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(57) Abstract: A medical system includes a medical device and a 
controller. The medical device is controlled according to a control 
protocol. The controller is configured to receive a measured data 
set containing a current value at a current time and past values at 
past times of a physiologic signal measured on a recipient, calcu­
late a difference signal at the current time based on the measured 
data set, and predict a difference value using the difference signal 
and a prediction algorithm. The difference value is a difference 
between a predicted future value of the physiologic signal at a fu­
ture time and the current value. The controller is further con­
figured to calculate the predicted future value based on the differ­
ence value and the current value and update the control protocol 
according to the predicted future value.
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THERAPY CONTROL USING MOTION PREDICTION

DESCRIPTION

Cross-Reference to Related Application

[1] This application is based upon and claims the benefit of priority from U.S. 

Provisional Application No. 62/289,144, filed on January 29, 2016, the entire content of 

which is incorporated herein by reference.

Technology Field

[2] The disclosure relates to therapy control and, more particularly, to image- 

guided therapy control systems and methods using motion prediction.

BACKGROUND

[3] Radiation therapy or “radiotherapy” can be used to treat cancers or other 

ailments. Generally, ionizing radiation in the form of a collimated beam is directed from 

an external source toward a patient. The dose of an applied radiation therapy beam or a 

sequence of applied radiation therapy beams is generally controlled such that a target 

locus within the patient, such as a tumor, receives a prescribed cumulative dose of 

radiation, while radiation-induced damage to healthy tissue surrounding the target locus 

is to be avoided. The radiation therapy beam can include high-energy photons, 

electrons, or other particles such as protons.

[4] In one approach, a radiation therapy beam can be generated, for 

example, at least in part using a linear accelerator. The linear accelerator accelerates 

electrons and directs the electrons to a target, such as a metallic target, to elicit high- 

energy photons. The high-energy photons, generally having an energy in a mega­

electron-volt (MeV) range for therapeutic use, can then be controlled, shaped, or 

modulated and directed to the target locus, such as a tumor region within the patient. A 

specified or selectable therapy beam energy can be used, such as for delivering a 

diagnostic energy level range or a therapeutic energy level range. Modulation of a 

therapy beam can be provided by one or more attenuators or collimators. The field size 

and shape of the radiation beam can be adjusted to avoid damaging healthy tissue 

adjacent to the targeted tissue by conforming the projected beam to a profile of the 

targeted tissue.
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[5] In one approach, a treatment plan can be developed before radiation 

therapy is delivered, such as using one or more medical imaging techniques. In such an 

approach, imaging can be performed in an “offline” manner. A health care provider, such 

as a physician, may use three-dimensional imaging information indicative of the patient 

anatomy to identify a target locus along with other regions such as organs near the 

tumor. Such imaging information can be obtained using various imaging modalities, 

such as X-ray, computed tomography (CT), magnetic resonance imaging (MRI), positron 

emission tomography (PET), or single-photon emission computed tomography (SPECT), 

etc. The health care provider can delineate the target locus that is to receive a 

prescribed radiation dose using a manual technique, and the health care provider can 

similarly delineate nearby tissue, such as organs, at risk of damage from the radiation 

treatment. Alternatively or additionally, an automated tool can be used to assist in 

identifying or delineating the target locus. A radiation therapy treatment plan can then be 

created based on clinical or dosimetric objectives, and constraints. The treatment plan 

can then be executed by positioning the patient and delivering the prescribed radiation 

therapy to the patient. The therapy treatment plan can include dose “fractioning,” 

whereby a sequence of radiation therapy deliveries are provided, with each therapy 

delivery including a specified fraction of a total prescribed dose.

[6] As discussed above, a radiation therapy can be guided by images that 

provide knowledge of the target locus. However, certain anatomical regions, e.g., the 

lungs, are subject to quasiperiodic motion such as respiratory motion, that is significant 

enough to affect the treatment. For example, respiratory motion may change the 

locations of some organs, such as thoracic or abdominal organs. The movement of the 

organ caused by the respiratory motion can lead to imaging artifacts, making the images 

less effective in guiding the therapy. Therefore, further knowledge of the respiratory 

motion may be needed to plan an effective radiation therapy. However, unlike periodic 

motion, quasiperiodic motion does not have a fixed frequency, making it harder to predict 

future motions.

[7] Moreover, the respiratory motion typically occurs for a relatively short time 

period. However, the process of taking an image, analyzing it, and determining the 

position of the target, can take a long time. That results in a latency between acquiring 

the mage and compensating for the respiratory motion. Therefore, the prediction of the 

respiratory motion is needed to allow a prediction of the target position in real time.

2



WO 2017/130140 PCT/IB2017/050427

[8] The disclosed methods and systems are designed to further improve the 

motion prediction.

SUMMARY

[9] In accordance with the present disclosure, there is provided a medical 

system including a medical device and a controller. The medical device is controlled 

according to a control protocol. The controller is configured to receive a measured data 

set containing a current value at a current time and past values at past times of a 

physiologic signal measured on a recipient and calculate a difference signal at the 

current time based on the measured data set. The difference signal includes a first order 

finite difference of the physiologic signal at the current time and a second order finite 

difference of the physiologic signal at the current time. The controller is also configured 

to predict a difference value using the difference signal and a prediction algorithm. The 

difference value is a difference between a predicted future value of the physiologic signal 

at a future time and the current value. The controller is further configured to calculate the 

predicted future value based on the difference value and the current value and update 

the control protocol according to the predicted future value.

[10] Also in accordance with the present disclosure, there is provided a 

method for controlling a medical device. The method includes receiving a measured 

data set containing a current value at a current time and past values at past times of a 

physiologic signal measured on a recipient and calculating a difference signal at the 

current time based on the measured data set. The difference signal includes a first order 

finite difference of the physiologic signal at the current time and a second order finite 

difference of the physiologic signal at the current time. The method also includes 

predicting a difference value using the difference signal and a prediction algorithm. The 

difference value is a difference between a predicted future value of the physiologic signal 

at a future time and the current value. The method further includes calculating the 

predicted future value based on the difference value and the current value and updating 

a control protocol of the medical device according to the predicted future value. The 

control protocol controls the medical device.

[11] Features and advantages consistent with the disclosure will be set forth in 

part in the description which follows, and in part will be obvious from the description, or 

may be learned by practice of the disclosure. Such features and advantages will be 
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realized and attained by means of the elements and combinations particularly pointed 

out in the appended claims.

[12] It is to be understood that both the foregoing general description and the 

following detailed description are exemplary and explanatory only and are not restrictive 

of the invention, as claimed.

BRIEF DESCRIPTION OF DRAWING

[1] In the drawings, which are not necessarily drawn to scale, like numerals may 

describe similar components in different views. Like numerals having different 

letter suffixes may represent different instances of similar components. The 

drawings illustrate generally, by way of example, but not by way of limitation, 

various embodiments discussed in the present document.

[2] FIG. 1A illustrates an exemplary radiation therapy system that can include 

radiation therapy output configured to provide a therapy beam.

[3] FIG. 1B illustrates an exemplary system including a combined radiation 

therapy system and an imaging system, such as a computed tomography (CT) imaging 

system.

[4] FIG. 1C illustrates a partially cut-away view of an exemplary system 

including a combined radiation therapy system and an imaging system, such as a 

nuclear magnetic resonance (MR) imaging system.

[5] FIG. 2 illustrates an exemplary collimator configuration for shaping, 

directing, or modulating an intensity of a radiation therapy beam.

[6] FIG. 3A illustrates an exemplary system including a radiation therapy 

controller having an imaging input, a radiation therapy generator, and a radiation therapy 

output.

[7] FIG. 3B illustrates a portion of an exemplary system included in a 

radiation therapy controller system or an imaging system.

[8] FIG. 4A illustrates a one-dimensional representation of an exemplary 

cyclic motion model, corresponding to a respiration cycle.

[9] FIG. 4B illustrates an exemplary cyclic motion of a region of interest 

including a tumor.

[10] FIG. 5 illustrates an example for using a cyclic motion model to predict a 

target locus using information indicative of an earlier target locus extracted from imaging 

information.
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[11] FIG. 6 illustrates an example for generating an updated therapy protocol 

in an adaptive manner using a cyclic motion model, and using a specified latency 

between image acquisition of the earlier target locus and a scheduled upcoming time of 

therapy delivery.

[12] FIG. 7 is a flow chart of an exemplary method for receiving imaging 

information about a time-varying target locus and generating an updated therapy protocol 

to align a therapy locus with a predicted target locus.

[13] FIG. 8 is a flow chart of an exemplary method for establishing a cyclic 

motion model, and providing a predicted target locus using the cyclic motion model.

[14] FIG. 9 is a flow chart of an exemplary method for signal prediction using 

finite differences according to an exemplary embodiment.

[15] FIG. 10 is a flow chart of an exemplary method for training a predictor 

using finite differences according to an exemplary embodiment.

DETAILED DESCRIPTION

[16] A radiation therapy treatment plan can be adjusted contemporaneously 

with therapy delivery in an adaptive manner, such as to compensate for cyclical changes 

in a position of a target locus to be treated with a radiation therapy. For example, a 

desired target, such as a tumor or an organ at risk, can shift in position to such an extent 

that if an exclusively “offline” approach to therapy planning is used, a therapy locus of 

delivered radiation therapy can become misaligned with the desired target when the 

radiation therapy is eventually delivered.

[17] In one exemplary approach, imaging can be performed 

contemporaneously with delivery of a radiation therapy, such as performing an imaging 

acquisition just before initiating radiation therapy delivery during a therapy delivery 

session, or using a sequence of respective therapy delivery and imaging acquisition 

instances over a course of a radiation therapy delivery session. Such imaging can 

provide information helpful for identifying a position of the target locus or for identifying 

motion of the target locus. Such contemporaneous imaging can be referred to generally 

as “real-time,” although a latency or time delay usually exists between an acquisition of 

an image and a delivery of radiation therapy.

[18] Motion of the target locus can be caused by one or more sources, such as 

heart motion, respiration, a reflex such as a cough, or other movements. In the case of 

cyclic motion, such as associated with respiration, a trajectory of a target locus can be 
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predicted using a cyclic motion model along with imaging information obtained regarding 

earlier motion of the target locus. For example, a predicted target locus for an upcoming 

time of therapy delivery can be generated using information indicative of an earlier target 

locus extracted from the imaging information, along with a cyclic motion model, 

according to a specified latency between image acquisition of the earlier target locus and 

the scheduled upcoming time of therapy delivery.

[19] An updated therapy protocol can be generated in an adaptive manner to 

align the therapy locus with the predicted target locus. A therapy protocol is generally a 

therapy plan that the therapy delivery system may execute. For example, the therapy 

protocol can include one or more of: (a) adjustment of one or more of actuators coupled 

to a moveable platform such as a couch or table supporting the therapy recipient, (b) 

adjustment of one or more apertures configured to collimate or shape the therapy beam, 

or (c) adjustment of one or more actuators configured to position a therapy output to 

establish a specified therapy beam direction. Such adjustment can be performed 

automatically before or during therapy delivery. The adjustments may be characterized 

using parameter values, trajectories, ranges, etc. Updating a therapy protocol may 

involve updating such values, trajectories, or ranges.

[20] In an illustrative example, the cyclic motion model can be established at 

least in part using a series of two or more imaging acquisitions, such as acquisitions of 

three-dimensional (volumetric) imaging information of a region. Later, such as just 

before therapy delivery, the time-varying target locus within the therapy recipient can be 

established using other imaging information after establishing the cyclic motion model. 

Such other imaging information can include one or more of two-dimensional imaging or 

volumetric imaging slices including a sub-region within the prior-imaged volumetric 

region. For example, a predicted target locus can be automatically generated by 

extracting information indicative of a feature from two-dimensional imaging information or 

imaging slices, the feature corresponding to an earlier target locus. A phase of the cyclic 

motion model corresponding to the location of the feature can be determined. In 

response to determining the phase, a change in the location of the feature can be 

predicted using a later phase of the cyclic motion model corresponding to the scheduled 

upcoming time of therapy delivery can be determined. For example, a spatial 

displacement in the location of the feature can be predicted using a difference in outputs 

of the cyclic motion model between the earlier phase and later phases.
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[21] The information indicative of the determined change in the location of the 

feature can be applied to the information indicative to the earlier target locus to provide 

the predicted target locus. For example, a spatial displacement of the feature can be 

applied to the information indicative of the earlier target locus, such as shifting a centroid 

of the earlier target locus to obtain a predicted target locus. The target locus can include 

a tumor, and shifting the location of the earlier target locus to obtain the predicted target 

locus can include assuming that the locus is rigid (e.g., assuming that the predicted 

target locus is not deformed as compared to the earlier target locus).

[22] According to various illustrative examples described in this document, 

apparatus and techniques described herein can include use of a linear accelerator 

(LINAC) to generate a radiation therapy beam, and use of one or more of a computed 

tomography (CT) imaging system, or a nuclear magnetic resonance (MR) imaging 

system to acquire the imaging information. Other imaging modalities and radiation 

therapy techniques can be used.

[23] It is contemplated that a radiotherapy delivery system is just one example 

of a medical system, and a therapy protocol is one example of a control protocol, 

according to which a medical system can be controlled. “A medical system,” consistent 

with the disclosure, may include any medical device that measures patient data that is 

affected by motions. Such a medical system may be a treatment system, a surgical 

system, a monitoring system, or a diagnostic system. The motions may be 

quasiperiodic, such as cardiac motions and respiratory motions. A “control protocol” may 

be used to control the operation of a medical system, in a way that compensates for the 

motions. For example, a control protocol may include adjustments of any components of 

the particular medical system being controlled.

[24] FIG. 1A illustrates an exemplary radiation therapy system 102 that can 

include radiation therapy output 104 configured to provide a therapy beam 108. The 

radiation therapy output 104 can include one or more attenuators or collimators, such as 

a multi-leaf collimator (MLC) as described in the illustrative example of FIG. 2. Referring 

back to FIG. 1A, a patient can be positioned in a region 112, such as on a platform 116 

(e.g., a table or a couch), to receive a radiation therapy dose according to a radiation 

therapy treatment plan. The radiation therapy output 104 can be located on a gantry 106 

or other mechanical support, such as to rotate the therapy output 104 around an axis 

(“A”). One or more of the platform 116 or the radiation therapy output 104 can be 

moveable to other locations, such as moveable in transverse direction (“Γ) or a lateral 
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direction Other degrees of freedom are possible, such as rotation about one or 

more other axes, such as rotation about a transverse axis (indicated as “R"\

[25] The coordinate system (including axes A, T, and L) shown in FIG. 1A can 

have an origin located at an isocenter 110. The isocenter can be defined as a location 

where the radiation therapy beam 108 intersects the origin of a coordinate axis, such as 

to deliver a prescribed radiation dose to a location on or within a patient. For example, 

the isocenter 110 can be defined as a location where the radiation therapy beam 108 

intersects the patient for various rotational positions of the radiation therapy output 104 

as positioned by the gantry 106 around the axis A.

[26] In an example, a detector 114 can be located within a field of the therapy 

beam 108, such as can include a flat panel detector (e.g., a direct detector or a 

scintillator detector). The detector 114 can be mounted on the gantry 106 opposite the 

radiation therapy output 104, such as to maintain alignment with the therapy beam 108 

as the gantry 106 rotates. In this manner, the detector 114 can be used to monitor the 

therapy beam 108 or the detector can be used 114 for imaging, such as portal imaging.

[27] In some embodiments, therapy beam 108 may be a kilovolts (KV) beam 

or a megavolts (MV) beam. Therapy beam 108 may be made up of a spectrum of 

energies, the maximum energy of which is approximately equal to the beam’s maximum 

electric potential times the electron charge. For an MV beam, the maximum electric 

potential used by the linear accelerator to produce the photon beam is on the megavolts 

level. For example, a 1 MV beam will produce photons of no more than about 1 

megaelectron-Volt (MeV).

[28] In an illustrative example, one or more of the platform 116, the therapy 

output 104, or the gantry 106 can be automatically positioned, and the therapy output 

104 can establish the therapy beam 108 according to a specified dose for a particular 

therapy delivery instance. A sequence of therapy deliveries can be specified according 

to a radiation therapy treatment plan, such as using one or more different orientations or 

locations of the gantry 106, platform 116, or therapy output 104. The therapy deliveries 

can occur sequentially, but can intersect in a desired therapy locus on or within the 

patient, such as at the isocenter 110. A prescribed cumulative dose of radiation therapy 

can thereby be delivered to the therapy locus while damage to tissue nearby the therapy 

locus is reduced or avoided.

[29] FIG. 1B illustrates an exemplary system that can include a combined 

radiation therapy system 102 and an imaging system, such as can include a computed 
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tomography (CT) imaging system. The CT imaging system can include an imaging X-ray 

source 118, such as providing X-ray energy in a kiloelectron-Volt (keV) energy range or a 

megaelectron-Volt (MeV) range. The imaging X-ray source 118 provide a fan-shaped 

and/or a conical beam 120 directed to an imaging detector 122, such as a flat panel 

detector. The radiation therapy system 102 can be similar to the system 102 described 

in relation to FIG. 1A, such as including a radiation therapy output 104, a gantry 106, a 

platform 116, and another flat panel detector 114. As in the examples of FIG. 1A and 

FIG. 1C, the radiation therapy system 102 can be coupled to, or can include, a high- 

energy accelerator configured to provide a therapeutic radiation beam. The X-ray source 

118 can provide a comparatively-lower-energy X-ray diagnostic beam, for imaging.

[30] In the illustrative example of FIG. 1B, the radiation therapy output 104 and 

the X-ray source 118 can be mounted on the same rotating gantry 106, rotationally- 

separated from each other by 90 degrees. In another example, two or more X-ray 

sources can be mounted along the circumference of the gantry 106, such as each having 

its own detector arrangement to provide multiple angles of diagnostic imaging 

concurrently. Similarly, multiple radiation therapy outputs 104 can be provided.

[31] FIG. 1C illustrates a partially cut-away view of an exemplary system that 

can include a combined radiation therapy system 102 and an imaging system, such as 

can include a nuclear magnetic resonance (MR) imaging system 130. The MR imaging 

system 130 can be arranged to define a “bore” around an axis (“A”), and the radiation 

therapy system can include a radiation therapy output 104, such as to provide a radiation 

therapy beam 108 directed to an isocenter 110 within the bore along the axis, A. The 

radiation therapy output 104 can include a collimator 124, such as to one or more of 

control, shape, or modulate radiation therapy beam 108 to direct the beam 108 to a 

therapy locus aligned with a desired target locus within a patient. The patient can be 

supported by a platform. The platform can be positioned along one or more of an axial 

direction, A, a lateral direction, L, or a transverse direction, T. One or more portions of 

the radiation therapy system 102 can be mounted on a gantry 106, such as to rotate the 

radiation therapy output 104 about the axis A.

[32] FIG. 1A, FIG. 1B, and FIG. 1C illustrate examples including a 

configuration where a therapy output can be rotated around a central axis (e.g., an axis 

“A”). Other radiation therapy output configurations can be used. For example, a 

radiation therapy output can be mounted to a robotic arm or manipulator having multiple 

degrees of freedom. In yet another example, the therapy output can be fixed, such as 

9
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located in a region laterally separated from the patient, and a platform supporting the 

patient can be used to align a radiation therapy isocenter with a specified target locus 

within the patient.

[33] FIG. 2 illustrates an exemplary multi-leaf collimator (MLC) 132, for 

shaping, directing, or modulating an intensity of a radiation therapy beam. In FIG. 2, 

leaves 132A through 132J can be automatically positioned to define an aperture 

approximating a tumor 140 cross section or projection. The leaves 132A through 132J 

can be made of a material specified to attenuate or block the radiation beam in regions 

other than the aperture, in accordance with the radiation treatment plan. For example, 

the leaves 132A through 132J can include metallic plates, such as comprising tungsten, 

with a long axis of the plates oriented parallel to a beam direction, and having ends 

oriented orthogonally to the beam direction (as shown in the plane of the illustration of 

FIG. 2). A “state” of the MLC 132 can be adjusted adaptively during a course of radiation 

therapy, such as to establish a therapy beam that better approximates a shape or 

location of the tumor 140 or other target locus, as compared to using a static collimator 

configuration or as compared to using an MLC 132 configuration determined exclusively 

using an “offline” therapy planning technique. A radiation therapy technique using the 

MLC 132 to produce a specified radiation dose distribution to a tumor or to specific areas 

within a tumor can be referred to as Intensity Modulated Radiation Therapy (IMRT).

[34] FIG. 3A illustrates an exemplary system 300 including a radiation therapy 

controller system 354 having an imaging input 360, a radiation therapy generator 356, 

and a radiation therapy output 304. The therapy generator 356 can include an 

accelerator, such as a linear accelerator, and the therapy output 304 can be coupled to 

the therapy generator 356 to process a beam of energetic photons or particles provided 

by the therapy generator 356. For example, the therapy output 304 can include or can 

be coupled to an output actuator 366 to one or more of rotate or translate the therapy 

output 304 to provide a radiation therapy beam having a therapy locus directed to a 

desired target locus. The therapy output 304 can include a collimator 364, such as a 

multi-leaf collimator as mentioned above in relation to FIG. 2. Referring back to FIG. 3A, 

the therapy controller system 354 can be configured to control one or more of the 

therapy generator 356, the therapy output 304, or a patient position actuator 316 (such 

as a movable platform including a couch or table), using an adaptive radiation treatment 

technique as described in other examples herein.
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[35] The therapy controller system 354 can be coupled to one or more 

sensors, such as using a sensor input 362. For example, a patient sensor 358 can 

provide physiologic information to the therapy controller system, such as information 

indicative of one or more of respiration (e.g., using a plethysmographic sensor), patient 

cardiac mechanical or electrical activity, peripheral circulatory activity, patient position, or 

patient motion. Such information can provide a surrogate signal correlated with motion 

of one or more organs or other regions to be targeted by the therapy output 304.

[36] The imaging input 360 can be coupled to an imaging system 350 (such as 

can include a computed tomography imaging system or a nuclear magnetic resonance 

(MR) imaging system, as illustrative examples). Alternatively, or in addition, the therapy 

controller system 354 can receive imaging information from an imaging data store 352, 

such as a centralized imaging database or imaging server. One or more of the therapy 

controller system 354 or the imaging system 350 can include elements shown and 

described in relation to the system 396 shown in FIG. 3B.

[37] FIG. 3B illustrates a portion of a system 396 including elements of a 

radiation therapy controller system 354 or an imaging system 350. The system 396 can 

include a main memory circuit 378 into which executable instructions or other data can 

be loaded, and a processor circuit 370 to execute or otherwise perform such instructions. 

The system 396 can include a static memory circuit 376, such as to provide a cache or 

other structure to store data related to a currently-executing series of instructions. A 

read-only memory (ROM) circuit 374 can permanently store instructions such as to 

facilitate a boot sequence for the system 396 or to facilitate operation of hardware 

devices attached to the system 396.

[38] The system 396 can include a bus circuit 398 configured to convey 

information between elements or circuits comprising the system 396. For example, a 

drive unit 372 can be included or attached to the server, such as to store instructions 

related to the radiation therapy planning, imaging, or radiation therapy delivery 

techniques as mentioned elsewhere herein. The system 396 can include one or more of 

a display 386 such as can include a bit-field or alphanumeric display, an alpha-numeric 

control 384 such as a keyboard, or a cursor control device 382 such as a touch screen, 

touch pad, trackball, or mouse. Examples of systems that can use or include elements 

of the system 396 include one or more of the therapy controller system 354, the imaging 

system 350, or a treatment planning system.

11



WO 2017/130140 PCT/IB2017/050427

[39] The system 396 can be connected to a centralized network 390 (e.g., a 

local area network, an “intranet," or a wide area network such as the Internet), such as to 

store or retrieve information from a server 394 (e.g., such as a server housing an 

imaging information database, a radiation therapy treatment plan, or other information 

such as a patient medical record). For example, the system 396 can include one or 

more wired or wireless interface circuits, such as a network interface circuit 380 

configured to provide access to other systems such as to facilitate exchange of imaging 

or radiation therapy control information.

[40] The system 396 can describe an embedded controller included as a 

portion of other apparatus, a personal computer (PC), a tablet device, or a cellular 

communications device such as a “smart” cellular device, as illustrative examples. While 

a single processor circuit 370 is shown illustratively in FIG. 3B, a plurality of processor 

circuits, “cores,” or machines can be used, such as can individually or jointly perform a 

set (or multiple sets) of instructions to perform any one or more of the techniques 

described herein, such as instructions stored on a processor-readable medium (also 

referred to as a computer-readable medium).

[41] Illustrative examples of a processor-readable medium include solid-state 

memories, optical, or magnetic media. For example, solid-state memories can include 

one or more of a read-only memory (ROM), a flash memory, a dynamic random access 

memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM 

and the like)), or a static memory (e.g., flash memory, static random access memory 

(SRAM, or the like)).

[42] The processor circuit 370 can include one or more processing circuits 

such as a microprocessor, a central processing unit, or the like. In particular, the 

processor can include a complex instruction set computing (CISC) architecture 

microprocessor, a reduced instruction set computing (RISC) architecture microprocessor, 

or a very long instruction word (VLIW) architecture microprocessor. According to other 

examples, the processor circuit 370 can include one or more of a microcontroller, an 

application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a 

digital signal processor (DSP), a network processor, or a system-on-chip (SoC) circuit. 

For example, a microcontroller can include one more integrated circuits having a memory 

circuit and processor circuit co-integrated within a single device package.
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Motion Prediction for Adaptive Radiation Therapy using Imaging and a Cyclic Motion 

Model

[43] As mentioned above, a radiation therapy treatment plan can be adjusted 

contemporaneously with therapy delivery in an adaptive manner, such as to compensate 

for cyclical changes in a position of a target locus to be treated with a radiation therapy. 

For example, a desired target, such as a tumor, can shift in position to such an extent 

that if an exclusively “offline” approach to therapy planning is used, a therapy locus of 

delivered radiation therapy can become significantly misaligned with the desired target 

when the radiation therapy is eventually delivered. Motion of the target locus can be 

caused by one or more sources, such as heart motion, respiration, a reflex such as a 

cough, or other movements. In the case of cyclic motion, such as associated with 

respiration, a trajectory of a target locus can be predicted using a cyclic motion model 

along with imaging information obtained regarding earlier motion of the target locus. The 

techniques described below can be implemented in whole or in part using, or can use, 

the systems described above in relation to one or more of FIG. 1A, FIG. 1B, FIG. 1C, 

FIG. 2, FIG. 3A, or FIG. 3B.

[44] FIG. 4A illustrates a one-dimensional representation of a cyclic motion 

model 400, corresponding to physiologic cycle 410 (e.g., a respiration cycle), such as 

defined over a duration extending from a time, 0, to time “7,” where 7 represents a period 

of the cyclic motion. The motion model 400 can represent an absolute or relative spatial 

position or displacement, such as modeling an absolute or relative trajectory of an organ 

as function of time, f(t). The trajectory can represent time-varying motion of a feature 

corresponding to the organ. In some embodiments, the feature can be a reliably- 

identifiable point on the organ, such as a centroid of the organ. In an illustrative example 

where the cyclic motion model represents respiration, at time “O”the function f(0) can 

define a beginning-of-inspiration (BOI) reference datum 402. The function also defines 

an end-of-inspiration (EOI) or beginning-of-expiration (BOE) reference datum 404. At

■ time 7, the function f(T) can define an end-of-expiration (EOE) datum 406.

[45] In the illustrative example of FIG. 4A, the motion model f(t) is shown as a 

scalar function of time having a single displacement dimension. However, such a model 

is merely illustrative and other examples can include a cyclic motion model defined by 

multiple spatial displacement functions. For example, in a Cartesian coordinate system, 

such spatial displacement functions comprising the cyclic motion model can be 

represented by functions x(t), y(t), and z(t). One or more of the reference locations (e.g.,
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BOI, EOI, BOE, EOE) defined in FIG. 4A can be defined within one or more of x(t), y(t), 

and z(t). Accordingly, the cyclic motion model can be developed for each dimensional 

component. While various examples herein refer generally to continuous time 

mathematical functions, an automated implementation of techniques described herein 

can include using a discretized representation of the cyclic motion model (e.g., a 

sampled or discrete representation of the model values corresponding to discrete time or 

discrete phase values).

[46] FIG. 4B illustrates a cyclic motion of a region of interest 416A. According 

to various embodiments, the region of interest 416A can include an organ, a portion of an 

organ, or a tumor. A series of two or more imaging acquisitions can be performed, using 

one or more imaging techniques to obtain imaging information representative of the 

location of the region of interest 416A. For example, one or more of computed 

tomography (CT) or nuclear magnetic resonance (MR) imaging can be used, such as in 

an “offline” manner, to establish a location of the region of interest 416A.

[47] The location of the region of interest 416A can be established from the 

imaging information at least in part using one or more of manual delineation of a 

boundary of the region of interest 416A, or an automated segmentation technique. For 

example, segmentation can include assigning one or more pixels or voxels from acquired 

imaging information as being members of the set corresponding to the region of interest 

416A. Segmentation can include determining a contrast value of one or more pixels or 

voxels and comparing the contrast value to a criterion (e.g., a contrast threshold), such 

as to assist group the one or more pixels or voxels as members of the set containing the 

region of interest. A feature can then be extracted from the segmented region of interest 

416A, such as a centroid location 408A.

[48] The region of interest 416A can move in a time-varying fashion, such as 

to a location corresponding to a displaced region of interest 416B, having a 

correspondingly-displaced centroid 408B. Information about a displaced region of 

interest 416B and the correspondingly-displaced centroid 408B can also be extracted 

from one or more images in the series of two or more imaging acquisitions mentioned 

above. In this manner, a series of two or more images can be used to describe an 

absolute or relative trajectory of a feature, such as the determined centroid 408A and 

centroid 408B locations. In an illustrative example, the series of two or more images 

comprises a series of volumetric images (e.g., a “4D” series of images including three 

spatial dimensions acquired at different times). Other types of imaging can be used, 
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such as one-dimensional imaging, or two-dimensional imaging or imaging slices 

extending in two dimension and also having a finite depth.

[49] The use of a centroid as an extracted feature is illustrative. Other 

features can be used, such as a manually-identified or automatically-determined location 

of a point or surface (e.g., an edge 412A of the region-of-interest 416A and a displaced 

edge 412B of the displaced region of interest 416B). In yet another example, a motion of 

an implantable or external seed fiducial can be tracked, such using a motion of an 

indicium 414A (that can represent a seed location at a first time) in the imaging 

information corresponding to a first location, and a displaced indicium 414B 

corresponding to the displaced location (that can represent the seed location at a later 

time). Other techniques can be used to track displacement, such as use of an MR 

imaging “navigator echo,” such as assigned to a location near an edge of an anatomical 

feature nearby or included as a portion of the region of interest.

[50] FIG. 5 illustrates an exemplary cyclic motion model 500 to predict a target 

locus using information indicative of an earlier target locus extracted from imaging 

information. Imaging information can be obtained contemporaneously with radiation 

therapy delivery, such as to adjust a radiation therapy protocol to adaptively compensate 

for motion of a radiation therapy target locus. For example, imaging information can be 

obtained just before therapy delivery to be used in determining a predicted target locus. 

Information about one or more acquired images can be used to align an instance of an 

imaging acquisition with a portion of the cyclic motion model, such as including 

determining a relative time between a reference datum such as a datum 504 

(corresponding to a time t0), and a time, ti, corresponding to an acquired image instance. 

In the illustrative example of a respiration model, the datum 504 can correspond to an 

end of inspiration (EOI) or a beginning of expiration (BOE) and can be detected such as 

by analyzing a gradient of respiration-related information from information extracted from 

a series of images corresponding to a complete respiratory cycle, or using surrogate 

information obtained from another sensor (e.g., a plethysmographic sensor).

[51] A scheduled upcoming therapy delivery time can occur at t2. Accordingly, 

a predicted target location can be generated corresponding to time t2. In an example, 

the cyclic motion model can be evaluated at a time corresponding to t-ι, and a time 

corresponding to t2 = t-ι+Ώ. The variable, □, can represent a specified latency, such as 

between a time corresponding to an earlier image acquisition at time ti, and a scheduled 

upcoming therapy delivery at t2.
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[52] In one approach, the cyclic motion model 500 can represent an absolute 

position of a feature of interest, such as a centroid of a target locus corresponding to a 

tumor or an organ, and the value of the cyclic motion model evaluated at time t2 can be 

used directly as the predicted feature location at the time of therapy delivery. However, 

such an approach can have drawbacks, such as leading to inaccurate motion prediction 

if the patient is repositioned or is unable to be positioned in the same manner as when 

the imaging information was first acquired and used to develop the cyclic motion model. 

By contrast, a difference in the values of the cyclic motion model can be used to estimate 

a relative displacement of an imaging feature, and such a relative displacement can be 

used to adjust the location of the imaging feature to determine a predicted feature 

location at a later time, particularly over short time scales where the latency □ is 

relatively small with respect to the overall cycle length. Accordingly, motion prediction 

performed using a change in feature position derived from a cyclic motion model can be 

insensitive, at least to a first order, to variations in target motion between the absolute 

position predicted by the model and the actual target position observed using imaging.

[53] As an illustrative example, a difference between values of the cyclic 

motion model can be determined, such as can be represented by f(ti+u) - f(ti). Such a 

determined difference can then be used to adjust a feature location obtained from the 

imaging information. For example, if an imaging feature location of an acquired image 

corresponding to time ti is represented by lf(ti), then the predicted feature location at 

time t2 can be represented by If(t2)=lf(ti)+[f(ti+Q) - f(ti)J. In this manner, the cyclic 

motion model need not accurately predict a feature location in an absolute sense, but the 

cyclic motion model can provide a useful estimate of a change in the feature location 

(e.g., a relative spatial displacement) when the time corresponding to the image 

acquisition is aligned with the appropriate location in the cyclic model.

[54] Alignment of the time corresponding to the image acquisition can include 

determining a time elapsed between a reference point in a physiologic cycle of a patient 

and a time at which an image is acquired. For example, a cycle phase can range from a 

(-value of 0 to T, where T can be the total cycle duration, such as period corresponding 

to a breathing cycle. A fraction of the total cycle duration (e.g., a percentage) can be 

determined using an expression, phase = (100() I T. In such an expression, phase can 

represent a phase-percentage of the cycle at a cycle phase corresponding to time (. T 

can be presented in units of time (e.g., seconds or milliseconds). T can be empirically 

determined, such as by averaging a duration between one or more reference points or 
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using one or more other techniques to determine a central tendency of a series of cycle 

duration values. In an illustrative example relating to respiration, use of cycle reference 

points can include measuring a series of durations between end-of-expiration (EOE) or 

end-of-inspiration (EOI) over one or more breathing cycles to estimate T.

[55] Use of “phase" rather than an absolute time can allow use of a cyclic 

motion model that is at least somewhat scale invariant over the time dimension because 

such a phase is generally dimensionless. For example, an actual breathing cycle period 

of a patient will generally vary in absolute duration from cycle-to-cycle. Use of phase to 

describe an acquisition time of an image relative to a reference point along the cycle 

allows alignment of a phase corresponding to the acquisition time with the appropriate 

location along the cyclic motion model, where the phase expresses a percentage of the 

total cycle length, even if the absolute cycle length corresponding to acquired imaging 

information differs from cycle-to-cycle.

[56] The cyclic motion model can be described in three dimensions as shown 

illustratively below. A feature, such as centroid location, can be extracted from an 

earlier-acquired image acquired at time ti, where the time t-ι is determined by aligning the 

earlier-acquired image with the appropriate location (phase) along the cycle. The 

extracted centroid location can be represented in three dimensions as [xc(ti), yc(ti), 

zc(ti)]. The cyclic motion model can be represented by three functions of time, x(t), y(t), 

and z(t). Accordingly, in three dimensions, a predicted target locus at time t2 can be 

determined as follows:

[57] x(t2) = χ^+Ώ) = Xcfc) + [χ(ί-ι+Ώ) - xfr)] [EQN. 1]

[58] y(t2) = yfc+O) = yc(tt) + [yfa+Ώ) - y(t-i)] [EQN. 2]

[59] z(t2) = ζ^+Ώ) = z^) + [zfa+a) - zfa)] [EQN. 3]

[60] The centroid location from the earlier-acquired image can be determined 

using a variety of techniques. For example, a contrast between adjacent pixels or voxels 

in an earlier-acquired image can be used to delineate a boundary of a region such as the 

target locus in the earlier-acquired image. A spatial centroid location can then be 

determined based upon the delineated boundary. Other approaches can be used, such 

as including evaluating contrast between adjacent pixels or voxels to automatically 

segment the boundary, or using other techniques such as edge detection.

[61] Sources of latency contributing to the latency variable, □□ can include 

image acquisition latency, image processing latency such as corresponding to operations 

including segmentation, registration, or data transfer of imaging information, radiation 
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therapy system latency such as corresponding to computation latency in execution of a 

motion prediction technique, or a latency related to therapy adjustment. Such therapy 

adjustment can include latencies associated with of one or more of positioning of a 

patient platform, positioning a radiation therapy output, or configuring an aperture­

defining element such as a collimator. The latency, □, need not be fixed and can be 

measured, manually configured, or automatically determined before the estimate is 

performed.
[62] As an illustrative example, a combined MR-imaging and linac system 

latency can be on the order of a fraction of a second, such as around 100 milliseconds, 

between an imaging acquisition for purposes of target location prediction, and a 

subsequent delivery of radiation therapy. For such a system latency, which is on the 

order of a fraction of a second, the target locus can be modeled as rigid. Accordingly, a 

change in the location of the centroid such as provided by a cyclic motion model can be 

applied to an earlier-identified target locus without requiring deformation of the earlier 

target locus. For example, the earlier target locus can be spatially translated by a 

displacement corresponding to the determined change in centroid location predicted by 

the cyclic motion model. In this manner, a predicted target locus can be provided for use 

in delivery of radiation therapy.

[63] FIG. 6 illustrates an example 600 for generating an updated therapy 

protocol in an adaptive manner using a cyclic motion model, and using a specified 

latency between image acquisition of the earlier target locus and a scheduled upcoming 

time of therapy delivery. An earlier target locus can be identified at 602, such as using a 

series of acquired images. The images can include one or more of volumetric imaging 

information acquired overtime (such to provide four-dimensional imaging information), or 

three-dimensional imaging information such as slices having a finite depth as shown 

illustratively in FIG. 6, or two dimensional imaging information, according to various 

illustrative examples. In an example, two dimensional imaging information or three- 

dimensional slices can be acquired, such as to provide a series of rapidly-acquired 

images over a duration of a portion or an entirety of a physiologic cycle such as a 

respiration cycle. At target locus 616A, such as a tumor, can be identified in a first 

location in an acquired image portion 630A (e.g., an imaging slice), and the target locus 

616B can vary in position overtime as shown in a later-acquired image portion 630B. 

The time-varying position of the target locus can be tracked, such as throughout the 

series of images acquired at 602, and a predicted target locus 616C can be determined 
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within a region of interest 630C corresponding to a future scheduled time of therapy 

deliver.

[64] The predicted target locus 616C can be provided such as by determining 

a time or phase of the acquisition of one or more images acquired at 602 in relation to a 

cycle described by a cyclic motion model as discussed above in relation to FIG. 4A, FIG. 

4B, and FIG. 5, and adjusting an earlier-acquired target locus, such as the target locus 

616B using a determined displacement provided by the cyclic motion model. A therapy 

locus 620 can then be aligned with the predicted target locus 616C for therapy delivery. 

In this manner, the therapy locus 620 can be adaptively aligned with a time-varying 

target locus such as a tumor. The therapy locus 620 refers to a region of tissue to be 

targeted by a radiation therapy beam provided by a radiation therapy output 104.

[65] FIG. 7 is a flow chart of an exemplary method 700 for receiving imaging 

information at 702. The imaging information can include information extracted from one 

or more images, the information indicative of a time-varying target locus, such as a 

tumor, an organ, or a portion of a tumor or organ. The target locus can represent a 

region of tissue within patient to be targeted by radiation therapy. At 704, a predicted 

target locus can be generated, such as corresponding to a scheduled upcoming time of 

therapy delivery. For example, the predicted target locus can be determined using 

information indicative of an earlier target locus and a cyclic motion model, as shown and 

described in examples mentioned elsewhere in this document.

[66] The time of the scheduled upcoming therapy delivery corresponding to 

the predicted target locus can be determined at least in part using information about a 

specified latency between a time of an image acquisition of the earlier target locus and 

the scheduled upcoming time of therapy delivery. At 706, an updated therapy protocol 

can be generated, such as including aligning a radiation therapy locus with the predicted 

target locus. In this manner, the therapy locus of delivered radiation therapy is aligned 

with the moving target locus.

[67] FIG. 8 is a flow chart of an exemplary method 800. At 802, two or more 

acquisitions of imaging information from a region of interest are received. For example, 

at 802 the acquisitions can include receiving imaging information corresponding to two or 

more acquisitions of three-dimensional imaging information, such as acquired using one 

or more of an MR imaging or CT imaging technique. At 804, a target locus can be 

identified within the imaging information corresponding to the two or more acquisitions.
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For example, the target locus can be identified through a segmentation technique as 

mentioned in relation to other examples described in this document.

[68] At 806, information about a motion of the target locus can be extracted. 

Such information can include a spatial location of one or more features corresponding to 

the target locus, such as an edge or a centroid location. A change in location of the 

feature across the two or more image acquisitions can be determined. In response, at 

808, a cyclic motion model can be established, such as comprising a spatial 

displacement model of the motion of the target locus in at least one dimension, such as a 

function of time or phase. In an example, the acquired imaging information and 

extracted information about the motion of the target locus can span several cycles, such 

as several physiologic cycles. As an illustration, imaging information can be obtained at 

802 corresponding to one or more complete respiration cycles, and the cyclic motion 

model established at 808 can include aggregating information obtained from the obtained 

information into a composite, using averaging or other techniques. The series of 

operations at 802, 804, 806, and 808 can be performed “offline,” such as well in advance 

of a scheduled radiation therapy treatment session (e.g., days or weeks before 

treatment). Alternatively, or in addition, the series of operations at 802, 804, 806, and 

808 can be performed the same day as a scheduled radiation therapy treatment session, 

such as hours or minutes beforehand.

[69] At 810, after establishing the cyclic motion model, imaging information 

can be received about the time varying target locus. For example, acquisition of images 

for use at 810 can be performed contemporaneously with therapy delivery, such as 

within seconds or even fractions of seconds before a scheduled instance of radiation 

therapy delivery. At 812, information indicative of a feature corresponding to an earlier 

target locus can be extracted from the imaging information received at 810. As shown 

and described elsewhere in this document, the feature can include a centroid, an edge, 

an indicium corresponding to an external or implantable seed, or an MR navigator echo, 

as illustrative examples. At 814, a phase of a cyclic motion model corresponding to the 

location of the feature can be determined. At 816, a change in the location of the feature 

can be estimated using a later phase of the cyclic motion model corresponding to the 

scheduled upcoming time of therapy delivery. At 818, the information determined at 816 

regarding the change in location of the feature can be applied to the information 

indicative of the earlier target locus to provide the predicted target locus. In this manner, 

the therapy locus is adaptively aligned with the predicted target locus to one or more of
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(a) better align the radiation beam with a tissue target such as a tumor for treatment and

(b) avoid or minimize damage to tissue or organs adjacent to the tissue target.

[70] An imaging modality (e.g., MR, CT, PET, SPECT) or imaging 

representation (e.g., one-dimensional, two-dimensional, three-dimensional) used for 

establishing the cyclic motion model need not be the same as the imaging modality or 

representation used for extracting the information indicative of the feature, corresponding 

to the earlier target locus. For example, detailed high-resolution imaging information in 

three dimensions may be used for developing the cyclic motion model, in an “offline” 

fashion. Then, just before or during a radiation therapy delivery, imaging information 

may be acquired using a higher-speed technique, such as including higher frame rate or 

a shorter acquisition latency as compared to the imaging approach used for developing 

the cyclic motion model. In this sense, the image acquisitions corresponding to imaging 

information received at 810 can be referred to as occurring in “real time” relative to 

therapy delivery, even though such imaging need not be acquired literally simultaneously 

during application of the therapy beam.

Finite-Differences Based Prediction

[71] In addition to the above-described prediction using cyclic model, other 

predication techniques can be used, such as non-model-based prediction techniques. In 

this section, embodiments of finite differences-based motion prediction techniques are 

described. The techniques described below in this section can be implemented in whole 

or in part using, or can use, the medical systems described above in relation to one or 

more of FIG. 1A, FIG. 1B, FIG. 1C, FIG. 2, FIG/3A, or FIG. 3B. The examples described 

in this and next sections relate to the prediction of future values of a quasiperiodic 

physiologic signal, also referred to herein as a physiologic signal, reflecting the 

quasiperiodic motion of a certain region or organ in a human body, such as a respiratory 

signal reflecting the quasiperiodic motion of lungs. As indicated above, such a 

quasiperiodic motion can affect the locus of a target. Therefore, the predicted future 

values of the quasiperiodic physiologic signal can be used to, for example, update a 

therapy protocol of a therapy generator that generates a therapy beam to be directed to 

a locus within a therapy recipient, i.e., a patient. As another example, the predicted 

future values of the quasiperiodic physiologic signal can be used to align an imaging 

system with a locus on a target, such as a patient for whom the image is taken.
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[72] In general, the physiologic signal can be a multivariate signal, i.e., can 

vary in multiple dimensions, such as in three dimensions, and thus is a vector. In some 

scenario, the physiologic signal includes variation in only one dimension and thus is a 

scalar. In the present disclosure, the physiologic signal is represented generally as a 

vector form, x(f), but it is to be understood that the physiologic signal can be a scalar. To 

simplify discussion, in the examples described in this and next sections, the parameter t, 

although representing time, takes index values, such as 0, 1, 2, . . ., instead of absolute 

time values, and thus is also referred to herein as a “time index” or a “time step.” The 

actual time value between two time steps may depend on the instrument that measures 

the physiologic signal.

[73] According to the present disclosure, finite differences of the physiologic 

signal are used as the regular variable and a first difference between a current value of 

the physiologic signal at a time t and a future value of the physiologic signal at a future 

time t + <5, i.e., x(t + <5), is used as the target variable. That is, the first difference, i.e., the 

target variable, y(t), for time t in the finite-differences-based motion prediction described 

in this section is defined as:

y(t) = X(t + 5)- x(t) [EQN. 4]

which is also referred to herein as a “difference value.” The difference value is indicative 

of a difference between a future time t + δ and a current time t. In the present disclosure, 

the parameter δ is also referred to as a “prediction horizon,” which represents a time 

span from the current time to the future time for which the prediction is conducted. Like 

the time t, the prediction horizon δ can also take an index value or an absolute time 

value. In the examples discussed in this and next sections, to simplify discussion, the 

prediction horizon δ also takes an index value.

[74] According to the disclosure, a set of derivatives of the physiologic signal

evaluated at time t, from the first order to higher orders (x'(t), x"(t), x'"(t)....... can be

used as the regular variable. In practice, however, finite differences of the physiologic 

signal at time t are used to approximate the derivatives since finite differences past time t 

are not known and the physiologic signal is discrete, i.e., sampled at discrete times. The 

set of finite differences of the physiologic signal at time t, i.e., the regular variable, can be 

represented by a differences signal dtfp.o'), defined as follows:
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d(t, p, o)

x(t) - x(t - pf)
x(t) - 2x(t - + x(t - (pi + p2))

x(t) - 3x(t - pt) + 3x(t - (px + p2)) - x(t - (pi + p2 + p3)) [EQN. 5]

χω+ΣΜ-ιγ(°)χ(/-Σί.Α) /
where 

o! [EQN. 6]

and the parameter o represents the order of differences included in the differences signal 

and thus controls the size of the differences signal. The parameter o is also referred to 

herein as a “differences signal scale.” The value of the differences signal scale o can 

depend on various factors, such as the physiologic signal, the application, and the 

prediction horizon δ.

[75] Thus, according to the present disclosure, in addition to the first order 

finite difference, at least one high-order finite difference, i.e., a finite difference of the 

second or higher order, are used for the prediction. In EQN. 5, four finite differences, 

i.e., the first, second, third, and o-th order finite differences are shown. However, it is to 

be understood that EQN. 5 is a general representation of the differences signal, which is 

not limited to the particular finite differences in EQN. 5. For example, the differences 

signal can include the first and second order finite differences of the physiologic signal. 

In some embodiments, the differences signal includes the first, second, and third, or 

additionally higher-order finite differences of the physiologic signal. With the high-order 

finite differences used in the prediction according to the present disclosure, future values 

of the physiologic signal can be predicted more accurately.

[76] The vector p = [p1(p2, -,p0]T in EQN. 5 is also referred to herein as a 

“step-size vector.” Each component in this vector controls the step-size used for taking 

the finite difference of a corresponding order. For example, pi represents the step size 

for taking the first order finite difference of the physiologic signal and is thus also referred 

to herein as a “first order step size,” p2 represents the step size for taking the second 

order finite difference of the physiologic signal and is thus also referred to herein as a 

“second order step size,” and p0 represents the step size for taking the o-th order finite 

difference of the physiologic signal and is thus also referred to herein as an “o-th order 

step size.” The step sizes pi, p2, . . ., p0 are chosen based on various factors such as 

the characteristics of the physiologic signal, the application, and the measurement of the 

physiologic signal. In some embodiments, the step sizes p-ι, p2, . . ., p0 can depend on 
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the value of the prediction horizon δ. According to the present disclosure, pi, p2, ■ ■Po 

can be the same as or different from each other. For example, p-ι, p2, ..., p0 can all 

equal 1.

[77] The regular/target variable pair (d(t,p,o),y(t)> defined above can be 

used with any suitable prediction algorithms to predict the future values of the physiologic 

signal. In the present disclosure, the prediction algorithm used with the variable pair 

{d(t,p, o),y(t)) to predict future values is also referred to herein as a predictor. Various 

prediction algorithms can be used in conjunction with the variable pair consistent with 

embodiments of the present disclosure. The prediction algorithm may be, for example, 

support vector regression, non-parametric probability-based methods such as kernel 

density estimation, or linear regression.

[78] Before the above-described predictor can be used to predict future values 

of the physiologic signal, the predictor would be trained to determine proper predictor 

parameter values. Consistent with the present disclosure, historical, measured values of 

the physiologic signal, {x(k):k = 0, 1, . . ., n}, can be used to train the predictor. 

Accordingly, the disclosed methods may be suitable to work on the fly, and adaptive to 

baseline shifts. Here, k takes an index value and represents the time at which a 

measurement is conducted and a value of the physiologic signal is obtained. In this 

example, a total of n+1 measurements are conducted, each of which corresponds to 

one-time index k.

[79] As discussed above, for a certain time k’, a future value of the physiologic 

signal at a future time k’ + δ can be predicted. To train the predictor, both the regular 

variable, i.e., the differences signal, and the target variable, i.e., the difference value, 

need to be known. Therefore, in this example, the highest value for k’ can be n - δ. This 

is because, for example, if k' equals n - δ + 1, then the future time corresponding to time 

k' is n + 1, but there is no measured data for time point n + 1, and thus no difference 

value y(k’) can be calculated for time k’ = n - δ + 1 for the training purpose. Further, 

according to EQN. 5, to calculate the differences signal for time k’, data points in the 

range from time (k! - Σκ=ιΡη) t0 time are needed. Thus, since in this example the 

lowest time index k is 0, the lowest value for k’ should be Σ£=ιΡη· Therefore, in this 

example, the value of k’ can be Σκ=ιΡκ, lLh=iPh + 1, . . ., n - δ.

[80] For example, assume 20 data points of the physiologic signal are 

measured, i.e., a data set{x(k):k= 0, 1, . . . 19} is obtained. Further assume that the 
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differences signal includes three finite differences, i.e., o = 3 and p = [pi,p2.p31r with 

Pi = P2 = P3 = 1, and that δ =2. Then the value of time k’ can be 3, 4, . . ., 17.

[81] With the values of k' determined as described above, a training variable 

pair (d(/<',p,o),y(/c')) can be calculated for each k’, with k’ = Σκ^ιΡίτ, Zh=iPh + 1,.--, 

n - δ. The obtained training variable pairs (d(k',p,o),y(k')} can then be used to train 

the predictor to obtain proper predictor parameter values.

[82] After the predictor is trained, the predictor can be used to predict a future 

value of the physiologic signal based on any current value of the physiologic signal at a 

current time tc. First, for the current time tc, the differences signal d(tc,p, o) is calculated 

using EQN. 5. The calculated differences signal d(tc,p,o) is then substituted into the 

predictor as the regular variable to predict the target variable, i.e., the difference value 

y(tc), which is then used to calculate the predicted value of the physiologic signal at the 

future time tc + δ according to x(tc + δ) = y(tc) + x(tc) (the hat symbol “Λ” above 

symbols x and y indicates they are predicted values). As discussed above, the predicted 

future value x(tc + δ) can be used to, for example, predict a target locus on a therapy 

recipient of a therapy delivery system and to update a therapy protocol used by a therapy 

generator of the therapy delivery system, such as including aligning a radiation therapy 

locus with the predicted target locus.

[83] FIG. 9 shows a flow chart of an exemplary method 900 consistent with 

embodiments of the present disclosure for predicting a future value of a physiologic 

signal. As shown in FIG. 9, at 902, a measured data set containing a current value of the 

physiologic signal at a current time and past values of the physiologic signal at times 

before the current time is received. The physiologic signal can be, for example, a 

respiratory signal reflecting the quasiperiodic motion of the lungs of a target, such as a 

therapy recipient. At 904, a differences signal at the current time is calculated using the 

measured data set. The calculation can be conducted using, for example, EQN. 5. At 

906, a predicted difference value is calculated by substituting the differences signal into a 

predictor. At 908, a predicted future value of the physiologic signal is calculated based 

on the predicted difference value and the current value of the physiologic signal. At 910, 

the predicted future value of the physiologic signal is used to update a protocol for 

controlling a medical device. The medical device can be, for example, an imaging 

system for taking images of, or a therapy delivery system for delivering therapy to, an 

object, such as a patient. The protocol can be used to, for example, control the 

alignment of the medical device. Thus, the predicted future value can be used to, for 
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example, align the imaging system or a therapy generator of the therapy delivery system 

with a target locus on the object. For example, the predicted future value can be used to 

update a therapy protocol of the therapy generator of the therapy delivery system, where 

the therapy protocol is used to control the therapy generator to direct the therapy beam.

[84] FIG. 10 shows a flow chart of an exemplary method 1000 consistent with 

embodiments of the present disclosure for training a predictor used for predicting future 

values of a physiologic signal. As shown in FIG. 10, at 1002, a measured data set 

containing values of the physiologic signal measured at a plurality of time points is 

received. At 1004, a differences signal at one or more of the time points is calculated 

based on the measured data set, to obtain one or more training variable pairs each 

containing the calculated differences signal at the time point and a difference value 

corresponding to the time point. Hereinafter, a differences signal calculated during 

training is also referred to as a “training differences signal” and a difference value 

calculated during training is also referred to as a “training difference value.” At 1006, the 

one or more training variable pairs are used to train the predictor to obtain proper 

parameter values for the predictor.

[85] The exemplary methods shown in FIGs. 9 and 10, although described 

separately above, can be combined together consistent with the present disclosure. For 

example, the exemplary method 1000 can be conducted first to train a predictor using 

historical measured values of the physiologic signal, and then the trained predictor is 

used to predict the future values of the physiologic signal according to the exemplary 

method 900. Consistent with some embodiments, the predictor may be re-trained one or 

more times during any suitable point of method 900 to adapt to drift in the breathing 

behavior. The retraining may be performed on the fly and provide updated parameter 

values for the predictor. A predictor so adaptively trained on the fly can better 

compensate for the baseline shifts.

[86] Using the methods consistent with the present application, the prediction 

performance of each prediction algorithm can be improved as compared to the results 

without using the finite differences, and is significantly improved as compared to the 

results without any prediction.

Prediction Based on Model Regression

[87] Both model-based methods, such as Kalman filter, and model-free 

methods, such as normalized least mean-square filter and regression methods, can be 

used to predict future values of a physiologic signal. Model-based methods predict the 
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physiologic signal in a context. Therefore, in addition to the future values of the 

physiologic signal, the model-based methods can also predict an internal state of an 

anatomical structure, i.e., the source of the quasiperiodic motion that generates the 

physiologic signal. For example, the anatomical structure may be a region on or an 

organ of a human body, such as a patient or a therapy recipient. As such, the 

physiologic processes of the anatomical structure can be inferred from the information 

about the internal state of the anatomical structure. Moreover, by knowing the internal 

state of the anatomical structure and its relationship with the physiologic signal, the 

signal can be predicted at different prediction horizons without changing the parameters 

of the predictor.

[88] On the other hand, model-free methods use numerical methods to 

determine a mapping from a current set of measured or observed values of the 

physiologic signal to expected future values of the physiologic signal, and are thus more 

flexible towards changes in the characteristics of the physiologic signal.

[89] In this section, motion prediction techniques based on model regression is 

described. The model regression methods consistent with the present disclosure apply 

model-free prediction methods to determine the model of the anatomical structure, and 

thus benefit from the advantages of both the model-based and model-free prediction 

methods. The techniques described below in this section can be implemented in whole 

or in part using, or can use, the medical systems described above in relation to one or 

more of FIG. 1 A, FIG. 1B, FIG. 1C, FIG. 2, FIG. 3A, or FIG. 3B.

[90] As discussed above, the physiologic signal x(t) is a function of time. In 

this section, x(t) is also denoted as:

x(t) =/(.)(0 [EQN.7]
where f(.) denotes a functional representation that can be used to calculate values, such 

as future values, of the physiologic signal. The functional representation takes time t as 

input and output the values of the physiologic signal at time t, i.e., x(t). The functional 

representation can be determined according to the model regression methods of the 

present disclosure. Specifically, the relationship between the functional representation of 

the physiologic signal x(f), i.e., f(.), and the internal state at time (can be represented as 

follows:

/C)=/(5t)(t) [EQN.8]

where st denotes a state representation representing specific results of the internal state 

s(t) of the anatomical structure at time t, and hereinafter also referred to as a 
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“mapping function,” denotes a mapping from the state space to the functional 

representation of the physiologic signal, f{.\ The state representation st may be a 

vector or a scalar. When the state representation sf is a vector, it is also referred to as a 

“state vector.” The internal state s(f), and thus the state representation sf, are particular 

to the model used, and can be different for different models. Thus, not only the 

physiologic signal x(t) is a function of time, the functional representation f(.) used to 

calculate the physiologic signal x(t) is also a function of time and depends on the state 

representation sf. That is, the functional representation f(.) can change with time.

[91] Therefore, according to the present disclosure, the particular type and 

form of the functional representation f(.) at time t depend on the internal state s(f) and 

are determined by the state representation st at time t according to the mapping function 

f(st). For example, depending on the internal state, the functional representation f(.) 

can be a linear function, a quadratic function, or a cubic function, with a particular set of 

coefficients. The set of coefficients forms the state representation st. Therefore, if the 

mapping function /(s£) and the state representation sf for a time point t are known, the 

functional representation f(.) can be determined, and thus the value of the physiologic 

signal can be calculated according to the determined functional representation f(.). 

Further, at different time points, the functional representation f(.) used to calculate the 

physiologic signal x(t) may be different. For example, for the same physiologic signal, 

the functional representation f(.) may be a quadratic function for one state but a cubic 

function for another state.

[92] For example, assume the physiologic signal is a univariate signal and can 

be represented as x((), and the functional representation f(.) at time t is a cubic 

polynomial defined by four parameters a^t), a2(t), a3(t), and a4(t), which form the 

state representation st - [a1(f'),a2(J:),a3(ji),a4(t')]T. Hence the physiologic signal x(0 in 

this example can be calculated by: %(t) = afit) + a2(t)t + a3(t)t2 + a4(t)t3. In general, 

when the physiologic signal is a multivariate signal, each of a-fit), a2(t), a3(t), and a4(t) 

can also be multivariate.

[93] According to the present disclosure, once the functional representation f(.) 

is determined according to EQN. 8, the predicted future value of the physiologic signal at 

a future time t + δ, i.e., x(t + δ), can be calculated using EQN. 7 and historical measured 

values of the physiologic signal. The set of historical measured values of the physiologic 

signal includes the measured values for a time range starting from a time in the past, 

referred to herein as time t0, to a current time tc. This time range is also referred to 
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herein as a “measurement time range.” The process for calculating the future value of 

the physiologic signal using EQN. 7, EQN. 8, and the historical measured values is 

described below.

[94] For each of one or more of the time points in the measurement time 

range, the state representation sf is estimated based on the set of historical measured 

values. For example, the state representation st for a particular time point ti can be 

determined based on the measured values of the physiologic signal at the time point t-i 

and one or more previous time points. In some embodiments, the state representation sf 

is estimated for each of the time points in the measurement time range. According to the 

present disclosure, the state representation S; can be estimated using various 

appropriate methods, such as a regression method. An estimated state representation is 

also referred to herein as a historical state representation, and the set of estimated state 

representations is also referred to herein as a state representation history.

[95] Based on the state representation history, a predicted state 

representation st+(5 at the future time t + <5 can be calculated using an appropriate 

prediction algorithm. In some embodiments, a regression method, such as kernel 

density estimation, support vector regression, or linear regression, can be used to 

calculate the predicted state representation st+s. In some embodiments, an adaptive 

filtering scheme, such as normalized linear mean-square (nLMS) filter, can be used to 

calculate the predicted state representation st+s.

[96] Based on the predicted state representation st+s, a predicted functional 

representation f(.) at the future time t + δ can be determined by substituting the state 

representation st+s into EQN. 8. Further, the predicted future value x(t + δ) can be 

calculated by substituting the future time t + δ into EQN. 7 with the predicted functional 

representation, i.e., x(t + 5) = /(. )(t + S').

[97] Before the above-described predictor can be used to predict future values 

of the physiologic signal, it may need to be trained to determine the proper correlation 

between the functional representation /(.) and the state representation sf, i.e., to 

determine the proper mapping function /(st). Consistent with the present disclosure, 

historical measured values of the physiologic signal can be used to train the predictor. 

The set of historical measured values of the physiologic signal used for training the 

predictor can be the same as or different from the set of historical measured values used 

to calculate the predicted state representation st+s. In the present disclosure, the set of 
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historical measured values of the physiologic signal used for training the predictor is also 

referred to as a “training data set.”

[98] With the given training data set, a state representation sf for each of the 

time points in the training data set can be estimated using, for example, a regression 

method, such as kernel density estimation. An estimated state representation sf based 

on the training data set is also referred to herein as a training state representation, and 

the set of training state representations is also referred to herein as a training state 

representation set. As an example, the predictor can be trained to find the proper 

mapping function /(st) using one or more training pairs, each of which may include the 

estimated state representation at a particular time f, i.e., se, and the value of physiologic 

signal at time f + δ, i.e., x(f + δ). Various appropriate methods can be used for the 

training purpose. For example, a regression method, such as kernel density estimation, 

can be used for the training purpose.

[99] The above detailed description includes references to the accompanying 

drawings, which form a part of the detailed description. The drawings show, by way of 

illustration, specific embodiments in which the invention can be practiced. These 

embodiments are also referred to herein as “examples.” Such examples can include 

elements in addition to those shown or described. However, examples in which only 

those elements shown or described are provided. Moreover, any combination or 

permutation of those elements shown or described (or one or more aspects thereof), 

either with respect to a particular example (or one or more aspects thereof), or with 

respect to other examples (or one or more aspects thereof) shown or described herein 

are within the scope of the present disclosure.

[100] In the event of inconsistent usages between this document and any 

documents so incorporated by reference, the usage in this document controls.

[101] In this document, the terms “a” or “an” are used, as is common in patent 

documents, to include one or more than one, independent of any other instances or 

usages of “at least one” or “one or more.” In this document, the term “or” is used to refer 

to a nonexclusive or, such that “A or B” includes “A but not Β,” “B but not A,” and “A and 

B,” unless otherwise indicated. In this document, the terms “including” and “in which” are 

used as the plain-English equivalents of the respective terms “comprising” and “wherein.” 

Also, in the following claims, the terms “including” and “comprising” are open-ended, that 

is, a system, device, article, composition, formulation, or process that includes elements 

in addition to those listed after such a term in a claim are still deemed to fall within the 
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scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and 

“third,” etc. are used merely as labels, and are not intended to impose numerical 

requirements on their objects.

[102] Method examples described herein can be machine or computer- 

implemented at least in part. Some examples can include a computer-readable medium 

or machine-readable medium encoded with instructions operable to configure an 

electronic device to perform methods as described in the above examples. An 

implementation of such methods can include code, such as microcode, assembly 

language code, a higher-level language code, or the like. Such code can include 

computer readable instructions for performing various methods. The code may form 

portions of computer program products. Further, in an example, the code can be 

tangibly stored on one or more volatile, non-transitory, or non-volatile tangible computer- 

readable media, such as during execution or at other times. Examples of these tangible 

computer-readable media can include, but are not limited to, hard disks, removable 

magnetic disks, removable optical disks (e.g., compact disks and digital video disks), 

magnetic cassettes, memory cards or sticks, random access memories (RAMs), read 

only memories (ROMs), and the like.

[103] The above description is intended to be illustrative, and not restrictive. 

For example, the above-described examples (or one or more aspects thereof) may be 

used in combination with each other. Other embodiments can be used, such as by one 

of ordinary skill in the art upon reviewing the above description. The Abstract is provided 

to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of 

the technical disclosure. It is submitted with the understanding that it will not be used to 

interpret or limit the scope or meaning of the claims. Also, in the above Detailed 

Description, various features may be grouped together to streamline the disclosure. This 

should not be interpreted as intending that an unclaimed disclosed feature is essential to 

any claim. Rather, inventive subject matter may lie in less than all features of a particular 

disclosed embodiment. Thus, the following claims are hereby incorporated into the 

Detailed Description as examples or embodiments, with each claim standing on its own 

as a separate embodiment, and it is contemplated that such embodiments can be 

combined with each other in various combinations or permutations. The scope of the 

invention should be determined with reference to the appended claims, along with the full 

scope of equivalents to which such claims are entitled.
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What is claimed is:

1. A medical system, comprising:

a medical device, configured to be controlled according to a control protocol; 

and

a controller configured to:

receive a measured data set containing a current value at a current time and 

past values at past times of a physiologic signal measured on a recipient;

calculate a difference signal at the current time based on the measured data 

set, the difference signal including a first order finite difference of the physiologic 

signal at the current time and a second order finite difference of the physiologic 

signal at the current time, the first and second order finite differences respectively 

corresponding to first and second derivatives;

predict a difference value using the difference signal and a prediction 

algorithm, the difference value being a difference between a predicted future value of 

the physiologic signal at a future time and the current value;

calculate the predicted future value based on the difference value and the 

current value; and

update the control protocol according to the predicted future value.

2. The medical system of claim 1, wherein the difference signal further includes 

one or more higher order finite differences of the physiologic signal at the current 

time, the one or more higher order finite differences having an order higher than the 

second order finite difference.

3. The medical system of claim 2, wherein a highest order of the one or more 

higher order finite differences is determined based on at least one of the physiologic 

signal, or a time difference between the future time and the current time.

4. The medical system of claim 1, wherein the controller is configured to 

calculate the first order finite difference using a first step size and the second order 

finite difference using a second step size.
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9 5. The medical system of claim 4, wherein the first step size equals to the 

second step size.

6. The medical system of claim 4, wherein the first step size differs from the 

second step size.

7. The medical system of claim 4, wherein the first step size and the second step 

size are determined based on at least one of characteristics of the physiologic signal, 

an application of the medical system, a measurement of the physiologic signal, or a 

time difference between the future time and the current time.

8. The medical system of claim 1, wherein the prediction algorithm includes one 

of kernel density estimation, support vector regression with scaling, or random forest 

regression.

9. The medical system of claim 1, wherein:

the prediction algorithm is trained using a training variable pair comprising a 

training difference signal and a training difference value;

the training difference signal represents a finite difference of the physiologic 

signal at a first time point that precedes the current time; and

the training difference value represents a difference between a second value 

of the physiologic signal at a second time point, that follows the first time point, and a 

first value of the physiologic signal at the first time point, the second time point 

preceding the current time.

10. The medical system of claim 1, wherein the controller is further configured to: 

receive historical measured values of the physiologic signal measured at a

plurality of time points before predicting the difference value;

calculate a training difference signal at one or more time points based on the 

historical measured values, to obtain one or more training variable pairs each 

containing one training difference signal and a corresponding training difference 

value; and

train the prediction algorithm using the one or more training variable pairs.
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9 11. A method for controlling a medical device, comprising:

receiving a measured data set containing a current value at a current time and 

past values at past times of a physiologic signal measured on a recipient;

calculating a difference signal at the current time based on the measured data 

set, the difference signal including a first order finite difference of the physiologic 

signal at the current time and a second order finite difference of the physiologic 

signal at the current time, the first and second order finite differences respectively 

corresponding to first and second derivatives;

predicting a difference value using the difference signal and a prediction 

algorithm, the difference value being a difference between a predicted future value of 

the physiologic signal at a future time and the current value;

calculating the predicted future value based on the difference value and the 

current value; and

updating a control protocol of the medical device according to the predicted 

future value.

12. The method of claim 11, wherein the difference signal further includes one or 

more higher order finite differences of the physiologic signal at the current time, the 

one or more higher order finite differences having an order higher than the second 

order finite difference.

13. The method of claim 12, further comprising:

determining a highest order of the one or more higher order finite differences 

based on at least one of the physiologic signal, an application of the medical device, 

or a time difference between the future time and the current time.

14. The method of claim 11, wherein calculating the difference signal includes 

calculating the first order finite difference using a first step size and calculating the 

second order finite difference using a second step size.

15. The method of claim 14, wherein the first step size equals to the second step 

size.
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9 16. The method of claim 14, wherein the first step size differs from the second 

step size.

17. The method of claim 14, further comprising:

determining the first step size and the second step size based on at least one 

of characteristics of the physiologic signal, an application of the medical device, a 

measurement of the physiologic signal, or a time difference between the future time 

and the current time.

18. The method of claim 11, wherein predicting the difference value uses one of 

kernel density estimation, support vector regression with scaling, or random forest 

regression.

19. The method of claim 11, wherein:

the prediction algorithm is trained using a training variable pair comprising a 

training difference signal and a training difference value;

the training difference signal represents a finite difference of the physiologic 

signal at a first time point that precedes the current time; and

the training difference value represents a difference between a second value 

of the physiologic signal at a second time point, that follows the first time point, and a 

first value of the physiologic signal at the first time point, the second time point 

preceding the current time.

20. The method of claim 11, further comprising training the prediction algorithm, 

wherein training the prediction algorithm includes:

receiving historical measured values of the physiologic signal measured at a 

plurality of time points before predicting the difference value;

calculating a training difference signal at one or more of the time points based 

on the historical measured values, to obtain one or more training variable pairs each 

containing one training difference signal and a corresponding training difference 

value; and

training the prediction algorithm using the one or more training variable pairs 

to obtain parameter values of the prediction algorithm.
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