

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2018/217799 A1

(43) International Publication Date
29 November 2018 (29.11.2018)

(51) International Patent Classification:

A61K 39/395 (2006.01) *C07K 16/28* (2006.01)
A61P 35/00 (2006.01) *C07K 16/30* (2006.01)
C07K 16/24 (2006.01) *C12N 15/09* (2006.01)

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/US2018/033952

(22) International Filing Date:

22 May 2018 (22.05.2018)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

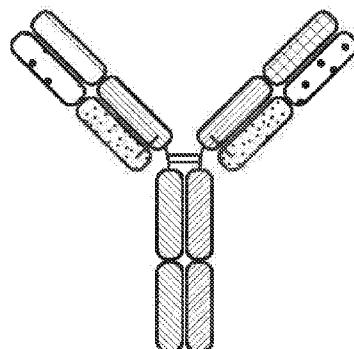
62/510,135 23 May 2017 (23.05.2017) US
62/549,200 23 August 2017 (23.08.2017) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(71) Applicant: DRAGONFLY THERAPEUTICS, INC.
[US/US]; 35 Gatehouse Drive, Waltham, MA 02451 (US).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))


(72) Inventors: CHANG, Gregory, P.; 143 Saunders Street, Medford, MA 02155 (US). CHEUNG, Ann, F.; 25 Morningside Lane, Lincoln, MA 01773 (US). HANEY, William; 61 Lincoln Road, Wayland, MA 01778 (US). LUNDE, Bradley, M.; 7 Lucent Drive, Lebanon, NH 03766 (US). PRINZ, Bianka; 7 Lucent Drive, Lebanon, NH 03766 (US).

(74) Agent: ASHRAF, Shovon et al.; Goodwin Procter LLP, 100 Northern Avenue, Boston, MA 02210 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

(54) Title: A PROTEIN BINDING NKG2D, CD16 AND ROR1 OR ROR2

FIG. 1

WO 2018/217799 A1

(57) Abstract: Multi-specific binding proteins that bind NKG2D receptor, CD 16, and a tumor- associated antigen ROR1 or ROR2 are described, as well as pharmaceutical compositions therapeutic methods useful for the treatment of cancer.

A PROTEIN BINDING NKG2D, CD16 AND ROR1 OR ROR2**CROSS-REFERENCE TO RELATED APPLICATIONS**

[0001] This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/510,135, filed May 23, 2017, and U.S. Provisional Patent Application No. 62/549,200, filed August 23, 2017, contents of each of which are hereby incorporated by reference in their entireties for all purposes.

SEQUENCE LISTING

[0002] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on May 17, 2018, is named DFY-017WO_SL.txt and is 133,432 bytes in size.

FIELD OF THE INVENTION

[0003] The invention relates to multi-specific binding proteins that bind to NKG2D, CD16, and a tumor-associated antigen ROR1 or ROR2.

15 **BACKGROUND**

[0004] Cancer continues to be a significant health problem despite the substantial research efforts and scientific advances reported in the literature for treating this disease. Some of the most frequently diagnosed cancers include prostate cancer, breast cancer, and lung cancer. Prostate cancer is the most common form of cancer in men. Breast cancer remains a leading cause of death in women. Current treatment options for these cancers are not effective for all patients and/or can have substantial adverse side effects. Other types of cancers also remain challenging to treat using existing therapeutic options.

[0005] Cancer immunotherapies are desirable because they are highly specific and can facilitate destruction of cancer cells using the patient's own immune system. Fusion proteins such as bi-specific T-cell engagers are cancer immunotherapies described in the literature that bind to tumor cells and T-cells to facilitate destruction of tumor cells. Antibodies that bind to certain tumor-associated antigens and to certain immune cells have been described in the literature. *See, e.g.*, WO 2016/134371 and WO 2015/095412.

[0006] Natural killer (NK) cells are a component of the innate immune system and make up approximately 15% of circulating lymphocytes. NK cells infiltrate virtually all tissues and

were originally characterized by their ability to kill tumor cells effectively without the need for prior sensitization. Activated NK cells kill target cells by means similar to cytotoxic T cells – *i.e.*, via cytolytic granules that contain perforin and granzymes as well as via death receptor pathways. Activated NK cells also secrete inflammatory cytokines such as IFN- γ and chemokines that promote the recruitment of other leukocytes to the target tissue.

5 [0007] NK cells respond to signals through a variety of activating and inhibitory receptors on their surface. For example, when NK cells encounter healthy self-cells, their activity is inhibited through activation of the killer-cell immunoglobulin-like receptors (KIRs). Alternatively, when NK cells encounter foreign cells or cancer cells, they are 10 activated via their activating receptors (*e.g.*, NKG2D, NCRs, DNAM1). NK cells are also activated by the constant region of some immunoglobulins through CD16 receptors on their surface. The overall sensitivity of NK cells to activation depends on the sum of stimulatory and inhibitory signals.

15 [0008] Tyrosine-protein kinase transmembrane receptor ROR1, also known as neurotrophic tyrosine kinase, receptor-related 1 (NTRKR1) is transmembrane receptor tyrosine kinase-like protein and is mainly expressed in cells during embryogenesis. However, ROR1 is shown to re-express in several cancer types, including malignant melanoma, breast cancer, prostate cancer, chronic lymphoblastic leukemia, hematologic malignancies, ovarian cancer, triple-negative breast cancer, non-small cell lung cancer, 20 colorectal cancer, and other solid tumors. ROR1 promotes survival and proliferation of cancer cells by mediating oncogenic pathways in a cancer type- and context-dependent manner.

25 [0009] Receptor tyrosine kinases (RTKs) are cell surface receptors that modulate normal cellular processes through ligand-controlled tyrosine kinase activity. RTK-like orphan receptor (ROR)2 is an orphan receptor that is expressed in the developing embryo and is present in the embryonic limb buds, heart, primitive genitalia, developing somites, and mesenchymal cells. ROR2 is a signaling receptor for Wnt ligands, and plays important roles in limb development, but has no essential roles known in adult tissues. In addition, ROR2 is found to be highly expressed in many cancers, such as osteosarcoma, renal cell 30 carcinomas, melanoma, colon cancer, squamous cell carcinoma of the head and neck, breast cancer, bladder cancer, cervical cancer, lymphoma, mesothelioma, pancreatic cancer, ovarian cancer, lung cancer, uterine cancer, sarcoma, and prostate cancer. In the majority of these cancer types, ROR2 expression is associated with more aggressive disease states.

SUMMARY

[0010] The invention provides multi-specific binding proteins that bind to the NKG2D receptor and CD16 receptor on natural killer cells, and tumor-associated antigen ROR1 or ROR2. Such proteins can engage more than one kind of NK-activating receptor, and may 5 block the binding of natural ligands to NKG2D. In certain embodiments, the proteins can agonize NK cells in humans. In some embodiments, the proteins can agonize NK cells in humans and in other species such as rodents and cynomolgus monkeys. Various aspects and embodiments of the invention are described in further detail below.

[0011] Accordingly, one aspect of the invention provides a protein that incorporates a 10 first antigen-binding site that binds NKG2D; a second antigen-binding site that binds tumor-associated antigen ROR1 or ROR2; and an antibody Fc domain, a portion thereof sufficient to bind CD16, or a third antigen-binding site that binds CD16.

[0012] The antigen-binding sites may each incorporate an antibody heavy chain variable 15 domain and an antibody light chain variable domain (e.g., arranged as in an antibody, or fused together to form an scFv), or one or more of the antigen-binding sites may be a single domain antibody, such as a V_HH antibody like a camelid antibody or a V_{NAR} antibody like those found in cartilaginous fish.

[0013] In one aspect, the present invention provides multi-specific binding proteins that 20 bind to the NKG2D receptor and CD16 receptor on natural killer cells, and a tumor-associated antigen ROR1 or ROR2. The NKG2D-binding site includes a heavy chain variable domain at least 90% identical to an amino acid sequence selected from: SEQ ID NO:1, SEQ ID NO:41, SEQ ID NO:49, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:69, SEQ ID NO:77, SEQ ID NO:85, and SEQ ID NO:93.

[0014] The first antigen-binding site, which binds to NKG2D, in some embodiments, can 25 incorporate a heavy chain variable domain related to SEQ ID NO:1, such as by having an amino acid sequence at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:1, and/or incorporating amino acid sequences identical to the CDR1 (SEQ ID NO:186), CDR2 (SEQ ID NO:187), and CDR3 (SEQ ID NO:188) sequences of SEQ ID NO:1. The heavy chain variable domain related to SEQ ID 30 NO:1 can be coupled with a variety of light chain variable domains to form a NKG2D binding site. For example, the first antigen-binding site that incorporates a heavy chain variable domain related to SEQ ID NO:1 can further incorporate a light chain variable domain selected from any one of the sequences related to SEQ ID NOS:2, 4, 6, 8, 10, 12, 14,

16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, and 40. For example, the first antigen-binding site incorporates a heavy chain variable domain with amino acid sequences at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:1 and a light chain variable domain with amino acid sequences at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to any one of the sequences selected from SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, and 40.

5 [0015] Alternatively, the first antigen-binding site can incorporate a heavy chain variable domain related to SEQ ID NO:41 and a light chain variable domain related to SEQ ID NO:42. For example, the heavy chain variable domain of the first antigen binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:41, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:43), CDR2 (SEQ ID NO:44), and CDR3 (SEQ ID NO:45) sequences of SEQ ID NO:41. Similarly, the light chain variable domain of the second antigen-binding site can 10 be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:42, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:46), CDR2 (SEQ ID NO:47), and CDR3 (SEQ ID NO:48) sequences of SEQ 15 ID NO:42.

20 [0016] In other embodiments, the first antigen-binding site can incorporate a heavy chain variable domain related to SEQ ID NO:49 and a light chain variable domain related to SEQ ID NO:50. For example, the heavy chain variable domain of the first antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:49, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:51), CDR2 (SEQ ID NO:52), and CDR3 (SEQ ID NO:53) sequences of SEQ 25 ID NO:49. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:50, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:54), CDR2 (SEQ ID NO:55), and CDR3 (SEQ ID NO:56) sequences of SEQ ID NO:50.

30 [0017] Alternatively, the first antigen-binding site can incorporate a heavy chain variable domain related to SEQ ID NO:57 and a light chain variable domain related to SEQ ID NO:58, such as by having amino acid sequences at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:57 and at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID

NO:58 respectively. In another embodiment, the first antigen-binding site can incorporate a heavy chain variable domain related to SEQ ID NO:59 and a light chain variable domain related to SEQ ID NO:60. For example, the heavy chain variable domain of the first antigen binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:59, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:180), CDR2 (SEQ ID NO:181), and CDR3 (SEQ ID NO:182) sequences of SEQ ID NO:59. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:60, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:183), CDR2 (SEQ ID NO:184), and CDR3 (SEQ ID NO:185) sequences of SEQ ID NO:60.

[0018] The first antigen-binding site, which binds to NKG2D, in some embodiments, can incorporate a heavy chain variable domain related to SEQ ID NO:61 and a light chain variable domain related to SEQ ID NO:62. For example, the heavy chain variable domain of the first antigen binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:61, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:63), CDR2 (SEQ ID NO:64), and CDR3 (SEQ ID NO:65) sequences of SEQ ID NO:61. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:62, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:66), CDR2 (SEQ ID NO:67), and CDR3 (SEQ ID NO:68) sequences of SEQ ID NO:62. In some embodiments, the first antigen-binding site can incorporate a heavy chain variable domain related to SEQ ID NO:69 and a light chain variable domain related to SEQ ID NO:70. For example, the heavy chain variable domain of the first antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:69, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:71), CDR2 (SEQ ID NO:72), and CDR3 (SEQ ID NO:73) sequences of SEQ ID NO:69. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:70, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:74), CDR2 (SEQ ID NO:75), and CDR3 (SEQ ID NO:76) sequences of SEQ ID NO:70.

[0019] In some embodiments, the first antigen-binding site can incorporate a heavy chain variable domain related to SEQ ID NO:77 and a light chain variable domain related to SEQ

ID NO:78. For example, the heavy chain variable domain of the first antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%)

5 identical to SEQ ID NO:77, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:79), CDR2 (SEQ ID NO:80), and CDR3 (SEQ ID NO:81) sequences of SEQ

ID NO:77. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%)

10 identical to SEQ ID NO:78, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:82), CDR2 (SEQ ID NO:83), and CDR3 (SEQ ID NO:84) sequences of SEQ

15 ID NO:78.

10 **[0020]** In some embodiments, the first antigen-binding site can incorporate a heavy chain variable domain related to SEQ ID NO:85 and a light chain variable domain related to SEQ ID NO:86. For example, the heavy chain variable domain of the first antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%)

15 identical to SEQ ID NO:85, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:87), CDR2 (SEQ ID NO:88), and CDR3 (SEQ ID NO:89) sequences of SEQ

20 ID NO:85. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%)

25 identical to SEQ ID NO:86, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:90), CDR2 (SEQ ID NO:91), and CDR3 (SEQ ID NO:92) sequences of SEQ

20 ID NO:86.

25 **[0021]** In some embodiments, the first antigen-binding site can incorporate a heavy chain variable domain related to SEQ ID NO:93 and a light chain variable domain related to SEQ ID NO:94. For example, the heavy chain variable domain of the first antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%)

30 identical to SEQ ID NO:93, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:95), CDR2 (SEQ ID NO:96), and CDR3 (SEQ ID NO:97) sequences of SEQ

35 ID NO:93. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%)

40 identical to SEQ ID NO:94, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:98), CDR2 (SEQ ID NO:99), and CDR3 (SEQ ID NO:100) sequences of SEQ

45 ID NO:94.

45 **[0022]** In some embodiments, the first antigen-binding site can incorporate a heavy chain variable domain related to SEQ ID NO:101 and a light chain variable domain related to SEQ ID NO:102, such as by having amino acid sequences at least 90% (e.g., 90%, 91%, 92%,

93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:101 and at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:102 respectively. In some embodiments, the first antigen-binding site can incorporate a heavy chain variable domain related to SEQ ID NO:103 and a light chain

5 variable domain related to SEQ ID NO:104, such as by having amino acid sequences at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:103 and at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:104 respectively.

[0023] Alternatively, the second antigen-binding site binding to ROR1 can incorporate a heavy chain variable domain related to SEQ ID NO:105 and a light chain variable domain related to SEQ ID NO:109. For example, the heavy chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:105, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:106), CDR2 (SEQ ID NO:107), and CDR3 (SEQ ID NO:108) sequences of SEQ ID NO:105. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:109, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:110), CDR2 (SEQ ID NO:111), and CDR3 (SEQ ID NO:112) sequences of SEQ ID NO:109.

20 **[0024]** Alternatively, the second antigen-binding site binding to ROR1 can incorporate a heavy chain variable domain related to SEQ ID NO:113 and a light chain variable domain related to SEQ ID NO:117. For example, the heavy chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:113, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:114), CDR2 (SEQ ID NO:115), and CDR3 (SEQ ID NO:116) sequences of SEQ ID NO:113. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:117, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:118), CDR2 (SEQ ID NO:119), and CDR3 (SEQ ID NO:120) sequences of SEQ ID NO:117.

[0025] The second antigen-binding site binding to ROR1 can optionally incorporate a heavy chain variable domain related to SEQ ID NO:121 and a light chain variable domain related to SEQ ID NO:125. For example, the heavy chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%,

98%, 99%, or 100%) identical to SEQ ID NO:121, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:122), CDR2 (SEQ ID NO:123), and CDR3 (SEQ ID NO:124) sequences of SEQ ID NO:121. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:125, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:126), CDR2 (SEQ ID NO:127), and CDR3 (SEQ ID NO:128) sequences of SEQ ID NO:125.

5 [0026] Alternatively, the second antigen-binding site binding to ROR1 can optionally incorporate a heavy chain variable domain related to SEQ ID NO:129 and a light chain variable domain related to SEQ ID NO:133. For example, the heavy chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:129, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:130), CDR2 (SEQ ID NO:131), and CDR3 (SEQ ID NO:132) sequences of SEQ ID NO:129. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:133, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:134), CDR2 (SEQ ID NO:135), and CDR3 (SEQ ID NO:136) sequences of SEQ ID NO:133.

10 [0027] The second antigen-binding site binding to ROR1 can optionally incorporate a heavy chain variable domain related to SEQ ID NO:137 and a light chain variable domain related to SEQ ID NO:141. For example, the heavy chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:137, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:138), CDR2 (SEQ ID NO:139), and CDR3 (SEQ ID NO:140) sequences of SEQ ID NO:137. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:141, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:142), CDR2 (SEQ ID NO:143), and CDR3 (SEQ ID NO:144) sequences of SEQ ID NO:141.

15 [0028] Alternatively, the second antigen-binding site binding to ROR1 can optionally incorporate a heavy chain variable domain related to SEQ ID NO:145 and a light chain variable domain related to SEQ ID NO:149. For example, the heavy chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:145, and/or incorporate amino acid

sequences identical to the CDR1 (SEQ ID NO:146), CDR2 (SEQ ID NO:147), and CDR3 (SEQ ID NO:148) sequences of SEQ ID NO:145. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:149, and/or incorporate 5 amino acid sequences identical to the CDR1 (SEQ ID NO:150), CDR2 (SEQ ID NO:151), and CDR3 (SEQ ID NO:152) sequences of SEQ ID NO:149.

[0029] Alternatively, the second antigen-binding site binding to ROR1 can optionally incorporate a heavy chain variable domain related to SEQ ID NO:153 and a light chain variable domain related to SEQ ID NO:157. For example, the heavy chain variable domain of 10 the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:153, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:154), CDR2 (SEQ ID NO:155), and CDR3 (SEQ ID NO:156) sequences of SEQ ID NO:153. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 15 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:157, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:158), CDR2 (SEQ ID NO:159), and CDR3 (SEQ ID NO:160) sequences of SEQ ID NO:157.

[0030] The second antigen-binding site binding to ROR2 can optionally incorporate a heavy chain variable domain related to SEQ ID NO:162 and a light chain variable domain 20 related to SEQ ID NO:166. For example, the heavy chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:162, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:163), CDR2 (SEQ ID NO:164), and CDR3 (SEQ ID NO:165) sequences of SEQ ID NO:162. Similarly, the light chain variable domain of the 25 second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:166, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:167), CDR2 (SEQ ID NO:168), and CDR3 (SEQ ID NO:169) sequences of SEQ ID NO:166.

[0031] Alternatively, the second antigen-binding site binding to ROR2 can optionally 30 incorporate a heavy chain variable domain related to SEQ ID NO:170 and a light chain variable domain related to SEQ ID NO:174. For example, the heavy chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:170, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:171), CDR2 (SEQ ID NO:172), and CDR3

(SEQ ID NO:173) sequences of SEQ ID NO:170. Similarly, the light chain variable domain of the second antigen-binding site can be at least 90% (e.g., 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) identical to SEQ ID NO:174, and/or incorporate amino acid sequences identical to the CDR1 (SEQ ID NO:175), CDR2 (SEQ ID NO:176), 5 and CDR3 (SEQ ID NO:177) sequences of SEQ ID NO:174.

[0032] In some embodiments, the second antigen binding site incorporates a light chain variable domain having an amino acid sequence identical to the amino acid sequence of the light chain variable domain present in the first antigen binding site.

10 **[0033]** In some embodiments, the protein incorporates a portion of an antibody Fc domain sufficient to bind CD16, wherein the antibody Fc domain comprises hinge and CH2 domains, and/or amino acid sequences at least 90% identical to amino acid sequence 234-332 of a human IgG antibody.

15 **[0034]** Formulations containing any one of the proteins described herein; cells containing one or more nucleic acids expressing the proteins, and methods of enhancing tumor cell death using the proteins are also provided.

20 **[0035]** Another aspect of the invention provides a method of treating cancer in a patient. The method comprises administering to a patient in need thereof a therapeutically effective amount of the multi-specific binding proteins described herein. Cancers to be treated using ROR1-targeting multi-specific binding proteins include any cancer that expresses ROR1, for example, melanoma, prostate cancer, chronic lymphoblastic leukemia, hematologic malignancies, ovarian cancer, triple-negative breast cancer, non-small cell lung cancer and colorectal cancer. Cancers to be treated using ROR2-targeting multi-specific binding proteins include any cancers that express ROR2, for example, osteosarcoma, renal cell carcinomas, melanoma, colon cancer, squamous cell carcinoma of the head and neck, breast cancer, 25 bladder cancer, cervical cancer, lymphoma, mesothelioma, pancreatic cancer, ovarian cancer, lung cancer, uterine cancer, sarcoma, and prostate cancer.

BRIEF DESCRIPTION OF THE DRAWINGS

30 **[0036]** **FIG. 1** is a representation of a heterodimeric, multi-specific antibody. Each arm can represent either the NKG2D-binding domain, or a binding domain for ROR1 or ROR2. In some embodiments, the NKG2D- and the antigen-binding domains can share a common light chain.

[0037] **FIG. 2** is a representation of a heterodimeric, multi-specific antibody. Either the NKG2D-binding domain or the binding domain to ROR1 or ROR2 can take the scFv format (right arm).

5 **[0038]** **FIG. 3** are line graphs demonstrating the binding affinity of NKG2D-binding domains (listed as clones) to human recombinant NKG2D in an ELISA assay.

[0039] **FIG. 4** are line graphs demonstrating the binding affinity of NKG2D-binding domains (listed as clones) to cynomolgus recombinant NKG2D in an ELISA assay.

[0040] **FIG. 5** are line graphs demonstrating the binding affinity of NKG2D-binding domains (listed as clones) to mouse recombinant NKG2D in an ELISA assay.

10 **[0041]** **FIG. 6** are bar graphs demonstrating the binding of NKG2D-binding domains (listed as clones) to EL4 cells expressing human NKG2D by flow cytometry showing mean fluorescence intensity (MFI) fold over background (FOB).

15 **[0042]** **FIG. 7** are bar graphs demonstrating the binding of NKG2D-binding domains (listed as clones) to EL4 cells expressing mouse NKG2D by flow cytometry showing mean fluorescence intensity (MFI) fold over background (FOB).

[0043] **FIG. 8** are line graphs demonstrating specific binding affinity of NKG2D-binding domains (listed as clones) to recombinant human NKG2D-Fc by competing with natural ligand ULBP-6.

20 **[0044]** **FIG. 9** are line graphs demonstrating specific binding affinity of NKG2D-binding domains (listed as clones) to recombinant human NKG2D-Fc by competing with natural ligand MICA.

[0045] **FIG. 10** are line graphs demonstrating specific binding affinity of NKG2D-binding domains (listed as clones) to recombinant mouse NKG2D-Fc by competing with natural ligand Rae-1 delta.

25 **[0046]** **FIG. 11** are bar graphs showing activation of human NKG2D by NKG2D-binding domains (listed as clones) by quantifying the percentage of TNF- α positive cells, which express human NKG2D-CD3 zeta fusion proteins.

30 **[0047]** **FIG. 12** are bar graphs showing activation of mouse NKG2D by NKG2D-binding domains (listed as clones) by quantifying the percentage of TNF- α positive cells, which express mouse NKG2D-CD3 zeta fusion proteins.

[0048] **FIG. 13** are bar graphs showing activation of human NK cells by NKG2D-binding domains (listed as clones).

[0049] **FIG. 14** are bar graphs showing activation of human NK cells by NKG2D-binding domains (listed as clones).

[0050] **FIG. 15** are bar graphs showing activation of mouse NK cells by NKG2D-binding domains (listed as clones).

5 [0051] **FIG. 16** are bar graphs showing activation of mouse NK cells by NKG2D-binding domains (listed as clones).

[0052] **FIG. 17** are bar graphs showing the cytotoxic effect of NKG2D-binding domains (listed as clones) on tumor cells.

10 [0053] **FIG. 18** are bar graphs showing the melting temperature of NKG2D-binding domains (listed as clones) measured by differential scanning fluorimetry.

15 [0054] **FIGs. 19A-19C** are bar graphs of synergistic activation of NK cells using CD16 and NKG2D binding. FIG. 19A demonstrates levels of CD107a; FIG. 19B demonstrates levels of IFN- γ ; FIG. 19C demonstrates levels of CD107a and IFN- γ . Graphs indicate the mean ($n = 2$) \pm SD. Data are representative of five independent experiments using five different healthy donors.

20 [0055] **FIG. 20** is a representation of a TriNKET in the Triomab form, which is a trifunctional, bispecific antibody that maintains an IgG-like shape. This chimera consists of two half antibodies, each with one light and one heavy chain, that originate from two parental antibodies. Triomab form may be a heterodimeric construct containing 1/2 of rat antibody and 1/2 of mouse antibody.

25 [0056] **FIG. 21** is a representation of a TriNKET in the KiH Common Light Chain (LC) form, which involves the knobs-into-holes (KIHS) technology. KiH is a heterodimer containing 2 Fabs binding to target 1 and 2, and an Fc stabilized by heterodimerization mutations. TriNKET in the KiH format may be a heterodimeric construct with 2 Fabs binding to target 1 and target 2, containing two different heavy chains and a common light chain that pairs with both heavy chains.

30 [0057] **FIG. 22** is a representation of a TriNKET in the dual-variable domain immunoglobulin (DVD-IgTM) form, which combines the target-binding domains of two monoclonal antibodies via flexible naturally occurring linkers, and yields a tetravalent IgG-like molecule. DVD-IgTM is a homodimeric construct where variable domain targeting antigen 2 is fused to the N-terminus of a variable domain of Fab targeting antigen 1. Construct contains normal Fc.

[0058] **FIG. 23** is a representation of a TriNKET in the Orthogonal Fab interface (Ortho-Fab) form, which is a heterodimeric construct that contains 2 Fabs binding to target 1 and

target 2 fused to Fc. LC-HC pairing is ensured by orthogonal interface. Heterodimerization is ensured by mutations in the Fc.

[0059] **FIG. 24** is a representation of a TriNKET in the 2-in-1 Ig format.

[0060] **FIG. 25** is a representation of a TriNKET in the ES form, which is a 5 heterodimeric construct containing two different Fabs binding to target 1 and target 2 fused to the Fc. Heterodimerization is ensured by electrostatic steering mutations in the Fc.

[0061] **FIG. 26** is a representation of a TriNKET in the Fab Arm Exchange form: 10 antibodies that exchange Fab arms by swapping a heavy chain and attached light chain (half-molecule) with a heavy-light chain pair from another molecule, resulting in bispecific antibodies. Fab Arm Exchange form (cFae) is a heterodimer containing 2 Fabs binding to target 1 and 2, and an Fc stabilized by heterodimerization mutations.

[0062] **FIG. 27** is a representation of a TriNKET in the SEED Body form, which is a heterodimer containing 2 Fabs binding to target 1 and 2, and an Fc stabilized by 15 heterodimerization mutations.

[0063] **FIG. 28** is a representation of a TriNKET in the LuZ-Y form, in which a leucine zipper is used to induce heterodimerization of two different HCs. The LuZ-Y form is a heterodimer containing two different scFabs binding to target 1 and 2, fused to Fc. Heterodimerization is ensured through leucine zipper motifs fused to C-terminus of Fc.

[0064] **FIG. 29** is a representation of a TriNKET in the Cov-X-Body form.

[0065] **FIGs. 30A-30B** are representations of TriNKETs in the $\kappa\lambda$ -Body forms, which are 20 heterodimeric constructs with two different Fabs fused to Fc stabilized by heterodimerization mutations: Fab1 targeting antigen 1 contains kappa LC, while second Fab targeting antigen 2 contains lambda LC. FIG. 30A is an exemplary representation of one form of a $\kappa\lambda$ -Body; FIG. 30B is an exemplary representation of another $\kappa\lambda$ -Body.

[0066] **FIG. 31** is an Oasc-Fab heterodimeric construct that includes Fab binding to 25 target 1 and scFab binding to target 2 fused to Fc. Heterodimerization is ensured by mutations in the Fc.

[0067] **FIG. 32** is a DuetMab, which is a heterodimeric construct containing two different 30 Fabs binding to antigens 1 and 2, and Fc stabilized by heterodimerization mutations. Fab 1 and 2 contain differential S-S bridges that ensure correct light chain (LC) and heavy chain (HC) pairing.

[0068] **FIG. 33** is a CrossmAb, which is a heterodimeric construct with two different 35 Fabs binding to targets 1 and 2 fused to Fc stabilized by heterodimerization. CL and CH1

domains and VH and VL domains are switched, *e.g.*, CH1 is fused in-line with VL, while CL is fused in-line with VH.

[0069] **FIG. 34** is a Fit-Ig, which is a homodimeric construct where Fab binding to antigen 2 is fused to the N-terminus of HC of Fab that binds to antigen 1. The construct 5 contains wild-type Fc.

DETAILED DESCRIPTION

[0070] The invention provides multi-specific binding proteins that bind the NKG2D receptor and CD16 receptor on natural killer cells, and tumor-associated antigen ROR1 or ROR2. In some embodiments, the multi-specific proteins further include an additional 10 antigen-binding site that binds a tumor-associated antigen. The invention also provides pharmaceutical compositions comprising such multi-specific binding proteins, and therapeutic methods using such multi-specific proteins and pharmaceutical compositions, for purposes such as treating cancer. Various aspects of the invention are set forth below in sections; however, aspects of the invention described in one particular section are not to be 15 limited to any particular section.

[0071] To facilitate an understanding of the present invention, a number of terms and phrases are defined below.

[0072] The terms “a” and “an” as used herein mean “one or more” and include the plural unless the context is inappropriate.

[0073] As used herein, the term “antigen-binding site” refers to the part of the immunoglobulin molecule that participates in antigen binding. In human antibodies, the antigen binding site is formed by amino acid residues of the N-terminal variable (“V”) regions of the heavy (“H”) and light (“L”) chains. Three highly divergent stretches within the V regions of the heavy and light chains are referred to as “hypervariable regions” which are 20 interposed between more conserved flanking stretches known as “framework regions,” or “FR.” Thus the term “FR” refers to amino acid sequences which are naturally found between and adjacent to hypervariable regions in immunoglobulins. In a human antibody molecule, the three hypervariable regions of a light chain and the three hypervariable regions of a heavy chain are disposed relative to each other in three dimensional space to form an antigen- 25 binding surface. The antigen-binding surface is complementary to the three-dimensional surface of a bound antigen, and the three hypervariable regions of each of the heavy and light chains are referred to as “complementarity-determining regions,” or “CDRs.” In certain 30 chains are referred to as “complementarity-determining regions,” or “CDRs.” In certain

animals, such as camels and cartilaginous fish, the antigen-binding site is formed by a single antibody chain providing a “single domain antibody.” Antigen-binding sites can exist in an intact antibody, in an antigen-binding fragment of an antibody that retains the antigen-binding surface, or in a recombinant polypeptide such as an scFv, using a peptide linker to 5 connect the heavy chain variable domain to the light chain variable domain in a single polypeptide.

[0074] The term “tumor associated antigen” as used herein means any antigen including but not limited to a protein, glycoprotein, ganglioside, carbohydrate, lipid that is associated with cancer. Such antigen can be expressed on malignant cells or in the tumor 10 microenvironment such as on tumor-associated blood vessels, extracellular matrix, mesenchymal stroma, or immune infiltrates.

[0075] As used herein, the terms “subject” and “patient” refer to an organism to be treated by the methods and compositions described herein. Such organisms preferably include, but are not limited to, mammals (*e.g.*, murines, simians, equines, bovines, porcines, 15 canines, felines, and the like), and more preferably include humans.

[0076] As used herein, the term “effective amount” refers to the amount of a compound (*e.g.*, a compound of the present invention) sufficient to effect beneficial or desired results. An effective amount can be administered in one or more administrations, applications or dosages and is not intended to be limited to a particular formulation or administration route. 20 As used herein, the term “treating” includes any effect, *e.g.*, lessening, reducing, modulating, ameliorating or eliminating, that results in the improvement of the condition, disease, disorder, and the like, or ameliorating a symptom thereof.

[0077] As used herein, the term “pharmaceutical composition” refers to the combination of an active agent with a carrier, inert or active, making the composition especially suitable 25 for diagnostic or therapeutic use *in vivo* or *ex vivo*.

[0078] As used herein, the term “pharmaceutically acceptable carrier” refers to any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, emulsions (*e.g.*, such as an oil/water or water/oil emulsions), and various types of wetting agents. The compositions also can include stabilizers and preservatives. For examples of 30 carriers, stabilizers and adjuvants, *see e.g.*, Martin, Remington's Pharmaceutical Sciences, 15th Ed., Mack Publ. Co., Easton, PA [1975].

[0079] As used herein, the term “pharmaceutically acceptable salt” refers to any pharmaceutically acceptable salt (*e.g.*, acid or base) of a compound of the present invention which, upon administration to a subject, is capable of providing a compound of this invention

or an active metabolite or residue thereof. As is known to those of skill in the art, “salts” of the compounds of the present invention may be derived from inorganic or organic acids and bases. Exemplary acids include, but are not limited to, hydrochloric, hydrobromic, sulfuric, nitric, perchloric, fumaric, maleic, phosphoric, glycolic, lactic, salicylic, succinic, toluene-p-sulfonic, tartaric, acetic, citric, methanesulfonic, ethanesulfonic, formic, benzoic, malonic, naphthalene-2-sulfonic, benzenesulfonic acid, and the like. Other acids, such as oxalic, while not in themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds of the invention and their pharmaceutically acceptable acid addition salts.

10 **[0080]** Exemplary bases include, but are not limited to, alkali metal (*e.g.*, sodium) hydroxides, alkaline earth metal (*e.g.*, magnesium) hydroxides, ammonia, and compounds of formula NW_4^+ , wherein W is C_{1-4} alkyl, and the like.

15 **[0081]** Exemplary salts include, but are not limited to: acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, flucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, palmoate, pectinate, persulfate, phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate, undecanoate, and the like. Other examples of salts include anions of the compounds of the present invention compounded with a suitable cation such as Na^+ , NH_4^+ , and NW_4^+ (wherein W is a C_{1-4} alkyl group), and the like.

20 **[0082]** For therapeutic use, salts of the compounds of the present invention are contemplated as being pharmaceutically acceptable. However, salts of acids and bases that are non-pharmaceutically acceptable may also find use, for example, in the preparation or 25 purification of a pharmaceutically acceptable compound.

30 **[0083]** Throughout the description, where compositions are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are compositions of the present invention that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the present invention that consist essentially of, or consist of, the recited processing steps.

[0084] As a general matter, compositions specifying a percentage are by weight unless otherwise specified. Further, if a variable is not accompanied by a definition, then the previous definition of the variable controls.

I. PROTEINS

5 **[0085]** The invention provides multi-specific binding proteins that bind to the NKG2D receptor and CD16 receptor on natural killer cells, and tumor-associated antigen ROR1 or ROR2. The multi-specific binding proteins are useful in the pharmaceutical compositions and therapeutic methods described herein. Binding of the multi-specific binding proteins to the NKG2D receptor and CD16 receptor on a natural killer cell enhances the activity of the

10 natural killer cell toward destruction of tumor cells expressing ROR1 or/and ROR2 antigen. Binding of the multi-specific binding proteins to ROR1 or ROR2-expressing cells brings the cancer cells into proximity with the natural killer cell, which facilitates direct and indirect destruction of the cancer cells by the natural killer cell. Further description of some exemplary multi-specific binding proteins is provided below.

15 **[0086]** The first component of the multi-specific binding proteins binds to NKG2D receptor-expressing cells, which can include but are not limited to NK cells, $\gamma\delta$ T cells and $CD8^+ \alpha\beta$ T cells. Upon NKG2D binding, the multi-specific binding proteins may block natural ligands, such as ULBP6 and MICA, from binding to NKG2D and activating NKG2D receptors.

20 **[0087]** The second component of the multi-specific binding proteins binds to ROR1 or ROR2. ROR1-expressing cells may be found in, for example, malignant melanoma, prostate cancer, chronic lymphoblastic leukemia, hematologic malignancies, ovarian cancer, triple-negative breast cancer, non-small cell lung cancer and colorectal cancer. ROR2-expressing cells may be found in, for example, osteosarcoma, renal cell carcinoma, melanoma, colon

25 cancer, squamous cell carcinoma of the head and neck, breast cancer, bladder cancer, cervical cancer, lymphoma, mesothelioma, pancreatic cancer, ovarian cancer, lung cancer, uterine cancer, sarcoma, and prostate cancer.

[0088] The third component for the multi-specific binding proteins binds to cells expressing CD16, an Fc receptor on the surface of leukocytes including natural killer cells, macrophages, neutrophils, eosinophils, mast cells, and follicular dendritic cells.

[0089] The multi-specific binding proteins described herein can take various formats. For example, one format is a heterodimeric, multi-specific antibody including a first immunoglobulin heavy chain, a first immunoglobulin light chain, a second immunoglobulin

heavy chain and a second immunoglobulin light chain (FIG. 1). The first immunoglobulin heavy chain includes a first Fc (hinge-CH2-CH3) domain, a first heavy chain variable domain and optionally a first CH1 heavy chain domain. The first immunoglobulin light chain includes a first light chain variable domain and a first light chain constant domain. The first immunoglobulin light chain, together with the first immunoglobulin heavy chain, forms an antigen-binding site that binds NKG2D. The second immunoglobulin heavy chain comprises a second Fc (hinge-CH2-CH3) domain, a second heavy chain variable domain and optionally a second CH1 heavy chain domain. The second immunoglobulin light chain includes a second light chain variable domain and a second light chain constant domain. The second immunoglobulin light chain, together with the second immunoglobulin heavy chain, forms an antigen-binding site that binds ROR1 or ROR2. The first Fc domain and second Fc domain together are able to bind to CD16 (FIG. 1). In some embodiments, the first immunoglobulin light chain is identical to the second immunoglobulin light chain.

[0090] Another exemplary format involves a heterodimeric, multi-specific antibody including a first immunoglobulin heavy chain, a second immunoglobulin heavy chain and an immunoglobulin light chain (FIG. 2). The first immunoglobulin heavy chain includes a first Fc (hinge-CH2-CH3) domain fused via either a linker or an antibody hinge to a single-chain variable fragment (scFv) composed of a heavy chain variable domain and light chain variable domain which pair and bind NKG2D, or bind an antigen selected from ROR1 and ROR2. The second immunoglobulin heavy chain includes a second Fc (hinge-CH2-CH3) domain, a second heavy chain variable domain and optionally a CH1 heavy chain domain. The immunoglobulin light chain includes a light chain variable domain and a light chain constant domain. The second immunoglobulin heavy chain pairs with the immunoglobulin light chain and binds to NKG2D or binds ROR1 or ROR2. The first Fc domain and the second Fc domain together are able to bind to CD16 (FIG. 2).

[0091] One or more additional binding motifs may be fused to the C-terminus of the constant region CH3 domain, optionally via a linker sequence. In certain embodiments, the antigen-binding site could be a single-chain or disulfide-stabilized variable region (scFv) or could form a tetravalent or trivalent molecule.

[0092] In some embodiments, the multi-specific binding protein is in the Triomab form, which is a trifunctional, bispecific antibody that maintains an IgG-like shape. This chimera consists of two half antibodies, each with one light and one heavy chain, that originate from two parental antibodies.

[0093] In some embodiments, the multi-specific binding protein is the KiH Common Light Chain (LC) form, which involves the knobs-into-holes (KIHS) technology. The KIH involves engineering CH₃ domains to create either a “knob” or a “hole” in each heavy chain to promote heterodimerization. The concept behind the “Knobs-into-Holes (KiH)” Fc technology was to introduce a “knob” in one CH₃ domain (CH₃A) by substitution of a small residue with a bulky one (e.g., T366W_{CH3A} in EU numbering). To accommodate the “knob,” a complementary “hole” surface was created on the other CH₃ domain (CH₃B) by replacing the closest neighboring residues to the knob with smaller ones (e.g., T366S/L368A/Y407V_{CH3B}). The “hole” mutation was optimized by structured-guided phage library screening (Atwell S, Ridgway JB, Wells JA, Carter P., Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library, *J. Mol. Biol.* (1997) 270(1):26–35). X-ray crystal structures of KiH Fc variants (Elliott JM, Ultsch M, Lee J, Tong R, Takeda K, Spiess C, *et al.*, Antiparallel conformation of knob and hole aglycosylated half-antibody homodimers is mediated by a CH₂-CH₃ hydrophobic interaction. *J. Mol. Biol.* (2014) 426(9):1947–57; Mimoto F, Kadono S, Katada H, Igawa T, Kamikawa T, Hattori K. Crystal structure of a novel asymmetrically engineered Fc variant with improved affinity for Fc γ Rs. *Mol. Immunol.* (2014) 58(1):132–8) demonstrated that heterodimerization is thermodynamically favored by hydrophobic interactions driven by steric complementarity at the inter-CH₃ domain core interface, whereas the knob–knob and the hole–hole interfaces do not favor homodimerization owing to steric hindrance and disruption of the favorable interactions, respectively.

[0094] In some embodiments, the multi-specific binding protein is in the dual-variable domain immunoglobulin (DVD-IgTM) form, which combines the target binding domains of two monoclonal antibodies via flexible naturally occurring linkers, and yields a tetravalent IgG-like molecule.

[0095] In some embodiments, the multi-specific binding protein is in the Orthogonal Fab interface (Ortho-Fab) form. In the ortho-Fab IgG approach (Lewis SM, Wu X, Pustilnik A, Sereno A, Huang F, Rick HL, *et al.*, Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. *Nat. Biotechnol.* (2014) 32(2):191–8), structure-based regional design introduces complementary mutations at the LC and HC_{VH-CH1} interface in only one Fab, without any changes being made to the other Fab.

[0096] In some embodiments, the multi-specific binding protein is in the 2-in-1 Ig format. In some embodiments, the multi-specific binding protein is in the ES form, which is a

heterodimeric construct containing two different Fabs binding to targets 1 and target 2 fused to the Fc. Heterodimerization is ensured by electrostatic steering mutations in the Fc.

[0097] In some embodiments, the multi-specific binding protein is in the $\kappa\lambda$ -Body form, which is a heterodimeric construct with two different Fabs fused to Fc stabilized by

5 heterodimerization mutations: Fab1 targeting antigen 1 contains kappa LC, while second Fab targeting antigen 2 contains lambda LC. FIG. 30A is an exemplary representation of one form of a $\kappa\lambda$ -Body; FIG. 30B is an exemplary representation of another $\kappa\lambda$ -Body.

[0098] In some embodiments, the multi-specific binding protein is in Fab Arm Exchange form (antibodies that exchange Fab arms by swapping a heavy chain and attached light chain 10 (half-molecule) with a heavy-light chain pair from another molecule, which results in bispecific antibodies).

[0099] In some embodiments, the multi-specific binding protein is in the SEED Body form. The strand-exchange engineered domain (SEED) platform was designed to generate 15 asymmetric and bispecific antibody-like molecules, a capability that expands therapeutic applications of natural antibodies. This protein engineered platform is based on exchanging structurally related sequences of immunoglobulin within the conserved CH3 domains. The SEED design allows efficient generation of AG/GA heterodimers, while disfavoring homodimerization of AG and GA SEED CH3 domains. (Muda M. *et al.*, *Protein Eng. Des. Sel.* (2011, 24(5):447-54)).

20 **[0100]** In some embodiments, the multi-specific binding protein is in the LuZ-Y form, in which a leucine zipper is used to induce heterodimerization of two different HCs. (Wranik, BJ. *et al.*, *J. Biol. Chem.* (2012), 287:43331-9).

[0101] In some embodiments, the multi-specific binding protein is in the Cov-X-Body 25 form. In bispecific CovX-Bodies, two different peptides are joined together using a branched azetidinone linker and fused to the scaffold antibody under mild conditions in a site-specific manner. Whereas the pharmacophores are responsible for functional activities, the antibody scaffold imparts long half-life and Ig-like distribution. The pharmacophores can be chemically optimized or replaced with other pharmacophores to generate optimized or unique bispecific antibodies. (Doppalapudi VR *et al.*, *PNAS* (2010), 107(52):22611-22616).

30 **[0102]** In some embodiments, the multi-specific binding protein is in an Oasc-Fab heterodimeric form that includes Fab binding to target 1, and scFab binding to target 2 fused to Fc. Heterodimerization is ensured by mutations in the Fc.

[0103] In some embodiments, the multi-specific binding protein is in a DuetMab form, which is a heterodimeric construct containing two different Fabs binding to antigens 1 and 2,

and Fc stabilized by heterodimerization mutations. Fab 1 and 2 contain differential S-S bridges that ensure correct LC and HC pairing.

[0104] In some embodiments, the multi-specific binding protein is in a CrossmAb form, which is a heterodimeric construct with two different Fabs binding to targets 1 and 2, fused to

5 Fc stabilized by heterodimerization. CL and CH1 domains and VH and VL domains are switched, *e.g.*, CH1 is fused in-line with VL, while CL is fused in-line with VH.

[0105] In some embodiments, the multi-specific binding protein is in a Fit-Ig form, which is a homodimeric construct where Fab binding to antigen 2 is fused to the N terminus of HC of Fab that binds to antigen 1. The construct contains wild-type Fc.

10 **[0106]** Table 1 lists peptide sequences of heavy chain variable domains and light chain variable domains that, in combination, can bind to NKG2D. The NKG2D binding domains can vary in their binding affinity to NKG2D, nevertheless, they all activate human NKG2D and NK cells.

Table 1		
Clones	Heavy chain variable region amino acid sequence	Light chain variable region amino acid sequence
ADI-27705	<p>QVQLQQWGAGLLKPSETLSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTVISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:1)</p> <p>CDR1 (SEQ ID NO:186) – GSFSGYYWS CDR2 (SEQ ID NO:187) – EIDHSGSTNYNPSLKS CDR3 (SEQ ID NO:188) – ARARGPWSFDP</p>	<p>DIQMTQSPSTLSASVGDRVTIT CRASQSISSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYNSYPITFGGGTKVEIK (SEQ ID NO:2)</p>
ADI-27724	<p>QVQLQQWGAGLLKPSETLSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTVISVDT KNQFSLKLSSVTAADTAVYYCARA</p>	<p>EIVLTQSPGTLSSLSPGERATLS CRASQSVSSSYLAWYQQKPG QAPRLLIYGASSRATGIPDRFS GSGSGTDFTLTISRLEPEDFAV</p>

	RGPWSFDPWGQGTLTVSS (SEQ ID NO:3)	YYCQQYGSPPITFGGGTKVEIK (SEQ ID NO:4)
ADI- 27740 (A40)	QVQLQQWGAGLLKPSETSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:5)	DIQMTQSPSTLSASVGDRVTIT CRASQSIGSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYHSFYTFGGGTKEIK (SEQ ID NO:6)
ADI- 27741	QVQLQQWGAGLLKPSETSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:7)	DIQMTQSPSTLSASVGDRVTIT CRASQSIGSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQQNSYYTFGGGTKEIK (SEQ ID NO:8)
ADI- 27743	QVQLQQWGAGLLKPSETSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:9)	DIQMTQSPSTLSASVGDRVTIT CRASQSISSWLAQYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYNSYPTFGGGTKVEIK (SEQ ID NO:10)
ADI- 28153	QVQLQQWGAGLLKPSETSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWGFDLWGQGTLTVSS (SEQ ID NO:11)	ELQMTQSPSSLSASVGDRVTIT CRTSQSISSYLNWYQQKPGQP PKLLIYWASTRESGVPDFRSGS GSGTDFLTISLQPEDSATYY CQQSYDIPYTFGQGKLEIK (SEQ ID NO:12)
ADI- 28226 (C26)	QVQLQQWGAGLLKPSETSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:13)	DIQMTQSPSTLSASVGDRVTIT CRASQSISSWLAQYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYGSFPITFGGGTKEIK (SEQ ID NO:14)

ADI-28154	QVQLQQWGAGLLKPSETSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTVISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:15)	DIQMTQSPSTLSASVGDRVIT CRASQSISSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTDFLTISLQPDDFATY YCQQSKEVPWTFGQGKTVEIK (SEQ ID NO:16)
ADI-29399	QVQLQQWGAGLLKPSETSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTVISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:17)	DIQMTQSPSTLSASVGDRVIT CRASQSISSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYNSFPTFGGGTKVEIK (SEQ ID NO:18)
ADI-29401	QVQLQQWGAGLLKPSETSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTVISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:19)	DIQMTQSPSTLSASVGDRVIT CRASQSISSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYDIYPTFGGGTKVEIK (SEQ ID NO:20)
ADI-29403	QVQLQQWGAGLLKPSETSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTVISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:21)	DIQMTQSPSTLSASVGDRVIT CRASQSISSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYDSYPTFGGGTKVEIK (SEQ ID NO:22)
ADI-29405	QVQLQQWGAGLLKPSETSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTVISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:23)	DIQMTQSPSTLSASVGDRVIT CRASQSISSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYGSFPTFGGGTKVEIK (SEQ ID NO:24)
ADI-29407	QVQLQQWGAGLLKPSETSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTVISVDT	DIQMTQSPSTLSASVGDRVIT CRASQSISSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG

	KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:25)	SGSGTEFTLTISLQPDDFATY YCQQYQSFPTFGGGTKVEIK (SEQ ID NO:26)
ADI-29419	QVQLQQWGAGLLKPSETLSLCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:27)	DIQMTQSPSTLSASVGDRVTIT CRASQSISSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYSSFSTFGGGTKVEIK (SEQ ID NO:28)
ADI-29421	QVQLQQWGAGLLKPSETLSLCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:29)	DIQMTQSPSTLSASVGDRVTIT CRASQSISSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYESYSTFGGGTKVEIK (SEQ ID NO:30)
ADI-29424	QVQLQQWGAGLLKPSETLSLCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:31)	DIQMTQSPSTLSASVGDRVTIT CRASQSISSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYDSFITFGGGTKVEIK (SEQ ID NO:32)
ADI-29425	QVQLQQWGAGLLKPSETLSLCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:33)	DIQMTQSPSTLSASVGDRVTIT CRASQSISSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYQSYPTFGGGTKVEIK (SEQ ID NO:34)
ADI-29426	QVQLQQWGAGLLKPSETLSLCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:35)	DIQMTQSPSTLSASVGDRVTIT CRASQSIGSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYHSFPTFGGGTKVEIK (SEQ ID NO:36)

ADI-29429	QVQLQQWGAGLLKPSETSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:37)	DIQMTQSPSTLSASVGDRVIT CRASQSIGSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYELYSYTFGGGTKEIK (SEQ ID NO:38)
ADI-29447 (F47)	QVQLQQWGAGLLKPSETSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTISVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:39)	DIQMTQSPSTLSASVGDRVIT CRASQSISSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCQQYDTFITFGGGTKVEIK (SEQ ID NO:40)
ADI-27727	QVQLVQSGAEVKKPGSSVKVSCKA SGGTFSYYAISWVRQAPGQGLEWM GGIPIFGTANYAQKFQGRVTITADE STSTAYMELSSLRSEDTAVYYCAR GDSSIRHAYYYYGMDVWGQGTTV TVSS (SEQ ID NO:41) CDR1 (SEQ ID NO:43) – GTFSSYYAIS CDR2 (SEQ ID NO:44) – GIPIFGTANYAQKFQG CDR3 (SEQ ID NO:45) – ARGDSSIRHAYYYYGMDV	DIVMTQSPDSLAVSLGERATIN CKSSQSVLYSSNNKNYLA QQKPGQPPKLLIYWASTRESG VPDRFSGSGSGTDFTLTISLQ AEDVAVYYCQQYYSTPITFGG GTKVEIK (SEQ ID NO:42) CDR1 (SEQ ID NO:46) – KSSQSVLYSSNNKNYLA CDR2 (SEQ ID NO:47) – WASTRES CDR3 (SEQ ID NO:48) – QQYYSTPIT
ADI-29443 (F43)	QLQLQESGPLVKPSETSLTCTVS GGSISSSYYWGIRQPPGKGLEWI GSIYYSGSTYYNPSLKSRTISVDT KNQFSLKLSSVTAADTAVYYCARG SDRFHPYFDYWQGTLTVSS (SEQ ID NO:49) CDR1 (SEQ ID NO:51) – GSISSSSYYWG	EIVLTQSPATLSLSPGERATLS CRASQSVSRYLA APRLLIYDASNRTGIPARFSG SGSGTDFTLTISLEPEDFAVY YCQQFDTWPPTFGGGTKVEIK (SEQ ID NO:50) CDR1 (SEQ ID NO:54) – RASQSVSRYLA

	CDR2 (SEQ ID NO:52) – SIYYSGSTYYNPSLKS CDR3 (SEQ ID NO:53) – ARGSDRFHPYFDY	CDR2 (SEQ ID NO:55) – DASN RAT CDR3 (SEQ ID NO:56) – QQFDTWPPT
ADI- 29404 (F04)	QVQLQQWGAGLLKPSETLSLTCAV YGGSFSGYYWSWIRQPPGKGLEWI GEIDHSGSTNYNPSLKSRTVTSVDT KNQFSLKLSSVTAADTAVYYCARA RGPWSFDPWGQGTLTVSS (SEQ ID NO:57)	DIQMTQSPSTLSASVGDRVTIT CRASQSISSWLAWYQQKPGK APKLLIYKASSLESGVPSRFSG SGSGTEFTLTISLQPDDFATY YCEQYDSYPTFGGGTKVEIK (SEQ ID NO:58)
ADI- 28200	QVQLVQSGAEVKKPGSSVKVSCKA SGGTFSYAIWVRQAPGQGLEWM GGIPIFGTANYAQKFQGRVTITADE STSTAYMELSSLRSEDTAVYYCAR RGRKASGSFYYYYGMDVWGQGTT VTVSS (SEQ ID NO:59) CDR1 (SEQ ID NO:180) – GTFSSYAI CDR2 (SEQ ID NO:181) – GIPIFGTANYAQKFQG CDR3 (SEQ ID NO:182) – ARRGRKASGSFYYYYGMDV	DIVMTQSPDSLAVSLGERATIN CESSQSLLNSGNQKNYLTWY QQKPGQPPKPLIYWASTRESG VPDRFSGSGSGTDFTLTISLQ AEDVAVYYCQNDYSYPYTFG QGTKLEIK (SEQ ID NO:60) CDR1 (SEQ ID NO:183) – ESSQSLLNSGNQKNYLT CDR2 (SEQ ID NO:184) – WASTRES CDR3 (SEQ ID NO:185) – QNDYSYPY
ADI- 29379 (E79)	QVQLVQSGAEVKKPGASVKVSCK ASGYTFTSYYMHWVRQAPGQGLE WMGIINPSGGSTSAYAQKFQGRVTM TRDTSTSTVYMELOSSLRSEDTAVYY CARGAPNYGDTTHDYYMDVWG KGTTVTVSS (SEQ ID NO:61) CDR1 (SEQ ID NO:63) - YTFTSYYMH	EIVMTQSPATLSVSPGERATLS CRASQSVSSNLAWYQQKPGQ APRLLIYGASTRATGIPARFSG SGSGTEFTLTISLQSEDFAVY YCQQYDDWPFTFGGGTKVEI K (SEQ ID NO:62) CDR1 (SEQ ID NO:66) - RASQSVSSNLA

	CDR2 (SEQ ID NO:64) - IINPSGGSTSYAQKFQG CDR3 (SEQ ID NO:65) - ARGAPNYGDTTHDYYYMDV	CDR2 (SEQ ID NO:67) - GASTRAT CDR3 (SEQ ID NO:68) - QQYDDWPFT
ADI-29463 (F63)	QVQLVQSGAEVKPGASVKVSCK ASGYTFTGYYMHWVRQAPGQGLE WMGWINPNSGGTNYAQKFQGRVT MTRDTSISTAYMELSRLRSDDTAV YYCARDTGEYYDTDDHGMDVWG QGTTVTVSS (SEQ ID NO:69) CDR1 (SEQ ID NO:71) - YTFTGYYMH CDR2 (SEQ ID NO:72) - WINPNSGGTNYAQKFQG CDR3 (SEQ ID NO:73) - ARDTGEYYDTDDHGMDV	EIVLTQSPGTLSSLSPGERATLS CRASQSVSSNLAWYQQKPGQ APRLLIYGASTRATGIPARFSG SGSGTEFTLTISSLQSEDFAVY YCQQDDYWPPTFGGGTKEIK (SEQ ID NO:70) CDR1 (SEQ ID NO:74) - RASQSVSSNLA CDR2 (SEQ ID NO:75) - GASTRAT CDR3 (SEQ ID NO:76) - QQDDYWPP
ADI-27744 (A44)	EVQLLESGGGLVQPGGSLRLSCAAS GFTFSSYAMSWVRQAPGKGLEWV SAISGSGGSTYYADSVKGRFTISRD NSKNTLYLQMNSLRAEDTAVYYC AKDGGYYDSGAGDYWGQGTLTVSS (SEQ ID NO:77) CDR1 (SEQ ID NO:79) - FTFSSYAMS CDR2 (SEQ ID NO:80) - AISGSGGSTYYADSVKG CDR3 (SEQ ID NO:81) - AKDGGYYDSGAGDY	DIQMTQSPSSVSASVGDRVITIT CRASQGIDSWLAWYQQKPGK APKLLIYAASSLQSGVPSRFSG SGSGTDFLTISSLQPEDFATY YCQQGVSYPPRTFGGGTKVEIK (SEQ ID NO:78) CDR1 (SEQ ID NO:82) - RASQGIDSWL CDR2 (SEQ ID NO:83) - AASSLQS CDR3 (SEQ ID NO:84) - QQGVSYPPRT
ADI-27749 (A49)	EVQLVESGGGLVKPGGSLRLSCAA SGFTFSSYSMNWVRQAPGKGLEW VSSISSSSYIYYADSVKGRFTISRD NAKNSLYLQMNSLRAEDTAVYYC	DIQMTQSPSSVSASVGDRVITIT CRASQGISSWLAWYQQKPGK APKLLIYAASSLQSGVPSRFSG SGSGTDFLTISSLQPEDFATY

	ARGAPMGAAAGWFDPWGQGTLVT VSS (SEQ ID NO:85) CDR1 (SEQ ID NO:87) - FTFSSYSMN CDR2 (SEQ ID NO:88) - SISSSSYIYYADSVKG CDR3 (SEQ ID NO:89) - ARGAPMGAAAGWFDP	YCQQGVSFPRTFGGGTKEIK (SEQ ID NO:86) CDR1 (SEQ ID NO:90) - RASQGISSWLA CDR2 (SEQ ID NO:91) - AASSLQS CDR3 (SEQ ID NO:92) - QQGVSFPR
ADI- 29378 (E78)	QVQLVQSGAEVKPGASVKVSCK ASGYTFTSYYMHWVRQAPGQGLE WMGIINPSGGSTSYAQKFQGRVTM TRDTSTSTVYMESSLRSEDTAVYY CAREGAGFAYGMDYYYMDVWKG GTTTVSS (SEQ ID NO:93) CDR1 (SEQ ID NO:95) - YTFTSYYMH CDR2 (SEQ ID NO:96) - IINPSGGSTSYAQKFQG CDR3 (SEQ ID NO:97) - AREGAGFAYGMDYYYMDV	EIVLTQSPATLSLSPGERATLS CRASQSVSSYLAWYQQKPGQ APRLLIYDASN RATGIPARFSG SGSGTDFTLTISLEPEDFAVY YCQQQSDNWPFTFGGGTKVEIK (SEQ ID NO:94) CDR1 (SEQ ID NO:98) - RASQSVSSYLA CDR2 (SEQ ID NO:99) - DASN RAT CDR3 (SEQ ID NO:100) - QQSDNWPFT

[0107] Alternatively, a heavy chain variable domain represented by SEQ ID NO:101 can be paired with a light chain variable domain represented by SEQ ID NO:102 to form an antigen-binding site that can bind to NKG2D, as illustrated in US 9,273,136.

5 SEQ ID NO:101

QVQLVESGGGLVKPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFI
RYDGSNKKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGL
GDGTYFDYWGQQGTTTVSS

SEQ ID NO:102

QSALTQPASVSGSPGQSITISCGSSNIGNNAVNWYQQLPGKAPKLLIYYDDL
 LPSGVSDRFSGSKSGTSAFLAISGLQSEDEADYYCAAWDDSLNGPVFGGGTK
 LTVL

5 [0108] Alternatively, a heavy chain variable domain represented by SEQ ID NO:103 can be paired with a light chain variable domain represented by SEQ ID NO:104 to form an antigen-binding site that can bind to NKG2D, as illustrated in US 7,879,985.

SEQ ID NO:103

10 QVHLQESGPGLVKPSETSLTCTVSDDSISSYYWSWIRQPPGKGLEWIGHISYS
 GSANYNPSLKSRTVTISVDTSKNQFSLKLSSVTAADTAVYYCANWDDAFNIWG
 QGTMVTVSS

SEQ ID NO:104

EIVLTQSPGTLSSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASS
 RATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEIK

15 [0109] In one aspect, the present disclosure provides multi-specific binding proteins that bind to the NKG2D receptor and CD16 receptor on natural killer cells, and the antigen ROR1. Table 2 lists some exemplary sequences of heavy chain variable domains and light chain variable domains that, in combination, can bind to ROR1.

Table 2		
Source	Heavy chain variable domain amino acid sequence	Light chain variable domain amino acid sequence
Patent Publication No. WO2016187220	EVQLVESGGGLVKPGGSLR LSCAASGFTFSDYYMSWIR QAPGKGLEWVSYISDSTNTI YYADSVKGRFTVSRDNPKN SLYLQMISLRAEDTAVYYC ARAVGAGEGFDHWGQGTL VTVSS (SEQ ID NO:105)	AIRMTQSPSSLSASVGDRV ITCQASQDISNYLNWYQQK PGKAPKLLIYDASNLETGVP SRFSGSGSGTDFTFTISSLQP EDIATYYCQQYDNLPLTFG GGTKVEIKR (SEQ ID NO:109) CDR1(SEQ ID NO:110) - QASQDISNYLN

	CDR1 (SEQ ID NO:106) - DYYMS CDR2 (SEQ ID NO:107) - YISDSTNTIYYADSVK CDR3 (SEQ ID NO:108) - AVGAGEGFDH	CDR2 (SEQ ID NO:111) - DASNLET CDR3 (SEQ ID NO:112) - QQYDNLPLT
Patent Publication No. WO2016187220	EVQLVESGGGLVKPGGSLR LSCAASGFTFSDYYMGWVR QAPGKGLKWLSYISDRAHT IYDTDSVKGRFTISRDDAKS SLYLRMNNLRVEDTAVYY CARAVGAGEGFDYWGQGT LTVSS (SEQ ID NO:113) CDR1 (SEQ ID NO:114) - DYYMG CDR2 (SEQ ID NO:115) - YISDRAHTIYDTDSVK CDR3 (SEQ ID NO:116) - AVGAGEGFDY	DIQMTQSPSSLSASVGDRVT ITCQASQDISNYLNWYQQK PGKAPKLLIYDASNLETGVP SRFSGSGSGTDFTFTISSLQP EDIATYYCQQYDNLPLTFG GGTKLEIKR (SEQ ID NO:117) CDR1 (SEQ ID NO:118) - QASQDISNYLN CDR2 (SEQ ID NO:119) - DASNLET CDR3 (SEQ ID NO:120) - QQYDNLPLT
US Patent No. 9,938,350	EVKLVESGGGLVKPGGSLK LSCAASGFTFSSYAMSWVR QIPEKRLEWVVASISRGGTTY YPDSVKGRFTISRDNVRNIL YLQMSSLRSEDTAMYYCGR YDYDGYYAMDYWGQGTS VTVSS (SEQ ID NO:121) CDR1 (SEQ ID NO:122) - GFTFSSYA CDR2 (SEQ ID NO:123) - ISRGGTT CDR3 (SEQ ID NO:124) -	DIKMTQSPSSMYASLGERV TITCKASPDINSYLSWFQQK PGKSPKTLIYRANRLVDGVP SRFSGGGSGQDYSLTINSLE YEDMGIYYCLQYDEFPYTF GGGTKLEMK (SEQ ID NO:125) CDR1 (SEQ ID NO:126) - PDINSY CDR2 (SEQ ID NO:127) - RAN CDR3 (SEQ ID NO:128) - LQYDEFPYT

	YDYDGYYAMDY	
ROR1 antibody (Patent Publication No. WO2016055592; Engmab Ag (Mab ROR1))	QEQLVESGGRLVTPGGSLT LSCKASGFDFSAYYMSWVR QAPGKGLEWIATIYPSSGKT YYATWVNGRFTISSLNAQN TVDLQMNSLTAADRATYFC ARDSYADDGALFNIWGP GT LVTIIS (SEQ ID NO:129) CDR1 (SEQ ID NO:130) – AYYM CDR2 (SEQ ID NO:131) – TIYPSSGKTYYATWVNG CDR3 (SEQ ID NO:132) - DSYADDGALFNI	ELVLTQSPSV SAALGSPAKI TCTLSSAHKTDTIDWYQQL QGEAPRYLMQVQSDGSYT KRPGVPDRFSGSSSGADRY LIIPSVQADDEADYYCGAD YIGGYVFGGGTQLTVTG (SEQ ID NO:133) CDR1 (SEQ ID NO:134) – TLSSAHKTDTID CDR2 (SEQ ID NO:135) – GSYTKRP CDR3 (SEQ ID NO:136) - GADYIGGYV
ROR1 antibody (Patent Publication No. WO2016055592; Engmab Ag (Mab2))	EVKLVESGGGLVKPGGSLK LSCAASGFTFSSYAMSWVR QIPEKRLEWVVASISRGGTTY YPDSVKGRFTISRDNVRNIL YLQMSSLRSEDTAMYYCGR YDYDGYYAMDYWGQGTS VTVSS (SEQ ID NO:137) CDR1 (SEQ ID NO:138) – SYAMS CDR2 (SEQ ID NO:139) - SISRGGTTYPDSVKG CDR3 (SEQ ID NO:140) - YDGYYAMDY	DIKMTQSPSSMYASLGERV TITCKASPDINSYLSWFQQK PGKSPKTLIYRANRLVDGVP SRFSGGGSGQDYSLTINSLE YEDMGIYYCLQYDEFPYTF GGGTKLEMK (SEQ ID NO:141) CDR1 (SEQ ID NO:142) – ITCKASPDINSYLS CDR2 (SEQ ID NO:143) - RANRLVD CDR3 (SEQ ID NO:144) - LQYDEFPY

ROR1 antibody (Patent Publication No. WO2016055592; Engmab Ag (Mab3))	QSLEESGGRLVTPGTPLTLT CTVSGIDLNSHWMSWVRQ APGKGLEWIGIIAASGSTYY ANWAKGRFTISKTTVDL RIASPTTEDTATYFCARDYGDYRLVTFNIWGPGLVTVS S (SEQ ID NO:145) CDR1 (SEQ ID NO:146) - SHWMS CDR2 (SEQ ID NO:147) - IIAASGSTYYANWAKG CDR3 (SEQ ID NO:148) - DYRLVTFNI	ELVMTQTPSSVSAAVGGTV TINCQASQSISYLAWYQQ KPGQPPKLLIYYASNLASGV PSRFSGSGSGTEYTLTISGV QREDAATYYCLGSLNSNDN VFGGGTELEIL (SEQ ID NO:149) CDR1 (SEQ ID NO:150) - QASQSISYLA CDR2 (SEQ ID NO:151) - YASNLAS CDR3 (SEQ ID NO:152) - LGSLNSNDNV
ROR1 antibody (Patent Publication No. WO2016055592; Engmab Ag (Mab4))	QSVKESEGDLVTPAGNLTL TCTASGSDINDYPISWVRQA PGKGLEWIGFINSGGSTWY ASWVKGRFTISRTSTTVDLK MTSLTTDDTATYFCARGYS TYYCDFNIWGPGLVTIIS (SEQ ID NO:153) CDR1 (SEQ ID NO:154) - DYPIS CDR2 (SEQ ID NO:155) - FINSGGSTWYASWVKGCDR 3 (SEQ ID NO:156) - GYSTYYCDFNI	ELVMTQTPSSTSGAVGGTV TINCQASQSIDSNLAWFQQK PGQPPTLIYRASNLASGVP SRFSGSRSGTEYTLTISGVQ REDAATYYCLGGVGNVSY RTSFGGGTEVVVK (SEQ ID NO:157) CDR1 (SEQ ID NO:158) - QASQSIDSNL CDR2 (SEQ ID NO:159) - RASN CDR3 (SEQ ID NO:160) - LGGVGNVSYRTS

[0110] Alternatively, novel antigen-binding sites that can bind to ROR1 can be identified by screening for binding to the amino acid sequence defined by SEQ ID NO:161.

SEQ ID NO:161

MHRPRRRGTRPPLLALLAALLAARGAAAQETELSVSAELVPTSSWNISSELNKDSY
 LTLDEPMNNITSLGQTAELHCKVSGNPPPTIRWFKNDAAPVVQEPRRLSFRSTIYGSR
 LRIRNLDTTDTGYFQCVATNGKEVVSSTGVLFVKGPPPTASPGYSDEYEEDGFCQP
 5 YRGIACARFIGNRTVYMESLHMHQGEIENQITAAFTMIGTSSHLSDKCSQFAIPSLCHY
 AFPYCDETSSVPKPRDLCRDECEILENVLCQTEYIFARSNPMILMRLKLPNCEDLPQPE
 SPEAANCIRIGIPMADPINKNHKCYNSTGVDYRGTVSVTKSGRQCQPWNSQYPHTHT
 FTALRFPELNGGHSYCRNPGNQKEAPWCFTLDENFKSDLCDIPACDSKDSKEKNKM
 EILYILVPSVAIPLAIALLFFFICVCRNNQKSSAPVQRQPKHVRGQNVEMSMLNAYK
 10 PKSKAKELPLSAVRFMEELGECAFGKIYKGHLYLPGMDHAQLVAIKTLKDYNPQQ
 WTEFQQEASLMAELHHPNIVCLLGAVTQECPVCMLFEYINQGDLHEFLIMRSPHSDV
 GCSSDEDGTVKSSLDHGDFLHIAIQIAAGMEYLSSHFFVHKDLAARNILIGEQLHVKIS
 DLGLSREIYSADYYRVQSKSLLPIRWMPPEAIMYGKFSSSDIWSFGVVLWEIFSGL
 QPYYGFSNQEVIEMVRKRQLLPCSEDCPPRMYSLMTECWNEIPSRRPRFKDIHVRLRS
 15 WEGLSSHTSSTPSGGNATTQTTSLASPVSNLNSPRYPNMFPSQGITPQGQIAGFIG
 PPIPQNQRFIPINGYPIPPGYAAFPAAHYQPTGPPRVIQHCPPPKSRSPSSASGSTSTGHV
 TSLPSSGSNQEANIPLPHMSIPNHPGMGITVFGNKSQKPYKIDSKQASLLGDANIH
 GHTESMISAEI

[0111] In one aspect, the present disclosure provides multi-specific binding proteins that
 20 bind to the NKG2D receptor and CD16 receptor on natural killer cells, and the antigen
 ROR2. Table 3 lists some exemplary peptide sequences of heavy chain variable domains and
 light chain variable domains that, in combination, can bind to ROR2.

Table 3		
Source	Heavy chain variable domain amino acid sequence	Light chain variable domain amino acid sequence
Patent Publication No. WO2016142768	EVQLVQSGAEVKKPGASVKV SCKASGYTFTDYYIHWVRQA PGQGLEWMGWMNPNSGNSV SAQKFQGRVTMTRDTSINTA YMELOSSLTSDDTAVYYCARN SEWHPWGYDYWGQQGTLVT VSS (SEQ ID NO:162)	SSELTQDPAVSVALGQTVRI TCQGDSLRSYYASWYQQKP GQAPVLVIYGKNNRPSGIPD RFSGSSSGNTASLTITGAQA EDEADYYCNSRDSSGNHLV FGGGTKLTVLG (SEQ ID NO:166)

	CDR1 (SEQ ID NO:163) - GYTFTDYY CDR2 (SEQ ID NO:164) - MNPNSGNS CDR3 (SEQ ID NO:165) - ARNSEWHPWGYYDY	CDR1(SEQ ID NO:167) - SLRSYY CDR2 (SEQ ID NO:168) - GKN CDR3 (SEQ ID NO:169) - NSRDSSGNHLV
Patent Publication No. WO2016142768	EVQLVQSGAEVKKPGESLKIS CQGSGYRFSKYWIGWVRQM PGKGLEWMGIIYPGDSDTRYS PSFQGQVTISADKSISTAYLQ WSSLKASDTAMYYCARSFSS FIYDYWGQGTLTVSS (SEQ ID NO:170)	ETTLTQSPGTLSVSPGERAT LSCRASQSVSSNLAWYQQK RGQAPRLLIYGASTRATGIP VRFSGSGSGTEFTLTISRLGP EDFAVYYCQQYGRSPLTFG GGTKVDIKR (SEQ ID NO:174)
	CDR1 (SEQ ID NO:171) - GYRFSKYW CDR2 (SEQ ID NO:172) - IYPGDSDT CDR3 (SEQ ID NO:173) - ARSFSSFIYDY	CDR1 (SEQ ID NO:175) - QSVSSN CDR2 (SEQ ID NO:176) - GAS CDR3 (SEQ ID NO:177) - QQYGRSPLT

[0112] Alternatively, novel antigen-binding sites that can bind to ROR2 can be identified by screening for binding to the amino acid sequence defined by SEQ ID NO:178.

SEQ ID NO:178

5 MARGSALPRRPLLCIPAVWAAAALLSVSRTSGEVEVLDPNDPLGPLDGQDGPIPTL
KGYFLNFLEPVNNITIVQGQTAILHCKVAGNPPPVRWLKNADPVVQEPRRIIRKTE
YGSRLRIQDLDTTDTGYYQCVATNGMKTITATGVLFVRLGPTHSPNHFQDDYHED
GFCQPYRGIACARFIGNRTIYVDSLQMGEIENRITAFTMIGTSTHLSQCSQFAIPSF
CHFVFPLCDARSRTPKPRELCRDECEVLESQDLRQEYTIARSNPLILMRLQLPKCEALP
10 MPESPDAANCMRIGIPAERLGRYHQCYNGSGMDYRGTASTTKSGHQCQPWALQHP
HSHHLSSTDFPELGGGHAYCRNPGGQMEGPWCFTQNKNVRMELCDVPSCSPRDSSK

MGILYILVPSIAIPLVIACLFLVCMCRNKQKASASTPQRQLMASPSQDMEMPLINQ
HKQAKLKEISLSAVRFMEELGEDRGKVKYKGHLFGPAPGEQTQAVAIKTLKDKAEG
PLREEFRHEAMLRARLQHPNVVCLGVVTKDQPLSMIFSYCSHSDLHEFLVMRSPHS
DVGSTDRTVKSALPPDFVHLVAQIAAGMEYLSSHHVHKDLATRNVLVYDKL
5 NVKISDLGLFREVYAADYYKLLGNSLLPIRWMAPEAIMYGKFSIDSDIWSYGVVLWE
VFSYGLQPYCGYSNQDVVEMIRNRQVLPCPDDCPAWVYALMIECWNEFPSRRPRFK
DIHSRLRAWGNLSNYNSSAQTSGASNTTQTSSLSTSPVSNVSNARYVGPKQKAPPFP
QPQFIPMKQIRPMVPPPQLYVPVNGYQPVPAYGAYLPNFYPVQIPMQMAPQQVPPQ
MVPKPSSHSGSGSTSTGYVTTAPSNTSMADRAALLSEGADDTQNAPEGAQSTVQ
10 EAEEEEEGSVPETELLGDCDTLQVDEAQVQLEA

[0113] Within the Fc domain, CD16 binding is mediated by the hinge region and the CH2 domain. For example, within human IgG1, the interaction with CD16 is primarily focused on amino acid residues Asp 265 – Glu 269, Asn 297 – Thr 299, Ala 327 – Ile 332, Leu 234 – Ser 239, and carbohydrate residue N-acetyl-D-glucosamine in the CH2 domain (see,

15 Sondermann *et al.*, *Nature*, 406 (6793):267-273). Based on the known domains, mutations can be selected to enhance or reduce the binding affinity to CD16, such as by using phage-displayed libraries or yeast surface-displayed cDNA libraries, or can be designed based on the known three-dimensional structure of the interaction.

[0114] The assembly of heterodimeric antibody heavy chains can be accomplished by expressing two different antibody heavy chain sequences in the same cell, which may lead to the assembly of homodimers of each antibody heavy chain as well as assembly of heterodimers. Promoting the preferential assembly of heterodimers can be accomplished by incorporating different mutations in the CH3 domain of each antibody heavy chain constant region as shown in US13/494870, US16/028850, US11/533709, US12/875015,

25 US13/289934, US14/773418, US12/811207, US13/866756, US14/647480, and US14/830336. For example, mutations can be made in the CH3 domain based on human IgG1 and incorporating distinct pairs of amino acid substitutions within a first polypeptide and a second polypeptide that allow these two chains to selectively heterodimerize with each other. The positions of amino acid substitutions illustrated below are all numbered according 30 to the EU index as in Kabat.

[0115] In one scenario, an amino acid substitution in the first polypeptide replaces the original amino acid with a larger amino acid, selected from arginine (R), phenylalanine (F), tyrosine (Y) or tryptophan (W), and at least one amino acid substitution in the second polypeptide replaces the original amino acid(s) with a smaller amino acid(s), chosen from

alanine (A), serine (S), threonine (T), or valine (V), such that the larger amino acid substitution (a protuberance) fits into the surface of the smaller amino acid substitutions (a cavity). For example, one polypeptide can incorporate a T366W substitution, and the other can incorporate three substitutions including T366S, L368A, and Y407V.

5 [0116] An antibody heavy chain variable domain of the invention can optionally be coupled to an amino acid sequence at least 90% identical to an antibody constant region, such as an IgG constant region including hinge, CH2 and CH3 domains with or without CH1 domain. In some embodiments, the amino acid sequence of the constant region is at least 90% identical to a human antibody constant region, such as an human IgG1 constant region, 10 an IgG2 constant region, IgG3 constant region, or IgG4 constant region. In some other embodiments, the amino acid sequence of the constant region is at least 90% identical to an antibody constant region from another mammal, such as rabbit, dog, cat, mouse, or horse. One or more mutations can be incorporated into the constant region as compared to human IgG1 constant region, for example at Q347, Y349, L351, S354, E356, E357, K360, Q362, 15 S364, T366, L368, K370, N390, K392, T394, D399, S400, D401, F405, Y407, K409, T411 and/or K439. Exemplary substitutions include, for example, Q347E, Q347R, Y349S, Y349K, Y349T, Y349D, Y349E, Y349C, T350V, L351K, L351D, L351Y, S354C, E356K, E357Q, E357L, E357W, K360E, K360W, Q362E, S364K, S364E, S364H, S364D, T366V, T366I, T366L, T366M, T366K, T366W, T366S, L368E, L368A, L368D, K370S, N390D, 20 N390E, K392L, K392M, K392V, K392F, K392D, K392E, T394F, T394W, D399R, D399K, D399V, S400K, S400R, D401K, F405A, F405T, Y407A, Y407I, Y407V, K409F, K409W, K409D, T411D, T411E, K439D, and K439E.

25 [0117] In certain embodiments, mutations that can be incorporated into the CH1 of a human IgG1 constant region may be at amino acid V125, F126, P127, T135, T139, A140, F170, P171, and/or V173. In certain embodiments, mutations that can be incorporated into the C_κ of a human IgG1 constant region may be at amino acid E123, F116, S176, V163, S174, and/or T164.

[0118] Alternatively, amino acid substitutions could be selected from the following sets of substitutions shown in Table 4.

Table 4		
	First Polypeptide	Second Polypeptide
Set 1	S364E/F405A	Y349K/T394F
Set 2	S364H/D401K	Y349T/T411E

Set 3	S364H/T394F	Y349T/F405A
Set 4	S364E/T394F	Y349K/F405A
Set 5	S364E/T411E	Y349K/D401K
Set 6	S364D/T394F	Y349K/F405A
Set 7	S364H/F405A	Y349T/T394F
Set 8	S364K/E357Q	L368D/K370S
Set 9	L368D/K370S	S364K
Set 10	L368E/K370S	S364K
Set 11	K360E/Q362E	D401K
Set 12	L368D/K370S	S364K/E357L
Set 13	K370S	S364K/E357Q
Set 14	F405L	K409R
Set 15	K409R	F405L

[0119] Alternatively, amino acid substitutions could be selected from the following sets of substitutions shown in Table 5.

Table 5		
	First Polypeptide	Second Polypeptide
Set 1	K409W	D399V/F405T
Set 2	Y349S	E357W
Set 3	K360E	Q347R
Set 4	K360E/K409W	Q347R/D399V/F405T
Set 5	Q347E/K360E/K409W	Q347R/D399V/F405T
Set 6	Y349S/K409W	E357W/D399V/F405T

[0120] Alternatively, amino acid substitutions could be selected from the following set of 10 substitutions shown in Table 6.

Table 6		
	First Polypeptide	Second Polypeptide
Set 1	T366K/L351K	L351D/L368E
Set 2	T366K/L351K	L351D/Y349E
Set 3	T366K/L351K	L351D/Y349D

Set 4	T366K/L351K	L351D/Y349E/L368E
Set 5	T366K/L351K	L351D/Y349D/L368E
Set 6	E356K/D399K	K392D/K409D

5

[0121] Alternatively, at least one amino acid substitution in each polypeptide chain could be selected from Table 7.

Table 7	
First Polypeptide	Second Polypeptide
L351Y, D399R, D399K, S400K, S400R, Y407A, Y407I, Y407V	T366V, T366I, T366L, T366M, N390D, N390E, K392L, 10 K392M, K392V, K392F K392D, K392E, K409F, K409W, T411D and T411E

[0122] Alternatively, at least one amino acid substitutions could be selected from the following set of substitutions in Table 8, where the position(s) indicated in the First 15 Polypeptide column is replaced by any known negatively-charged amino acid, and the position(s) indicated in the Second Polypeptide Column is replaced by any known positively-charged amino acid.

Table 8	
First Polypeptide	Second Polypeptide 20
K392, K370, K409, or K439	D399, E356, or E357

[0123] Alternatively, at least one amino acid substitutions could be selected from the following set of in Table 9, where the position(s) indicated in the First Polypeptide column is replaced by any known positively-charged amino acid, and the position(s) indicated in the 25 Second Polypeptide Column is replaced by any known negatively-charged amino acid.

Table 9	
First Polypeptide	Second Polypeptide
D399, E356, or E357	K409, K439, K370, or K392

[0124] Alternatively, amino acid substitutions could be selected from the following set in Table 10.

Table 10	
First Polypeptide	Second Polypeptide 5
T350V, L351Y, F405A, and Y407V	T350V, T366L, K392L, and T394W

[0125] Alternatively, or in addition, the structural stability of a hetero-multimeric protein may be increased by introducing S354C on either of the first or second polypeptide chain, and Y349C on the opposing polypeptide chain, which forms an artificial disulfide bridge 10 within the interface of the two polypeptides.

[0126] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at position T366, and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at 15 one or more positions selected from the group consisting of T366, L368 and Y407.

[0127] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of T366, L368 and Y407, and wherein the amino acid sequence of the other polypeptide chain of the antibody constant 20 region differs from the amino acid sequence of an IgG1 constant region at position T366.

[0128] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of E357, K360, Q362, S364, L368, K370, T394, D401, F405, and T411 and wherein the amino acid sequence of the other 25 polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of Y349, E357, S364, L368, K370, T394, D401, F405 and T411.

[0129] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at 30 one or more positions selected from the group consisting of Y349, E357, S364, L368, K370, T394, D401, F405 and T411 and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1

constant region at one or more positions selected from the group consisting of E357, K360, Q362, S364, L368, K370, T394, D401, F405, and T411.

[0130] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of L351, D399, S400 and Y407 and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of T366, N390, K392, K409 and T411.

[0131] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of T366, N390, K392, K409 and T411 and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of L351, D399, S400 and Y407.

[0132] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of Q347, Y349, K360, and K409, and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of Q347, E357, D399 and F405.

[0133] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of Q347, E357, D399 and F405, and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of Y349, K360, Q347 and K409.

[0134] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of K370, K392, K409 and K439, and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of D356, E357 and D399.

[0135] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at

one or more positions selected from the group consisting of D356, E357 and D399, and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of K370, K392, K409 and K439.

5 [0136] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of L351, E356, T366 and D399, and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of Y349, L351, L368, K392 and K409.

10 [0137] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of Y349, L351, L368, K392 and K409, and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region at one or more positions selected from the group consisting of L351, E356, T366 and D399.

15 [0138] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by an S354C substitution and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by a Y349C substitution.

20 [0139] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by a Y349C substitution and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by an S354C substitution.

25 [0140] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by K360E and K409W substitutions and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by O347R, D399V and F405T substitutions.

30 [0141] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by O347R, D399V and F405T substitutions and wherein the amino acid sequence of the other

polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by K360E and K409W substitutions.

[0142] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by 5 a T366W substitutions and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by T366S, T368A, and Y407V substitutions.

[0143] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by 10 T366S, T368A, and Y407V substitutions and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by a T366W substitution.

[0144] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by 15 T350V, L351Y, F405A, and Y407V substitutions and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by T350V, T366L, K392L, and T394W substitutions.

[0145] In some embodiments, the amino acid sequence of one polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by 20 T350V, T366L, K392L, and T394W substitutions and wherein the amino acid sequence of the other polypeptide chain of the antibody constant region differs from the amino acid sequence of an IgG1 constant region by T350V, L351Y, F405A, and Y407V substitutions.

[0146] The multi-specific proteins described above can be made using recombinant DNA technology well known to a skilled person in the art. For example, a first nucleic acid 25 sequence encoding the first immunoglobulin heavy chain can be cloned into a first expression vector; a second nucleic acid sequence encoding the second immunoglobulin heavy chain can be cloned into a second expression vector; a third nucleic acid sequence encoding the immunoglobulin light chain can be cloned into a third expression vector; and the first, second, and third expression vectors can be stably transfected together into host cells to 30 produce the multimeric proteins.

[0147] To achieve the highest yield of the multi-specific protein, different ratios of the first, second, and third expression vector can be explored to determine the optimal ratio for transfection into the host cells. After transfection, single clones can be isolated for cell bank

generation using methods known in the art, such as limited dilution, ELISA, FACS, microscopy, or Clonepix.

[0148] Clones can be cultured under conditions suitable for bio-reactor scale-up and maintained expression of the multi-specific protein. The multispecific proteins can be isolated and purified using methods known in the art including centrifugation, depth filtration, cell lysis, homogenization, freeze-thawing, affinity purification, gel filtration, ion exchange chromatography, hydrophobic interaction exchange chromatography, and mixed-mode chromatography.

II. CHARACTERISTICS OF THE MULTI-SPECIFIC PROTEINS

[0149] The multi-specific proteins described herein include an NKG2D-binding site, a CD16-binding site, and a binding site for ROR1 or ROR2. In some embodiments, the multi-specific proteins bind to cells expressing NKG2D and/or CD16, such as NK cells, and tumor cells expressing any one of the above antigens simultaneously. Binding of the multi-specific proteins to NK cells can enhance the activity of the NK cells toward destruction of the cancer cells.

[0150] In some embodiments, the multi-specific proteins bind to the antigen ROR1 or ROR2 with a similar affinity to that of a monoclonal antibody having the same respective antigen-binding site. In some embodiments, the multi-specific proteins are more effective in killing the tumor cells expressing the antigen(s) than the corresponding respective monoclonal antibodies.

[0151] In certain embodiments, the multi-specific proteins described herein, which include an NKG2D-binding site and a binding site for ROR1 or ROR2, activate primary human NK cells when co-culturing with cells expressing ROR1 or ROR2. NK cell activation is marked by the increase in CD107a degranulation and IFN- γ cytokine production.

[0152] Furthermore, compared to a corresponding respective monoclonal antibody, the multi-specific proteins may show superior activation of human NK cells in the presence of cells expressing the antigen ROR1 or ROR2.

[0153] In certain embodiments, the multi-specific proteins described herein, which include an NKG2D-binding site and a binding site for ROR1 or ROR2, enhance the activity of rested and IL-2-activated human NK cells co-culturing with cells expressing ROR1 or ROR2.

[0153] In certain embodiments, compared to a corresponding monoclonal antibody that binds to ROR1 or ROR2, the multi-specific proteins offer an advantage in targeting tumor cells that express medium and low levels of ROR1 or ROR2.

III. THERAPEUTIC APPLICATIONS

5 **[0154]** The invention provides methods for treating cancer using a multi-specific binding protein described herein and/or a pharmaceutical composition described herein. The methods may be used to treat a variety of cancers expressing ROR1 or ROR2. Exemplary cancers to be treated by the ROR1-targeting multi-specific binding proteins may be malignant melanoma, prostate cancer, chronic lymphoblastic leukemia, hematologic malignancies, 10 ovarian cancer, triple-negative breast cancer, non-small cell lung cancer or colorectal cancer. Exemplary cancers to be treated by the ROR2-targeting multi-specific binding proteins may be osteosarcoma, renal cell carcinoma, melanoma, colon cancer, squamous cell carcinoma of the head and neck, breast cancer, bladder cancer, cervical cancer, lymphoma, mesothelioma, pancreatic cancer, ovarian cancer, lung cancer, uterine cancer, sarcoma, or prostate cancer.

15 **[0155]** In some other embodiments, the cancer to be treat include brain cancer, rectal cancer, and uterine cancer. In yet other embodiments, the cancer is a squamous cell carcinoma, adenocarcinoma, small cell carcinoma, melanoma, neuroblastoma, sarcoma (e.g., an angiosarcoma or chondrosarcoma), larynx cancer, parotid cancer, biliary tract cancer, thyroid cancer, acral lentiginous melanoma, actinic keratoses, acute lymphocytic leukemia, 20 acute myeloid leukemia, adenoid cystic carcinoma, adenomas, adenosarcoma, adenosquamous carcinoma, anal canal cancer, anal cancer, anorectum cancer, astrocytic tumor, bartholin gland carcinoma, basal cell carcinoma, biliary cancer, bone cancer, bone marrow cancer, bronchial cancer, bronchial gland carcinoma, carcinoid, cholangiocarcinoma, chondrosarcoma, choroid plexus papilloma/carcinoma, chronic lymphocytic leukemia, chronic 25 myeloid leukemia, clear cell carcinoma, connective tissue cancer, cystadenoma, digestive system cancer, duodenum cancer, endocrine system cancer, endodermal sinus tumor, endometrial hyperplasia, endometrial stromal sarcoma, endometrioid adenocarcinoma, endothelial cell cancer, ependymal cancer, epithelial cell cancer, Ewing's sarcoma, eye and orbit cancer, female genital cancer, focal nodular hyperplasia, gallbladder cancer, gastric 30 antrum cancer, gastric fundus cancer, gastrinoma, glioblastoma, glucagonoma, heart cancer, hemangiblastomas, hemangioendothelioma, hemangiomas, hepatic adenoma, hepatic adenomatosis, hepatobiliary cancer, hepatocellular carcinoma, Hodgkin's disease, ileum

cancer, insulinoma, intraepithelial neoplasia, interepithelial squamous cell neoplasia, intrahepatic bile duct cancer, invasive squamous cell carcinoma, jejunum cancer, joint cancer, Kaposi's sarcoma, pelvic cancer, large cell carcinoma, large intestine cancer, leiomyosarcoma, lentigo maligna melanomas, lymphoma, male genital cancer, malignant

5 melanoma, malignant mesothelial tumors, medulloblastoma, medulloepithelioma, meningal cancer, mesothelial cancer, metastatic carcinoma, mouth cancer, mucoepidermoid carcinoma, multiple myeloma, muscle cancer, nasal tract cancer, nervous system cancer, neuroepithelial adenocarcinoma nodular melanoma, non-epithelial skin cancer, non-Hodgkin's lymphoma, oat cell carcinoma, oligodendroglial cancer, oral cavity cancer, osteosarcoma, papillary 10 serous adenocarcinoma, penile cancer, pharynx cancer, pituitary tumors, plasmacytoma, pseudosarcoma, pulmonary blastoma, rectal cancer, renal cell carcinoma, respiratory system cancer, retinoblastoma, rhabdomyosarcoma, sarcoma, serous carcinoma, sinus cancer, skin cancer, small cell carcinoma, small intestine cancer, smooth muscle cancer, soft tissue cancer, somatostatin-secreting tumor, spine cancer, squamous cell carcinoma, striated muscle cancer, 15 submesothelial cancer, superficial spreading melanoma, T cell leukemia, tongue cancer, undifferentiated carcinoma, ureter cancer, urethra cancer, urinary bladder cancer, urinary system cancer, uterine cervix cancer, uterine corpus cancer, uveal melanoma, vaginal cancer, verrucous carcinoma, VIPoma, vulva cancer, well differentiated carcinoma, or Wilms tumor.

[0156] In certain other embodiments, the cancer to be treated is non-Hodgkin's

20 lymphoma, such as a B-cell lymphoma or a T-cell lymphoma. In certain embodiments, the non-Hodgkin's lymphoma is a B-cell lymphoma, such as a diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, follicular lymphoma, small lymphocytic lymphoma, mantle cell lymphoma, marginal zone B-cell lymphoma, extranodal marginal zone B-cell lymphoma, nodal marginal zone B-cell lymphoma, splenic marginal zone B-cell lymphoma, 25 Burkitt lymphoma, lymphoplasmacytic lymphoma, hairy cell leukemia, or primary central nervous system (CNS) lymphoma. In certain other embodiments, the non-Hodgkin's lymphoma is a T-cell lymphoma, such as a precursor T-lymphoblastic lymphoma, peripheral T-cell lymphoma, cutaneous T-cell lymphoma, angioimmunoblastic T-cell lymphoma, extranodal natural killer/T-cell lymphoma, enteropathy type T-cell lymphoma, subcutaneous 30 panniculitis-like T-cell lymphoma, anaplastic large cell lymphoma, or peripheral T-cell lymphoma.

IV. COMBINATION THERAPY

[0157] Another aspect of the invention provides for combination therapy. A multi-specific binding protein described herein can be used in combination with additional therapeutic agents to treat the cancer.

5 **[0158]** Exemplary therapeutic agents that may be used as part of a combination therapy in treating cancer, include, for example, radiation, mitomycin, tretinoin, ribomustin, gemcitabine, vincristine, etoposide, cladribine, mitobronitol, methotrexate, doxorubicin, carboquone, pentostatin, nitrocrine, zinostatin, cetrorelix, letrozole, raltitrexed, daunorubicin, fadrozole, fotemustine, thymalfasin, sobuzoxane, nedaplatin, cytarabine, bicalutamide, 10 vinorelbine, vesnarinone, aminoglutethimide, amsacrine, proglumide, elliptinium acetate, ketanserin, doxifluridine, etretinate, isotretinoin, streptozocin, nimustine, vindesine, flutamide, drogenil, butocin, carmofur, razoxane, sizofilan, carboplatin, mitolactol, tegafur, ifosfamide, prednimustine, picibanil, levamisole, teniposide, imrosulfan, enocitabine, lisuride, oxymetholone, tamoxifen, progesterone, mepitiostane, epitiostanol, formestane, 15 interferon-alpha, interferon-2 alpha, interferon-beta, interferon-gamma, colony stimulating factor-1, colony stimulating factor-2, denileukin diftitox, interleukin-2, luteinizing hormone releasing factor and variations of the aforementioned agents that may exhibit differential binding to its cognate receptor, and increased or decreased serum half-life.

20 **[0159]** An additional class of agents that may be used as part of a combination therapy in treating cancer is immune checkpoint inhibitors. Exemplary immune checkpoint inhibitors include agents that inhibit one or more of (i) cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), (ii) programmed cell death protein 1 (PD1), (iii) PDL1, (iv) LAG3, (v) B7-H3, (vi) B7-H4, and (vii) TIM3. The CTLA4 inhibitor ipilimumab has been approved by the United States Food and Drug Administration for treating melanoma.

25 **[0160]** Yet other agents that may be used as part of a combination therapy in treating cancer are monoclonal antibody agents that target non-checkpoint targets (*e.g.*, herceptin) and non-cytotoxic agents (*e.g.*, tyrosine-kinase inhibitors).

30 **[0161]** Yet other categories of anti-cancer agents include, for example: (i) an inhibitor selected from an ALK Inhibitor, an ATR Inhibitor, an A2A Antagonist, a Base Excision Repair Inhibitor, a Bcr-Abl Tyrosine Kinase Inhibitor, a Bruton's Tyrosine Kinase Inhibitor, a CDC7 Inhibitor, a CHK1 Inhibitor, a Cyclin-Dependent Kinase Inhibitor, a DNA-PK Inhibitor, an Inhibitor of both DNA-PK and mTOR, a DNMT1 Inhibitor, a DNMT1 Inhibitor plus 2-chloro-deoxyadenosine, an HDAC Inhibitor, a Hedgehog Signaling Pathway Inhibitor,

an IDO Inhibitor, a JAK Inhibitor, a mTOR Inhibitor, a MEK Inhibitor, a MELK Inhibitor, a MTH1 Inhibitor, a PARP Inhibitor, a Phosphoinositide 3-Kinase Inhibitor, an Inhibitor of both PARP1 and DHODH, a Proteasome Inhibitor, a Topoisomerase-II Inhibitor, a Tyrosine Kinase Inhibitor, a VEGFR Inhibitor, and a WEE1 Inhibitor; (ii) an agonist of OX40, CD137, 5 CD40, GITR, CD27, HVEM, TNFRSF25, or ICOS; and (iii) a cytokine selected from IL-12, IL-15, GM-CSF, and G-CSF.

[0162] Proteins of the invention can also be used as an adjunct to surgical removal of the primary lesion.

[0163] The amount of multi-specific binding protein and additional therapeutic agent and 10 the relative timing of administration may be selected in order to achieve a desired combined therapeutic effect. For example, when administering a combination therapy to a patient in need of such administration, the therapeutic agents in the combination, or a pharmaceutical composition or compositions comprising the therapeutic agents, may be administered in any order such as, for example, sequentially, concurrently, together, simultaneously and the like. 15 Further, for example, a multi-specific binding protein may be administered during a time when the additional therapeutic agent(s) exerts its prophylactic or therapeutic effect, or *vice versa*.

V. PHARMACEUTICAL COMPOSITIONS

[0164] The present disclosure also features pharmaceutical compositions that contain a 20 therapeutically effective amount of a protein described herein. The composition can be formulated for use in a variety of drug delivery systems. One or more physiologically acceptable excipients or carriers can also be included in the composition for proper formulation. Suitable formulations for use in the present disclosure are found in Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, Pa., 17th ed., 1985. For a 25 brief review of methods for drug delivery, *see, e.g.*, Langer (Science 249:1527-1533, 1990).

[0165] The intravenous drug delivery formulation of the present disclosure may be 30 contained in a bag, a pen, or a syringe. In certain embodiments, the bag may be connected to a channel comprising a tube and/or a needle. In certain embodiments, the formulation may be a lyophilized formulation or a liquid formulation. In certain embodiments, the formulation may freeze-dried (lyophilized) and contained in about 12-60 vials. In certain embodiments, the formulation may be 35 freeze-dried and 45 mg of the freeze-dried formulation may be contained in one vial. In certain embodiments, the about 40 mg – about 100 mg of freeze-dried formulation may be contained in one vial. In certain embodiments, freeze dried

formulation from 12, 27, or 45 vials are combined to obtain a therapeutic dose of the protein in the intravenous drug formulation. In certain embodiments, the formulation may be a liquid formulation and stored as about 250 mg/vial to about 1000 mg/vial. In certain embodiments, the formulation may be a liquid formulation and stored as about 600 mg/vial.

5 In certain embodiments, the formulation may be a liquid formulation and stored as about 250 mg/vial.

[0166] This present disclosure could exist in a liquid aqueous pharmaceutical formulation including a therapeutically effective amount of the protein in a buffered solution forming a formulation.

10 **[0167]** These compositions may be sterilized by conventional sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as-is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration. The pH of the preparations typically will be between 3 and 11, more preferably between 5 and 9 or between 6 and 8, and most preferably between 7 and 8, such as 15 7 to 7.5. The resulting compositions in solid form may be packaged in multiple single dose units, each containing a fixed amount of the above-mentioned agent or agents. The composition in solid form can also be packaged in a container for a flexible quantity.

[0168] In certain embodiments, the present disclosure provides a formulation with an extended shelf life including the protein of the present disclosure, in combination with 20 mannitol, citric acid monohydrate, sodium citrate, disodium phosphate dihydrate, sodium dihydrogen phosphate dihydrate, sodium chloride, polysorbate 80, water, and sodium hydroxide.

[0169] In certain embodiments, an aqueous formulation is prepared including the protein of the present disclosure in a pH-buffered solution. The buffer of this invention may have a 25 pH ranging from about 4 to about 8, *e.g.*, from about 4.5 to about 6.0, or from about 4.8 to about 5.5, or may have a pH of about 5.0 to about 5.2. Ranges intermediate to the above recited pH's are also intended to be part of this disclosure. For example, ranges of values using a combination of any of the above recited values as upper and/or lower limits are intended to be included. Examples of buffers that will control the pH within this range 30 include acetate (*e.g.*, sodium acetate), succinate (such as sodium succinate), gluconate, histidine, citrate and other organic acid buffers.

[0170] In certain embodiments, the formulation includes a buffer system which contains citrate and phosphate to maintain the pH in a range of about 4 to about 8. In certain embodiments the pH range may be from about 4.5 to about 6.0, or from about pH 4.8 to about

5.5, or in a pH range of about 5.0 to about 5.2. In certain embodiments, the buffer system includes citric acid monohydrate, sodium citrate, disodium phosphate dihydrate, and/or sodium dihydrogen phosphate dihydrate. In certain embodiments, the buffer system includes about 1.3 mg/ml of citric acid (e.g., 1.305 mg/ml), about 0.3 mg/ml of sodium citrate (e.g., 5 0.305 mg/ml), about 1.5 mg/ml of disodium phosphate dihydrate (e.g., 1.53 mg/ml), about 0.9 mg/ml of sodium dihydrogen phosphate dihydrate (e.g., 0.86), and about 6.2 mg/ml of sodium chloride (e.g., 6.165 mg/ml). In certain embodiments, the buffer system includes 1- 1.5 mg/ml of citric acid, 0.25 to 0.5 mg/ml of sodium citrate, 1.25 to 1.75 mg/ml of disodium 10 phosphate dihydrate, 0.7 to 1.1 mg/ml of sodium dihydrogen phosphate dihydrate, and 6.0 to 6.4 mg/ml of sodium chloride. In certain embodiments, the pH of the formulation is adjusted with sodium hydroxide.

[0171] A polyol, which acts as a tonicifier and may stabilize the antibody, may also be included in the formulation. The polyol is added to the formulation in an amount which may vary with respect to the desired isotonicity of the formulation. In certain embodiments, the 15 aqueous formulation may be isotonic. The amount of polyol added may also be altered with respect to the molecular weight of the polyol. For example, a lower amount of a monosaccharide (e.g., mannitol) may be added, compared to a disaccharide (such as trehalose). In certain embodiments, the polyol which may be used in the formulation as a tonicity agent is mannitol. In certain embodiments, the mannitol concentration may be about 20 5 to about 20 mg/ml. In certain embodiments, the concentration of mannitol may be about 7.5 to 15 mg/ml. In certain embodiments, the concentration of mannitol may be about 10-14 mg/ml. In certain embodiments, the concentration of mannitol may be about 12 mg/ml. In certain embodiments, the polyol sorbitol may be included in the formulation.

[0172] A detergent or surfactant may also be added to the formulation. Exemplary 25 detergents include nonionic detergents such as polysorbates (e.g., polysorbates 20, 80 etc.) or poloxamers (e.g., poloxamer 188). The amount of detergent added is such that it reduces aggregation of the formulated antibody and/or minimizes the formation of particulates in the formulation and/or reduces adsorption. In certain embodiments, the formulation may include a surfactant which is a polysorbate. In certain embodiments, the formulation may contain the 30 detergent polysorbate 80 or Tween 80. Tween 80 is a term used to describe polyoxyethylene (20) sorbitanmonooleate (see Fiedler, Lexikon der Hfsstoffe, Editio Cantor Verlag Aulendorf, 4th edi., 1996). In certain embodiments, the formulation may contain between about 0.1 mg/mL and about 10 mg/mL of polysorbate 80, or between about 0.5 mg/mL and

about 5 mg/mL. In certain embodiments, about 0.1% polysorbate 80 may be added in the formulation.

[0173] In embodiments, the protein product of the present disclosure is formulated as a liquid formulation. The liquid formulation may be presented at a 10 mg/mL concentration in either a USP / Ph Eur type I 50R vial closed with a rubber stopper and sealed with an aluminum crimp seal closure. The stopper may be made of elastomer complying with USP and Ph Eur. In certain embodiments vials may be filled with 61.2 mL of the protein product solution in order to allow an extractable volume of 60 mL. In certain embodiments, the liquid formulation may be diluted with 0.9% saline solution.

[0174] In certain embodiments, the liquid formulation of the disclosure may be prepared as a 10 mg/mL concentration solution in combination with a sugar at stabilizing levels. In certain embodiments the liquid formulation may be prepared in an aqueous carrier. In certain embodiments, a stabilizer may be added in an amount no greater than that which may result in a viscosity undesirable or unsuitable for intravenous administration. In certain embodiments, the sugar may be disaccharides, *e.g.*, sucrose. In certain embodiments, the liquid formulation may also include one or more of a buffering agent, a surfactant, and a preservative.

[0175] In certain embodiments, the pH of the liquid formulation may be set by addition of a pharmaceutically acceptable acid and/or base. In certain embodiments, the pharmaceutically acceptable acid may be hydrochloric acid. In certain embodiments, the base may be sodium hydroxide.

[0176] In addition to aggregation, deamidation is a common product variant of peptides and proteins that may occur during fermentation, harvest/cell clarification, purification, drug substance/drug product storage and during sample analysis. Deamidation is the loss of NH₃ from a protein forming a succinimide intermediate that can undergo hydrolysis. The succinimide intermediate results in a 17 dalton mass decrease of the parent peptide. The subsequent hydrolysis results in an 18 dalton mass increase. Isolation of the succinimide intermediate is difficult due to instability under aqueous conditions. As such, deamidation is typically detectable as 1 dalton mass increase. Deamidation of an asparagine results in either aspartic or isoaspartic acid. The parameters affecting the rate of deamidation include pH, temperature, solvent dielectric constant, ionic strength, primary sequence, local polypeptide conformation and tertiary structure. The amino acid residues adjacent to Asn in the peptide chain affect deamidation rates. Gly and Ser following an Asn in protein sequences results in a higher susceptibility to deamidation.

[0177] In certain embodiments, the liquid formulation of the present disclosure may be preserved under conditions of pH and humidity to prevent deamination of the protein product.

[0178] The aqueous carrier of interest herein is one which is pharmaceutically acceptable (safe and non-toxic for administration to a human) and is useful for the preparation of a liquid formulation. Illustrative carriers include sterile water for injection (SWFI), bacteriostatic water for injection (BWFI), a pH buffered solution (*e.g.*, phosphate-buffered saline), sterile saline solution, Ringer's solution or dextrose solution.

[0179] A preservative may be optionally added to the formulations herein to reduce bacterial action. The addition of a preservative may, for example, facilitate the production of a multi-use (multiple-dose) formulation.

[0180] Intravenous (IV) formulations may be the preferred administration route in particular instances, such as when a patient is in the hospital after transplantation receiving all drugs via the IV route. In certain embodiments, the liquid formulation is diluted with 0.9% Sodium Chloride solution before administration. In certain embodiments, the diluted drug product for injection is isotonic and suitable for administration by intravenous infusion.

[0181] In certain embodiments, a salt or buffer components may be added in an amount of 10 mM - 200 mM. The salts and/or buffers are pharmaceutically acceptable and are derived from various known acids (inorganic and organic) with "base forming" metals or amines. In certain embodiments, the buffer may be phosphate buffer. In certain embodiments, the buffer may be glycinate, carbonate, citrate buffers, in which case, sodium, potassium or ammonium ions can serve as counterion.

[0182] A preservative may be optionally added to the formulations herein to reduce bacterial action. The addition of a preservative may, for example, facilitate the production of a multi-use (multiple-dose) formulation.

[0183] The aqueous carrier of interest herein is one which is pharmaceutically acceptable (safe and non-toxic for administration to a human) and is useful for the preparation of a liquid formulation. Illustrative carriers include sterile water for injection (SWFI), bacteriostatic water for injection (BWFI), a pH buffered solution (*e.g.*, phosphate-buffered saline), sterile saline solution, Ringer's solution or dextrose solution.

[0184] This present disclosure could exist in a lyophilized formulation including the proteins and a lyoprotectant. The lyoprotectant may be sugar, *e.g.*, disaccharides. In certain embodiments, the lyoprotectant may be sucrose or maltose. The lyophilized formulation may also include one or more of a buffering agent, a surfactant, a bulking agent, and/or a preservative.

[0185] The amount of sucrose or maltose useful for stabilization of the lyophilized drug product may be in a weight ratio of at least 1:2 protein to sucrose or maltose. In certain embodiments, the protein to sucrose or maltose weight ratio may be of from 1:2 to 1:5.

5 **[0186]** In certain embodiments, the pH of the formulation, prior to lyophilization, may be set by addition of a pharmaceutically acceptable acid and/or base. In certain embodiments the pharmaceutically acceptable acid may be hydrochloric acid. In certain embodiments, the pharmaceutically acceptable base may be sodium hydroxide.

10 **[0187]** Before lyophilization, the pH of the solution containing the protein of the present disclosure may be adjusted between 6 to 8. In certain embodiments, the pH range for the lyophilized drug product may be from 7 to 8.

15 **[0188]** In certain embodiments, a salt or buffer components may be added in an amount of 10 mM - 200 mM. The salts and/or buffers are pharmaceutically acceptable and are derived from various known acids (inorganic and organic) with “base forming” metals or amines. In certain embodiments, the buffer may be phosphate buffer. In certain embodiments, the buffer may be glycinate, carbonate, citrate buffers, in which case, sodium, potassium or ammonium ions can serve as counterion.

20 **[0189]** In certain embodiments, a “bulking agent” may be added. A “bulking agent” is a compound which adds mass to a lyophilized mixture and contributes to the physical structure of the lyophilized cake (e.g., facilitates the production of an essentially uniform lyophilized cake which maintains an open pore structure). Illustrative bulking agents include mannitol, glycine, polyethylene glycol and sorbitol. The lyophilized formulations of the present invention may contain such bulking agents.

25 **[0190]** A preservative may be optionally added to the formulations herein to reduce bacterial action. The addition of a preservative may, for example, facilitate the production of a multi-use (multiple-dose) formulation.

30 **[0191]** In certain embodiments, the lyophilized drug product may be constituted with an aqueous carrier. The aqueous carrier of interest herein is one which is pharmaceutically acceptable (e.g., safe and non-toxic for administration to a human) and is useful for the preparation of a liquid formulation, after lyophilization. Illustrative diluents include sterile water for injection (SWFI), bacteriostatic water for injection (BWFI), a pH buffered solution (e.g., phosphate-buffered saline), sterile saline solution, Ringer's solution or dextrose solution.

[0192] In certain embodiments, the lyophilized drug product of the current disclosure is reconstituted with either Sterile Water for Injection, USP (SWFI) or 0.9% Sodium Chloride Injection, USP. During reconstitution, the lyophilized powder dissolves into a solution.

5 **[0193]** In certain embodiments, the lyophilized protein product of the instant disclosure is constituted to about 4.5 mL water for injection and diluted with 0.9% saline solution (sodium chloride solution).

10 **[0194]** Actual dosage levels of the active ingredients in the pharmaceutical compositions of this invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.

15 **[0195]** The specific dose can be a uniform dose for each patient, for example, 50-5000 mg of protein. Alternatively, a patient's dose can be tailored to the approximate body weight or surface area of the patient. Other factors in determining the appropriate dosage can include the disease or condition to be treated or prevented, the severity of the disease, the route of administration, and the age, sex and medical condition of the patient. Further refinement of the calculations necessary to determine the appropriate dosage for treatment is routinely made by those skilled in the art, especially in light of the dosage information and assays disclosed herein. The dosage can also be determined through the use of known assays for determining dosages used in conjunction with appropriate dose-response data. An individual patient's 20 dosage can be adjusted as the progress of the disease is monitored. Blood levels of the targetable construct or complex in a patient can be measured to see if the dosage needs to be adjusted to reach or maintain an effective concentration. Pharmacogenomics may be used to determine which targetable constructs and/or complexes, and dosages thereof, are most likely to be effective for a given individual (Schmitz *et al.*, *Clinica Chimica Acta* 308: 43-53, 2001; 25 Steimer *et al.*, *Clinica Chimica Acta* 308: 33-41, 2001).

30 **[0196]** In general, dosages based on body weight are from about 0.01 μ g to about 100 mg per kg of body weight, such as about 0.01 μ g to about 100 mg/kg of body weight, about 0.01 μ g to about 50 mg/kg of body weight, about 0.01 μ g to about 10 mg/kg of body weight, about 0.01 μ g to about 1 mg/kg of body weight, about 0.01 μ g to about 100 μ g/kg of body weight, about 0.01 μ g to about 50 μ g/kg of body weight, about 0.01 μ g to about 10 μ g/kg of body weight, about 0.01 μ g to about 1 μ g/kg of body weight, about 0.01 μ g to about 0.1 μ g/kg of body weight, about 0.1 μ g to about 100 mg/kg of body weight, about 0.1 μ g to about 50 mg/kg of body weight, about 0.1 μ g to about 10 mg/kg of body weight, about 0.1 μ g to about 1 mg/kg of body weight, about 0.1 μ g to about 100 μ g/kg of body weight, about 0.1 μ g to

about 10 µg/kg of body weight, about 0.1 µg to about 1 µg/kg of body weight, about 1 µg to about 100 mg/kg of body weight, about 1 µg to about 50 mg/kg of body weight, about 1 µg to about 10 mg/kg of body weight, about 1 µg to about 1 mg/kg of body weight, about 1 µg to about 100 µg/kg of body weight, about 1 µg to about 50 µg/kg of body weight, about 1 µg to about 10 µg/kg of body weight, about 10 µg to about 100 mg/kg of body weight, about 10 µg to about 50 mg/kg of body weight, about 10 µg to about 10 mg/kg of body weight, about 10 µg to about 100 µg/kg of body weight, about 10 µg to about 50 µg/kg of body weight, about 50 µg to about 100 mg/kg of body weight, about 50 µg to about 50 mg/kg of body weight, about 50 µg to about 10 mg/kg of body weight, about 50 µg to about 1 mg/kg of body weight, about 50 µg to about 100 µg/kg of body weight, about 100 µg to about 100 mg/kg of body weight, about 100 µg to about 50 mg/kg of body weight, about 100 µg to about 10 mg/kg of body weight, about 1 mg to about 100 mg/kg of body weight, about 1 mg to about 50 mg/kg of body weight, about 1 mg to about 10 mg/kg of body weight, about 10 mg to about 100 mg/kg of body weight, about 10 mg to about 50 mg/kg of body weight, about 50 mg to about 100 mg/kg of body weight, about 50 mg to about 50 mg/kg of body weight, about 50 mg to about 10 mg/kg of body weight.

[0197] Doses may be given once or more times daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the targetable construct or complex in bodily fluids or tissues. Administration of the present invention could be intravenous, intraarterial, intraperitoneal, intramuscular, subcutaneous, intrapleural, intrathecal, intracavitory, by perfusion through a catheter or by direct intralesional injection. This may be administered once or more times daily, once or more times weekly, once or more times monthly, and once or more times annually.

[0198] The description above describes multiple aspects and embodiments of the invention. The patent application specifically contemplates all combinations and permutations of the aspects and embodiments.

EXAMPLES

[0199] The invention now being generally described, will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and is not intended to limit the invention.

Example 1 – NKG2D binding domains bind to NKG2DNKG2D binding domains bind to purified recombinant NKG2D

[0200] The nucleic acid sequences of human, mouse or cynomolgus NKG2D ectodomains were fused with nucleic acid sequences encoding human IgG1 Fc domains and introduced into mammalian cells to be expressed. After purification, NKG2D-Fc fusion proteins were adsorbed to wells of microplates. After blocking the wells with bovine serum albumin to prevent non-specific binding, NKG2D-binding domains were titrated and added to the wells pre-adsorbed with NKG2D-Fc fusion proteins. Primary antibody binding was detected using a secondary antibody which was conjugated to horseradish peroxidase and specifically recognizes a human kappa light chain to avoid Fc cross-reactivity. 3,3',5,5'-Tetramethylbenzidine (TMB), a substrate for horseradish peroxidase, was added to the wells to visualize the binding signal, whose absorbance was measured at 450 nM and corrected at 540 nM. An NKG2D-binding domain clone, an isotype control or a positive control (comprising heavy chain and light chain variable domains selected from SEQ ID NOs:101-104, or anti-mouse NKG2D clones MI-6 and CX-5 available at eBioscience) was added to each well.

[0201] The isotype control showed minimal binding to recombinant NKG2D-Fc proteins, while the positive control bound strongest to the recombinant antigens. NKG2D-binding domains produced by all clones demonstrated binding across human, mouse, and cynomolgus recombinant NKG2D-Fc proteins, although with varying affinities from clone to clone. Generally, each anti-NKG2D clone bound to human (FIG. 3) and cynomolgus (FIG. 4) recombinant NKG2D-Fc with similar affinity, but with lower affinity to mouse (FIG. 5) recombinant NKG2D-Fc.

NKG2D-binding domains bind to cells expressing NKG2D

[0202] EL4 mouse lymphoma cell lines were engineered to express human or mouse NKG2D-CD3 zeta signaling domain chimeric antigen receptors. An NKG2D-binding clone, an isotype control or a positive control was used at a 100 nM concentration to stain extracellular NKG2D expressed on the EL4 cells. The antibody binding was detected using fluorophore-conjugated anti-human IgG secondary antibodies. Cells were analyzed by flow cytometry, and fold-over-background (FOB) was calculated using the mean fluorescence intensity (MFI) of NKG2D expressing cells compared to parental EL4 cells.

[0203] NKG2D-binding domains produced by all clones bound to EL4 cells expressing human and mouse NKG2D. Positive control antibodies (comprising heavy chain and light

chain variable domains selected from SEQ ID NOs:101-104, or anti-mouse NKG2D clones MI-6 and CX-5 available at eBioscience) gave the best FOB binding signal. The NKG2D-binding affinity for each clone was similar between cells expressing human NKG2D (FIG. 6) and mouse (FIG. 7) NKG2D.

5

Example 2 – NKG2D-binding domains block natural ligand binding to NKG2D
Competition With ULBP-6

[0204] Recombinant human NKG2D-Fc proteins were adsorbed to wells of a microplate, and the wells were blocked with bovine serum albumin reduce non-specific binding. A 10 saturating concentration of ULBP-6-His-biotin (“6-His” disclosed as SEQ ID NO:189) was added to the wells, followed by addition of the NKG2D-binding domain clones. After a 2-hour incubation, wells were washed and ULBP-6-His-biotin (“6-His” disclosed as SEQ ID NO:189) that remained bound to the NKG2D-Fc coated wells was detected by streptavidin-conjugated to horseradish peroxidase and TMB substrate. Absorbance was measured at 450 15 nM and corrected at 540 nM. After subtracting background, specific binding of NKG2D-binding domains to the NKG2D-Fc proteins was calculated from the percentage of ULBP-6-His-biotin (“6-His” disclosed as SEQ ID NO:189) that was blocked from binding to the NKG2D-Fc proteins in wells. The positive control antibody (comprising heavy chain and light chain variable domains selected from SEQ ID NOs:101-104) and various NKG2D-binding domains blocked ULBP-6 binding to NKG2D, while isotype control showed little 20 competition with ULBP-6 (FIG. 8).

[0205] ULBP-6 sequence is represented by SEQ ID NO:179
MAAAAIPALLCLPLLFLLFGWSRARRDDPHSLCYDITVIPKFRPGPRWCAVQGQVD
EKTFLHYDCGNKTVTPVSPLGKKLNVTMAWKAQNPVLREVVDILTEQLLDIQLENY
25 TPKEPLTLQARMSCEQKAEGHSSGSWQFSIDGQTFLFDSEKRMWTTVHPGARKMK
EKWENDKDVAWSFHYISMGDCIGWLEDFLMGMDSTLEPSAGAPLAMSSGTTQLRA
TATTLILCCLLIILPCFILPGI (SEQ ID NO:179)

Competition With MICA

[0206] Recombinant human MICA-Fc proteins were adsorbed to wells of a microplate, 30 and the wells were blocked with bovine serum albumin to reduce non-specific binding. NKG2D-Fc-biotin was added to wells followed by NKG2D-binding domains. After incubation and washing, NKG2D-Fc-biotin that remained bound to MICA-Fc coated wells was detected using streptavidin-HRP and TMB substrate. Absorbance was measured at 450

nM and corrected at 540 nM. After subtracting background, specific binding of NKG2D-binding domains to the NKG2D-Fc proteins was calculated from the percentage of NKG2D-Fc-biotin that was blocked from binding to the MICA-Fc coated wells. The positive control antibody (comprising heavy chain and light chain variable domains selected from SEQ ID NOs:101-104) and various NKG2D-binding domains blocked MICA binding to NKG2D, while isotype control showed little competition with MICA (FIG. 9).

Competition With Rae-1 delta

[0207] Recombinant mouse Rae-1delta-Fc (purchased from R&D Systems) was adsorbed to wells of a microplate, and the wells were blocked with bovine serum albumin to reduce non-specific binding. Mouse NKG2D-Fc-biotin was added to the wells followed by NKG2D-binding domains. After incubation and washing, NKG2D-Fc-biotin that remained bound to Rae-1delta-Fc coated wells was detected using streptavidin-HRP and TMB substrate. Absorbance was measured at 450 nM and corrected at 540 nM. After subtracting background, specific binding of NKG2D-binding domains to the NKG2D-Fc proteins was calculated from the percentage of NKG2D-Fc-biotin that was blocked from binding to the Rae-1delta-Fc coated wells. The positive control (comprising heavy chain and light chain variable domains selected from SEQ ID NOs:101-104, or anti-mouse NKG2D clones MI-6 and CX-5 available at eBioscience) and various NKG2D-binding domain clones blocked Rae-1delta binding to mouse NKG2D, while the isotype control antibody showed little competition with Rae-1delta (FIG. 10).

Example 3 – NKG2D-binding domain clones activate NKG2D

[0208] Nucleic acid sequences of human and mouse NKG2D were fused to nucleic acid sequences encoding a CD3 zeta signaling domain to obtain chimeric antigen receptor (CAR) constructs. The NKG2D-CAR constructs were then cloned into a retrovirus vector using Gibson assembly and transfected into expi293 cells for retrovirus production. EL4 cells were infected with viruses containing NKG2D-CAR together with 8 µg/mL polybrene. 24 hours after infection, the expression levels of NKG2D-CAR in the EL4 cells were analyzed by flow cytometry, and clones which express high levels of the NKG2D-CAR on the cell surface were selected.

[0209] To determine whether NKG2D-binding domains activate NKG2D, they were adsorbed to wells of a microplate, and NKG2D-CAR EL4 cells were cultured on the antibody fragment-coated wells for 4 hours in the presence of brefeldin-A and monensin. Intracellular

TNF- α production, an indicator for NKG2D activation, was assayed by flow cytometry. The percentage of TNF- α positive cells was normalized to the cells treated with the positive control. All NKG2D-binding domains activated both human NKG2D (FIG. 11) and mouse NKG2D (FIG. 12).

5 **Example 4 – NKG2D-binding domains activate NK cells**

Primary human NK cells

[0210] Peripheral blood mononuclear cells (PBMCs) were isolated from human peripheral blood buffy coats using density gradient centrifugation. NK cells (CD3 $^-$ CD56 $^+$) were isolated using negative selection with magnetic beads from PBMCs, and the purity of the isolated NK cells was typically >95%. Isolated NK cells were then cultured in media containing 100 ng/mL IL-2 for 24-48 hours before they were transferred to the wells of a microplate to which the NKG2D-binding domains were adsorbed, and cultured in the media containing fluorophore-conjugated anti-CD107a antibody, brefeldin-A, and monensin. Following culture, NK cells were assayed by flow cytometry using fluorophore-conjugated antibodies against CD3, CD56 and IFN- γ . CD107a and IFN- γ staining were analyzed in CD3 $^-$ CD56 $^+$ cells to assess NK cell activation. The increase in CD107a/IFN- γ double-positive cells is indicative of better NK cell activation through engagement of two activating receptors rather than one receptor. NKG2D-binding domains and the positive control (*e.g.*, heavy chain variable domain represent by SEQ ID NO:101 or SEQ ID NO:103, and light chain variable domain represented by SEQ ID NO:102 or SEQ ID NO:104) showed a higher percentage of NK cells becoming CD107a $^+$ and IFN- γ $^+$ than the isotype control (FIG. 13 & FIG. 14 represent data from two independent experiments, each using a different donor's PBMC for NK cell preparation).

Primary mouse NK cells

[0211] Spleens were obtained from C57Bl/6 mice and crushed through a 70 μ m cell strainer to obtain single cell suspension. Cells were pelleted and resuspended in ACK lysis buffer (purchased from Thermo Fisher Scientific #A1049201; 155 mM ammonium chloride, 10 mM potassium bicarbonate, 0.01 mM EDTA) to remove red blood cells. The remaining cells were cultured with 100 ng/mL hIL-2 for 72 hours before being harvested and prepared for NK cell isolation. NK cells (CD3 $^+$ NK1.1 $^+$) were then isolated from spleen cells using a negative depletion technique with magnetic beads with typically >90% purity. Purified NK cells were cultured in media containing 100 ng/mL mIL-15 for 48 hours before they were

transferred to the wells of a microplate to which the NKG2D-binding domains were adsorbed, and cultured in the media containing fluorophore-conjugated anti-CD107a antibody, brefeldin-A, and monensin. Following culture in NKG2D-binding domain-coated wells, NK cells were assayed by flow cytometry using fluorophore-conjugated antibodies 5 against CD3, NK1.1 and IFN- γ . CD107a and IFN- γ staining were analyzed in CD3 $^-$ NK1.1 $^+$ cells to assess NK cell activation. The increase in CD107a/IFN- γ double-positive cells is indicative of better NK cell activation through engagement of two activating receptors rather than one receptor. NKG2D-binding domains and the positive control (selected from anti- 10 mouse NKG2D clones MI-6 and CX-5 available at eBioscience) showed a higher percentage of NK cells becoming CD107a $^+$ and IFN- γ $^+$ than the isotype control (FIG. 15 & FIG. 16 represent data from two independent experiments, each using a different mouse for NK cell preparation).

Example 5 – NKG2D-binding domains enable cytotoxicity of target tumor cells

15 [0212] Human and mouse primary NK cell activation assays demonstrate increased cytotoxicity markers on NK cells after incubation with NKG2D-binding domains. To address whether this translates into increased tumor cell lysis, a cell-based assay was utilized where each NKG2D-binding domain was developed into a monospecific antibody. The Fc region was used as one targeting arm, while the Fab region (NKG2D-binding domain) acted as 20 another targeting arm to activate NK cells. THP-1 cells, which are of human origin and express high levels of Fc receptors, were used as a tumor target and a Perkin Elmer DELFIA Cytotoxicity Kit was used. THP-1 cells were labeled with BATDA reagent, and resuspended at 10⁵/mL in culture media. Labeled THP-1 cells were then combined with NKG2D antibodies and isolated mouse NK cells in wells of a microtiter plate at 37 °C for 3 hours.

25 After incubation, 20 μ l of the culture supernatant was removed, mixed with 200 μ l of Europium solution and incubated with shaking for 15 minutes in the dark. Fluorescence was measured over time by a PheraStar plate reader equipped with a time-resolved fluorescence module (Excitation 337 nm, Emission 620 nm) and specific lysis was calculated according to the kit instructions.

30 [0213] The positive control, ULBP-6 - a natural ligand for NKG2D, showed increased specific lysis of THP-1 target cells by mouse NK cells. NKG2D antibodies also increased specific lysis of THP-1 target cells, while isotype control antibody showed reduced specific lysis. The dotted line indicates specific lysis of THP-1 cells by mouse NK cells without antibody added (FIG. 17).

Example 6 – NKG2D antibodies show high thermostability

[0214] Melting temperatures of NKG2D-binding domains were assayed using differential scanning fluorimetry. The extrapolated apparent melting temperatures are high relative to typical IgG1 antibodies (FIG. 18).

5 **Example 7 – Synergistic activation of human NK cells by cross-linking NKG2D and CD16**

Primary human NK cell activation assay

[0215] Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral human blood buffy coats using density gradient centrifugation. NK cells were purified from 10 PBMCs using negative magnetic beads (StemCell # 17955). NK cells were >90% CD3⁻ CD56⁺ as determined by flow cytometry. Cells were then expanded 48 hours in media containing 100 ng/mL hIL-2 (Peprotech #200-02) before use in activation assays. Antibodies were coated onto a 96-well flat-bottom plate at a concentration of 2 µg/ml (anti-CD16, Biolegend # 302013) and 5 µg/mL (anti-NKG2D, R&D #MAB139) in 100 µl sterile PBS 15 overnight at 4 °C followed by washing the wells thoroughly to remove excess antibody. For the assessment of degranulation IL-2-activated NK cells were resuspended at 5×10⁵ cells/ml in culture media supplemented with 100 ng/mL hIL2 and 1 µg/mL APC-conjugated anti-CD107a mAb (Biolegend # 328619). 1×10⁵ cells/well were then added onto antibody coated plates. The protein transport inhibitors Brefeldin A (BFA, Biolegend # 420601) and 20 Monensin (Biolegend # 420701) were added at a final dilution of 1:1000 and 1:270 respectively. Plated cells were incubated for 4 hours at 37 °C in 5% CO₂. For intracellular staining of IFN-γ NK cells were labeled with anti-CD3 (Biolegend #300452) and anti-CD56 mAb (Biolegend # 318328) and subsequently fixed and permeabilized and labeled with anti-IFN-γ mAb (Biolegend # 506507). NK cells were analyzed for expression of CD107a and 25 IFN-γ by flow cytometry after gating on live CD56⁺CD3⁻ cells.

[0216] To investigate the relative potency of receptor combination, crosslinking of NKG2D or CD16 and co-crosslinking of both receptors by plate-bound stimulation was performed. As shown in Figure 19 (FIGs. 19A-19C), combined stimulation of CD16 and NKG2D resulted in highly elevated levels of CD107a (degranulation) (FIG. 19A) and/or 30 IFN-γ production (FIG. 19B). Dotted lines represent an additive effect of individual stimulations of each receptor.

[0217] CD107a levels and intracellular IFN-γ production of IL-2-activated NK cells were analyzed after 4 hours of plate-bound stimulation with anti-CD16, anti-NKG2D or a

combination of both monoclonal antibodies. Graphs indicate the mean ($n = 2$) \pm SD. FIG. 19A demonstrates levels of CD107a; FIG. 19B demonstrates levels of IFN- γ ; FIG. 19C demonstrates levels of CD107a and IFN- γ . Data shown in FIGs. 19A-19C are representative of five independent experiments using five different healthy donors.

5

INCORPORATION BY REFERENCE

[0218] The entire disclosure of each of the patent documents and scientific articles referred to herein is incorporated by reference for all purposes.

EQUIVALENTS

[0219] The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are intended to be embraced therein.

15

WHAT IS CLAIMED IS:

1. A protein comprising:
 - (a) a first antigen-binding site that binds NKG2D;
 - (b) a second antigen-binding site that binds ROR1 or ROR2; and
 - (c) an antibody Fc domain or a portion thereof sufficient to bind CD16, or a third antigen-binding site that binds CD16.
2. The protein of claim 1, wherein the first antigen-binding site binds to NKG2D in humans, non-human primates, and rodents.
3. The protein of claim 1 or 2, wherein the first antigen-binding site comprises a heavy chain variable domain and a light chain variable domain.
4. The protein according to claim 3, wherein the heavy chain variable domain and the light chain variable domain are present on the same polypeptide.
5. The protein according to claims 3 or 4, wherein the second antigen-binding site comprises a heavy chain variable domain and a light chain variable domain.
6. The protein according to claim 5, wherein the heavy chain variable domain and the light chain variable domain of the second antigen-binding site are present on the same polypeptide.
7. The protein according to claim 5 or 6, wherein the light chain variable domain of the first antigen-binding site has an amino acid sequence identical to the amino acid sequence of the light chain variable domain of the second antigen-binding site.
8. A protein according to any one of the preceding claims, wherein the first antigen-binding site comprises a heavy chain variable domain at least 90% identical to an amino acid sequence selected from: SEQ ID NO:1, SEQ ID NO:41, SEQ ID NO:49, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:69, SEQ ID NO:77, SEQ ID NO:85, and SEQ ID NO:93.

9. The protein according to any one of claims 1-7, wherein the first antigen-binding site comprises a heavy chain variable domain at least 90% identical to SEQ ID NO:41 and a light chain variable domain at least 90% identical to SEQ ID NO:42.
10. The protein according to any one of claims 1-7, wherein the first antigen-binding site comprises a heavy chain variable domain at least 90% identical to SEQ ID NO:49 and a light chain variable domain at least 90% identical to SEQ ID NO:50.
11. The protein according to any one of claims 1-7, wherein the first antigen-binding site comprises a heavy chain variable domain at least 90% identical to SEQ ID NO:57 and a light chain variable domain at least 90% identical to SEQ ID NO:58.
12. The protein according to any one of claims 1-7, wherein the first antigen-binding site comprises a heavy chain variable domain at least 90% identical to SEQ ID NO:59 and a light chain variable domain at least 90% identical to SEQ ID NO:60.
13. The protein according to any one of claims 1-7, wherein the first antigen-binding site comprises a heavy chain variable domain at least 90% identical to SEQ ID NO:61 and a light chain variable domain at least 90% identical to SEQ ID NO:62.
14. The protein according to any one of claims 1-7, wherein the first antigen-binding site comprises a heavy chain variable domain at least 90% identical to SEQ ID NO:69 and a light chain variable domain at least 90% identical to SEQ ID NO:70.
15. The protein according to any one of claims 1-7, wherein the first antigen-binding site comprises a heavy chain variable domain at least 90% identical to SEQ ID NO:77 and a light chain variable domain at least 90% identical to SEQ ID NO:78.
16. The protein according to any one of claims 1-7, wherein the first antigen-binding site comprises a heavy chain variable domain at least 90% identical to SEQ ID NO:85 and a light chain variable domain at least 90% identical to SEQ ID NO:86.
17. The protein according to any one of claims 1-7, wherein the first antigen-binding site comprises a heavy chain variable domain at least 90% identical to SEQ ID NO:93 and a light chain variable domain at least 90% identical to SEQ ID NO:94.

18. The protein according to any one of claims 1-7, wherein the first antigen-binding site comprises a heavy chain variable domain at least 90% identical to SEQ ID NO:101 and a light chain variable domain at least 90% identical to SEQ ID NO:102.

19. The protein according to any one of claims 1-7, wherein the first antigen-binding site comprises a heavy chain variable domain at least 90% identical to SEQ ID NO:103 and a light chain variable domain at least 90% identical to SEQ ID NO:104.

20. The protein of claim 1 or 2, wherein the first antigen-binding site is a single-domain antibody.

21. The protein of claim 20, wherein the single-domain antibody is a V_HH fragment or a V_{NAR} fragment.

22. The protein according to any one of claims 1-2 or 20-21, wherein the second antigen-binding site comprises a heavy chain variable domain and a light chain variable domain.

23. The protein according to claim 22, wherein the heavy chain variable domain and the light chain variable domain of the second antigen-binding site are present on the same polypeptide.

24. The protein according to any one of claims 1-23, wherein the second antigen-binding site binds ROR1, the heavy chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:105 and the light chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:109.

25. The protein according to any one of claims 1-23, wherein the second antigen-binding site binds ROR1, the heavy chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:113 and the light chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:117.

26. The protein according to any one of claims 1-23, wherein the second antigen-binding site binds ROR1, the heavy chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:121 and the light

chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:125.

27. The protein according to any one of claims 1-23, wherein the second antigen-binding site binds ROR1, the heavy chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:129 and the light chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:133.

28. The protein according to any one of claims 1-23, wherein the second antigen-binding site binds ROR1, the heavy chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:137 and the light chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:141.

29. The protein according to any one of claims 1-23, wherein the second antigen-binding site binds ROR1, the heavy chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:145 and the light chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:149.

30. The protein according to any one of claims 1-23, wherein the second antigen-binding site binds ROR1, the heavy chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:153 and the light chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:157.

31. The protein according to any one of claims 1-23, wherein the second antigen-binding site binds ROR2, the heavy chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:162 and the light chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:166.

32. The protein according to any one of claims 1-23, wherein the second antigen-binding site binds ROR2, the heavy chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:170 and the light

chain variable domain of the second antigen-binding site comprises an amino acid sequence at least 90% identical to SEQ ID NO:174.

33. The protein according to any one of claims 1-4 or 8-21, wherein the second antigen-binding site is a single-domain antibody.

34. The protein of claim 33, wherein the second antigen-binding site is a V_HH fragment or a V_{NAR} fragment.

35. A protein according to any one of the preceding claims, wherein the protein comprises a portion of an antibody Fc domain sufficient to bind CD16, wherein the antibody Fc domain comprises hinge and CH2 domains.

36. The protein according to claim 35, wherein the antibody Fc domain comprises hinge and CH2 domains of a human IgG1 antibody.

37. The protein according to claim 35 or 36, wherein the Fc domain comprises an amino acid sequence at least 90% identical to amino acids 234-332 of a human IgG1 antibody.

38. The protein according to claim 37, wherein the Fc domain comprises amino acid sequence at least 90% identical to the Fc domain of human IgG1 and differs at one or more positions selected from the group consisting of Q347, Y349, L351, S354, E356, E357, K360, Q362, S364, T366, L368, K370, N390, K392, T394, D399, S400, D401, F405, Y407, K409, T411, K439.

39. A formulation comprising a protein according to any one of the preceding claims and a pharmaceutically acceptable carrier.

40. A cell comprising one or more nucleic acids expressing a protein according to any one of claims 1-38.

41. A method of enhancing tumor cell death, the method comprising exposing tumor cells and natural killer cells to an effective amount of the protein according to any one of claims 1-38.

42. A method of treating cancer, wherein the method comprises administering an effective amount of the protein according to any one of claims 1-38 or the formulation according to claim 39 to a patient.

43. The method of claim 42, wherein the second antigen binding site of the protein binds ROR1, the cancer to be treated is selected from the group consisting of malignant melanoma, prostate cancer, chronic lymphoblastic leukemia, hematologic malignancies, ovarian cancer, triple-negative breast cancer, non-small cell lung cancer and colorectal cancer.

44. The method of claim 42, wherein the second antigen binding site of the protein binds ROR2, the cancer to be treated is selected from the group consisting of osteosarcoma, renal cell carcinoma, melanoma, colon cancer, squamous cell carcinoma of the head and neck, breast cancer, bladder cancer, cervical cancer, lymphoma, mesothelioma, pancreatic cancer, ovarian cancer, lung cancer, uterine cancer, sarcoma, and prostate cancer.

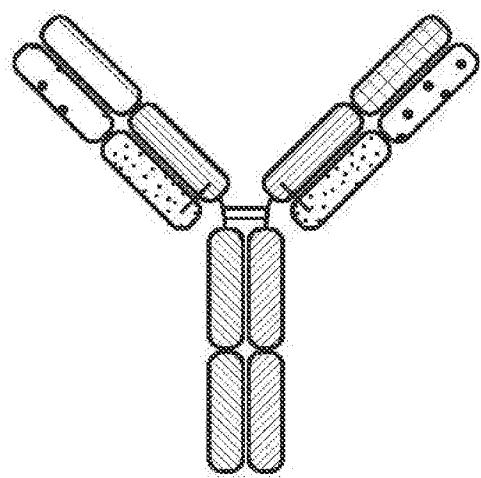
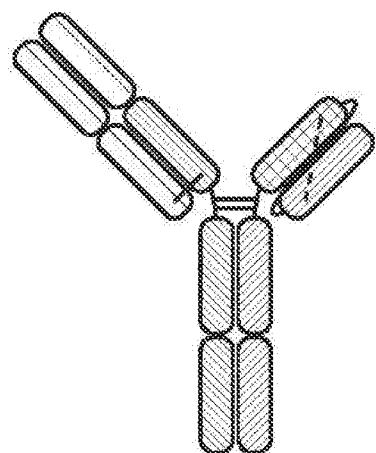


FIG. 1**FIG. 2**

FIG. 3

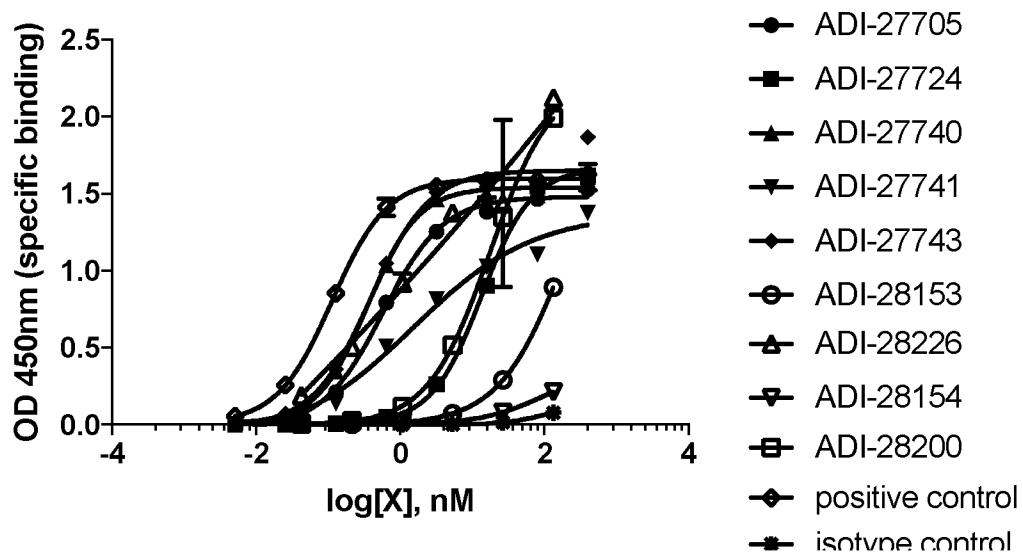


FIG. 4

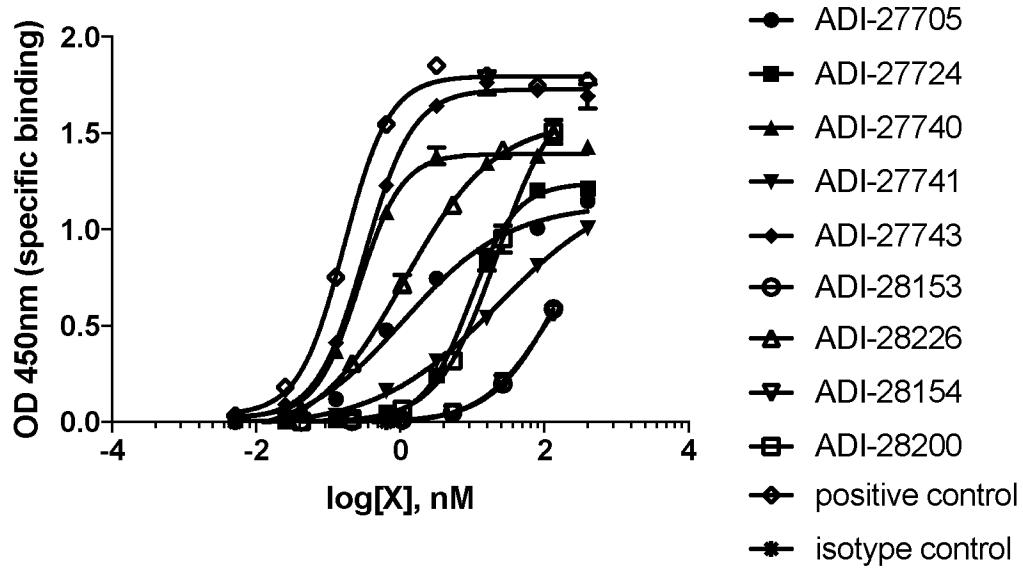


FIG. 5

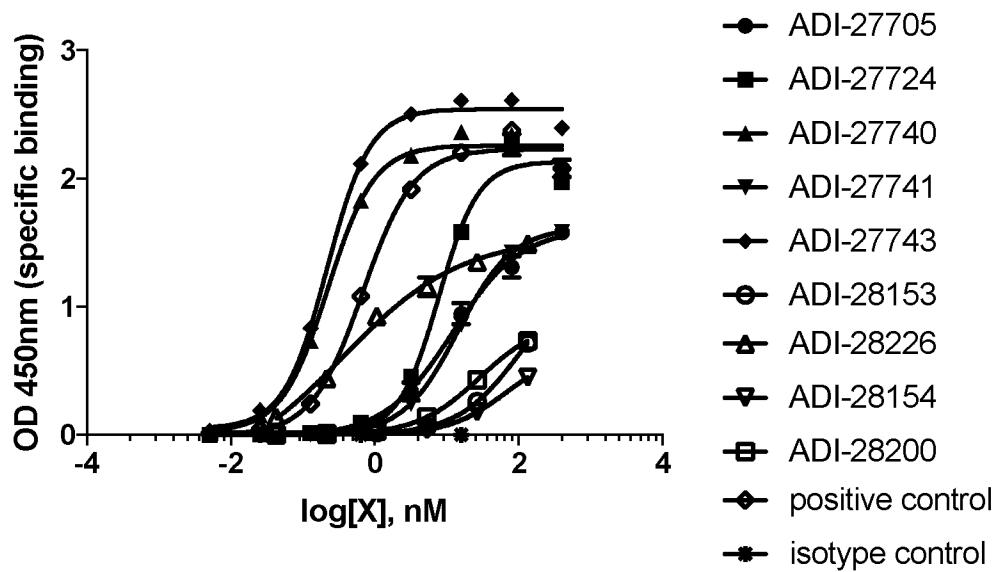


FIG. 6

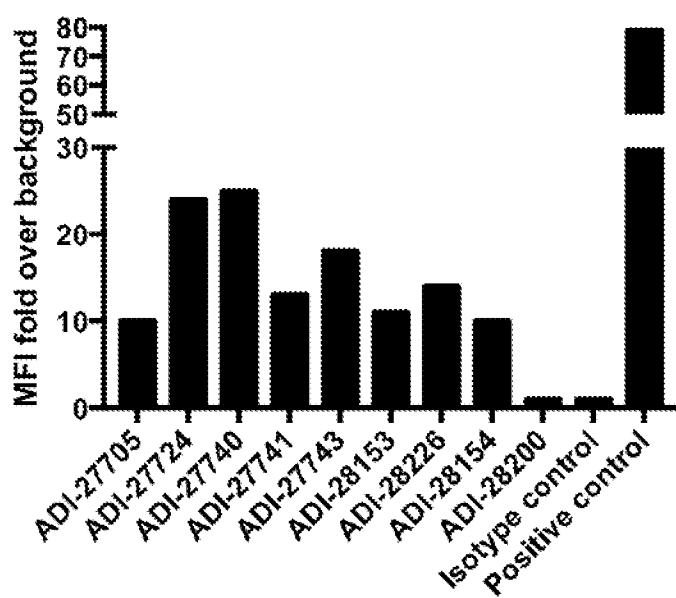


FIG. 7

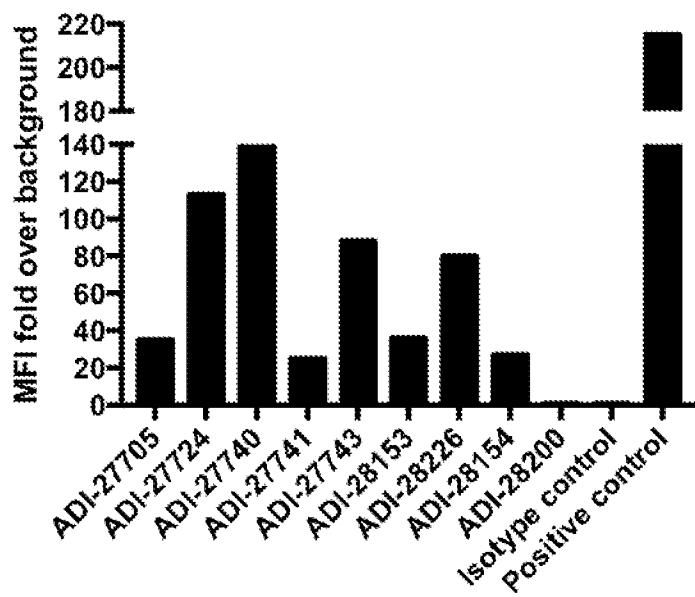


FIG. 8

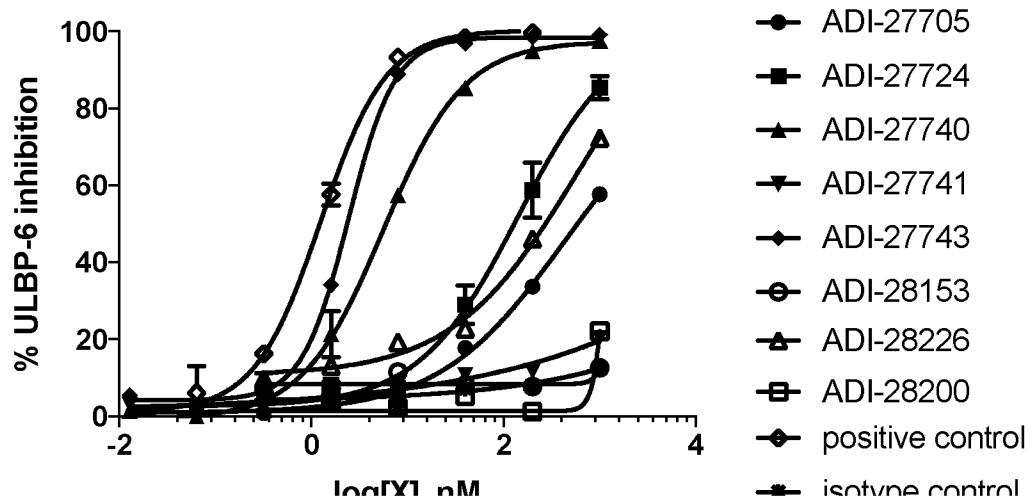


FIG. 9

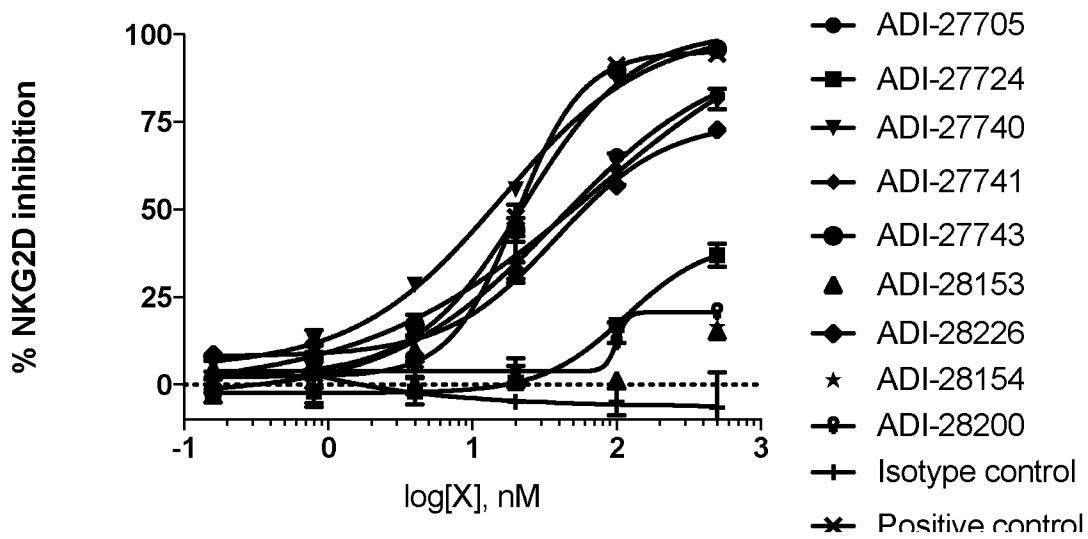


FIG. 10

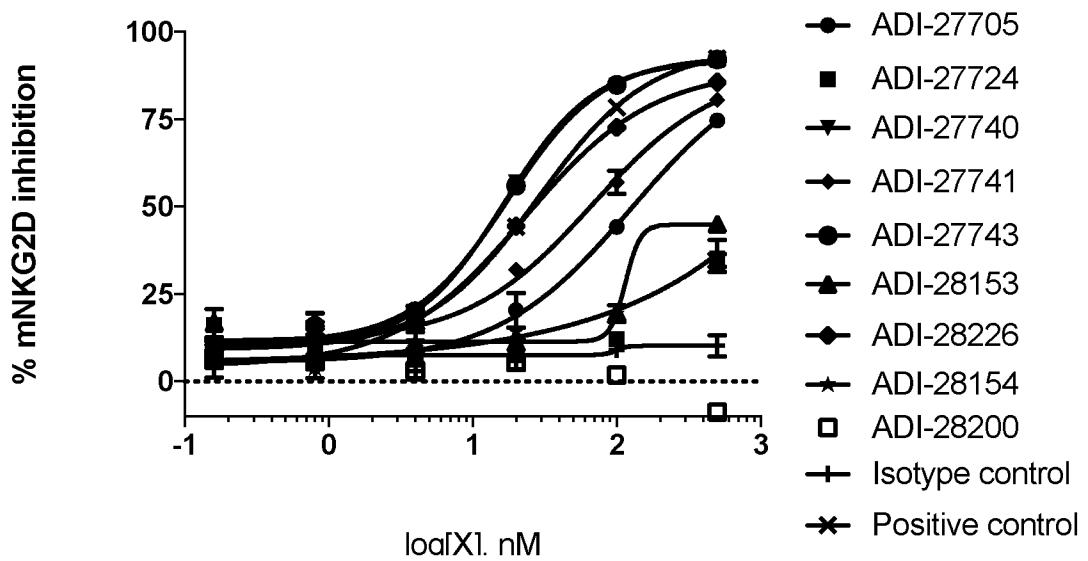


FIG. 11

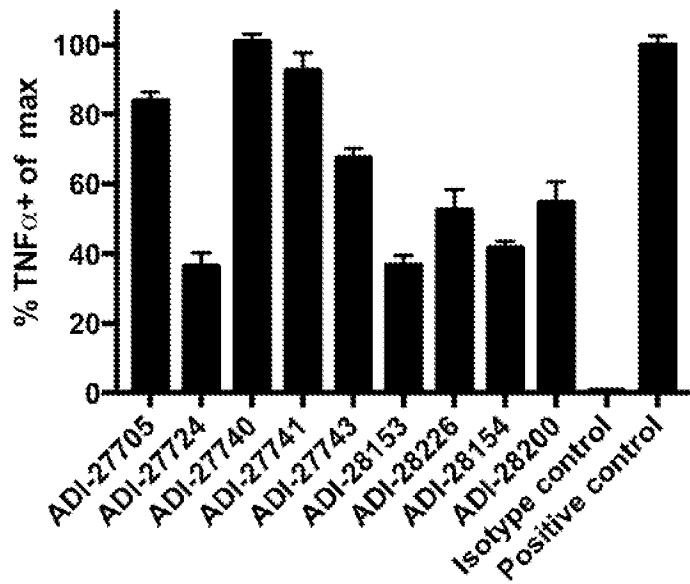


FIG. 12

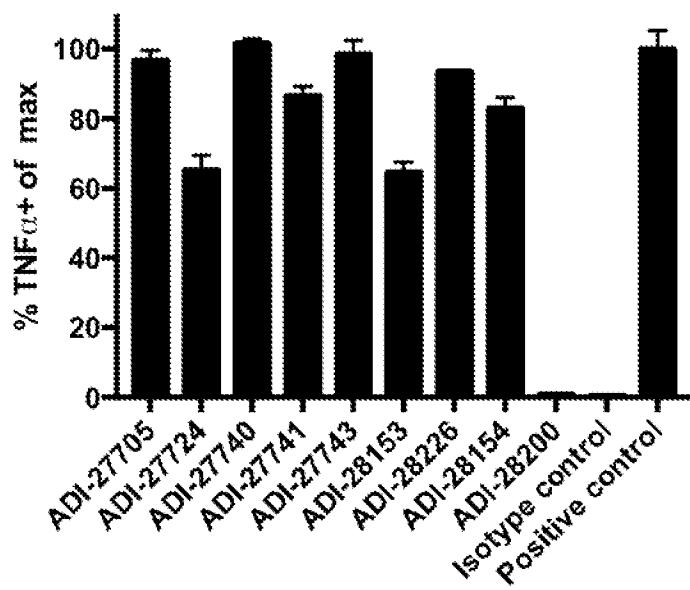


FIG. 13

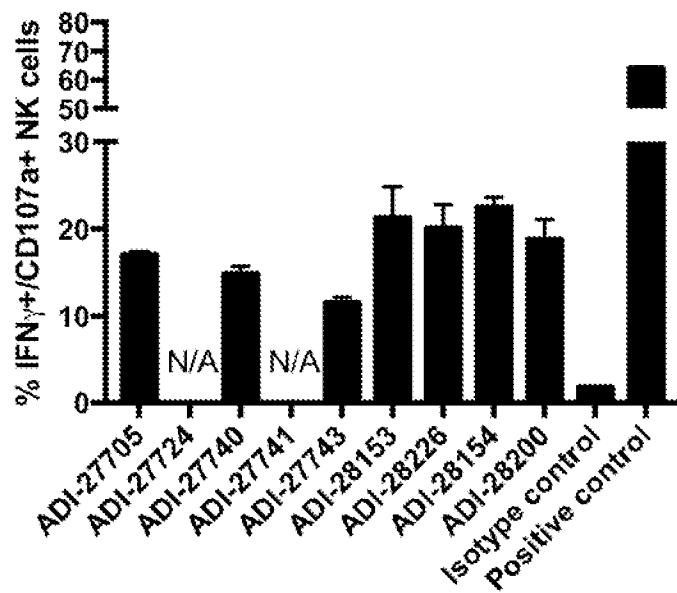


FIG. 14

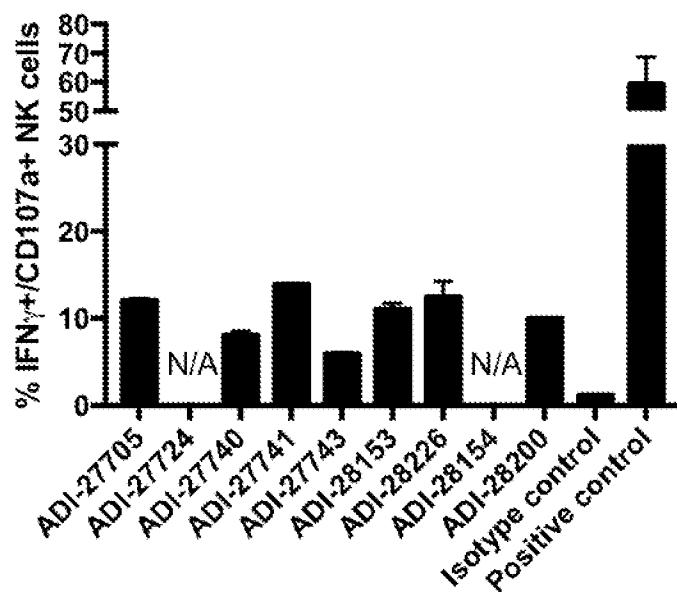
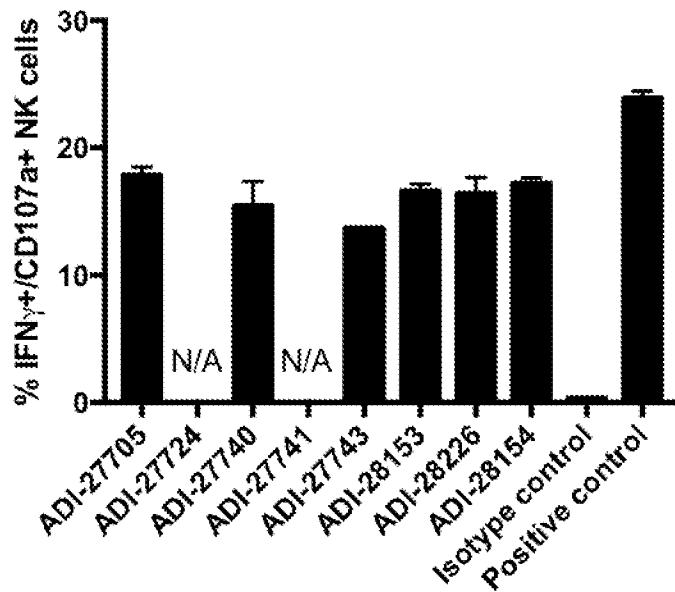
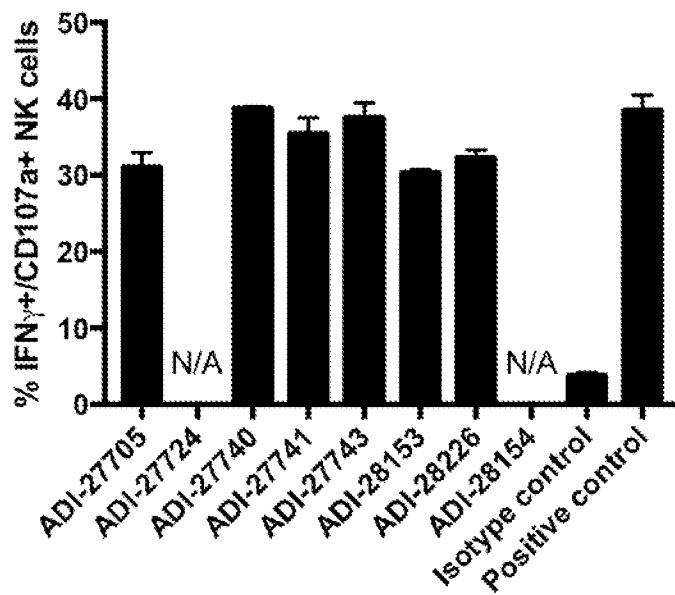
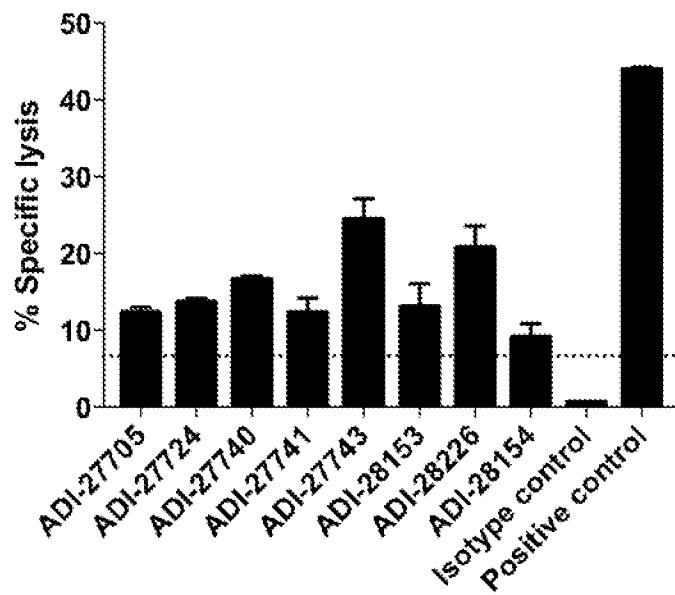
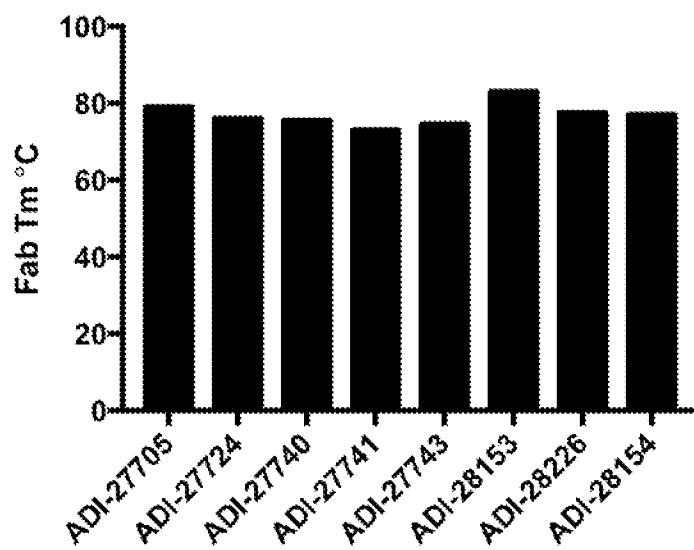
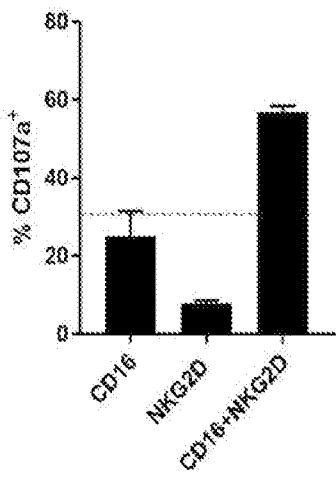
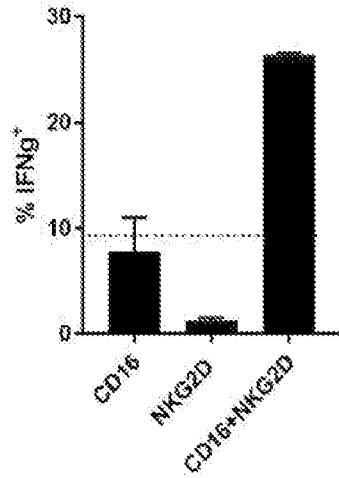
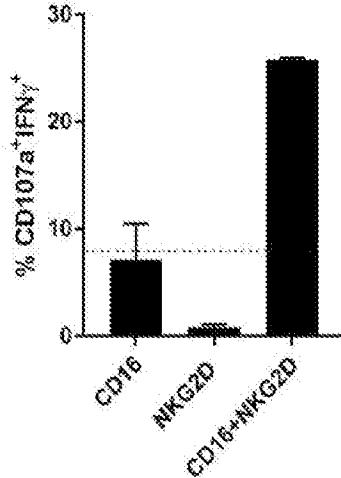
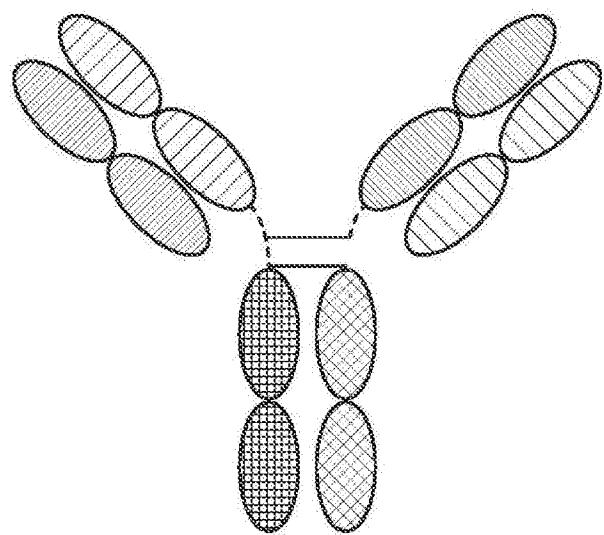
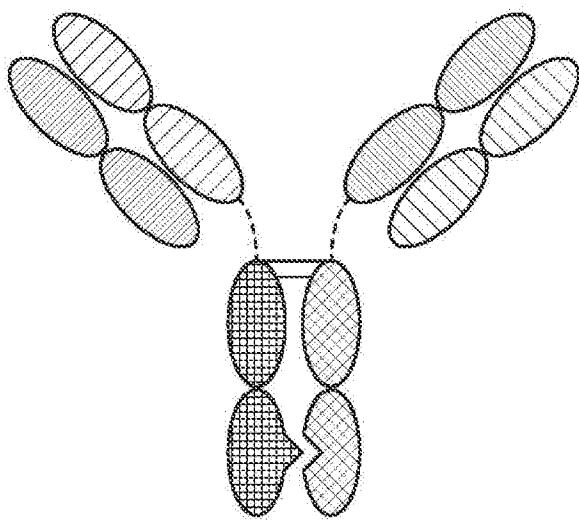
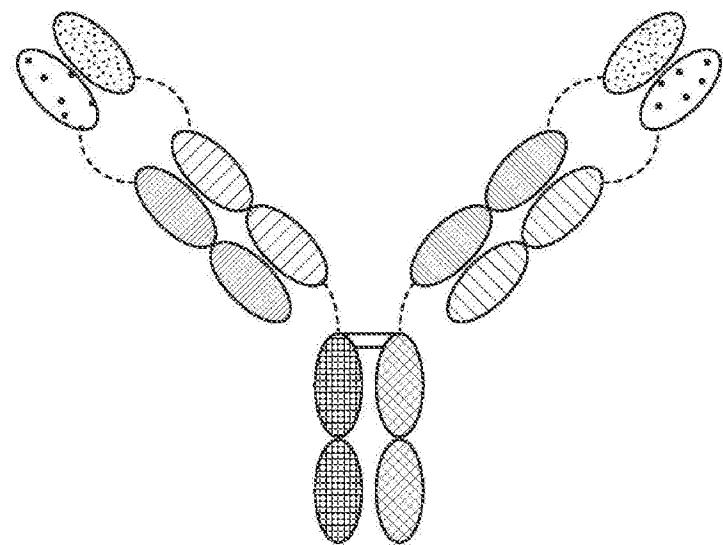
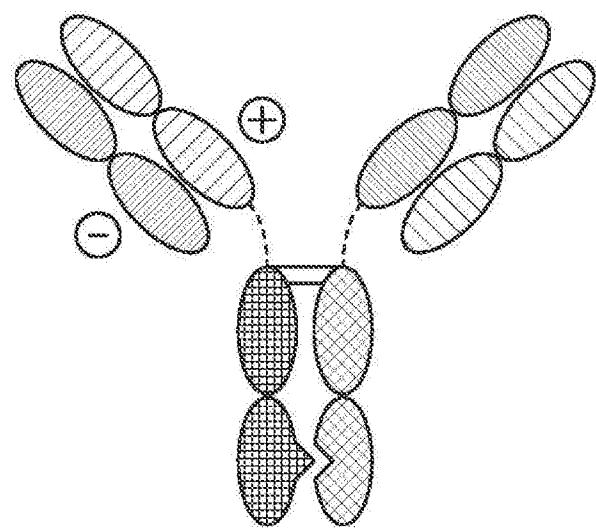
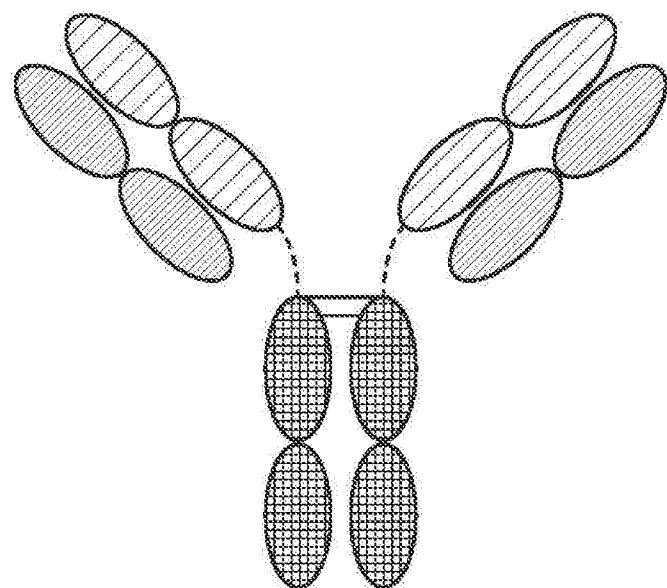
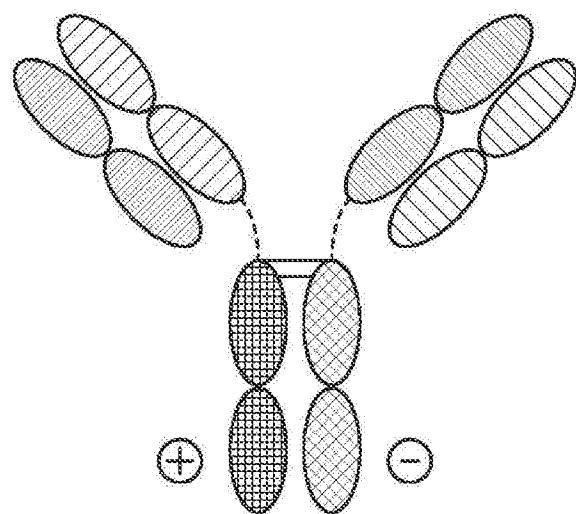
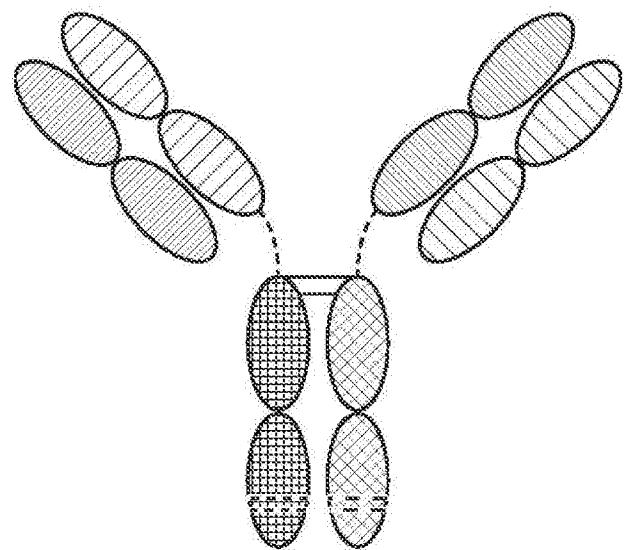
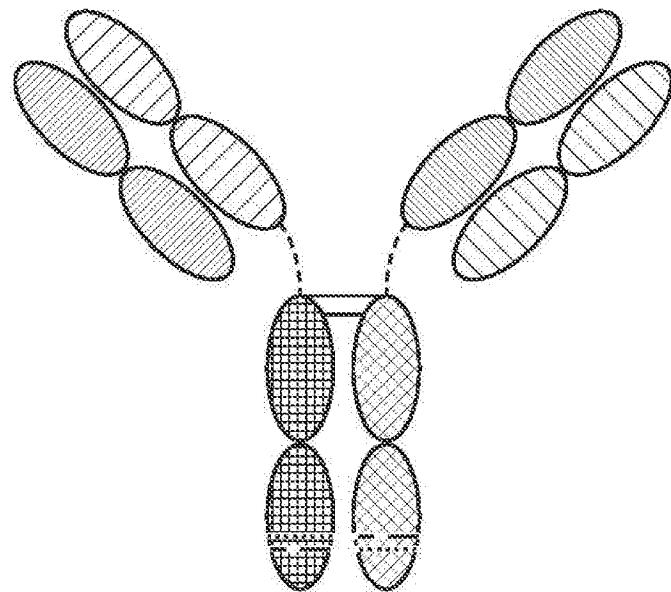


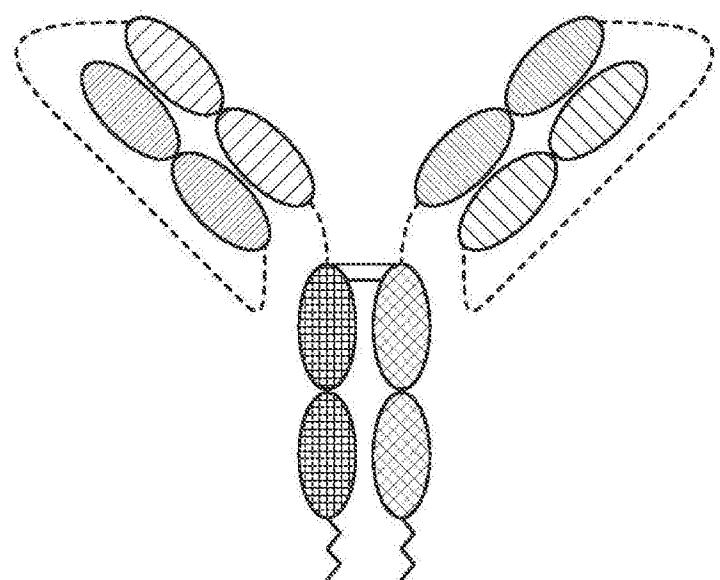
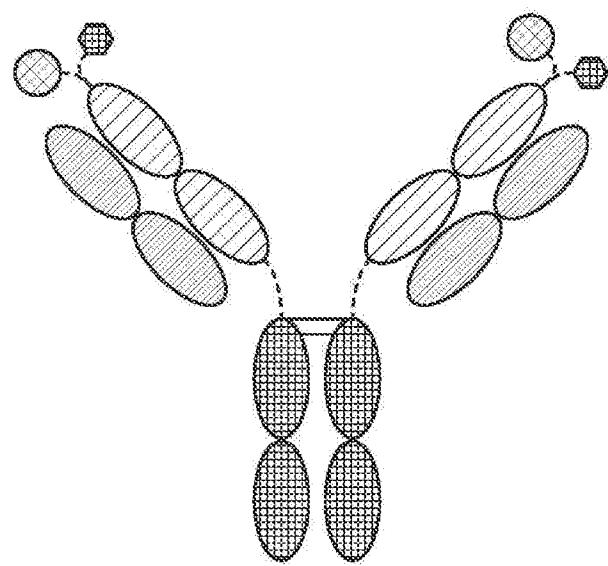
FIG. 15

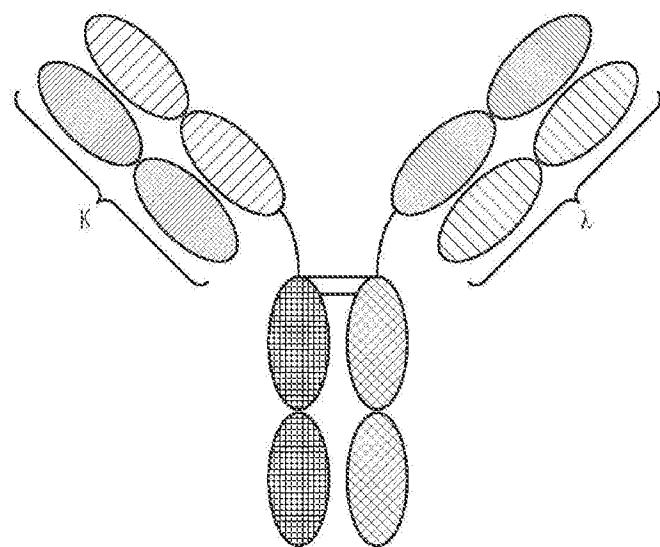
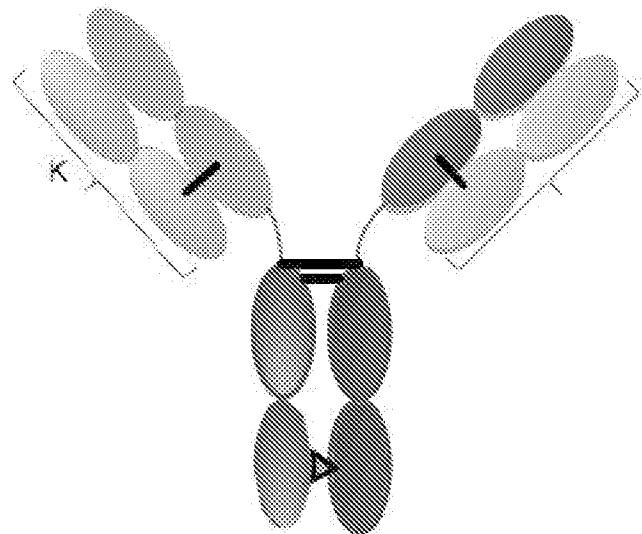










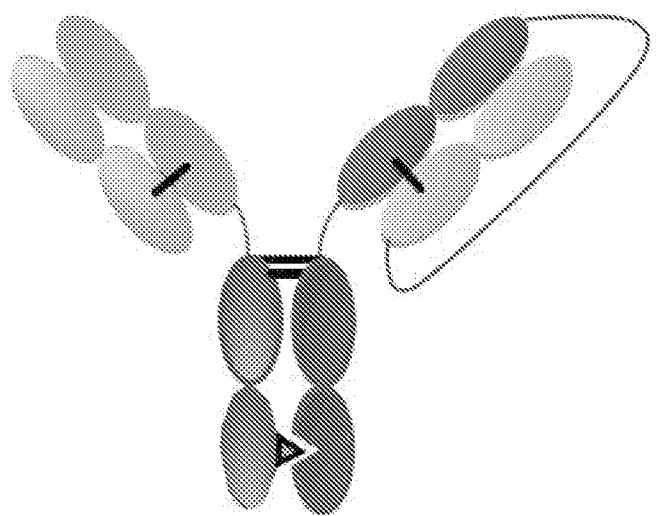
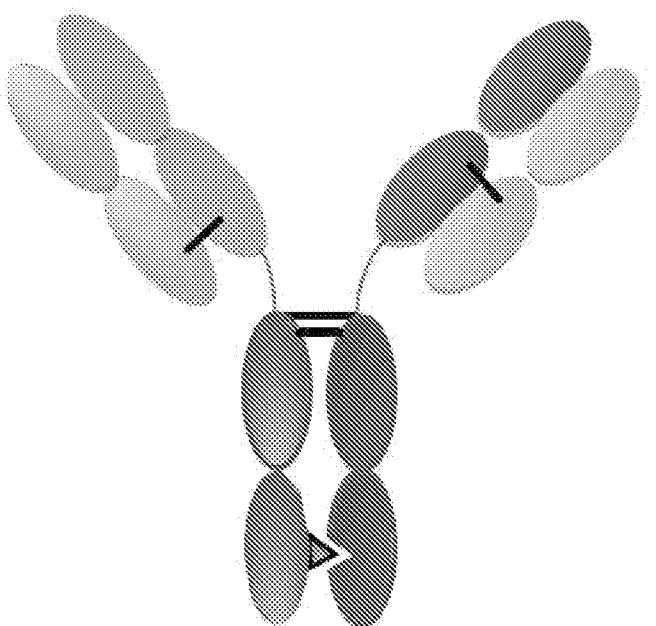


FIG. 16



FIG. 17**FIG. 18**



FIG. 19A**FIG. 19B****FIG. 19C**



FIG. 20**FIG. 21**



FIG. 22**FIG. 23**

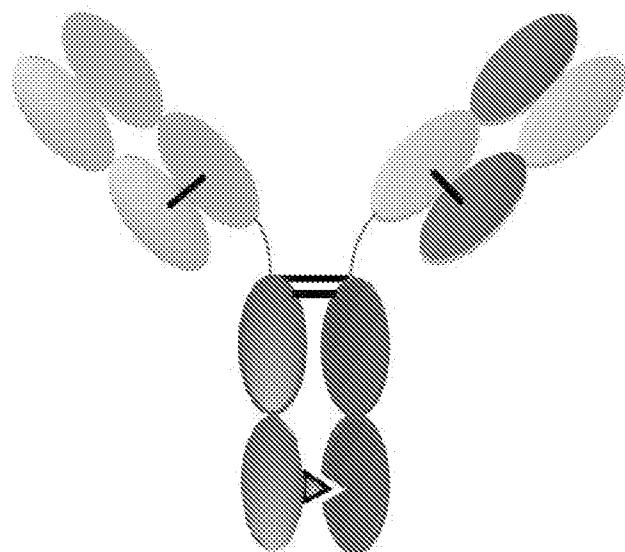
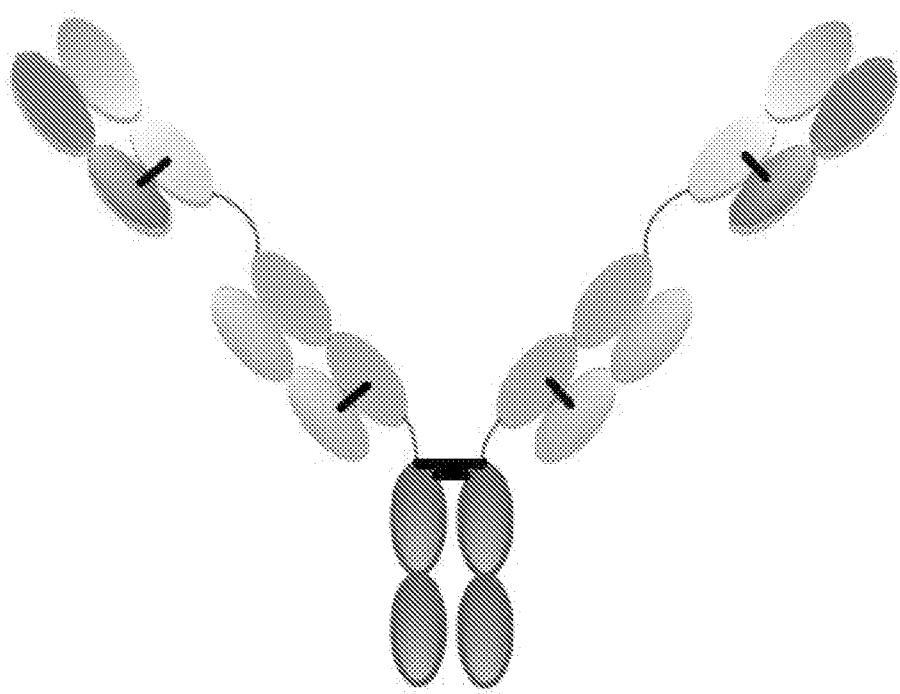


FIG. 24**FIG. 25**

FIG. 26**FIG. 27**

FIG. 28**FIG. 29**

FIG. 30A**FIG. 30B**

FIG. 31**FIG. 32**

FIG. 33**FIG. 34**

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2018/033952

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A61K 39/395; A61P 35/00; C07K 16/24; C07K 16/28; C07K 16/30; C12N 15/09 (2018.01)

CPC - A61K 2039/505; C07K 16/28; C07K 16/2815; C07K 16/283; C07K 16/289; C07K 2317/31; C07K 2317/56; C07K 2317/92 (2018.05)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC - 424/134.1; 424/135.1; 424/136.1; 424/178.1 (keyword delimited)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

See Search History document

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2015/184207 A1 (MACROGENICS, INC.) 03 December 2015 (03.12.2015) entire document	1-4
--		-----
Y	WO 2017/081190 A1 (INSERM (INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE MÉDICALE) et al) 18 May 2017 (18.05.2017) entire document	20, 21
A	GLEASON et al. "Bispecific and Trispecific Killer Cell Engagers Directly Activate Human NK Cells through CD16 Signaling and Induce Cytotoxicity and Cytokine Production," Molecular Cancer Therapeutics, 17 October 2012 (17.10.2012), Vol. 11, Iss. 12, Pgs. 2674-2684. entire document	1-4, 20, 21
A	US 2009/0175867 A1 (THOMPSON et al) 09 July 2009 (09.07.2009) entire document	1-4, 20, 21
A	US 2015/0210765 A1 (ZYNGENIA, INC.) 30 July 2015 (30.07.2015) entire document	1-4, 20, 21
A	WO 2016/115274 A1 (COMPASS THERAPEUTICS LLC et al) 21 July 2016 (21.07.2016) entire document	1-4, 20, 21
A	WO 2015/184203 A1 (MACROGENICS, INC.) 03 December 2015 (03.12.2015) entire document	1-4, 20, 21
P, A	US 2017/0233472 A1 (MACROGENICS, INC.) 17 August 2017 (17.08.2017) entire document	1-4, 20, 21

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
07 July 2018	09 AUG 2018
Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, VA 22313-1450 Facsimile No. 571-273-8300	Authorized officer Blaine R. Copenheaver PCT Helpdesk: 571-272-4300 PCT OSP: 571-272-7774

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2018/033952

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 5-19, 22-44 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.