A combustion engine (10) fuel system apparatus saturates and diffuses a gas, such as air, into a liquid fuel. The apparatus includes a fuel saturation chamber (21) connected to the engine fuel tank (13) for receiving a liquid fuel therefrom and also connected to a gas compressor (30) for directing compressed gas into the fuel saturation chamber (21) for saturating a liquid fuel being fed therein with the gas. The fuel saturation chamber (21) is connected to a gas diffusion chamber (24) for diffusing gas into the liquid fuel and which is also connected to the gas compressor (30).
BACKGROUND OF THE INVENTION

The present invention relates to a fuel system and especially to a fuel system for internal combustion and turbine and other engines which saturates and diffuses a gas, such as air, into a liquid fuel.

In the past, a great variety of internal combustion engine fuel systems have been provided for use on internal combustion engines in vehicles. Typically, a hydrocarbon fueled engine might have a carburetor in which a liquid fuel is vaporized in a fixed or variable venturi as air from the atmosphere is fed through the venturi, drawing fuel vapor into the intake manifold and into the cylinders of the engine. Diesel engines more commonly provide a fuel injection system in which the fuel is injected directly into the combustion chamber under high pressure and does not use a spark to ignite the charge being injected into the cylinder. Typically, air has already been drawn into the cylinder and compressed at the time the fuel is injected thereinto. It is more common today to provide a fuel injection system for more conventional spark ignition internal combustion engines which work at a lower combustion chamber pressure in order to improve the efficiency of the engine.

The present invention is directed primarily at combustion engines, including diesel, turbine and spark ignited engines, which have fuel injection systems and provides for the saturation and diffusion of the liquid hydrocarbon fuel with oxygen or air
under pressure through a fuel saturator and a fuel
diffuser connected in tandem. The fuel diffuser
requires a dense but slightly porous stone or other
material which forces a gas under pressure into the
liquid fuel. It has been common in the past to
saturate liquids with gases, such as carbon dioxide,
to form soda water or to increase the gas content in
malt drinks, such as beer. Saturated liquids,
however, have to be maintained under pressure until
just prior to use. The present invention first
saturates the liquid fuel and then utilizes a stone
similar to the one used by brewers but which has been
enclosed in a casing in order to increase the
diffusion of the saturated liquid fuel with a gas.

Other prior art type systems include the use of
various systems for bubbling air through a liquid fuel
in order to vaporize the fuel as well as a variety of
other circuits directed primarily at vaporizing the
fuel by the passing of a gas therethrough. These
systems do no attempt to saturate the liquid with a
gas but rather to vaporize the liquid in the air and
are used primarily in carburetor type fuel systems.
It has also been known to feed gases into a carburetor
at the same time the hydrocarbon fuel is being
vaporized therein and various fuel additives have been
added to fuels to modify the fuel being fed to the
fuel system. An advantage of the present invention is
that the hydrocarbon liquid fuel can be saturated with
a number of gases which can then be used on a fuel
injection system without the individual injectors
being broken by air or another gas getting into the
fuel injectors. That is, most fuel injectors on
internal combustion engines will not operate if air
3
gets trapped in the injectors, so that gases cannot
normally be fed with a fuel through a fuel injected
system of an engine. The fuel system can also be used
to treat bulk fuels, such as coal slurry, without
departing from the spirit and scope of the invention.
This invention is an improvement over prior U.S.
Patent No. 4,376,423 to Knapstein, one of the present
inventors. In this prior patent, an apparatus and a
method of saturating liquid fuel with air, oxygen, or
another gas is provided for injecting into an internal
combustion engine. The internal combustion engine is
provided with a gas compressor or pump for compressing
air or oxygen, which is directed into a fuel diffuser
having a dense, porous material or stone therein and
having a liquid hydrocarbon fuel being fed
therethrough. Compressed gas is fed onto one side of
the stone and is forced therethrough for diffusion
into the liquid fuel, which is then fed into a fuel
injection system of an internal combustion engine.

SUMMARY OF THE INVENTION

A combustion engine fuel system apparatus
saturates and diffuses a gas, such a air, into a
liquid fuel. The apparatus includes a fuel saturation
chamber connected to a fuel supply tank for receiving
a liquid fuel therefrom and also connected to a gas
compressor for directing compressed gas into the fuel
saturation chamber for saturating a liquid fuel being
fed therein with the gas. The fuel saturation chamber
is connected to a gas diffusion chamber for diffusing
gas into the liquid fuel and which is also connected
to the gas compressor. A dense porous material, such
as a porous stone, is positioned in the gas diffusion chamber for diffusing the gas and liquid fuel together. The saturation and diffused liquid fuel is then fed into a combustion engine. A liquid fuel heater is used to heat the fuel being fed into the fuel saturation chamber. The method includes heating a liquid fuel from a fuel tank, then saturating the heated liquid fuel from the engine fuel tank with a gas and then directing the saturated fuel from the fuel saturating tank into a fuel diffusion chamber and diffusing a gas into the liquid fuel from the saturating chamber.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and advantages of the present invention will be apparent from the written description and the drawings in which:

Figure 1 is a diagrammatic view of the fuel system in accordance with the present invention attached to an internal combustion engine.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is for a method and apparatus for saturating and diffusing air or oxygen or the like with a liquid hydrocarbon fuel for a combustion engine.

Saturate and saturation are used herein to mean the process of saturating a liquid with a gas by charging or impregnating a gas, such as air or oxygen, into a liquid fuel. Diffusing and diffusion are used herein to mean the dissemination of air or oxygen
within a liquid fuel. Both processes are used in tandem to more fully incorporate a gas within a liquid fuel in a manner that it will not separate in the internal combustion engine fuel injection system.

Referring to the drawing, an internal combustion engine 10 is illustrated having a plurality of fuel injectors 11 which are of the conventional type used in a diesel or spark ignited internal combustion engine, and along with the injection pump 12, do not have to be changed in adapting the present invention to an existing engine.

The engine 10 is operated on a liquid fuel, such as No. 2 diesel fuel or other liquid hydrocarbon fuel, from the tank 13 having the fuel 14 fed therein. The fuel 14 is fed from the tank 13 through a fuel line 15 through a conventional fuel pump 9 and into the liquid fuel heater 17. The liquid fuel heater 17 may be an electrically heated fuel chamber. The fuel is pumped through the fuel heater 17 to shutoff valve 18 and shutoff valve 19 which are controlled by the float switch 22. When float switch 22 calls for makeup fuel, the shutoff valve 18 closes and valve 19 opens to allow makeup fuel to enter the saturator fuel inlet 20 and into the saturator canister 21. When the fuel saturator chamber 21 is full to capacity, valve 18 opens and allows fuel to return to the fuel tank 13.

The saturator canister 21 allows the saturated liquid fuel to collect in the bottom over the collection tube 23 where it is fed to a conventional fuel pump 16. The fuel pump 16 then pumps the saturated liquid fuel through a fuel line 15 to the diffuser chamber 24, the diffuser 24 has a container 25 and inside the casing is a dense, porous material
26, such as a brewers stone, which is shown in a
cylindrical shape, but which is hollow. The fuel from
the saturator container 21 is fed through line 15 into
inlet 27 and into the container 25. The fuel flows
into the container around the stone 26 and out of
outlet 28 into a fuel line 29.

An air pump or air compressor 30 is attached to
the internal combustion engine 10 and may be driven by
a belt 31 attached to a pulley 32 connected to the
crankshaft of the engine. Air from the atmosphere can
be compressed in a compressor 30 and is fed through an
air regulator 33 through an air filter 34 and through
an in-line air check valve 35, through an air line 36
into the diffuser chamber 24 inlet 37 and into the
inside of the dense, porous material 26. Under
pressure, the air is forced through the dense, porous
material 26 where it is forced into a liquid fuel
therein on the opposite side of the porous material 26
to diffuse air into the liquid fuel. The compressed
air line 36 is also connected to the air line 38 and
into regulator 33 through an in-line air check valve
35 and fed therein to the saturator container 21 to
saturate liquid fuel being fed from an outlet nozzle
40. The outlet nozzle 40 is shown with outlet streams
but can be any number desired.

The fuel diffuser 24 has an outlet 41a from the
top thereof and on in-line 42 attached thereto. An
in-line air check valve 43 bleeds off the separated
gas that separates it from the diffused fuel in the
fuel diffuser 24 and is released through the vent line
44.

Saturated and diffused liquid fuel is fed from
the fuel filter 45 through a fuel line 46 to the
injector pump 12. The fuel filter 45 may have a gas
line 47 connected thereto for removing any additional
gas that has escaped from the diffused liquid fuel as
it passes through a standard in-line air check valve
35 and is connected with the diffuser vent line 42 and
the saturator vent line 41b to the vent line 44. The
saturated and diffused liquid fuel fed through the
line 46 into the injector pump 12 is injected into the
fuel injectors in a conventional manner except that
additional fuel bleed off lines 48 are connected to
each fuel injector and each of these lines has the
ability to bleed off excess fuel unused by the
injector pump 12 and is connected to the fuel bleed
off return line 49 which is connected to an in-line
check valve 50 which is connected to the fuel inlet 20
which is connected to the fuel saturator container 21.

An in-line air check valve 35 is connected in the
vapor return line 47 and in a similar check valve 43
and is connected in the vapor return line 42 and is
connected to the main vent line 44 and may be vented
and connected to the in-line air check valve 51 and
connected to the line returned to the intake manifold
lines 11 on certain engines to improve combustion and
can enhance the combustion process by the use of gases
other than air which would further enhance the
combustion process.

The method of the present invention provides for
feeding a liquid fuel to the fuel inlet 20 and to the
fuel saturator container 21, compressing air or
another gas in the compressor 30 and feeding it into
the compressed gas inlet 39 and into the fuel
saturator container 21. The liquid fuel from inlet 20
is directed into the saturator container 21 and into
the mounted end nozzle 40 so that the fuel is saturated with the air or another gas and then collected in a collection tube 23 in the bottom of the saturator canister 21. The air saturated fuel is delivered through a conventional fuel pump 16 which pumps the saturated fuel through fuel line 15 to the newly added diffuser chamber 24 to one side of the dense, porous stone 26 while the fuel is being fed on the other side thereof.

The liquid fuel is saturated and diffused with air or another gas and injected into the engine and might also include the steps of bleeding off the excess gas release into an intake manifold or venting the air or gas out of the saturated and diffused fuel.

It should be clear at this point, that while air is shown being compressed, oxygen or any other gas could be diffused or saturated into the liquid fuel and that in place of the compressor 30, a small tank of compressed oxygen could be utilized without departing from the spirit and scope of the invention. The system as illustrated is also shown connected to an internal combustion engine but it will be clear that any combustion fuel can be used for any combustion engine including the pretreating of bulk fuel, such as coal slurry, and can also be used with fuel oil for injection into furnaces or boilers.

Accordingly, the present invention is not to be construed as limited to the forms shown which are to be considered illustrative rather than restrictive.
CLAIMS:

I claim:

1. A combustion engine (10) fuel treatment apparatus comprising:
 a fuel tank (13) for holding a liquid fuel;
 a gas compressor (30);
 a fuel saturation chamber (21) having a fuel inlet therein connected to said fuel tank (13) for receiving a liquid fuel therefrom, said fuel saturation chamber (21) also being connected to said gas compressor (30) for directing gas under pressure into said fuel saturation chamber (21) for saturating said liquid fuel with a gas;
 a gas diffusion chamber (24) for diffusing gas into said liquid fuel, said gas diffusion chamber (24) being connected to said fuel saturation chamber (21) for receiving saturated liquid fuel therefrom and to said gas compressor (30) for receiving gas under pressure therefrom for diffusing gas into said liquid fuel; and
 means (29, 45, 46) for directing liquid fuel saturated and diffused with gas from said gas diffusion chamber (24) into a combustion engine (10); whereby liquid fuel saturated and diffused with a gas is used to operate a combustion engine (10).
2. A combustion engine (10) fuel apparatus in accordance with claim 1 in which said gas diffusion chamber (24) has dense, porous material (26) therein having at least two sides for feeding a liquid on one side thereof and a pressurized gas on the other side thereof for diffusion said gas into said liquid.

3. A combustion engine (10) fuel apparatus in accordance with claim 2 in which said gas diffusion chamber (24) dense, porous material (26) is a dense porous stone.

4. A combustion engine (10) fuel apparatus in accordance with claim 2 including a liquid fuel heater (17) connected between said fuel tank (13) and said fuel saturation chamber (21) for heating fuel being fed into said fuel saturation chamber (21).

5. A combustion engine (10) fuel apparatus in accordance with claim 2 in which said fuel saturation chamber (21) inlet has a nozzle (40) mounted thereto and being positioned for said entering liquid fuel to be sprayed into said fuel saturator chamber (21) and for said pressurized gas to impinge thereupon to saturate said liquid fuel with said gas.

6. A combustion engine (10) fuel apparatus in accordance with claim 5 in which each said fuel saturation chamber (21) inlet nozzle (40) sprays a plurality of streams of fuel into said fuel saturator chamber (21) through said pressurized gas therein.
7. A combustion engine (10) fuel apparatus in accordance with claim 2 in which said fuel saturation chamber (21) has a gas bleed line (41B) extending therefrom for excess gas to escape from said saturation chamber (21).

8. A combustion engine (10) fuel apparatus in accordance with claim 7 in which said fuel diffusion chamber (24) has a gas bleed line (42) extending therefrom for excess gas to escape from said diffusion chamber (24).

9. A combustion engine (10) fuel apparatus in accordance with claim 8 in which said saturation chamber (21) gas bleed line (41B) and said diffusion chamber (24) gas bleed line (42) are connected to form a single gas bleed (44) to atmosphere.

10. A combustion engine (10) fuel apparatus in accordance with claim 7 in which said fuel saturation chamber (21) gas bleed line (41B) has a check valve (51) therein.

11. A combustion engine (10) fuel apparatus in accordance with claim 8 in which said fuel diffusion chamber (24) gas bleed line (42) has a check valve (42) therein.
12. A combustion engine (10) fuel apparatus in accordance with claim 6 in which said fuel saturation chamber (21) has a gas inlet nozzle (58) positioned to direct compressed gas into liquid fuel being sprayed thereinto.

13. A combustion engine (10) fuel apparatus in accordance with claim 2 in which said compressed gas is compressed air.

14. A combustion engine (10) fuel apparatus in accordance with claim 3 including a float switch (22) mounted in said fuel saturation chamber (21) and operatively connected to a valve in the fuel input to said fuel saturation chamber (21) for releasing fuel into said fuel saturation chamber (21) responsive to the fuel level in said fuel saturation chamber (21).
15. In a fuel treatment fuel system including a liquid fuel storage tank (13), a method for saturating liquid fuel with a gas comprising the steps of:
 saturating liquid fuel from a fuel storage tank (13) with a gas in a fuel saturating chamber (21);
 directing said saturated liquid fuel from said fuel saturating tank (21) into a fuel diffusion chamber (24);
 diffusing a gas into liquid fuel received from said saturating chamber (21) in a fuel diffusion chamber (24);
 and
 directing liquid fuel saturated and diffused with gas from said gas diffusion chamber into a combustion engine (10); whereby liquid fuel is saturated and diffused with a gas.

16. A method for saturating liquid fuel with a gas in accordance with claim 15 in which step of diffusing a gas into a liquid fuel includes diffusing a gas through a dense, porous material (26) in said diffusion chamber (24) by directing a liquid fuel on one side of said dense, porous material and a pressurized gas on the other side thereof for diffusion said gas into said liquid.

17. A method for saturating liquid fuel with a gas in accordance with claim 16 including the step of heating said liquid fuel prior saturating said liquid fuel.
18. A method for saturating liquid fuel with a
gas in accordance with claim 17 in which the step of
diffusing a gas through a said dense porous material
(26) includes diffusing a gas through a dense porous
stone.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : F02M 17/28; F02G 5/00
US CL : 123/1A, 3, 27GE, 516, 524, 525, 527, 557

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 123/1A, 3, 27GE, 516, 524, 525, 527, 557

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4,376,423 A (KNAPSTEIN) 15 MARCH 1983, FIGURE 1.</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>US 4,444,158 A (YOON) 24 APRIL 1984, FIGURE 3.</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>US 4,926,831 A (EARL) 22 MAY 1990, FIGURE 5.</td>
<td>1-18</td>
</tr>
<tr>
<td>T,E</td>
<td>US 6,189,516 B (HEI MA) 20 FEBRUARY 2001, FIGURE 1.</td>
<td>1-18</td>
</tr>
</tbody>
</table>

See patent family annex.

Date of the actual completion of the international search: 23 FEBRUARY 2001

Date of mailing of the international search report: 23 MAR 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer: HUYNH H. HAI
Telephone No. (703) 306-9183

Form PCT/ISA/210 (second sheet) (July 1998)