终点分别为 30℃或更高和 220℃或更低；（7）与第一参与燃料（PRF）相比，对于连续 400 个循环的该燃料的平均最大压力提升率低 15％或更多，该第一参与燃料在相同的发动机操作条件如发动机的压缩比，发动机速度，吸入管压力，进气歧管中的温度，空气流率，进气 - 排气阀定时，EGR 率和燃料注入启动定时下，显示出与该燃料相同的平均值。有效压力（IMEP）和 50％的高温放热燃烧的曲柄转角（HTHR CA50）；和（8）具有与该燃料相同的正链烷烃的价值的第一参与燃料（PRF）相比，对于连续 400 个循环的该燃料的平均 IMEP 增加 20％或更多，该燃料和 PRF 的 IMEP 在相同的最大压力提升率下，在相同的发动机操作条件测量，所述相同的发动机操作条件如发动机的压缩比，发动机速度，吸入管压力，进气歧管中的温度，空气流率，进气 - 排气阀定时，EGR 率和燃料注入启动定时。

本发明的效果

本发明的燃料可以降低压燃式发动机燃烧的最大压力提升率和并因此实现了安静的发动机燃烧。此外，与传统燃料相比，在相同的最大压力提升率下，该燃料可将发动机输出增强 20％或更高。

附图说明

当与附图结合阅读时，前述的概述，以及接下来的本发明的详细描述会更易于理解。
解。图 1-11 为由本发明燃料得到的实用的发动机测试数据与通过其它燃料得到的对比测试结果的对照。为了阐述本发明的目的，附图中显示的是本发明优选的实施方案。但是，应该理解的是，本发明不限于所示的精确的布置和手段。

[0015] 在附图中：

[0016] 图 1 显示本发明的 HCCI 燃烧（双相高温放热燃烧）如何发生。

[0017] 图 2 表明对于在实施例 1 的操作条件下 400 个循环的平均 HTHR CA50 和 IMEP 之间的关系。

[0018] 图 3 显示对于 400 个循环的最大压力提升率在点 1 处的变化。

[0019] 图 4 显示对于 400 个循环的最大压力提升率在点 2 处的变化。

[0020] 图 5 显示对于 400 个循环的最大压力提升率在点 3 处的变化。

[0021] 图 6 显示在图 2 中的测点 A 处的汽缸内压力。

[0022] 图 7 显示在图 2 中的测点 A 处的放热率。

[0023] 图 8 显示在图 2 中的测点 B 处的汽缸内压力。

[0024] 图 9 显示在图 2 中的测点 B 处的放热率。

[0025] 图 10 显示在图 2 中的测点 C 处的汽缸内压力。

[0026] 图 11 显示在图 2 中的测点 C 处的放热率。

本发明的详细描述

[0027] 本发明在下面会有更加详细的描述。

[0028] 本发明的燃料适用于均质充量压缩点火发动机（下文中均质充量压缩点火被缩写为 HCCI）。术语“HCCI”在这里表示的一种燃烧方式，其中燃料在下面的条件 (A)、(B) 和 (C) 下通过点火面燃烧：(A) 燃料注气压力 ≤20MPa 或更低；(B) 燃料注入位置：进口和/或直接注入到汽缸中；和 (C) 燃料注入的完成定时：在上止点前的 60 度曲柄转角。

[0029] HCCI 在 (A) 燃料注入压力方面比常规柴油发动机低，并在 (C) 燃料在注入后到燃烧起始以储气缸内充分混合的空气燃油混合物的时间段方面比常规柴油发动机长。因此，对于 HCCI 发动机来说，高温燃烧区域，其温度高于 2200K，没有在汽缸内局部形成，并且这在没有还原催化剂的情况下低 NOx 排放特性（以质量计低于 10ppm）的原因。

[0030] 均质充量压缩自动点火燃烧方式也可以称为 HCCI（均质充量压缩点火），PCCI（预混充量压缩点火），PCI（预混压缩点火），CAI（受控自动点火）或 AR（活性基（燃烧）).

[0031] 本发明的燃料适用于 HCCI 发动机。但是，该燃料也适用于下述类型的发动机，如 HCCI-SI 汽油发动机（SI：火花点火），HCCI-CAI 柴油发动机（CAI：压缩点火），和采用 HCCI、HCCI-SI 和 HCCI-CAI 发动机的电动混合发动机。

[0032] 当燃料自动点火时，低温放热（LTHR）反应首先发生，然后高温放热（HTHR）反应发生。本发明的用于 HCCI 发动机的燃料的特征在于具有高分解性的燃料（富含正链烷烃的燃料）和具有低分解性的燃料（富含芳族化合物和烯烃的燃料）的组合。因此，本发明的燃料显示出了如图 1 所示的双相高温放热燃烧。链烷烃在冷焰和热焰阶段首先被分解和氧化，然后在热焰阶段芳香烃和芳香烃的分解和氧化开始进行。

[0033] 本发明的燃料需要满足下面的特性要求 (1) 至 (6)：(1)C5 到 C10 的正链烷烃的总含量为 25%体积或更高，和 70%体积或更低；(2) 优选为 30%体积或更高，和 50%体积或更
低；因为 C4 或更低的正链烷烃不能显示出充分的低温放热（LTHR）反应，而 C11 或更高的烃类具有高沸点并不适于 HCCI 发动机；(2) C6 到 C11 的芳香烃的总含量为 30% 体积或更高，和 75% 体积或更低，优选为 50% 体积或更高，和 65% 体积或更低；因为 C12 或更高的烃类具有差的挥发性并且不适用于 HCCI 发动机，并且高于 75% 体积的芳族化合物的存在限制了发动机速度和载荷的操作范围；(3) 氧化合物含量为 50% 体积或更低，首选 10% 体积或更低；(4) 含氧化合物的含量以氧计为 5% 质量或更低；(5) 燃料法辛烷值为 70 或更高，和 92，优选 70 或更高，和 86 或更低；和 (6) 蒸馏中的起始沸点为 30°C 或更高，和蒸馏中的终点为 220°C 或更高，优选 150°C 或更低。

[0034] 这里使用的烃含量的定义表示使用气相色谱，按照 JIS K 2536“液态石油产品-成分的测试方法”测量的值。这里使用的术语“正链烷烃”表示不含环烷烃（饱和环状烃）的直链烃。

[0035] 除了前述要求之外，本发明的燃料需要满足下述要求 (7) 或 (8)；

[0036] (7) 与第一参比燃料（PRF）相比，对于连续 400 个循环的该燃料的平均最大压力提升率小 15% 或更多，优选 20% 或更多，该第一参比燃料在相同的发动机操作条件（发动机的压缩比，发动机速度，吸入管压力，进气歧管中的温度，空气流率，进气-排气阀定时，EGR 率和燃料注入启动定时）下，显示出与该燃料相同的平均指示有效压力（IMEP）和 50% 的高温放热燃烧的曲柄转角（HTHR CA50）。

[0037] 术语“相同的平均指示有效压力和 50% 的高温放热燃烧的曲柄转角”被定义为与对比燃料，即 PRF 相比，分别为在 ±20kPa 内的平均指示有效压力和在 ±0.5 度内的 HTHR CA50 的曲柄转角。“PRF”为用于辛烷值测量的第一参比燃料的缩写。例如，“PRF80”的含义为研究法辛烷值为 800 的燃料。其通过混合 80%体积的异辛烷和 20% 体积的正庚烷油制得。测量平均有效压力的方法和 HTHRCA50 的定义描述于 SAE 技术论文，No. SAE2000-01-0207 中。

[0038] (8) 与具有与该燃料相同的辛烷值的第二参比燃料（PRF）相比，对于连续 400 个循环的该燃料的平均 IMEP 增加 20% 或更多，优选 25% 或更多，更优选 50%，该燃料与 PRF 的 IMEP 在相同的最大压力提升率下，在相同的发动机操作条件（发动机的压缩比，发动机速度，吸入管压力，进气歧管中的温度，空气流率，进气-排气阀定时，EGR 率和燃料注入启动定时）下测量。

[0039] 最大压力提升率的测量误差被定义为与 PRF 相比，在 ±4kPa/deg 之内。

[0040] 对所述燃料的硫含量没有特别的限制。但是，硫含量优选以质量计为 10ppm 或更低，并且目的是保持催化剂的性能在高的水平，更优选以质量计 5ppm，最优选以质量计 1ppm 或更低。高于以质量计 10ppm 的硫含量不优选的原因在于装备于发动机中的排气净化催化剂被硫中毒，导致差的排气净化性能。这里使用的硫含量表示根据 JIS K 2541 “原油和石油产品-硫含量测定”的所测量的值。

[0041] 本发明的燃料含有烃作为主要组分，但是可以进一步含有含氧化合物例如醚类，醇类，酮类，酯类，和二醇。含氧化合物的例子包括甲醇，乙醇，正丙醇，异丙醇，正丁醇，异丁醇，二甲醚，二异丙醚，甲基叔丁醚（MTBE），乙基叔丁醚（ETBE），叔戊基甲基醚（TAME），叔戊基乙基醚，脂肪酸甲酯，和脂肪酸乙酯。

[0042] 本发明的燃料由于前述含氧化合物的存在而可以减少未燃烧的烃（HC）和细颗粒
状物质。当该燃料含有源自生物质的含氧化物时，它有利子减少二氯化碳。但是根据具体情况而定，含氧化物导致含氧化合物的增加。因此，含氧化合物的含量优应以氧计，基于燃料总量为 5%质量或更低。

【0043】只要前面描述的燃料特性可以达到，对本发明的燃料的基础油没有特别的限制。例如，基础油可以任一种或多种选自如下的基础油：由原油常压蒸馏制得的石脑油馏分（全馏程石脑油）；石脑油的轻馏分（轻石脑油）；石脑油的重馏分（重石脑油）；由全馏程石脑油脱硫制得的脱硫全馏程石脑油；由轻质石脑油脱硫制得的脱硫轻石脑油；由重质石脑油脱硫制得的脱硫重石脑油；由在异构化单元中将轻石脑油转化为异链烃而制得的异构化汽油；由低级烯烃加成（烷基化）为烃，如异丁烷而制得的烷基化物；由催化重整工艺制得的重整汽油；油余分，其是从重整汽油中萃取芳香族成分制得的残余物，作为重整汽油的轻馏分的轻重整汽油；作为重整汽油的中间馏分的中间级重整汽油；作为重整汽油的重馏分的重整汽油；由催化裂化或加氢裂化制得的裂化汽油；裂化汽油的轻馏分；通过原油常压蒸馏制得的直馏粗柴油和直馏煤油；在真空蒸馏单元中处理通过常压蒸馏单元制得的直馏重油或残余物所制得的真空粗柴油；通过催化裂化或加氢裂化真空重油制得的加氢精炼粗柴油，加氢脱硫柴油或加氢精炼柴油；通过将已分解成一氧化碳或氢气的天然气进行 F-T (Fischer–Tropsch) 合成得到的 GTL (气体到液体) 的石脑油馏分、煤油馏分和轻柴油馏分。

【0044】本发明的燃料，如果需要，可以包含已知的燃料添加剂。这样的燃料添加剂的例子包括摩擦改进剂，例如羧酸与醇胺的酰胺化合物；清净分散剂，如硫酰酰亚胺，聚烷基胺，和聚醚胺；抗氧剂，如 N，N’- 二异丙基对亚苯基二胺，N，N’-二乙基丁基对亚苯基二胺，2,6-二叔丁基-4-甲基苯胺和受阻苯酚；金属减活剂，如胺羧基缩合化合物，例如，N，N’- 二亚水杨基-1,2-二氨基丙烷；表面点燃抑制剂，如有机磷化合物；防冰剂，如多元醇及其醚；燃烧改进剂，如有机酸的碱金属或碱土金属盐和高级醇的硫酸酯；抗静电添加剂，如阴离子、阳离子和两性表面活性剂；着色剂，如偶氮染料；防锈剂，如有机羧酸，其衍生物和烯基丁二酸酯；排水剂，如脱水山梨醇酯；十六烷值改进剂，如硝酸酯和有机过氧化物；润滑性能改进剂，如羧酸，酯，醇，和苯酚；基润滑性能改进剂；硅酮基消泡剂；低温流动改进剂，如乙烯-乙酸乙烯酯共聚物和烯基丁二酰亚胺；标记物，如奎氯和香豆素；和添加剂。这些添加剂可以单独或组合加入，且其按希望的量添加，以便基于燃料的总量计，这些添加剂的总量为 0.5%质量％或更低，更优选 0.2%质量％。添加剂的总量表示其有效组分的量。

具体实施方式

【0045】[实施例]

【0046】在下文，将通过下述实施例和对比例对本发明进行更详细地描述，上述实施例不应解释为限制本发明的保护范围。

【0047】本发明的燃料（实施例 1 和 2）和用于对比的那些（对比例 1 和 2）根据下表 1 中所列出的配方以常规的方式制得。表 1 也显示烃的比率和每种所得燃料的特性。
表1

<table>
<thead>
<tr>
<th>项目</th>
<th>对比例中使用的燃料</th>
<th>安装图中使用的燃料</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRF75</td>
<td>PRF80</td>
</tr>
<tr>
<td>密度 15℃ g/cm³</td>
<td>0.6936</td>
<td>0.6942</td>
</tr>
<tr>
<td>CN wt%</td>
<td>84.06</td>
<td>84.07</td>
</tr>
<tr>
<td>H/C</td>
<td>2.275</td>
<td>2.273</td>
</tr>
<tr>
<td>加热值 kJ/kg</td>
<td>44399</td>
<td>44388</td>
</tr>
<tr>
<td>环烷烷 %体积</td>
<td>25.00</td>
<td>20.00</td>
</tr>
<tr>
<td>异辛烷 %体积</td>
<td>75.00</td>
<td>80.00</td>
</tr>
<tr>
<td>二甲基苯 %体积</td>
<td>4-甲基-1-甲基 55.18</td>
<td>59.69</td>
</tr>
<tr>
<td>甲苯 %体积</td>
<td>24.78</td>
<td>19.81</td>
</tr>
<tr>
<td>异辛烷 %质量</td>
<td>75.22</td>
<td>80.19</td>
</tr>
<tr>
<td>甲苯 %质量</td>
<td>4-甲基-1-甲基 50.23</td>
<td>54.48</td>
</tr>
<tr>
<td>环烷烷 %质量</td>
<td>56.54</td>
<td>60.67</td>
</tr>
</tbody>
</table>
献“SAE2008-01-0207”（2006年4月出版）中进行了描述。

【0050】（实施例1）

【0051】（发动机操作条件）

【0052】发动机在1000 rpm的发动机速度，155kPa的绝对吸入管压力和58°C的进气歧管温度下操作。在相同的发动机条件如压缩比，发动机速度，吸入管压力，进气歧管温度，空气流率，进气-排气阀定时和EGR率下，只是燃料注人量变化，对每种燃料进行下述实验。

【0053】（燃料）

【0054】图2显示通过使用各种燃料运行发动机得到的400个循环平均的50%的高温放热燃烧的曲柄转角（HTHR CA50）和平均指示有效压力（IMEP）的图表。具有基本上相同的IMEP和HTHR的燃料集聚焦处被选择作为点1,2和3,并测量每个所述点中对于400个循环的最大压力提升率的变化（该实验的细节应参见2008年4月出版的“SAE2008-01-0007”）。

【0055】图3显示点1处对于400个循环的最大压力提升率的变化，图4显示点2处对于400个循环的最大压力提升率的变化，图5显示点3处对于400个循环的最大压力提升率的变化。详细的内容列在表2,3和4中。

【0056】确认的是，与本发明的燃料相应的NTL系列燃料（NTL70, NTL75）与PRF系列燃料（PRF90, PRF85）相比，当它们在相同的操作条件（相同的IMEP, 相同的HTHR CA50）下使用时，最大压力提升率降低了20%或更多。另外，当除了对比例1（NDB燃料，NMP燃料）以外的燃料与实施例1的NTL系列燃料进行比较时，该其它燃料中的任何一种均不能将最大压力提升率降低得与实施例1的燃料一样多。在本发明中，燃料的快速燃烧通过利用具有含有链烷烃燃料组分和主要含有芳香族燃料组分的点火温度的不同而避免，从而实现了HCCI操作，其中最大压力提升率被抑制。

【0057】表2

<table>
<thead>
<tr>
<th>燃料</th>
<th>最大压力提升率 (kPa/deg)</th>
<th>平均指示有效压力 (kPa)</th>
<th>HTHR CA50 CA deg ATDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>对比例1-1</td>
<td>PRF90</td>
<td>799.7</td>
<td>504.5</td>
</tr>
<tr>
<td>对比例1-2</td>
<td>NDB90</td>
<td>902.7</td>
<td>498</td>
</tr>
<tr>
<td>对比例1-3</td>
<td>NMP85</td>
<td>903.1</td>
<td>501.6</td>
</tr>
<tr>
<td>实施例1-1</td>
<td>NTL75</td>
<td>599.9</td>
<td>500.4</td>
</tr>
</tbody>
</table>

NTL75的最大压力提升率的降低率（与PRF90相比）：24.9%

【0059】
说明 书

<table>
<thead>
<tr>
<th>对比例 1-5</th>
<th>NDB85</th>
<th>399.8</th>
<th>280.7</th>
<th>2.38</th>
</tr>
</thead>
<tbody>
<tr>
<td>对比例 1-6</td>
<td>NMP80</td>
<td>399.4</td>
<td>284.7</td>
<td>2.3</td>
</tr>
<tr>
<td>实施例 1-2</td>
<td>NTL70</td>
<td>302.6</td>
<td>313</td>
<td>2.74</td>
</tr>
</tbody>
</table>

NTL70 的最大压力提升率的降低率 (与 PRF85 相比): 24.3%

[0060] 表 4

- **表 4**

<table>
<thead>
<tr>
<th>对比例 1-7</th>
<th>PRF85</th>
<th>900.8</th>
<th>485.9</th>
<th>-1.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1-3</td>
<td>NTL70</td>
<td>699.8</td>
<td>494.9</td>
<td>-0.91</td>
</tr>
</tbody>
</table>

NTL70 的最大压力提升率的降低率 (与 PRF85 相比): 22.3%

[0062] (实施例 2)

[0063] (燃料)

[0064] 制备具有相同研究法辛烷值的下述燃料（当按照 JIS K 2280 对 CFR（协同燃料研究）发动机所测量的 PRF 系列燃料和 NTL 系列燃料之间的研究法辛烷值的差在 3 之内，其被认为是误差）。

[0065] (1) 具有研究法辛烷值为 75 的燃料

[0066] (对比例) PRF75, NDB75, NMP75, NCP75

[0067] (实施例) NTL75

[0068] (2) 具有研究法辛烷值为 80 的燃料

[0069] (对比例) PRF80, NDB80, NMP80, NCP80

[0070] (实施例) NTL80

[0071] (3) 具有研究法辛烷值为 85 的燃料

[0072] (对比例) PRF85, NDB85, NMP85

[0073] (实施例) NTL85

[0074] (发动机操作条件)

[0075] 发动机在 1000rpm 的发动机速度，155kPa 的绝对吸入管压力和 58°C 的进气歧管温度下操作。在相同的发动机条件如压缩比，发动机速度，吸入管压力，进气管温度，空气流率，进气 - 排气阀定时和 EGR 率下，对每种燃料进行实验，以在相同的对于 400 个循环的平均最大压力提升率下，得到每种燃料的实验数据。

[0076] 对于具有研究法辛烷值为 75 的燃料，通过在最大压力提升率为 800kPa/deg 的情况下（测量条件 A) 测量得到实验数据。

[0077] 对于具有研究法辛烷值为 80 的燃料，通过在最大压力提升率为 600kPa/deg 的情况下（测量条件 B) 测量得到实验数据。

[0078] 对于具有研究法辛烷值为 85 的燃料，通过在最大压力提升率为 400kPa/deg 的情
况下（测量条件 C）测量得到实验数据。

【0079】（结果）
【0080】在条件 A、B 和 C 下测量的每种燃料的对于 400 个循环的平均气缸内压力和放热率示于图 6 到 11 中并列于表 5 到 7 中。
【0081】表 5

<table>
<thead>
<tr>
<th></th>
<th>燃料</th>
<th>最大压力提升率 kPa/deg</th>
<th>平均指示有效压力 kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>对比例 2-1</td>
<td>PRF75</td>
<td>800.7</td>
<td>417.2</td>
</tr>
<tr>
<td>对比例 2-2</td>
<td>NDB75</td>
<td>800.4</td>
<td>402.5</td>
</tr>
<tr>
<td>对比例 2-3</td>
<td>NMP75</td>
<td>800.1</td>
<td>410.6</td>
</tr>
<tr>
<td>实实施 2-1</td>
<td>NTL75</td>
<td>800.0</td>
<td>535.0</td>
</tr>
<tr>
<td>对比例 2-4</td>
<td>NCP75</td>
<td>801.5</td>
<td>379.6</td>
</tr>
</tbody>
</table>

NTL75 的平均指示有效压力的降低率（与 PRF75 相比）：28.2%

【0083】表 6

<table>
<thead>
<tr>
<th></th>
<th>燃料</th>
<th>最大压力提升率 kPa/deg</th>
<th>平均指示有效压力 kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>对比例 2-5</td>
<td>PRF80</td>
<td>600.6</td>
<td>356.7</td>
</tr>
<tr>
<td>对比例 2-6</td>
<td>NDB80</td>
<td>599.3</td>
<td>335.0</td>
</tr>
<tr>
<td>对比例 2-7</td>
<td>NMP80</td>
<td>600.3</td>
<td>361.3</td>
</tr>
<tr>
<td>实施例 2-2</td>
<td>NTL80</td>
<td>601.1</td>
<td>576.6</td>
</tr>
<tr>
<td>对比例 2-8</td>
<td>NCP80</td>
<td>599.7</td>
<td>372.6</td>
</tr>
</tbody>
</table>

NTL80 的平均指示有效压力的降低率（与 PRF80 相比）：61.6%

【0084】表 7

<table>
<thead>
<tr>
<th></th>
<th>燃料</th>
<th>最大压力提升率 kPa/deg</th>
<th>平均指示有效压力 kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>对比例 2-9</td>
<td>PRF85</td>
<td>399.8</td>
<td>299.9</td>
</tr>
<tr>
<td>对比例 2-10</td>
<td>NDB85</td>
<td>399.6</td>
<td>280.7</td>
</tr>
<tr>
<td>对比例 2-11</td>
<td>NMP85</td>
<td>401.1</td>
<td>339.4</td>
</tr>
<tr>
<td>实施例 2-3</td>
<td>NTL85</td>
<td>401.0</td>
<td>640.4</td>
</tr>
</tbody>
</table>
NTL85 的平均指示有效压力的降低率（与 PRF85 相比）：113.5%。
[0086] 图 6-11 都表明，在相同的最大压力提升率条件下，根据本发明的 NTL 系列燃料（NTL75, NTL80, NTL85）与对比燃料（PRF 系列燃料, NDB 系列燃料, NMP 系列燃料, NCP 系列燃料）相比，在平均指示有效压力方面表现出 28 到 113% 的增加。如图 7、9 和 11 所示，这是由于本发明的燃料通过利用主要含有链烷烃燃料的组分和主要含有芳香族燃料的组分的点火温度的不同来延长了燃烧时间，从而避免燃料的快速燃烧，和因此更多的燃料可以在相同的最大压力提升率下被燃烧，以此增加放热率。
图1

图2
曲柄转角 deg ATDC

图 11