发明名称：将剩余给纸堆与主给纸堆结合起来的装置

摘要：将剩余给纸堆与主给纸堆结合起来的装置，具有一个设有多个平行滑槽(7)的给纸堆托板(6)和一个设有多个平行栅杆(3)的辅助运送装置(4)。这些能在给纸堆托板滑槽(7)内配合的栅杆(3)组成一个齿轮(8)为导轨(9)所握持。导轨(9)和止轨(10)组成一个框架(12)，该框架被握持在辅助运送装置(4)内可沿栅杆(3)的长度方向和垂直栅杆(3)的水平方向上移动。即使在栅杆(3)原来的横向位置不能沿纵向移动时插入滑槽(7)内的情况下，可做相对面对准，从而可安全可靠地进行操作。
1. 将剩余给纸堆与主给纸堆结合成一总给纸堆的装置，其中剩余给纸堆最底下的纸位在主给纸堆最上面的纸的上面，其时
 —— 设有一块具有水平顶面的给纸堆托板，在结合前剩余给纸堆的最底下的纸就支承在该托板的上面，
 —— 给纸堆托板的顶面设有一排相互平行的滑槽，
 —— 设有一个能伸出去支承剩余给纸堆的辅助运送装置，该装置设有一排水平的、相互平行的、横截面与给纸堆托板上的滑槽相配的且组装成一个齿耙的栅杆，
 —— 设有导轨，齿耙支承在其上并可沿栅杆的长度方向滑动，
 —— 设有一根横越栅杆长度方向，可在栅杆长度方向移动的止轨，其上开有穿孔，以便栅杆穿过止轨之用，
 —— 结合时的一种状态是栅杆沿其长度方向滑入到给纸堆托板的滑槽内并支承起剩余给纸堆，
 —— 结合时的另一种状态是将给纸堆托板从剩余给纸堆上挪开，使剩余给纸堆以其最底下的纸支承在栅杆上而主给纸堆以其最上面的纸从下面抵靠在栅杆上，
 —— 结合时的一种终止状态是将在剩余给纸堆和主给纸堆之间的栅杆沿取出方向抽回，其时止轨抵靠在剩余给纸堆和主给纸堆上，使剩余给纸堆和主给纸堆上邻近栅杆的纸受阻不能沿取出方向移动，

 其特征是，

 导轨（9）和止轨（10）是辅助运送装置（4）框架（12）的固定组件，并且框架（10）支承的方
式使它可以在辅助运送装置（4）的内部沿栅杆（3）的长度方向移动及在横越栅杆（3）的水平方向移动。

2. 按照权利要求1的装置，其特征是，

——辅助运送装置具有一个由滑座（21）和一个伸缩滑座（8，12）构成的交叉滑动机构，其时横滑座（21）的设置使它可以在横越栅杆（3）的水平方向上移动，

——伸缩滑座（8，12）具有一个由横滑座（21）在栅杆（3）的长度方向上导行的，形式为框架（12）的第一滑座和一个由带一滑座在栅杆（3）的长度方向上导行的，形式为齿耙（8）的第二滑座。
将剩余给纸堆与主给纸堆结合起来的装置

本发明涉及一种将剩余给纸堆与主给纸堆结合成一总给纸堆的装置。

给纸堆位在印刷机给纸机构内，随着印刷机的节拍，每次从给纸堆取走当时的面纸张，同时通过给纸机构内常见的升降机构将给纸堆提升，使顶上面的纸总是保持在同一个水平面上，如此直到留下一些尚未印刷的纸，称为剩余给纸堆。这类装置已在日本专利Hei 11-321222（A）号中公开。在该发明中有两根导轨可各沿在其邻近的、一同行作用的直立的导柱滑动而可在高度上进行调节。其时齿耙不仅可在垂直方向还可在其栅杆的长度方向滑动，这种已知的装置只有当栅杆和滑槽具有这样一种侧位位置，使栅杆和滑槽能在一个狭小的范围内相互面对面地对准，才能具有可靠的功能。但是这个前提并不是在所有情况下都能满足的。

本发明的目的基本在于所制出一种这类装置，使得它的可靠功能在上述条件不能满足时也能得到保证。其时栅杆总能具有这样一种侧位位置，使它沿其长度方向滑动时能够滑入到与它同高的滑槽内。

本发明的目的是这样实现的，采用了一个将剩余给纸堆与主给纸堆结合起来的装置，具有一个设有一个平行滑槽的给纸堆托板和一个设有多个平行栅杆的辅助运送装置。这些能在给纸堆托板滑槽内配合的栅杆组成一个齿耙并为一个导轨所握持。导轨和止轨组成一个框架，该框架被握持在辅助运送装置内可沿栅杆的长度方向和在横越栅杆的水平方向上移动。即使在栅杆原来的横向
位置不能在沿纵向移动时插入滑槽内的情况下，可使栅杆与滑槽做到侧面对准，从而可安全可靠地进行操作。

本发明的装置可特别有效地与印刷机的给纸机构联合用。在连续印刷时给纸机构给纸堆托板的侧面位置常需改变，以便使在给纸机构内当时处于最上面的纸能够保持所要求的侧面位置，此时甚至会遇到侧面歪斜或弯的给纸堆。因此本发明的装置特别适用于与印刷机的给纸机构联合使用，因为它对印刷前纸张预堆放而成的给纸堆的侧面对准只提出较少的要求。

本发明除了能使栅杆针对给纸堆托板上滑槽的侧面位置进行侧面对准外，还能同时将栅杆的自由端安全地导行到止轨的穿孔内。这种安全导行的可能性是本发明通过栅杆和止轨共同进行侧面对准而开创的。

在有效地构成本发明的装置方向，辅助运送装置设有由横滑座和伸缩滑座构成的交叉滑动机构，其中横滑座的设置使它可在横越栅杆的水平方向上移动，而伸缩滑座则具有一个由横滑座在栅杆的长度方向上导行的、形式为框架的第一滑座和一个由第一滑座在栅杆的长度方向上导行的、形式为齿耙的第二滑座。

下面将结合附图对本发明的一个实施例详加说明，其中：

图1为沿栅杆通过辅助运送机构及其旁给纸堆的剖面图，
图2为图1中沿线Ⅰ—Ⅰ的剖面图，
图3为从辅助运送装置上抽出来的框架的平面图，
图 4 为图 3 中沿线 IV – IV 的剖面图，
图 5 为图 3 中按矢标 V 的方向的视图。
图 6 为图 3 中沿线 VI – VI 的剖面图，
图 7 为从辅助运送装置上抽出的齿耙的平面图，
图 8 为图 7 中沿线 VⅠ – VⅡ 的剖面图，
图 9 为图 7 中按矢标 VⅡ 的方向的部分视图，
图 10 为图 7 中沿线 X – X 的剖面图，
图 11 为从辅助运送装置上抽出的横滑座的平面图，
图 12 为图 11 中按矢标 X 的方向的视图，
图 13 为图 11 中按矢标 XⅠ 的方向的视图，
图 14 为图 13 中按矢标 XⅡ 的方向的部分视图，
图 15 为从辅助运送装置上抽出来的滑座导向机架的平面图，
图 16 为图 15 中沿线 XⅥ – XⅥ 的剖面图，
图 17 为图 16 中按矢标 XⅦ 的方向的视图，
图 18 为图 1 中按矢标 XⅤⅢ 的方向的视图。

图 1 用点划线概略地示出一个给纸堆的安排，其中
画出剩余给纸堆 1 和主给纸堆 2 结合的一种状态，剩余
给纸堆 1 以其最底下的纸支承在一个总称为 4 的辅助运
送装置的水平栅杆 3 上，主给纸堆 2 则以其最上面的纸
从下面抵靠在栅杆 3 上，此处栅杆 3 是用点划线示出，
其位置正好对着在栅杆 3 的长度方向上用实线示出的栅
杆移动前的位置。栅杆 3 穿过给纸堆的侧面而突出在外
的自由端是用通常的办法抵靠在图 1 中可见其横截面的
辅助横梁 5 上。
主给纸堆 2 以其最底下的纸支承在给纸堆托板 6 上。印刷机的给纸机构在连续印刷时能使给纸堆托板上的给纸堆通过常用的升降机构（在图 1 中未示出）以均匀的速度逐步上升，一直到给纸堆的高度缩小到最后成为一个剩余给纸堆。为了不中断地从给纸堆上取走纸张供给印刷机（这叫做不停车作业）在连续取走当时在顶上面的纸张时，剩余给纸堆与主给纸堆结合成为一个总给纸堆，这一总给纸堆在继续取走当时在顶上面的纸张时本身又会成为一个剩余给纸堆，如此往复进行。与印刷机给纸机构联合而使用辅助运送装置时，剩余给纸堆 1 在与主给纸堆 2 结合之前暂时先以其最底下的纸支承在图 1 中用 6 示出的给纸堆托板上，接着剩余给纸堆 1 用通常的方式被栅杆 3 支承起来，然后托板 6 被上述的升降机构带动下降而离开，剩余给纸堆 1 这才不再支承在托板 6 上。给纸堆托板 6 在其水平的顶面上以常见的方式设有多个相互平行的滑槽 7。一排相互平行的栅杆 3 组装成一个齿耙 8。其时栅杆 3 和滑槽 7 的横截面须互相配合，使栅杆 3 可沿其长度方向滑入滑入槽 7 内，以便使剩余给纸堆进入由栅杆 3 支承的一种结合状态。

为了使栅杆 3 能沿其长度方向滑动，在辅助运送装置上设有导轨 9，齿耙 8 就支承在其上面可滑动。

从图 1 中可以看到剩余给纸堆 1 和主给纸堆 2 处于面对面的对立位置以及在它们中间把它们接合起来的栅杆 3 所形成的一种结合状态，接下来可以转到结合的终止状态，此时栅杆 3 不再接合而是沿图 1 所示的向右的
抽出方向从给纸堆中抽出。为了防止在栅杆附近的纸张也沿抽出方向滑出，设有一根普通的、横越栅杆长度方向、并可沿栅杆长度方向滑动的止轨10，及在图4和图5中可以看到的穿孔11，以便栅杆3得以穿越止轨10。

按照本发明，由一对上面所提到过的导轨9和止轨10构成一个框架12。

从图2可以看到，每一导轨9各有一侧边部分与止轨10连接，构成框架12正面的一边。

在图3中示出的、从辅助运送装置4抽出的、其状态与图2所示状态相应的框架12，为了进一步加固，在图3左面、导轨9的前端设有第一横撑13，并在图3右面，导轨9的尾端设有第二横撑14。

从图6可见，每一导轨9是由一根上导杆15和一根下导杆16组成，其中上导杆15是作为齿耙8的直线导向用的。我们已把齿耙8从辅助运送装置4中抽出，示于图7中，其状态相应于图2所示的状态。齿耙8是由栅架17构成的。从图8中可以清晰地见到，栅杆3的一端用4胀大的办法装紧在齿耙8上。栅架18横跨栅杆3的长度方向，其支承部分具有直线导向型材18的形状，与导轨9的上导杆15配合。直线导向型材18与上导杆15的接合情况在图9中画出，其中上导杆15、下导杆16系用点划线示出。导轨9和众多的栅杆3的走向都是互相平行的，因此齿耙8对框架12而言是既可沿栅杆长度方向滑动，又可支承在框架上。
在图示的实施例中，齿耙8可在框架12上自动滑行。为此在框架12的第一横撑13和第二横撑14之间装有与导轨9平行的带简19，其带子，如图10用点划线所示，系与齿耙8的桥架17连接。在图7中用20概略地示出并用点划线重复给出将带简19上的带子与桥架17连接的方法。通过这种带简来移动齿耙。

按照本发明，框架12自身还可在辅助运送装置4内沿栅杆3的长度方向和在横越栅杆3的水平方向上滑动并支承着。在相应的实施例内在辅助运送装置4上设有一个由横滑座21和伸缩滑座构成的交叉滑动机构。

在图11中示出的，从辅助运送装置4中抽出、其状态相应于图2所示状态的横滑座21，横跨所有栅杆3，从框架12第一长边上的一根导轨9伸展到框架12第二长边上的另一根导轨9，并具有与齿耙8上所设直线导向型材（图9，10）相应的直线导向型材22。该导向型材22系与导轨9上的下导杆16配合。因此框架12构成一个由横滑座21在栅杆3的长度方向上导行的第一伸缩滑座而齿耙8则构成一个也可沿栅杆3的长度方向滑动并支承在框架12上的第二滑座。

在横滑座21上设有横贯栅杆3的另外的直线导向型材23（见图12、13）。

辅助运送装置4还有一滑座导向机架。在图15所示，从辅助运送装置4上抽出的、具有与图2相应状态的滑座导向机架上设有水平的、横越栅杆3的直线导轨25，该导轨与横滑座21上所设有的直线导向型材2
3接合。因此横滑座21可在横越栅杆3的水平方向上进行水平的滑动。

在实施例中框架12还可对横滑座21自动地滑动。为此设有一个具有第一气缸26和第二气缸27，并在横滑座21这一方面和框架12另一方面之间起作用的活塞—气缸单元。第一气缸26用法兰盘装在一个导向体28上，该导向体通过一个在栅杆3的长度方向上定向、固定在横滑座21上的滑轨29来导向，其时这第一气缸26的活塞杆与一固定在横滑座21上的连接片30铰接（见图11、13、14）。第二气缸27以其一端与导向体28铰接，而第二气缸27活塞杆上与此端相对的另一端则与固定在框架12上的另一个连接片31铰接。

为了与印刷机给纸机构联合使用本发明的装置，如图15、16和17所示的滑座导向机架24制成升降车的形式，可沿升降架32（见图18）在垂直方向移动。为了使升降车能沿升降架32移动，滑座导向机架24通过二个牵引工具35，例如一根链条或一条齿带与一升降驱动机构36连接（见图1）。这时上述活塞—气缸单元在分别控制气缸26和27上是能起到很好作用的，例如可以做到，使辅助运送装置4在垂直方向作快速工艺运动，也许从一个静止状态转为一个准备状态，以及使从止轨10到剩余给纸堆较近侧面的水平距离增大。上述活塞—气缸单元还能对上面提到的伸缩滑座作进一步的伸缩。
另外本实施例还能使横滑座21对滑座导向机架24的移动自动化。为此在滑座导向机架24上固定着一个线性调节驱动机构33，该机构33的连杆与另一个固定在横滑座21上的连接片34铰接。
图 16