(54) Title: SYSTEM AND METHOD LOW HEAT WELD

(57) Abstract: A method for low heat welding includes providing short circuit pulse Metal Inert Gas (MIG) welding at less than a rate of about a twenty (20) inch a minute travel speed.

FIG. 1
Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG), Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
SYSTEM AND METHOD LOW HEAT WELD

BACKGROUND

[0001] The present disclosure relates generally to aerospace components used in gas turbine engines and more particularly to methods and apparatuses for application of a low heat weld.

[0001] Gas turbine engines, such as those that power modern commercial and military aircraft, generally include a compressor section to pressurize an airflow, a combustor section to burn a hydrocarbon fuel in the presence of the pressurized air, and a turbine section to extract energy from the resultant combustion gases.

[0002] Arranged within the compressor and turbine sections are alternating annular stages of circumferentially disposed rotational blades and stationary vanes. The blades are typically mounted on a disk that rotates about its central axis though integrally bladed rotors (IBR) and blades referred to as BLISKS in the industry may also be used. The blades and vanes are typically forged from superalloys such as a nickel-base alloy. In addition, the casting is frequently performed so as to produce a directionally solidified part with grains aligned parallel to the axis of the blade or a single crystal part, with no grain boundaries.

[0003] Some gas turbine engine blades are designed so that during engine operation, the tip portion of the rotating blades rubs a stationary seal or case to limit the leakage of working medium gases. While the seals are usually more abradable than are the blade tips - so that during such rub interactions, a groove is cut into the seal - the blade tips do wear, and the blades become
shorter. As the blades accumulate service time, the total tip wear increases to the point that eventually, the efficiency of the blade and seal system may be reduced such that the blades need to be repaired or replaced. Repairs are typically more efficient.

[0004] Several methods exist for repair. The tips of worn blades can be repaired, and the length of the blade increased, by removal, or the worn and/or damaged tip area then weld filler metal is used to the tip to build up the tip to a desired dimension. Such weld filler repairs may import a significant quantity of heat into the component such that relatively thin components may only accept a limited build up of weld material which limits the length increase.

SUMMARY

[0005] A method for low heat welding according to one disclosed non-limiting embodiment of the present disclosure includes providing short circuit pulse Metal Inert Gas (MIG) welding at less than a rate of about a twenty (20) inch a minute travel speed.

[0006] A further embodiment of the present disclosure includes providing an about 100% argon shielding gas for the short circuit pulse Metal Inert Gas (MIG) welding.

[0007] A further embodiment of any of the foregoing embodiments of the present disclosure includes providing an about 99.75% argon and an about 0.25% carbon dioxide shielding gas for the short circuit pulse Metal Inert Gas (MIG) welding.

[0008] A further embodiment of any of the foregoing embodiments of the present disclosure includes providing short circuit pulse Metal Inert Gas (MIG) welding at a rate of 5-15 inch a minute travel speed.
A further embodiment of any of the foregoing embodiments of the present disclosure includes providing short circuit pulse Metal Inert Gas (MIG) welding at a rate of 5 inch a minute travel speed.

A method for repairing an aerospace component according to another disclosed non-limiting embodiment of the present disclosure includes removing material on an aerospace component to provide a consistent surface; and building-up material on the consistent surface via short circuit pulse Metal Inert Gas (MIG) welding at less than a rate of about a twenty (20) inch a minute travel speed to provide a weld buildup.

A further embodiment of any of the foregoing embodiments of the present disclosure includes machining the weld buildup to original nominal dimensions of the aerospace component.

A further embodiment of any of the foregoing embodiments of the present disclosure includes, wherein the aerospace component is a knife edge.

A further embodiment of any of the foregoing embodiments of the present disclosure includes providing an about 100% argon shielding gas for the short circuit pulse Metal Inert Gas (MIG) welding.

A further embodiment of any of the foregoing embodiments of the present disclosure includes providing an about 99.75% argon and an about 0.25% carbon dioxide shielding gas for the short circuit pulse Metal Inert Gas (MIG) welding.

A further embodiment of any of the foregoing embodiments of the present disclosure includes, wherein the aerospace component is manufactured of a Titanium based material.
A further embodiment of any of the foregoing embodiments of the present disclosure includes, wherein the aerospace component is manufactured of a Nickel based material.

BRIEF DESCRIPTION OF THE DRAWINGS

Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:

- **Figure 1** is a perspective view of an aerospace component and
- **Figure 2** is schematic block diagram of a method to repair the aerospace component

DETAILED DESCRIPTION

Figures 1 schematically illustrates an aerospace component 10, that includes a root 12, a platform 14, an airfoil 16, and a tip shroud 18 with a knife edges 20. The component 10 may be, for example, a shrouded high pressure turbine blade, but is not limited thereto and may include vanes, blades, and other aerospace components.

The root 12 may be a dovetail or fir tree root and is configured for receipt in a slot in the rim of a rotor disc (not shown). The platform 14 is integral with and radially outboard of the root 12. The airfoil 16 extends radially outward from the platform 14 to the top shroud 18 that includes the knife edge 20 that is designed to engage, for example, a stationary honeycomb seal (not shown).

Through normal engine operation, the knife edges 20 may wear away over time. In order to extend the useful life of the blade 10, the knife edges 20 may be restored to the
original manufactured condition. Although disclosed with respect to a knife edge 20, it should be understood that any component which requires a thin section weld such as for example, but not limited to, a squealer tip, combustor edge, combustor pin will also benefit herfrom.

[0023] A short circuit pulse Metal Inert Gas (MIG) welding system such as the Cold Metal Transfer and Cold Metal Transfer Print welding technology of Fronius International in Portage, IN, USA uses short pulses along with a short circuit features to produce small deposits of weld. When the travel speed is manipulated to traverse relatively slow, the result is a very small weld made of continuous pulses of power and detachment of the weld material in small dots.

[0024] In one disclosed non-limiting embodiment, less than a twenty (20) inch a minute (508 mm/min) travel speed and in particular a five to fifteen (5-15) inch a minute (127-381mm/min) travel speed is utilized with a Rene’ 142, PWA795 material weld wire and 100% argon or 99.75% argon and 0.25% carbon dioxide shielding gas. This relatively slow travel speed utilized has demonstrated effective low heat welds on various configurations and materials such as aerospace materials including but not limited to, Titanium alloys, Cobalt alloys and Nickel alloys.

[0025] With reference to Figure 2, one disclosed non-limiting embodiment of a repair method 100 initially includes the removal of material to provide a consistent surface (step 102). The short circuit pulse MIG weld is then utilized to build-up material beyond a nominal geometry (step 104). The build-up material is then final machined to original nominal dimensions (step 106).

[0026] This short circuit pulse MIG weld has a very small heat affected zone due to the non-continuous nature of the process to facilitate an extension of limits when utilized to
repair components such as the knife edges 20. For example, the extension of limits permits the repair of more components that, for example, have knife edges 20 that may previously be limited to 0.0001 inches (0.0025mm) of wear from nominal. Now, due to the minimum heat input, knife edges 20 may be repaired with, for example, 0.0002 to 0.0004 inches (0.005 - 0.010 mm) of wear from nominal. It should be appreciated that this is but a single example and that other components with other extension of limits will also benefit herefrom, for example, integrally bladed rotors (IBR).

[0027] More precise repairs are facilitated due to the very small weld bead that is achievable with this method. Minimum heat input is required to perform this weld, so more sensitive materials can be repaired using this technology.

[0028] Repairs that employ embodiments of that disclosed herein therefore reduce repair time and cost, and simultaneously improve repair quality.

[0029] It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.

[0030] Although the different non-limiting embodiments have specific illustrated components, the embodiments of this invention are not limited to those particular combinations. It is possible to use some of the components or features from any of the non-limiting embodiments in combination with features or components from any of the other non-limiting embodiments.
Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present disclosure.

The foregoing description is exemplary rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be understood that within the scope of the appended claims, the disclosure may be practiced other than as specifically described. For that reason the appended claims should be studied to determine true scope and content.
CLAIMS

What is claimed is:

1. A method for low heat welding comprising:
 providing short circuit pulse Metal Inert Gas (MIG) welding at less than a rate of about a
twenty (20) inch a minute travel speed.

2. The method as recited in claim 1, further comprising:
 providing an about 100% argon shielding gas for the short circuit pulse Metal Inert Gas
 (MIG) welding.

3. The method as recited in claim 1, further comprising:
 providing an about 99.75% argon and an about 0.25% carbon dioxide shielding gas for
 the short circuit pulse Metal Inert Gas (MIG) welding.

4. The method as recited in claim 1, further comprising
 providing short circuit pulse Metal Inert Gas (MIG) welding at a rate of 5-15 inch a
 minute travel speed.

5. The method as recited in claim 1, further comprising
 providing short circuit pulse Metal Inert Gas (MIG) welding at a rate of 5 inch a minute
 travel speed.
6. A method for repairing an aerospace component comprising:
removing material on an aerospace component to provide a consistent surface; and
building-up material on the consistent surface via short circuit pulse Metal Inert Gas
(MIG) welding at less than a rate of a twenty (20) inch a minute travel speed to
provide a weld buildup.

7. The method as recited in claim 6, further comprising:
machining the weld buildup to original nominal dimensions of the aerospace component.

8. The method as recited in claim 6, wherein the aerospace component is a knife edge.

9. The method as recited in claim 6, further comprising:
providing an about 100% argon shielding gas for the short circuit pulse Metal Inert Gas
(MIG) welding.

10. The method as recited in claim 6, further comprising:
providing an about 99.75% argon and an about 0.25% carbon dioxide shielding gas for
the short circuit pulse Metal Inert Gas (MIG) welding.

11. The method as recited in claim 6, wherein the aerospace component is
manufactured of a Titanium based material.
12. The method as recited in claim 6, wherein the aerospace component is manufactured of a Nickel based material.
FIG. 1
FIG. 2

100

102 REMOVE MATERIAL TO PROVIDE A CONSISTENT SURFACE

104 BUILD UP MATERIAL BEYOND NOMINAL GEOMETRY WITH SHORT CIRCUIT PULSE MIG WELD

106 FINAL MACHINE TO NOMINAL
A. CLASSIFICATION OF SUBJECT MATTER
B23K 9/173(2006.01)i, B23K 9/04(2006.01)i, B23K 35/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B23K 9/173; B23P 6/00; F01D 25/24; B23K 26/20; B23K 35/28; B23K 9/04; B23K 35/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: MIG welding, repairing, aerospace component, travel speed, and shielding gas

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2009-0274553 Al (BUNTING, BILLIE W.) 05 November 2009 See abst ract; paragraphs [0018], [0024], [0025], [0028]; claims 1, 2 and figure 3B.</td>
<td>1-12</td>
</tr>
<tr>
<td>Y</td>
<td>US 2002-0036186 Al (FORTAIN et a l.) 28 March 2002 See abst ract and claims 1, 2, 6.</td>
<td>1-12</td>
</tr>
<tr>
<td>Y</td>
<td>US 6596971 Bl (BISKUP et a l.) 22 July 2003 See abst ract and claims 1-4.</td>
<td>3, 10</td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0049112 Al (JOHNSON et a l.) 03 March 2011 See abst ract; paragraphs [0036]-[0039]; claim 1 and figures 5, 6.</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>Wo 00-24545 Al (MESSER GRIEHEIM GMBH et a l.) 04 May 2000 See abst ract and claim 1.</td>
<td>1-12</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
26 June 2014 (26.06.2014)

Date of mailing of the international search report
27 June 2014 (27.06.2014)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongna-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer
HWANG, Chan Yoon
Telephone No. +82-42-481-3347

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 8192152 B2</td>
<td>05/06/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-53988 Al</td>
<td>03/01/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-53988 B2</td>
<td>27/05/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5398801 A</td>
<td>03/01/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 773498 B2</td>
<td>27/05/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1329961 A</td>
<td>09/01/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60131325 D1</td>
<td>27/12/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60131325 T2</td>
<td>04/09/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1166940 T3</td>
<td>25/02/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1166940 Al</td>
<td>02/01/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2295120 T3</td>
<td>16/04/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2810569 Al</td>
<td>28/12/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2810569 Bl</td>
<td>25/10/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002-035941 A</td>
<td>05/02/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1166940 E</td>
<td>25/01/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6586700 B2</td>
<td>01/07/2003</td>
</tr>
<tr>
<td>us 6596971 Bl</td>
<td>22/07/2003</td>
<td>AT 413941 T</td>
<td>15/11/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2356715 Al</td>
<td>06/03/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2356715 C</td>
<td>12/01/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60136514 D1</td>
<td>24/12/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1186368 T3</td>
<td>16/03/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1186368 Al</td>
<td>13/03/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2316423 T3</td>
<td>16/04/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2813544 Al</td>
<td>08/03/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2813544 Bl</td>
<td>18/10/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 05107492 B2</td>
<td>26/12/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002-137062 A</td>
<td>14/05/2002</td>
</tr>
<tr>
<td>us 2011-0049112 Al</td>
<td>03/03/2011</td>
<td>CH 701826 A2</td>
<td>15/03/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 701826 A8</td>
<td>30/06/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102000915 A</td>
<td>06/04/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102010037043 Al</td>
<td>03/03/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011-051017 A</td>
<td>17/03/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8373089 B2</td>
<td>12/02/2013</td>
</tr>
<tr>
<td>wo 00-24545 Al</td>
<td>04/05/2000</td>
<td>DE 19849510 Al</td>
<td>04/05/2000</td>
</tr>
</tbody>
</table>