

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : H03F 3/72, 1/02		A1	(11) International Publication Number: WO 98/47222	
			(43) International Publication Date: 22 October 1998 (22.10.98)	
(21) International Application Number: PCT/US98/05765			(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 16 April 1998 (16.04.98)				
(30) Priority Data: 08/843,904 17 April 1997 (17.04.97) US				
(71) Applicant: QUALCOMM INCORPORATED [US/US]; 6455 Lusk Boulevard, San Diego, CA 92121 (US).				
(72) Inventors: SEVIC, John, F.; 11222 Twinleaf Way, San Diego, CA 92131 (US). CAMARILLO, Richard, J.; 9167 Bedel Court, San Diego, CA 92129 (US).				
(74) Agent: MILLER, Russell, B.; Qualcomm Incorporated, 6455 Lusk Boulevard, San Diego, CA 92121 (US).				
(54) Title: AN AMPLIFIER CIRCUIT HAVING A HIGH LINEARITY MODE OF OPERATION AND A HIGH EFFICIENCY MODE OF OPERATION				
(57) Abstract				
<p>An amplifier circuit (100) has a high linearity mode of operation and a high efficiency mode of operation. The amplifier circuit (100) comprises plural amplifiers (104a to 104n) each having a variable active device periphery and a variable supply voltage, and a control circuit (102) coupled to the amplifiers (104a to 104n). The control circuit (102) provides signals which decrease the variable active device periphery and increase the variable supply voltage when the amplifier circuit (100) is to operate in a high linearity mode of operation, and increase the variable active device periphery and decrease the variable supply voltage when the amplifier circuit (100) is to operate in a high efficiency mode of operation.</p>				

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

AN AMPLIFIER CIRCUIT HAVING A HIGH LINEARITY MODE OF OPERATION AND A HIGH EFFICIENCY MODE OF OPERATION

5

BACKGROUND OF THE INVENTION

I. Field of the Invention

The present invention relates to an amplifier circuit having a high linearity mode of operation and a high efficiency mode of operation.

II. Description of the Related Art

As is known in the art of amplifier design, high linearity and high efficiency are generally mutually exclusive design considerations. That is to say that when one is designing a particular transistor-based amplifier, one must usually make a tradeoff between the high linearity and high efficiency. The difference between high linearity and high efficiency is manifested by saturation characteristics which are determined by the load impedance in relation to the current capability and breakdown voltage of the amplifier. Thus, a designer who wishes to design a highly linear amplifier will generally choose a relatively low load impedance for a given supply voltage. Highly linear amplifiers maintain the integrity of the input signal envelope at the expense of higher average power dissipation. This high average power dissipation which results from overlap of current and voltage in the transistor over time is particularly undesirable in a battery-powered portable transmitter because it reduces the battery life, and thus the transmit time of the portable transmitter between battery charges.

Conversely, a designer who wishes to design a highly efficient amplifier will generally choose a relatively higher load impedance for the same supply voltage. Highly efficient amplifiers maintain a lower average power dissipation at the expense of "clipping" of the input signal at high input amplitudes due to premature saturation of the amplifier. Although clipping the input signal gives rise to high efficiency and longer battery life because the device's power dissipation (and thus the instantaneous voltage/current overlap and power dissipation) is minimized during saturation, it results in distortion of the input signal envelope, and consequent generation of in-band spectral sidelobes of information. Furthermore, clipping generates higher-order harmonics that may be spread outside of the allowed operating bandwidth of the transmitter, causing

interference to other RF devices transmitting or receiving on other frequencies.

In the field of wireless telecommunications, such as in various cellular, Personal Communication Services (PCS), and wireless local loop

5 (WLL) communication systems, many different communication standards exist for these wireless communication systems. For example, Code-Division Multiple Access (CDMA) digital communications may be governed in the United States by either Telecommunications Industry Association (TIA)/Electronic Industries Association (EIA) Interim Standard IS-95 for
10 cellular bands, or ANSI J-STD-008 for PCS bands. Additionally, Time-Division Multiple Access (TDMA) digital communications may be governed by the TIA/EIA IS-54 or by the European standard Global System for Mobile Communications (GSM). Finally, analog FM-based communications may be governed by the Advanced Mobile Phone System (AMPS) standard, or one
15 of its improvement standards such as N-AMPS.

For each of these communication system standards, a long-felt need exists for an amplifier for a wireless communication device which exhibits the high linearity needed for signal integrity, as well as the high efficiency needed for longer operating time. This is particularly true for dual-mode

20 communication devices that can operate according to two different standards (such as CDMA/AMPS), because each of the standards may have different linearity requirements. For example, the linearity requirements in a CDMA communication device are more stringent than those of an AMPS communication device which has no in-band linearity requirement. Thus a
25 dual-mode CDMA/AMPS communication device would benefit greatly from being able to take advantage of a high linearity amplifier while operating in a CDMA mode, while still being able to operate with high efficiency while in the AMPS mode where there are no in-band linearity requirements.

30 Although there have been various attempts to create a highly efficient amplifier that is also highly linear, these attempts contain inherent problems which limit their effectiveness. For example, Doherty-type amplifiers are well known in the art as being highly efficient and also highly linear. A Doherty-type amplifier modulates the load impedance in response

35 to the envelope of the input signal by using two amplifiers in parallel, and the output of one of the amplifiers in series with a quarter-wavelength phase shifter. An example of such an amplifier is illustrated in U.S. Patent No. 5,568,086 to Schuss et al., entitled "LINEAR POWER AMPLIFIER FOR HIGH EFFICIENCY MULTI-CARRIER PERFORMANCE." However, a

significant drawback to the Doherty-type design of Schuss et al. is that a quarter-wavelength phase shifter may be difficult and costly to realize at certain frequencies in the mobile telephone environment, such as the 850 MHz cellular band. Additionally, Doherty-type amplifiers are narrowband 5 "tuned" amplifiers that operate best around a single frequency and are ill-suited for broadband use mobile telephone environment.

Another example solution is illustrated in U.S. Patent No. 5,175,871 to Kunkel, entitled "POWER AMPLIFIER FOR A CELLULAR TELEPHONE."

The amplifier of Kunkel uses a one non-linear amplifier stage which may be 10 used when non-linear behavior is desired, and one linear amplifier stage which may be switched in when linear power amplification is desired. However, a significant drawback of Kunkel is the switch loss which reduces analog mode efficiency. An additional drawback is the increased expense of providing two separate amplifiers, each with its own design characteristics.

15 Thus, there is a need for an amplifier that is both highly efficient and highly linear which avoids the problems of the prior art.

SUMMARY OF THE INVENTION

20 The present invention aims to provide an improved dual-mode RF amplifier which is both highly efficient and highly linear.

In one aspect the invention provides an amplifier circuit comprising: a first amplifier stage having a first supply voltage input for receiving a supply voltage and a first signal input for receiving a signal to be amplified 25 and a bias signal; a second amplifier stage having a second supply voltage input for receiving said supply voltage and a second signal input for receiving said signal to be amplified and said bias signal; and a control circuit having a supply voltage output coupled to said first and second supply voltage inputs and having first and second bias signal outputs respectively 30 coupled to said first and second signal inputs, and having a mode select input for receiving a mode select signal, said control circuit for varying said supply voltage and said bias signals in response to said mode select signal.

In another aspect the invention provides an amplifier circuit having a high linearity mode of operation and a high efficiency mode of 35 operation, said amplifier circuit comprising: an amplifier having a variable active device periphery and a variable supply voltage; and a control circuit, coupled to said amplifier, for decreasing said variable active device periphery and increasing said variable supply voltage when in said high linearity mode of operation, and for increasing said variable active device

periphery and decreasing said variable supply voltage when in said high efficiency mode of operation.

In a further aspect the invention provides a method for operating an amplifier circuit having a variable active device periphery and a variable supply voltage, said method comprising the steps of: decreasing said variable active device periphery and increasing said variable supply voltage when in a high linearity mode of operation; and increasing said variable active device periphery and decreasing said variable supply voltage when in a high efficiency mode of operation.

10 The invention also provides an amplifier in which plural amplifier stages are controlled by varying respective bias and/or supply voltages applied thereto and selected to cause the amplifier to operate in different selectable modes.

15 The invention is embodied in an amplifier circuit having a high linearity mode of operation and a high efficiency mode of operation. The amplifier circuit comprises an amplifier having a variable active device periphery and a variable supply voltage; and a control circuit, coupled to the amplifier, for decreasing the variable active device periphery and increasing the variable supply voltage when in the high linearity mode of operation, 20 and for increasing the variable active device periphery and decreasing the variable supply voltage when in the high efficiency mode of operation. Additionally, the quiescent current may also be varied in order to increase efficiency even further.

25 The variable active device periphery comprises a plurality of transistor stages. The control circuit decreases the variable active device periphery by biasing off at least one of the plurality of transistor stages, and increases the variable active device periphery by biasing on at least one of the plurality of transistor stages. Each of the plurality of transistor stages has a transistor output coupled to the variable supply voltage and an input 30 coupled to a signal to be amplified. The control circuit may be responsive to a mode select signal indicative of the high efficiency mode of operation or the high linearity mode of operation.

35 The present invention is also embodied in a method for operating an amplifier circuit having a variable active device periphery and a variable supply voltage. The method comprises the steps of decreasing said variable active device periphery and increasing said variable supply voltage when in a high linearity mode of operation, and increasing said variable active device periphery and decreasing said variable supply voltage when in a high efficiency mode of operation.

BRIEF DESCRIPTION OF THE DRAWINGS

The features, objects, and advantages of the present invention will 5 become more apparent from the detailed description of an embodiment of the invention set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:

FIG. 1 is a block diagram of the amplifier embodying the present 10 invention;

FIG. 2 is a graph of the current-voltage characteristics of the amplifier embodying the present invention when operating in a high linearity mode;

FIG. 3 is a graph of the current-voltage characteristics of the amplifier embodying the present invention when operating in a high efficiency mode; 15 and

FIG. 4 is a graph of the efficiency as a function of average input power for the amplifier embodying the present invention.

DETAILED DESCRIPTION OF THE PREFERRED 20 EMBODIMENTS

Referring now to FIG. 1, a block diagram of the RF amplifier 100 embodying the present invention is shown. The RF input signal, which may generally be a carrier signal modulated with information in amplitude, 25 frequency, or phase is presented to the inputs of DC blocks 106a-106n. DC blocks 106a-106n, in the simplest embodiment, may be DC blocking capacitors. At the high frequencies of the RF input signal, the DC blocks 106a-106n pass the RF input signal through to their respective parallel amplifier stages 104a-104n. Amplifier stages 104a-104n may be bipolar 30 junction transistors (BJTs), field effect transistors (FETs) or any other transistor type as is known in the art, whether CMOS, NMOS, PMOS or otherwise. Additionally, amplifier stages 104a-104n may be hybrid-type devices or tubes or TWT's as are known in the art. The present invention is not limited by the specific construction of amplifier stages 104a-104n.

When biased on by control circuit 102, each amplifier stage 104a-104n independently amplifies the RF input signal according to a gain characteristic determined by the device's construction and the bias voltages applied to it. The outputs of amplifier stages 104a-104n are combined and applied to a load 108 which may include a matching network, a diplexer, and 40 isolator, and an antenna in a wireless communication device.

Although only three parallel amplifier stages **104a-104n** are depicted, it would be well understood by one skilled in the art that more or fewer than three amplifier stages may be used. For example, only two amplifier stages **104a** and **104b** or as many as n amplifier stages **104a** to **104n** may be used.

5 Control circuit **102** selectively applies a DC bias to the inputs of parallel amplifier stages **104a-104n** in order to switch the individual amplifier stages on or off. For example, if each of amplifier stages **104a-104n** was a FET with a maximum power output of one watt, control circuit **102** might apply a DC bias to the gates of amplifier stages **104a** and **104b** but not
10 **104n** in order to get a maximum output through load **108** of two watts. Similarly, for an output power through load **108** of one watt only, control circuit **102** might apply a DC bias to the gates of amplifier stage **104a** only, it being understood that the other amplifier stages **104b-104n** would not be active in the absence of a DC bias applied to their gates. A similar scheme
15 would be followed if amplifier stages **104a-104n** were BJT devices, with the DC bias being applied to their respective bases.

The appropriate number of amplifier stages may be selected by control circuit **102** in response to a desired output power, which may in turn be determined in response to a power control circuit (not shown) within a
20 wireless communication device employing the RF amplifier **100**. A similar topology as that just described which results in extremely favorable DC efficiency, and thus longer battery life, is described in greater detail in copending U.S. Patent Application Serial No. 08/579,169 entitled "EFFICIENT PARALLEL-STAGE POWER AMPLIFIER", filed December 25,
25 1995 and assigned to the assignee of the present invention, and hereby incorporated by reference, and additionally copending U.S. Patent Application Serial No. 08/767,124 entitled "EFFICIENT PARALLEL-STAGE POWER AMPLIFIER", filed December 9, 1996 also assigned to the assignee of the present invention, also hereby incorporated by reference.

30 In the RF amplifier **100**, control circuit **102** provides an additional function. Specifically, control circuit **102** varies the supply voltage, V_c , which is input to each amplifier stage **104a-104n** in response to a mode select signal. The mode select signal, for example, may be a logic signal indicating whether a dual-mode CDMA/AMPS wireless communication device
35 employing the present invention is in the CDMA mode of operation or the AMPS mode of operation. More generally, the mode select signal indicates whether the amplifier **100** will operate generally in the high efficiency mode or the high linearity mode. As is known in the art, the linearity or efficiency

characteristics of a transistor device are dependent upon the load impedance in relation to the maximum current and supply voltage of the device.

When the mode select signal indicates that the amplifier 100 is to operate in the high linearity mode, control circuit 102 outputs a relatively high supply voltage $V_c(max)$ to at least amplifier stage 104a. Since the saturation characteristics of a transistor are generally proportional to its supply voltage, the saturation voltage of amplifier 100 with $V_c(max)$ being applied to amplifier stage 104a would be relatively high, thereby providing good linearity performance. For a BJT transistor-based amplifier stage, V_c may be applied to the collector, and for a FET transistor-based amplifier stage, V_c may be applied to the drain. Other embodiments use alternate topologies such as common emitter or common source.

FIG. 2 is a graph of current as a function of voltage for the amplifier 100 when in the high linearity mode of operation. FIG. 2 is representative of, for example, the case where only amplifier stage 104a is biased on. The curves 202a-202n represent the current-voltage characteristics of the device at various gate-source (FET) or base-collector (BJT) voltages provided by control circuit 102 (FIG. 1). The maximum current generated in this mode is $I(max)$. A load line 204 represents the current-voltage relationship for this configuration for a given load 108 impedance and drain or collector supply voltage of $V_c(max)$. As can be seen from FIG. 2, the load line 204 has been optimally chosen for linearity, with a maximum symmetrical swing, and can handle input voltages on the order of $2V_c(max)$ without clipping. A typical application of this configuration would be a wireless communication device operating in the digital CDMA mode.

Conversely, when the mode select signal indicates that the amplifier 100 is to operate in the high efficiency mode, control circuit 102 outputs a relatively low supply voltage $V_c(min)$ to at least amplifier stage 104a, thereby increasing its efficiency while simultaneously switching in other amplifier stages 104b-104n.

This configuration is shown in FIG. 3, where the active periphery (i.e. the gate width for a FET or the base area for a BJT) of the amplifier 100 is increased, for example, by biasing on amplifier stage 104b in addition to 104a. This results in increased current generating capability, such that if amplifier stage 104a and 104b are the same size, the maximum current would double in relation to that of FIG. 2 to a new value of $2I(max)$. The curves 302a-302n then correspond to the sum of the current from both amplifier stages 104a and 104b for various gate-source (FET) or base-emitter (BJT) voltages applied by control circuit 102. Additionally, the supply voltage, V_c , is reduced by a

predetermined amount to a value of $V_c(\min)$. Thus, the load line 304 presented by load 108 now represents a high-efficiency mode relative to FIG. 2, causing the amplifier 100 to become voltage limited and exhibit saturation for input voltages on the order of $2V_c(\min)$. This occurs because the higher 5 current capability and the lower drain or collector voltage provided by control circuit 102 induces premature saturation of the active amplifier stages 104a and 104b. As can be seen, the current for the amplifier 100 in the high efficiency mode of FIG. 3 goes to zero above about $2V_c(\min)$, resulting in very low average power dissipation. A typical application of this 10 configuration would be a wireless communication device operating in the analog AMPS mode.

So in other words, given a load 108 impedance of R , which is optimal for linearity for a device periphery of X of amplifier stage 104a at a given supply voltage of $V_c(\max)$ (corresponding to FIG. 2), if one increases the 15 device periphery to Y by biasing on amplifier stage 104b, and lowers the supply voltage to $V_c(\min)$ (corresponding to FIG. 3), then the load 108 impedance appears relatively larger to the amplifier 100, resulting in a high efficiency mode of operation. Additionally, one may reduce the quiescent current by a predetermined amount to obtain even higher efficiency.

It should be noted that more than one of the amplifier stages 104a- 20 104n may be biased on by control circuit 102 when in the high linearity mode of FIG. 2, and furthermore that more than two of the amplifier stages 104a- 104n may be biased on by control circuit 102 when in the high efficiency mode of FIG. 3. The present invention may be generally applied to any 25 number of parallel amplifier stages. Additionally, it should be noted that it may also be desirable to lower the quiescent current being drawn by the amplifier 100 when in the high efficiency mode to gain even more efficiency by reducing the average current. One skilled in the art will understand that various alterations to the described embodiment in order to optimize it for 30 other applications would still be obvious design considerations.

Turning now to FIG. 4, the advantages in efficiency of the RF amplifier 100 can be readily seen. In FIG. 4, a graph of average load power as a function of average input power is shown. Curve 402 represents the characteristic curve of amplifier 100 when in the high linearity mode. 35 Curve 404 represents the characteristic curve of amplifier 100 when in the high efficiency mode. A pointer on curve 402 indicates where amplifier 100 might be operated at when in a digital CDMA mode, and a separate pointer on curve 404 indicates where amplifier 100 might be operated when in an analog AMPS mode. When in the CDMA mode, the amplifier 100 needs an

output power of only about 28 dBm, and therefore operates in the linear region (below the "knee") of curve 402. However, when in the AMPS mode, the amplifier 100 needs an output power of about 31.5 dBm and thus operates in the non-linear, but more power efficient region (above the 5 "knee") of curve 404. As can be seen from FIG. 4, curve 404, which represents the high efficiency mode of operation with the increased device periphery and lower supply voltage, is shifted higher than curve 402. As such, it can be readily appreciated that the amplifier 100 is substantially more power efficient than merely driving an otherwise linear amplifier into its 10 non-linear region.

The previous description of the preferred embodiment is provided to enable any person skilled in the art to make or use the present invention. The various modifications to the embodiment will be readily apparent to those skilled in the art, and the generic principles defined herein may be 15 applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiment shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

20 WE CLAIM:

CLAIMS

1. An amplifier circuit comprising:

- 2 a first amplifier stage having a first supply voltage input for receiving a supply voltage and a first signal input for receiving a signal to be amplified and a bias signal;
- 6 a second amplifier stage having a second supply voltage input for receiving said supply voltage and a second signal input for receiving said signal to be amplified and said bias signal; and
- 8 a control circuit having a supply voltage output coupled to said first and second supply voltage inputs and having first and second bias signal outputs respectively coupled to said first and second signal inputs, and having a mode select input for receiving a mode select signal, said control circuit for varying said supply voltage and said bias signals in response to said mode select signal.

2. The amplifier circuit of claim 1 wherein said mode select signal is indicative of first and second operational modes, and wherein said control circuit increases said supply voltage and biases said first amplifier to an on state when in said first operational mode, and wherein said control circuit decreases said supply voltage and biases both said first and second amplifiers to an on state when in said second operational mode.

3. The amplifier circuit of claim 2 wherein said first operational mode is a high linearity mode and said second operational mode is a high efficiency mode.

4. The amplifier circuit of claim 3 wherein said first operational mode is a digital transmission mode and said second operational mode is an analog transmission mode.

5. The amplifier circuit of claim 4 wherein said first and second amplifier stages are respectively first and second field-effect transistors, said first and second supply voltage inputs are respectively first and second transistor drains, and said first and second signal inputs are respectively first and second transistor gates.

6. The amplifier circuit of claim 5 wherein said first and second transistor drains are coupled together.

7. An amplifier circuit having a high linearity mode of operation
2 and a high efficiency mode of operation, said amplifier circuit comprising:

an amplifier having a variable active device periphery and a variable
4 supply voltage; and

a control circuit, coupled to said amplifier, for decreasing said variable
6 active device periphery and increasing said variable supply voltage when in
said high linearity mode of operation, and for increasing said variable active
8 device periphery and decreasing said variable supply voltage when in said
high efficiency mode of operation.

8. The amplifier circuit of claim 7 wherein said variable active
2 device periphery comprises a plurality of transistor stages, and wherein said
control circuit decreases said variable active device periphery by biasing off at
4 least one of said plurality of transistor stages, and wherein said control
circuit increases said variable active device periphery by biasing on said at
6 least one of said plurality of transistor stages.

9. The amplifier circuit of claim 8 wherein each of said plurality
2 of transistor stages has a transistor output coupled to said variable supply
voltage and an input coupled to a signal to be amplified.

10. The amplifier circuit of claim 8 wherein said control circuit is
2 responsive to a mode select signal indicative of said high efficiency mode of
operation or said high linearity mode of operation.

11. A method for operating an amplifier circuit having a variable
2 active device periphery and a variable supply voltage, said method
comprising the steps of:

4 decreasing said variable active device periphery and increasing said
variable supply voltage when in a high linearity mode of operation; and

6 increasing said variable active device periphery and decreasing said
variable supply voltage when in a high efficiency mode of operation.

12. The method of claim 11 wherein said variable active device
2 periphery comprises a plurality of transistor stages, and wherein the step of
decreasing said variable active device periphery comprises biasing off at least
4 one of said plurality of transistor stages, and wherein said step of increasing

6 said variable active device periphery comprises biasing on said at least one of
6 said plurality of transistor stages.

2 13. The method of claim 11 further comprising the step of
2 decreasing a quiescent current of said variable active device periphery.

2 14. An amplifier in which plural amplifier stages are controlled by
2 varying respective bias and/or supply voltages applied thereto and selected
to cause the amplifier to operate in different selectable modes.

1/3

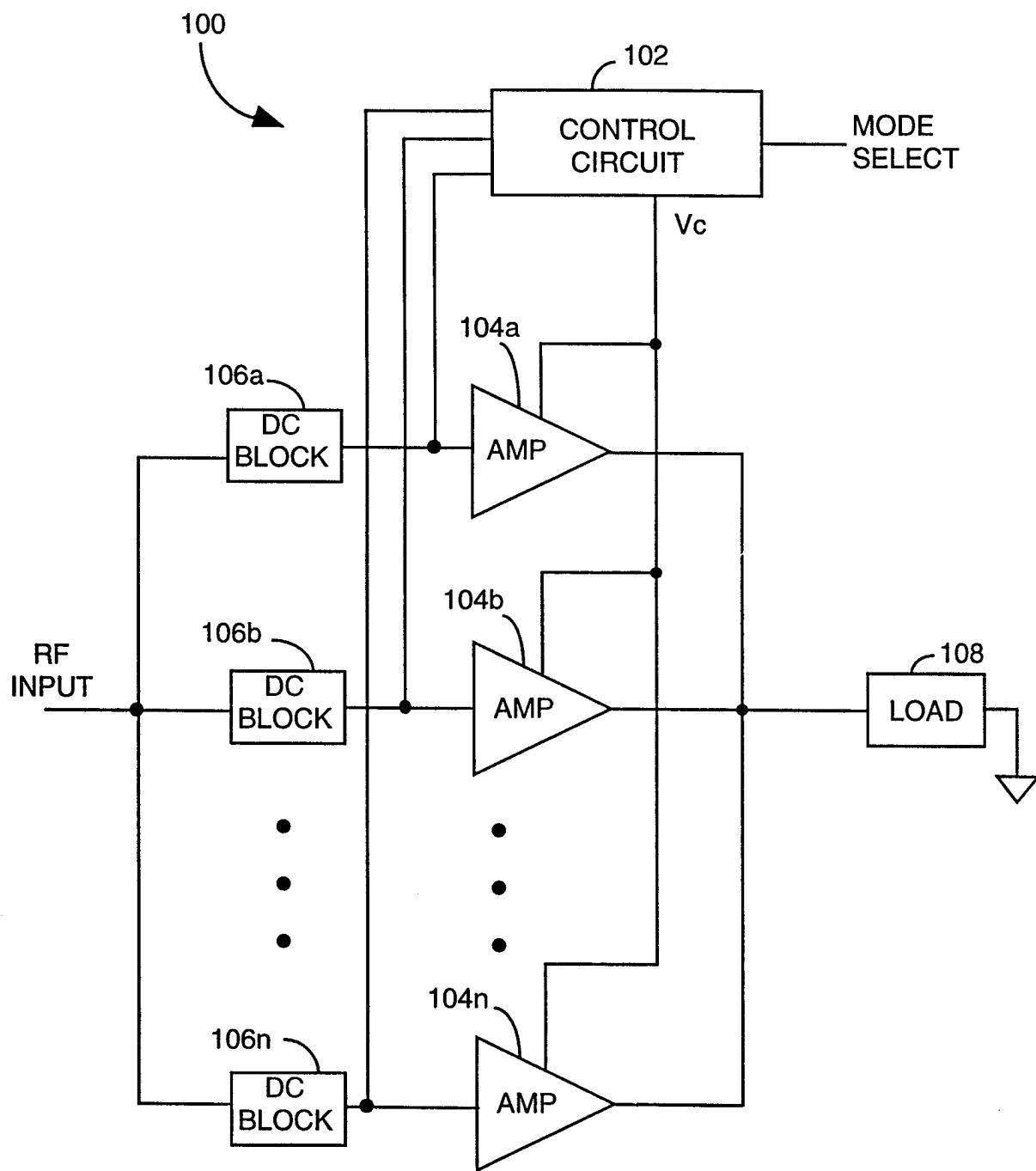


FIG. 1

2/3

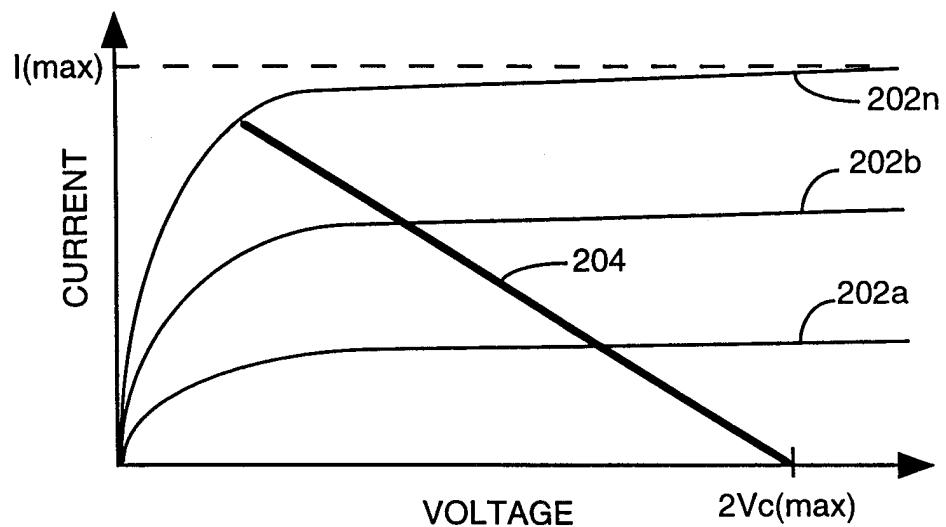


FIG. 2

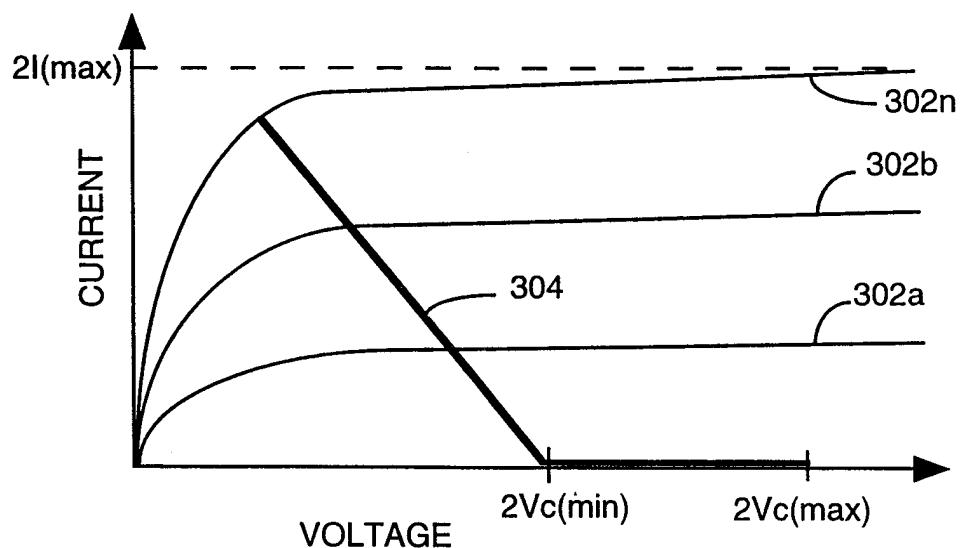


FIG. 3

3/3

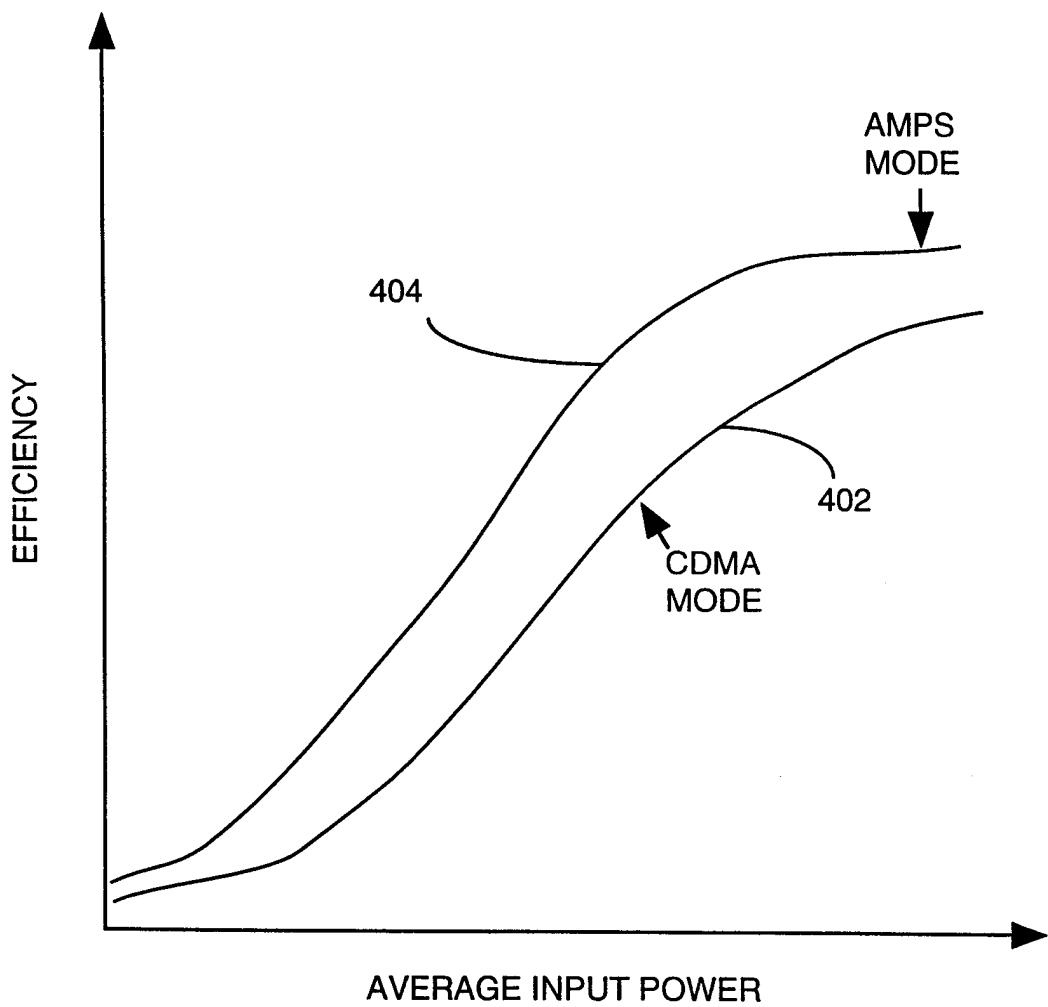


FIG. 4

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 98/05765

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 H03F3/72 H03F1/02		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols) IPC 6 H03F		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 541 554 A (STENGEL ROBERT E ET AL) 30 July 1996 see column 3, line 1 - column 5, line 24; figures 2-4 ---	1,2,5,8
A	US 5 423 078 A (EPPERSON DARRELL ET AL) 6 June 1995 see column 4, line 42 - column 7, line 18; figure 2 ---	1-5,7-14
A	US 4 893 093 A (CRONAUER EDWARD A ET AL) 9 January 1990 see the whole document -----	5,7,8, 11-14
<input type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.
° Special categories of cited documents : "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family		
Date of the actual completion of the international search		Date of mailing of the international search report
23 June 1998		13/07/1998
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Authorized officer Tyberghien, G

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 98/05765

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5541554	A 30-07-1996	NONE	
US 5423078	A 06-06-1995	NONE	
US 4893093	A 09-01-1990	NONE	