(54) 发明名称
液晶显示装置及其驱动方法

(57) 摘要
在进行中止驱动的液晶显示装置中抑制功耗的增大又有效地抑制闪烁的发生。在从上次的刷新帧到产生规定次数的中止帧为止图像变化判别部(11)检测到图像变化的情况下，反转驱动控制部(13)将检测到图像变化的帧的下一帧定为以列反转驱动为反转驱动方式的刷新帧。在从上次的刷新帧到产生规定次数的中止帧为止图像变化判别部(11)未检测到图像变化的情况下，反转驱动控制部(13)将最后的中止帧的下一帧定为以列反转驱动为反转驱动方式的刷新帧。
1. 一种液晶显示装置，
采用在进行画面的刷新的2个刷新帧之间设置中止画面的刷新的中止帧的中止驱动，
基于从外部输入的图像信号向液晶施加交流电压，从而进行图像显示，其特征在于，具备：
液晶面板，其包含：矩阵状配置的多个像素电极；以及共用电极，上述共用电极是为了
在与上述多个像素电极之间隔着上述液晶施加电压而设置的，上述液晶面板显示基于上述
图像信号的图像；
液晶面板驱动部，其驱动上述液晶面板；
图像变化判别部，其接收上述图像信号，按每一帧判别图像有无变化；以及
反转驱动控制部，其决定将各帧设为刷新帧还是设为中止帧，并且将用于向上述液晶
施加交流电压的反转驱动方式定为液晶施加电压的空间极性反转的频度较低的第1反转
驱动方式和液晶施加电压的空间极性反转的频度较高的第2反转驱动方式的其中之一，以控
制上述液晶面板驱动部的动作。
在上述图像变化判别部从上次的刷新帧到产生m次的中止帧为止检测到图像变化的情
况下，上述反转驱动控制部将检测到图像变化的帧的下一帧定为刷新帧，并且将该刷新帧
中的反转驱动方式定为上述第1反转驱动方式，其中，m为2以上的整数。
在上述图像变化判别部从上次的刷新帧到产生上述m次的中止帧为止未检测到图像变
化的情况下，上述反转驱动控制部将最后的中止帧的下一帧定为刷新帧，并且将该刷新帧
中的反转驱动方式定为上述第2反转驱动方式。
2. 根据权利要求1所述的液晶显示装置，其特征在于，
在上述图像变化判别部检测到图像变化的帧的下一帧定为第1刷新帧时，上述反转
驱动控制部
将上述第1刷新帧之后接着的n帧定为中止帧，其中，n为1以上且小于m的整数，
将最后的中止帧之后接着的帧定为被定义为第2刷新帧的刷新帧，
将上述第2刷新帧中的反转驱动方式定为上述第2反转驱动方式。
3. 根据权利要求2所述的液晶显示装置，其特征在于，
上述第2刷新帧包括多个帧。
4. 根据权利要求1所述的液晶显示装置，其特征在于，
上述第1反转驱动方式为第一反转驱动方式，上述第2反转驱动方式为第二反转驱动方式。
5. 根据权利要求1所述的液晶显示装置，其特征在于，
上述共用电极的电位在通过上述第1反转驱动方式驱动上述液晶面板时，与通过上述
第2反转驱动方式驱动上述液晶面板时设定为不同的值。
6. 根据权利要求1所述的液晶显示装置，其特征在于，
上述图像变化判别部通过对先行的帧的图像信号和后续的帧的图像信号进行比较来
判别图像有无变化。
7. 根据权利要求1所述的液晶显示装置，其特征在于，
上述图像变化判别部通过由使用先行的帧的图像信号的运算处理得到的值和由使
用后续的帧的图像信号的运算处理得到的值进行比较来判别图像有无变化。
8. 根据权利要求1所述的液晶显示装置，其特征在于，
上述图像变化判别部基于从外部输入的信号来判别图像有无变化。
9. 根据权利要求1所述的液晶显示装置，其特征在于，
还具备寄存器，表示图像有无变化的值从外部写入到上述寄存器，
上述图像变化判别装置基于写入到上述寄存器的值来判别图像有无变化。
10. 根据权利要求1所述的液晶显示装置，其特征在于，
上述液晶面板包含：
扫描信号线；
视频信号线，与上述图像信号相应的视频信号施加到上述视频信号线；以及
薄膜晶体管，其控制端子连接到上述扫描信号线，第1导通端子连接到上述视频信号线，第2导通端子连接到上述像素电极，沟道层由氧化物半导体形成。
11. 根据权利要求10所述的液晶显示装置，其特征在于，
上述氧化物半导体是以铟（In）、镓（Ga）、锌（Zn）和氢（O）为主成分的氧化铟镓锌。
12. 一种液晶显示装置的驱动方法，
上述液晶显示装置采用在进行画面的刷新的2个刷新帧之间设置中止画面的刷新的中止帧的中止驱动，基于从外部输入的图像信号向液晶施加交流电压，从而进行图像显示，上述液晶显示装置的驱动方法的特征在于，包含：
液晶面板驱动步骤，驱动液晶面板，上述液晶面板包含：矩阵状配置的多个像素电极；
以及共用电极，上述共用电极是用于在与上述多个像素电极之间隔著上述液晶施加电压而设置的，上述液晶面板显示基于上述图像信号的图像；
图像变化判别步骤，接收上述图像信号，按每一帧判别图像有无变化；以及
反转驱动控制步骤，判定将各帧是为刷新帧还是设为中止帧，并且将用于向上述液晶施加交流电压的反转驱动方式定为液晶施加电压的空间极性反转的频度较低的第1反转驱动方式和液晶施加电压的空间极性反转的频度较高的第2反转驱动方式的其中之一，以控制上述液晶面板驱动步骤中的动作。
在上述图像变化判别步骤中从上次的刷新帧到产生m次的中止帧为止检测到图像变化的情况下，在上述反转驱动控制步骤中，将检测到图像变化的帧的下 frames定为刷新帧，并且将该刷新帧中的反转驱动方式定为上述第1反转驱动方式，其中m为2以上的整数。
在上述图像变化判别步骤中从上次的刷新帧到产生上述m次的中止帧为止未检测到图像变化的情况下，在上述反转驱动控制步骤中，将最后的中止帧的下一帧定为刷新帧，并且将该刷新帧中的反转驱动方式定为上述第2反转驱动方式。
液晶显示装置及其驱动方法

技术领域
[0001]本发明涉及液晶显示装置，特别是，涉及进行中止驱动（低频驱动）的液晶显示装置及其驱动方法。

背景技术
[0002]以往，已知具备TFT（薄膜晶体管）作为开关元件的有源矩阵型液晶显示装置。该液晶显示装置具备包括相互相对的2个绝缘性基板的液晶面板。在液晶面板的一方基板上，格子状地设置有栅极总线（扫描信号线）和源极总线（视频信号线），在栅极总线与源极总线的交叉部附近设置有TFT。TFT包括：连接到栅极总线的栅极电极；连接到源极总线的源极电极；以及漏极电极。各TFT的漏极电极与为了形成图像而在基板上矩阵状配置的多个像素电极之一连接。在液晶面板的另一方基板上设置有共用电极，该共用电极用于在与像素电极之间隔着液晶层施加电压。在这样的构成中，基板由各TFT的栅极电极从栅极总线接收到有效的扫描信号时该TFT的源极电极从源极总线接收的视频信号，将电压施加到像素电极-共用电极间。从而驱动液晶，将所希望的图像显示到液晶面板的显示部。

[0003]不过，液晶具有如下性质：当不断施加直流电压时，其会劣化。因此，在液晶显示装置中，为了抑制液晶的劣化，进行使像素电压（像素电极-共用电极间的电压）的极性反转的交流化驱动。作为交流化驱动的方式，已知在使所有的像素中的像素电压的极性成为相同的状态下按每1帧使像素电压的极性反转的被称为帧反转驱动的驱动方式。此外，以下，将使像素电压的极性按每一规定期间反转的驱动方式称为“反转驱动方式”。然而，根据帧反转驱动，在图像显示时比较容易发生闪烁。因此，为了抑制闪烁的发生，以往已采用各种极性反转图案的反转驱动方式。作为反转驱动方式，典型地已知列反转驱动和点反转驱动。

[0004]列反转驱动是使像素电压的极性按每1帧且按每规定条数的源极总线反转的驱动方式。根据列反转驱动，像素电压的极性按每规定条数的源极总线反转，因此，与帧反转驱动相比，液晶施加电压的空间极性反转的频率变高。例如在使像素电压的极性按每1帧且按每1源极总线反转的情况下，每一帧中的4×4列的像素的像素电压的极性会如图15所示。此外，在下一帧中，在所有的像素中像素电压的极性变为相反。

[0005]点反转驱动是使像素电压的极性按每1帧反转且还使在垂直/水平方向相邻的像素的极性反转的驱动方式。在该驱动方式中，某一帧中的4×4列的像素的像素电压的极性会如图16所示。此外，在下一帧中，在所有的像素中像素电压的极性变为相反。根据该点反转驱动，液晶施加电压的空间极性反转的频率与列反转驱动相比进一步变高。即，根据点反转驱动，与行反转驱动、列反转驱动和极性反转驱动图案变得复杂，因此，能有效地抑制闪烁的发生。此外，在垂直方向上按每规定条数的栅极总线使像素电压的极性反转的驱动方式被称为“多点反转驱动”。例如，如图17所示在垂直方向上按每2条栅极总线使像素电压的极性反转的驱动方式被称为“2点反转驱动”。

[0006]一般来说，如果采用的反转驱动方式中的极性反转图案复杂，则不易发生闪烁，但功耗变大。另一方面，如果采用的反转驱动方式中的极性反转图案简单，则功耗变小，但容
发明内容

【0011】发明要解决的问题

【0012】此外，近年来，关于液晶显示装置，已在推进“在刷新帧（写入期间）与刷新帧（写入期间）之间设置所有的栅极总线成为非扫描状态而中止写入动作的中止帧（中止期间）”的驱动方法的开发。在此，所谓刷新帧，是指基于1帧（1画面）的图像信号进行显示部内的像素电容的充电的帧。这样设置中止写入动作的中止帧的驱动方法被称为“中止驱动”、“低频驱动”等。在采用中止驱动的液晶显示装置中，在中止帧中，不需要向液晶驱动电路（栅极驱动器、源极驱动器）提供控制用的信号等。因此，整体上液晶驱动电路的驱动频率降低，能降低功耗。图18是用于说明该中止驱动的一例的图。在图18所示的例子中，刷新率（驱动频率）为60Hz的一般液晶显示装置中的1帧的刷新帧（1帧期间为16.67ms）和59帧的中止帧交替地出现，这样的中止驱动适于静态图象显示。

【0013】如上所述，当采用中止驱动时，能降低功耗。然而，在中止驱动中，在刷新率低时闪烁容易被视觉识别。因此，对于中止驱动，也需要既抑制闪烁的发生又降低功耗的技术。关于此，在中止驱动中，由于更优选的反转驱动方式并不是依据输入视频信号的频率决定的，因此，即使采用日本的特开2005-215591所公开的技术，也无法得到所希望的效果。另外，在中止驱动中，刷新的频度与垂直频率相比对闪烁的发生具有更大影响，因此，即使采用日本的特开2003-337577所公开的技术，也无法得到所希望的效果。

【0014】因此，本发明的目的在于，在进行中止驱动的液晶显示装置中，既抑制功耗的增大，又有效地抑制闪烁的发生。

用于解决问题的方案

【0015】用于解决问题的方案

【0016】本发明的第1方面是液晶显示装置，采用在画面的刷新的2个刷新帧之间设置中止画面的刷新的中止帧的中止驱动，基于从外部输入的图像信号向液晶施加交流电压，从而进行图象显示，其特征在于，具备：

【0017】液晶面板，其包含：矩阵状配置的多个像素电极；以及公用电极，上述共用电极是为了在与上述多个像素电极之间隔着上述液晶施加电压而设置的，上述液晶面板显示基于上述图像信号的图像；

【0018】液晶面板驱动部，其驱动上述液晶面板；

【0019】图像变化判别部，其接收上述图像信号，按每一帧判别图象有无变化；以及

【0020】反转驱动控制部，其决定将各帧设为刷新帧还是设为中止帧，并且将用于向上述液晶施加交流电压的反转驱动方式定为液晶施加电压的空间极性反转的频度较低的第1反
转驱动方式和液晶施加电压的空间极性反转的频度较高的第2反转驱动方式的其中之一，
以控制上述液晶面板驱动部的动作。
[0021] 在上述图像变化判别部从上次的刷新帧到产生m次（m为2以上的整数）的中止帧为
止检测到图像变化的情况下，上述反转驱动控制部将检测到图像变化的帧的下一帧定为刷新
帧，并且将该刷新帧中的反转驱动方式定为上述第1反转驱动方式。
[0022] 在上述图像变化判别部从上次的刷新帧到产生上述m次的中止帧为止未检测到图
像变化的情况下，上述反转驱动控制部将最后的中止帧的下一帧定为刷新帧，并且将该刷新
帧中的反转驱动方式定为上述第2反转驱动方式。
[0023] 本发明的第2方面的特征在于，在本发明的第一方面中，
[0024] 在将上述图像变化判别部检测到图像变化的帧的下一帧定义为第1刷新帧时，上
述反转驱动控制部
[0025] 将上述第1刷新帧之后接着的n帧（n为1以上且小于m的整数）定为中止帧，
[0026] 将最后的中止帧之后接着的帧定为被定义为第2刷新帧的刷新帧，
[0027] 将上述第2刷新帧中的反转驱动方式定为上述第2反转驱动方式。
[0028] 本发明的第3方面的特征在于，在本发明的第2方面中，
[0029] 上述第2刷新帧包括多个帧。
[0030] 本发明的第4方面的特征在于，在本发明的第1方面中，
[0031] 上述第1反转驱动方式为列反转驱动方式，上述第2反转驱动方式为点反转驱动方
式。
[0032] 本发明的第5方面的特征在于，在本发明的第1方面中，
[0033] 上述共用电极的电位在通过上述第1反转驱动方式驱动上述液晶面板时，与通过
上述第2反转驱动方式驱动上述液晶面板时设定为不同的值。
[0034] 本发明的第6方面的特征在于，在本发明的第1方面中，
[0035] 上述图像变化判别部通过对先行的帧的图像信号和后续的帧的图像信号进行比
较来判别图像有无变化。
[0036] 本发明的第7方面的特征在于，在本发明的第1方面中，
[0037] 上述图像变化判别部通过对由使用先行的帧的图像信号的运算处理得到的值和
由使用后续的帧的图像信号的运算处理得到的值进行比较来判别图像有无变化。
[0038] 本发明的第8方面的特征在于，在本发明的第1方面中，
[0039] 上述图像变化判别部基于从外部输入的规定的信号来判别图像有无变化。
[0040] 本发明的第9方面的特征在于，在本发明的第1方面中，
[0041] 本发明的第9方面的特征在于，在本发明的第1方面中，
[0042] 还具备寄存器，表示图像有无变化的值从外部写入到上述寄存器，
[0043] 上述图像变化判别部基于写入到上述寄存器的值来判别图像有无变化。
[0044] 本发明的第10方面的特征在于，在本发明的第1方面中，
[0045] 上述液晶面板包含：
[0046] 扫描信号线；
[0047] 消息信号线，与上述图像信号对应的视频信号施加到上述扫描信号线；以及
[0048] 薄膜晶体管，其控制端子连接到上述扫描信号线，第1导通端子连接到上述视频信
号线，第2导通端子连接到上述像素电极，沟道层由氧化物半导体形成。
说明书

[0048] 本发明的第11方面的特征在于，在本发明的第10方面中，
[0049] 上述氧化物半导体是以铟(In)、镓(Ga)、锌(Zn)和氧(O)为主成分的氧化铟镓锌。
[0050] 本发明的第12方面是液晶显示装置的驱动方法，上述液晶显示装置采用在进行画
面的刷新的2个刷新帧之间设置中止画面的刷新的中止帧的中止驱动，基于从外部输入的
图像信号向液晶施加交流电压，从而进行图像显示，上述液晶显示装置的驱动方法的特征
在于，包含：
[0051] 液晶面板驱动步骤，驱动液晶面板，上述液晶面板包含：矩阵状配置的多个像素电
极；以及共用电极，上述共用电极是为了在与上述多个像素电极之间隔着上述液晶施加电
压而设置的，上述液晶面板显示基于上述图像信号的图像；
[0052] 图像变化判别步骤，接收上述图像信号，按每一帧判别图像有无变化；以及
[0053] 反转驱动控制步骤，决定将各帧设为刷新帧还是设为中止帧，并且将用于向上述
液晶施加交流电压的反转驱动方式定为液晶施加电压的空间极性反转的频度较低的第1反
转驱动方式和液晶施加电压的空间极性反转的频度较高的第2反转驱动方式的其中之一，
以控制上述液晶面板驱动步骤中的动作。
[0054] 在上述图像变化判别步骤中从上次的刷新帧到产生m次（m为2以上的整数）的中止
帧为止检测到图像变动的情况下，在上述反转驱动控制步骤中，检测到图像变化的帧的
下一帧定为刷新帧，并且将该刷新帧中的反转驱动方式定为上述第1反转驱动方式，
[0055] 在上述图像变化判别步骤中从上次的刷新帧到产生上述m次的中止帧为止未检测
到图像变化的情况下，在上述反转驱动控制步骤中，将最后的中止帧的下一帧定为刷新帧，
并且将该刷新帧中的反转驱动方式定为上述第2反转驱动方式。
[0056] 发明效果
[0057] 根据本发明的第1方面，当从上次的刷新帧到产生预先确定的次数（m次）的中止帧
为止图像变化时，通过生成比较简单的极性反转图案的第1反转驱动方式进行刷新。在从
上次的刷新帧到产生预先确定的次数（m次）的中止帧为止图像未变化时，通过生成比较复
杂的极性反转图案的第2反转驱动方式进行刷新。由此，当图像频繁变化时，每次图像变化
时通过第1反转驱动方式进行刷新，如果图像未变化，则仅通过第2反转驱动方式进行刷新。
因此，如果整体上图像变化的时间周期短，则主要通过第1反转驱动方式进行刷新，如果整
体上图像变化的时间周期长，则主要通过第2反转驱动方式进行刷新。在图像频繁变化时，
闪烁不易被视觉识别，因此，即使通过生成比较简单复杂的极性反转图案的第1反转驱动方式驱
动液晶面板，显示质量也不会下降。另一方面，通过第1反转驱动方式驱动液晶面板的驱动
能得到降低功耗的效果。另外，在图像变化的频度低时主要通过生成比较简单复杂的极性反转
图案的第2反转驱动方式驱动液晶面板，因此，不会由于闪烁而产生显示质量的下降。综上
所述，在进行中止驱动的液晶显示装置中，既能抑制功耗的增大又能有效地抑制闪烁的发
生。
[0058] 根据本发明的第2方面，在伴随图像变化的刷新帧之后，隔中止帧设置通过第2
反转驱动方式进行刷新的刷新帧（第2刷新帧）。因此，在图像发生了变化的情况下，对像素
电容进行多次写入（充电）。因此，在各像素中像素电压会可靠地到达目标电压，从而能防止
显示质量的下降。
[0059] 根据本发明的第3方面，第2刷新帧包括2帧，因此，能抑制由于各像素中的像素电
压的极性的偏差而导致的画面的残影的发生。

[0060] 根据本发明的第4方面，通过在功耗低的列反转驱动方式与闪烁不易被视觉识别的点反转驱动方式之间切换反转驱动方式，能够可靠地达到本发明的第1方面的效果。

[0061] 根据本发明的第5方面，即使是在通过第1反转驱动方式驱动液晶面板时与通过第2反转驱动方式驱动液晶面板时最佳共用电极电位不同的情况下，也能抑制液晶的劣化。

[0062] 根据本发明的第6方面，即使是轻微的图像变化，也能检测到。

[0063] 根据本发明的第7方面，无需具备大电容的存储器，就能判断图像有无变化。

[0064] 根据本发明的第8方面，无需具备存储器、寄存器等，就能判断图像有无变化。

[0065] 根据本发明的第9方面，能以比较容易的构成判断图像有无变化。

[0066] 根据本发明的第10方面，将液态层由氧化物半导体形成的薄膜晶体管用作设置在液晶面板内薄膜晶体管，因此，能长时间保持写入到像素电极—共用电极间的电容（像素电容）的电压。因此，能使图像未变化时的刷新的频率变低而不会导致显示质量下降。综上所述，在进行中止驱动的液晶显示装置中，既能抑制闪烁的发生又能大幅降低功耗。

[0067] 根据本发明的第11方面，通过将氧化铟锌用作形成漏道层的氧化物半导体，能够可靠地达到本发明的第10方面的效果。

[0068] 根据本发明的第12方面，在液晶显示装置的驱动方法中，能够取得与本发明的第1方面同样的效果。

附图说明

[0069] 图1是示出本发明的一实施方式所涉及的液晶显示装置中的驱动器控制部的构成的框图。

[0070] 图2是示出上述实施方式中液晶显示装置的整体构成的框图。

[0071] 图3是用于说明上述实施方式中刷新帧的决定方法和反转驱动方式的决定方法的图。

[0072] 图4是用于说明上述实施方式中刷新帧的决定方法和反转驱动方式的决定方法的图。

[0073] 图5是用于说明上述实施方式中刷新帧的决定方法和反转驱动方式的决定方法的图。

[0074] 图6是用于说明上述实施方式中刷新帧的决定方法和反转驱动方式的决定方法的图。

[0075] 图7是用于说明上述实施方式中刷新帧的决定方法和反转驱动方式的决定方法的图。

[0076] 图8是用于说明上述实施方式中刷新帧的决定方法和反转驱动方式的决定方法的图。

[0077] 图9是用于说明上述实施方式中刷新帧的决定方法和反转驱动方式的决定方法的图。

[0078] 图10是用于说明上述实施方式中刷新帧的决定方法和反转驱动方式的决定方法的图。

[0079] 图11是用于说明上述实施方式中驱动的具体例的图。
具体实施方式

以下，参照附图来说明本发明的一实施方式。此外，在本说明书中，将与图像有无变化无关地基于帧的图像信号进行显示部内的像素电容的充电称为“刷新”。另外，将伴随图像变化的刷新称为“改写刷新”，将不伴随图像变化的刷新称为“维持刷新”。

<1.整体构成和动作概要>

图2是示出本发明的一实施方式所涉及的液晶显示装置的整体构成的框图。该液晶显示装置包括驱动器控制部100、面版驱动部200以及液晶面板300。面版驱动部200包含源极驱动器(信号线驱动电路)22和栅极驱动器(信号线驱动电路)24。液晶面板300包含显示部30。此外，驱动器控制部100的详细构成后述。

在本实施方式所涉及的液晶显示装置中，进行中止驱动(低频驱动)（参照图18）。即，在进行显示部300内的像素电容的充电的刷新帧之后设置数帧～数十帧的中止帧。不过，出现在数帧之间的中止帧的数量在液晶显示装置的动作中可适当变更。

参照图2，在显示部30中，配设有源极总线(信号线)SL和多条栅极总线(扫描信号线)GL。与源极总线SL和栅极总线GL的各交叉点对应地设置有形成像素的像素形成部。即，显示部30包含多个像素形成部。上述多个像素形成部矩形状配置而构成像素阵列。各像素形成部包括：作为开关元件的TFT(薄膜晶体管)31、其栅极端子(控制端子)连接到通过相对应的交叉点的栅极总线GL，并且源极端子(第1导通端子)连接到通过该交叉点的源极总线SL；像素电极32，其连接到该TFT的栅极端子(第2导通端子)；作为相对电极的共用电极33，其用于向上述多个像素形成部提供共用电压；以及液晶(液晶层)34，其设置为上述多个像素形成部共用，夹持在像素电极32和共用电极33之间。并且，像素电容Cp包括由像素电极32和共用电极33形成的液晶电容。一般来说，为了可靠地将电压保持于像素电容Cp，与液晶电容并联地设置有辅助电容，但辅助电容与本发明没有直接关系，因此将其说明和图示省略。此外，在图2的显示部30内，仅示出与1个像素形成部对应的构成要素。另外，共用电极33不需要一定与像素电极32相对设置，即，在采用横向场模式(例如IPS模式)的液晶显示装置中也能够应用本发明。上述横向场模式是像素电极32和共用电极33设置在同一基板上，不是在与该基板的面垂直的方向而是在横向方向产生电场的方式。

如上所述，在本实施方式所涉及的液晶显示装置中，进行中止驱动。因此，在本实施方式中，典型的是，将氧化物TFT(氧化物半导体半导体薄的薄膜晶体管)用作像素形成部内的TFT31。更详细地说，TFT31的构成层由铟(In)、镓(Ga)、锌(Zn)和氧(O)为主成分的氧化铟镓锌(InGaZnOx)形成。以下，将构成层中使用了InGaZnOx的TFT称为“IGZO-TFT”。此外，构成层中使用了非晶硅等的薄膜晶体管(以下称为“硅类TFT”)。
较大。因此，在硅类TFT用作像素形成部内的TFT31的情况下，像素电容Cp所保持的电荷会因由TFT31漏出，结果导致截止状态时应保持的电压发生变动。而IGZO-TFT与硅类TFT相比，截止漏电流小得多。因此，能够将写入到像素电容Cp的电压（液晶施加电压）保持更长时间。因此，IGZO-TFT适用于进行中止驱动的情况。此外，在沟道层中使用了作为InGaZnOx以外的氧化物半导体的例如包含银、镓、锌、铟（Cu）、硅（Si）、锡（Sn）、铝（Al）、钙（Ca）、锗（Ge）和铅（Pb）等的至少1种的氧化物半导体的情况下，也能得到同样的效果。另外，将氧化物TFT用作为像素形成部内的TFT31仅为一例，也可以取而代之，使用硅类TFT等。

接着，说明图2所示的构成要素的动作。图像信号DAT在每一帧从外部发送到该液晶显示装置。驱动器控制部100接收该图像信号DAT，并输出：数字视频信号DV；用于控制源极驱动器22的动作的源极起始脉冲信号SSP、源极时钟信号SCK和锁存选通信号LS；以及用于控制栅极驱动器24的动作的栅极起始脉冲信号GSP和栅极时钟信号GCK。源极驱动器22基于从驱动器控制部100输出的数字视频信号DV、源极起始脉冲信号SSP、源极时钟信号SCK和锁存选通信号LS，向各源极总线SL施加驱动用视频信号。栅极驱动器24基于从驱动器控制部100输出的栅极起始脉冲信号GSP和栅极时钟信号GCK，向各栅极总线GL施加扫描信号。由此，多条栅极总线GL被逐条地选择驱动。

如此，通过向各源极总线SL施加驱动用视频信号，向各栅极总线GL施加扫描信号，将图像信号DAT的图像显示到液晶面板300的显示部30。

＜2. 驱动器控制部的构成和动作＞

接着，说明本实施方式中的驱动器控制部100的构成和动作。图1是示出本实施方式中的驱动器控制部100的构成的框图。驱动器控制部100包含图像变化判别部11、图像存储部12、反转驱动控制部13以及寄存器组14。

图像变化判别部11基于从外部发送来的图像信号DAT，按每一帧判别与前一帧相比图像是否发生了变化。在此，将连续的2帧称为“先行帧”和“后续帧”。为了能进行先行帧的图像和后续帧的图像的比较，图像变化判别部11预先将先行帧的1帧的图像数据存储于图像存储部12。然后，图像变化判别部11在通过图像信号DAT接收到后续帧的数据时，将基于图像存储部12所存储的图像数据的先行帧的各像素群数据和基于图像信号DAT的后续帧的各像素群数据进行比较，由此，判别出先行帧与后续帧时图像是否发生了变化。该判别结果作为例如1比特的数据从图像变化判别部11供给到反转驱动控制部13。此外，以下也将由图像变化判别部11判定为（与前一帧相比）图像发生了变化的帧称为“检测到图像变化的帧”。

反转驱动控制部13考虑到从图像变化判别部11提供的判别结果（图像是否发生了变化的判断），决定将各帧设为刷新帧还是设为中止帧，并且决定用于向液晶施加交流电压的反转驱动方式。然后，在被设为刷新帧的帧中，反转驱动控制部13基于图像信号DAT输出数字视频信号DV，并且为了根据所决定的反转驱动方式驱动液晶面板300而输出源极起始脉冲信号SSP、源极时钟信号SCK、锁存选通信号LS、栅极起始脉冲信号GSP和栅极时钟信号GCK。在寄存器组14中存储有与刷新帧的决定、反转驱动方式的决定相关的各种设定值，这些设定值被反转驱动控制部13参照。

在本实施方式中，假定寄存器组包含寄存器名设为“REF”、“NREF”、“REFINT”和“REFDET”的4个寄存器。各寄存器的作用后述。另外，假定上述4个寄存器的值分别设定为
下。

[0100] REF=1
[0101] NREF=9
[0102] REFINT=3
[0103] RFDET=3

[0104] 此外，在本实施方式中，各刷新帧中的反转驱动方式采用列反转驱动（参照图15）或者点反转驱动（参照图16）的其中之一。关于此，从图15和图16可以看出，列反转驱动相比较，点反转驱动中液晶施加电压的空间极性反转的频度较低。即，在本实施方式中，列反转驱动相当于液晶施加电压的空间极性反转的频度较低的第1反转驱动方式，点反转驱动相当于液晶施加电压的空间极性反转的频度较高的第2反转驱动方式。

[0105] ＜3.刷新帧的决定方法和反转驱动方式的决定方法＞

[0106] 接着，参照图3～图10，说明是将各帧设为刷新帧还是设为中止帧的决定方法和反转驱动方式的决定方法。首先，以下记载关于图3～图10的说明。“Frame”栏的数值表示在将某刷新帧设为第“0”帧时为第几帧。“Image”栏记载的是用于确定基于从外部发送的图像信号DAT的各帧中的图像的字母。即，“Image”栏字母的变化表示图像的变化。“REF/NREF”栏表示各帧是刷新帧还是中止帧。“R”表示刷新帧，“N”表示中止帧。“Driving”栏表示刷新帧中的反转驱动方式。“C”表示列反转驱动，“D”表示点反转驱动。

[0107] 在本实施方式中，检测到图像变化的帧的下一页被定为用于进行改写刷新的刷新帧。在此，在上次进行刷新后，到产生寄存器NREF中所设定的次数（在本实施方式中为9次）的中止帧为止检测到图像变化的情况下，检测到图像变化的帧的下一页的反转驱动方式被定为列反转驱动。换言之，图像变化识别部11从上次的刷新帧到产生m次（m为2以上的整数）中止帧为止检测到图像变化的情况下，反转驱动识别部13将检测到图像变化的帧的下一页被定为刷新帧，并且将该刷新帧中的反转驱动方式定为列反转驱动。此外，m为寄存器NREF的设定值。另外，以以上情况可以看出，寄存器NREF发挥如下作用：其保持作为用于决定反转驱动方式的阈值的要与上次进行刷新后的中止帧的次数比较的值。

[0108] 另外，在上次进行刷新后，到产生寄存器NREF中所设定的次数（在本实施方式中为9次）的中止帧为止检测到图像变化的情况下，最后的中止帧（在本实施方式中为第9次的中止帧）的下一页被定为用于进行维持刷新的刷新帧，该刷新帧的反转驱动方式被定为点反转驱动。换言之，在图像变化识别部11从上次的刷新帧到产生m次的中止帧为止检测到图像变化的情况下，反转驱动控制部13将最后的中止帧的下一页被定为刷新帧，并且将该刷新帧中的反转驱动方式定为点反转驱动。此外，在最后的中止帧之后，刷新帧会继续寄存器REF中所设定的次数（在本实施方式中为1次）。如此，寄存器REF发挥如下作用：其保持在从上次的刷新帧到产生寄存器NREF中所设定的次数的中止帧为止检测到图像变化的情况下在最后的中止帧之后继续的刷新帧的次数。

[0109] 例如，在将上次的刷新帧设为第0帧而在第3帧检测到图像变化的情况下，如图3所示，第4帧被定为用于进行改写刷新的刷新帧，第4帧的反转驱动方式被定为列反转驱动。在将上次的刷新帧设为第0帧而在第9帧检测到图像变化的情况下，如图4所示，第10帧被定为用于进行改写刷新的刷新帧，第10帧的反转驱动方式被定为列反转驱动。在上次的刷新帧之后，产生了9次的中止帧而未检测到图像变化的情况下，如图5所示，第10帧被定为用于进
行维持刷新的刷新帧，第10帧的反转驱动方式被定为点反转驱动。
[0110] 此外，这将上次的刷新帧设为第0帧而在第10帧检测到图像变化的情况下，从上次的刷新帧开始已产生9次的中止帧，因此，第10帧被定为刷新帧，第10帧的反转驱动方式被定为点反转驱动（参照图6）。然后，基于在第10帧检测到图像变化，第11帧也被定为刷新帧，第11帧的反转驱动方式被定为列反转驱动（参照图6）。
[0111] 另外，在本实施方式中，当将检测到图像变化的帧的下一帧定义为第1刷新帧时，第1刷新帧之后接着的寄存器REFINT中所设定的次数（在本实施方式中为3次）的帧被定为中止帧。然后，最后的中止帧之后接着的1个或者多个帧被定为刷新帧（将该刷新帧定义为第2刷新帧），第2刷新帧的帧数以第1刷新帧的帧数（在本实施方式中为1次）与第2刷新帧的帧数之和成为寄存器REFDET中所设定的次数（在本实施方式中为3次）的方式决定。第2刷新帧中的反转驱动方式被定为点反转驱动。以上的内容换句话说，当将图像变化判别部11检测到图像变化的帧的下一帧定义为第1刷新帧时，反转驱动控制部13将第1刷新帧之后接着的n帧（n为1以上且小于m的整数）定为中止帧并且将最后的中止帧之后接着的帧定为被定义为第2刷新帧的刷新帧，将第2刷新帧中的反转驱动方式定为点反转驱动。此外，n为寄存器REFINT的设定值。另外，从以上情况可以看出，寄存器REFINT发挥保持在上述的第1刷新帧之后继续的中止帧的次数的作用，寄存器REFDET发挥保持在检测到图像变化的情况下应进行的刷新的次数的作用。
[0112] 综上所述，在本实施方式中，当将检测到图像变化的帧的下一帧设为第0帧时，如图7所示，第1帧至第3帧被定为中止帧，第4帧至第5帧被定为刷新帧。另外，第0帧的反转驱动方式被定为列反转驱动，第4帧和第5帧的反转驱动方式被定为点反转驱动。
[0113] 此外，在由于从上次的刷新帧到产生寄存器Nref中所设定的次数（在本实施方式中为9次）的中止帧为止未检测到图像变化而设置了进行点反转驱动的刷新帧（在图8中将该刷新帧设定为第0帧）的情况下，与图7所示的例子不同，不设置作为第2刷新帧的刷新帧（参照图8）。
[0114] 如上所述，在本实施方式中，在第1刷新帧之后，产生3次中止帧，然后成为第2刷新帧。然而，有时在到产生3次中止帧为止会检测到图像变化。例如，在将第1刷新帧设定为第0帧而在第2帧检测到图像变化的情况下，检测到图像变化的帧的下一帧（在此为第3帧）被定为刷新帧，该刷新帧中的反转驱动方式被设为列反转驱动（参照图9）。然后，将刷新帧设定为第1刷新帧，产生3次中止帧（在此为第4~6帧）后的帧（在此为第7~8帧）被定为第2刷新帧（参照图9）。
[0115] 另外，在连续2帧检测到图像变化的情况下，如图10所示，反转驱动方式设为列反转驱动的刷新帧为连续2帧（图10中的第3~4帧）。然后，从在后的刷新帧（在此为第4帧）开始产生了3次中止帧后的帧（在此为第8~9帧）被定为第2刷新帧。
[0116] 此外，在以上的处理中，图像变化的检测是由图像变化判定部11进行的，将各帧设为刷新帧还是设定为中止帧的决定和反转驱动方式的决定是由反转驱动控制部13进行的。
[0117] ＜4.具体例＞
[0118] 接着，参照图11，说明本实施方式中的驱动的具体例。此外，在图11中，“Frame”、“Image”、“REF/NREF”和“Driving”栏表示与图3~图10相同的内容。“VCOM”栏表示各帧中的共用电极33的电位。在本实施方式中，共用电极33的电位设为“VCOM1”和“VCOM2”的其中之一。
一。“VCOM1”与“VCOM2”是不同的电位。“NREF_Cnt”表示各中止帧在将上次的刷新帧设为第“0”帧时为第几帧。“REFP_Cnt”表示各刷新帧是基于寄存器REF的设定值或者寄存器REFDET的设定值的第几次的刷新帧。

【0119】图11所示的例子中，第1帧为以列反转驱动为反转驱动方式的刷新帧。即，在第0帧(未图示)检测到图像变化。第1帧之后接着的帧(第2～4帧)根据寄存器REFINT的设定值成为中止帧。其后的2帧(第5～6帧)根据寄存器REFDET的设定值成为刷新帧。由于第5～6帧成为第2刷新帧，因此，第5～6帧中的反转驱动方式成为点反转驱动。

【0120】其后，到第29帧为止未检测到图像变化。因此，在第6帧之后，每当产生了寄存器NREF中所设定的次数的中止帧时，插入以点反转驱动为反转驱动方式的用于进行维持刷新的刷新帧。在此，根据寄存器NREF的设定值，第16帧和第26帧成为以点反转驱动为反转驱动方式的刷新帧。

【0121】其后，在第30帧检测到图像变化。此时，从上次的刷新帧开始尚未产生寄存器NREF中所设定的次数的中止帧，因此，第31帧成为以列反转驱动为反转驱动方式的用于进行改写刷新的刷新帧。然后，第32～34帧成为中止帧，第35～36帧成为以点反转驱动为反转驱动方式的刷新帧(第2刷新帧)。

【0122】接着，在第40帧、第43帧和第46帧检测到图像变化。对于第40帧来说，上次的刷新帧是以点反转驱动为反转驱动方式的刷新帧。另外，对第43帧和第46帧来说，是从以列反转驱动为反转驱动方式的上次的刷新帧开始产生。中止帧为止检测到图像变化。如上所述，不插入以点反转驱动为反转驱动方式的刷新帧，而第41帧、第44帧和第47帧成为以列反转驱动的反转驱动方式的刷新帧。

【0123】其后，在第50帧和第51帧连续2帧检测到图像变化。由此，与图10所示的例子同样，第51帧和第52帧成为以列反转驱动为反转驱动方式的刷新帧。53～第55帧成为中止帧；第56帧和第57帧成为以点反转驱动为反转驱动方式的刷新帧。

【0124】此外，在图11所示的例子中，在进行列反转驱动时，共用电极电位设定为VCOM2，在进行点反转驱动时，共用电极电位设定为VCOM1。此外，如本实施方式中，通过列反转驱动驱动液晶面板300时与通过点反转驱动驱动液晶面板300时，共用电极电位设定为不同的值。通过这样设定共用电极电位的值，即使是在列反转驱动与点反转驱动中最佳共用电源电位(如使得进行正极性的写入时的充电率与进行负极性的写入时的充电率相等那样的共用电极电位，也被称为最佳相对电位)不同的情况下，也能够抑制液晶的劣化。

【0125】＜5.效果＞

【0126】根据本实施方式，当在上述的刷新帧到产生预先确定的次数的中止帧为止图像发生变化时，通过列反转驱动进行改写刷新。而另一方面，在从上述的刷新帧到产生预先确定的次数的中止帧为止图像未变化时，通过点反转驱动进行维持刷新。由此，当图像频率变化时，每次图像变化时通过列反转驱动进行改写刷新，如果图像未变化，则仅通过点反转驱动进行维持刷新。因此，如果整体上图像变化的时间周期短，则主要通过列反转驱动进行刷新，如果整体上图像变化的时间周期长，则主要通过点反转驱动进行刷新。在图像频率变化时，闪烁不易被视觉识别，因此，即使进行列反转驱动，显示质量也不会下降。另一方面，通过进行列反转驱动能得到降低功耗的效果。另外，在图像变化的同步低时主要进行点反转驱动，因此，不会由于闪烁而产生显示质量的下降。综上所述，根据本实施方式，在进行中止
驱动的液晶显示装置中,既能抑制功耗的增大又能有效地抑制闪烁的发生。

[0127] 另外,根据本实施方案,在用于进行改写刷新的刷新帧之后,隔中止帧设置以点反转驱动为反转驱动方式的刷新帧(第2刷新帧)。因此,在图像发生了变化的情况下,对像素电容进行多次写入(充电)。因此,在各像素中像素电压会可靠地到达目标电压,从而能防止显示质量的下降。

[0128] 而且,在第2刷新帧进行点反转驱动,在本实施方案中,第2刷新帧包括2帧。因此,能抑制由于各像素中的像素电压的极性的偏差而导致的画面上的残影的发生。

[0129] 此外,根据本实施方案,进行列反转驱动时与进行点反转驱动时,共用电极33的电位设定为不同的值。因此,即使是在列反转驱动与点反转驱动中最佳共用电极电位不同的情况下,也能抑制液晶的劣化。

[0130] 另外,在采用通道层中使用了氧化物半导体的TFT作为设置在液晶面板300的显示部30内TFT31的情况下,能长时间保持写入到像素电容32-共用电极33间的电容(像素电容Cp)的电压。因此,能使刷新率更低而不导致显示质量下降(能够使上述的寄存器NREF的设定值变大)。由此,图像未变化时的刷新的频率变低,因此,能大幅降低功耗。特别是,通过采用InGaZnOx作为氧化物半导体,能可靠地得到降低功耗的效果。

[0131] <6.1关于图像有无变换的判别方法>
[0132] <6.1关于图像有无变换的判别方法>
[0133] 在上述实施方案中,先将先行帧的图像数据存储于图像存储部12,将基于图像存储部12所存储的图像数据的先行帧的各像素数据和基于图像信号D1的后续帧的各像素数据进行比较,由此,进行图像有无变换的判别。然而,本发明不限于此。以下,说明关于图像有无变换的判别方法的变形例(第1～第3变形例)。

[0134] 图12是示出第1变形例中的驱动器控制部100的构成的框图。从图12可以看出,在驱动器控制部100中,取代上述实施方案中的图像存储部12而设置有图像运算结果存储部15。在本变形例中,图像变化判别部11首先使用先行帧的图像数据进行规定的运算处理,将运算结果存储到图像运算结果存储部15。当下一帧到来时,图像变化判别部11使用后续帧的图像数据进行规定的运算处理,将该运算结果与图像运算结果存储部15所存储的运算结果进行比较。其结果是,如果两者一致,则判定为图像未变化,如果两者不一致,则判定为图像发生了变化。此外,作为规定的运算处理的一例,可举出对1帧的像素值求总和。

[0135] 图13是示出第2变形例中的驱动器控制部100的构成的框图。从图13可以看出,在驱动器控制部100中,未设置上述实施方案中的图像存储部12。在本变形例中,从外部将表示图像有无变换的专用的信号S1提供给驱动器控制部100。基于该信号S1,图像变化判别部11进行图像有无变换的判别。

[0136] 图14是示出第3变形例中的驱动器控制部100的构成的框图。从图14可以看出,在驱动器控制部100中,取代上述实施方案中的图像存储部12而设置有图像变化判别用寄存器16。在本变形例中,从外部(典型的是主机)将表示图像有无变换的值写入到图像变化判别用寄存器16。然后,图像变化判别部11通过参照写入到图像变化判别用寄存器16的值,进行图像有无变换的判别。此外,图像变化判别用寄存器16也可以设置于驱动器控制部100的外部。

[0137] <6.2关于反转驱动方式>
在上述实施方式中，整体上图像变化的时间周期短时主要通过列反转驱动进行刷新，整体上图像变化的时间周期长时主要通过点反转驱动进行刷新。即，反转驱动方式在列反转驱动与点反转驱动之间切换。然而，本发明不限于此。例如，在假定为“p > q”时，也可以构成为“在整体上图像变化的时间周期短时主要通过p点反转驱动进行刷新，在整体上图像变化的时间周期长时主要通过q点反转驱动进行刷新”。另外，也可以构成为“在整体上图像变化的时间周期短时主要通过多点反转驱动进行刷新，在整体上图像变化的时间周期长时主要通过列反转驱动进行刷新”。如上所述，对于采用的2个反转驱动方式没有特别限定。

附图标记说明

11…图像变化判别部
12…图像存储部
13…反转驱动控制部
14…寄存器组
15…图像运算结果存储部
16…图像变化判别用寄存器
17…源极驱动器
18…栅极驱动器
19…显示部
20…TFT (薄膜晶体管)
21…像素电极
22…共用电极
23…驱动器控制部
24…面板驱动部
25…液晶面板
26…判别结果
图1
<table>
<thead>
<tr>
<th>Frame</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td>A</td>
</tr>
<tr>
<td>REF/NREF</td>
<td>R</td>
<td>N</td>
</tr>
<tr>
<td>Driving</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

图5

<table>
<thead>
<tr>
<th>Frame</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>REF/NREF</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>Driving</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>

图6

<table>
<thead>
<tr>
<th>Frame</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td>A</td>
</tr>
<tr>
<td>REF/NREF</td>
<td>R</td>
<td>N</td>
</tr>
<tr>
<td>Driving</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

图7

<table>
<thead>
<tr>
<th>Frame</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>REF/NREF</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Driving</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>

图8

<table>
<thead>
<tr>
<th>Frame</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>REF/NREF</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>N</td>
</tr>
<tr>
<td>Driving</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>

图9

<table>
<thead>
<tr>
<th>Frame</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

图10
<table>
<thead>
<tr>
<th>Frame</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td>A</td>
</tr>
<tr>
<td>REF/NREF</td>
<td>N</td>
</tr>
<tr>
<td>NREF Cnt</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Frame</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>REF/NREF</td>
<td>N</td>
</tr>
<tr>
<td>Driving</td>
<td>R</td>
</tr>
<tr>
<td>NREF Cnt</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

图11