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(57) Abstract: A medical system includes a medical device and a
controller. The medical device is controlled according to a control
protocol. The controller is configured to receive a measured data
set containing a current value at a current time and past values at
past times of a physiologic signal measured on a recipient, calcu-
late a difference signal at the current time based on the measured
data set, and predict a difference value using the difference signal
and a prediction algorithm. The difference value is a difference
between a predicted future value of the physiologic signal at a fu-
ture time and the current value. The controller is further con-
figured to calculate the predicted future value based on the differ-
ence value and the current value and update the control protocol
according to the predicted future value.
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THERAPY CONTROL USING MOTION PREDICTION

DESCRIPTION

Cross-Reference to Related Application

(11 This application is based upon and claims the benefit of priority from U.S.
Provisional Application No. 62/289,144, filed on January 29, 2016, the entire content of

which is incorporated herein by reference.

Technology Field

[2] The disclosure relates to therapy control and, more particularly, to image-

guided therapy control systems and methods using motion prediction.

BACKGROUND

[3] Radiation therapy or “radiotherapy” can be used to treat cancers or other
ailments. Generally, ionizing radiation in the form of a collimated beam is directed from
an external source toward a patient. The dose of an applied radiation therapy beam or a
sequence of applied radiation therapy beams is generally controlled such that a target
locus within the patient, such as a tumor, receives a prescribed cumulative dose of
radiation, while radiation-induced damage to healthy tissue surrounding the target locus
is to be avoided. The radiation therapy beam can include high-energy photons,
electrons, or other particles such as protons.

(4] In one approach, a radiation therapy beam can be generated, for
example, at least in part using a linear accelerator. The linear accelerator accelerates
electrons and directs the electrons to a target, such as a metallic target, to elicit high-
energy photons. The high-energy photons, generally having an energy in a mega-
electron-volt (MeV) range for therapeutic use, can then be controlled, shaped, or
modulated and directed to the target locus, such as a tumor region within the patient. A
specified or selectable therapy beam energy can be used, such as for delivering a
diagnostic energy level range or a therapeutic energy level range. Modulation of a
therapy beam can be provided by one or more attenuators or collimators. The field size
and shape of the radiation beam can be adjusted to avoid damaging healthy tissue
adjacent to the targeted tissue by conforming the projected beam to a profile of the

targeted tissue.
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[5] In one approach, a treatment plan can be developed before radiation
therapy is delivered, such as using one or more medical imaging techniques. In such an
approach, imaging can be performed in an “offline” manner. A health care provider, such
as a physician, may use three-dimensional imaging information indicative of the patient
anatomy to identify a target locus along with other regions such as organs near the
tumor. Such imaging information can be obtained using various imaging modalities,
such as X-ray, computed tomography (CT), magnetic resonance imaging (MRI), positron
emission tomography (PET), or single-photon emission computed tomography (SPECT),
etc. The health care provider can delineate the target locus that is to receive a
prescribed radiation dose using a manual technique, and the health care provider can
similarly delineate nearby tissue, such as organs, at risk of damage from the radiation
treatment. Alternatively or additionally, an automated tool can be used to assist in
identifying or delineating the target locus. A radiation therapy treatment plan can then be
created based on clinical or dosimetric objectives, and constraints. The treatment plan
can then be executed by positioning the patient and delivering the prescribed radiation
therapy to the patient. The therapy treatment plan can include dose “fractioning,”
whereby a sequence of radiation therapy deliveries are provided, with each therapy
delivery including a specified fraction of a total prescribed dose.

(6] As discussed above, a radiation therapy can be guided by images that
provide knowledge of the target locus. However, certain anatomical regions, e.g., the
lungs, are subject to quasiperiodic motion such as respiratory motion, that is significant
enough to affect the treatment. For example, respiratory motion may change the
locations of some organs, such as thoracic or abdominal organs. The movement of the
organ caused by the respiratory motion can lead to imaging artifacts, making the images
less effective in guiding the therapy. Therefore, further knowledge of the respiratory
motion may be needed to plan an effective radiation therapy. However, unlike periodic
motion, quasiperiodic motion does not have a fixed frequency, making it harder to predict
future motions.

7 Moreover, the respiratory motion typically occurs for a relatively short time
period. However, the process of taking an image, analyzing it, and determining the
position of the target, can take a long time. That results in a latency between acquiring
the mage and compensating for the respiratory motion. Therefore, the prediction of the

respiratory motion is needed to allow a prediction of the target position in real time.
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[8] The disclosed methods and systems are designed to further improve the

motion prediction.
SUMMARY

[9] In accordance with the present disclosure, there is provided a medical
system including a medical device and a controller. The medical device is controlled
according to a control protocol. The controller is configured to receive a measured data
set containing a current value at a current time and past values at past times of a
physiologic signal measured on a recipient and calculate a difference signal at the
current time based on the measured data set. The difference signal includes a first order
finite difference of the physiologic signal at the current time and a second order finite
difference of the physiologic signal at the current time. The controller is also configured
to predict a difference value using the difference signal and a prediction algorithm. The
difference value is a difference between a predicted future value of the physiologic signal
at a future time and the current value. The controller is further configured to calculate the
predicted future value based on the difference value and the current value and update
the control protocol according to the predicted future value.

[10] Also in accordance with the present disclosure, there is provided a
method for controlling a medical device. The method includes receiving a measured
data set containing a current value at a current time and past values at past times of a
physiologic signal measured on a recipient and calculating a difference signal at the
current time based on the measured data set. The difference signal includes a first order
finite difference of the physiologic signal at the current time and a second order finite
difference of the physiologic signal at the current time. The method also includes
predicting a difference value using the difference signal and a prediction algorithm. The
difference value is a difference between a predicted future value of the physiologic signal
at a future time and the current value. The method further includes calculating the
predicted future value based on the difference value and the current value and updating
a control protocol of the medical device according to the predicted future value. The
control protocol controls the medical device.

[11] Features and advantages consistent with the disclosure will be set forth in
part in the description which follows, and in part will be obvious from the description, or
may be learned by practice of the disclosure. Such features and advantages will be
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realized and attained by means of the elements and combinations particularly pointed
out in the appended claims.

[12] It is to be understood that both the foregoing general description and the
following detailed description are exemplary and explanatory only and are not restrictive

of the invention, as claimed.

BRIEF DESCRIPTION OF DRAWING

[1] In the drawings, which are not necessarily drawn to scale, like numerals may
describe similar components in different views. Like numerals having different
letter suffixes may represent different instances of similar components. The
drawings illustrate generally, by way of example, but not by way of limitation,
various embodiments discussed in the present document.

[2] FIG. 1A illustrates an exemplary radiation therapy system that can include

radiation therapy output configured to provide a therapy beam.

[3] FIG. 1B illustrates an exemplary system including a combined radiation
therapy system and an imaging system, such as a computed tomography (CT) imaging
system.

(4] FIG. 1C illustrates a partially cut-away view of an exemplary system
including a combined radiation therapy system and an imaging system, such as a
nuclear magnetic resonance (MR) imaging system.

[5] FIG. 2 illustrates an exemplary collimator configuration for shaping,
directing, or modulating an intensity of a radiation therapy beam.

[6] FIG. 3A illustrates an exemplary system including a radiation therapy
controller having an imaging input, a radiation therapy generator, and a radiation therapy
output.

[7] FIG. 3B illustrates a portion of an exemplary system included in a
radiation therapy controller system or an imaging system.

(8] FIG. 4A illustrates a one-dimensional representation of an exemplary
cyclic motion model, corresponding to a respiration cycle.

9] FIG. 4B illustrates an exemplary cyclic motion of a region of interest
including a tumor.

[10] FIG. 5 illustrates an example for using a cyclic motion model to predict a
target locus using information indicative of an earlier target locus extracted from imaging

information.
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[11] FIG. 6 illustrates an example for generating an updated therapy protocol
in an adaptive manner using a cyclic motion model, and using a specified latency
between image acquisition of the earlier target locus and a scheduled upcoming time of
therapy delivery.

[12] FIG. 7 is a flow chart of an exemplary method for receiving imaging
information about a time-varying target Ioéus and generating an updated therapy protocol
to align a therapy locus with a predicted target locus.

[13] FIG. 8 is a flow chart of an exemplary method for establishing a cyclic
motion model, and providing a predicted target locus using the cyclic motion model.

[14] FIG. 9 is a flow chart of an exemplary method for signal prediction using
finite differences according to an exemplary embodiment.

[15] FIG. 10 is a flow chart of an exemplary method for training a predictor

using finite differences according to an exemplary embodiment.

DETAILED DESCRIPTION

[16] A radiation therapy treatment plan can be adjusted contemporaneously
with therapy delivery in an adaptive manner, such as to compensate for cyclical changes
in a position of a target locus to be treated with a radiation therapy. For example, a
desired target, such as a tumor or an organ at risk, can shift in position to such an extent
that if an exclusively “offline” approach to therapy planning is used, a therapy locus of
delivered radiation therapy can become misaligned with the desired target when the
radiation therapy is eventually delivered.

[17] In one exemplary approach, imaging can be performed
contemporaneously with delivery of a radiation therapy, such as performing an imaging
acquisition just before initiating radiation therapy delivery during a therapy delivery
session, or using a sequence of respective therapy delivery and imaging acquisition
instances over a course of a radiation therapy delivery session. Such imaging can
provide information helpful for identifying a position of the target locus or for identifying
motion of the target locus. Such contemporaneous imaging can be referred to generally
as “real-time,” although a latency or time delay usually exists between an acquisition of
an image and a delivery of radiation therapy.

(18] Motion of the target locus can be caused by one or more sources, such as
heart motion, respiration, a reflex such as a cough, or other movements. In the case of

cyclic motion, such as associated with respiration, a trajectory of a target locus can be
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predicted using a cyclic motion model along with imaging information obtained regarding
earlier motion of the target locus. For example, a predicted target locus for an upcoming
time of therapy delivery can be generated using information indicative of an earlier target
locus extracted from the imaging information, along with a cyclic motion model,
according to a specified latency between image acquisition of the earlier target locus and
the scheduled upcoming time of therapy delivery.

[19] An updated therapy protocol can be generated in an adaptive manner to
align the therapy locus with the predicted target locus. A therapy protocol is generally a
therapy plan that the therapy delivery system may execute. For example, the therapy
protocol can include one or more of: (a) adjustment of one or more of actuators coupled
to a moveable platform such as a couch or table supporting the therapy recipient, (b)
adjustment of one or more apertures configured to collimate or shape the therapy beam,
or (c) adjustment of one or more actuators configured to position a therapy output to
establish a specified therapy beam direction. Such adjustment can be performed
automatically before or during therapy delivery. The adjustments may be characterized
using parameter values, trajectories, ranges, etc. Updating a therapy protocol may
involve updating such values, trajectories, or ranges.

[20] In an illustrative example, the cyclic motion model can be established at
least in part using a series of two or more imaging acquisitions, such as acquisitions of
three-dimensional (volumetric) imaging information of a region. Later, such as just
before therapy delivery, the time-varying target locus within the therapy recipient can be
established using other imaging information after establishing the cyclic motion model.
Such other imaging information can include one or more of two-dimensional imaging or
volumetric imaging slices including a sub-region within the prior-imaged volumetric
region. For example, a predicted target locus can be automatically generated by
extracting information indicative of a feature from two-dimensional imaging information or
imaging sliées, the feature corresponding to an earlier target locus. A phase of the cyclic
motion model corresponding to the location of the feature can be determined. In
response to determining the phase, a change in the location of the feature can be
predicted using a later phase of the cyclic motion model corresponding to the scheduled
upcoming time of therapy delivery can be determined. For example, a spatial
displacement in the location of the feature can be predicted using a difference in outputs

of the cyclic motion model between the earlier phase and later phases.
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[21] The information indicative of the determined change in the location of the
feature can be applied to the information indicative to the earlier target locus to provide
the predicted target locus. For example, a spatial displacement of the feature can be
applied to the information indicative of the earlier target locus, such as shifting a centroid
of the earlier target locus to obtain a predicted target locus. The target locus can include
a tumor, and shifting the location of the earlier target locus to obtain the predicted target
locus can include assuming that the locus is rigid (e.g., assuming that the predicted
target locus is not deformed as compared to the earlier target locus).

[22] According to various illustrative examples described in this document,
apparatus and techniques described herein can include use of a linear accelerator
(LINAC) to generate a radiation therapy beam, and use of one or more of a computed
tomography (CT) imaging system, or a nuclear magnetic resonance (MR) imaging
system to acquire the imaging information. Other imaging modalities and radiation
therapy techniques can be used.

[23] It is contemplated that a radiotherapy delivery system is just one example
of a medical system, and a therapy protocol is one example of a control protocol,
according to which a medical system can be controlled. “A medical system,” consistent
with the disclosure, may include any medical device that measures patient data that is
affected by motions. Such a medical system may be a treatment system, a surgical
system, a monitoring system, or a diagnostic system. The motions may be
quasiperiodic, such as cardiac motions and respiratory motions. A “control protocol” may
be used to control the operation of a medical system, in a way that compensates for the
motions. For example, a control protocol may include adjustments of any components of
the particular medical system being controlled.

[24] FIG. 1A illustrates an exemplary radiation therapy system 102 that can
include radiation therapy output 104 configured to provide a therapy beam 108. The
radiation therapy output 104 can include one or more attenuators or collimators, such as
a multi-leaf collimator (MLC) as described in the illustrative example of FIG. 2. Referring
back to FIG. 1A, a patient can be positioned in a region 112, such as on a platform 116
(e.g., a table or a couch), to receive a radiation therapy dose according to a radiation
therapy treatment plan. The radiation therapy output 104 can be located on a gantry 106
or other mechanical support, such as to rotate the therapy output 104 around an axis
(“A”). One or more of the platform 116 or the radiation therapy output 104 can be

moveable to other locations, such as moveable in transverse direction (“T") or a lateral



WO 2017/130140 PCT/IB2017/050427

direction (“L"). Other degrees of freedom are possible, such as rotation about one or
more other axes, such as rotation about a transverse axis (indicated as “R").

[25] The coordinate system (including axes A, T, and L) shown in FIG. 1A can
have an origin located at an isocenter 110. The isocenter can be defined as a location
where the radiation therapy beam 108 intersects the origin of a coordinate axis, such as
to deliver a prescribed radiation dose to a location on or within a patient. For example,
the isocenter 110 can be defined as a location where the radiation therapy beam 108
intersects the patient for various rotational positions of the radiation therapy output 104
as positioned by the gantry 106 around the axis A.

[26] In an example, a detector 114 can be located within a field of the therapy
beam 108, such as can include a flat panel detector (e.g., a direct detector or a
scintillator detector). The detector 114 can be mounted on the gantry 106 opposite the
radiation therapy output 104, such as to maintain alignment with the therapy beam 108
as the gantry 106 rotates. In this manner, the detector 114 can be used to monitor the
therapy beam 108 or the detector can be used 114 for imaging, such as portal imaging.

[27] In some embodiments, therapy beam 108 may be a kilovolts (KV) beam
or a megavolts (MV) beam. Therapy beam 108 may be made up of a spectrum of
energies, the maximum energy of which is approximately equal to the beam’s maximum
electric potential times the electron charge. For an MV beam, the maximum electric
potential used by the linear accelerator to produce the photon beam is on the megavolts
level. For example, a 1 MV beam will produce photons of no more than about 1
megaelectron-Volt (MeV).

[28] In an illustrative example, one or more of the platform 116, the therapy
output 104, or the gantry 106 can be automatically positioned, and the therapy output
104 can establish the therapy beam 108 according to a specified dose for a particular
therapy delivery instance. A sequence of therapy deliveries can be specified according
to a radiation therapy treatment plan, such as using one or more different orientations or
locations of the gantry 106, platform 116, or therapy output 104. The therapy deliveries
can occur sequentially, but can intersect in a desired therapy locus on or within the
patient, such as at the isocenter 110. A prescribed cumulative dose of radiation therapy
can thereby be delivered to the therapy locus while damage to tissue nearby the therapy
locus is reduced or avoided.

[29] FIG. 1B illustrates an exemplary system that can include a combined

radiation therapy system 102 and an imaging system, such as can include a computed
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tomography (CT) imaging system. The CT imaging system can include an imaging X-ray
source 118, such as providing X-ray energy in a kiloelectron-Volt (keV) energy range or a
megaelectron-Volt (MeV) range. The imaging X-ray source 118 provide a fan-shaped
and/or a conical beam 120 directed to an imaging detector 122, such as a flat panel
detector. The radiation therapy system 102 can be similar to the system 102 described
in relation to FIG. 1A, such as including a radiation therapy output 104, a gantry 106, a
platform 116, and another flat panel detector 114. As in the examples of FIG. 1A and
FIG. 1C, the radiation therapy system 102 can be coupled to, or can include, a high-
energy accelerator configured to provide a therapeutic radiation beam. The X-ray source
118 can provide a comparatively-lower-energy X-ray diagnostic beam, for imaging.

[30] In the illustrative example of FIG. 1B, the radiation therapy output 104 and
the X-ray source 118 can be mounted on the same rotating gantry 106, rotationally-
separated from each other by 90 degrees. In another example, two or more X-ray
sources can be mounted along the circumference of the gantry 106, such as each having
its own detector arrangement to provide multiple angles of diagnostic imaging
concurrently. Similarly, multiple radiation therapy outputs 104 can be provided.

[31] FIG. 1C illustrates a partially cut-away view of an exemplary s;/stem that
can include a combined radiation therapy system 102 and an imaging system, such as
can include a nuclear magnetic resonance (MR) imaging system 130. The MR imaging
system 130 can be arranged to define a “bore” around an axis (“A”), and the radiation
therapy system can include a radiation therapy output 104, such as to provide a radiation
therapy beam 108 directed to an isocenter 110 within the bore along the axis, A. The
radiation therapy output 104 can include a collimator 124, such as to one or more of
control, shape, or modulate radiation therapy beam 108 to direct the beam 108 to a
therapy locus aligned with a desired target locus within a patient. The patient can be
supported by a platform. The platform can be positioned along one or more of an axial
direction, A, a lateral direction, L, or a transverse direction, T. One or more portions of
the radiation therapy system 102 can be mounted on a gantry 106, such as to rotate the
radiation therapy output 104 about the axis A.

[32] FIG. 1A, FIG. 1B, and FIG. 1C illustrate examples including a
configuration where a therapy output can be rotated around a central axis (e.g., an axis
“A"). Other radiation therapy output configurations can be used. For example, a
radiation therapy output can be mounted to a robotic arm or manipulator having multiple

degrees of freedom. In yet another example, the therapy output can be fixed, such as
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located in a region laterally separated from the patient, and a platform supporting the
patient can be used to align a radiation therapy isocenter with a specified target locus
within the patient.

[33] FIG. 2 illustrates an exemplary multi-leaf collimator (MLC) 132, for
shaping, directing, or modulating an intensity of a radiation therapy beam. In FIG. 2,
leaves 132A through 132J can be automatically positioned to define an aperture
approximating a tumor 140 cross section or projection. The leaves 132A through 132J
can be made of a material specified to attenuate or block the radiation beam in regions
other than the aperture, in accordance with the radiation treatment plan. For example,
the leaves 132A through 132J can include metallic plates, such as comprising tungsten,
with a long axis of the plates oriented parallel to a beam direction, and having ends
oriented orthogonally to the beam direction (as shown in the plane of the illustration of
FIG. 2). A “state” of the MLC 132 can be adjusted adaptively during a course of radiation
therapy, such as to establish a therapy beam that better approximates a shape or
location of the tumor 140 or other target locus, as compared to using a static collimator
configuration or as compared to using an MLC 132 configuration determined exclusively
using an “offline” therapy planning technique. A radiation therapy technique using the
MLC 132 to produce a specified radiation dose distribution to a tumor or to specific areas
within a tumor can be referred to as Intensity Modulated Radiation Therapy (IMRT).

[34] FIG. 3A illustrates an exemplary system 300 including a radiation therapy
controller system 354 having an imaging input 360, a radiation therapy generator 356,
and a radiation therapy output 304. The therapy generator 356 can include an
accelerator, such as a linear accelerator, and the therapy output 304 can be coupled to
the therapy generator 356 to process a beam of energetic photons or particles provided
by the therapy generator 356. For example, the therapy output 304 can include or can
be coupled to an output actuator 366 to one or more of rotate or translate the therapy
output 304 to provide a radiation therapy beam having a therapy locus directed to a
desired target locus. The therapy output 304 can include a collimator 364, such as a
multi-leaf collimator as mentioned above in relation to FIG. 2. Referring back to FIG. 3A,
the therapy controller system 354 can be configured to control one or more of the
therapy generator 356, the therapy output 304, or a patient position actuator 316 (such
as a movable platform including a couch or table), using an adaptive radiation treatment
technique as described in other examples herein.

10
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[35] The therapy controller system 354 can be coupled to one or more
sensors, such as using a sensor input 362. For example, a patient sensor 358 can
provide physiologic information to the therapy controller system, such as information
indicative of one or more of respiration (e.g., using a plethysmographic sensor), patient
cardiac mechanical or electrical activity, peripheral circulatory activity, patient position, or
patient motion. Such information can provide a surrogate signal correlated with motion
of one or more organs or other regions to be targeted by the therapy output 304.

[36] The imaging input 360 can be coupled to an imaging system 350 (such as
can include a computed tomography imaging system or a nuclear magnetic resonance
(MR) imaging system, as illustrative examples). Alternatively, or in addition, the therapy
controller system 354 can receive imaging information from an imaging data store 352,
such as a centralized imaging database or imaging server. One or more of the therapy
controller system 354 or the imaging system 350 can include elements shown and
described in relation to the system 396 shown in FIG. 3B.

[37] FIG. 3B illustrates a portion of a system 396 including elements of a
radiation therapy controller system 354 or an imaging system 350. The system 396 can
include a main memory circuit 378 into which executable instructions or other data can
be loaded, and a processor circuit 370 to execute or otherwise perform such instructions.
The system 396 can include a static memory circuit 376, such as to provide a cache or
other structure to store data related to a currently-executing series of instructions. A
read-only memory (ROM) circuit 374 can permanently store instructions such as to
facilitate a boot sequence for the system 396 or to facilitate operation of hardware
devices attached to the system 396.

[38] The system 396 can include a bus circuit 398 configured to convey
information between elements or circuits comprising the system 396. For example, a
drive unit 372 can be included or attached to the server, such as to store instructions
related to the radiation therapy planning, imaging, or radiation therapy delivery
techniques as mentioned elsewhere herein. The system 396 can include one or more of
a display 386 such as can include a bit-field or alphanumeric display, an alpha-numeric
control 384 such as a keyboard, or a cursor control device 382 such as a touch screen,
touch pad, trackball, or mouse. Examples of systems that can use or include elements
of the system 396 include one or more of the therapy controller system 354, the imaging

system 350, or a treatment planning system.

11
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[39] The system 396 can be connected to a centralized network 390 (e.g., a
local area network, an “intranet,” or a wide area network such as the Internet), such as to
store or retrieve information from a server 394 (e.g., such as a server housing an
imaging information database, a radiation therapy treatment plan, or other information
such as a patient medical record). For example, the system 396 can include one or
more wired or wireless interface circuits, such as a network interface circuit 380
configured to provide access to other systems such as to facilitate exchange of imaging
or radiation therapy control information.

[40] The system 396 can describe an embedded controller included as a
portion of other apparatus, a personal computer (PC), a tablet device, or a cellular
communications device such as a “smart” cellular device, as illustrative examples. While
a single processor circuit 370 is shown illustratively in FIG. 3B, a plurality of processor
circuits, “cores,” or machines can be used, such as can individually or jointly perform a
set (or multiple sets) of instructions to perform any one or more of the techniques
described herein, such as instructions stored on a processor-readable medium (also
referred to as a computer-readable medium).

[41] lllustrative examples of a processor-readable medium include solid-state
memories, optical, or magnetic media. For example, solid-state memories can include
one or more of a read-only memory (ROM), a flash memory, a dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM
and the like)), or a static memory (e.g., flash memory, static random access memory
(SRAM, or the like)).

[42] The processor circuit 370 can include one or more processing circuits
such as a microprocessor, a central processing unit, or the like. In particular, the
processor can include a complex instruction set computing (CISC) architecture
microprocessor, a reduced instruction set computing (RISC) architecture microprocessor,
or a very long instruction word (VLIW) architecture microprocessor. According to other
examples, the processor circuit 370 can include one or more of a microcontroller, an
application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a
digital signal processor (DSP), a network processor, or a system-on-chip (SoC) circuit.
For example, a microcontroller can include one more integrated circuits having a memory

circuit and processor circuit co-integrated within a single device package.
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Motion Prediction for Adaptive Radiation Therapy using Imaging and a Cyclic Motion
Model

[43] As mentioned above, a radiation therapy treatment plan can be adjusted
contemporaneously with therapy delivery in an adaptive manner, such as to compensate
for cyclical changes in a position of a target locus to be treated with a radiation therapy.
For example, a desired target, such as a tumor, can shift in position to such an extent
that if an exclusively “offline” approach to therapy planning is used, a therapy locus of
delivered radiation therapy can become significantly misaligned with the desired target
when the radiation therapy is eventually delivered. Motion of the target locus can be
caused by one or more sources, such as heart motion, respiration, a reflex such as a
cough, or other movements. In the case of cyclic motion, such as associated with
respiration, a trajectory of a target locus can be predicted using a cyclic motion model
along with imaging information obtained regarding earlier motion of the target locus. The
techniques described below can be implemented in whole or in part using, or can use,
the systems described above in relation to one or more of FIG. 1A, FIG. 1B, FIG. 1C,
FIG. 2, FIG. 3A, or FIG. 3B.

- [44] FIG. 4A illustrates a one-dimensional representation of a cyclic motion
model 400, corresponding to physiologic cycle 410 (e.g., a respiration cycle), such as
defined over a duration extending from a time, 0, to time “T,” where T represents a period
of the cyclic motion. The motion model 400 can represent an absolute or relative spatial
position or displacement, such as modeling an absolute or relative trajectory of an organ
as function of time, f(f). The trajectory can represent time-varying motion of a feature
corresponding to the organ. In some embodiments, the feature can be a reliably-
identifiable point on the organ, such as a centroid of the organ. In an illustrative example
where the cyclic motion model represents respiration, at time “0” the function f(0) can
define a beginning-of-inspiration (BOI) reference datum 402. The function also defines
an end-of-inspiration (EOI) or beginning-of-expiration (BOE) reference datum 404. At
“ time T, the function f(T) can define an end-of-expiration (EOE) datum 406.

[45] In the illustrative example of FIG. 4A, the motion model f(t) is shown as a
scalar function of time having a single displacement dimension. However, such a model
is merely illustrative and other examples can include a cyclic motion model defined by
multiple spatial displacement functions. For example, in a Cartesian coordinate system,
such spatial displacement functions comprising the cyclic motion model can be

represented by functions x(t), y(t), and z(t). One or more of the reference locations (e.g.,
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BOI, EOI, BOE, EOE) defined in FIG. 4A can be defined within one or more of x(t), y(t),
and z(f). Accordingly, the cyclic motion model can be developed for each dimensional
component. While various examples herein refer generally to continuous time
mathematical functions, an automated implementation of techniques described herein
can include using a discretized representation of the cyclic motion model (e.g., a
sampled or discrete representation of the model values corresponding to discrete time or
discrete phase values).

[46] FIG. 4B illustrates a cyclic motion of a region of interest 416A. According
to various embodiments, the region of interest 416A can include an organ, a portion of an
organ, or a tumor. A series of two or more imaging acquisitions can be performed, using
one or more imaging techniques to obtain imaging information representative of the
location of the region of interest 416A. For example, one or more of computed
tomography (CT) or nuclear magnetic resonance (MR) imaging can be used, such as in
an “offline” manner, to establish a location of the region of interest 416A.

[47] The location of the region of interest 416A can be established from the
imaging information at least in part using one or more of manual delineation of a
boundary of the region of interest 416A, or an automated segmentation technique. For
example, segmentation can include assigning one or more pixels or voxels from acquired
imaging information as being members of the set corresponding to the region of interest
416A. Segmentation can include determining a contrast value of one or more pixels or
voxels and comparing the contrast value to a criterion (e.g., a contrast threshold), such
as to assist group the one or more pixels or voxels as members of the set containing the
region of interest. A feature can then be extracted from the segmented region of interest
416A, such as a centroid location 408A.

(48] The region of interest 416A can move in a time-varying fashion, such as
to a location corresponding to a displaced region of interest 416B, having a
correspondingly-displaced centroid 408B. Information about a displaced region of
interest 416B and the correspondingly-displaced centroid 408B can also be extracted
from one or more images in the series of two or more imaging acquisitions mentioned
above. In this manner, a series of two or more images can be used to describe an
absolute or relative trajectory of a feature, such as the determined centroid 408A and
centroid 408B locations. In an illustrative example, the series of two or more images
comprises a series of volumetric images (e.g., a “4D" series of images including three

spatial dimensions acquired at different times). Other types of imaging can be used,
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such as one-dimensional imaging, or two-dimensional imaging or imaging slices
extending in two dimension and also having a finite depth.

[49] The use of a centroid as an extracted feature is illustrative. Other
features can be used, such as a manually-identified or automatically-determined location
of a point or surface (e.g., an edge 412A of the region-of-interest 416A and a displaced
edge 412B of the displaced region of interest 416B). In yet another example, a motion of
an implantable or external seed fiducial can be tracked, such using a motion of an
indicium 414A (that can represent a seed location at a first time) in the imaging
information corresponding to a first location, and a displaced indicium 414B
corresponding to the displaced location (that can represent the seed location at a later
time). Other techniques can be used to track displacement, such as use of an MR
imaging “navigator echo,” such as assigned to a location near an edge of an anatomical
feature nearby or included as a portion of the region of interest.

[50] FIG. 5 illustrates an exemplary cyclic motion model 500 to predict a target
locus using information indicative of an earlier target locus extracted from imaging
information. Imaging information can be obtained contemporaneously with radiation
therapy delivery, such as to adjust a radiation therapy protocol to adaptively compensate
for motion of a radiation therapy target locus. For example, imaging information can be
obtained just before therapy delivery to be used in determining a predicted target locus.
Information about one or more acquired images can be used to align an instance of an
imaging acquisition with a portion of the cyclic motion model, such as including
determining a relative time between a reference datum such as a datum 504
(corresponding to a time ty), and a time, t1, corresponding to an acquired image instance.
In the illustrative example of a respiration model, the datum 504 can correspond to an
end of inspiration (EQI) or a beginning of expiration (BOE) and can be detected such as
by analyzing a gradient of respiration-related information from information extracted from
a series of images corresponding to a complete respiratory cycle, or using surrogate
information obtained from another sensor (e.g., a plethysmographic sensor).

[51] A scheduled upcoming therapy delivery time can occur at t,. Accordingly,
a predicted target location can be generated corresponding to time to. In an example,
the cyclic motion model can be evaluated at a time corresponding to t;, and a time
corresponding to f, = t;+0. The variable, 0, can represent a specified latency, such as
between a time corresponding to an earlier image acquisition at time t;, and a scheduled
upcoming therapy delivery at t,.
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[52] In one approach, the cyclic motion model 500 can represent an absolute
position of a feature of interest, such as a centroid of a target locus corresponding to a
tumor or an organ, and the value of the cyclic motion model evaluated at time t; can be
used directly as the predicted feature location at the time of therapy delivery. However,
such an approach can have drawbacks, such as leading to inaccurate motion prediction
if the patient is repositioned or is unable to be positioned in the same manner as when
the imaging information was first acquired and used to develop the cyclic motion model.
By contrast, a difference in the values of the cyclic motion model can be used to estimate
a relative displacement of an imaging feature, and such a relative displacement can be
used to adjust the location of the imaging feature to determine a predicted feature
location at a later time, particularly over short time scales where the latency O is
relatively small with respect to the overall cycle length. Accordingly, motion prediction
performed using a change in feature position derived from a cyclic motion model can be
insensitive, at least to a first order, to variations in target motion between the absolute
position predicted by the model and the actual target position observed using imaging.

[53] As an illustrative example, a difference between values of the cyclic
motion model can be determined, such as can be represented by f(t;+) — f(t;). Such a
determined difference can then be used to adjust a feature location obtained from the
imaging information. For example, if an imaging feature location of an acquired image
corresponding to time ty is represented by I«(t1), then the predicted feature location at
time t, can be represented by I¢(tz)=Iq(t;)+[f(t;+0) — f(t;)]. In this manner, the cyclic
motion model need not accurately predict a feature location in an absolute sense, but the
cyclic motion model can provide a useful estimate of a change in the feature location
(e.g., a relative spatial displacement) when the time corresponding to the image
acquisition is aligned with the appropriate location in the cyclic model.

[54] Alignment of the time corresponding to the image acquisition can include
determining a time elapsed between a reference point in a physiologic cycle of a patient
and a time at which an image is acquired. For example, a cycle phase can range from a
t-value of 0 to T, where T can be the total cycle duration, such as period corresponding
to a breathing cycle. A fraction of the total cycle duration (e.g., a percentage) can be
determined using an expression, phase = (100f) / T. In such an expression, phase can
represent a phase-percentage of the cycle at a cycle phase corresponding to time f. T
can be presented in units of time (e.g., seconds or milliseconds). T can be empirically

determined, such as by averaging a duration between one or more reference points or
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using one or more other techniques to determine a central tendency of a series of cycle
duration values. In an illustrative example relating to respiration, use of cycle reference
points can include measuring a series of durations between end-of-expiration (EOE) or
end-of-inspiration (EOI) over one or more breathing cycles to estimate T.

[55] Use of “phase” rather than an absolute time can allow use of a cyclic
motion model that is at least somewhat scale invariant over the time dimension because
such a phase is generally dimensionless. For example, an actual breathing cycle period
of a patient will generally vary in absolute duration from cycle-to-cycle. Use of phase to
describe an acquisition time of an image relative to a reference point along the cycle
allows alignment of a phase corresponding to the acquisition time with the appropriate
location along the cyclic motion model, where the phase expresses a percentage of the
total cycle length, even if the absolute cycle length corresponding to acquired imaging
information differs from cycle-to-cycle.

[56] The cyclic motion model can be described in three dimensions as shown
illustratively below. A feature, such as centroid location, can be extracted from an
earlier-acquired image acquired at time t;, where the time t; is determined by aligning the
earlier-acquired image with the appropriate location (phase) along the cycle. The
extracted centroid location can be represented in three dimensions as [x.(t1), yc(t1),
Z.(t1)]. The cyclic motion model can be represented by three functions of time, x(t), y(t),
and z(f). Accordingly, in three dimensions, a predicted target locus at time ¢, can be

determined as follows:

[57]  2(t2) = #(t+0) = Xo(t:) + [X(t+0) = x(t1)] [EQN. 1]
(58]  J(t2) =9(t1+0) = ye(ts) + [y(t+0) — y(t1)] [EQN. 2]
[59]  Z(tz) = 2(t;+0) = ze(ty) + [2(t:+0) = 2(t7)] [EQN. 3]

[60] The centroid location from the earlier-acquired image can be determined
using a variety of techniques. For example, a contrast between adjacent pixels or voxels
in an earlier-acquired image can be used to delineate a boundary of a region such as the
target locus in the earlier-acquired image. A spatial centroid location can then be
determined based upon the delineated boundary. Other approaches can be used, such
as including evaluating contrast between adjacent pixels or voxels to automatically
segment the boundary, or using other techniques such as edge detection.

[61] Sources of latency contributing to the latency variable, 00 can include
image acquisition latency, image processing latency such as corresponding to operations
including segmentation, registration, or data transfer of imaging information, radiation
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therapy system latency such as corresponding to computation latency in execution of a
motion prediction technique, or a latency related to therapy adjustment. Such therapy
adjustment can include latencies associated with of one or more of positioning of a
patient platform, positioning a radiation therapy output, or configuring an aperture-
defining element such as a collimator. The latency, [J, need not be fixed and can be
measured, manually configured, or automatically determined before the estimate is
performed.

[62] As an illustrative example, a combined MR-imaging and linac system
latency can be on the order of a fraction of a second, such as around 100 milliseconds,
between an imaging acquisition for purposes of target location prediction, and a
subsequent delivery of radiation therapy. For such a system latency, which is on the
order of a fraction of a second, the target locus can be modeled as rigid. Accordingly, a
change in the location of the centroid such as provided by a cyclic motion model can be
applied to an earlier-identified target locus without requiring deformation of the earlier
target locus. For example, the earlier target locus can be spatially translated by a
displacement corresponding to the determined change in centroid location predicted by
the cyclic motion model. In this manner, a predicted target locus can be provided for use
in delivery of radiation therapy.

[63] FIG. 6 illustrates an example 600 for generating an updated therapy
protocol in an adaptive manner using a cyclic motion model, and using a specified
latency between image acquisition of the earlier target locus and a scheduled upcoming
time of therapy delivery. An earlier target locus can be identified at 602, such as using a
series of acquired images. The images can include one or more of volumetric imaging
information acquired over time (such to provide four-dimensional imaging information), or
three-dimensional imaging information such as slices having a finite depth as shown
illustratively in FIG. 6, or two dimensional imaging information, according to various
illustrative examples. In an example, two dimensional imaging information or three-
dimensional slices can be acquired, such as to provide a series of rapidly-acquired
images over a duration of a portion or an entirety of a physiologic cycle such as a
respiration cycle. At target locus 616A, such as a tumor, can be identified in a first
location in an acquired image portion 630A (e.g., an imaging slice), and the target locus
616B can vary in position over time as shown in a later-acquired image portion 630B.
The time-varying position of the target locus can be tracked, such as throughout the

series of images acquired at 602, and a predicted target locus 616C can be determined
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within a region of interest 630C corresponding to a future scheduled time of therapy
deliver.

[64] The predicted target locus 616C can be provided such as by determining
a time or phase of the acquisition of one or more images acquired at 602 in relation to a
cycle described by a cyclic motion model as discussed above in relation to FIG. 4A, FIG.
4B, and FIG. 5, and adjusting an earlier-acquired target locus, such as the target locus
616B using a determined displacement provided by the cyclic motion model. A therapy
locus 620 can then be aligned with the predicted target locus 616C for therapy delivery.
In this manner, the therapy locus 620 can be adaptively aligned with a time-varying
target locus such as a tumor. The therapy locus 620 refers to a region of tissue to be
targeted by a radiation therapy beam provided by a radiation therapy output 104.

[65] FIG. 7 is a flow chart of an exemplary method 700 for receiving imaging
information at 702. The imaging information can include information extracted from one
or more images, the information indicative of a time-varying target locus, such as a
tumor, an organ, or a portion of a tumor or organ. The target locus can represent a
region of tissue within patient to be targeted by radiation therapy. At 704, a predicted
target locus can be generated, such as corresponding to a scheduled upcoming time of
therapy delivery. For example, the predicted target locus can be determined using
information indicative of an earlier target locus and a cyclic motion model, as shown and
described in examples mentioned elsewhere in this document.

[66] The time of the scheduled upcoming therapy delivery corresponding to
the predicted target locus can be determined at least in part using information about a
specified latency between a time of an image acquisition of the earlier target locus and
the scheduled upcoming time of therapy delivery. At 706, an updated therapy protocol
can be generated, such as including aligning a radiation therapy locus with the predicted
target locus. In this manner, the therapy locus of delivered radiation therapy is aligned
with the moving target locus.

[67] FIG. 8 is a flow chart of an exemplary method 800. At 802, two or more
acquisitions of imaging information from a region of interest are received. For example,
at 802 the acquisitions can include receiving imaging information corresponding to two or
more acquisitions of three-dimensional imaging information, such as acquired using one
or more of an MR imaging or CT imaging technique. At 804, a target locus can be

identified within the imaging information corresponding to the two or more acquisitions.
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For example, the target locus can be identified through a segmentation technique as
mentioned in relation to other examples described in this document.

(68] At 806, information about a motion of the target locus can be extracted.
Such information can include a spatial location of one or more features corresponding to
the target locus, such as an edge or a centroid location. A change in location of the
feature across the two or more image acquisitions can be determined. In response, at
808, a cyclic motion model can be established, such as comprising a spatial
displacement model of the motion of the target locus in at least one dimension, such as a
function of time or phase. In an example, the acquired imaging information and
extracted information about the motion of the target locus can span several cycles, such
as several physiologic cycles. As an illustration, imaging information can be obtained at
802 corresponding to one or more complete respiration cycles, and the cyclic motion
model established at 808 can include aggregating information obtained from the obtained
information into a composite, using averaging or other techniques. The series of
operations at 802, 804, 806, and 808 can be performed “offline,” such as well in advance
of a scheduled radiation therapy treatment session (e.g., days or weeks before
treatment). Alternatively, or in addition, the series of operations at 802, 804, 806, and
808 can be performed the same day as a scheduled radiation therapy treatment session,
such as hours or minutes beforehand.

[69] At 810, after establishing the cyclic motion model, imaging information
can be received about the time varying target locus. For example, acquisition of images
for use at 810 can be performed contemporaneously with therapy delivery, such as
within seconds or even fractions of seconds before a scheduled instance of radiation
therapy delivery. At 812, information indicative of a feature corresponding to an earlier
target locus can be extracted from the imaging information received at 810. As shown
and described elsewhere in this document, the feature can include a centroid, an edge,
an indicium corresponding to an external or implantable seed, or an MR navigator echo,
as illustrative examples. At 814, a phase of a cyclic motion model corresponding to the
location of the feature can be determined. At 816, a change in the location of the feature
can be estimated using a later phase of the cyclic motion model corresponding to the
scheduled upcoming time of therapy delivery. At 818, the information determined at 816
regarding the change in location of the feature can be applied to the information
indicative of the earlier target locus to provide the predicted target locus. In this manner,

the therapy locus is adaptively aligned with the predicted target locus to one or more of
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(a) better align the radiation beam with a tissue target such as a tumor for treatment and
(b) avoid or minimize damage to tissue or organs adjacent to the tissue target.

[70] An imaging modality (e.g., MR, CT, PET, SPECT) or imaging
representation (e.g., one-dimensional, two-dimensional, three-dimensional) used for
establishing the cyclic motion model need not be the same as the imaging modality or
representation used for extracting the information indicative of the feature, corresponding
to the earlier target locus. For example, detailed high-resolution imaging information in
three dimensions may be used for developing the cyclic motion model, in an “offline”
fashion. Then, just before or during a radiation therapy delivery, imaging information
may be acquired using a higher-speed technique, such as including higher frame rate or
a shorter acquisition latency as compared to the imaging approach used for developing
the cyclic motion model. In this sense, the image acquisitions corresponding to imaging
information received at 810 can be referred to as occurring in “real time” relative to
therapy delivery, even though such imaging need not be acquired literally simultaneously

during application of the therapy beam.

Finite-Differences Based Prediction

[71] In addition to the above-described prediction using cyclic model, other
predication techniques can be used, such as non-model-based prediction techniques. In
this section, embodiments of finite differences-based motion prediction techniqUes are
described. The techniques described below in this section can be implemented in whole
or in part using, or can use, the medical systems described above in relation to one or
more of FIG. 1A, FIG. 1B, FIG. 1C, FIG. 2, FIG."3A, or FIG. 3B. The examples described
in this and next sections relate to the prediction of future values of a quasiperiodic
physiologic signal, also referred to herein as a physiologic signal, reflecting the
quasiperiodic motion of a certain region or organ in a human body, such as a respiratory
signal reflecting the quasiperiodic motion of lungs. As indicated above, such a
quasiperiodic motion can affect the locus of a target. Therefore, the predicted future
values of the quasiperiodic physiologic signal can be used to, for example, update a
therapy protocol of a therapy generator that generates a therapy beam to be directed to
a locus within a therapy recipient, i.e., a patient. As another example, the predicted
future values of the quasiperiodic physiologic signal can be used to align an imaging

system with a locus on a target, such as a patient for whom the image is taken.
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[72] In general, the physiologic signal can be a multivariate signal, i.e., can
vary in multiple dimensions, such as in three dimensions, and thus is a vector. In some
scenario, the physiologic signal includes variation in only one dimension and thus is a
scalar. In the present disclosure, the physiologic signal is represented generally as a
vector form, x(f), but it is to be understood that the physiologic signal can be a scalar. To
simplify discussion, in the examples described in this and next sections, the parameter ¢,
although representing time, takes index values, such as 0, 1, 2, . . ., instead of absolute
time values, and thus is also referred to herein as a “time index” or a “time step.” The
actual time value between two time steps may depend on the instrument that measures
the physiologic signal.

[73] According to the present disclosure, finite differences of the physiologic
signal are used as the regular variable and a first difference between a current value of
the physiologic signal at a time f and a future value of the physiologic signal at a future
time t+ 0, i.e., x(t + 0), is used as the target variable. That is, the first difference, i.e., the
target variable, y(t), for time t in the finite-differences-based motion prediction described
in this section is defined as:

y(t) =x(t+6) —x(t) [EQN. 4]
which is also referred to herein as a “difference value.” The difference value is indicative
of a difference between a future time t + d and a current time t. In the present disclosure,
the parameter 0 is also referred to as a “prediction horizon,” which represents a time
span from the current time to the future time for which the prediction is conducted. Like
the time ¢, the prediction horizon & can also take an index value or an absolute time
value. In the examples discussed in this and next sections, to simplify discussion, the
prediction horizon 0 also takes an index value.

[74] According to the disclosure, a set of derivatives of the physiologic signal
evaluated at time ¢, from the first order to higher orders (x'(t), x"(t), x'"'(t), . . ., can be
used as the regular variable. In practice, however, finite differences of the physiologic
signal at time t are used to approximate the derivatives since finite differences past time ¢
are not known and the physiologic signal is discrete, i.e., sampled at discrete times. The
set of finite differences of the physiologic signal at time ¢, i.e., the regular variable, can be

represented by a differences signal d(t, p, 0), defined as follows:
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x(t) — x(t — py)
x(t) = 2x(t —py) + x(t — (p1 + p2))
d(t,p,0) = x(t) — 3x(t — py) + 3x(t ~ (P1l+ p2)) — x(t — (p1 + P2 +p3)) [EQN. 5]

x(0) + 291 (=1 () x(t = They o)

where

((J)) - j!(ooij)! [EQN. 6]

and the parameter o represents the order of differences included in the differences signal
and thus controls the size of the differences signal. The parameter o is also referred to
herein as a “differences signal scale.” The value of the differences signal scale o can
depend on various factors, such as the physiologic signal, the application, and the
prediction horizon o.

[75] Thus, according to the present disclosure, in addition to the first order
finite difference, at least one high-order finite difference, i.e., a finite difference of the
second or higher order, are used for the prediction. In EQN. 5, four finite differences,
i.e., the first, second, third, and o-th order finite differences are shown. However, it is to
be understood that EQN. 5 is a general representation of the differences signal, which is
not limited to the particular finite differences in EQN. 5. For example, the differences
signal can include the first and second order finite differences of the physiologic signal.
In some embodiments, the differences signal includes the first, second, and third, or
additionally higher-order finite differences of the physiologic signal. With the high-order
finite differences used in the prediction according to the present disclosure, future values
of the physiologic signal can be predicted more accurately.

[76] The vector p = [py, P2, ..., Po1T in EQN. 5 is also referred to herein as a
“step-size vector.” Each component in this vector controls the step-size used for taking
the finite difference of a corresponding order. For example, p; represents the step size
for taking the first order finite difference of the physiologic signal and is thus also referred
to herein as a “first order step size,” p, represents the step size for taking the second
order finite difference of the physiologic signal and is thus also referred to herein as a
“second order step size,” and p, represents the step size for taking the o-th order finite
difference of the physiologic signal and is thus also referred to herein as an “o-th order
step size.” The step sizes p1, p2, . . ., po are chosen based on various factors such as
the characteristics of the physiologic signal, the application, and the measurement of the

physiologic signal. In some embodiments, the step sizes p1, p, . . ., po can depend on
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the value of the prediction horizon 6. According to the present disclosure, p1, p2, . . ., Po
can be the same as or different from each other. For example, p4, p2, . . ., po can all
equal 1.

[77] The regular/target variable pair (d(t, p,0), y(t)) defined above can be
used with any suitable prediction algorithms to predict the future values of the physiologic
signal. In the present disclosure, the prediction algorithm used with the variable pair
(d(t,p,0),y(t)) to predict future values is also referred to herein as a predictor. Various
prediction algorithms can be used in conjunction with the variable pair consistent with
embodiments of the present disclosure. The prediction algorithm may be, for example,
support vector regression, non-parametric probability-based methods such as kernel
density estimation, or linear regression.

[78] Before the above-described predictor can be used to predict future values
of the physiologic signal, the predictor would be trained to determine proper predictor
parameter values. Consistent with the present disclosure, historical, measured values of
the physiologic signal, {x(k):k=0, 1, .. ., n}, can be used to train the predictor.
Accordingly, the disclosed methods may be suitable to work on the fly, and adaptive to
baseline shifts. Here, k takes an index value and represents the time at which a
measurement is conducted and a value of the physiologic signal is obtained. In this
example, a total of n+1 measurements are conducted, each of which corresponds to
one-time index k.

[79] As discussed above, for a certain time k', a future value of the physiologic
signal at a future time k' + 6 can be predicted. To train the predictor, both the regular
variable, i.e., the differences signal, and the target variable, i.e., the difference value,
need to be known. Therefore, in this example, the highest value for k' can be n — 6. This
is because, for example, if k' equals n — 6 + 1, then the future time corresponding to time
k' is n + 1, but there is no measured data for time point n + 1, and thus no difference
value y(k') can be calculated for time k' = n — 6 + 1 for the training purpose. Further,
according to EQN. 5, to calculate the differences signal for time k', data points in the
range from time (k' — X9 _, p,) to time k' are needed. Thus, since in this example the
lowest time index k is 0, the lowest value for k' should be Y7_, p,. Therefore, in this
example, the value of k' canbe Y5_,pn, Xh-1pn +1,...,n-0.

[80] For example, assume 20 data points of the physiologic signal are
measured, i.e., a data set {x(k):k=0, 1, ... 19} is obtained. Further assume that the
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differences signal includes three finite differences, i.e., 0 = 3 and p = [p,, p,, p3]” with
p1=p2=p3=1,and that 6 = 2. Then the value of time kK’ can be 3, 4, . . ., 17.

[81] With the values of k' determined as described above, a training variable
pair (d(k', p,0), y(k")) can be calculated for each k', with K’ = ¥ _, pn, Xh=10n + 1, .. .,

n - 0. The obtained training variable pairs (d(k’, p,0), y(k")) can then be used to train
the predictor to obtain proper predictor parameter values.

[82] After the predictor is trained, the predictor can be used to predict a future
value of the physiologic signal based on any current value of the physiologic signal at a
current time t.. First, for the current time ¢, the differences signal d(t., p, o) is calculated
using EQN. 5. The calculated differences signal d(t., p, o) is then substituted into the
predictor as the regular variable to predict the target variable, i.e., the difference value
y(t.), which is then used to calculate the predicted value of the physiologic signal at the
future time f; + & according to x(t. + §) = y(t.) + x(t.) (the hat symbol “*" above
symbols x and y indicates they are predicted values). As discussed above, the predicted
future value x(t. + &) can be used to, for example, predict a target locus on a therapy
recipient of a therapy delivery system and to update a therapy protocol used by a therapy
generator of the therapy delivery system, such as including aligning a radiation therapy
locus with the predicted target locus.

[83] FIG. 9 shows a flow chart of an exemplary method 900 consistent with
embodiments of the present disclosure for predicting a future value of a physiologic
signal. As shown in FIG. 9, at 902, a measured data set containing a current value of the
physiologic signal at a current time and past values of the physiologic signal at times
before the current time is received. The physiologic signal can be, for example, a
respiratory signal reflecting the quasiperiodic motion of the lungs of a target, such as a
therapy recipient. At 904, a differences signal at the current time is calculated using the
measured data set. The calculation can be conducted using, for example, EQN. 5. At
906, a predicted difference value is calculated by substituting the differences signal into a
predictor. At 908, a predicted future value of the physiologic signal is calculated based
on the predicted difference value and the current value of the physiologic signal. At 910,
the predicted future value of the physiologic signal is used to update a protocol for
controlling a medical device. The medical device can be, for example, an imaging
system for taking images of, or a therapy delivery system for delivering therapy to, an
object, such as a patient. The protocol can be used to, for example, control the

alignment of the medical device. Thus, the predicted future value can be used to, for
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example, align the imaging system or a therapy generator of the therapy delivery system
with a target locus on the object. For example, the predicted future value can be used to
update a therapy protocol of the therapy generator of the therapy delivery system, where
the therapy protocol is used to control the therapy generator to direct the therapy beam.

[84] FIG. 10 shows a flow chart of an exemplary method 1000 consistent with
embodiments of the present disclosure for training a predictor used for predicting future
values of a physiologic signal. As shown in FIG. 10, at 1002, a measured data set
containing values of the physiologic signal measured at a plurality of time points is
received. At 1004, a differences signal at one or more of the time points is calculated
based on the measured data set, to obtain one or more training variable pairs each
containing the calculated differences signal at the time point and a difference value
corresponding to the time point. Hereinafter, a differences signal calculated during
training is also referred to as a “training differences signal” and a difference value
calculated during training is also referred to as a “training difference value.” At 1006, the
one or more training variable pairs are used to train the predictor to obtain proper
parameter values for the predictor.

[85] The exemplary methods shown in FIGs. 9 and 10, although described
separately above, can be combined together consistent with the present disclosure. For
example, the exemplary method 1000 can be conducted first to train a predictor using
historical measured values of the physiologic signal, and then the trained predictor is
used to predict the future values of the physiologic signal according to the exemplary
method 900. Consistent with some embodiments, the predictor may be re-trained one or
more times during any suitable point of method 900 to adapt to drift in the breathing
behavior. The retraining may be performed on the fly and provide updated parameter
values for the predictor. A predictor so adaptively trained on the fly can better
compensate for the baseline shifts.

[86] Using the methods consistent with the present application, the prediction
performance of each prediction algorithm can be improved as compared to the results
without using the finite differences, and is significantly improved as compared to the
results without any prediction.

Prediction Based on Model Regression

[87] Both model-based methods, such as Kalman filter, and model-free
methods, such as normalized least mean-square filter and regression methods, can be

used to predict future values of a physiologic signal. Model-based methods predict the
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physiologic signal in a context. Therefore, in addition to the future values of the
physiologic signal, the model-based methods can also predict an internal state of an
anatomical structure, i.e., the source of the quasiperiodic motion that generates the
physiologic signal. For example, the anatomical structure may be a region on or an
organ of a human body, such as a patient or a therapy recipient. As such, the
physiologic processes of the anatomical structure can be inferred from the information
about the internal state of the anatomical structure. Moreover, by knowing the internal
state of the anatomical structure and its relationship with the physiologic signal, the
signal can be predicted at different prediction horizons without changing the parameters
of the predictor.

[88] On the other hand, model-free methods use numerical methods to
determine a mapping from a current set of measured or observed values of the
physiologic signal to expected future values of the physiologic signal, and are thus more
flexible towards changes in the characteristics of the physiologic signal.

[89] In this section, motion prediction techniques based on model regression is
described. The model regression methods consistent with the present disclosure apply
model-free prediction methods to determine the model of the anatomical structure, and
thus benefit from the advantages of both the model-based and model-free prediction
methods. The techniques described below in this section can be implemented in whole
or in part using, or can use, the medical systems described above in relation to one or
more of FIG. 1A, FIG. 1B, FIG. 1C, FIG. 2, FIG. 3A, or FIG. 3B.

[90] As discussed above, the physiologic signal x(t) is a function of time. In
this section, x(t) is also denoted as:

x(t) = () [EQN. 7]
where f(.) denotes a functional representation that can be used to calculate values, such
as future values, of the physiologic signal. The functional representation takes time t as
input and output the values of the physiologic signal at time ¢, i.e., x(f). The functional
representation can be determined according to the model regression methods of the
present disclosure. Specifically, the relationship between the functional representation of
the physiologic signal x(t), i.e., f(.), and the internal state at time t can be represented as
follows:

FO) = f(s)(t) [EQN. 8]
where s; denotes a state representation representing specific results of the internal state

s(f) of the anatomical structure at time ¢, and f(s,), hereinafter also referred to as a
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“mapping function,” denotes a mapping from the state space to the functional
representation of the physiologic signal, f.). The state representation sy may be a
vector or a scalar. When the state representation s; is a vector, it is also referred to as a
“state vector.” The internal state s(f), and thus the state representation s;, are particular
to the model used, and can be different for different models. Thus, not only the
physiologic signal x(f) is a function of time, the functional representation f(.) used to
calculate the physiologic signal x(f) is also a function of time and depends on the state
representation s;. That is, the functional representation f(.) can change with time.

[91] Therefore, according to the present disclosure, the particular type and
form of the functional representation f(.) at time { depend on the internal state s(t) and
are determined by the state representation s; at time { according to the mapping function
f(s.). Forexample, depending on the internal state, the functional representation f(.)
can be a linear function, a quadratic function, or a cubic function, with a particular set of
coefficients. The set of coefficients forms the state representation s;. Therefore, if the
mapping function f(s,) and the state representation s; for a time point f are known, the
functional representation f(.) can be determined, and thus the value of the physiologic
signal can be calculated according to the determined functional representation f(.).
Further, at different time points, the functional representation f{.) used to calculate the
physiologic signal x(tf) may be different. For example, for the same physiologic signal,
the functional representation f(.) may be a quadratic function for one state but a cubic
function for another state.

[92] For example, assume the physiologic signal is a univariate signal and can
be represented as x(f), and the functional representation f(.) at time t is a cubic
polynomial defined by four parameters a, (t), a,(t), a;(t), and a,(t), which form the
state representation s, = [a,(t), a,(t), a3 (t), a,(t)]T. Hence the physiologic signal x(f) in
this example can be calculated by: x(t) = a,(t) + a,(t)t + az(t)t? + a,(t)t3. In general,
when the physiologic signal is a multivariate signal, each of a; (t), a,(t), a;(t), and a,(t)
can also be multivariate.

[93] According to the present disclosure, once the functional representation f(.)
is determined according to EQN. 8, the predicted future value of the physiologic signal at
a future time t + 0, i.e., x(t + 0), can be calculated using EQN. 7 and historical measured
values of the physiologic signal. The set of historical measured values of the physiologic
signal includes the measured values for a time range starting from a time in the past,
referred to herein as time fo, to a current time ;. This time range is also referred to
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herein as a “measurement time range.” The process for calculating the future value of
the physiologic signal using EQN. 7, EQN. 8, and the historical measured values is
described below.

[94] For each of one or more of the time points in the measurement time
range, the state representation s; is estimated based on the set of historical measured
values. For example, the state representation s; for a particular time point ¢; can be
determined based on the measured values of the physiologic signal at the time point ¢,
and one or more previous time points. In some embodiments, the state representation s;
is estimated for each of the time points in the measurement time range. According to the
present disclosure, the state representation s; can be estimated using various
appropriate methods, such as a regression method. An estimated state representation is
also referred to herein as a historical state representation, and the set of estimated state
representations is also referred to herein as a state representation history.

[95] Based on the state representation history, a predicted state
representation §;.s at the future time t + & can be calculated using an appropriate
prediction algorithm. In some embodiments, a regression method, such as kernel
density estimation, support vector regression, or linear regression, can be used to
calculate the predicted state representation s,,s. In some embodiments, an adaptive
filtering scheme, such as normalized linear mean-square (nLMS) filter, can be used to
calculate the predicted state representation S, s.

[96] Based on the predicted state representation .. s, a predicted functional
representation f(.) at the future time { +  can be determined by substituting the state
representation S, into EQN. 8. Further, the predicted future value x(t + &) can be
calculated by substituting the future time t + 6 into EQN. 7 with the predicted functional
representation, i.e., x(t + &) = f(.)(t + 6).

[97] Before the above-described predictor can be used to predict future values
of the physiologic signal, it may need to be trained to determine the proper correlation
between the functional representation f(.) and the state representation s;, i.e., to
determine the proper mapping function f(s,). Consistent with the present disclosure,
historical measured values of the physiologic signal can be used to train the predictor.
The set of historical measured values of the physiologic signal used for training the
predictor can be the same as or different from the set of historical measured values used

to calculate the predicted state representation s,,5. In the present disclosure, the set of
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historical measured values of the physiologic signal used for training the predictor is also
referred to as a “training data set.”

(98] With the given training data set, a state representation s; for each of the
time points in the training data set can be estimated using, for example, a regression
method, such as kernel density estimation. An estimated state representation s; based
on the training data set is also referred to herein as a training state representation, and
the set of training state representations is also referred to herein as a training state
representation set. As an example, the predictor can be trained to find the proper
mapping function f(s,) using one or more training pairs, each of which may include the
estimated state representation at a particular time t, i.e., s¢, and the value of physiologic
signal attime £ + ¢, i.e., x(t'+ 0). Various appropriate methods can be used for the
training purpose. For example, a regression method, such as kernel density estimation,
can be used for the training purpose.

[99] The above detailed description includes references to the accompanying
drawings, which form a part of the detailed description. The drawings show, by way of
illustration, specific embodiments in which the invention can be practiced. These
embodiments are also referred to herein as “examples.” Such examples can include
elements in addition to those shown or described. However, examples in which only
those elements shown or described are provided. Moreover, any combination or
permutation of those elements shown or described (or one or more aspects thereof),
either with respect to a particular example (or one or more aspects thereof), or with
respect to other examples (or one or more aspects thereof) shown or described herein
are within the scope of the present disclosure.

[100] Inthe event of inconsistent usages between this document and any
documents so incorporated by reference, the usage in this document controls.

[101] Inthis document, the terms “a” or “an” are used, as is common in patent
documents, to include one or more than one, independent of any other instances or
usages of “at least one” or “one or more.” In this document, the term “or” is used to refer
to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and
B,” unless otherwise indicated. In this document, the terms “including” and “in which” are
used as the plain-English equivalents of the respective terms “comprising” and “wherein.”
Also, in the following claims, the terms “including” and “comprising” are open-ended, that
is, a system, device, article, composition, formulation, or process that includes elements
in addition to those listed after such a term in a claim are still deemed to fall within the
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scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and
“third,” etc. are used merely as labels, and are not intended to impose numerical
requirements on their objects.

[102] Method examples described herein can be machine or computer-
implemented at least in part. Some examples can include a computer-readable medium
or machine-readable medium encoded with instructions operable to configure an
electronic device to perform methods as described in the above examples. An
implementation of such methods can include code, such as microcode, assembly
language code, a higher-level language code, or the like. Such code can include
computer readable instructions for performing various methods. The code may form
portions of computer program products. Further, in an example, the code can be
tangibly stored on one or more volatile, non-transitory, or non-volatile tangible computer-
readable media, such as during execution or at other times. Examples of these tangible
computer-readable media can include, but are not limited to, hard disks, removable
magnetic disks, removable optical disks (e.g., compact disks and digital video disks),
magnetic cassettes, memory cards or sticks, random access memories (RAMs), read
only memories (ROMs), and the like.

[103] The above description is intended to be illustrative, and not restrictive.
For example, the above-described examples (or one or more aspects thereof) may be
used in combination with each other. Other embodiments can be used, such as by one
of ordinary skill in the art upon reviewing the above description. The Abstract is provided
to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of
the technical disclosure. It is submitted with the understanding that it will not be used to
interpret or limit the scope or meaning of the claims. Also, in the above Detailed
Description, various features may be grouped together to streamline the disclosure. This
should not be interpreted as intending that an unclaimed disclosed feature is essential to
any claim. Rather, inventive subject matter may lie in less than all features of a particular
disclosed embodiment. Thus, the following claims are hereby incorporated into the
Detailed Description as examples or embodiments, with each claim standing on its own
as a separate embodiment, and it is contemplated that such embodiments can be
combined with each other in various combinations or permutations. The scope of the
invention should be determined with referenée to the appended claims, along with the full

scope of equivalents to which such claims are entitled.
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CLAIMS

What is claimed is:

1. A medical system, comprising:

a medical device, configured to be controlled according to a control protocol;
and

a controller configured to:

receive a measured data set containing a current value at a current time and
past values at past times of a physiologic signal measured on a recipient;

calculate a difference signal at the current time based on the measured data
set, the difference signal including a first order finite difference of the physiologic
signal at the current time and a second order finite difference of the physiologic
signal at the current time, the first and second order finite differences respectively
corresponding to first and second derivatives;

predict a difference value using the difference signal and a prediction
algorithm, the difference value being a difference between a predicted future value of
the physiologic signal at a future time and the current value;

calculate the predicted future value based on the difference value and the
current value; and

update the control protocol according to the predicted future value.

2. The medical system of claim 1, wherein the difference signal further includes
one or more higher order finite differences of the physiologic signal at the current
time, the one or more higher order finite differences having an order higher than the
second order finite difference.

3. The medical system of claim 2, wherein a highest order of the one or more
higher order finite differences is determined based on at least one of the physiologic

signal, or a time difference between the future time and the current time.
4. The medical system of claim 1, wherein the controller is configured to

calculate the first order finite difference using a first step size and the second order

finite difference using a second step size.
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5. The medical system of claim 4, wherein the first step size equals to the

second step size.

6. The medical system of claim 4, wherein the first step size differs from the

second step size.

7. The medical system of claim 4, wherein the first step size and the second step
size are determined based on at least one of characteristics of the physiologic signal,
an application of the medical system, a measurement of the physiologic signal, or a

time difference between the future time and the current time.

8. The medical system of claim 1, wherein the prediction algorithm includes one
of kernel density estimation, support vector regression with scaling, or random forest

regression.

9. The medical system of claim 1, wherein:

the prediction algorithm is trained using a training variable pair comprising a
training difference signal and a training difference value;

the training difference signal represents a finite difference of the physiologic
signal at a first time point that precedes the current time; and

the training difference value represents a difference between a second value
of the physiologic signal at a second time point, that follows the first time point, and a
first value of the physiologic signal at the first time point, the second time point
preceding the current time.

10.  The medical system of claim 1, wherein the controller is further configured to:
receive historical measured values of the physiologic signal measured at a
plurality of time points before predicting the difference value;
calculate a training difference signal at one or more time points based on the
historical measured values, to obtain one or more training variable pairs each
containing one training difference signal and a corresponding training difference
value; and

train the prediction algorithm using the one or more training variable pairs.
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11. A method for controlling a medical device, comprising:

receiving a measured data set containing a current value at a current time and
past values at past times of a physiologic signal measured on a recipient;

calculating a difference signal at the current time based on the measured data
set, the difference signal including a first order finite difference of the physiologic
signal at the current time and a second order finite difference of the physiologic
signal at the current time, the first and second order finite differences respectively
corresponding to first and second derivatives;

predicting a difference value using the difference signal and a prediction
algorithm, the difference value being a difference between a predicted future value of
the physiologic signal at a future time and the current value;

calculating the predicted future value based on the difference value and the
current value; and

updating a control protocol of the medical device according to the predicted

future value.

12. The method of claim 11, wherein the difference signal further includes one or
more higher order finite differences of the physiologic signal at the current time, the
one or more higher order finite differences having an order higher than the second
order finite difference.

13.  The method of claim 12, further comprising:

determining a highest order of the one or more higher order finite differences
based on at least one of the physiologic signal, an application of the medical device,
or a time difference between the future time and the current time.

14.  The method of claim 11, wherein calculating the difference signal includes
calculating the first order finite difference using a first step size and calculating the

second order finite difference using a second step size.

15. The method of claim 14, wherein the first step size equals to the second step

size.
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16. The method of claim 14, wherein the first step size differs from the second

step size.

17.  The method of claim 14, further comprising:

determining the first step size and the second step size based on at least one
of characteristics of the physiologic signal, an application of the medical device, a
measurement of the physiologic signal, or a time difference between the future time

and the current time.

18.  The method of claim 11, wherein predicting the difference value uses one of
kernel density estimation, support vector regression with scaling, or random forest

regression.

19.  The method of claim 11, wherein:

the prediction algorithm is trained using a training variable pair comprising a
training difference signal and a training difference value;

the training difference signal represents a finite difference of the physiologic
signal at a first time point that precedes the current time; and

the training difference value represents a difference between a second value
of the physiologic signal at a second time point, that follows the first time point, and a
first value of the physiologic signal at the first time point, the second time point

preceding the current time.

20. The method of claim 11, further comprising training the prediction algorithm,
wherein training the prediction algorithm includes:

receiving historical measured values of the physiologic signal measured at a
plurality of time points before predicting the difference value;

calculating a training difference signal at one or more of the time points based
on the historical measured values, to obtain one or more training variable pairs each
containing one training difference signal and a corresponding training difference
value; and

training the prediction algorithm using the one or more training variable pairs

to obtain parameter values of the prediction algorithm.
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