Title: SEALED DERRICK STRUCTURE FOR POLAR VESSELS

Abstract: The present design relates to a sealed derrick structure for polar vessels, wherein an installation space for an exhaust-gas unit is provided on the upper part of the sealed derrick. The sealed derrick structure for polar vessels according to the present design comprises: a sealed derrick; a crown block unit which is formed on an upper part of the sealed derrick, is provided with a crown block on the inside thereof and is formed with an installation working space; and an exhaust-gas unit which is provided in the installation working space, in communication with the outside.

요약서: 본 고안은 밀폐형 테일러의 상부에 배기유닛의 설치공간을 제공하는 극지용 선박의 밀폐형 데릴리크 구조에 관한 고안이다. 본 고안에 의한 극지용 선박의 밀폐형 데릴리크 구조는 극지용 선박의 밀폐형 데릴리크 구조로서, 밀폐형 데릴리크 상기 밀폐형 데릴리크의 상부에 형성되어 내부에 캐런블록(crown block)이 설치되며 배기작업공간이 형성되는 캐런블록 부분 및 상기 설치작업공간에 외부로 소통되게 설치되는 배기유닛을 포함하는 것을 특징으로 한다.
명세서
발명의 명칭: 극지용 선박의 밀폐형 데리구조
기술분야
[1] 본 고안은 극지용 선박의 데리구조에 관한 것으로, 보다 상세하게는 밀폐형 데리의 상부에 배기유닛의 설치공간을 제공하는 극지용 선박의 밀폐형 데리구조에 관한 것이다.
배경기술
[4] 이러한 해저 시추에는, 다른 제안선에 의해서만 양해가 가능하고 계류 장치를 이용하여 해상의 일정에 정박한 상태에서 해저 시추 작업을 하는 해저 시추 진용의 리그선(rig ship)이나 고정식 플랫폼이 주로 사용되고 있으며, 최근에는 침단의 시추 장비를 탑재하고 자체의 동력으로 양해를 할 수 있도록 일반 선박과 동일한 형태로 제작된 소위 드릴십(drillship)이 개발되어 해저 시추에 사용되고 있다. 군소 유전 개발을 위해서는 그 위치를 자주 옮겨야 하는 작업조건에 따라, 이런 드릴십은 이전선 없이 자체의 동력으로 양해를 할 수 있도록 구성되어 있다.
[5] 이와 같은 리그선, 고정식 플랫폼, 드릴십 등은 그 중심부에 라이저(riser) 및 드릴 파이프(drill pipe)가 상하 이동하는 문풀(moon pool)이 형성되고, 그 갑판에는 각종 시추장비가 장착되는 데리(derrick)가 설치된다.
발명의 상세한 설명
기술적 과제
[7] 한편, 극지방과 같은 극한지방에서의 천연자원 시추를 위한 극지용 리그선, 극지용 고정식 플랫폼, 극지용 드릴십 등과 같은 극지용 선박이 건조되고 있으며, 이러한 극지용 선박은 극지용 환경에서의 설비, 동결 등을 막고 원활한 장비 운용과 선박의 안전을 위해 거의 모든 구역이 밀폐된 구조(Enclosed area)로 구성될 수 있다.
[8] 특히, 극지용 선박의 데리 및 문풀은 그 내부의 장비 및 작업자의 보호를 위하여
밀폐되어 있고, 이러한 밀폐형 태릭 및 밀폐형 문물에는 그 내부공간에 대한 보호 및 통풍을 위한 통풍시스템이 설치될 수 있다. 이러한 통풍시스템은 특히 극저온 지반에서 물 및 레귤레이션(Rule & Regulation)에 만족하도록 태릭 및 문물 내로 가열된 공기를 공급하고, 또한 태릭의 상부에서 냉각된 공기를 외부로 배기를하도록 구성되는 것이 바람직하다. 이때, 태릭의 상부는 내부에 크라운 블록(crown block)이 설치되는 크라운 블록부가 형성되며, 크라운 블록부는 상단으로 갈수록 좁아지는 콘 형상을 이루고, 내부에 복수의 배기팬이 설치될 수 있다.

하지만, 이러한 밀폐형 태릭은 상부로 갈수록 좁아지는 콘 형상의 크라운 블록부의 구조적 형상 때문에 접근성이 취약하여 배기팬의 설치, 유지/보수가 용이하지 못하고, 이로 인해 밀폐형 태릭 및 문물의 내부공간을 효과적으로 보호하지 못함과 더불어 완전한 통풍성을 유지하지 못하는 문제점이 있을 수 있다.

파세 해결 수단

상기와 같은 목적을 달성하기 위한 본 고안의 일측면은 극저온 선향의 밀폐형 태릭구조로서, 밀폐형 태릭; 상기 밀폐형 태릭의 상부에 형성되어 내부에 크라운 블록(crown block)이 설치됨과 함께 설치작업공간이 형성되는 크라운 블록부; 및 상기 설치작업공간에 외부로 소통되게 설치되는 배기유닛을 포함하는 것을 특징으로 한다.

상기 크라운 블록부는 상단으로 갈수록 폭이 넓어지며, 상기 설치작업공간은 상단으로 갈수록 폭이 넓어지게 형성되는 것을 특징으로 한다.

상기 크라운 블록의 양측면에 상단에 비해 하단의 폭이 좁게 한 쌍의 경사면이 대칭적으로 형성되는 것을 특징으로 한다.

상기 크라운 블록부가 하단에 비해 상단의 폭이 좁게 형성되도록 양측면에 한 쌍의 경사면이 대칭적으로 형성되는 것을 특징으로 한다.

상기 크라운 블록부의 측면에는 상기 크라운 블록을 설치하기 위한 크라운 블록 플랫폼의 형성되는 것을 특징으로 한다.

상기 배기유닛은 상기 크라운 블록의 측면에 외부와 소통되는 배기구, 상기 배기구의 내측에 연결되는 배기팬 및 상기 배기팬의 하류 측에 설치되어 내부공기의 배기를 선택적으로 개폐하는 제1개폐밸브로 이루어지는 것을 특징으로 한다.

상기 밀폐형 태릭이 상부에 배치되는 드릴플로어, 상기 밀폐형 태릭의 하부에 소통되게 연결된 밀폐형 문물 및 상기 드릴플로어의 외측에 형성되며, 상기 밀폐형 문물 내로 외부공기를 공급하는 공급유닛을 더 포함하는 것을 특징으로 한다.

상기 공급유닛은 외부공기가 유입되는 유입구, 상기 유입구에 연결하여 설치된 하터, 상기 유입구에 연결되어 외부공기를 공급하는 공급팬, 및 상기 공급팬의
하류 측에 설치되어 외부공기의 유입을 선택적으로 개폐하는 제2개폐밸브를 포함하는 것을 특징으로 한다.

[18] 상기 제2개폐밸브로부터 상기 밀폐형 문출로 연결되며, 상기 공급관에 의해 공급되는 외부공기를 상기 밀폐형 문출로 공급하는 송급배관이 더 형성되는 것을 특징으로 한다.

[19] 본 고안의 일측면에 따라, 극지용 선반의 밀폐형 태력구조로서, 밀폐형 태력의 상부 내측에 배기유닛이 설치되는 것을 포함한다.

[20] 상기 밀폐형 태력의 상부에는 상측으로 가수록 폭이 넓어지는 설치작업공간이 형성되어 상기 설치작업공간에는 크라운 블록을 설치한후 동시에 상기 밀폐형 태력의 상부에서 상기 배기유닛의 설치, 유지 및 보수 작업을 하게 하는 크라운 블록 플랫폼이 형성되는 것을 특징으로 한다.

발명의 효과

[21] 이상과 같은 본 고안에 의하면, 밀폐형 태력의 상부에 상단으로 갈수록 폭이 넓어지는 크라운 블록부를 설치함에 따라 크라운 블록의 플랫폼을 활용하여 밀폐형 태력의 상부에 배기유닛의 설치 및 유지,보수 작업을 할 수 있게 함으로써, 추가적인 티튜(duct) 설치 비용을 줄일 수 있고, 작업자의 안전성을 향상시킨 장점이 있다.

[22] 또한, 밀폐형 태력의 상부에 배기 유닛 설치 및 유지, 보수 작업을 위한 설치 및 작업공간을 마련하게 하는 장점이 있다.

[23] 그리고 본 고안은 밀폐형 문출측으로 외부공기를 공급하고 밀폐형 태력의 상부에서 배기함으로써 밀폐형 문출에서 밀폐형 태력의 상부로 공기의 흐름이 원활하게 이루어지고, 이를 통해 태력의 내부 장비, 작업자, 작업환경을 외부의 극한환경으로부터 보다 안전하게 보호 및 유지할 수 있는 장점이 있다.

도면의 간단한 설명

[24] 도 1은 본 고안의 일측면에 따른 극지용 선반의 밀폐형 태력구조를 도시한 사시도이다.

<부호의 설명>

10: 밀폐형 태력 15: 밀폐형 문출
20: 크라운 블록부 21: 외부관
25: 크라운 블록 플랫폼 30: 배기유닛
31: 배기구 32: 배기팬
33: 제1개폐밸브 40: 공급유닛
32: 유입구 42: 공급관
33: 하이터 44: 제2개폐밸브
34: 50: 설치작업공간
발명의 실시를 위한 최선의 형태

이하, 본 고안의 바람직한 실시예를 참조하여 상세히 설명한다.

도 1 및 도 2는 본 고안의 일 실시예에 따른 극지용 선박의 밀폐형 테러그구조를 도시한 도면이다.

도시된 바와 같이, 본 고안에 의한 밀폐형 테러구조는 극지용 선박에 설치된 밀폐형 테러(10), 상기 밀폐형 테러(10)의 하부에 연결된 밀폐형 문물(15)을 포함한다.

상기 밀폐형 테러(10)과 상기 밀폐형 문물(15)은 각 내부공간(10a, 15a)들이 소통하도록 연결되고, 상기 밀폐형 테러(10)는 선박의 드릴플로어(11)의 상부에 배치되며, 상기 밀폐형 문물(15)은 드릴플로어(11)의 하부에 배치된다.

상기 밀폐형 테러(10)은 그 외측이 밀폐된 구조로 구성되어 있는데, 상기 외측벽은 FRP(fiberglass reinforced polymer), 스테인레스 시트(SUS sheet), 아연도금 구조물 또는 샌드위치판넬(sandwich panel)으로 이루어질 수 있다. 그리고 상기 밀폐형 테러(10)의 측면에는 밀폐형 터널(17, 19)이 구비되며, 상기 각 밀폐형 터널(17, 19)의 단부에는 라이저 등과 같은 장비가 인업될 수 있는 개구가 형성되고, 상기 밀폐형 터널(17, 19)은 라이저 텐서너 콜(16, riser tensioner room)과 연결한다.

그리고 상기 밀폐형 테러(10)의 외측에는 상기 밀폐형 테러(10)의 외측에서 밀폐형 문물의 내부공간(15a) 또는 상기 밀폐형 테러의 내부공간(10a)으로 외부공기를 공급하는 공급유닛(40)이 설치된다.

일 실시예에 따르면, 상기 공급유닛(40)은 드릴플로어(11)의 외측에 설치되는 하나 이상의 유입구(41), 상기 유입구(41)에 연결되는 하나 이상의 공급관(42), 상기 유입구(41)에 연결하여 설치된 하나 이상의 허터(43), 상기 공급관(42)의 하류 측에 설치되어 외부공기의 유입을 선택적으로 개폐하는 하나 이상의 제2개폐밸브(44)를 포함한다.

상기 유입구(41)는 라이저 텐서너 콜(16)의 루프(13)측에 설치되고, 유입구(41)를 통해 외부공기가 유입된다.

상기 공급관(42)은 상기 유입구(41)의 하부에 연결되어 외부공기를 밀폐형 문물의 내부공간(15a)으로 강제 송풍하도록 구성되고, 이러한 상기 공급관(42)에 의해 강제 송풍 되는 외부공기는 공급배관(45)을 통해 밀폐형 문물의 내부공간(15a) 또는 밀폐형 테러의 내부공간(10a) 하측으로 공급될 수 있다.

상기 허터(43)는 극한지방에서 그 온도가 낮은 경우(특히, 겨울철에 준하는 온도로 0°C 이하)에 상기 유입구(41)를 통해 유입되는 외부공기를 가열하고, 이에 문물(15) 및 테러(10)의 내부공간(15a, 10a)으로 가열된 공기가 상기 공급관(42)에 의해 유입되어 내부장비, 작업자, 작업환경을 외부의 극한환경으로부터 안전하게 보호 및 유지될 수 있다.

상기 제2개폐밸브(44)는 화재 또는 비상시, 상기 공급관(42)의 보수 시에
공기의 흐름이 차단하도록 선택적으로 개폐작동할 수 있다.

[46] 한편, 상기 공급유닛(40)의 끝부분의 내부공간(15a)으로의 외부공기가 유입됨에 따라 밀폐형 문의 내부공간(15a)에서 상기 밀폐형 테리의 내부공간(10a) 상측으로 공기가 상승하도록 유도하는 배기유닛(30)이 밀폐형 테리(10)의 상단에 설치된다.

[47] 상기 밀폐형 테리(10)의 상단에는 크라운 블록부(20)를 이루고, 상기 크라운 블록부(20)는 내부에 크라운 블록(미도시, crown block)을 설치하며, 상부로 갈수록 그 폭이 넓어지는 구조로 구성되어 내부에 설치작업공간(50)을 형성하게 된다. 특히, 상기 크라운 블록부(20)의 적어도 일측면에 경사면(21)이 구비되고, 상기 경사면(21)에는 배기유닛(30)이 설치된다. 더불어 도 1 및 도 2의 실시예에 따르면, 상기 크라운 블록부(20)의 양측면에 한 쪽의 경사면(21)이 대칭적으로 형성되고, 각 상기 경사면(21)에 배기유닛(30)이 설치되는 것이 바람직하다.

[48] 상기 설치작업공간(50)은 하측으로 상기 테리의 내부공간(10a)과 소통하며, 하측을 가로지르게 크라운 블록 플랫폼(25)이 설치되고, 상기 크라운 블록 플랫폼(25)의 상면에 크라운 블록(미도시)이 설치되게 한다.

[49] 이와 같이, 본 고안은 상기 밀폐형 테리(10)의 상단에 상측 폭이 넓어지는 구조의 크라운 블록부(20)가 설치됨에 따라, 내부에 형성되는 상기 설치작업공간(50)이 상측으로 넓어지는 형상을 형성한다. 이에 따라, 상기 설치작업공간(50)은 상기 설치작업공간(50)에 설치되는 크라운 블록 플랫폼(25)을 활용하여 상기 배기유닛(30)을 상기 크라운 블록부(20)의 측면에 설치하고 유지 및 보수 작업을 할 수 있는 충분한 공간을 제공하는 것이다. 따라서, 작업자의 유지 및 보수 작업이 효과적으로 안전하게 진행될 수 있다.

[50] 이와 같은 상기 밀폐형 테리(10)의 상부에 배기유닛(30)을 설치함으로써, 상기 밀폐형 테리(10) 및 밀폐형 문(15) 내의 공기흐름이 매우 효율적으로 이루어져 내부상비, 작업자, 작업환경의 안정적인 보호 및 유지가 효과적으로 구현될 수 있다.

[51] 상기 배기유닛(30)은 상기 경사면(21)측에 설치된 하나 이상의 배기구(31), 상기 배기구(31)에 연결된 하나 이상의 배기팬(32)을 포함한다. 상기 배기팬(32)은 상기 크라운 블록(20) 내에 설치되며, 또한 상기 배기팬(32)에는 제1개폐밸브(33)가 연결되어 설치되며, 상기 제1개폐밸브(33)는 화재 또는 비상시, 상기 배기팬(32)의 보수 시에 공기의 흐름을 차단하도록 선택적으로 개폐작동할 수 있다.

[52] 이상과 같이, 본 고안은 상기 밀폐형 테리(10)의 상단에 상부로 갈수록 폭이 넓어지는 상기 크라운 블록부(20)가 구비됨에 따라 추가적인 둥트(duct) 설치 작업 없이 크라운 블록 플랫폼(25)을 활용함과 동시에 상기 배기유닛(30)의 설치를 위한 충분한 작업공간을 부여할 수 있고, 이를 통해 상기 밀폐형 테리(10)의 상단에 상기 배기유닛(30)의 설치 및 유지/보수를 보다 효과적으로 수행함과 더불어 작업자의 안전성을 향상시킨 장점이 있다.
그리고 본 고안은 상기 밀폐형 문풀(15) 층으로 외부공기를 공급하고 상기 밀폐형 대력(10)의 상부에서 배기하도록 함으로써 상기 밀폐형 문풀(15)에서 상기 밀폐형 대력(10)의 상부로 공기의 흐름이 원활하게 이루어진다. 이를 통해 상기 밀폐형 대력(10) 내의 내부 장비, 작업자, 작업환경을 외부의 극한환경으로부터 보다 안전하게 보호 및 유지할 수 있는 장점이 있다.
청구범위

[청구항 1] 극지용 섬박의 밀폐형 테리구조로서,
밀폐형 테리;
상기 밀폐형 테리의 상부에 형성되어 내부에 크라운 블록(crown block)이 설치됨과 함께 설치작업공간이 형성되는 크라운 블록부;
및
상기 설치작업공간에 외부와 소통되게 설치되는 배기유닛을
포함하는 것을 특징으로 하는 극지용 섬박의 밀폐형 테리구조.

[청구항 2] 청구항 1항에 있어서,
상기 크라운 블록부는 상단으로 갈수록 폭이 넓어지며,
상기 설치작업공간은 상단으로 갈수록 폭이 넓어지게 형성되는
것을 특징으로 하는 극지용 섬박의 밀폐형 테리구조.

[청구항 3] 청구항 1항에 있어서,
상기 크라운 블록부는 앞쪽면에 하나 이상의 경사면 경사면을
갖는 것을 특징으로 하는 극지용 섬박의 밀폐형 테리구조.

[청구항 4] 청구항 1항에 있어서,
상기 크라운 블록부가 하단에 비해 상단의 둔각이 넓게
형성되도록 양측면에 한 쌍의 경사면이 대칭적으로 형성되는 것을
특징으로 하는 극지용 섬박의 밀폐형 테리구조.

[청구항 5] 청구항 1항에 있어서,
상기 크라운 블록부의 지면에는 상기 크라운 블록을 설치하기
위한 크라운 블록 플랫폼이 형성되는 것을 특징으로 하는 극지용
섬박의 밀폐형 테리구조.

[청구항 6] 청구항 1항에 있어서,
상기 배기유닛은
상기 크라운 블록의 측면에 외부와 소통되는 배기구,
상기 배기구의 내측에 연결되는 배기관 및
상기 배기관의 하류 측에 설치되어 내부공기의 배기를 선택적으로
개폐하는 제1개폐밸브로 이루어지는 것을 특징으로 하는 극지용
섬박의 밀폐형 테리구조.

[청구항 7] 청구항 1항에 있어서,
상기 밀폐형 테리의 상부에 배치되는 드릴플로어,
상기 밀폐형 테리의 하부에 소통되게 연결된 밀폐형 문과,
및
상기 드릴플로어의 외측에 형성되며, 상기 밀폐형 문으로
외부공기를 공급하는 공급유닛을 더 포함하는 것을 특징으로 하는
극지용 섬박의 밀폐형 테리구조.

[청구항 8] 청구항 7항에 있어서,
상기 공급유닛은
외부공기가 유입되는 유입구,
상기 유입구에 연결되어 설치된 허터,
상기 유입구에 연결되어 외부공기를 공급하는 공급팬, 및
상기 공급팬의 하류 측에 설치되어 외부공기의 유입을 선택적으로
개폐하는 제2개폐밸브를 포함하는 것을 특정으로 하는 극저용
선박의 밀폐형 태력구조.

[청구항 9]
상기 제2개폐밸브로부터 상기 밀폐형 문풀로 연결되며, 상기
공급팬에 의해 공급되는 외부공기를 상기 밀폐형 문풀 내로
공급하는 총괄배관이 더 형성되는 것을 특정으로 하는 극저용
선박의 밀폐형 태력구조.

[청구항 10]
극저용 선박의 밀폐형 태력구조로서,
밀폐형 태력의 상부 내측에 배기유닛 설치되는 것을 특정으로
하는 극저용 선박의 밀폐형 태력구조.

[청구항 11]
상기 밀폐형 태력의 상부에는 상측으로 갈수록 폭이 넓어지는
설치작업공간이 형성되어 상기 설치작업공간에는 그라운 블록을
설치함과 동시에 상기 밀폐형 태력의 상부에서 상기 배기유닛의
설치, 유지 및 보수 작업을 하게 하는 그라운 블록 플렛폼이
형성되는 것을 특정으로 하는 극저용 선박의 밀폐형 태력구조.
A. CLASSIFICATION OF SUBJECT MATTER

B63B 35/44(2006.01)i, E21B 15/02(2006.01)i, B63B 27/04(2006.01)i, B63J 2/02(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B63B 35/44; B63J 2/00; B63J 2/10; E21B 19/14; B63J 2/02; B63J 2/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic database consulted during the international search (name of database and, where practical, search terms used)
eKOMPASS (KIPO internal) & Keywords: drillship, derrick, protected, arctic, weather

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 4,613,001 A (NILS EDBERG et al.) 23 September 1986 See column 2, line 18 - column 4, line 14 and figures 1 - 8.</td>
<td>1-11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

[[See patent family annex.]]

Date of the actual completion of the international search

17 FEBRUARY 2012 (17.02.2012)

Date of mailing of the international search report

17 FEBRUARY 2012 (17.02.2012)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seoam-ro, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4,613,001 A</td>
<td>23.09.1986</td>
<td>JP 60-088713 A</td>
<td>18.05.1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-1985-002427 A</td>
<td>13.05.1985</td>
</tr>
<tr>
<td>KR 20-0431766 Y1</td>
<td>24.11.2006</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 2000-238695 A</td>
<td>05.09.2000</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분류(IPC))

B63B 35/44(2006.01)i, E21B 15/02(2006.01)i, B63B 27/04(2006.01)i, B63J 2/02(2006.01)i

B. 조사된 분야

조사된 최소문헌(국제특허분류를 기재)
B63B 35/44; B63J 2/00; B63J 2/10; E21B 19/14; B63J 2/02; B63J 2/08

조사된 기술분야에 속하는 최소문헌 이외의 문헌
한국특허청, 일본특허청, 미국특허청, 유럽특허청, 기타

국제특허청에 이용된 전산 데이터베이스 (DB)의 명칭 및 검색어(해당하는 경우)
- KOMPASS(특허청 내부 검색시스템) & 기타: drillship, derrick, protected, arctic, weather

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리*</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 정구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 4,613,001 A (NILS EDEBERG 외 3명) 1986.09.23</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td>원병 2, 라인 18 - 원병 4, 라인 14 및 도면 1 - 8 참조.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>KR 20-043766 Y2 (삼성공업 주식회사) 2005.11.24</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td>케이지 2, 라인 1 - 케이지 3, 라인 26 및 도면 1 - 2 참조.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP 2000-238655 A (NIPPON YU SEN K.K.) 2000.09.05</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td>단락 3 - 단락 61 및 도면 1 - 8 참조.</td>
<td></td>
</tr>
</tbody>
</table>

[추가 문헌이 C(계속)에 기재되어 있습니다.]

[대응특허에 관한 별지함 참조하십시오.]

* 인용된 문헌의 특별 카테고리:
 “A” 특별히 관련이 없는 것으로 보이는 일반적인 기술수준을 경의한 문헌
 “E” 국제특허청이나 다른 특허청의 공개된 문헌
 “L” 관련한 문헌에 의문을 제기하는 문헌 또는 다른 연구용문헌의 공개일
 “O” 구조 계시, 사용, 정지 또는 기타 수단을 언급하고 있는 문헌
 “P” 유사기기의 기술문헌

국제조사의 실적 요약

2012년 02월 17일 (17.02.2012)

 ISA/KR의 명칭 및 주소
 대한민국 특허청
 302-701 대전광역시 서구 정자로 189, 정부대전청사

상식관
김종열
전화번호 82-42-481-5467

서식 PCT/ISA/210 (두 번째 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4,613,001 A</td>
<td>1986.09.23</td>
<td>JP 60-088713 A</td>
<td>1985.05.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-1985-0002427 A</td>
<td>1985.05.13</td>
</tr>
<tr>
<td>KR 20-0431766 Y1</td>
<td>2006.11.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2000-238695 A</td>
<td>2000.09.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

서식 PCT/ISA/210 (대응특허 추가용지) (2009년 7월)